Science.gov

Sample records for calcium sensitization induced

  1. Calcium influences sensitivity to growth inhibition induced by a cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    While studies concerning mitogenic factors have been an important area of research for many years, much less is understood about the mechanisms of action of cell surface growth inhibitors. We have purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) which can reversibly inhibit the proliferation of diverse cell types. The studies discussed in this article show that three mouse keratinocyte cell lines exhibit sixty-fold greater sensitivity than other fibroblasts and epithelial-like cells to CeReS-18-induced growth inhibition. Growth inhibition induced by CeReS-18 treatment is a reversible process, and the three mouse keratinocyte cell lines exhibited either single or multiple cell cycle arrest points, although a predominantly G0/G1 cell cycle arrest point was exhibited in Swiss 3T3 fibroblasts. The sensitivity of the mouse keratinocyte cell lines to CeReS-18-induced growth inhibition was not affected by the degree of tumorigenic progression in the cell lines and was not due to differences in CeReS-18 binding affinity or number of cell surface receptors per cell. However, the sensitivity of both murine fibroblasts and keratinocytes could be altered by changing the extracellular calcium concentration, such that increased extracellular calcium concentrations resulted in decreased sensitivity to CeReS-18-induced proliferation inhibition. Thus the increased sensitivity of the murine keratinocyte cell lines to CeReS-18 could be ascribed to the low calcium concentration used in their propagation. Studies are currently under way investigating the role of calcium in CeReS-18-induced growth arrest. The CeReS-18 may serve as a very useful tool to study negative growth control and the signal transduction events associated with cell cycling.

  2. Androgens are powerful non-genomic inducers of calcium sensitization in visceral smooth muscle.

    PubMed

    González-Montelongo, Maria C; Marín, Raquel; Gómez, Tomás; Díaz, Mario

    2010-01-01

    Androgens are recognized as genotropic inducers of a number of physiological functions mainly associated with the development of sexual characteristics. However, as in the case of estrogens, the number of studies evidencing androgen actions in non-reproductive tissues has steadily grown over the past years. Here, we show that androgens acutely ( approximately 30min) alter the frequency spectrum of peristaltic activity of intestinal smooth muscle and augment the amplitude agonist-induced contractile activity. Maximal stimulation occurred at physiological concentrations of androgens with EC(50) values in the picomolar range. Androgen-induced potentiation was prevented by preincubation with androgen receptor (AR) antagonists but unaffected by cycloheximide plus actinomycin D, indicating that potentiation was mediated by ARs via a non-genomic mechanism. The effects of androgens were mimicked by polyamines and were completely blocked by inhibitors of polyamine synthesis. Using ionomycin-permeabilized intestinal smooth muscle preparations, we demonstrate that androgens exert their effects by inducing a mechanism of sensitization to calcium and not by altering intracellular calcium homeostasis. Correspondingly, the potentiation of mechanical activity induced by androgens was accompanied by an increase in the phosphorylation of the regulatory myosin light chain (LC(20)) within the same time-course than calcium sensitization and mechanical potentiation. The pursuit of potential signalling pathways linking androgen receptor activation with calcium sensitization revealed that mechanical potentiation of intestinal muscle by androgens involve activation of the Rho pathway, whose downstream effector, Rho-associated kinase (ROCK), is eventually responsible for displacement of the phosphorylation/dephosphorylation state of LC(20) towards its phosphorylated form. PMID:19800357

  3. T-Type voltage-sensitive calcium channels mediate mechanically-induced intracellular calcium oscillations in osteocytes by regulating endoplasmic reticulum calcium dynamics.

    PubMed

    Brown, Genevieve N; Leong, Pui L; Guo, X Edward

    2016-07-01

    One of the earliest responses of bone cells to mechanical stimuli is a rise in intracellular calcium (Ca(2+)), and osteocytes in particular exhibit robust oscillations in Ca(2+) when subjected to loading. Previous studies implicate roles for both the endoplasmic reticulum (ER) and T-Type voltage-sensitive calcium channels (VSCC) in these responses, but their interactions or relative contributions have not been studied. By observing Ca(2+) dynamics in the cytosol (Ca(2+)cyt) and the ER (Ca(2+)ER), the focus of this study was to explore the role of the ER and T-Type channels in Ca(2+) signaling in bone cells. We demonstrate that inhibition of T-Type VSCC in osteocytes significantly reduces the number of Ca(2+)cyt responses and affects Ca(2+)ER depletion dynamics. Simultaneous observation of Ca(2+) exchange among these spaces revealed high synchrony between rises in Ca(2+)cyt and depressions in Ca(2+)ER, and this synchrony was significantly reduced by challenging T-Type VSCC. We further confirmed that this effect was mediated directly through the ER and not through store-operated Ca(2+) entry (SOCE) pathways. Taken together, our data suggests that T-Type VSCC facilitate the recovery of Ca(2+)ER in osteocytes to sustain mechanically-induced Ca(2+) oscillations, uncovering a new mechanism underlying the behavior of osteocytes as mechanosensors. PMID:27108342

  4. Bupivacaine-induced Vasodilation Is Mediated by Decreased Calcium Sensitization in Isolated Endothelium-denuded Rat Aortas Precontracted with Phenylephrine

    PubMed Central

    Ok, Seong Ho; Bae, Sung Il; Kwon, Seong Chun; Park, Jung Chul; Kim, Woo Chan; Park, Kyeong Eon; Shin, Il Woo; Lee, Heon Keun; Chung, Young Kyun; Choi, Mun Jeoung

    2014-01-01

    Background A toxic dose of bupivacaine produces vasodilation in isolated aortas. The goal of this in vitro study was to investigate the cellular mechanism associated with bupivacaine-induced vasodilation in isolated endotheliumdenuded rat aortas precontracted with phenylephrine. Methods Isolated endothelium-denuded rat aortas were suspended for isometric tension recordings. The effects of nifedipine, verapamil, iberiotoxin, 4-aminopyridine, barium chloride, and glibenclamide on bupivacaine concentration-response curves were assessed in endothelium-denuded aortas precontracted with phenylephrine. The effect of phenylephrine and KCl used for precontraction on bupivacaine-induced concentration-response curves was assessed. The effects of verapamil on phenylephrine concentration-response curves were assessed. The effects of bupivacaine on the intracellular calcium concentration ([Ca2+]i) and tension in aortas precontracted with phenylephrine were measured simultaneously with the acetoxymethyl ester of a fura-2-loaded aortic strip. Results Pretreatment with potassium channel inhibitors had no effect on bupivacaine-induced relaxation in the endothelium-denuded aortas precontracted with phenylephrine, whereas verapamil or nifedipine attenuated bupivacaine-induced relaxation. The magnitude of the bupivacaine-induced relaxation was enhanced in the 100 mM KCl-induced precontracted aortas compared with the phenylephrine-induced precontracted aortas. Verapamil attenuated the phenylephrine-induced contraction. The magnitude of the bupivacaine-induced relaxation was higher than that of the bupivacaine-induced [Ca2+]i decrease in the aortas precontracted with phenylephrine. Conclusions Taken together, these results suggest that toxic-dose bupivacaine-induced vasodilation appears to be mediated by decreased calcium sensitization in endothelium-denuded aortas precontracted with phenylephrine. In addition, potassium channel inhibitors had no effect on bupivacaine-induced relaxation

  5. [Clinical significance of calcium sensitizer].

    PubMed

    Sakata, Yasushi

    2013-04-01

    Oral inotropes did not always improve mortality of the patients with heart failure partly because of possible direct toxic effects of these agents on myocytes, exacerbating arrhythmias, enhancing neurohormonal activity. Ca(2 +) sensitizers such as pimobendan and levosimendan was expected to improve even mortality of the patients with heart failure through increasing cardiac contractility without a rise in intracellular calcium. However, the trials using these agents disappoint our expectations. We need the development of the agents which has more specific effect of Ca(2 +) sensitizing and the selection of the patients who will receive the benefits of Ca(2 +) sensitizers. PMID:23545748

  6. Serum amyloid A induces calcium mobilization and chemotaxis of human monocytes by activating a pertussis toxin-sensitive signaling pathway.

    PubMed

    Badolato, R; Johnston, J A; Wang, J M; McVicar, D; Xu, L L; Oppenheim, J J; Kelvin, D J

    1995-10-15

    We have previously reported that serum amyloid A (SAA) induces adhesion and chemotaxis of human monocytes and polymorphonuclear neutrophils, in vitro as well as in vivo. Since the mechanism of SAA signaling is unknown, we have investigated the possibility that SAA, like other chemoattractants such as the chemotactic peptide FMLP and chemokines, might induce migration of monocytes by G protein activation. We report here that preincubation of monocytes with pertussis toxin (PTx) inhibited SAA chemotaxis, while incubation with cholera toxin (CTx) did not. Staurosporine and H-7, both inhibitors of protein kinase C (PKC), significantly decreased rSAA-induced chemotaxis of monocytes, suggesting that PKC may be involved in the rSAA signaling pathway. Moreover, rSAA, at concentrations that were effective in chemoattracting monocytes, resulted in transient elevation of cytoplasmic calcium concentration ([Ca2+]i), and incubation of cells with PTx markedly inhibited the mobilization of Ca2+ in response to rSAA. This suggests that both chemotaxis and the rise in [Ca2+]i, are mediated by G proteins of the Gi class. The increase in [Ca2+]i, induced in monocytes by rSAA, was comparable to that elicited by FMLP, and was severalfold greater than that induced by optimal concentrations of chemokine beta-family members such as RANTES, MCAF/MCP-1, and MIP-1 alpha. The chemoattractants FMLP, RANTES, MIP-1 alpha, and MCAF/MCP-1, all failed to desensitize rSAA-induced Ca2+ influx and chemotaxis in monocytes. This suggests that SAA uses a distinct receptor that is coupled to PTx-sensitive G proteins. PMID:7561109

  7. [Isolation, expression analysis of a chilling induced cDNA from rice root with differential display: an evidence role for caffeine-sensitive calcium signal].

    PubMed

    Yin, Kui-De; Zhang, Xing-Mei; Liu, Shi-Qiang; Li, Le-Gong

    2002-07-01

    Chilling-sensitive rice varieties acquire chilling tolerance when their roots are exposed to water stress for short time. Caffeine-sensitive calcium signal was involved in this procedure. By using total RNA differential display, a chilling induced cDNA(ICT: induction of chilling treatment) was isolated from roots of chilling-sensitive rice variety. It was determined that it is a novel cDNA by homology searching. The transcript level of ict mRNA is up-regulated under chilling stress, it is decreased to low level when the samples were transferred to standard culture conditions. Pre-treated with mannitol for two hours is beneficial to inducing ICT level of expression. This chilling induction was inhibited by caffeine, suggesting that it may play a putative role in signal transduction of caffeine-sensitive calcium. PMID:12385245

  8. The roles of calcium/calmodulin-dependent and Ras/mitogen-activated protein kinases in the development of psychostimulant-induced behavioral sensitization.

    PubMed

    Licata, Stephanie C; Pierce, R Christopher

    2003-04-01

    Although the development of behavioral sensitization to psychostimulants such as cocaine and amphetamine is confined mainly to one nucleus in the brain, the ventral tegmental area (VTA), this process is nonetheless complex, involving a complicated interplay between neurotransmitters, neuropeptides and trophic factors. In the present review we present the hypothesis that calcium-stimulated second messengers, including the calcium/calmodulin-dependent protein kinases and the Ras/mitogen-activated protein kinases, represent the major biochemical pathways whereby converging extracellular signals are integrated and amplified, resulting in the biochemical and molecular changes in dopaminergic neurons in the VTA that represent the critical neuronal correlates of the development of behavioral sensitization to psychostimulants. Moreover, given the important role of calcium-stimulated second messengers in the expression of behavioral sensitization, these signal transduction systems may represent the biochemical substrate through which the transient neurochemical changes associated with the development of behavioral sensitization are translated into the persistent neurochemical, biochemical and molecular alterations in neuronal function that underlie the long-term expression of psychostimulant-induced behavioral sensitization. PMID:12641723

  9. Comparison of the Species-Sensitive Effects of Different Dosages of Calcium and Verapamil on Gentamicin-Induced Nephrotoxicity in Rats and Rabbits

    PubMed Central

    Patil, Amol N.; Arora, Tarun; Desai, Amrita; Tripathi, Chakra Dhar

    2014-01-01

    Aim: To compare the effects of different dosages of calcium and verapamil on gentamicin-induced nephrotoxicity in rats and rabbits. Materials and Methods: Rabbits and rats of either sex in weight range of 1.5–2.5 kg and 175–225 g, respectively were used in study. Gentamicin 80 mg/kg i.m., calcium carbonate 0.5 g/kg/day oral, calcium carbonate 1.0 g/kg/day oral, and verapamil 7 mg/kg/day i.m. were administered for 6 days in either species containing 7 groups. Blood urea nitrogen (BUN), serum creatinine and, urine protein levels were assessed on day 0 and day 7 for kidney function. The animals were sacrificed on day 7 for histopathplogical examination and kidney superoxide dismutase levels (SOD) were measured. Statistical analysis was done using student's unpaired t-test, analysis of variance (ANOVA) and Wilcoxon Rank Sum test. P-value less than 0.05 was considered significant. Results: The results showed that calcium was able to reverse significantly increased BUN, serum creatinine, urine protein, and reduced kidney SOD levels in gentamicin-treated nephrotoxic rats or rabbits in a dose-dependent manner while verapamil had no protective or nephrotoxic effect. Conclusion: Calcium 0.5 g/kg/day and 1.0 g/kg/day were able to reverse tubular necrosis and mesangial proliferation in gentamicin-treated nephrotoxic animals. There was no species-sensitive variation in reversal of nephrotoxicity by calcium in rats and rabbits. PMID:25948958

  10. Extended sensitivity for the calcium selective electrode.

    PubMed

    Morton, R W; Chung, J K; Miller, J L; Charlton, J P; Fager, R S

    1986-09-01

    Sensitivity of calcium-selective electrodes heretofore has been limited to calcium concentrations above 10(-8) M in the absence of competing ions. We describe the use of calcium buffers to stabilize the free calcium in the reference electrode. Electrode calibration is linear to 10(-8) M and is curvilinear to 10(-11) M in the presence of 0.1 M ionic strength. Selectivity with respect to competing cations, magnesium, potassium, sodium, and hydrogen is preserved. Electrode response time is less than 2 s for small changes in calcium activity. Response range is linear over 9 log units of calcium activity. Potential-time stability is less than 10 mV/h at saturation currents. Although the silver-silver chloride terminals are photosensitive throughout the visible and near-ultraviolet regions, housing the reference and indifferent in opaque barrels avoids false photovoltaic response. PMID:3777438

  11. Comparative evaluation of calcium-sensitizing agents, pimobendan and SCH00013, on the myocardial function of canine pacing-induced model of heart failure.

    PubMed

    Hamabe, Lina; Kawamura, Keisuke; Kim, Soo-Min; Yoshiyuki, Rieko; Fukayama, Toshiharu; Shimizu, Miki; Fukushima, Ryuji; Tanaka, Ryo

    2014-01-01

    Pimobendan and SCH00013 are calcium sensitizers that possess dual action of calcium sensitization and phosphodiesterase-III inhibition. This study was conducted to comparatively evaluate the effect of these medications on the myocardial function of the canine pacing-induced heart failure model using echocardiography. Heart failure was induced in 20 dogs, to which pimobendan and two different doses of SCH00013 were administered orally to 15 dogs for 3 weeks, and the remaining 5 dogs served as the control. Cardiac evaluations were performed at baseline, week 1, week 2, and week 3. Significant thinning and dilation of the left ventricles, with systolic dysfunction, indicated by reduction of fractional shortening (FS) and strain values, were observed with a low dose of SCH00013. Whereas, although systolic dysfunction was observed with reduction of FS and radial strain, significant dilation and thinning of the left ventricles and reduction of circumferential strain were not observed with pimobendan. Pimobendan had a potent positive inotropic effect, with little effect on synchronicity, while low-dose SCH00013 had a weaker positive inotropic effect but was able to sustain synchronicity. Although, it failed to show significant statistical differences, the results of this study allow speculations that administration of pimobendan and SCH00013 may have differing effect on the myocardial function in the canine pacinginduced heart failure model. PMID:24599141

  12. Sensitivity to calcium intake in calcium stone forming patients.

    PubMed

    Heilberg, I P; Martini, L A; Draibe, S A; Ajzen, H; Ramos, O L; Schor, N

    1996-01-01

    The absorptive or renal origin of hypercalciuria can be discriminated using an acute oral calcium load test (ACLT). Of 86 patients with calcium oxalate kidney stones, 28 (23%) were found to be hypercalciuric (HCa) and 58 (67%) normocalciuric (NCa) on their customary free diet, containing 542 +/- 29 mg/day (mean +/- SE) of calcium. Since the apparently normal 24-hour calcium excretion of many calcium stone formers (CSF) may be due to a combination of high calcium absorption with moderately low calcium intake, all patients were investigated by ACLT. Of 28 HCa patients, 13 (46%) were classified as absorptive (AH) and 15 (54%) as renal hypercalciuria (RH). Of the 58 NCa patients, 38 (65%) presented features of intestinal hyperabsorption and were therefore designated as AH-like, and 20 (35%) as RH-like. To further elucidate the role of dietary calcium in these CSF, a chronic calcium load test (CCLT), consisting of 1 g/day of oral Ca for 7 days, was designed. A positive response to the CCLT was considered to occur when urinary calcium (uCa) was > or = 4 mg/ kg/24 h on the 7th day. Among NCa patients, 29% of AH-like subjects responded to the CCLT and 71% did not; 50% of RH-like subjects also responded and 50% did not. In HCa patients, 85% of AH and 67% of RH subjects maintained uCa > or = 4 mg/kg/24 h after the CCLT and 15% of AH and 23% of RH subjects did not. However, a significant additional increase in mean uCa was not observed among HCa patients. All patients were submitted to a second evaluation of fasting calciuria (Ca/Cr). A modification of this parameter was noticed in 89% of RH-like and 78% of RH patients. In conclusion, these data suggest the presence of subpopulations of patients sensitive or not to calcium intake, regardless of whether the acute response to a calcium overload test suggested AH or RH. The CCLT disclosed dietary hypercalciuria in 21/58 (36%) of previously NCa patients. In these NCa patients, the ACLT may be replaced by the CCLT. The distinction

  13. CALCIUM-INDUCED SUPRAMOLECULAR STRUCTURES IN THE CALCIUM CASEINATE SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular details deciphering the spontaneous calcium-induced protein aggregation process in the calcium caseinate system remain obscure. Understanding this complex process could lead to potential new applications of this important food ingredient. In this work, we studied calcium-induced supra...

  14. Inhibition of T-Type Voltage Sensitive Calcium Channel Reduces Load-Induced OA in Mice and Suppresses the Catabolic Effect of Bone Mechanical Stress on Chondrocytes

    PubMed Central

    Srinivasan, Padma P.; Parajuli, Ashutosh; Price, Christopher; Wang, Liyun; Duncan, Randall L.; Kirn-Safran, Catherine B.

    2015-01-01

    Voltage-sensitive calcium channels (VSCC) regulate cellular calcium influx, one of the earliest responses to mechanical stimulation in osteoblasts. Here, we postulate that T-type VSCCs play an essential role in bone mechanical response to load and participate in events leading to the pathology of load-induced OA. Repetitive mechanical insult was used to induce OA in Cav3.2 T-VSCC null and wild-type control mouse knees. Osteoblasts (MC3T3-E1) and chondrocytes were treated with a selective T-VSCC inhibitor and subjected to fluid shear stress to determine how blocking of T-VSCCs alters the expression profile of each cell type upon mechanical stimulation. Conditioned-media (CM) obtained from static and sheared MC3T3-E1 was used to assess the effect of osteoblast-derived factors on the chondrocyte phenotype. T-VSCC null knees exhibited significantly lower focal articular cartilage damage than age-matched controls. In vitro inhibition of T-VSCC significantly reduced the expression of both early and late mechanoresponsive genes in osteoblasts but had no effect on gene expression in chondrocytes. Furthermore, treatment of chondrocytes with CM obtained from sheared osteoblasts induced expression of markers of hypertrophy in chondrocytes and this was nearly abolished when osteoblasts were pre-treated with the T-VSCC-specific inhibitor. These results indicate that T-VSCC plays a role in signaling events associated with induction of OA and is essential to the release of osteoblast-derived factors that promote an early OA phenotype in chondrocytes. Further, these findings suggest that local inhibition of T-VSCC may serve as a therapy for blocking load-induced bone formation that results in cartilage degeneration. PMID:26011709

  15. Calcium-sensitive mini- and microelectrodes.

    PubMed

    Thomas, Roger C; Bers, Donald M

    2013-04-01

    It is widely agreed that the best method for measuring the ionized free calcium concentration ([Ca(2+)]) in large volumes of biological solutions is to use Ca(2+)-sensitive macroelectrodes. These are commercially available. To measure [Ca(2+)] in small volumes of solution, minielectrodes with 1-2-mm tips can easily be made and used, and may also be commercially available. Ca(2+)-sensitive microelectrodes (CaSMs, with 0.5-2-μm tips) can also be made and used extracellularly or intracellularly in robust cells, but interest in their use has recently been largely eclipsed. This is because of practical difficulties and the introduction of a large number of fluorescent and other optical calcium probes with calcium sensitivities varying from the nanomolar to the millimolar range, such as Fura-2, Indo-1, Fluo-4, and many others. In this article, we emphasize the utility of Ca(2+)-selective electrodes and show that their use is complementary to use of fluorescent and other optical methods. Each method has advantages and disadvantages. Because numerous reviews and books have been dedicated to the theoretical aspects of ion-selective electrode principles and technology, this article is mainly intended for investigators who have some degree of electrophysiological experience with ion-selective electrodes or microelectrodes. PMID:23547145

  16. The opening of maitotoxin-sensitive calcium channels induces the acrosome reaction in human spermatozoa: differences from the zona pellucida

    PubMed Central

    Chávez, Julio C; de Blas, Gerardo A; de la Vega-Beltrán, José L; Nishigaki, Takuya; Chirinos, Mayel; González-González, María Elena; Larrea, Fernando; Solís, Alejandra; Darszon, Alberto; Treviño, Claudia L

    2011-01-01

    The acrosome reaction (AR), an absolute requirement for spermatozoa and egg fusion, requires the influx of Ca2+ into the spermatozoa through voltage-dependent Ca2+ channels and store-operated channels. Maitotoxin (MTx), a Ca2+-mobilizing agent, has been shown to be a potent inducer of the mouse sperm AR, with a pharmacology similar to that of the zona pellucida (ZP), possibly suggesting a common pathway for both inducers. Using recombinant human ZP3 (rhZP3), mouse ZP and two MTx channel blockers (U73122 and U73343), we investigated and compared the MTx- and ZP-induced ARs in human and mouse spermatozoa. Herein, we report that MTx induced AR and elevated intracellular Ca2+ ([Ca2+]i) in human spermatozoa, both of which were blocked by U73122 and U73343. These two compounds also inhibited the MTx-induced AR in mouse spermatozoa. In disagreement with our previous proposal, the AR triggered by rhZP3 or mouse ZP was not blocked by U73343, indicating that in human and mouse spermatozoa, the AR induction by the physiological ligands or by MTx occurred through distinct pathways. U73122, but not U73343 (inactive analogue), can block phospholipase C (PLC). Another PLC inhibitor, edelfosine, also blocked the rhZP3- and ZP-induced ARs. These findings confirmed the participation of a PLC-dependent signalling pathway in human and mouse zona protein-induced AR. Notably, edelfosine also inhibited the MTx-induced mouse sperm AR but not that of the human, suggesting that toxin-induced AR is PLC-dependent in mice and PLC-independent in humans. PMID:20835262

  17. Influence of calcium-induced aggregation on the sensitivity of aminobis(methylenephosphonate)-containing potential MRI contrast agents.

    PubMed

    Henig, Jörg; Mamedov, Ilgar; Fouskova, Petra; Tóth, Éva; Logothetis, Nikos K; Angelovski, Goran; Mayer, Hermann A

    2011-07-18

    A novel class of 1,4,7,10-tetraazacyclododecane-1,4,7-tris(methylenecarboxylic) acid (DO3A)-based lanthanide complexes with relaxometric response to Ca(2+) was synthesized, and their physicochemical properties were investigated. Four macrocyclic ligands containing an alkyl-aminobis(methylenephosphonate) side chain for Ca(2+)-chelation have been studied (alkyl is propyl, butyl, pentyl, and hexyl for L(1), L(2), L(3), and L(4), respectively). Upon addition of Ca(2+), the r(1) relaxivity of their Gd(3+) complexes decreased up to 61% of the initial value for the best compounds GdL(3) and GdL(4). The relaxivity of the complexes was concentration dependent (it decreases with increasing concentration). Diffusion NMR studies on the Y(3+) analogues evidenced the formation of agglomerates at higher concentrations; the aggregation becomes even more important in the presence of Ca(2+). (31)P NMR experiments on EuL(1) and EuL(4) indicated the coordination of a phosphonate to the Ln(3+) for the ligand with a propyl chain, while phosphonate coordination was not observed for the analogue bearing a hexyl linker. Potentiometric titrations yielded protonation constants of the Gd(3+) complexes. log K(H1) values for all complexes lie between 6.12 and 7.11 whereas log K(H2) values are between 4.61 and 5.87. Luminescence emission spectra recorded on the Eu(3+) complexes confirmed the coordination of a phosphonate group to the Ln(3+) center in EuL(1). Luminescence lifetime measurements showed that Ca-induced agglomeration reduces the hydration number which is the main cause for the change in r(1). Variable temperature (17)O NMR experiments evidenced high water exchange rates on GdL(1), GdL(2), and GdL(3) comparable to that of the aqua ion. PMID:21671565

  18. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  19. Teaching Calcium-Induced Calcium Release in Cardiomyocytes Using a Classic Paper by Fabiato

    ERIC Educational Resources Information Center

    Liang, Willmann

    2008-01-01

    This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum." In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In…

  20. Calcium Sensitization Mechanisms in Gastrointestinal Smooth Muscles

    PubMed Central

    Perrino, Brian A

    2016-01-01

    An increase in intracellular Ca2+ is the primary trigger of contraction of gastrointestinal (GI) smooth muscles. However, increasing the Ca2+ sensitivity of the myofilaments by elevating myosin light chain phosphorylation also plays an essential role. Inhibiting myosin light chain phosphatase activity with protein kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation is considered to be the primary mechanism underlying myofilament Ca2+ sensitization. The relative importance of Ca2+ sensitization mechanisms to the diverse patterns of GI motility is likely related to the varied functional roles of GI smooth muscles. Increases in CPI-17 and MYPT1 phosphorylation in response to agonist stimulation regulate myosin light chain phosphatase activity in phasic, tonic, and sphincteric GI smooth muscles. Recent evidence suggests that MYPT1 phosphorylation may also contribute to force generation by reorganization of the actin cytoskeleton. The mechanisms responsible for maintaining constitutive CPI-17 and MYPT1 phosphorylation in GI smooth muscles are still largely unknown. The characteristics of the cell-types comprising the neuroeffector junction lead to fundamental differences between the effects of exogenous agonists and endogenous neurotransmitters on Ca2+ sensitization mechanisms. The contribution of various cell-types within the tunica muscularis to the motor responses of GI organs to neurotransmission must be considered when determining the mechanisms by which Ca2+ sensitization pathways are activated. The signaling pathways regulating Ca2+ sensitization may provide novel therapeutic strategies for controlling GI motility. This article will provide an overview of the current understanding of the biochemical basis for the regulation of Ca2+ sensitization, while also discussing the functional importance to different smooth muscles of the GI tract. PMID:26701920

  1. Calcium sensitive ring-like oligomers formed by synaptotagmin

    PubMed Central

    Wang, Jing; Bello, Oscar; Auclair, Sarah M.; Wang, Jing; Coleman, Jeff; Pincet, Frederic; Krishnakumar, Shyam S.; Sindelar, Charles V.; Rothman, James E.

    2014-01-01

    The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. PMID:25201968

  2. Augmented behavioral response and enhanced synaptosomal calcium transport induced by repeated cocaine administration are decreased by calcium channel blockers

    PubMed Central

    Mills, K.; Ansah, T.A.; Ali, S.F.; Mukherjee, S.; Shockley, D.C.

    2009-01-01

    Recent studies suggest that calcium influx via L-type calcium channels is necessary for psychostimulant-induced behavioral sensitization. In addition, chronic amphetamine upregulates subtype Cav1.2-containing L-type calcium channels. In the present studies, we assessed the effect of calcium channel blockers (CCBs) on cocaine-induced behavioral sentitization and determined whether the functional activity of L-type calcium channels is altered after repeated cocaine administration. Rats were administered daily intraperitoneal injections of either flunarizine (40 mg/kg), diltiazem (40 mg/kg) or cocaine (20 mg/kg) and the combination of the CCB’s and cocaine for 30 days. Motor activities were monitored on Day 1, and every 6th day during the 30-day treatment period. Daily cocaine administration produced increased locomotor activity. Maximal augmentation of behavioral response to repeated cocaine administration was observed on Day 18. Flunarizine pretreatment abolished the augmented behavioral response to repeated cocaine administration while diltiazem was less effective. Measurement of tissue monoamine levels on Day 18 revealed cocaine-induced increases in DA and 5-HT in the nucleus accumbens. By contrast to behavioral response, diltiazem was more effective in attenuating increases in monoamine levels than flunarizine. Cocaine administration for 18 days produced increases in calcium-uptake in synaptosomes prepared from the nucleus accumbens and frontal cortex. Increases in calcium-uptake were abolished by flunarizine- and diltiazem-pretreatment. Taken together, the augmented cocaine-induced behavioral response on Day 18 may be due to increased calcium uptake in the nucleus accumbens leading to increased dopamine (DA) and serotonin (5-HT) release. Flunarizine and diltiazem attenuated the behavioral response by decreasing calcium uptake and decreasing neurochemical release. PMID:17689567

  3. Intracellular calcium affects prestin's voltage operating point indirectly via turgor-induced membrane tension

    NASA Astrophysics Data System (ADS)

    Song, Lei; Santos-Sacchi, Joseph

    2015-12-01

    Recent identification of a calmodulin binding site within prestin's C-terminus indicates that calcium can significantly alter prestin's operating voltage range as gauged by the Boltzmann parameter Vh (Keller et al., J. Neuroscience, 2014). We reasoned that those experiments may have identified the molecular substrate for the protein's tension sensitivity. In an effort to understand how this may happen, we evaluated the effects of turgor pressure on such shifts produced by calcium. We find that the shifts are induced by calcium's ability to reduce turgor pressure during whole cell voltage clamp recording. Clamping turgor pressure to 1kPa, the cell's normal intracellular pressure, completely counters the calcium effect. Furthermore, following unrestrained shifts, collapsing the cells abolishes induced shifts. We conclude that calcium does not work by direct action on prestin's conformational state. The possibility remains that calcium interaction with prestin alters water movements within the cell, possibly via its anion transport function.

  4. Calcium signaling in UV-induced damage

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Zhang, Su-juan; Li, Yuan-yuan; Qu, Ying; Ren, Zhao-Yu

    2007-05-01

    Hepa1-6 cells were irradiated with UV and incubated for varying periods of time. [Ca 2+] i (intracellular calcium concentration) of UV-irradiated cell was measured by ratio fluorescence imaging system. The comet assay was used to determine DNA damage. During the UVB-irradiation, [Ca 2+] i had an ascending tendency from 0.88 J/m2 to 92.4J/m2. Comet assay instant test indicated that when the irradiation dosage was above 0.88J/m2, DNA damage was observed. Even after approximate 2 h of incubation, DNA damage was still not detected by 0.88J/m2 of UVB irradiation. During UVA-irradiation, the elevation of [Ca 2+] i was not dose-dependent in a range of 1200 J/m2-6000J/m2 and DNA damage was not observed by comet assay. These results suggested that several intracellular UV receptors might induce [Ca 2+] i rising by absorption of the UV energy. Just [Ca 2+] i rising can't induce DNA damage certainly, it is very likely that the breakdown of calcium steady state induces DNA damage.u

  5. Detection of calcium activity in human monocytes by the fura-2 fluorescence method: in vitro differentiation sensitizes cells to dihydropyridine calcium channel modulators

    NASA Astrophysics Data System (ADS)

    Oraevsky, Alexander A.; Cabello, Olga A.; Shan, Qin; Tittel, Frank K.; Henry, Philip D.

    1994-07-01

    Dihydropyridine (DHP) calcium channel blockers have been shown to suppress atherogenesis in various species and controlled angiographic trials suggest that these drugs may retard the progression of occlusive coronary disease in humans. Because mononuclear leukocytes play a key role in the formation of early and advanced atheromatous lesions, we determined effects of DHP calcium channel modulators on calcium uptake by cells of the monocytic lineage. Human peripheral blood monocytes were evaluated before and after undergoing in vitro differentiation induced by two days of culture with fetal calf serum and FMLP. Changes in intracellular calcium activity were estimated with fura-2, a fluorescent calcium indicator. Freshly isolated (unactivated) monocytes were insensitive to DHP drugs both in the presence and absence of high potassium membrane depolarization. In contrast, nisoldipine, a DHP calcium channel blocker, and BAY K 8644, a DHP calcium channel activator, decreased and increased calcium uptake by KC1-depolarized differentiated monocytes. Results suggest that differentiation of monocytes to macrophages may involve a change in the expression and/or regulation of DHP- sensitive calcium channels.

  6. A Novel Phosphorylation Site, Serine 199, in the C-Terminus of Cardiac Troponin I Regulates Calcium Sensitivity and Susceptibility to Calpain-Induced Proteolysis

    PubMed Central

    Wijnker, Paul J.M.; Li, Yuejin; Zhang, Pingbo; Foster, D. Brian; dos Remedios, Cris; Van Eyk, Jennifer E.; Stienen, Ger J.M.; Murphy, Anne M.; van der Velden, Jolanda

    2015-01-01

    Phosphorylation of cardiac troponin I (cTnI) by protein kinase C (PKC) is implicated in cardiac dysfunction. Recently, Serine 199 (Ser199) was identified as a target for PKC phosphorylation and increased Ser199 phosphorylation occurs in end-stage failing compared with non-failing human myocardium. The functional consequences of cTnI-Ser199 phosphorylation in the heart are unknown. Therefore, we investigated the impact of phosphorylation of cTnI-Ser199 on myofilament function in human cardiac tissue and the susceptibility of cTnI to proteolysis. cTnI-Ser199 was replaced by aspartic acid (199D) or alanine (199A) to mimic phosphorylation and dephosphorylation, respectively, with recombinant wild-type (Wt) cTn as a negative control. Force development was measured at various [Ca2+] and at sarcomere lengths of 1.8 and 2.2 μm in demembranated cardiomyocytes in which endogenous cTn complex was exchanged with the recombinant human cTn complexes. In idiopathic dilated cardiomyopathy samples, myofilament Ca2+-sensitivity (pCa50) at 2.2 μm was significantly higher in 199D (pCa50=5.79±0.01) compared to 199A (pCa50=5.65±0.01) and Wt (pCa50=5.66±0.02) at ~63% cTn exchange. Myofilament Ca2+-sensitivity was significantly higher even with only 5.9±2.5% 199D exchange compared to 199A, and saturated at 12.3±2.6% 199D exchange. Ser199 pseudo-phosphorylation decreased cTnI binding to both actin and actin-tropomyosin. Moreover, altered susceptibility of cTnI to proteolysis by calpain I was found when Ser199 was pseudo-phosphorylated. Our data demonstrate that low levels of cTnI-Ser199 pseudo-phosphorylation (~6%) increase myofilament Ca2+-sensitivity in human cardiomyocytes, most likely by decreasing the binding affinity of cTnI for actin-tropomyosin. In addition, cTnI-Ser199 pseudo-phosphorylation or mutation regulates calpain I mediated proteolysis of cTnI. PMID:25771144

  7. Glutamate Induces Calcium Waves in Cultured Astrocytes: Long-Range Glial Signaling

    NASA Astrophysics Data System (ADS)

    Cornell-Bell, Ann H.; Finkbeiner, Steven M.; Cooper, Mark S.; Smith, Stephen J.

    1990-01-01

    The finding that astrocytes possess glutamate-sensitive ion channels hinted at a previously unrecognized signaling role for these cells. Now it is reported that cultured hippocampal astrocytes can respond to glutamate with a prompt and oscillatory elevation of cytoplasmic free calcium, visible through use of the fluorescent calcium indicator fluo-3. Two types of glutamate receptor-one preferring quisqualate and releasing calcium from intracellular stores and the other preferring kainate and promoting surface-membrane calcium influx-appear to be involved. Moreover, glutamate-induced increases in cytoplasmic free calcium frequently propagate as waves within the cytoplasm of individual astrocytes and between adjacent astrocytes in confluent cultures. These propagating waves of calcium suggest that networks of astrocytes may constitute a long-range signaling system within the brain.

  8. Selective Calcium Sensitivity in Immature Glioma Cancer Stem Cells

    PubMed Central

    Marinescu, Voichita Dana; Segerman, Anna; Schmidt, Linnéa; Hermansson, Annika; Dirks, Peter; Forsberg-Nilsson, Karin; Westermark, Bengt; Uhrbom, Lene; Linnarsson, Sten; Nelander, Sven; Andäng, Michael

    2014-01-01

    Tumor-initiating cells are a subpopulation in aggressive cancers that exhibit traits shared with stem cells, including the ability to self-renew and differentiate, commonly referred to as stemness. In addition, such cells are resistant to chemo- and radiation therapy posing a therapeutic challenge. To uncover stemness-associated functions in glioma-initiating cells (GICs), transcriptome profiles were compared to neural stem cells (NSCs) and gene ontology analysis identified an enrichment of Ca2+ signaling genes in NSCs and the more stem-like (NSC-proximal) GICs. Functional analysis in a set of different GIC lines regarding sensitivity to disturbed homeostasis using A23187 and Thapsigargin, revealed that NSC-proximal GICs were more sensitive, corroborating the transcriptome data. Furthermore, Ca2+ drug sensitivity was reduced in GICs after differentiation, with most potent effect in the NSC-proximal GIC, supporting a stemness-associated Ca2+ sensitivity. NSCs and the NSC-proximal GIC line expressed a larger number of ion channels permeable to potassium, sodium and Ca2+. Conversely, a higher number of and higher expression levels of Ca2+ binding genes that may buffer Ca2+, were expressed in NSC-distal GICs. In particular, expression of the AMPA glutamate receptor subunit GRIA1, was found to associate with Ca2+ sensitive NSC-proximal GICs, and decreased as GICs differentiated along with reduced Ca2+ drug sensitivity. The correlation between high expression of Ca2+ channels (such as GRIA1) and sensitivity to Ca2+ drugs was confirmed in an additional nine novel GIC lines. Calcium drug sensitivity also correlated with expression of the NSC markers nestin (NES) and FABP7 (BLBP, brain lipid-binding protein) in this extended analysis. In summary, NSC-associated NES+/FABP7+/GRIA1+ GICs were selectively sensitive to disturbances in Ca2+ homeostasis, providing a potential target mechanism for eradication of an immature population of malignant cells. PMID:25531110

  9. Acute Calcium Ingestion Attenuates Exercise-induced Disruption of Calcium Homeostasis

    PubMed Central

    Barry, Daniel W; Hansen, Kent C; Van Pelt, Rachael E; Witten, Michael; Wolfe, Pamela; Kohrt, Wendy M

    2011-01-01

    Purpose Exercise is associated with a decrease in bone mineral density under certain conditions. One potential mechanism is increased bone resorption due to an exercise-induced increase in parathyroid hormone (PTH), possibly triggered by dermal calcium loss. The purpose of this investigation was to determine whether calcium supplementation either before or during exercise attenuates exercise-induced increases in PTH and C-terminal telopeptide of type I collagen (CTX; a marker of bone resorption). Methods Male endurance athletes (n=20) completed three 35-km cycling time trials under differing calcium supplementation conditions: 1) 1000 mg calcium 20 minutes before exercise and placebo during, 2) placebo before and 250 mg calcium every 15 minutes during exercise (1000 mg total), or 3) placebo before and during exercise. Calcium was delivered in a 1000 mg/L solution. Supplementation was double-blinded and trials were performed in random order. PTH, CTX, bone-specific alkaline phosphatase (BAP; a marker of bone formation), and ionized calcium (iCa) were measured before and immediately after exercise. Results CTX increased and iCa decreased similarly in response to exercise under all test conditions. When compared to placebo, calcium supplementation before exercise attenuated the increase in PTH (55.8 ± 15.0 vs. 74.0 ± 14.2; mean ± SE; p=0.04); there was a similar trend (58.0 ± 17.4; p=0.07) for calcium supplementation during exercise. There were no effects of calcium on changes in CTX, BAP, and iCa. Conclusions Calcium supplementation before exercise attenuated the disruption of PTH. Further research is needed to determine the effects of repeated increases in PTH and CTX on bone (i.e., exercise training), and whether calcium supplementation can diminish any exercise-induced demineralization. PMID:20798655

  10. Modulation of iron metabolism by iron chelation regulates intracellular calcium and increases sensitivity to doxorubicin

    PubMed Central

    Yalcintepe, Leman; Halis, Emre

    2016-01-01

    Increased intracellular iron levels can both promote cell proliferation and death, as such; iron has a “two-sided effect” in the delicate balance of human health. Though the role of iron in the development of cancer remains unclear, investigations of iron chelators as anti-tumor agents have revealed promising results. Here, we investigated the influence of iron and desferrioxamine (DFO), the iron chelating agent on intracellular calcium in a human leukemia cell line, K562. Iron uptake is associated with increased reactive oxygen species (ROS) generation. Therefore, we showed that iron also caused dose-dependent ROS generation in K562 cells. The measurement of intracellular calcium was determined using Furo-2 with a fluorescence spectrophotometer. The iron delivery process to the cytoplasmic iron pool was examined by monitoring the fluorescence of cells loaded with calcein-acetoxymethyl. Our data showed that iron increased intracellular calcium, and this response was 8 times higher when cells were incubated with DFO. K562 cells with DFO caused a 3.5 times increase of intracellular calcium in the presence of doxorubicin (DOX). In conclusion, DFO induces intracellular calcium and increases their sensitivity to DOX, a chemotherapeutic agent. PMID:26773173

  11. Reversible adsorption of calcium ions by imprinted temperature sensitive gels

    NASA Astrophysics Data System (ADS)

    Alvarez-Lorenzo, Carmen; Guney, Orhan; Oya, Taro; Sakai, Yasuzo; Kobayashi, Masatoshi; Enoki, Takashi; Takeoka, Yukikazu; Ishibashi, Toru; Kuroda, Kenichi; Tanaka, Kazunori; Wang, Guoqiang; Grosberg, Alexander Yu.; Masamune, Satoru; Tanaka, Toyoichi

    2001-02-01

    With the aim of developing polymeric gels sensitive to external stimuli and able to reversibly adsorb and release divalent ions, copolymer gels of N-isopropylacrylamide (NIPA) and methacrylic (MAA) monomers were prepared. We chose calcium as a target divalent ion. Two MAAs form a complex with a calcium ion, and the NIPA component allows the polymers to swell and shrink reversibly in response to temperature. The adsorbing site develops an affinity to target ions when the adsorbing molecules come into proximity, but when they are separated, the affinity diminishes. To enhance the affinity to calcium, an imprinting technique was applied using Ca2+ and Pb2+ ions as templates in methylsulfoxide and dioxane media, respectively. The adsorption capacity of the imprinted gels was compared with that of the nonimprinted gels, and the effects of the templates, the solvents, and the amount of methacrylic monomers used in the synthesis and the medium temperature over the Ca2+ adsorption capacity of the gels from aqueous solutions were evaluated. The analysis of the adsorption revealed that (a) the adsorption can be described by the Langmuir isotherms; (b) there is an approximately linear relationship between saturation and methacrylic monomer concentration; (c) the affinity depends on the degree of gel swelling or shrinkage that can be switched on and off by temperature; (d) in the shrunken state, the affinity depends approximately linearly on the MAA concentration in the imprinted gels, whereas in the nonimprinted gels it is proportional to the square of MAA concentration; (e) the imprinted gels adsorb more than the nonimprinted gels when MAA concentration is less than that of permanent cross linkers. The success of imprinting of CaMAA2 and PbMAA2 complex is evidence for memory of such complex onto the weakly cross-linked gel.

  12. Sensitive red protein calcium indicators for imaging neural activity

    PubMed Central

    Dana, Hod; Mohar, Boaz; Sun, Yi; Narayan, Sujatha; Gordus, Andrew; Hasseman, Jeremy P; Tsegaye, Getahun; Holt, Graham T; Hu, Amy; Walpita, Deepika; Patel, Ronak; Macklin, John J; Bargmann, Cornelia I; Ahrens, Misha B; Schreiter, Eric R; Jayaraman, Vivek; Looger, Loren L; Svoboda, Karel; Kim, Douglas S

    2016-01-01

    Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging. DOI: http://dx.doi.org/10.7554/eLife.12727.001 PMID:27011354

  13. Sensitive red protein calcium indicators for imaging neural activity.

    PubMed

    Dana, Hod; Mohar, Boaz; Sun, Yi; Narayan, Sujatha; Gordus, Andrew; Hasseman, Jeremy P; Tsegaye, Getahun; Holt, Graham T; Hu, Amy; Walpita, Deepika; Patel, Ronak; Macklin, John J; Bargmann, Cornelia I; Ahrens, Misha B; Schreiter, Eric R; Jayaraman, Vivek; Looger, Loren L; Svoboda, Karel; Kim, Douglas S

    2016-01-01

    Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging. PMID:27011354

  14. The pressure-induced calcium deposition on crosslinked polyurethanes.

    PubMed

    Shunmugakumar, N; Jayabalan, M

    1992-06-01

    The pressure-induced calcium deposition in crosslinked polyurethane was studied. Two polyurethane systems, IPDI-PTMG/PPG-TMP and SMDI-PTMG/PPG-TMP were subjected to calcification under induced pressure. Calcium deposition in IPDI polymers was linear with the increase of soft segment (PTMG) content whereas in SMDI polymers the reverse trend was observed. Decreased phase mixing and hydrophilicity in the polymer (SMDI based) having increased soft segment content was attributed to the decreased calcification. The enhanced amount of calcium deposition under pressure indicates the possible influence of pressure on calcification. PMID:10078255

  15. PYK2: a calcium-sensitive protein tyrosine kinase activated in response to fertilization of the zebrafish oocyte.

    PubMed

    Sharma, Dipika; Kinsey, William H

    2013-01-01

    Fertilization begins with binding and fusion of a sperm with the oocyte, a process that triggers a high amplitude calcium transient which propagates through the oocyte and stimulates a series of preprogrammed signal transduction events critical for zygote development. Identification of the pathways downstream of this calcium transient remains an important step in understanding the basis of zygote quality. The present study demonstrates that the calcium-calmodulin sensitive protein tyrosine kinase PYK2 is a target of the fertilization-induced calcium transient in the zebrafish oocyte and that it plays an important role in actin-mediated events critical for sperm incorporation. At fertilization, PYK2 was activated initially at the site of sperm-oocyte interaction and was closely associated with actin filaments forming the fertilization cone. Later PYK2 activation was evident throughout the entire oocyte cortex, however activation was most intense over the animal hemisphere. Fertilization-induced PYK2 activation could be blocked by suppressing calcium transients in the ooplasm via injection of BAPTA as a calcium chelator. PYK2 activation could be artificially induced in unfertilized oocytes by injection of IP3 at concentrations sufficient to induce calcium release. Functionally, suppression of PYK2 activity by chemical inhibition or by injection of a dominant-negative construct encoding the N-terminal ERM domain of PKY2 inhibited formation of an organized fertilization cone and reduced the frequency of successful sperm incorporation. Together, the above findings support a model in which PYK2 responds to the fertilization-induced calcium transient by promoting reorganization of the cortical actin cytoskeleton to form the fertilization cone. PMID:23084926

  16. Oyster shell calcium induced parotid swelling

    PubMed Central

    Palaniappan, Muthiah; Selvarajan, Sandhiya; Srinivasamurthy, Sureshkumar; Chandrasekaran, Adithan

    2014-01-01

    A 59 year old female consumer was started on therapy with oyster shell calcium in combination with vitamin D3 and she presented with swelling below the ear, after two doses. She stopped the drug by herself and the swelling disappeared in one day. She started the drug one day after recovery and again she developed the swelling. She was advised to stop the drug with a suggestion to take lemon to enhance parotid secretion and the swelling subsided. Calcium plays major role in salivary secretion and studies have shown reduced parotid secretion in rats, deficient of vitamin D. But in humans involvement of calcium and vitamin D3 in parotid secretion is unknown. However, the patient had no history of reaction though she had previously taken vitamin D3 with calcium carbonate which was not from oyster shell. Hence, we ruled out vitamin D3 in this reaction and suspecting oyster shell calcium as a culprit. This adverse drug reaction (ADR) was assessed using World Health Organization (WHO) causality assessment, Naranjo's and Hartwig severity scales. As per WHO causality assessment scale, the ADR was classified as “certain”. This reaction was analyzed as per Naranjo's algorithm and was classified as probable. According to Hartwig's severity scale the reaction was rated as mild. Our case is an example of a mild but rare adverse effect of oyster shell calcium carbonate which is widely used. PMID:25422569

  17. Mechanically induced intercellular calcium communication in confined endothelial structures.

    PubMed

    Junkin, Michael; Lu, Yi; Long, Juexuan; Deymier, Pierre A; Hoying, James B; Wong, Pak Kin

    2013-03-01

    Calcium signaling in the diverse vascular structures is regulated by a wide range of mechanical and biochemical factors to maintain essential physiological functions of the vasculature. To properly transmit information, the intercellular calcium communication mechanism must be robust against various conditions in the cellular microenvironment. Using plasma lithography geometric confinement, we investigate mechanically induced calcium wave propagation in networks of human umbilical vein endothelial cells organized. Endothelial cell networks with confined architectures were stimulated at the single cell level, including using capacitive force probes. Calcium wave propagation in the network was observed using fluorescence calcium imaging. We show that mechanically induced calcium signaling in the endothelial networks is dynamically regulated against a wide range of probing forces and repeated stimulations. The calcium wave is able to propagate consistently in various dimensions from monolayers to individual cell chains, and in different topologies from linear patterns to cell junctions. Our results reveal that calcium signaling provides a robust mechanism for cell-cell communication in networks of endothelial cells despite the diversity of the microenvironmental inputs and complexity of vascular structures. PMID:23267827

  18. Multiple receptors mobilize calcium through a pertussis toxin (PT) sensitive GTP-binding protein in human neutrophils (PMN's)

    SciTech Connect

    Lad, P.M.; Olson, C.V.; Grewal, I.S.; Frolich, M.; Scott, S.J.

    1986-03-05

    Treatment of PMN's with PT causes an abolition of chemotaxis, enzyme release, superoxide generation and aggregation caused by f-met-leu-phe (FMLP),C5a and platelet activating factor (PAF). Lectin (Con-A) induced capping and receptor induced shape change are abolished, but phagocytosis is unaltered. In whole cells, calcium mobilization induced by FMLP, PAF and Con-A inhibited by PT although the FMLP-mediated effect is more susceptible to PT's effects. Treatment of PMN's with phorbol 12-myristate 13 acetate (PMA) causes an abolition of calcium mobilization by all agents in a range which also inhibits cap formation. Investigation of calcium uptake reveals PT sensitive and insensitive components. Reciprocal interactions between Ns and Ni proteins are also observed since pretreatment with FMLP and PAF causes a stimulation of Ns-mediated cyclic AMP enhancement while pretreatment with Ns linked receptors (PGE/sub 1/ and beta receptor agonists) inhibits calcium mobilization. Comparative peptide mapping studies indicate substantial similarity between Ni proteins in PMN's, platelets and human erythrocytes. The authors results suggest that the Ni linked calcium mobilization sensitive to PMA is important to the regulation of the human neutrophil.

  19. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity

    PubMed Central

    Tan, Xiahui; Sanderson, Michael J

    2014-01-01

    Background and Purpose While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca2+ signalling and Ca2+ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca2+ signalling and sensitivity. Experimental Approach Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca2+ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca2+-sensitive indicator (with or without caged-IP3). Effects on Ca2+ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca2+. Key Results The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca2+ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca2+ signals in ASM cells. Ca2+ increases mediated by the photolysis of caged-IP3 were also attenuated by chloroquine, quinine and denotonium. In Ca2+-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. Conclusions and Implications TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca2+ oscillations while simultaneously reducing the Ca2+ sensitivity of ASM cells. Reduction of Ca2+ oscillations may be due to inhibition of Ca2+ release through IP3 receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions. PMID:24117140

  20. Wind-induced plant motion immediately increases cytosolic calcium.

    PubMed Central

    Knight, M R; Smith, S M; Trewavas, A J

    1992-01-01

    Wind is one of the most unusual and more dramatic of the environmental signals to modify plant development. Wind-stimulated crops are also known to experience considerable reductions in growth and subsequent yield. There is at present no experimental data to suggest how wind signals are perceived and transduced by plant cells. We have genetically transformed Nicotiana plumbaginifolia to express aequorin and thus produced luminous plants that directly report cytosolic calcium by emitting blue light. With these plants we have found wind stimulation to cause immediate increases in cytosolic calcium and our evidence, based on the use of specific inhibitors, suggests that this calcium is mobilized from organelle sources. Our data further suggest that wind-induced movement of tissues, by mechanically stimulating and stressing constituent plant cells, is responsible for the immediate elevation of cytosolic calcium; increases occur only when the plant tissue is actually in motion. Repeated wind stimulation renders the cells refractory to further calcium signaling but responsiveness is rapidly recovered when stimulation is subsequently diminished. Our data suggest that mechanoperception in plant cells may possibly be transduced through intracellular calcium. Since mechanoperception and transduction are considered crucial to plant morphogenesis, our observations suggest that calcium could be central in the control and generation of plant form. Images PMID:11536497

  1. Calcium sensitizers: What have we learned over the last 25 years?

    PubMed

    Pollesello, P; Papp, Z; Papp, J Gy

    2016-01-15

    The use of inotropes for correcting hemodynamic dysfunction in patients with congestive heart failure has been described over many decades. Drugs such as cardiac glycosides, cathecolamines, phosphodiestherase inhibitors, and calcium sensitizers have been in turn proposed. However, the number of new chemical entities in this therapeutic field has been surprisingly low, and the current selection of drugs is limited. One of the paradigm shifts in the discovery for new inotropes was to focus on 'calcium sensitizers' instead of 'calcium mobilizers'. This was designed to lead to the development of safer inotropes, devoid of the complications that arise due to increased intracellular calcium levels. However, only three such calcium sensitizers have been fully developed over the latest 30 years. Moreover, two of these, levosimendan and pimobendan, have multiple molecular targets and other pharmacologic effects in addition to inotropy, such as peripheral vasodilation. More recently, omecamtiv mecarbil was described, which is believed to have a pure inotropy action that is devoid of pleiotropic effects. When the clinical data of these three calcium sensitizers are compared, it appears that the less pure inotropes have the cutting edge over the purer inotrope, due to additional effects during the treatment of a complex syndrome such as acute congested heart failure. This review aims to answer the question whether calcium sensitization per se is a sufficient strategy for bringing required clinical benefits to patients with heart failure. This review is dedicated to the memory of Heimo Haikala, a true and passionate innovator in this challenging field. PMID:26580334

  2. Light-induced ejection of calcium atoms from polymer surfaces

    NASA Astrophysics Data System (ADS)

    Mango, F.; Maccioni, E.

    2008-12-01

    Laser-induced fluorescence (LIF) of calcium atoms at room temperature has been observed in a polydimethylsiloxane (PDMS) coated cell when the walls are illuminated with non resonant visible light. Ca atomic density in the gas phase, monitored by the LIF, is much higher than normal room-temperature vapour pressure of calcium. In past years photon-stimulated desorption (PSD) was observed for several alkali metals that adsorbed to solid films of PDMS polymers. High yields of photo-desorbed atoms (and molecules in the case of sodium) can be induced, at room temperature and below, by weak intensity radiation. The desorption is characterised by a frequency threshold, whereas any power threshold is undetectable. The calcium photo-ejection is characterised both by a frequency threshold (about 18 500 cm-1) and by an observable power threshold (whose value becomes lower when the photo-ejecting light wavelength decreases).

  3. TRICHLOROETHYLENE IHIBITS VOLTAGE-SENSITIVE CALCIUM CURRENTS IN DIFFERENTIATED PC 12 CELLS.

    EPA Science Inventory

    ABSTRACT BODY: It has been demonstrated recently that volatile organic compounds (VOCs)such as toluene, perchloroethylene and trichloroethylene inhibit function of voltage-sensitive calcium channels (VSSC). Such actions are hypothesized to contribute to the acute neurotoxicity of...

  4. A rat toxicogenomics study with the calcium sensitizer EMD82571 reveals a pleiotropic cause of teratogenicity.

    PubMed

    Hewitt, Philip G; Singh, Prafull Kumar; Kumar, Arun; Gnewuch, Carsten; Liebisch, Gerhard; Schmitz, Gerd; Borlak, Juergen

    2014-08-01

    The calcium sensitizer and PDEIII inhibitor EMD82571 caused exencephaly, micrognathia, agnathia and facial cleft in 58% of fetuses. In pursue of mechanisms and to define adverse outcome pathways pregnant Wistar rats were dosed daily with either EMD82571 (50 or 150mg/kg/day) or retinoic acid (12mg/kg/day) on gestational days 6-11 and 6-17, respectively. Hypothesis driven and whole genome microarray experiments were performed with whole embryo, maternal liver, embryonic liver and malformed bone at gestational days 12 and 20. This revealed regulation of genes critically involved in osteogenesis, odontogenesis, differentiation and development and extracellular matrix. Importantly, repression of osteocalcin and members of TGF-β/BMP signaling hampered osteo- and odontogenesis. Furthermore, EMD82571 impaired neurulation by inhibiting mid hinge point formation to cause neural tube defects. Taken collectively, a molecular rationale for the observed teratogenicity induced by EMD82571 is presented that links molecular initiating events with AOPs. PMID:24977338

  5. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells

    PubMed Central

    Ma, Liwei; Wang, Hongjun; Wang, Chunyan; Su, Jing; Xie, Qi; Xu, Lu; Yu, Yang; Liu, Shibing; Li, Songyan; Xu, Ye; Li, Zhixin

    2016-01-01

    Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca2+ concentration, including cytosolic and mitochondrial Ca2+ in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca2+ overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance. PMID:27330840

  6. Suppression of store overload-induced calcium release by hydroxylated metabolites of carvedilol.

    PubMed

    Malig, Thomas; Xiao, Zhichao; Chen, S R Wayne; Back, Thomas G

    2016-01-01

    Carvedilol is a drug widely used in the treatment of heart failure and associated cardiac arrhythmias. A unique action of carvedilol is its suppression of store overload-induced calcium release (SOICR) through the cardiac ryanodine receptor (RyR2), which can trigger ventricular arrhythmias. Since the effects of carvedilol metabolites on SOICR have not yet been investigated, three carvedilol metabolites hydroxylated at the 3-, 4' and 5'-positions were synthesized and assayed for SOICR inhibition in mutant HEK 293 cells expressing the RyR2 mutant R4496C. This cell line is especially prone to SOICR and calcium release through the defective RyR2 channel was measured with a calcium-sensitive fluorescent dye. These results revealed that the 3- and 4'-hydroxy derivatives are slightly more effective than carvedilol in suppressing SOICR, while the 5'-analog proved slightly less active. Metabolic deactivation of carvedilol via these hydroxylation pathways is therefore insignificant. PMID:26584883

  7. Involvement of the Sodium-Calcium exchanger 3 (NCX3) in ziram-induced calcium dysregulation and toxicity

    PubMed Central

    Jin, J.; Lao, A.J.; Katsura, M.; Caputo, A.; Schweizer, F. E.; Sokolow, S.

    2014-01-01

    Ziram is a dimethyldithiocarbamate fungicide which can cause intraneuronal calcium (Ca2+) dysregulation and subsequently neuronal death. The signaling mechanisms underlying ziram-induced Ca2+ dyshomeostasis and neurotoxicity are not fully understood. NCX3 is the third isoform of the sodium-calcium exchanger (NCX) family and plays an important role in regulating Ca2+ homeostasis in excitable cells. We previously generated a mouse model deficient for the sodium-calcium exchanger 3 and showed that NCX3 is protective against ischemic damage. In the present study, we aim to examine whether NCX3 exerts a similar role against toxicological injury caused by the pesticide ziram. Our data show baby hamster kidney (BHK) cells stably transfected with NCX3 (BHK-NCX3) are more susceptible to ziram toxicity than cells transfected with the empty vector (BHK-WT). Increased toxicity in BHK-NCX3 was associated with a rapid rise in cytosolic Ca2+ concentration [Ca2+i] induced by ziram. Profound mitochondrial dysfunction and ATP depletion were also observed in BHK-NCX3 cells following treatment with ziram. Lastly, primary dopaminergic neurons lacking NCX3 (NCX3−/−) were less sensitive to ziram neurotoxicity than wildtype control dopaminergic neurons. These results demonstrate that NCX3 genetic deletion protects against ziram-induced neurotoxicity and suggest NCX3 and its downstream molecular pathways as key factors involved in ziram toxicity. Our study identifies new molecular events through which pesticides (e.g. ziram) can lead to pathological features of degenerative diseases such as Parkinson’s disease and indicates new targets to slow down neuronal degeneration. PMID:25284465

  8. Nitric oxide-induced calcium release

    PubMed Central

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1. PMID:23247505

  9. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells

    PubMed Central

    Freitas, Hercules R.; Ferraz, Gabriel; Ferreira, Gustavo C.; Ribeiro-Resende, Victor T.; Chiarini, Luciana B.; do Nascimento, José Luiz M.; Matos Oliveira, Karen Renata H.; Pereira, Tiago de Lima; Ferreira, Leonardo G. B.; Kubrusly, Regina C.; Faria, Robson X.

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  10. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells.

    PubMed

    Freitas, Hercules R; Ferraz, Gabriel; Ferreira, Gustavo C; Ribeiro-Resende, Victor T; Chiarini, Luciana B; do Nascimento, José Luiz M; Matos Oliveira, Karen Renata H; Pereira, Tiago de Lima; Ferreira, Leonardo G B; Kubrusly, Regina C; Faria, Robson X; Herculano, Anderson Manoel; Reis, Ricardo A de Melo

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1-10 mM) showed that 5-10 mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50 mM KCl (labeled as βIII tubulin positive cells). BBG 100 nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70 μM and MK-801 20 μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5 mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  11. Calcium homeostasis disruption - a bridge connecting cadmium-induced apoptosis, autophagy and tumorigenesis.

    PubMed

    Zhou, Xuehai; Hao, Weiming; Shi, Haifeng; Hou, Yongzhong; Xu, Qinggang

    2015-01-01

    Calcium and cadmium are divalent metals and have similar chemical properties. Both can enter cells through, albeit different, channels, or through protein-dependent permeation. However, cadmium disturbs the calcium homeostasis by inhibiting calcium channels and/or related proteins. Cadmium can also alter membrane phospholipid concentrations, and so induce a calcium homeostasis disorder. The altered calcium homeostasis induced by cadmium results in cell apoptosis, autophagy or tumorigenesis. In this review, calcium homeostasis disruption is summarized as a bridge connecting cadmium-induced apoptosis, autophagy, and tumorigenesis. PMID:26045029

  12. Vesicular demyelination induced by raised intracellular calcium.

    PubMed

    Smith, K J; Hall, S M; Schauf, C L

    1985-11-01

    Incubation of nerve with high concentrations of the divalent cation ionophore A23187 produces myelin vesiculation (Schlaepfer 1977). This observation has now been extended using segments of rat ventral or dorsal root incubated with high (19 microM, 10 micrograms/ml) or low (1-1.5 microM) concentrations of A23187, or another divalent ionophore, ionomycin. Low concentrations of A23187 induced no vesiculation within a 2-h period. However, subsequent incubation of these roots in fresh, ionophore-free medium for 20 h, resulted in a prominent vesicular demyelination at the Schmidt-Lanterman incisures and paranodes of many fibres. At this time (22 h) the Schwann cells associated with some demyelinating internodes appeared vital upon ultrastructural examination: the cells also excluded the nuclear dye nigrosin. High concentrations of A23187 induced a similar vesicular demyelination in affected fibres within only 15-20 min. While the Schwann cells continued to exclude nigrosin for a further 4 h, their ultrastructural appearance indicated that they were probably in the early stages of necrosis. Incubation of moribund root with the ionophore produced no myelin vesiculation. At all ionophore concentrations, the myelin vesiculation was dependent upon the presence of extracellular Ca2+, and could be modulated in severity by varying this concentration. Other divalent cations (Ba2+, Co2+, Mg2+, Mn2+, Ni2+, Sr2+) could not substitute for Ca2+. The vesiculation induced by A23187 could be entirely prevented by the addition of Zn2+ (greater than or equal to 1 microM), Ni2+ (greater than or equal to 1-10 microM), Co2+ (greater than or equal to 100 microM) or Mn2+ (greater than or equal to 100 microM) to the bathing medium. A23187 applied to only part of an isolated internode resulted in a localization of the myelin disruption to that region. Ionomycin (greater than or equal to 1 microM), an ionophore with a greater selectivity for Ca2+ than A23187, also induced a prompt Ca2+-dependent

  13. Laser-Induced Damage of Calcium Fluoride

    SciTech Connect

    Espana, Aubrey L.; Joly, Alan G.; Hess, Wayne P.; Dickinson, J T.

    2004-12-01

    Radiation damage of materials has long been of fundamental interest, especially since the growth of laser technology. One such source of damage comes from UV laser light. Laser systems continue to move into shorter wavelength ranges, but unfortunately are limited by the damage threshold of their optical components. For example, semiconductor lithography is making its way into the 157nm range and requires a material that can not only transmit this light (air cannot), but also withstand the highly energetic photons present at this shorter wavelength. CaF2, an alkaline earth halide, is the chosen material for vacuum UV 157 nm excimer radiation. It can transmit light down to 120 nm and is relatively inexpensive. Although it is readily available through natural and synthetic sources, it is often times difficult to find in high purity. Impurities in the crystal can result in occupied states in the band gap that induce photon absorption [2] and ultimately lead to the degradation of the material. In order to predict how well CaF2 will perform under irradiation of short wavelength laser light, one must understand the mechanisms for laser-induced damage. Laser damage is often a two-step process: initial photons create new defects in the lattice and subsequent photons excite these defects. When laser light is incident on a solid surface there is an initial production of electron-hole (e-h) pairs, a heating of free electrons and a generation of local heating around optically absorbing centers [3]. Once this initial excitation converts to the driving energy for nuclear motion, the result is an ejection of atoms, ions and molecules from the surface, known as desorption or ablation [3]. Secondary processes further driving desorption are photoabsorption, successive excitations of self-trapped excitons (STE's) and defects, and ionization of neutrals by incident laser light [3]. The combination of laser-induced desorption and the alterations to the electronic and geometrical

  14. Calcium

    MedlinePlus

    ... of calcium dietary supplements are carbonate and citrate. Calcium carbonate is inexpensive, but is absorbed best when taken ... antacid products, such as Tums® and Rolaids®, contain calcium carbonate. Each pill or chew provides 200–400 mg ...

  15. Oxytocin and parturition: a role for increased myometrial calcium and calcium sensitization?

    PubMed

    Arthur, Patrice; Taggart, Michael J; Mitchell, Bryan F

    2007-01-01

    Preterm birth is associated with the majority of all death and chronic disability related to pregnancy, birth and the neonatal period. The costs to families and to the health care system are enormous. Current approaches to prevent or arrest preterm labour have been unsuccessful. This failure is largely based on our poor understanding of the regulation of the timing and maintenance of parturition. Oxytocin (OT) is the most potent known uterine stimulant. It is produced in the hypothalamus and secreted into the maternal bloodstream. However, OT also is produced within the uterine decidua in late gestation and the concentrations increase around the time of labour onset. The receptor for OT (OTR) is a G-protein coupled receptor linked through G alpha(q/11) to phospholipase C (PLC). Activation of PLC causes increased inositol trisphosphate (IP3) and diacyl glycerol (DAG). IP3 activates specific receptors in the sarcoplasmic reticulum to release Ca2+ into the cytosol. This may induce further influx of Ca2+ from the extracellular space and the increased Ca2+, after binding to calmodulin, activates myosin light chain kinase to phosphorylate myosin light chains (MLC) and cause contraction of the myocyte. DAG activates protein kinase C (PKC), several isoforms of which have been implicated in uterine contraction, but the substrates for this enzyme in the uterine myocyte are essentially unknown. Oxytocin may also cause "Ca2+-sensitization," a process whereby there is a greater contractile force generated from a given increase in cytosolic Ca2+, although the contribution of this process to myometrial contraction remains an area of debate. This phenomenon occurs mainly due to inhibition of myosin light chain phosphatase (MLCP), the enzyme that reverses the phosphorylation of MLC. There are several important potential mediators of this MLCP-inhibitory pathway in the myometrium, including the small monomeric G-protein RhoA, its downstream kinase Rho-associated kinase (ROK). and

  16. Electrophysiological characterization of spinal neuron sensitization by elevated calcium channel alpha-2-delta-1 subunit protein

    PubMed Central

    Zhou, Chunyi; Luo, Z. David

    2013-01-01

    Background Voltage-gated calcium channel α2δ1 subunit is the binding site for gabapentin, an effective drug in controlling neuropathic pain states including thermal hyperalgesia. Hyperalgesia to noxious thermal stimuli in both spinal-nerve-ligated (SNL) and voltage-gated calcium channel α2δ1 over-expressing transgenic (Tg) mice correlates with higher α2δ1 levels in dorsal root ganglia and dorsal spinal cord. In this study, we investigated whether abnormal synaptic transmission is responsible for thermal hyperalgesia induced by elevated α2δ1 expression in these models. Methods Behavioral sensitivities to thermal stimuli were test in L4 SNL and sham mice, as well as in α2δ1 Tg and wild-type mice. Miniature excitatory (mEPSC) and inhibitory (mIPSC) postsynaptic currents were recorded in superficial dorsal spinal cord neurons from these models using whole-cell patch clamp slice recording techniques. Results The frequency, but not amplitude, of mEPSC in superficial dorsal horn neurons was increased in SNL and α2δ1 Tg mice, which could be attenuated by gabapentin dose dependently. Intrathecal α2δ1 antisense oligodeoxynucleotide treatment diminished increased mEPSC frequency and gabapentin's inhibitory effects in elevated mEPSC frequency in the SNL mice. In contrast, neither the frequency, nor the amplitude, of mIPSC was altered in superficial dorsal horn neurons from the SNL and α2δ1 Tg mice. Conclusions Our findings support a role of peripheral nerve injury-induced α2δ1 in enhancing presynaptic excitatory input onto superficial dorsal spinal cord neurons that contributes to nociception development. PMID:24151064

  17. Laser-Induced Damage of Calcium Fluoride

    SciTech Connect

    Espana, A.; Joly, A.G.; Hess, W.P.; Dickinson, J.T.

    2004-01-01

    As advances continue to be made in laser technology there is an increasing demand for materials that have high thresholds for laser-induced damage. Laser damage occurs when light is absorbed, creating defects in the crystal lattice. These defects can lead to the emission of atoms, ions and molecules from the sample. One specific field where laser damage is of serious concern is semiconductor lithography, which is beginning to use light at a wavelength of 157 nm. CaF2 is a candidate material for use in this new generation of lithography. In order to prevent unnecessary damage of optical components, it is necessary to understand the mechanisms for laser damage and the factors that serve to enhance it. In this research, we study various aspects of laser interactions with CaF2, including impurity absorbance and various forms of damage caused by incident laser light. Ultraviolet (UV) laser light at 266 nm with both femtosecond (fs) and nanosecond (ns) pulse widths is used to induce ion and neutral particle emission from cleaved samples of CaF2. The resulting mass spectra show significant differences suggesting that different mechanisms for desorption occur following excitation using the different pulse durations. Following irradiation by ns pulses at 266 nm, multiple single-photon absorption from defect states is likely responsible for ion emission whereas the fs case is driven by a multi-photon absorption process. This idea is further supported by the measurements made of the transmission and reflection of fs laser pulses at 266 nm, the results of which reveal a non-linear absorption process in effect at high incident intensities. In addition, the kinetic energy profiles of desorbed Ca and K contaminant atoms are different indicating that a different mechanism is responsible for their emission as well. Overall, these results show that purity plays a key role in the desorption of atoms from CaF2 when using ns pulses. On the other hand, once the irradiance reaches high

  18. Prolonged calcium influx after termination of light-induced calcium release in invertebrate photoreceptors

    PubMed Central

    Nasi, Enrico

    2009-01-01

    In microvillar photoreceptors, light stimulates the phospholipase C cascade and triggers an elevation of cytosolic Ca2+ that is essential for the regulation of both visual excitation and sensory adaptation. In some organisms, influx through light-activated ion channels contributes to the Ca2+ increase. In contrast, in other species, such as Lima, Ca2+ is initially only released from an intracellular pool, as the light-sensitive conductance is negligibly permeable to calcium ions. As a consequence, coping with sustained stimulation poses a challenge, requiring an alternative pathway for further calcium mobilization. We observed that after bright or prolonged illumination, the receptor potential of Lima photoreceptors is followed by the gradual development of an after-depolarization that decays in 1–4 minutes. Under voltage clamp, a graded, slow inward current (Islow) can be reproducibly elicited by flashes that saturate the photocurrent, and can reach a peak amplitude in excess of 200 pA. Islow obtains after replacing extracellular Na+ with Li+, guanidinium, or N-methyl-d-glucamine, indicating that it does not reflect the activation of an electrogenic Na/Ca exchange mechanism. An increase in membrane conductance accompanies the slow current. Islow is impervious to anion replacements and can be measured with extracellular Ca2+ as the sole permeant species; Ba can substitute for Ca2+ but Mg2+ cannot. A persistent Ca2+ elevation parallels Islow, when no further internal release takes place. Thus, this slow current could contribute to sustained Ca2+ mobilization and the concomitant regulation of the phototransduction machinery. Although reminiscent of the classical store depletion–operated calcium influx described in other cells, Islow appears to diverge in some significant aspects, such as its large size and insensitivity to SKF96365 and lanthanum; therefore, it may reflect an alternative mechanism for prolonged increase of cytosolic calcium in photoreceptors. PMID

  19. Inositol 1,4,5-trisphosphate induced calcium waves

    NASA Astrophysics Data System (ADS)

    Falcke, M.

    Traveling waves of high concentration of Ca2+ are observed in many different cells and have attracted great interest in experimental and theoretical biological research in recent years. They are created by the nonlinear dynamics of the release and uptake of Ca2+ by intracellular Ca2+ stores like the endoplasmatic or sarcoplasmatic reticulum. Their characteristics depend on other cellular organelles and components like mitochondria and Ca2+ buffers too. Here, we present some mathematical models and results of recent research on intracellular Ca2+ waves generated by the inositol 1,4,5-trisphosphate receptor channel including the modeling of Calcium induced Calcium release, buffer dynamics, impact of mitochondria on wave formation and the effect of the spatial discreteness of the channels releasing Ca2+. Modeling of the communication of Ca2+ waves to adjacent cells through gap junctions concludes this report.

  20. Design and Synthesis of a Calcium-Sensitive Photocage.

    PubMed

    Heckman, Laurel M; Grimm, Jonathan B; Schreiter, Eric R; Kim, Charles; Verdecia, Mark A; Shields, Brenda C; Lavis, Luke D

    2016-07-11

    Photolabile protecting groups (or "photocages") enable precise spatiotemporal control of chemical functionality and facilitate advanced biological experiments. Extant photocages exhibit a simple input-output relationship, however, where application of light elicits a photochemical reaction irrespective of the environment. Herein, we refine and extend the concept of photolabile groups, synthesizing the first Ca(2+) -sensitive photocage. This system functions as a chemical coincidence detector, releasing small molecules only in the presence of both light and elevated [Ca(2+) ]. Caging a fluorophore with this ion-sensitive moiety yields an "ion integrator" that permanently marks cells undergoing high Ca(2+) flux during an illumination-defined time period. Our general design concept demonstrates a new class of light-sensitive material for cellular imaging, sensing, and targeted molecular delivery. PMID:27218487

  1. Steroid hormone 20-hydroxyecdysone promotes higher calcium mobilization to induce apoptosis.

    PubMed

    Wang, Di; Pei, Xu-Yang; Zhao, Wen-Li; Zhao, Xiao-Fan

    2016-07-01

    Calcium ions are essential secondary messengers that regulate diverse cellular processes including gene transcription, cell proliferation, and apoptosis. The steroid hormone 20-hydroxyecdysone (20E) promotes programmed cell death during insect metamorphosis, whereas juvenile hormone (JH) counteracts 20E activity to prevent metamorphosis. Both 20E and JH can induce cellular calcium increase; however, the mechanisms and physiological consequences resulting from calcium increase caused by the two counteracting hormones are unclear. Here, using Helicoverpa armigera epidermal cell line, we show that 20E via a G-protein-coupled receptor induced a major calcium rise in the cells, whereas JH via receptor tyrosine kinase induced a minor calcium increase. The calcium release-activated calcium modulator 1 (Orai1) and transient receptor potential (TRP) channels were necessary for 20E-induced rapid calcium influx. A higher calcium level was maintained in a long time and more genes including Orai1 and TRP channels showed elevated expression after the treatment of 20E than did after JH treatment. Caspase3/7 activation, cell death and pro-apoptotic gene expression were elicited by 20E induction, but not by JH. JH could repress 20E-induced calcium influx, caspase3/7 activation and gene expression. Higher calcium levels induced apoptosis. These results suggest that 20E and JH via different pathways regulate calcium mobilization and homeostasis at different levels, thus inform different gene expression and cellular responses. PMID:27209368

  2. Hysteresis and the length dependence of calcium sensitivity in chemically skinned rat cardiac muscle.

    PubMed Central

    Harrison, S M; Lamont, C; Miller, D J

    1988-01-01

    1. The relationship between pCa (-log10[Ca2+]) and steady-state isometric tension has been investigated in saponin- or Triton-treated (chemically 'skinned') cardiac muscle of rat. 2. Hysteresis exists in the relationship such that the muscle is less sensitive to Ca2+ during increasing activation (as [Ca2+] is stepped upward) than during reducing activation (as [Ca2+] is stepped downward). 3. The extent of the hysteresis is insensitive to interventions that increase overall calcium sensitivity by chemical means, such as caffeine, carnosine or increased pH. 4. The extent of the hysteresis is sensitive to sarcomere length. The phenomenon is virtually absent above sarcomere lengths of about 2.2-2.3 microns but becomes progressively greater at shorter sarcomere lengths. 5. The effect of sarcomere length on calcium sensitivity is restricted to the upward-going (increasing activation) part of the pCa-tension loop below 2.2 microns. The downward-going (decreasing activation) part of the hysteretic relationship is virtually unaffected by sarcomere length up to 2.2 microns. 6. Significant alterations in sarcomere length do not occur during tension development in the experiments described here: the phenomenon is not attributable to experimental artifacts of this kind. 7. Hysteresis develops sufficiently rapidly to be consistent with a physiological relevance during the normal heart beat. 8. The effects of sarcomere length show that the phenomenon is not due to force per se since, for example, greater peak force produces less hysteresis as sarcomere length is increased towards 2.2 microns. 9. Tonicity increase (by high-molecular-weight dextran), which shrinks the myofilament lattice, increases calcium sensitivity but reduces the effect of sarcomere length on calcium sensitivity. 10. The results suggest that lattice shrinkage is the mechanism which accounts for hysteresis in, and the sarcomere length dependence of, calcium sensitivity in cardiac muscle. Images Fig. 1 Fig. 11

  3. Duramycin-induced calcium release in cancer cells.

    PubMed

    Broughton, Laura J; Crow, Chris; Maraveyas, Anthony; Madden, Leigh A

    2016-03-01

    Duramycin, through binding with phosphatidylethanolamine (PE), has shown potential to be an effective antitumour agent. However, its mode of action in relation to tumour cells is not fully understood. PE expression on the surface of a panel of cancer cell lines was analysed using duramycin and subsequent antibody labelling, and then analysed by flow cytometry. Cell viability was also assessed by flow cytometry using annexin V and propidium iodide. Calcium ion (Ca) release by tumour cells in response to duramycin was determined by spectrofluorometry following incubation with Fluo-3, AM. Confocal microscopy was performed on the cancer cell line AsPC-1 to assess real-time cell response to duramycin treatment. Duramycin could detect cell surface PE expression on all 15 cancer cell lines screened, which was shown to be duramycin concentration dependent. However, higher concentrations induced necrotic cell death. Duramycin induced calcium ion (Ca) release from the cancer cell lines also in a concentration-dependent and time-dependent manner. Confocal microscopy showed an influx of propidium iodide into the cells over time and induced morphological changes. Duramycin induces Ca release from cancer cell lines in a time-dependent and concentration-dependent manner. PMID:26512767

  4. Autophagy Induced by Calcium Phosphate Precipitates Targets Damaged Endosomes*

    PubMed Central

    Chen, Xi; Khambu, Bilon; Zhang, Hao; Gao, Wentao; Li, Min; Chen, Xiaoyun; Yoshimori, Tamotsu; Yin, Xiao-Ming

    2014-01-01

    Calcium phosphate precipitates (CPPs) form complexes with DNA, which enter cells via endocytosis. Under this condition CPPs induce autophagy via the canonic autophagy machinery. Here we showed that CPP-induced autophagy was also dependent on endocytosis as the process was significantly inhibited by methyl-β-cyclodextrin and dynasore, which suppress clathrin-dependent endocytosis. Consistently, CPP treatment triggered the formation of filipin-positive intracellular vesicles whose membranes are rich in cholesterol. Unexpectedly, these vesicles were also positive for galectin 3, suggesting that they were damaged and the membrane glycans became accessible to galectins to bind. Endosome damage was caused by endocytosis of CPPs and was reversed by calcium chelators or by endocytosis inhibitors. Notably, CPP-induced LC3-positive autophagosomes were colocalized with galectin 3, ubiquitin, and p62/SQSTM1. Inhibition of galectin 3 reduced p62 puncta and autophagosome formation. Knockdown of p62 additionally inhibited the colocalization of autophagosomes with galectins. Furthermore, most of the galectin 3-positive vesicles were colocalized with Rab7 or LAMP1. Agents that affect endosome/lysosome maturation and function, such as bafilomycin A1, also significantly affected CPP-induced tubulovesicular autophagosome formation. These findings thus indicate that endocytosed CPPs caused endosome damage and recruitment of galectins, particularly at the later endosome stage, which led to the interaction of the autophagosomal membranes with the damaged endosome in the presence of p62. PMID:24619419

  5. SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis.

    PubMed

    Chami, M; Gozuacik, D; Lagorce, D; Brini, M; Falson, P; Peaucellier, G; Pinton, P; Lecoeur, H; Gougeon, M L; le Maire, M; Rizzuto, R; Bréchot, C; Paterlini-Bréchot, P

    2001-06-11

    By pumping calcium from the cytosol to the ER, sarco/endoplasmic reticulum calcium ATPases (SERCAs) play a major role in the control of calcium signaling. We describe two SERCA1 splice variants (S1Ts) characterized by exon 4 and/or exon 11 splicing, encoding COOH terminally truncated proteins, having only one of the seven calcium-binding residues, and thus unable to pump calcium. As shown by semiquantitative RT-PCR, S1T transcripts are differentially expressed in several adult and fetal human tissues, but not in skeletal muscle and heart. S1T proteins expression was detected by Western blot in nontransfected cell lines. In transiently transfected cells, S1T homodimers were revealed by Western blot using mildly denaturing conditions. S1T proteins were shown, by confocal scanning microscopy, to colocalize with endogenous SERCA2b into the ER membrane. Using ER-targeted aequorin (erAEQ), we have found that S1T proteins reduce ER calcium and reverse elevation of ER calcium loading induced by SERCA1 and SERCA2b. Our results also show that SERCA1 variants increase ER calcium leakage and are consistent with the hypothesis of a cation channel formed by S1T homodimers. Finally, when overexpressed in liver-derived cells, S1T proteins significantly induce apoptosis. These data reveal a further mechanism modulating Ca(2+) accumulation into the ER of nonmuscle cells and highlight the relevance of S1T proteins to the control of apoptosis. PMID:11402072

  6. Serca1 Truncated Proteins Unable to Pump Calcium Reduce the Endoplasmic Reticulum Calcium Concentration and Induce Apoptosis

    PubMed Central

    Chami, Mounia; Gozuacik, Devrim; Lagorce, David; Brini, Marisa; Falson, Pierre; Peaucellier, Gérard; Pinton, Paolo; Lecoeur, Hervé; Gougeon, Marie-Lyse; le Maire, Marc; Rizzuto, Rosario; Bréchot, Christian; Paterlini-Bréchot, Patrizia

    2001-01-01

    By pumping calcium from the cytosol to the ER, sarco/endoplasmic reticulum calcium ATPases (SERCAs) play a major role in the control of calcium signaling. We describe two SERCA1 splice variants (S1Ts) characterized by exon 4 and/or exon 11 splicing, encoding COOH terminally truncated proteins, having only one of the seven calcium-binding residues, and thus unable to pump calcium. As shown by semiquantitative RT-PCR, S1T transcripts are differentially expressed in several adult and fetal human tissues, but not in skeletal muscle and heart. S1T proteins expression was detected by Western blot in nontransfected cell lines. In transiently transfected cells, S1T homodimers were revealed by Western blot using mildly denaturing conditions. S1T proteins were shown, by confocal scanning microscopy, to colocalize with endogenous SERCA2b into the ER membrane. Using ER-targeted aequorin (erAEQ), we have found that S1T proteins reduce ER calcium and reverse elevation of ER calcium loading induced by SERCA1 and SERCA2b. Our results also show that SERCA1 variants increase ER calcium leakage and are consistent with the hypothesis of a cation channel formed by S1T homodimers. Finally, when overexpressed in liver-derived cells, S1T proteins significantly induce apoptosis. These data reveal a further mechanism modulating Ca2+ accumulation into the ER of nonmuscle cells and highlight the relevance of S1T proteins to the control of apoptosis. PMID:11402072

  7. Calcium

    MedlinePlus

    ... body stores more than 99 percent of its calcium in the bones and teeth to help make and keep them ... in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as canned sardines and ...

  8. EXAMINATION OF THE ANTICONVULSANT PROPERTIES OF VOLTAGE-SENSITIVE CALCIUM CHANNEL INHIBITORS IN AMYGDALA KINDLED SEIZURES

    EPA Science Inventory

    Representatives from three different classes of voltage-sensitive calcium (VSC) channel inhibitors were assessed for their protection against amygdala kindled seizures. dult male long Evans rats (n=12) were implanted with electrodes in the amygdala and were stimulated once daily ...

  9. RCAN1 Overexpression Exacerbates Calcium Overloading-Induced Neuronal Apoptosis

    PubMed Central

    Herculano, Bruno; Song, Weihong

    2014-01-01

    Down Syndrome (DS) patients develop characteristic Alzheimer's Disease (AD) neuropathology after their middle age. Prominent neuronal loss has been observed in the cortical regions of AD brains. However, the underlying mechanism leading to this neuronal loss in both DS and AD remains to be elucidated. Calcium overloading and oxidative stress have been implicated in AD pathogenesis. Two major isoforms of regulator of calcineurin 1 (RCAN1), RCAN1.1 and RCAN1.4, are detected in human brains. In this report we defined the transcriptional regulation of RCAN1.1 and RCAN1.4 by two alternative promoters. Calcium overloading upregulated RCAN1.4 expression by activating RCAN1.4 promoter through calcineurin-NFAT signaling pathway, thus forming a negative feedback loop in isoform 4 regulation. Furthermore, RCAN1.4 overexpression exacerbated calcium overloading-induced neuronal apoptosis, which was mediated by caspase-3 apoptotic pathway. Our results suggest that downregulating RCAN1.4 expression in neurons could be beneficial to AD patients. PMID:24751678

  10. Streptozotocin induces endoplasmic reticulum stress and apoptosis via disruption of calcium homeostasis in mouse pancreas.

    PubMed

    Ahn, Changhwan; An, Beum-Soo; Jeung, Eui-Bae

    2015-09-01

    Calcium homeostasis refers to the regulation of calcium ion concentration in the body. This concentration is tightly controlled by a stabilizing system consisting of calcium channels and calcium buffering proteins. Calcium homeostasis is crucial for cell survival. Various forms of cell death (e.g., necrosis and apoptosis) also share calcium signaling pathways and molecular effectors. Calcium acts not only as a ubiquitous second messenger involved in apoptosis along with various cell death inducers but also a regulator for the synthesis of enzymes/hormones such as insulin. We hypothesized that streptozotocin disrupts calcium homeostasis and the altered intracellular calcium levels may induce cell death. After streptozotocin administration, blood glucose level was increased while insulin levels decreased. The expression of insulin response markers also decreased relative to the vehicle group. L-type voltage-gated calcium channel expression and sarcoplasmic reticulum Ca(2+) ATPase were increased by streptozotocin. Calcium buffering protein calbindin-D9k and calmodulin family members were also increased. The expression of genes involved in transporting calcium ions to the endoplasmic reticulum (ER) was decrease while the expression of those affecting the removal of calcium from the ER was increased. Depletion of calcium from the ER leads to ER-stress and can induce apoptosis. In the streptozotocin-treatment group, apoptosis markers were increased. Taken together, these results imply that the disruption of calcium homeostasis by streptozotocin induces ER-stress and leads to the apoptosis of pancreatic cells. Additionally, findings from this study suggest that imbalances in calcium homeostasis could promote pancreatic beta cell death and result in type I diabetes. PMID:26003140

  11. Calcium

    MedlinePlus

    ... milligrams) of calcium each day. Get it from: Dairy products. Low-fat milk, yogurt, cheese, and cottage ... lactase that helps digest the sugar (lactose) in dairy products, and may have gas, bloating, cramps, or ...

  12. PYRETHROID INDUCED ALTERATIONS IN TRANSCRIPTION OF CALCIUM RESPONSIVE AND IMMEDIATE EARLY GENES IN VIVO.

    EPA Science Inventory

    Multiple molecular targets for pyrethroid insecticides have been evaluated in in vitro preparations, including but not limited to voltage-sensitive sodium channels (VSSCs), voltage-sensitive calcium channels (VSCCs), GABAergic receptors, ATPases and mitochondrial respiratory chai...

  13. Protection against methoxyacetic-acid-induced spermatocyte apoptosis with calcium channel blockers in cultured rat seminiferous tubules: possible mechanisms.

    PubMed

    Li, L H; Wine, R N; Miller, D S; Reece, J M; Smith, M; Chapin, R E

    1997-05-01

    A calcium-mediated mechanism underlying spermatocyte apoptosis induced by 2-methoxyethanol (2-ME) has been previously proposed. This hypothesis was tested in vitro in the present study using cultured juvenile (25 days old) and adult rat seminiferous tubules (JRST and ARST, respectively) with methoxyacetic acid (MAA, the active metabolite of 2-ME). In JRST, spermatocyte degeneration was morphologically obvious 19 hr after a 5-hr exposure to 5 mM MAA. The lesion was unaffected by the presence or absence of extratubular Ca2+. However, MAA-induced cell death was significantly prevented by cotreatment with the dihydropyridines (DHP) nifedipine (50 microM) and nicardipine (20 microM), as well as verapamil (50 microM) and TMB-8 (50 microM), all of which are able to inhibit calcium movement through plasma membranes. However, neither ryanodine, dantrolene, nor cyclosporin A and ruthenium red, which inhibit Ca2+ mobilization from intracellular stores (endoplasmic reticulum and mitochondria), affected the MAA-induced cell death. Inhibition of calcium mobilization through IP3-sensitive pathways by blocking the product of IP3 with manoalide, neomycin, and U73122 did not block the MAA-induced lesion. The protective effects of 50 microM nifedipine and 50 microM TMB-8 were also observed in ARSTs treated with 10 mM MAA for 5 hr. However, when rat testicular sections were immunohistochemically stained with monoclonal antibodies specific for the alpha 1 (the DHP receptor) or the alpha 2 subunits of DHP-sensitive calcium channels, no positive staining was found. Finally, in an attempt to see whether the intracellular free calcium concentrations ([Ca2+]i) in germ cells were increased after the MAA treatment, intact seminiferous tubules were loaded with indo-1 and were measured using laser-scanning confocal microscopy. No detectable increase in the signal in MA A-sensitive spermatocytes was observed, while a 34-54% increase in the signal could be detected in the same cell types when

  14. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  15. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  16. Binding of ( sup 125 I)iodipine to parathyroid cell membranes: Evidence of a dihydropyridine-sensitive calcium channel

    SciTech Connect

    Jones, J.I.; Fitzpatrick, L.A. )

    1990-04-01

    The parathyroid cell is unusual, in that an increase in extracellular calcium concentrations inhibits PTH release. Calcium channels are glycoproteins that span cell membranes and allow entry of extracellular calcium into cells. We have demonstrated that the calcium channel agonist (+)202-791, which opens calcium channels, inhibits PTH release and that the antagonist (-)202-791, which closes calcium channels, stimulates PTH release. To identify the calcium channels responsible for these effects, we used a radioligand that specifically binds to calcium channels. Bovine parathyroid cell membranes were prepared and incubated under reduced lighting with (125I) iodipine (SA, 2000 Ci/mmol), which recognizes 1,4-dihydropyridine-sensitive calcium channels. Bound ligand was separated from free ligand by rapid filtration through Whatman GF/B filters. Nonspecific binding was measured by the inclusion of nifedipine at 10 microM. Specific binding represented approximately 40% of the total binding. The optimal temperature for (125I) iodipine binding was 4 C, and binding reached equilibrium by 30 min. The equilibrium dissociation constant (Kd) was approximately 550 pM, and the maximum number of binding sites was 780 fmol/mg protein. Both the calcium channel agonist (+)202-791 and antagonist (-)202-791 competitively inhibited (125I) iodipine binding, with 50% inhibition concentrations of 20 and 300 nM, respectively. These data indicate the presence of dihydropyridine-sensitive calcium channels on parathyroid cell membranes.

  17. Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation

    PubMed Central

    Colinet, Anne-Sophie; Sengottaiyan, Palanivelu; Deschamps, Antoine; Colsoul, Marie-Lise; Thines, Louise; Demaegd, Didier; Duchêne, Marie-Clémence; Foulquier, François; Hols, Pascal; Morsomme, Pierre

    2016-01-01

    Calcium signaling depends on a tightly regulated set of pumps, exchangers, and channels that are responsible for controlling calcium fluxes between the different subcellular compartments of the eukaryotic cell. We have recently reported that two members of the highly-conserved UPF0016 family, human TMEM165 and budding yeast Gdt1p, are functionally related and might form a new group of Golgi-localized cation/Ca2+ exchangers. Defects in the human protein TMEM165 are known to cause a subtype of Congenital Disorders of Glycosylation. Using an assay based on the heterologous expression of GDT1 in the bacterium Lactococcus lactis, we demonstrated the calcium transport activity of Gdt1p. We observed a Ca2+ uptake activity in cells expressing GDT1, which was dependent on the external pH, indicating that Gdt1p may act as a Ca2+/H+ antiporter. In yeast, we found that Gdt1p controls cellular calcium stores and plays a major role in the calcium response induced by osmotic shock when the Golgi calcium pump, Pmr1p, is absent. Importantly, we also discovered that, in the presence of a high concentration of external calcium, Gdt1p is required for glycosylation of carboxypeptidase Y and the glucanosyltransferase Gas1p. Finally we showed that glycosylation process is restored by providing more Mn2+ to the cells. PMID:27075443

  18. Store-operated calcium entry in human oocytes and sensitivity to oxidative stress.

    PubMed

    Martín-Romero, Francisco Javier; Ortíz-de-Galisteo, Jose Ramón; Lara-Laranjeira, Javier; Domínguez-Arroyo, Jose Antonio; González-Carrera, Ernesto; Alvarez, Ignacio S

    2008-02-01

    Calcium signaling is a cellular event that plays a key role at many steps of fertilization and early development. However, little is known regarding the contribution of extracellular Ca(2+) influx into the cell to this signaling in gametes and early embryos. To better know the significance of calcium entry on oocyte physiology, we have evaluated the mechanism of store-operated calcium entry (SOCE) in human metaphase II (MII) oocytes and its sensitivity to oxidative stress, one of the major factors implicated in the outcome of in vitro fertilization (IVF) techniques. We show that depletion of intracellular Ca(2+) stores through inhibition of sarco(endo)plasmic Ca(2+)-ATPase with thapsigargin triggers Ca(2+) entry in resting human oocytes. Ba(2+) and Mn(2+) influx was also stimulated following inhibition, and Ca(2+) entry was sensitive to pharmacological inhibition because the SOCE blocker 2-aminoethoxydiphenylborate (2-APB) reduced calcium and barium entry. These results support the conclusion that there is a plasma membrane mechanism responsible for the capacitative divalent cation entry in human oocytes. Moreover, the Ca(2+) entry mechanism described in MII oocytes was found to be highly sensitive to oxidative stress. Hydrogen peroxide, at micromolar concentrations that could mimic culture conditions in IVF, elicited an increase of [Ca(2+)](i) that was dependent on the presence of extracellular Ca(2+). This rise was preventable by 2-APB, indicating that it was mainly due to the enhanced influx through store-operated calcium channels. In sum, our results demonstrate the occurrence of SOCE in human MII oocytes and the modification of this pathway due to oxidative stress, with possible consequences in IVF. PMID:18003943

  19. The atrazine metabolite diaminochlorotriazine suppresses LH release from murine LβT2 cells by suppressing GnRH-induced intracellular calcium transients

    PubMed Central

    Dooley, Gregory P.; Tjalkens, Ronald B.; Hanneman, William H.

    2013-01-01

    The primary metabolite of the herbicide atrazine (ATRA), diaminochlorotriazine (DACT), has been suggested to cause disruption in the hypothalamic-pituitary-gonadal axis leading to inhibition of luteinizing hormone (LH) release. DACT is a reactive electrophile known to form covalent protein adducts both in vitro and in vivo following ATRA exposure and maybe targeting proteins involved in GnRH-induced calcium signaling and subsequent LH release. To test this hypothesis, LβT2 pituitary cells were exposed to 300 μM DACT for 24 hrs and examined by fluorescence microscopy for GnRH-induced changes in intracellular calcium and LH release. LβT2 cells exposed to DACT had markedly diminished GnRH-induced intracellular calcium transients and a significant decreased LH release in response to GnRH. DACT appeared to cause a selective decrease in caffeine-sensitive ryanodine receptor-operated calcium stores in LβT2 cells, rather than in thapsigargin-sensitive ER calcium stores. This sensitivity correlated with the formation of covalent protein adducts by DACT, as determined by mass spectrometry. ERp57 was identified by mass spectrometry as a target of DACT adduction in the ER that could potentially mediate the effects of DACT on inhibition of GnRH-induced calcium signaling and inhibition of LH release. Intracellular calcium responses to GnRH and release of LH were restored in DACT-treated cells with the addition of a calcium ionophore (A23187). These data suggest that DACT forms adducts on proteins involved in calcium handling within the ER and that dysfunction in this critical signaling system is associated with loss of normal sensitivity to GnRH and subsequent decreased release of LH. PMID:24052811

  20. Actions of prostaglandin F2 alpha and noradrenaline on calcium exchange and contraction in rat mesenteric arteries and their sensitivity to calcium entry blockers.

    PubMed Central

    Godfraind, T.; Miller, R. C.

    1982-01-01

    1 The actions of prostaglandin F2 alpha (PGF2 alpha) and noradrenaline on contraction and 45Ca exchange have been studied in rat mesenteric arteries. 2 PGF2 alpha and noradrenaline contracted rat isolated mesenteric artery preparations to about the same extent. The PGF2 alpha-stimulated contractions, unlike those produced by noradrenaline, were completely inhibited in calcium-free physiological solution. 3 The calcium entry blocking drugs, cinnarizine and flunarizine, had little effect on the resting exchange of calcium in the arterial smooth muscle, but inhibited PGF2 alpha-stimulated contractions and 45Ca uptake to a similar extent. 4 Flunarizine was about 7 fold more potent as an inhibitor of noradrenaline- than of PGF2 alpha-mediated contraction and 45Ca uptake and this ratio was about 50 for cinnarizine. 5 EGTA (1.25 mM) produced a relaxation of noradrenaline and PGF2 alpha-induced maximal contractions. Measured over the first 2 min of EGTA contact, the rate of relaxation was much faster in noradrenaline than in PGF2 alpha-stimulated preparations. 6 Turnover of cellular calcium (influx plus efflux) during the first 2 min of noradrenaline contact was much greater than that produced by PGF2 alpha, largely due to a greater effect of noradrenaline on calcium efflux. 7 The results suggest that PGF2 alpha-but not noradrenaline-induced contractions are entirely dependent on the influx of extracellular calcium and that the agonists may stimulate calcium gating mechanisms differently. PMID:6951620

  1. CXCL12 induces hepatic stellate cell contraction through a calcium-independent pathway.

    PubMed

    Saiman, Yedidya; Agarwal, Ritu; Hickman, DaShawn A; Fausther, Michel; El-Shamy, Ahmed; Dranoff, Jonathan A; Friedman, Scott L; Bansal, Meena B

    2013-09-01

    Liver fibrosis, with subsequent development of cirrhosis and ultimately portal hypertension, results in the death of patients with end-stage liver disease if liver transplantation is not performed. Hepatic stellate cells (HSCs), central mediators of liver fibrosis, resemble tissue pericytes and regulate intrahepatic blood flow by modulating pericapillary resistance. Therefore, HSCs can contribute to portal hypertension in patients with chronic liver disease (CLD). We have previously demonstrated that activated HSCs express functional chemokine receptor, CXCR4, and that receptor engagement by its ligand, CXCL12, which is increased in patients with CLD, leads to further stellate cell activation in a CXCR4-specific manner. We therefore hypothesized that CXCL12 promotes HSC contraction in a CXCR4-dependent manner. Stimulation of HSCs on collagen gel lattices with CXCL12 led to gel contraction and myosin light chain (MLC) phosphorylation, which was blocked by addition of AMD3100, a CXCR4 small molecule inhibitor. These effects were further mediated by the Rho kinase pathway since both Rho kinase knockdown or Y-27632, a Rho kinase inhibitor, blocked CXCL12 induced phosphorylation of MLC and gel contraction. BAPTA-AM, a calcium chelator, had no effect, indicating that this pathway is calcium sensitive but not calcium dependent. In conclusion, CXCL12 promotes stellate cell contractility in a predominantly calcium-independent fashion. Our data demonstrates a novel role of CXCL12 in stellate cell contraction and the availability of small molecule inhibitors of the CXCL12/CXCR4 axis justifies further investigation into its potential as therapeutic target for portal hypertension. PMID:23812037

  2. 5-HT2B receptor-mediated calcium release from ryanodine-sensitive intracellular stores in human pulmonary artery endothelial cells.

    PubMed Central

    Ullmer, C.; Boddeke, H. G.; Schmuck, K.; Lübbert, H.

    1996-01-01

    1. We have characterized the 5-hydroxytryptamine (5-HT)-induced calcium signalling in endothelial cells from the human pulmonary artery. Using RT-PCR we show, that of all cloned G-protein coupled 5-HT receptors, these cells express only 5-HT1D beta, 5-HT2B and little 5-HT4 receptor mRNA. 2. In endothelial cells 5-HT inhibits the formation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) via 5-HT1D beta receptors but fails to activate phosphoinositide (PI) turnover. However, the latter pathway is strongly activated by histamine. 3. Despite the lack of detectable inositol phosphate (IP) formation in human pulmonary artery endothelial cells, 5-HT (pD2 = 5.82 +/- 0.06, n = 6) or the selective 5-HT2 agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (pD2 = 5.66 +/- 0.03, n = 7) elicited transient calcium signals comparable to those evoked by histamine (pD2 = 6.44 +/- 0.01, n = 7). Since 5-HT2A and 5-HT2C receptor mRNAs are not detectable in pulmonary artery endothelial cells, activation of 5-HT2B receptors is responsible for the transient calcium release. The calcium transients are independent of the inhibition of adenylate cyclase, since DOI does not stimulate 5-HT1D beta receptors. 4. Both, the 5-HT- and histamine-stimulated calcium signals were also observed when the cells were placed in calcium-free medium. This indicates that 5-HT triggers calcium release from intracellular stores. 5. Heparin is an inhibitor of the IP3-activated calcium release channels on the endoplasmic reticulum. Intracellular infusion of heparin through patch pipettes in voltage clamp experiments failed to block 5-HT-induced calcium signals, whereas it abolished the histamine response. This supports the conclusion that the 5-HT-induced calcium release is independent of IP3 formation. 6. Unlike the histamine response, the 5-HT response was sensitive to micromolar concentrations of ryanodine and, to a lesser extent, ruthenium red. This implies that 5-HT2B receptors trigger calcium

  3. Fluorescence Based Characterization of Calcium Sensitizer Action on the Troponin Complex.

    PubMed

    Schlecht, William; Li, King-Lun; Hu, Dehong; Dong, Wenji

    2016-02-01

    Calcium sensitizers enhance the transduction of the Ca(2+) signal into force within the heart and have found use in treating heart failure. However the mechanisms of action for most Ca(2+) sensitizers remain unclear. To address this issue an efficient fluorescence based approach to Ca(2+) sensitizer screening was developed which monitors cardiac troponin C's (cTnC's) hydrophobic cleft. This approach was tested on four common Ca(2+) -sensitizers, EMD 57033, levosimendan, bepridil and pimobendan with the aim of elucidating the mechanisms of action for each as well as proving the efficacy of the new screening method. Ca(2+) -titration experiments were employed to determine the effect on Ca(2+) sensitivity and cooperativity of cTnC opening, while stopped flow experiments were used to investigate the impact on cTnC relaxation kinetics. Bepridil was shown to increase the sensitivity of cTnC for Ca(2+) under all reconstitution conditions, sensitization by the other drugs was context dependent. Levosimendan and pimobendan reduced the rate of cTnC closing consistent with a stabilization of cTnC's open conformation while bepridil increased the rate of relaxation. Experiments were also run on samples containing cTnT(T204E), a known Ca(2+) -desensitizing phosphorylation mimic. Levosimendan, bepridil, and pimobendan were found to elevate the Ca(2+) -sensitivity of cTnT(T204E) containing samples in this context. PMID:26375298

  4. Fluid flow induced calcium response in osteoblasts: mathematical modeling.

    PubMed

    Su, J H; Xu, F; Lu, X L; Lu, T J

    2011-07-28

    Fluid flow in the bone lacuno-canalicular network can induce dynamic fluctuation of intracellular calcium concentration ([Ca(2+)](i)) in osteoblasts, which plays an important role in bone remodeling. There has been limited progress in the mathematical modeling of this process probably due to its complexity, which is controlled by various factors such as Ca(2+) channels and extracellular messengers. In this study we developed a mathematical model to describe [Ca(2+)](i) response induced by fluid shear stress (SS) by integrating the major factors involved and analyzed the effects of different experimental setups (e.g. [Ca(2+)](i) baseline, pretreatment with ATP). In this model we considered the ATP release process and the activities of multiple ion channels and purinergic receptors. The model was further verified quantitatively by comparing the simulation results with experimental data reported in literature. The results showed that: (i) extracellular ATP concentration has more significant effect on [Ca(2+)](i) baseline (73% increase in [Ca(2+)](i) with extracellular ATP concentration varying between 0 and 10 μM), as compared to that induced by SS (25% variation in [Ca(2+)](i) with SS varying from 0 to 3.5 Pa); (ii) Pretreatment with ATP-medium results in different [Ca(2+)](i) response as compared to the control group (ATP-free medium) under SS; (iii) Relative [Ca(2+)](i) fluctuation over baseline is more reliable to show the [Ca(2+)](i) response process than the absolute [Ca(2+)](i) response peak. The developed model may improve the experimental design and facilitate our understanding of the mechanotransduction process in osteoblasts. PMID:21665208

  5. Metabolic syndrome induces changes in KATP-channels and calcium currents in pancreatic β-cells.

    PubMed

    Velasco, Myrian; Larqué, Carlos; Gutiérrez-Reyes, Gabriela; Arredondo, Reynaldo; Sanchez-Soto, Carmen; Hiriart, Marcia

    2012-01-01

    Metabolic syndrome (MS) can be defined as a group of signs that increases the risk of developing type 2 diabetes mellitus (DM2). These signs include obesity, hyperinsulinemia and insulin resistance. We are interested in the mechanisms that trigger hyperinsulinemia as a step to understand how β cells fail in DM2. Pancreatic β cells secrete insulin in response to glucose variations in the extracellular medium. When they are chronically over-stimulated, hyperinsulinemia is observed; but then, with time, they become incapable of maintaining normal glucose levels, giving rise to DM2. A chronic high sucrose diet for two months induces MS in adult male Wistar rats. In the present article, we analyzed the effect of the internal environment of rats with MS, on the activity of ATP-sensitive potassium channels (KATP) and calcium currents of pancreatic β cells. After 24 weeks of treatment with 20% sucrose in their drinking water, rats showed central obesity, hyperinsulinemia and insulin resistance, and their systolic blood pressure and triglycerides plasma levels increased. These signs indicate the onset of MS. KATP channels in isolated patches of β cells from MS rats, had an increased sensitivity to ATP with respect to controls. Moreover, the macroscopic calcium currents, show increased variability compared with cells from control individuals. These results demonstrate that regardless of genetic background, a high sucrose diet leads to the development of MS. The observed changes in ionic channels can partially explain the increase in insulin secretion in MS rats. However, some β cells showed smaller calcium currents. These cells may represent a β cell subpopulation as it becomes exhausted by the long-term high sucrose diet. PMID:22885660

  6. Phosphoprotein Phosphatase 1 Is Required for Extracellular Calcium-Induced Keratinocyte Differentiation

    PubMed Central

    Fan, Hong; Zeng, Qin; Pennypacker, Sally D.; Xie, Zhongjian

    2016-01-01

    Extracellular calcium is a major regulator of keratinocyte differentiation in vitro and appears to play that role in vivo, but the mechanism is unclear. We have previously demonstrated that, following calcium stimulation, PIP5K1α is recruited by the E-cadherin-β-catenin complex to the plasma membrane where it provides the substrate PIP2 for both PI3K and PLC-γ1. This signaling pathway is critical for calcium-induced generation of second messengers including IP3 and intracellular calcium and keratinocyte differentiation. In this study, we explored the upstream regulatory mechanism by which calcium activates PIP5K1α and the role of this activation in calcium-induced keratinocyte differentiation. We found that treatment of human keratinocytes in culture with calcium resulted in an increase in serine dephosphorylation and PIP5K1α activation. PP1 knockdown blocked extracellular calcium-induced increase in serine dephosphorylation and activity of PIP5K1α and induction of keratinocyte differentiation markers. Knockdown of PLC-γ1, the downstream effector of PIP5K1α, blocked upstream dephosphorylation and PIP5K1α activation induced by calcium. Coimmunoprecipitation revealed calcium induced recruitment of PP1 to the E-cadherin-catenin-PIP5K1α complex in the plasma membrane. These results indicate that PP1 is recruited to the extracellular calcium-dependent E-cadherin-catenin-PIP5K1α complex in the plasma membrane to activate PIP5K1α, which is required for PLC-γ1 activation leading to keratinocyte differentiation. PMID:27340655

  7. Phosphoprotein Phosphatase 1 Is Required for Extracellular Calcium-Induced Keratinocyte Differentiation.

    PubMed

    Shrestha, Chandrama; Tang, Yuanyuan; Fan, Hong; Li, Lusha; Zeng, Qin; Pennypacker, Sally D; Bikle, Daniel D; Xie, Zhongjian

    2016-01-01

    Extracellular calcium is a major regulator of keratinocyte differentiation in vitro and appears to play that role in vivo, but the mechanism is unclear. We have previously demonstrated that, following calcium stimulation, PIP5K1α is recruited by the E-cadherin-β-catenin complex to the plasma membrane where it provides the substrate PIP2 for both PI3K and PLC-γ1. This signaling pathway is critical for calcium-induced generation of second messengers including IP3 and intracellular calcium and keratinocyte differentiation. In this study, we explored the upstream regulatory mechanism by which calcium activates PIP5K1α and the role of this activation in calcium-induced keratinocyte differentiation. We found that treatment of human keratinocytes in culture with calcium resulted in an increase in serine dephosphorylation and PIP5K1α activation. PP1 knockdown blocked extracellular calcium-induced increase in serine dephosphorylation and activity of PIP5K1α and induction of keratinocyte differentiation markers. Knockdown of PLC-γ1, the downstream effector of PIP5K1α, blocked upstream dephosphorylation and PIP5K1α activation induced by calcium. Coimmunoprecipitation revealed calcium induced recruitment of PP1 to the E-cadherin-catenin-PIP5K1α complex in the plasma membrane. These results indicate that PP1 is recruited to the extracellular calcium-dependent E-cadherin-catenin-PIP5K1α complex in the plasma membrane to activate PIP5K1α, which is required for PLC-γ1 activation leading to keratinocyte differentiation. PMID:27340655

  8. Antagonism of T-type calcium channels inhibits high-fat diet–induced weight gain in mice

    PubMed Central

    Uebele, Victor N.; Gotter, Anthony L.; Nuss, Cindy E.; Kraus, Richard L.; Doran, Scott M.; Garson, Susan L.; Reiss, Duane R.; Li, Yuxing; Barrow, James C.; Reger, Thomas S.; Yang, Zhi-Qiang; Ballard, Jeanine E.; Tang, Cuyue; Metzger, Joseph M.; Wang, Sheng-Ping; Koblan, Kenneth S.; Renger, John J.

    2009-01-01

    The epidemics of obesity and metabolic disorders have well-recognized health and economic burdens. Pharmacologic treatments for these diseases remain unsatisfactory with respect to both efficacy and side-effect profiles. Here, we have identified a potential central role for T-type calcium channels in regulating body weight maintenance and sleep. Previously, it was shown that mice lacking CaV3.1 T-type calcium channels have altered sleep/wake activity. We found that these mice were also resistant to high-fat diet–induced weight gain, without changes in food intake or sensitivity to high-fat diet–induced disruptions of diurnal rhythm. Administration of a potent and selective antagonist of T-type calcium channels, TTA-A2, to normal-weight animals prior to the inactive phase acutely increased sleep, decreased body core temperature, and prevented high-fat diet–induced weight gain. Administration of TTA-A2 to obese rodents reduced body weight and fat mass while concurrently increasing lean muscle mass. These effects likely result from better alignment of diurnal feeding patterns with daily changes in circadian physiology and potentially an increased metabolic rate during the active phase. Together, these studies reveal what we believe to be a previously unknown role for T-type calcium channels in the regulation of sleep and weight maintenance and suggest the potential for a novel therapeutic approach to treating obesity. PMID:19451696

  9. Effect of vanadate on ATP-induced increase in intracellular calcium ion levels in human umbilical vein endothelial cells.

    PubMed

    Nejime, Namie; Tada, Yukari; Kagota, Satomi; Kubota, Yoko; Shibuichi, Ikuo; Shinoda, Yuki; Yamamoto, Tomohiro; Watanabe, Yasuo; Shinozuka, Kazumasa

    2010-01-01

    We investigated the effect of ammonium vanadate (vanadate) on ATP-induced increases in intracellular calcium ion level ([Ca(2+)](i)) of human umbilical vein endothelial cells (HUVEC) by fluorescence confocal microscopic imaging using the Ca(2+)-sensitive probe Calcium Green 1/AM. The ATP analogue 2-methylthio-ATP (2meS-ATP), at 10 microM, significantly increased the [Ca(2+)](i) of HUVEC, and this was abolished by 1 microM thapsigargin (a calcium pump inhibitor), whereas extracellular free calcium had no effect. Vanadate at 10 microM also significantly increased the [Ca(2+)](i) of HUVEC, which was abolished by 1 microM thapsigargin. However, vanadate at 1 microM did not exert such a significant effect. We thus examined the influence of < or =1 microM vanadate for 24 h on 2meS-ATP-induced increase in [Ca(2+)](i). Vanadate significantly reduced the action of 2meS-ATP at 1 microM but not at 0.1 microM. Endogenously released ATP is known to induce various actions on endothelial cells. The present results suggest that vanadate exerts a regulatory influence on the function of vascular endothelial cells. PMID:20522978

  10. Intracellular Calcium Spikes in Rat Suprachiasmatic Nucleus Neurons Induced by BAPTA-Based Calcium Dyes

    PubMed Central

    Hong, Jin Hee; Min, Cheol Hong; Jeong, Byeongha; Kojiya, Tomoyoshi; Morioka, Eri; Nagai, Takeharu; Ikeda, Masayuki; Lee, Kyoung J.

    2010-01-01

    Background Circadian rhythms in spontaneous action potential (AP) firing frequencies and in cytosolic free calcium concentrations have been reported for mammalian circadian pacemaker neurons located within the hypothalamic suprachiasmatic nucleus (SCN). Also reported is the existence of “Ca2+ spikes” (i.e., [Ca2+]c transients having a bandwidth of 10∼100 seconds) in SCN neurons, but it is unclear if these SCN Ca2+ spikes are related to the slow circadian rhythms. Methodology/Principal Findings We addressed this issue based on a Ca2+ indicator dye (fluo-4) and a protein Ca2+ sensor (yellow cameleon). Using fluo-4 AM dye, we found spontaneous Ca2+ spikes in 18% of rat SCN cells in acute brain slices, but the Ca2+ spiking frequencies showed no day/night variation. We repeated the same experiments with rat (and mouse) SCN slice cultures that expressed yellow cameleon genes for a number of different circadian phases and, surprisingly, spontaneous Ca2+ spike was barely observed (<3%). When fluo-4 AM or BAPTA-AM was loaded in addition to the cameleon-expressing SCN cultures, however, the number of cells exhibiting Ca2+ spikes was increased to 13∼14%. Conclusions/Significance Despite our extensive set of experiments, no evidence of a circadian rhythm was found in the spontaneous Ca2+ spiking activity of SCN. Furthermore, our study strongly suggests that the spontaneous Ca2+ spiking activity is caused by the Ca2+ chelating effect of the BAPTA-based fluo-4 dye. Therefore, this induced activity seems irrelevant to the intrinsic circadian rhythm of [Ca2+]c in SCN neurons. The problems with BAPTA based dyes are widely known and our study provides a clear case for concern, in particular, for SCN Ca2+ spikes. On the other hand, our study neither invalidates the use of these dyes as a whole, nor undermines the potential role of SCN Ca2+ spikes in the function of SCN. PMID:20224788

  11. Pressure induced reactions amongst calcium aluminate hydrate phases

    SciTech Connect

    Moon, Ju-hyuk; Oh, Jae Eun; Balonis, Magdalena; Glasser, Fredrik P.; Clark, Simon M.; Monteiro, Paulo J.M.

    2011-06-15

    The compressibilities of two AFm phases (straetlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt volume contraction regardless of the molecular size of the pressure-transmitting media. This volume discontinuity could be associated to a structural transition or to the movement of the weakly bound interlayer water molecules in the AFm structure. The experimental results seem to indicate that the pressure-induced dehydration is the dominant mechanism especially with hygroscopic pressure medium. The Birch-Murnaghan equation of state was used to compute the bulk modulus of the minerals. Due to the discontinuity in the pressure-volume diagram, a two stage bulk modulus of each AFm phase was calculated. The abnormal volume compressibility for the AFm phases caused a significant change to their bulk modulus. The reliability of this experiment is verified by comparing the bulk modulus of hydrogarnet with previous studies.

  12. Photolysis of caged calcium in cilia induces ciliary reversal in Paramecium caudatum.

    PubMed

    Iwadate, Yoshiaki

    2003-04-01

    Intracellular Ca(2+) concentration controls both the pattern and frequency of ciliary and flagellar beating in eukaryotes. In Paramecium, it is widely accepted that the reversal of the direction of ciliary beating (ciliary reversal) is induced by an increase in intra-ciliary Ca(2+) levels. Despite this, the Ca(2+)-sensitive region of the cilium that initiates ciliary reversal has not been clearly identified. We injected caged calcium into living P. caudatum cells and applied ultraviolet (UV) light to portions of the injected cells to raise artificially the intracellular Ca(2+) level ([Ca(2+)](i)). UV application to the upper ciliary region above the basal body induced ciliary reversal in injected cells. Furthermore, UV application to the tips of cilia induced weak ciliary reversal. Larger areas of photolysis in the cilium gave rise to greater angles of ciliary reversal. These results strongly suggest that the Ca(2+)-sensitive region for ciliary reversal is distributed all over the cilium, above the basal body. PMID:12604576

  13. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast.

    PubMed

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage. PMID:27305947

  14. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    PubMed Central

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage. PMID:27305947

  15. Action potentials induce uniform calcium influx in mammalian myelinated optic nerves.

    PubMed

    Zhang, Chuan-Li; Wilson, J Adam; Williams, Justin; Chiu, Shing Yan

    2006-08-01

    The myelin sheath enables saltatory conduction by demarcating the axon into a narrow nodal region for excitation and an extended, insulated internodal region for efficient spread of passive current. This anatomical demarcation produces a dramatic heterogeneity in ionic fluxes during excitation, a classical example being the restriction of Na influx at the node. Recent studies have revealed that action potentials also induce calcium influx into myelinated axons of mammalian optic nerves. Does calcium influx in myelinated axons show spatial heterogeneity during nerve excitation? To address this, we analyzed spatial profiles of axonal calcium transients during action potentials by selectively staining axons with calcium indicators and subjected the data to theoretical analysis with parameters for axial calcium diffusion empirically determined using photolysis of caged compounds. The results show surprisingly that during action potentials, calcium influx occurs uniformly along an axon of a fully myelinated mouse optic nerve. PMID:16835363

  16. Artemisinin Induces Calcium-Dependent Protein Secretion in the Protozoan Parasite Toxoplasma gondii▿ †

    PubMed Central

    Nagamune, Kisaburo; Beatty, Wandy L.; Sibley, L. David

    2007-01-01

    Intracellular calcium controls several crucial cellular events in apicomplexan parasites, including protein secretion, motility, and invasion into and egress from host cells. The plant compound thapsigargin inhibits the sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA), resulting in elevated calcium and induction of protein secretion in Toxoplasma gondii. Artemisinins are natural products that show potent and selective activity against parasites, making them useful for the treatment of malaria. While the mechanism of action is uncertain, previous studies have suggested that artemisinin may inhibit SERCA, thus disrupting calcium homeostasis. We cloned the single-copy gene encoding SERCA in T. gondii (TgSERCA) and demonstrate that the protein localizes to the endoplasmic reticulum in the parasite. In extracellular parasites, TgSERCA partially relocalized to the apical pole, a highly active site for regulated secretion of micronemes. TgSERCA complemented a calcium ATPase-defective yeast mutant, and this activity was inhibited by either thapsigargin or artemisinin. Treatment of T. gondii with artemisinin triggered calcium-dependent secretion of microneme proteins, similar to the SERCA inhibitor thapsigargin. Artemisinin treatment also altered intracellular calcium in parasites by increasing the periodicity of calcium oscillations and inducing recurrent, strong calcium spikes, as imaged using Fluo-4 labeling. Collectively, these results demonstrate that artemisinin perturbs calcium homeostasis in T. gondii, supporting the idea that Ca2+-ATPases are potential drug targets in parasites. PMID:17766463

  17. Dynamic and static calcium gradients inside large snail (Helix aspersa) neurones detected with calcium-sensitive microelectrodes

    PubMed Central

    Thomas, Roger C.; Postma, Marten

    2007-01-01

    We have used quartz Ca2+-sensitive microelectrodes (CASMs) in large voltage-clamped snail neurones to investigate the inward spread of Ca2+ after a brief depolarisation. Both steady state and [Ca2+]i transients changed with depth of penetration. When the CASM tip was within 20 μm of the far side of the cell the [Ca2+]i transient time to peak was 4.4 ± 0.5 s, rising to 14.7 ± 0.7 s at a distance of 80 μm. We estimate that the Ca2+ transients travelled centripetally at an average speed of 6 μm2 s−1 and decreased in size by half over a distance of about 45 μm. Cyclopiazonic acid had little effect on the size and time to peak of Ca2+ transients but slowed their recovery significantly. This suggests that the endoplasmic reticulum curtails rather than reinforces the transients. Injecting the calcium buffer BAPTA made the Ca2+ transients more uniform in size and increased their times to peak and rates of recovery near the membrane. We have developed a computational model for the transients, which includes diffusion, uptake and Ca2+ extrusion. Good fits were obtained with a rather large apparent diffusion coefficient of about 90 ± 20 μm2 s−1.This may assist fast recovery by extrusion. PMID:16962659

  18. Apamin-sensitive, small-conductance, calcium-activated potassium channels mediate cholinergic inhibition of chick auditory hair cells.

    PubMed

    Yuhas, W A; Fuchs, P A

    1999-11-01

    Acetylcholine released from efferent neurons in the cochlea causes inhibition of mechanosensory hair cells due to the activation of calcium-dependent potassium channels. Hair cells are known to have large-conductance, "BK"-type potassium channels associated with the afferent synapse, but these channels have different properties than those activated by acetylcholine. Whole-cell (tight-seal) and cell-attached patch-clamp recordings were made from short (outer) hair cells isolated from the chicken basilar papilla (cochlea equivalent). The peptides apamin and charybdotoxin were used to distinguish the calcium-activated potassium channels involved in the acetylcholine response from the BK-type channels associated with the afferent synapse. Differential toxin blockade of these potassium currents provides definitive evidence that ACh activates apamin-sensitive, "SK"-type potassium channels, but does not activate carybdotoxin-sensitive BK channels. This conclusion is supported by tentative identification of small-conductance, calcium-sensitive but voltage-insensitive potassium channels in cell-attached patches. The distinction between these channel types is important for understanding the segregation of opposing afferent and efferent synaptic activity in the hair cell, both of which depend on calcium influx. These different calcium-activated potassium channels serve as sensitive indicators for functionally significant calcium influx in the hair cell. PMID:10573868

  19. Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes.

    PubMed Central

    Hiraoka, M; Kawano, S

    1989-01-01

    1. A suction pipette whole-cell voltage-clamp technique was used to record membrane currents and potentials of isolated ventricular myocytes from rabbit hearts. 2. Transient outward current (Ito) was activated by voltage steps positive to -20 mV, increasing in amplitude with further depolarization to reach a maximum around +70 mV. The current attained its peak within 10 ms and then it inactivated for 100-200 ms. 3. A large portion of Ito still remained after the calcium current (ICa) was blocked when depolarizing pulses were applied at a frequency of 0.1 Hz or less. Therefore, this current component is referred to as calcium-insensitive Ito or It. 4. It showed voltage- and time-dependent inactivation similar to that observed in Purkinje fibres and other cardiac preparations. 5. The reversal potential of It depended on external K+ concentration, [K+]o, with a slope of 32 mV per 10-fold change in the presence of a normal [Na+]o (143 mM), while the slope was 48 mV per 10-fold change in low [Na+]o (1.0 mM). 6. It was completely inhibited by 2-4 mM-4-aminopyridine. Ito in the presence of ICa was also partially blocked by 4-aminopyridine and the remainder was abolished by 5 mM-caffeine. 7. The calcium-insensitive and caffeine-sensitive Ito differed in their decay rates as well as in their recovery time courses. The former was predominantly available at a slow pulsing rate, while the latter increased its amplitude with high-frequency depolarization. 8. The caffeine-sensitive Ito was inhibited by a blockade of ICa, by replacing Ca2+ with Sr2+, by external application of ryanodine and by internal application of EGTA. This indicates that the current is calcium-sensitive and is dependent on increased myoplasmic Ca2+ through Ca2+ influx via the sarcolemma and Ca2+ release from the sarcoplasmic reticulum. The current is therefore designated as IK, Ca. 9. The physiological functions of IK, Ca and It are indicated by their contribution to ventricular repolarization at fast and

  20. Sodium influx induced by external calcium chelation decreases human sperm motility

    PubMed Central

    Torres-Flores, Víctor; Picazo-Juárez, Giovanni; Hernández-Rueda, Yadira; Darszon, Alberto; González-Martínez, Marco T.

    2011-01-01

    BACKGROUND Calcium removal from the medium promptly reduces human sperm motility and induces a Na+-dependent depolarization that is accompanied by an increase in intracellular sodium concentration ([Na+]i) and a decrease in intracellular calcium concentration ([Ca2+]i). Sodium loading activates a Na+/K+-ATPase. METHODS Membrane potential (Vm) and [Ca2+]i were simultaneously detected in human sperm populations with the fluorescent probes diSC3(5) and fura 2. [Na+]i and was measured independently in a similar fashion using sodium-binding benzofuran isophthalate. Motility was determined in a CASA system, ATP was measured using the luciferin-luciferase assay, and cAMP was measured by radioimmunoassay. RESULTS Human sperm motility reduction after calcium removal is related to either Na+-loading or Na+-dependent depolarization, because, under conditions that inhibit the calcium removal-induced Na+-dependent depolarization and [Na+]i increase, sperm motility was unaffected. By clamping sperm Vm with valinomycin, we found that the motility reduction associated with the calcium removal was related to sodium loading, and not to membrane potential depolarization. Mibefradil, a calcium channel blocker, markedly inhibited the Na+-dependent depolarization and sodium loading, and also preserved sperm motility. In the absence of calcium, both ATP and cAMP concentrations were decreased by 40%. However ATP levels were unchanged when calcium removal was performed under conditions that inhibit the calcium removal-induced Na+-dependent depolarization and [Na+]i increase. CONCLUSIONS Human sperm motility arrest induced by external calcium removal is mediated principally by sodium loading, which would stimulate the Na+/K+-ATPase and in turn deplete the ATP content. PMID:21810864

  1. Diabetic state-induced activation of calcium-activated neutral proteinase in mouse skeletal muscle.

    PubMed

    Kobayashi, S; Fujihara, M; Hoshino, N; Kimura, I; Kimura, M

    1989-12-01

    The effect of a diabetic state in the diabetic KK-CAy mouse on calcium activated neutral proteinase (CANP) of hind-limb skeletal muscles was investigated. In the diabetic state, there was an increased sensitivity to activation of CANP by calcium (Ca). In addition, there was an enhancement of maximal activity of the enzyme. The effect was induced by secondary modification of the diabetic state, but not genetical factors. Several lines of evidence suggest that the CANP is responsible for 92 K dalton protein in diabetic skeletal muscles. Among the evidence are the following: a) The 92 K band in the diabetic muscles was lower than in the prediabetic mouse and restored by the addition of 2 mM EDTA and 2 mM EGTA. b) The band was reduced by increasing the Ca content and neutral pH in the non-diabetic normal muscles. c) E-64-C, a CANP inhibitor, restored the 92 K component reduced by the diabetic state. Since the band in denervated muscles was not changed by the Ca chelating agents, the reduction of the band in the diabetic muscles is related with musculotrophic factors, not diabetic neuropathy. These results suggest that diabetic amyotrophy may be regarded as a phenomenon linked to an increase in intracellular Ca ions and an increase in CANP activity. PMID:2561275

  2. Malignant hyperthermia and calcium-induced heat production.

    PubMed

    Ueda, I; Shinoda, F; Kamaya, H; Krishna, P R

    1994-05-01

    The abnormal increase in intracellular Ca++ in malignant hyperthermia (MH) is well documented, but the link between the increased Ca++ concentration and high temperature remains speculative. We investigated the possibility that the Ca(++)-induced change in the state of cell membranes may contribute to the temperature elevation. Calcium ion transforms phospholipid membranes from the fluid to solid state. This is analogous to the freezing of water, and liberates latent heat. Differential titration calorimetry (DTC) measures heat production or absorption during ligand binding to macromolecules. When CaCl2 solution was added to anionic dimyristoylphosphatidic acid (DMPA) and dimyristoylphosphatidylglycerol (DMPG) vesicle membranes in incremental doses, DTC showed that the heat production suddenly increased when the Ca++ concentration exceeded about 120 microM. At this Ca++ concentration range, these lipid membranes underwent phase transition. The latent heat of transition was measured by differential scanning calorimetry (DSC). The values were 7.1 +/- 0.7 (SD, n = 4) kcal.mol-1 of DMPA and 6.8 +/- 0.7 (SD, n = 4) kcal.mol-1 of DMPG. The study shows that Ca++ produces heat when bound to lipid membranes. We are not proposing, however, that this is the sole source of heat. We contend that the lipid phase transition is one of the heat sources and it may trigger a hypermetabolic state by elevating the temperature of cell membranes. Because Ca++ is implicated as the second messenger in signal transduction, multiple systems may be involved. More studies are needed to clarify how Ca++ increases body temperature. PMID:8055615

  3. Norepinephrine-induced calcium signaling in astrocytes in the respiratory network of the ventrolateral medulla.

    PubMed

    Schnell, Christian; Negm, Mahmoud; Driehaus, Johannes; Scheller, Anja; Hülsmann, Swen

    2016-06-01

    The neuronal activity in the respiratory network of the ventrolateral medulla strongly depends on a variety of different neuromodulators. Since the respiratory activity generated by neurons in the pre-Bötzinger complex (preBötC) is stabilized by astrocytes, we investigated potential effects of the neuromodulator norepinephrine (NE) on the astrocytic calcium signaling in the ventral respiratory group. In acutely isolated brainstem slices from wild type mice (postnatal day 1-10) we performed calcium imaging experiments using Oregon Green 488 BAPTA-1 AM as a calcium indicator dye. Astrocytes in the preBötC, which were identified by their unique intracellular calcium rise after the reduction of the extracellular K(+) concentration, showed calcium rises in response to norepinephrine. These calcium signals persisted after blockade of neuronal activity by tetrodotoxin (TTX) indicating that they were independent of neuronal activity. Furthermore, application of the endoplasmic reticulum calcium pump blocker cyclopiazonic acid (CPA) diminished norepinephrine-induced calcium signals. This results could be confirmed using transgenic mice with astrocyte specific expression of GCaMP3. Thus, norepinephrine might, apart from acting directly on neurons, influence and modulate respiratory network activity via the modulation of astroglial calcium signaling. PMID:26514085

  4. Ryanodine receptor sensitivity governs the stability and synchrony of local calcium release during cardiac excitation-contraction coupling.

    PubMed

    Wescott, Andrew P; Jafri, M Saleet; Lederer, W J; Williams, George S B

    2016-03-01

    Calcium-induced calcium release is the principal mechanism that triggers the cell-wide [Ca(2+)]i transient that activates muscle contraction during cardiac excitation-contraction coupling (ECC). Here, we characterize this process in mouse cardiac myocytes with a novel mathematical action potential (AP) model that incorporates realistic stochastic gating of voltage-dependent L-type calcium (Ca(2+)) channels (LCCs) and sarcoplasmic reticulum (SR) Ca(2+) release channels (the ryanodine receptors, RyR2s). Depolarization of the sarcolemma during an AP stochastically activates the LCCs elevating subspace [Ca(2+)] within each of the cell's 20,000 independent calcium release units (CRUs) to trigger local RyR2 opening and initiate Ca(2+) sparks, the fundamental unit of triggered Ca(2+) release. Synchronization of Ca(2+) sparks during systole depends on the nearly uniform cellular activation of LCCs and the likelihood of local LCC openings triggering local Ca(2+) sparks (ECC fidelity). The detailed design and true SR Ca(2+) pump/leak balance displayed by our model permits investigation of ECC fidelity and Ca(2+) spark fidelity, the balance between visible (Ca(2+) spark) and invisible (Ca(2+) quark/sub-spark) SR Ca(2+) release events. Excess SR Ca(2+) leak is examined as a disease mechanism in the context of "catecholaminergic polymorphic ventricular tachycardia (CPVT)", a Ca(2+)-dependent arrhythmia. We find that that RyR2s (and therefore Ca(2+) sparks) are relatively insensitive to LCC openings across a wide range of membrane potentials; and that key differences exist between Ca(2+) sparks evoked during quiescence, diastole, and systole. The enhanced RyR2 [Ca(2+)]i sensitivity during CPVT leads to increased Ca(2+) spark fidelity resulting in asynchronous systolic Ca(2+) spark activity. It also produces increased diastolic SR Ca(2+) leak with some prolonged Ca(2+) sparks that at times become "metastable" and fail to efficiently terminate. There is a huge margin of safety for

  5. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    PubMed Central

    Isokawa, Masako

    2016-01-01

    GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i) and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs) by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition), mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI) persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores) failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels. PMID:26998364

  6. Houttuyniae Herba Attenuates Kainic Acid-Induced Neurotoxicity via Calcium Response Modulation in the Mouse Hippocampus.

    PubMed

    Kim, Hyo Geun; Jeong, Hyun Uk; Hong, Sung In; Oh, Myung Sook

    2015-12-01

    Epilepsy is a complex neurological disorder characterized by the repeated occurrence of electrical activity known as seizures. This activity induces increased intracellular calcium, which ultimately leads to neuronal damage. Houttuyniae Herba, the aerial part of Houttuynia cordata, has various pharmacological effects and is widely used as a traditional herb. In the present study, we evaluated the protective effects of Houttuyniae Herba water extract on kainic acid-induced neurotoxicity. Kainic acid directly acts on calcium release, resulting in seizure behavior, neuronal damage, and cognitive impairment. In a rat primary hippocampal culture system, Houttuyniae Herba water extract significantly protected neuronal cells from kainic acid toxicity. In a seizure model where mice received intracerebellar kainic acid injections, Houttuyniae Herba water extract treatment resulted in a lower seizure stage score, ameliorated cognitive impairment, protected neuronal cells against kainic acid-induced toxicity, and suppressed neuronal degeneration in the hippocampus. In addition, Houttuyniae Herba water extract regulated increases in the intracellular calcium level, its related downstream pathways (reactive oxygen species production and mitochondrial dysfunction), and calcium/calmodulin complex kinase type II immunoreactivity in the mouse hippocampus, which resulted from calcium influx stimulation induced by kainic acid. These results demonstrate the neuroprotective effects of Houttuyniae Herba water extract through inhibition of calcium generation in a kainic acid-induced epileptic model. PMID:26366753

  7. Paramecium calmodulin mutants defective in ion channel regulation can bind calcium and undergo calcium-induced conformational switching.

    PubMed

    Jaren, O R; Harmon, S; Chen, A F; Shea, M A

    2000-06-13

    Calmodulin (CaM) is an essential eukaryotic protein that binds calcium ions cooperatively at four EF-hand binding sites to regulate signal transduction pathways. Interactions between the apo domains of vertebrate CaM reduce the calcium affinities of sites I and II below their intrinsic values, allowing sequential opening of the two hydrophobic clefts in CaM. Viable domain-specific mutants of Parameciumcalmodulin (PCaM) differentially affect ion channels and provide a unique opportunity to dissect the roles of the two highly homologous half-molecule domains. Calcium binding induced an increase in the level of ordered secondary structure and a decrease in Stokes radius in these mutants; such changes were identical in direction to those of wild type CaM, but the magnitude depended on the mutation. Calcium titrations monitored by changes in the intrinsic fluorescence of Y138 in site IV showed that the affinities of sites III and IV of wild type PCaM were (i) higher than those of the same sites in rat CaM, (ii) equivalent to those of the same sites in PCaM mutants altered between sites I and II, and (iii) higher than those of PCaM mutants modified in sites III and IV. Thus, calcium saturation drove all mutants to undergo conformational switching in the same direction but not to the same extent as wild type PCaM. The disruption of the allosteric mechanism that is manifest as faulty channel regulation may be explained by altered properties of switching among the 14 possible partially saturated species of PCaM rather than by an inability to adopt two end-state conformations or target interactions similar to those of the wild type protein. PMID:10841769

  8. Calcium-induced associations of the caseins: thermodynamic linkage of calcium binding to colloidal stability of casein micelles.

    PubMed

    Kumosinski, T F; Farrell, H M

    1991-02-01

    The caseins occur in milk as colloidal complexes of protein aggregates, calcium, and inorganic phosphate. As determined by electron microscopy, these particles are spherical and have approximately a 650 A radius (casein micelles). In the absence of calcium, the protein aggregates themselves (submicelles) have been shown to result from mainly hydrophobic interactions. The fractional concentration of stable colloidal casein micelles can be obtained in a calcium caseinate solution by centrifugation at 1500 g. Thus, the amount of stable colloid present with varying Ca2+ concentrations can be determined and then analyzed by application of equations derived from Wyman's Thermodynamic Linkage Theory. Ca(2+)-induced colloid stability profiles were obtained experimentally for model micelles consisting of only alpha s1- (a calcium insoluble casein) and the stabilizing protein kappa-casein, eliminating the complications arising from beta- and minor casein forms. Two distinct genetic variants alpha s1-A and B were used. Analysis of alpha s1-A colloid stability profiles yielded a precipitation (salting-out) constant k1, as well as colloid stability (salting-in) parameter k2. No variations of k1 or k2 were found with increasing amounts of kappa-casein. From the variation of the amount of colloidal casein capable of being stabilized vs. amount of added kappa-casein an association constant of 4 L/g could be calculated for the complexation of alpha s1-A and kappa-casein. For the alpha s1-B and kappa-casein micelles, an additional Ca(2+)-dependent colloidal destabilization parameter, k3, was added to the existing k1 and k2 parameters in order to fully describe this more complex system. Furthermore, the value of k3 decreased with increasing concentration of kappa-casein. These results were analyzed with respect to the specific deletion which occurs in alpha s1-casein A in order to determine the sites responsible for these Ca(2+)-induced quaternary structural effects. PMID:2054060

  9. Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity.

    PubMed Central

    Hirschi, K D

    1999-01-01

    Calcium (Ca(2)+) efflux from the cytosol modulates Ca(2+) concentrations in the cytosol, loads Ca(2+) into intracellular compartments, and supplies Ca(2+) to organelles to support biochemical functions. The Ca(2+)/H(+) antiporter CAX1 (for CALCIUM EXCHANGER 1) of Arabidopsis is thought to be a key mediator of these processes. To clarify the regulation of CAX1, we examined CAX1 RNA expression in response to various stimuli. CAX1 was highly expressed in response to exogenous Ca(2+). Transgenic tobacco plants expressing CAX1 displayed symptoms of Ca(2+) deficiencies, including hypersensitivity to ion imbalances, such as increased magnesium and potassium concentrations, and to cold shock, but increasing the Ca(2+) in the media abrogated these sensitivities. Tobacco plants expressing CAX1 also demonstrated increased Ca(2+) accumulation and altered activity of the tonoplast-enriched Ca(2+)/H(+) antiporter. These results emphasize that regulated expression of Ca(2+)/H(+) antiport activity is critical for normal growth and adaptation to certain stresses. PMID:10559438

  10. A highly sensitive fluorescent indicator dye for calcium imaging of neural activity in vitro and in vivo

    PubMed Central

    Tada, Mayumi; Takeuchi, Atsuya; Hashizume, Miki; Kitamura, Kazuo; Kano, Masanobu

    2014-01-01

    Calcium imaging of individual neurons is widely used for monitoring their activity in vitro and in vivo. Synthetic fluorescent calcium indicator dyes are commonly used, but the resulting calcium signals sometimes suffer from a low signal-to-noise ratio (SNR). Therefore, it is difficult to detect signals caused by single action potentials (APs) particularly from neurons in vivo. Here we showed that a recently developed calcium indicator dye, Cal-520, is sufficiently sensitive to reliably detect single APs both in vitro and in vivo. In neocortical neurons, calcium signals were linearly correlated with the number of APs, and the SNR was > 6 for in vitro slice preparations and > 1.6 for in vivo anesthetised mice. In cerebellar Purkinje cells, dendritic calcium transients evoked by climbing fiber inputs were clearly observed in anesthetised mice with a high SNR and fast decay time. These characteristics of Cal-520 are a great advantage over those of Oregon Green BAPTA-1, the most commonly used calcium indicator dye, for monitoring the activity of individual neurons both in vitro and in vivo. PMID:24405482

  11. Intracellular calcium changes induced by the endozepine triakontatetraneuropeptide in human polymorphonuclear leukocytes: role of protein kinase C and effect of calcium channel blockers

    PubMed Central

    Marino, Franca; Cosentino, Marco; Ferrari, Marco; Cattaneo, Simona; Frigo, Giuseppina; Fietta, Anna M; Lecchini, Sergio; Frigo, Gian Mario

    2004-01-01

    Background The endozepine triakontatetraneuropeptide (TTN) induces intracellular calcium ([Ca++]i) changes followed by activation in human polymorphonuclear leukocytes (PMNs). The present study was undertaken to investigate the role of protein kinase (PK) C in the modulation of the response to TTN by human PMNs, and to examine the pharmacology of TTN-induced Ca++ entry through the plasma membrane of these cells. Results The PKC activator 12-O-tetradecanoylphorbol-13-acetate (PMA) concentration-dependently inhibited TTN-induced [Ca++]i rise, and this effect was reverted by the PKC inhibitors rottlerin (partially) and Ro 32-0432 (completely). PMA also inhibited TTN-induced IL-8 mRNA expression. In the absence of PMA, however, rottlerin (but not Ro 32-0432) per se partially inhibited TTN-induced [Ca++]i rise. The response of [Ca++]i to TTN was also sensitive to mibefradil and flunarizine (T-type Ca++-channel blockers), but not to nifedipine, verapamil (L-type) or ω-conotoxin GVIA (N-type). In agreement with this observation, PCR analysis showed the expression in human PMNs of the mRNA for all the α1 subunits of T-type Ca++ channels (namely, α1G, α1H, and α1I). Conclusions In human PMNs TTN activates PKC-modulated pathways leading to Ca++ entry possibly through T-type Ca++ channels. PMID:15228623

  12. Effects of A Voltage Sensitive Calcium Channel Blocker and A Sodium-Calcium Exchanger Inhibitor on Apoptosis of Motor Neurons in Adult Spinal Cord Slices

    PubMed Central

    Momeni, Hamid Reza; Jarahzadeh, Mahsa

    2012-01-01

    Objective: The apoptosis of motor neurons is a critical phenomenon in spinal cord injuries. Adult spinal cord slices were used to investigate whether voltage sensitive calcium channels and Na+/Ca2+ exchangers play a role in the apoptosis of motor neurons. Materials and Methods: In this experimental research, the thoracic region of the adult mouse spinal cord was sliced using a tissue chopper and the slices were incubated in a culture medium in the presence or absence of N/L type voltage sensitive calcium channels blocker (loperamide, 100 µM) or Na+/Ca2+ exchangers inhibitor(bepridil, 20 µM) for 6 hours. 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyl tetrazolium (MTT) staining was used to assess slice viability while morphological features of apoptosis in motor neurons were studied using fluorescent staining. Results: After 6 hours in culture, loperamideand bepridil not only increased slice viability, but also prevented motor neuron apoptosis and significantly increased the percentage of viable motor neurons in the ventral horns of the spinal cord. Conclusion: The results of this study suggest that voltage sensitive calcium channels and Na+/Ca2+ exchanger might be involved in the apoptosis of motor neurons in adult spinal cord slices. PMID:23508879

  13. Calcium sensitivity and myofilament lattice structure in titin N2B KO mice

    PubMed Central

    Lee, Eun-Jeong; Nedrud, Joshua; Schemmel, Peter; Gotthardt, Michael; Irving, Thomas C.; Granzier, Henk L

    2012-01-01

    The cellular basis of the Frank-Starling “Law of the Heart” is the length-dependence of activation, but the mechanisms by which the sarcomere detects length changes and converts this information to altered calcium sensitivity has remained elusive. Here the effect of titin-based passive tension on the length-dependence of activation (LDA) was studied by measuring the tension-pCa relation in skinned mouse LV muscle at two sarcomere lengths (SLs). N2B KO myocardium, where the N2B spring element in titin is deleted and passive tension is elevated, was compared to WT myocardium. Myofilament lattice structure was studied with low-angle X-ray diffraction; the myofilament lattice spacing (d10) was measured as well as the ratio of the intensities of the 1,1 and 1,0 diffraction peaks (I11/I10) as an estimate of the degree of association of myosin heads with the thin filaments. Experiments were carried out in skinned muscle in which the lattice spacing was reduced with Dextran-T500. Experiments with and without lattice compression were also carried out following PKA phosphorylation of the skinned muscle. Under all conditions that were tested, LDA was significantly larger in N2B KO myocardium compared to WT myocardium, with the largest differences following PKA phosphorylation. A positive correlation between passive tension and LDA was found that persisted when the myofilament lattice was compressed with Dextran and that was enhanced following PKA phosphorylation. Low-angle X-ray diffraction revealed a shift in mass from thin filaments to thick filaments as sarcomere length was increased. Furthermore, a positive correlation was obtained between myofilament lattice spacing and passive tension and the change in I11/I10 and passive tension and these provide possible explanations for how titin-based passive tension might regulate calcium sensitivity. PMID:23246787

  14. Polymer surface interacts with calcium in aqueous media to induce stem cell assembly.

    PubMed

    Hung, Kun-Che; Hsu, Shan-Hui

    2015-10-28

    Bioinspired surface with functional group rearrangement abilities are highly desirable for designing functional materials. Calcium ion (Ca(2+) ) is a pivotal life element and the ion transport is tightly regulated through calcium channels. It is demonstrated here that Ca(2+) can be transported by polymer surface to induce cell assembly. A series of polyurethane materials is synthesized with different abilities to rearrange the surface functional groups in response to aqueous environment. It is observed that surface recruitment of carboxyl and amino groups from the bulk material can interact with Ca(2+) and facilitate its translocation from aqueous media into cells. The surface rearrangement of functional group triggers the calcium trafficking and turns on signals involving cell merging and assembly. This observation provides an insight on adjusting material-calcium interaction to design nature-inspired smart interfaces to induce cell organization and tissue regeneration. PMID:26332827

  15. Calcium-induced contraction of sarcomeres changes the regulation of mitochondrial respiration in permeabilized cardiac cells.

    PubMed

    Anmann, Tiia; Eimre, Margus; Kuznetsov, Andrey V; Andrienko, Tatiana; Kaambre, Tuuli; Sikk, Peeter; Seppet, Evelin; Tiivel, Toomas; Vendelin, Marko; Seppet, Enn; Saks, Valdur A

    2005-06-01

    The relationships between cardiac cell structure and the regulation of mitochondrial respiration were studied by applying fluorescent confocal microscopy and analysing the kinetics of mitochondrial ADP-stimulated respiration, during calcium-induced contraction in permeabilized cardiomyocytes and myocardial fibers, and in their 'ghost' preparations (after selective myosin extraction). Up to 3 microm free calcium, in the presence of ATP, induced strong contraction of permeabilized cardiomyocytes with intact sarcomeres, accompanied by alterations in mitochondrial arrangement and a significant decrease in the apparent K(m) for exogenous ADP and ATP in the kinetics of mitochondrial respiration. The V(max) of respiration showed a moderate (50%) increase, with an optimum at 0.4 microm free calcium and a decrease at higher calcium concentrations. At high free-calcium concentrations, the direct flux of ADP from ATPases to mitochondria was diminished compared to that at low calcium levels. All of these effects were unrelated either to mitochondrial calcium overload or to mitochondrial permeability transition and were not observed in 'ghost' preparations after the selective extraction of myosin. Our results suggest that the structural changes transmitted from contractile apparatus to mitochondria modify localized restrictions of the diffusion of adenine nucleotides and thus may actively participate in the regulation of mitochondrial function, in addition to the metabolic signalling via the creatine kinase system. PMID:15955072

  16. Effects of calcium and its antagonists on histamine-induced leakage in rat skin.

    PubMed

    Busch, L; Minkowicz, A A; Bazerque, P M; Tessler, J

    1993-01-01

    Evans blue extravasation in rat skin was used to study the effects of calcium, lanthanum, L-type calcium channel blockers and trifluoperazine on histamine-induced leakage. Histamine effect was inhibited by calcium 1-2.5 mM, lanthanum 1-10 mM, nifedipine 0.1 and 1 microM and trifluoperazine 30 and 100 microM. The effects of calcium decreased progressively as its concentrations rose up to 10 mM. The association of nifedipine 0,1 microM or trifluoperazine 30 microM with calcium 3 microM increased the inhibitory effects. Calcium 10mM reversed the effect of nifedipine 0.1 microM but not that of lanthanum 1 mM or trifluoperazine 30 microM. It is proposed that the effect of calcium on histamine-induced leakage is the expression of a balance between an extracellular inhibitory effect and an intracellular enhancing effect. PMID:7865873

  17. Stereocontrolled synthesis of rosuvastatin calcium via iodine chloride-induced intramolecular cyclization.

    PubMed

    Xiong, Fangjun; Wang, Haifeng; Yan, Lingjie; Han, Sheng; Tao, Yuan; Wu, Yan; Chen, Fener

    2016-01-28

    A novel, stereoselective approach towards rosuvastatin calcium from the known (S)-homoallylic alcohol has been developed. The synthesis is highlighted by a regio- and stereocontrolled ICl-induced intramolecular cyclization of chiral homoallylic carbonate to deliver the C6-formyl statin side chain with a syn-1,3-diol moiety. An improved synthesis of the rosuvastatin pyrimidine core moiety is also included. Moreover, this methodology is useful in the asymmetric synthesis of structural variants of statins such as pitavastatin calcium and atorvastatin calcium and their related analogs. PMID:26659808

  18. Root zone calcium can modulate GA induced tuberization signal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study was conducted to investigate the possible relationship between root zone calcium and GA3 concentration in tuberization signal. For this purpose, we developed a system utilizing in vitro propagated potato plantlets and pure silica sand that allows precise control of root zone chemic...

  19. Plasma cytokine concentration changes induced by the antitumor agents dipterinyl calcium pentahydrate (DCP) and related calcium pterins.

    PubMed

    Moheno, Phillip; Pfleiderer, Wolfgang; Fuchs, Dietmar

    2009-01-01

    Analysis of plasma cytokine concentration changes determined that oral dosing with the antitumor agent (1:4 mol:mol) calcium pterin (CaPterin) increased plasma IL-10, decreased plasma IL-6, and decreased plasma IFN-gamma concentrations in nude mice with MDA-MB-231 xenograph tumors [Moheno, P., Pfleiderer, W., Dipasquale, A.G., Rheingold, A.L., Fuchs, D., 2008. Cytokine and IDO metabolite changes effected by calcium pterin during inhibition of MDA-MB-231 xenograph tumors in nude mice. Int. J. Pharm. 355, 238-248]. A further analysis, reported here, of plasma cytokine concentration changes in nude mice with the same tumor xenographs treated with dipterinyl calcium pentahydrate (DCP), (1:2 mol:mol) calcium pterin, and CaCl(2).2H(2)O has been carried out. The measured cytokines included: IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-12, IFN-gamma, and TNF-alpha. The major preliminary findings from the analyses of these data are that (1) the overall relative tumor volumes for the treatments correlated significantly with a full study antitumor plasma cytokine pattern (fsAPCP), a composite measure consisting of decreased plasma IL-6 and increased IL-4 concentrations, and (2) DCP induces a significant threshold antitumor response strongly correlated to a derived DCP antitumor plasma cytokine pattern (DCP/APCP) consisting of plasma IL-12, IL-6, and IL-4 concentration changes. This DCP/APCP composite measure identifies plasma IL-12 concentration increases, plasma IL-6 concentration decreases, and plasma IL-4 concentration increases correlated to relative tumor volume decreases caused by DCP dosing. The finding that the novel calcium pterins and CaCl(2).2H(2)O treatments decrease plasma IL-6 concentrations corroborates the previous finding that CaPterin dosing decreases plasma IL-6 concentrations in this mouse/tumor system [Moheno, P., Pfleiderer, W., Dipasquale, A.G., Rheingold, A.L., Fuchs, D., 2008. Cytokine and IDO metabolite changes effected by calcium pterin during inhibition

  20. [HOMOCYSTEINE-INDUCED MEMBRANE CURRENTS, CALCIUM RESPONSES AND CHANGES OF MITOCHONDRIAL POTENTIAL IN RAT CORTICAL NEURONS].

    PubMed

    Abushik, P A; Karelina, T V; Sibarov, D A; Stepanenko, J D; Giniatullin, R; Antonov, S M

    2015-01-01

    Homocysteine, a sulfur-containing amino acid, exhibits neurotoxic effects and is involved in the pathogenesis of several major neurodegenerative disorders. In contrast to well studied excitoxicity of glutamate, the mechanism of homocysteine neurotoxicity is not clearly understood. By using whole-cell patch-clamp, calcium imaging (fluo-3) and measurements of mitochondrial membrane potential (rhodamine 123) we studied transmembrane currents, calcium signals and changes in mitochondrial membrane potential induced by homocysteine versus responses induced by NMDA and glutamate in cultured rat cortical neurons. L-homocysteine (50 µM) induced inward currents that could be completely blocked by the selective antagonist of NMDA receptors - AP-5. In contrast to NMDA-induced currents, homocysteine-induced currents had a smaller steady-state amplitude. Comparison of calcium responses to homocysteine, NMDA or glutamate demonstrated that in all cortical neurons homocysteine elicited short, oscillatory-type calcium responses, whereas NMDA or glutamate induced sustained increase of intracellular calcium. Analysis of mitochondrial changes demonstrated that in contrast to NMDA homocysteine did not cause a drop of mitochondrial membrane potential at the early stages of action. However, after its long-term action, as in the case of NMDA and glutamate, the changes in mitochondrial membrane potential were comparable with the full drop of respiratory chain induced by protonophore FCCP. Our data suggest that in cultured rat cortical neuron homocysteine at the first stages of action induces neurotoxic effects through activation of NMDA-type ionotropic glutamate receptors with strong calcium influx through the channels of these receptors. The long-term action of homocysteine may lead to mitochondrial disfuction and appears as a drop of mitochondrial membrane potential. PMID:26547950

  1. Synthetic Aβ oligomers (Aβ(1-42) globulomer) modulate presynaptic calcium currents: prevention of Aβ-induced synaptic deficits by calcium channel blockers.

    PubMed

    Hermann, David; Mezler, Mario; Müller, Michaela K; Wicke, Karsten; Gross, Gerhard; Draguhn, Andreas; Bruehl, Claus; Nimmrich, Volker

    2013-02-28

    Alzheimer's disease is accompanied by increased brain levels of soluble amyloid-β (Aβ) oligomers. It has been suggested that oligomers directly impair synaptic function, thereby causing cognitive deficits in Alzheimer's disease patients. Recently, it has been shown that synthetic Aβ oligomers directly modulate P/Q-type calcium channels, possibly leading to excitotoxic cascades and subsequent synaptic decline. Using whole-cell recordings we studied the modulation of recombinant presynaptic calcium channels in HEK293 cells after application of a stable Aβ oligomer preparation (Aβ1-42 globulomer). Aβ globulomer shifted the half-activation voltage of P/Q-type and N-type calcium channels to more hyperpolarized values (by 11.5 and 7.5 mV). Application of non-aggregated Aβ peptides had no effect. We then analyzed the potential of calcium channel blockers to prevent Aβ globulomer-induced synaptic decline in hippocampal slice cultures. Specific block of P/Q-type or N-type calcium channels with peptide toxins completely reversed Aβ globulomer-induced deficits in glutamatergic neurotransmission. Two state-dependent low molecular weight P/Q-type and N-type calcium channel blockers also protected neurons from Aβ-induced alterations. On the contrary, inhibition of L-type calcium channels failed to reverse the deficit. Our data show that Aβ globulomer directly modulates recombinant P/Q-type and N-type calcium channels in HEK293 cells. Block of presynaptic calcium channels with both state-dependent and state-independent modulators can reverse Aβ-induced functional deficits in synaptic transmission. These findings indicate that presynaptic calcium channel blockers may be a therapeutic strategy for the treatment of Alzheimer's disease. PMID:23376566

  2. Effects of calcium antagonists on isolated bovine cerebral arteries: inhibition of constriction and calcium-45 uptake induced by potassium or serotonin

    SciTech Connect

    Wendling, W.W.; Harakal, C.

    1987-05-01

    The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium (/sup 45/Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased /sup 45/Ca uptake into cerebral artery strips during 5 minutes of /sup 45/Ca loading; for potassium /sup 45/Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal /sup 45/Ca uptake but significantly blocked the increase in /sup 45/Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of /sup 45/Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated /sup 45/Ca efflux. The results demonstrate that verapamil and nifedipine block /sup 45/Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries.

  3. Polymerization of calcium caseinates solutions induced by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Jobin, M.; Mezgheni, E.; Srour, M.; Boileau, S.

    1998-06-01

    Solutions of calcium caseinate (5%) combined with propylene glycol (PG) or triethylene glycol(TEG) (0, 2.5% and 5%) and used for the development of edible films and coatings, were irradiated at doses between 0 to 128 kGy. Solutions were chromatographed through toyopearl HW 55F resin to observe the effect of irradiation on cross-link reactions. In unirradiated calcium caseinate solutions, two peaks could be observed (fractions 30 and 37) while samples irradiated at 64 kGy and 128 kGy showed one shifted peak at fraction 32 and 29 respectively. No effect of the plasticizers was observed. According to proteins standards of knowed molecular weights, the molecular weight of calcium caseinate increased approximately 10 times when irradiated at 128 kGy and 5 times when irradiated at 64 kGy. The physico-chemical properties of bio-films prepared with the irradiated solutions, demonstrated that tensile strength at break increased with increase of irradiation dose. A maximum dose was obtained at 16 kGy.

  4. Ultraviolet B-induced alterations of the skin barrier and epidermal calcium gradient.

    PubMed

    Jiang, Shao Jun; Chu, Ai Wu; Lu, Zhen Feng; Pan, Min Hong; Che, Dun Fa; Zhou, Xiao Jun

    2007-12-01

    Ultraviolet irradiation induces a variety of cutaneous changes, including epidermal permeability barrier disruption. In the present study, we assessed the effects of ultraviolet B (UVB) irradiation in epidermal barrier function and calcium distribution in murine epidermis. Adult hairless mice were exposed to a single dose of UVB (0.15 J/cm(2)). Barrier function was evaluated by transepidermal water loss (TEWL), lanthanum perfusion. The morphological alterations were examined by histology, immunohistochemistry and electron microscopy using ruthenium tetroxide (RuO(4)) postfixation. For evaluation of the effect on epidermal calcium distribution, the ion-capture cytochemistry was employed. UVB irradiation caused a significant increase in TEWL, which peaked at day 4. In parallel, the increased number of sunburn cells and the changes in epidermal hyperplasia and proliferation were observed. Electron microscopic observation demonstrated that the water-soluble lanthanum tracer was present in the extracellular stratum corneum domains, and the increased intercellular permeability was correlated with defective organization of the extracellular lipid lamellar bilayers of the stratum corneum. Moreover, UVB irradiation also caused an appearance of calcium precipitates in the stratum corneum and transitional cell layers as well as the increased cytosolic calcium in the lower epidermis, reflecting the alterations of the epidermal calcium gradient. These results suggest that the changes of the epidermal calcium distribution pattern may correlate with the perturbation of the epidermal barrier induced by UVB irradiation. PMID:18031457

  5. Dietary Fructose Inhibits Intestinal Calcium Absorption and Induces Vitamin D Insufficiency in CKD

    PubMed Central

    Douard, Veronique; Asgerally, Abbas; Sabbagh, Yves; Sugiura, Shozo; Shapses, Sue A.; Casirola, Donatella

    2010-01-01

    Renal disease leads to perturbations in calcium and phosphate homeostasis and vitamin D metabolism. Dietary fructose aggravates chronic kidney disease (CKD), but whether it also worsens CKD-induced derangements in calcium and phosphate homeostasis is unknown. Here, we fed rats diets containing 60% glucose or fructose for 1 mo beginning 6 wk after 5/6 nephrectomy or sham operation. Nephrectomized rats had markedly greater kidney weight, blood urea nitrogen, and serum levels of creatinine, phosphate, and calcium-phosphate product; dietary fructose significantly exacerbated all of these outcomes. Expression and activity of intestinal phosphate transporter, which did not change after nephrectomy or dietary fructose, did not correlate with hyperphosphatemia in 5/6-nephrectomized rats. Intestinal transport of calcium, however, decreased with dietary fructose, probably because of fructose-mediated downregulation of calbindin 9k. Serum calcium levels, however, were unaffected by nephrectomy and diet. Finally, only 5/6-nephrectomized rats that received dietary fructose demonstrated marked reductions in 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 levels, despite upregulation of 1α-hydroxylase. In summary, excess dietary fructose inhibits intestinal calcium absorption, induces marked vitamin D insufficiency in CKD, and exacerbates other classical symptoms of the disease. Future studies should evaluate the relevance of monitoring fructose consumption in patients with CKD. PMID:19959720

  6. Calcium signals inhibition sensitizes ovarian carcinoma cells to anti-Bcl-xL strategies through Mcl-1 down-regulation.

    PubMed

    Bonnefond, Marie-Laure; Lambert, Bernard; Giffard, Florence; Abeilard, Edwige; Brotin, Emilie; Louis, Marie-Hélène; Gueye, Mor Sény; Gauduchon, Pascal; Poulain, Laurent; N'Diaye, Monique

    2015-04-01

    Ovarian carcinoma is the leading cause of death from gynecologic cancer in the developed world and is characterized by acquired chemoresistance leading to an overall 5-year survival rate of about 30 %. We previously showed that Bcl-xL and Mcl-1 cooperatively protect platinum-resistant ovarian cancer cells from apoptosis. Despite BH3-mimetics represent promising drugs to target Bcl-xL, anti-Mcl-1 strategies are still in pre-clinical studies and required new investigations. Calcium is a universal second messenger and dysregulation of calcium signal is often observed during carcinogenesis. As change in cytosolic free calcium concentration [Ca(2+)]i is known to control the fate of the cell by regulating Bcl-2 family members, we wonder if calcium signal could impact on Mcl-1 expression and if its pharmacological inhibition could be useful to sensitize ovarian carcinoma cells to anti-Bcl-xL strategies. We therefore studied the effect of different calcium signals inhibitors in ovarian carcinoma cell lines SKOV3 and IGROV1-R10 and analysed their effects on proliferation and Mcl-1 expression. We also exposed these cells to these inhibitors in combination with anti-Bcl-xL strategies (siRNA or BH3-mimetic: ABT-737). We found that calcium signaling regulates Mcl-1 through translational events and a calmodulin-mediated pathway. BAPTA-AM and calmodulin inhibitor combination with ABT-737 leads to apoptosis, a process that is reversed by Mcl-1 enforced expression. As Mcl-1 represents a crucial hurdle to the success of chemotherapy, these results could open to new area of investigation using calcium modulators to directly or indirectly target Mcl-1 and thus efficiently sensitize ovarian carcinoma cells to anti-Bcl-xL strategies. PMID:25627260

  7. Mathematical Modeling of Calcium Waves Induced by Mechanical Stimulation in Keratinocytes

    PubMed Central

    Kobayashi, Yasuaki; Sanno, Yumi; Sakai, Akihiko; Sawabu, Yusuke; Tsutsumi, Moe; Goto, Makiko; Kitahata, Hiroyuki; Nakata, Satoshi; Kumamoto, Junichi; Denda, Mitsuhiro; Nagayama, Masaharu

    2014-01-01

    Recent studies have shown that the behavior of calcium in the epidermis is closely related to the conditions of the skin, especially the differentiation of the epidermal keratinocytes and the permeability barrier function, and therefore a correct understanding of the calcium dynamics is important in explaining epidermal homeostasis. Here we report on experimental observations of in vitro calcium waves in keratinocytes induced by mechanical stimulation, and present a mathematical model that can describe the experimentally observed wave behavior that includes finite-range wave propagation and a ring-shaped pattern. A mechanism of the ring formation hypothesized by our model may be related to similar calcium propagation patterns observed during the wound healing process in the epidermis. We discuss a possible extension of our model that may serve as a tool for investigating the mechanisms of various skin diseases. PMID:24663805

  8. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells.

    PubMed

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David

    2016-01-01

    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  9. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells

    PubMed Central

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David

    2016-01-01

    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  10. Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location.

    PubMed

    Graupner, Michael; Brunel, Nicolas

    2012-03-01

    Multiple stimulation protocols have been found to be effective in changing synaptic efficacy by inducing long-term potentiation or depression. In many of those protocols, increases in postsynaptic calcium concentration have been shown to play a crucial role. However, it is still unclear whether and how the dynamics of the postsynaptic calcium alone determine the outcome of synaptic plasticity. Here, we propose a calcium-based model of a synapse in which potentiation and depression are activated above calcium thresholds. We show that this model gives rise to a large diversity of spike timing-dependent plasticity curves, most of which have been observed experimentally in different systems. It accounts quantitatively for plasticity outcomes evoked by protocols involving patterns with variable spike timing and firing rate in hippocampus and neocortex. Furthermore, it allows us to predict that differences in plasticity outcomes in different studies are due to differences in parameters defining the calcium dynamics. The model provides a mechanistic understanding of how various stimulation protocols provoke specific synaptic changes through the dynamics of calcium concentration and thresholds implementing in simplified fashion protein signaling cascades, leading to long-term potentiation and long-term depression. The combination of biophysical realism and analytical tractability makes it the ideal candidate to study plasticity at the synapse, neuron, and network levels. PMID:22357758

  11. Calcium sensitivity of the cross-bridge cycle of Myo1c, the adaptation motor in the inner ear

    PubMed Central

    Adamek, Nancy; Coluccio, Lynne M.; Geeves, Michael A.

    2008-01-01

    The class I myosin Myo1c is a mediator of adaptation of mechanoelectrical transduction in the stereocilia of the inner ear. Adaptation, which is strongly affected by Ca2+, permits hair cells under prolonged stimuli to remain sensitive to new stimuli. Using a Myo1c fragment (motor domain and one IQ domain with associated calmodulin), with biochemical and kinetic properties similar to those of the native molecule, we have performed a thorough analysis of the biochemical cross-bridge cycle. We show that, although the steady-state ATPase activity shows little calcium sensitivity, individual molecular events of the cross-bridge cycle are calcium-sensitive. Of significance is a 7-fold inhibition of the ATP hydrolysis step and a 10-fold acceleration of ADP release in calcium. These changes result in an acceleration of detachment of the cross-bridge and a lengthening of the lifetime of the detached M–ATP state. These data support a model in which slipping adaptation, which reduces tip-link tension and allows the transduction channels to close after an excitatory stimulus, is mediated by Myo1c and modulated by the calcium transient. PMID:18391215

  12. 5-Hydroxytryptamine-induced calcium-channel gating in rainbow trout (Oncorhynchus mykiss) peripheral blood lymphocytes.

    PubMed Central

    Ferriere, F; Khan, N A; Meyniel, J P; Deschaux, P

    1997-01-01

    The present study was conducted on peripheral blood lympho-cytes of rainbow trout (Oncorhynchus mykiss) to assess the role of 5-hydroxytryptamine (5-HT; 'serotonin') in calcium signalling. 5-HT-induced increases in intracellular free calcium concentrations, [Ca2+]i, and its action was mediated by 5-HT receptor subtype 3 (5-HT3), but not by 5-HT receptor subtype 1A (5-HT1A) or subtype 2 (5-HT2) in these cells. In Ca2+-containing medium (1 mM CaCl2), 5-HT and 2-methyl-5-HT (5-HT3 receptor agonist) induced increases in [Ca2+]i, whereas in Ca2+-free medium (0 Ca2+, 1 mM EGTA), these two agents failed to evoke increases in [Ca2+]i in these cells, demonstrating that 5-HT mobilizes Ca2+ from the extracellular environment. Furthermore, 5-HT-induced increases in [Ca2+]i are not contributed to by the intracellular endoplasmic reticulum (ER) pool, as thapsigargin, an agent that recruits Ca2+ from ER stores, had additive effects on 5-HT-induced [Ca2+]i responses in fish peripheral lymphocytes. 5-HT-induced increases in [Ca2+]i were mediated by 5-HT3 receptors via gating the calcium through L-type, but not N-type, calcium channels in trout lymphocytes. PMID:9173890

  13. Glutamate-induced intracellular calcium oscillations in astrocytes with confocal microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zhu, Geng; Wu, Yuxiang; Luo, Qingming

    2006-02-01

    Changes in the intracellular Ca 2+ concentration ([Ca 2+]i) play a crucial role involved in the modulation of signal transduction, development, and plasticity in the CNS. Glial cells can respond to various stimuli with an increase in [Ca 2+]i. In this paper, we used confocal microscopy to study calcium transient induced by glutamate in cultured astrocytes. Firstly, 100 μM glutamate induced long-time intracellular calcium oscillations in astrocytes and only a single spike under calcium-free solution. When the concentration of glutamate decreased to 1 μM, only a single spike could be induced. It shows that intracellular calcium oscillations depend on agonist concentration and extracellular Ca 2+. Secondly, we investigated amplitude of responses under different stimulation. The amplitude of initial peak induced by 100 μM glutamate decreased in Ca 2+-free condition, whereas the duration of kinetics was prolonged. But both the amplitude and area of a single spike induced by 1 μM Glu decreased in Ca 2+-free condition. The results show that areaof peak is more accurate than amplitude to display transients of [Ca 2+]i. All results above suggest that astrocytes are not passive, they display diverse temporal and spatial increases in [Ca 2+]i in response to a variety of stimuli. These [Ca 2+]i increases provide a possible means for information coding.

  14. Calcium-sensing receptor induces rat neonatal ventricular cardiomyocyte apoptosis

    SciTech Connect

    Sun Yihua; Liu Meina; Li Hong; Shi Sa; Zhao Yajun; Wang Rui; Xu Changqing . E-mail: syh200415@yahoo.com.cn

    2006-12-01

    The calcium-sensing receptor (CaSR) exists in many tissues, and its expression has been identified in rat cardiac tissue. However, Physiological importance and pathophysiological involvement of CaSR in homeostatic regulation of cardiac function are unclear. To investigate the relation of CaSR and apoptosis in cardiomyocytes, we examined the role of the CaSR activator gadolinium chloride (GdCl{sub 3}) in rat neonatal ventricular cardiomyocytes. Expression of the CaSR protein was observed by Western blot. The apoptotic ratio of rat neonatal ventricular cardiomyocytes was measured with flow cytometry and immunofluorescence techniques. A laser scan confocal microscope was used to detect the intracellular concentration of calcium ([Ca{sup 2+}]{sub i}) in rat neonatal ventricular cardiomyocytes using the acetoxymethyl ester of fluo-3 (fluo-3/(AM)) as a fluorescent dye. The results showed that GdCl{sub 3} increased the phosphorylation of extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal protein kinases (JNK), and p38. GdCl{sub 3} also activated caspase 9 and increased apoptosis in myocyte by increasing [Ca{sup 2+}]{sub i}. In conclusion, these results suggest that CaSR promotes cardiomyocyte apoptosis in rat neonatal ventricular cardiomyocytes through activation of mitogen-activated protein kinases and caspase 9 signaling pathways.

  15. Different calcium sensitivity in osteoclasts on glass and on bone and maintenance of cytoskeletal structures on bone in the presence of high extracellular calcium.

    PubMed

    Lakkakorpi, P T; Lehenkari, P P; Rautiala, T J; Väänänen, H K

    1996-09-01

    The sensitivity of rat osteoclasts to increased extracellular calcium concentrations ([Ca2+]e) was investigated by single cell measurements of free cytosolic calcium concentrations ([Ca2+]i), by changes in microfilament organization of resorbing osteoclasts, and by in vitro bone resorption assays. Osteoclasts cultured on glass and on bone showed clear differences in their responses, as in 44% and 52% of osteoclasts on glass but in only 21% and 25% of osteoclasts on bone [Ca2+]i increased when [Ca2+]e was increased from 2 mM to 6 or 10 mM via perfusion, respectively. Bone resorption was inhibited without changes in the osteoclast numbers only by 10 mM [Ca2+]e in 2 day cultures. Furthermore, there were no changes in the organization of microfilament structures in resorbing osteoclasts after increased [Ca2+]e (up to 20 mM [Ca2+]e, 30 min incubation). These results suggest that the sensitivity of osteoclasts to increased [Ca2+]e is dependent on their activation phase (resting/migrating vs. resorbing) and that resorbing osteoclasts are not sensitive to increased [Ca2+]e or that the sensing system cannot be reached in polarized resorbing osteoclasts. In contrast, increasing [Ca2+]i through the use of calcium ionophores dispersed specific microfilament structures at the sealing zone transiently in a few minutes. This shows that [Ca2+]i is used as a signaling mechanism to inactivate osteoclasts, with a similar end result on microfilament structures at the sealing zone as caused by increased concentration of cAMP and activation of protein kinase C. PMID:8816921

  16. Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry

    PubMed Central

    Andrews, Allison M.; Jaron, Dov; Buerk, Donald G.; Barbee, Kenneth A.

    2014-01-01

    Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established. Furthermore, the importance of calcium in shear stress-induced NO production remains controversial, and in particular the role of capacitive calcium entry (CCE) has yet to be determined. We have utilized our unique NO measurement device to investigate the role of ATP autocrine signaling and CCE in shear stress-induced NO production. We found that endogenously released ATP and downstream activation of purinergic receptors and CCE plays a significant role in shear stress-induced NO production. ATP-induced eNOS phophorylation under static conditions is also dependent on CCE. Inhibition of protein kinase C significantly inhibited eNOS phosphorylation and the calcium response. To our knowledge, we are the first to report on the role of CCE in the mechanism of acute shear stress-induced NO response. In addition, our work highlights the importance of ATP autocrine signaling in shear stress-induced NO production. PMID:25386222

  17. High-throughput drug profiling with voltage- and calcium-sensitive fluorescent probes in human iPSC-derived cardiomyocytes.

    PubMed

    Bedut, Stephane; Seminatore-Nole, Christine; Lamamy, Veronique; Caignard, Sarah; Boutin, Jean A; Nosjean, Olivier; Stephan, Jean-Philippe; Coge, Francis

    2016-07-01

    Cardiomyocytes derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) are increasingly used for in vitro assays and represent an interesting opportunity to increase the data throughput for drug development. In this work, we describe a 96-well recording of synchronous electrical activities from spontaneously beating hiPSC-derived cardiomyocyte monolayers. The signal was obtained with a fast-imaging plate reader using a submillisecond-responding membrane potential recording assay, FluoVolt, based on a newly derived voltage-sensitive fluorescent dye. In our conditions, the toxicity of the dye was moderate and compatible with episodic recordings for >3 h. We show that the waveforms recorded from a whole well or from a single cell-sized zone are equivalent and make available critical functional parameters that are usually accessible only with gold standard techniques like intracellular microelectrode recording. This approach allows accurate identification of the electrophysiological effects of reference drugs on the different phases of the cardiac action potential as follows: fast depolarization (lidocaine), early repolarization (nifedipine, Bay K8644, and veratridine), late repolarization (dofetilide), and diastolic slow depolarization (ivabradine). Furthermore, the data generated with the FluoVolt dye can be pertinently complemented with a calcium-sensitive dye for deeper characterization of the pharmacological responses. In a semiautomated plate reader, the two probes used simultaneously in 96-well plates provide an easy and powerful multiparametric assay to rapidly and precisely evaluate the cardiotropic profile of compounds for drug discovery or cardiac safety. PMID:27199128

  18. Quantification of alginate by aggregation induced by calcium ions and fluorescent polycations.

    PubMed

    Zheng, Hewen; Korendovych, Ivan V; Luk, Yan-Yeung

    2016-01-01

    For quantification of polysaccharides, including heparins and alginates, the commonly used carbazole assay involves hydrolysis of the polysaccharide to form a mixture of UV-active dye conjugate products. Here, we describe two efficient detection and quantification methods that make use of the negative charges of the alginate polymer and do not involve degradation of the targeted polysaccharide. The first method utilizes calcium ions to induce formation of hydrogel-like aggregates with alginate polymer; the aggregates can be quantified readily by staining with a crystal violet dye. This method does not require purification of alginate from the culture medium and can measure the large amount of alginate that is produced by a mucoid Pseudomonas aeruginosa culture. The second method employs polycations tethering a fluorescent dye to form suspension aggregates with the alginate polyanion. Encasing the fluorescent dye in the aggregates provides an increased scattering intensity with a sensitivity comparable to that of the conventional carbazole assay. Both approaches provide efficient methods for monitoring alginate production by mucoid P. aeruginosa. PMID:26408812

  19. Role of calcium in photodynamically induced cell damage of human fibroblasts.

    PubMed

    Hubmer, A; Hermann, A; Uberriegler, K; Krammer, B

    1996-07-01

    Photodynamically induced changes in the cytoplasmic free calcium concentration ([Ca2+]i) and its role in cell damage were investigated in human skin fibroblasts using confocal laser microscopy. Fluorescence and absorbance spectrophotometry measurements indicate that the photosensitizer aluminum phthalocyanine tetrasulfonate (AIPcS4) binds to the plasma membrane and only after irradiation is able to enter the cells, causing massive morphologic alterations. Upon irradiation of sensitizer-treated cells, the increase in [Ca2+]i is related to the amount of light and extracellular [Ca2+]e. The increase in [Ca2+]i was substantially reduced in the absence of [Ca2+]a. Cell damage or death after photodynamic treatment was prevented and shifted toward higher fluence by increasing [Ca2+]i at high [Ca2+]e and was greater at low [Ca2+]e. Application of Ca2+ channel blockers, such as Co2+, Cd2+ or verapamil, could not prevent the increase of [Ca2+]i. Our results indicate that activation of the photosensitizer, AIPcS4, causes an influx of Ca2+, which protects cells from, photodamage. At low [Ca2+]e and high fluence values, release of Ca2+ from internal stores probably as a protective measure occurs in order to increase the [Ca2+]i. PMID:8787016

  20. Calcium induced ATP synthesis: Isotope effect, magnetic parameters and mechanism

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Kuznetsov, D. A.; Breslavskaya, N. N.; Shchegoleva, L. N.; Arkhangelsky, S. E.

    2011-03-01

    ATP synthesis by creatine kinase with calcium ions is accompanied by 43Ca/ 40Ca isotope effect: the enzyme with 43Ca 2+ was found to be 2.0 ± 0.3 times more active than enzymes, in which Ca 2+ ions have nonmagnetic nuclei 40Ca. The effect demonstrates that primary reaction in ATP synthesis is electron transfer between reaction partners, Сa( HO)n2+ ( n ⩽ 3) and Ca 2+(ADP) 3-. It generates ion-radical pair, in which spin conversion results in the isotope effect. Magnetic parameters (g-factors and HFC constants a( 43Ca) and a( 31P)) confirm that namely terminal oxygen atom of the ADP ligand in the complex Ca 2+(ADP) 3- donates electron to the Ca( HO)n2+ ion.

  1. Calcium induced lipid domains: how to glue charge with charge

    NASA Astrophysics Data System (ADS)

    Ellenbroek, Wouter G.; Wang, Yu-Hsiu; Christian, David A.; Janmey, Paul A.; Liu, Andrea J.

    2010-03-01

    Multivalent ions such as calcium play an important role in soft and biological matter. In systems containing a fraction of highly negatively charged lipids (PIP2, an important actor in e.g. cell signaling) they can mediate an attraction between the like-charged lipids that is strong enough to promote formation of PIP2-rich domains. Such behavior is determined by charge correlations and therefore not captured by traditional mean-field (Poisson-Boltzmann) treatments. We study this effect experimentally and computationally in a mixed lipid monolayer. The simulations show that electrostatics alone can reproduce many of the trends seen in the experiments. Surprisingly, we find that electrostatic, Ca-mediated attractions between PIP2 lipids are strong enough to lead to nearly complete phase separation, so that domains of PIP2 can be found even at concentrations low enough to approach physiological conditions.

  2. Trolox-Sensitive Reactive Oxygen Species Regulate Mitochondrial Morphology, Oxidative Phosphorylation and Cytosolic Calcium Handling in Healthy Cells

    PubMed Central

    Distelmaier, Felix; Valsecchi, Federica; Forkink, Marleen; van Emst-de Vries, Sjenet; Swarts, Herman G.; Rodenburg, Richard J.T.; Verwiel, Eugène T.P.; Smeitink, Jan A.M.; Willems, Peter H.G.M.

    2012-01-01

    Abstract Aims: Cell regulation by signaling reactive oxygen species (sROS) is often incorrectly studied through extracellular oxidant addition. Here, we used the membrane-permeable antioxidant Trolox to examine the role of sROS in mitochondrial morphology, oxidative phosphorylation (OXPHOS), and cytosolic calcium (Ca2+) handling in healthy human skin fibroblasts. Results and Innovation: Trolox treatment reduced the levels of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydro-fluorescein (CM-H2DCF) oxidizing ROS, lowered cellular lipid peroxidation, and induced a less oxidized mitochondrial thiol redox state. This was paralleled by increased glutathione- and mitofusin-dependent mitochondrial filamentation, increased expression of fully assembled mitochondrial complex I, elevated activity of citrate synthase and OXPHOS enzymes, and a higher cellular O2 consumption. In contrast, Trolox did not alter hydroethidium oxidation, cytosolic thiol redox state, mitochondrial NAD(P)H levels, or mitochondrial membrane potential. Whole genome expression profiling revealed that Trolox did not trigger significant changes in gene expression, suggesting that Trolox acts downstream of this process. Cytosolic Ca2+ transients, induced by the hormone bradykinin, were of a higher amplitude and decayed faster in Trolox-treated cells. These effects were dose-dependently antagonized by hydrogen peroxide. Conclusions: Our findings suggest that Trolox-sensitive sROS are upstream regulators of mitochondrial mitofusin levels, morphology, and function in healthy human skin fibroblasts. This information not only facilitates the interpretation of antioxidant effects in cell models (of oxidative-stress), but also contributes to a better understanding of ROS-related human pathologies, including mitochondrial disorders. Antioxid. Redox Signal. 17, 1657–1669. PMID:22559215

  3. Spermidine-Induced Improvement of Reconsolidation of Memory Involves Calcium-Dependent Protein Kinase in Rats

    ERIC Educational Resources Information Center

    Girardi, Bruna Amanda; Ribeiro, Daniela Aymone; Signor, Cristiane; Muller, Michele; Gais, Mayara Ana; Mello, Carlos Fernando; Rubin, Maribel Antonello

    2016-01-01

    In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus.…

  4. Amelioration of light-induced retinal degeneration by a calcium overload blocker. Flunarizine.

    PubMed

    Edward, D P; Lam, T T; Shahinfar, S; Li, J; Tso, M O

    1991-04-01

    Although free radical formation and lipid peroxidation have been implicated in photoreceptor degeneration following continuous light exposure, recent evidence led us to hypothesize that excessive stimulation of the photoreceptor cells in prolonged light exposure may cause intracellular calcium overload and consequent photoreceptor cell injury. To test this hypothesis, we studied the effects of flunarizine hydrochloride, a calcium overload blocker that inhibits the inositol 1,4,5-triphosphate-induced release of intracellular stores of calcium, in an established rat model of light-induced retinal degeneration. Light and electron microscopic examination of the flunarizine-treated retinas revealed remarkable preservation of the retinal pigment epithelium, rod inner and outer segments, nuclei, and synapses of the photoreceptor cells at all phases of the recovery period. This observation was further supported by morphometric evaluation of the outer nuclear layer thickness, which revealed a greater preservation of the photoreceptor nuclei in the drug-treated animals at 6 and 14 days after exposure. In addition, the rhodopsin levels in the flunarizine-treated retinas were also significantly higher than in the controls in all phases of recovery. The ability of flunarizine to ameliorate light-induced retinal degeneration in the rat supports our hypothesis that elevated intracellular calcium may indeed play a role in light-induced photoreceptor degeneration. PMID:2012559

  5. Scrophularia orientalis extract induces calcium signaling and apoptosis in neuroblastoma cells.

    PubMed

    Lange, Ingo; Moschny, Julia; Tamanyan, Kamilla; Khutsishvili, Manana; Atha, Daniel; Borris, Robert P; Koomoa, Dana-Lynn

    2016-04-01

    Effective neuroblastoma (NB) treatments are still limited despite treatment options available today. Therefore, this study attempted to identify novel plant extracts that have anticancer effects. Cytotoxicity and increased intracellular calcium levels were determined using the Sulforhodamine B (SRB) assay and Fluo4-AM (acetoxymethyl) staining and fluorescence microscopy in NB cells in order to screen a library of plant extracts. The current study examined the anticancer effects of a dichloromethane extract from Scrophularia orientalis L. (Scrophulariaceae), a plant that has been used in Traditional Chinese Medicine. This extract contained highly potent agents that significantly reduced cell survival and increased calcium levels in NB cells. Further analysis revealed that cell death induced by this extract was associated with intracellular calcium release, opening of the MPTP, caspase 3- and PARP-cleavage suggesting that this extract induced aberrant calcium signaling that resulted in apoptosis via the mitochondrial pathway. Therefore, agents from Scrophularia orientalis may have the potential to lead to new chemo-therapeutic anticancer drugs. Furthermore, targeting intracellular calcium signaling may be a novel strategy to develop more effective treatments for NB. PMID:26848085

  6. Scrophularia orientalis extract induces calcium signaling and apoptosis in neuroblastoma cells

    PubMed Central

    LANGE, INGO; MOSCHNY, JULIA; TAMANYAN, KAMILLA; KHUTSISHVILI, MANANA; ATHA, DANIEL; BORRIS, ROBERT P.; KOOMOA, DANA-LYNN

    2016-01-01

    Effective neuroblastoma (NB) treatments are still limited despite treatment options available today. Therefore, this study attempted to identify novel plant extracts that have anticancer effects. Cytotoxicity and increased intracellular calcium levels were determined using the Sulforhodamine B (SRB) assay and Fluo4-AM (acetoxymethyl) staining and fluorescence microscopy in NB cells in order to screen a library of plant extracts. The current study examined the anticancer effects of a dichloromethane extract from Scrophularia orientalis L. (Scrophulariaceae), a plant that has been used in Traditional Chinese Medicine. This extract contained highly potent agents that significantly reduced cell survival and increased calcium levels in NB cells. Further analysis revealed that cell death induced by this extract was associated with intracellular calcium release, opening of the MPTP, caspase 3- and PARP-cleavage suggesting that this extract induced aberrant calcium signaling that resulted in apoptosis via the mitochondrial pathway. Therefore, agents from Scrophularia orientalis may have the potential to lead to new chemo therapeutic anticancer drugs. Furthermore, targeting intracellular calcium signaling may be a novel strategy to develop more effective treatments for NB. PMID:26848085

  7. Selective inhibition of calcium entry induced by benzylisoquinolines in rat smooth muscle.

    PubMed

    Anselmi, E; Fayos, G; Blasco, R; Candenas, L; Cortes, D; D'Ocon, P

    1992-04-01

    The mechanism of relaxant activity of six benzylisoquinolines was examined in order to determine the minimal structural requirements that enable these compounds to have either a non-specific action like papaverine or an inhibitory activity on calcium entry via potential-operated channels. All the alkaloids tested totally or partially relaxed KCl-depolarized rat uterus and inhibited oxytocin-induced rhythmic contractions. Only glaucine and laudanosine inhibited K(+)-induced uterine contractions more than oxytocin-induced uterine contractions. In Ca(+)-free medium, sustained contractions induced by oxytocin or vanadate were relaxed by the alkaloids tested except for glaucine and laudanosine indicating no inhibitory effect on intracellular calcium release. Those alkaloids containing an unsaturated heterocyclic ring (papaverine, papaverinol, papaveraldine, N-methylpapaverine and dehydropapaverine) exhibited a more specific activity than those with a tetrahydroisoquinoline ring. PMID:1355547

  8. Genetic analysis of a synaptic calcium channel in Drosophila: intragenic modifiers of a temperature-sensitive paralytic mutant of cacophony.

    PubMed Central

    Brooks, I M; Felling, R; Kawasaki, F; Ordway, R W

    2003-01-01

    Our previous genetic analysis of synaptic mechanisms in Drosophila identified a temperature-sensitive paralytic mutant of the voltage-gated calcium channel alpha1 subunit gene, cacophony (cac). Electrophysiological studies in this mutant, designated cac(TS2), indicated cac encodes a primary calcium channel alpha1 subunit functioning in neurotransmitter release. To further examine the functions and interactions of cac-encoded calcium channels, a genetic screen was performed to isolate new mutations that modify the cac(TS2) paralytic phenotype. The screen recovered 10 mutations that enhance or suppress cac(TS2), including second-site mutations in cac (intragenic modifiers) as well as mutations mapping to other genes (extragenic modifiers). Here we report molecular characterization of three intragenic modifiers and examine the consequences of these mutations for temperature-sensitive behavior, synaptic function, and processing of cac pre-mRNAs. These mutations may further define the structural basis of calcium channel alpha1 subunit function in neurotransmitter release. PMID:12750329

  9. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    PubMed

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  10. Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients

    SciTech Connect

    Oyama, Kotaro; Mizuno, Akari; Shintani, Seine A.; Itoh, Hideki; Serizawa, Takahiro; Fukuda, Norio; Suzuki, Madoka

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Infra-red laser beam generates microscopic heat pulses. Black-Right-Pointing-Pointer Heat pulses induce contraction of cardiomyocytes. Black-Right-Pointing-Pointer Ca{sup 2+} transients during the contraction were not detected. Black-Right-Pointing-Pointer Skinned cardiomyocytes in free Ca{sup 2+} solution also contracted. Black-Right-Pointing-Pointer Heat pulses regulated the contractions without Ca{sup 2+} dynamics. -- Abstract: It was recently demonstrated that laser irradiation can control the beating of cardiomyocytes and hearts, however, the precise mechanism remains to be clarified. Among the effects induced by laser irradiation on biological tissues, temperature change is one possible effect which can alter physiological functions. Therefore, we investigated the mechanism by which heat pulses, produced by infra-red laser light under an optical microscope, induce contractions of cardiomyocytes. Here we show that microscopic heat pulses induce contraction of rat adult cardiomyocytes. The temperature increase, {Delta}T, required for inducing contraction of cardiomyocytes was dependent upon the ambient temperature; that is, {Delta}T at physiological temperature was lower than that at room temperature. Ca{sup 2+} transients, which are usually coupled to contraction, were not detected. We confirmed that the contractions of skinned cardiomyocytes were induced by the heat pulses even in free Ca{sup 2+} solution. This heat pulse-induced Ca{sup 2+}-decoupled contraction technique has the potential to stimulate heart and skeletal muscles in a manner different from the conventional electrical stimulations.

  11. Detection of light-induced changes of intracellular ionized calcium concentration in Limulus ventral photoreceptors using arsenazo III

    PubMed Central

    Brown, J. E.; Brown, P. K.; Pinto, L. H.

    1977-01-01

    1. The metallochromic indicator dye, arsenazo III, was injected intracellularly into Limulus ventral photoreceptor cells to concentrations greater than 1 mM. 2. The absorption spectrum (450-750 nm) of the dye in single dark-adapted cells was measured by a scanning microspectrophotometer. When a cell was light-adapted, the absorption of the dye changed; the difference spectrum had two maxima at about 610 and 660 nm, a broad minimum at about 540 nm and an isosbestic point at about 585 nm. 3. When intracellular calcium concentration was raised in dark-adapted cells previously injected with arsenazo III, the difference spectum had two maxima at about 610 and 660 nm, a broad minimum at about 530 nm and an isosbestic point at about 585 nm. The injection of Mg2+ into dark-adapted cells previously injected with the dye induced a difference spectrum that had a single maximum at about 620 nm. Also, decreasing the intracellular pH of cells previously injected with the dye induced a difference spectrum that had a minimum at about 620 nm. The evidence suggests that there is a rise of intracellular ionized calcium when a Limulus ventral photoreceptor is light-adapted. 4. The intracellular calcium concentration, [Ca2+]1, in light-adapted photoreceptors was estimated to reach at least 10-4 M by compaing the light-induced difference spectra measured in ventral photoreceptors with a standard curve determined in microcuvettes containing 2mM arsenazo III in 400 mM-KCl, 1 mM-MgCl2 and 25 mM MOPS at pH 7·0. 5. In cells injected to less than 3 mM arsenazo III, light induced a transient decrease in optical transmission at 660 nm (T660). This decrease in T660 indicates that illumination of a ventral photoreceptor normally causes a transient increase of [Ca2+]1. 6. Arsenazo III was found to be sensitive, selective and rapid enough to measure light-induced changes of intracellular ionized calcium in Limulus ventral photoreceptor cells. PMID:17732

  12. Generation of calcium waves in living cells induced by 1 kHz femtosecond laser protuberance microsurgery

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Zhao, E. L.; Yang, H. F.; Gong, A. H.; di, J. K.; Zhang, Z. J.

    2009-07-01

    We have demonstrated that intracellular calcium waves in a living olfactory ensheathing cell (OEC) can be induced by femtosecond laser surgery on cellular protuberance. In this paper, calcium wave generation mechanisms are further investigated using different culture mediums and protuberance diameters. The protuberances of living OECs are cut by home-made 1 kHz femtosecond laser surgery system with 130 fs pulsewidth and 800 nm wavelength, and the average power of 200 μW is chosen for stable and effective cell surgery. Whether the cells are cultured in mediums with Ca2+ or not, intracellular calcium waves can be induced after cell surgery. The generation of calcium waves is independent on the dimension of protuberance diameter. Based on these results, we analyze generation mechanisms of calcium wave and conclude that shockwave-induced mechanical force and laser-induced cytoskeleton depolymerization are two key factors.

  13. Comparison of Tooth Discoloration Induced by Calcium-Enriched Mixture and Mineral Trioxide Aggregate

    PubMed Central

    Rouhani, Armita; Akbari, Majid; Farhadi-faz, Aida

    2016-01-01

    Introduction: The aim of this in vitro study was to evaluate the tooth discoloration induced by calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA). Methods and Materials: Forty five endodontically treated human maxillary central incisors were selected and divided into three groups (n=15) after removing the coronal 3 mm of the obturating materials. In the MTA group, white MTA plug was placed in pulp chamber and coronal zone of the root canal. In CEM cement group, CEM plug was placed in the tooth in the same manner. In both groups, a wet cotton pellet was placed in the access cavity and the teeth were temporarily sealed. After 24 h the teeth were restored with resin composite. In the negative control group the teeth were also restored with resin composite. The color change in the cervical third of teeth was measured with a colorimeter and was repeated 3 times for each specimen. The teeth were kept in artificial saliva for 6 months. After this period, the color change was measured again. Data were collected by Commission International de I'Eclairage's L*a*b color values, and corresponding ΔE values were calculated. The results were analyzed using the one-way ANOVA and post-hoc Tukey’s test with the significance level defined as 0.05. Results: There was no significant differences between CEM group and control group in mean discoloration. The mean tooth discoloration in MTA group was significantly greater than CEM and control groups (P<0.05). Conclusion: According to the result of the present study CEM cement did not induce tooth discoloration after six months. Therefore it can be used in vital pulp therapy of esthetically sensitive teeth. PMID:27471526

  14. Pore fluid chemistry and spectral induced polarization signatures of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Hubbard, S. S.; Ajo Franklin, J. B.; Williams, K. H.

    2010-12-01

    Calcium carbonate (CaCO3) minerals are a key family of compounds that frequently precipitate during natural and engineered subsurface processes. They play important roles in elemental cycling within geosystems and can be utilized in the context of environmental remediation (such as metal sequestration through co-precipitation) and in geotechnical engineering (such as improving soil strength or decreasing rock permeability). Characterizing the spatial extent and temporal dynamics of carbonate mineral precipitation is critical for these studies. Our previous research has indicated the potential of geophysical methods, particularly spectral induced polarization (SIP) for tracking the onset and evolution of mineral precipitates, including calcite. Here, we experimentally document the significant role of pore fluid chemistry and surface charge structure on the SIP signature of calcium carbonates. Our column studies revealed that the SIP signature of calcium carbonate is dictated by surface charge structure that relies heavily on surface complexation properties, such as charge density and speciation. For calcium carbonate, the primary potential determining ions (PDIs) are calcium and carbonate ions and the SIP signatures of calcium carbonate are primarily controlled by the concentrations of these species. Our data show that calcium carbonates in thermodynamic equilibrium with pore fluid produce a negligible SIP response due to very small (if any) surface charges. In contrast, systems that are over saturated with respect to calcium carbonate (i.e., far from equilibrium) produce significant SIP responses, which is consistent with high surface charge densities shown by high zeta potential values in previous studies. Our studies reveal that a closed system that transitions from over-saturation to equilibrium conditions is accompanied by significant decrease of SIP signals (and vice-versa). The studies also show that the effect of pH on SIP signature of calcium carbonate is

  15. Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)

    PubMed Central

    Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert

    2013-01-01

    Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0. PMID:23685703

  16. Direct imaging of ER calcium with targeted-esterase induced dye loading (TED).

    PubMed

    Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert

    2013-01-01

    Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca(2+) indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca(2+) indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca(2+) indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca(2+) indicator and a hydrophilic fluorescent dye/Ca(2+) complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0. PMID:23685703

  17. TRPV1 Activation in Primary Cortical Neurons Induces Calcium-Dependent Programmed Cell Death.

    PubMed

    Song, Juhyun; Lee, Jun Hong; Lee, Sung Ho; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2013-03-01

    Transient receptor potential cation channel, subfamily V, member 1 (TRPV1, also known as vanilloid receptor 1) is a receptor that detects capsaicin, a pungent component of chili peppers, and noxious heat. Although its function in the primary nociceptor as a pain receptor is well established, whether TRPV1 is expressed in the brain is still under debate. In this study, the responses of primary cortical neurons were investigated. Here, we report that 1) capsaicin induces caspase-3-dependent programmed cell death, which coincides with increased production of nitric oxide and peroxynitrite ; that 2) the prolonged capsaicin treatment induces a steady increase in the degree of capase-3 activation, which is prevented by the removal of capsaicin; 3) and that blocking calcium entry and calcium-mediated signaling prevents capsaicin-induced cell death. These results indicate that cortical neurons express TRPV1 whose prolonged activation causes cell death. PMID:23585723

  18. Purinergically induced membrane fluidization in ciliary cells: characterization and control by calcium and membrane potential.

    PubMed Central

    Alfahel, E; Korngreen, A; Parola, A H; Priel, Z

    1996-01-01

    To examine the role of membrane dynamics in transmembrane signal transduction, we studied changes in membrane fluidity in mucociliary tissues from frog palate and esophagus epithelia stimulated by extracellular ATP. Micromolar concentrations of ATP induced strong changes in fluorescence polarization, possibly indicating membrane fluidization. This effect was dosage dependent, reaching a maximum at 10-microM ATP. It was dependent on the presence of extracellular Ca2+ (or Mg2+), though it was insensitive to inhibitors of voltage-gated calcium channels. It was inhibited by thapsigargin and by ionomycin (at low extracellular Ca2+ concentration), both of which deplete Ca2+ stores. It was inhibited by the calcium-activated potassium channel inhibitors quinidine, charybdotoxin, and apamine and was reduced considerably by replacement of extracellular Na+ with K+. Hyperpolarization, or depolarization, of the mucociliary membrane induced membrane fluidization. The degree of membrane fluidization depended on the degree of hyperpolarization or depolarization of the ciliary membrane potential and was considerably lower than the effect induced by extracellular ATP. These results indicate that appreciable membrane fluidization induced by extracellular ATP depends both on an increase in intracellular Ca2+, mainly from its internal stores, and on hyperpolarization of the membrane. Calcium-dependent potassium channels couple the two effects. In light of recent results on the enhancement of ciliary beat frequency, it would appear that extracellular ATP-induced changes both in ciliary beat frequency and in membrane fluidity are triggered by similar signal transduction pathways. PMID:8789123

  19. Trypsin-Sensitive, Rapid Inactivation of a Calcium-Activated Potassium Channel

    NASA Astrophysics Data System (ADS)

    Solaro, Christopher R.; Lingle, Christopher J.

    1992-09-01

    Most calcium-activated potassium channels couple changes in intracellular calcium to membrane excitability by conducting a current with a probability that depends directly on submembrane calcium concentration. In rat adrenal chromaffin cells, however, a large conductance, voltage- and calcium-activated potassium channel (BK) undergoes rapid inactivation, suggesting that this channel has a physiological role different than that of other BK channels. The inactivation of the BK channel, like that of the voltage-gated Shaker B potassium channel, is removed by trypsin digestion and channels are blocked by the Shaker B amino-terminal inactivating domain. Thus, this BK channel shares functional and possibly structural homologies with other inactivating voltage-gated potassium channels.

  20. Coagulation of β-conglycinin, glycinin and isoflavones induced by calcium chloride in soymilk

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Hsuan; Yu, Chia-Jung; Li, Wen-Tai; Hsieh, Jung-Feng

    2015-08-01

    The coagulation of β-conglycinin (7S), glycinin (11S) and isoflavones induced by calcium chloride was investigated. Approximately 92.6% of the soymilk proteins were coagulated into the soymilk pellet fraction (SPF) after the addition of 5 mM calcium chloride. SDS-PAGE and two-dimensional electrophoresis analysis indicated that most of the 7S (α’, α and β), 11S acidic (A1a, A1b, A2, A3 and A4) and 11S basic (B1a) proteins in the SSF were coagulated into the SPF after treatment with 5 mM calcium chloride. Isoflavones, including daidzein and genistein, were also coagulated into the SPF after the addition of 5 mM calcium chloride. The amounts of daidzein and genistein in the SSF decreased to 39.4 ± 1.6 and 11.8 ± 7.0%, respectively. HPLC analysis suggested that daidzein and genistein were bound with 7S and 11S proteins and then were coprecipitated into the SPF by 5 mM calcium chloride.

  1. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    PubMed

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer. Cancer Res; 76(6); 1494-505. ©2015 AACR. PMID:26719529

  2. Plasma Calcium, Inorganic Phosphate and Magnesium During Hypocalcaemia Induced by a Standardized EDTA Infusion in Cows

    PubMed Central

    Mellau, LSB; Jørgensen, RJ; Enemark, JMD

    2001-01-01

    The intravenous Na2EDTA infusion technique allows effective specific chelation of circulating Ca2+ leading to a progressive hypocalcaemia. Methods previously used were not described in detail and results obtained by monitoring total and free ionic calcium were not comparable due to differences in sampling and analysis. This paper describes a standardized EDTA infusion technique that allowed comparison of the response of calcium, phosphorus and magnesium between 2 groups of experimental cows. The concentration of the Na2EDTA solution was 0.134 mol/l and the flow rate was standardized at 1.2 ml/kg per hour. Involuntary recumbency occurred when ionised calcium dropped to 0.39 – 0.52 mmol/l due to chelation. An initial fast drop of ionized calcium was observed during the first 20 min of infusion followed by a fluctuation leading to a further drop until recumbency. Pre-infusion [Ca2+] between tests does not correlate with the amount of EDTA required to induce involuntary recumbence. Total calcium concentration measured by atomic absorption remained almost constant during the first 100 min of infusion but declined gradually when the infusion was prolonged. The concentration of inorganic phosphate declined gradually in a fluctuating manner until recumbency. Magnesium concentration remained constant during infusion. Such electrolyte responses during infusion were comparable to those in spontaneous milk fever. The standardized infusion technique might be useful in future experimental studies. PMID:11503370

  3. Coagulation of β-conglycinin, glycinin and isoflavones induced by calcium chloride in soymilk

    PubMed Central

    Hsiao, Yu-Hsuan; Yu, Chia-Jung; Li, Wen-Tai; Hsieh, Jung-Feng

    2015-01-01

    The coagulation of β-conglycinin (7S), glycinin (11S) and isoflavones induced by calcium chloride was investigated. Approximately 92.6% of the soymilk proteins were coagulated into the soymilk pellet fraction (SPF) after the addition of 5 mM calcium chloride. SDS-PAGE and two-dimensional electrophoresis analysis indicated that most of the 7S (α’, α and β), 11S acidic (A1a, A1b, A2, A3 and A4) and 11S basic (B1a) proteins in the SSF were coagulated into the SPF after treatment with 5 mM calcium chloride. Isoflavones, including daidzein and genistein, were also coagulated into the SPF after the addition of 5 mM calcium chloride. The amounts of daidzein and genistein in the SSF decreased to 39.4 ± 1.6 and 11.8 ± 7.0%, respectively. HPLC analysis suggested that daidzein and genistein were bound with 7S and 11S proteins and then were coprecipitated into the SPF by 5 mM calcium chloride. PMID:26260443

  4. Coronal Discoloration Induced by Calcium-Enriched Mixture, Mineral Trioxide Aggregate and Calcium Hydroxide: A Spectrophotometric Analysis

    PubMed Central

    Esmaeili, Behnaz; Alaghehmand, Homayoun; Kordafshari, Tavoos; Daryakenari, Ghazaleh; Ehsani, Maryam; Bijani, Ali

    2016-01-01

    Introduction: The aim of this study was to compare the discoloration potential of calcium-enriched mixture (CEM) cement, white mineral trioxide aggregate (WMTA) and calcium hydroxide (CH), after placement in pulp chamber. Methods and Materials: Access cavities were prepared in 40 intact maxillary central incisors. Then, a 2×2 mm box was prepared on the middle third of the inner surface on the buccal wall of the access cavity. The specimens were randomly assigned into four groups; the boxes in the control group were left empty, in groups 1 to 3, the boxes were filled with CH, WMTA and CEM cement, respectively. The access cavities and the apical openings were sealed using resin modified glass ionomer (RMGI). The color measurement was performed with a spectrophotometer at the following intervals: before (T0), immediately after placement of the filling material (T1), one week (T2), 1 month (T3), 3 months (T4) and 5 months (T5) after filling of the box and finally immediately after removing the material from the boxes (T6). Color change (ΔE) values were calculated using the sample Kolmogorov-Smirnov test to determine the normal distribution of data, followed by ANOVA, repeated measured ANOVA and post-hoc Tukey’s tests. Results: All materials led to clinically perceptible crown discoloration after 1 week. The highest ΔE value belonged to WMTA group. Discoloration induced by CEM cement was not significantly different from CH or the control group (P>0.05). Conclusion: CEM cement may be the material of choice in the esthetic region, specifically pertaining to its lower color changing potential compared to WMTA. PMID:26843873

  5. Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores

    PubMed Central

    Sobolewski, Peter; Kandel, Judith; Klinger, Alexandra L.

    2011-01-01

    Gas embolism is a serious complication of decompression events and clinical procedures, but the mechanism of resulting injury remains unclear. Previous work has demonstrated that contact between air microbubbles and endothelial cells causes a rapid intracellular calcium transient and can lead to cell death. Here we examined the mechanism responsible for the calcium rise. Single air microbubbles (50–150 μm), trapped at the tip of a micropipette, were micromanipulated into contact with individual human umbilical vein endothelial cells (HUVECs) loaded with Fluo-4 (a fluorescent calcium indicator). Changes in intracellular calcium were then recorded via epifluorescence microscopy. First, we confirmed that HUVECs rapidly respond to air bubble contact with a calcium transient. Next, we examined the involvement of extracellular calcium influx by conducting experiments in low calcium buffer, which markedly attenuated the response, or by pretreating cells with stretch-activated channel blockers (gadolinium chloride or ruthenium red), which abolished the response. Finally, we tested the role of intracellular calcium release by pretreating cells with an inositol 1,4,5-trisphosphate (IP3) receptor blocker (xestospongin C) or phospholipase C inhibitor (neomycin sulfate), which eliminated the response in 64% and 67% of cases, respectively. Collectively, our results lead us to conclude that air bubble contact with endothelial cells causes an influx of calcium through a stretch-activated channel, such as a transient receptor potential vanilloid family member, triggering the release of calcium from intracellular stores via the IP3 pathway. PMID:21633077

  6. Synthetic peptides corresponding to human follicle-stimulating hormone (hFSH)-beta-(1-15) and hFSH-beta-(51-65) induce uptake of 45Ca++ by liposomes: evidence for calcium-conducting transmembrane channel formation

    SciTech Connect

    Grasso, P.; Santa-Coloma, T.A.; Reichert, L.E. Jr. )

    1991-06-01

    We have previously described FSH receptor-mediated influx of 45Ca++ in cultured Sertoli cells from immature rats and receptor-enriched proteoliposomes via activation of voltage-sensitive and voltage-independent calcium channels. We have further shown that this effect of FSH does not require cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding protein or activation of adenylate cyclase. In the present study, we have identified regions of human FSH-beta-subunit which appear to be involved in mediating calcium influx. We screened 11 overlapping peptide amides representing the entire primary structure of hFSH-beta-subunit for their effects on 45Ca++ flux in FSH receptor-enriched proteoliposomes. hFSH-beta-(1-15) and hFSH-beta-(51-65) induced uptake of 45Ca++ in a concentration-related manner. This effect of hFSH-beta-(1-15) and hFSH-beta-(51-65) was also observed in liposomes lacking incorporated FSH receptor. Reducing membrane fluidity by incubating liposomes (containing no receptor) with hFSH-beta-(1-15) or hFSH-beta-(51-65) at temperatures lower than the transition temperatures of their constituent phospholipids resulted in no significant (P greater than 0.05) difference in 45Ca++ uptake. The effectiveness of the calcium ionophore A23187, however, was abolished. Ruthenium red, a voltage-independent calcium channel antagonist, was able to completely block uptake of 45Ca++ induced by hFSH-beta-(1-15) and hFSH-beta-(51-65) whereas nifedipine, a calcium channel blocker specific for L-type voltage-sensitive calcium channels, was without effect. These results suggest that in addition to its effect on voltage-sensitive calcium channel activity, interaction of FSH with its receptor may induce formation of transmembrane aqueous channels which also facilitate influx of extracellular calcium.

  7. RNA-induced silencing attenuates G protein-mediated calcium signals.

    PubMed

    Philip, Finly; Sahu, Shriya; Golebiewska, Urszula; Scarlata, Suzanne

    2016-05-01

    Phospholipase Cβ (PLCβ) is activated by G protein subunits in response to environmental stimuli to increase intracellular calcium. In cells, a significant portion of PLCβ is cytosolic, where it binds a protein complex required for efficient RNA-induced silencing called C3PO (component 3 promoter of RISC). Binding between C3PO and PLCβ raises the possibility that RNA silencing activity can affect the ability of PLCβ to mediate calcium signals. By use of human and rat neuronal cell lines (SK-N-SH and PC12), we show that overexpression of one of the main components of C3PO diminishes Ca(2+) release in response to Gαq/PLCβ stimulation by 30 to 40%. In untransfected SK-N-SH or PC12 cells, the introduction of siRNA(GAPDH) [small interfering RNA(glyceraldehyde 3-phosphate dehydrogenase)] reduces PLCβ-mediated calcium signals by ∼30%, but addition of siRNA(Hsp90) (heat shock protein 90) had little effect. Fluorescence imaging studies suggest an increase in PLCβ-C3PO association in cells treated with siRNA(GAPDH) but not siRNA(Hsp90). Taken together, our studies raise the possibility that Ca(2+) responses to extracellular stimuli can be modulated by components of the RNA silencing machinery.-Philip, F., Sahu, S., Golebiewska, U., Scarlata, S. RNA-induced silencing attenuates G protein-mediated calcium signals. PMID:26862135

  8. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death

    PubMed Central

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A.; Quest, Andrew F.G.; Lavandero, Sergio

    2014-01-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulatenumerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca2+ overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca2+ levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca2+ influx, mitochondrial network fragmentation and loss of the mitochondrial Ca2+ buffer capacity. These biochemical events increase cytosolic Ca2+ levels and trigger cardiomyocyte death via the activation of calpains. PMID:23602992

  9. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.

    PubMed

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A; Quest, Andrew F G; Lavandero, Sergio

    2013-08-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains. PMID:23602992

  10. Protective effect of calcium folinate against methotrexate-induced endosalpinx damage in rats.

    PubMed

    Yang, Xiao-Jun; Chen, Yan-Ping; Wang, Han-Chu; Zhao, Jing; Zheng, Fei-Yun

    2011-03-15

    The aim of this study was to evaluate the protective effect of calcium folinate (CF) applied in 10% of the methotrexate (MTX) dosage against morphologic and steroid-receptor damage induced by MTX in rat endosalpinx. The result indicated that endosalpingitis, the ultrastructural damage of endosalpinx, and a change in estrogen and P receptor expression induced by low- and high-dose MTX in endosalpinx can be reversed completely and partly (B1, B2) by combined treatment with CF, suggesting that CF combined with MTX protects against the side effects induced by MTX. PMID:20869049

  11. Dysferlin Binds SNAREs (Soluble N-Ethylmaleimide-sensitive Factor (NSF) Attachment Protein Receptors) and Stimulates Membrane Fusion in a Calcium-sensitive Manner.

    PubMed

    Codding, Sara J; Marty, Naomi; Abdullah, Nazish; Johnson, Colin P

    2016-07-01

    Resealing of tears in the sarcolemma of myofibers is a necessary step in the repair of muscle tissue. Recent work suggests a critical role for dysferlin in the membrane repair process and that mutations in dysferlin are responsible for limb girdle muscular dystrophy 2B and Miyoshi myopathy. Beyond membrane repair, dysferlin has been linked to SNARE-mediated exocytotic events including cytokine release and acid sphingomyelinase secretion. However, it is unclear whether dysferlin regulates SNARE-mediated membrane fusion. In this study we demonstrate a direct interaction between dysferlin and the SNARE proteins syntaxin 4 and SNAP-23. In addition, analysis of FRET and in vitro reconstituted lipid mixing assays indicate that dysferlin accelerates syntaxin 4/SNAP-23 heterodimer formation and SNARE-mediated lipid mixing in a calcium-sensitive manner. These results support a function for dysferlin as a calcium-sensing SNARE effector for membrane fusion events. PMID:27226605

  12. Sodium induces simultaneous changes in cytosolic calcium and pH in salt-tolerant quince protoplasts.

    PubMed

    D'Onofrio, Cladio; Lindberg, Sylvia

    2009-11-01

    Previous experiments with salt-resistant quince BA29 (Cydonia oblonga cv. Mill.) have shown that this cultivar takes up sodium transiently into the cytosol of shoot protoplasts only in the absence of calcium chloride, or at <1mM calcium chloride. Addition of NaCl > or =100mM to single protoplasts from in vitro-cultivated quince in the presence of 1.0mM calcium induced instant changes in the cytosolic concentrations of calcium and protons. These changes were investigated by use of tetra [acetoxymethyl] esters of the fluorescent stilbene chromophores Fura 2 and bis-carboxyethyl-carboxyfluorescein (BCECF), respectively. The cytosolic Ca(2+) dynamics in the protoplasts were dependent on the concentration of NaCl added. The changes in calcium differed in amplitude and final concentration and were correlated in time mainly with changes in pH. Addition of 100-400mM NaCl to the protoplasts caused an oscillating increase in the cytosolic level of calcium, and then a decrease. Addition of mannitol, of equiosmolar concentration to NaCl, did not increase the cytosolic calcium concentration. Moreover, there was no increase in cytosolic calcium when NaCl was added in the presence of calcium binding ethylene glycol-bis(beta-aminoethylether)-N,N,N',N'-tetra acetic acid (EGTA), or lantan or verapamil, two inhibitors of plasma membrane calcium channels. Therefore, we conclude that, in salt-resistant quince, sodium induces an influx of calcium into the cytosol by plasma membrane calcium channels, and a simultaneous increase in cytosolic pH. Because these changes were obtained in the presence of 1mM calcium in the medium, they were not due to sodium uptake into the cytosol. PMID:19556023

  13. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes.

    PubMed

    Mato, Susana; Victoria Sánchez-Gómez, María; Matute, Carlos

    2010-11-01

    Heavy marijuana use has been linked to white matter histological alterations. However, the impact of cannabis constituents on oligodendroglial pathophysiology remains poorly understood. Here, we investigated the in vitro effects of cannabidiol, the main nonpsychoactive marijuana component, on oligodendrocytes. Exposure to cannabidiol induced an intracellular Ca(2+) rise in optic nerve oligodendrocytes that was not primarily mediated by entry from the extracellular space, nor by interactions with ryanodine or IP(3) receptors. Application of the mitochondrial protonophore carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 1 μM) completely prevented subsequent cannabidiol-induced Ca(2+) responses. Conversely, the increase in cytosolic Ca(2+) levels elicited by FCCP was reduced after previous exposure to cannabidiol, further suggesting that the mitochondria acts as the source of cannabidiol-evoked Ca(2+) rise in oligodendrocytes. n addition, brief exposure to cannabidiol (100 nM-10 μM) led to a concentration-dependent decrease of oligodendroglial viability that was not prevented by antagonists of CB(1), CB(2), vanilloid, A(2A) or PPARγ receptors, but was instead reduced in the absence of extracellular Ca(2+). The oligodendrotoxic effect of cannabidiol was partially blocked by inhibitors of caspase-3, -8 and -9, PARP-1 and calpains, suggesting the activation of caspase-dependent and -independent death pathways. Cannabidiol also elicited a concentration-dependent alteration of mitochondrial membrane potential, and an increase in reactive oxygen species (ROS) that was reduced in the absence of extracellular Ca(2+). Finally, cannabidiol-induced cytotoxicity was partially prevented by the ROS scavenger trolox. Together, these results suggest that cannabidiol causes intracellular Ca(2+) dysregulation which can lead to oligodendrocytes demise. PMID:20645411

  14. Potential Interactions of Calcium-Sensitive Reagents with Zinc Ion in Different Cultured Cells

    PubMed Central

    Fujikawa, Koichi; Fukumori, Ryo; Nakamura, Saki; Kutsukake, Takaya; Takarada, Takeshi; Yoneda, Yukio

    2015-01-01

    Background Several chemicals have been widely used to evaluate the involvement of free Ca2+ in mechanisms underlying a variety of biological responses for decades. Here, we report high reactivity to zinc of well-known Ca2+-sensitive reagents in diverse cultured cells. Methodology/Principal Findings In rat astrocytic C6 glioma cells loaded with the fluorescent Ca2+ dye Fluo-3, the addition of ZnCl2 gradually increased the fluorescence intensity in a manner sensitive to the Ca2+ chelator EGTA irrespective of added CaCl2. The addition of the Ca2+ ionophore A23187 drastically increased Fluo-3 fluorescence in the absence of ZnCl2, while the addition of the Zn2+ ionophore pyrithione rapidly and additionally increased the fluorescence in the presence of ZnCl2, but not in its absence. In cells loaded with the zinc dye FluoZin-3 along with Fluo-3, a similarly gradual increase was seen in the fluorescence of Fluo-3, but not of FluoZin-3, in the presence of both CaCl2 and ZnCl2. Further addition of pyrithione drastically increased the fluorescence intensity of both dyes, while the addition of the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN) rapidly and drastically decreased FluoZin-3 fluorescence. In cells loaded with FluoZin-3 alone, the addition of ZnCl2 induced a gradual increase in the fluorescence in a fashion independent of added CaCl2 but sensitive to EGTA. Significant inhibition was found in the vitality to reduce 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide in a manner sensitive to TPEN, EDTA and BAPTA in C6 glioma cells exposed to ZnCl2, with pyrithione accelerating the inhibition. Similar inhibition occurred in an EGTA-sensitive fashion after brief exposure to ZnCl2 in pluripotent P19 cells, neuronal Neuro2A cells and microglial BV2 cells, which all expressed mRNA for particular zinc transporters. Conclusions/Significance Taken together, comprehensive analysis is absolutely required for the demonstration of a

  15. Mechanisms underlying angiotensin II-induced calcium oscillations

    PubMed Central

    Edwards, Aurélie; Pallone, Thomas L.

    2008-01-01

    To gain insight into the mechanisms that underlie angiotensin II (ANG II)-induced cytoplasmic Ca2+ concentration ([Ca]cyt) oscillations in medullary pericytes, we expanded a prior model of ion fluxes. ANG II stimulation was simulated by doubling maximal inositol trisphosphate (IP3) production and imposing a 90% blockade of K+ channels. We investigated two configurations, one in which ryanodine receptors (RyR) and IP3 receptors (IP3R) occupy a common store and a second in which they reside on separate stores. Our results suggest that Ca2+ release from stores and import from the extracellular space are key determinants of oscillations because both raise [Ca] in subplasmalemmal spaces near RyR. When the Ca2+-induced Ca2+ release (CICR) threshold of RyR is exceeded, the ensuing Ca2+ release is limited by Ca2+ reuptake into stores and export across the plasmalemma. If sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps do not remain saturated and sarcoplasmic reticulum Ca2+ stores are replenished, that phase is followed by a resumption of leak from internal stores that leads either to [Ca]cyt elevation below the CICR threshold (no oscillations) or to elevation above it (oscillations). Our model predicts that oscillations are more prone to occur when IP3R and RyR stores are separate because, in that case, Ca2+ released by RyR during CICR can enhance filling of adjacent IP3 stores to favor a high subsequent leak that generates further CICR events. Moreover, the existence or absence of oscillations depends on the set points of several parameters, so that biological variation might well explain the presence or absence of oscillations in individual pericytes. PMID:18562632

  16. T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants.

    PubMed

    Gangarossa, Giuseppe; Laffray, Sophie; Bourinet, Emmanuel; Valjent, Emmanuel

    2014-01-01

    The fine-tuning of neuronal excitability relies on a tight control of Ca(2+) homeostasis. The low voltage-activated (LVA) T-type calcium channels (Cav3.1, Cav3.2 and Cav3.3 isoforms) play a critical role in regulating these processes. Despite their wide expression throughout the central nervous system, the implication of T-type Cav3.2 isoform in brain functions is still poorly characterized. Here, we investigate the effect of genetic ablation of this isoform in affective disorders, including anxiety, cognitive functions as well as sensitivity to drugs of abuse. Using a wide range of behavioral assays we show that genetic ablation of the cacna1h gene results in an anxiety-like phenotype, whereas novelty-induced locomotor activity is unaffected. Deletion of the T-type channel Cav3.2 also triggers impairment of hippocampus-dependent recognition memories. Acute and sensitized hyperlocomotion induced by d-amphetamine and cocaine are dramatically reduced in T-type Cav3.2 deficient mice. In addition, the administration of the T-type blocker TTA-A2 prevented the expression of locomotor sensitization observed in wildtype mice. In conclusion, our data reveal that physiological activity of this specific Ca(2+) channel is required for affective and cognitive behaviors. Moreover, our work highlights the interest of T-type channel blockers as therapeutic strategies to reverse drug-associated alterations. PMID:24672455

  17. T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants

    PubMed Central

    Gangarossa, Giuseppe; Laffray, Sophie; Bourinet, Emmanuel; Valjent, Emmanuel

    2014-01-01

    The fine-tuning of neuronal excitability relies on a tight control of Ca2+ homeostasis. The low voltage-activated (LVA) T-type calcium channels (Cav3.1, Cav3.2 and Cav3.3 isoforms) play a critical role in regulating these processes. Despite their wide expression throughout the central nervous system, the implication of T-type Cav3.2 isoform in brain functions is still poorly characterized. Here, we investigate the effect of genetic ablation of this isoform in affective disorders, including anxiety, cognitive functions as well as sensitivity to drugs of abuse. Using a wide range of behavioral assays we show that genetic ablation of the cacna1h gene results in an anxiety-like phenotype, whereas novelty-induced locomotor activity is unaffected. Deletion of the T-type channel Cav3.2 also triggers impairment of hippocampus-dependent recognition memories. Acute and sensitized hyperlocomotion induced by d-amphetamine and cocaine are dramatically reduced in T-type Cav3.2 deficient mice. In addition, the administration of the T-type blocker TTA-A2 prevented the expression of locomotor sensitization observed in wildtype mice. In conclusion, our data reveal that physiological activity of this specific Ca2+ channel is required for affective and cognitive behaviors. Moreover, our work highlights the interest of T-type channel blockers as therapeutic strategies to reverse drug-associated alterations. PMID:24672455

  18. Application of confocal microscopy on glutamate-induced intracellular calcium transient in neurons

    NASA Astrophysics Data System (ADS)

    Zhu, Geng; Zhou, Wei; Zhang, Yuan; Liu, Xiuli; Wu, Yuxiang; Luo, Qingming

    2006-02-01

    Intracellular calcium, as an important second messenger, plays a significant role in cell signaling transduction and metabolism. Glutamate can induce the intracellular calcium transient through triggering diverse signaling pathways. To test the effect of glutamate to neurons, we loaded Fluo-3/Am in cultured rat hippocampal neurons, and then acquired two-dimensional fluorescent image by confocal microscopy and the analyzed fluorescent intensity. In cultured neurons, we observed two types of neurons that have different morphology: bipolar-type and pyramidal-type. Inducing [Ca 2+] i transient by glutamate, we found the amplitude and time constant of the response curves of bipolar neurons are larger than those of pyramidal neurons. Further, we induced [Ca 2+] ii transient under different concentrations of glutamate. Two different types of kinetic of the [Ca 2+] i transient have been found, corresponded to the two kinds of neuron. The amplitude of [Ca 2+] i transient increased when applying higher concentration of glutamate in pyramidal neurons; while it decreased in bipolar ones. Responses of neurons bathing in calcium-free extracellular solution to glutamate were different from those bathing in normal solution. [Ca 2+] i transient of pyramidal neurons caused by any concentration were totally blocked; while [Ca 2+] i transient in bipolar neurons caused by high concentration of glutamate (500μM) were partly inhibited. All of the phenomena suggest that different types of cultured hippocampal neurons may have different mechanism of the response to glutamate.

  19. Study of the function of sarcoplasmic reticulum of vascular smooth muscle during activation due to depolarization-induced calcium influx

    SciTech Connect

    Hwang, K.S.

    1987-01-01

    The role of sarcoplasmic reticulum (SR) in vascular smooth muscle was evaluated with respect to regulation of myoplasmic Ca{sup 2+} during the Ca{sup 2+} entry induced by depolarization. Calcium agonist, Bay K8644, stimulated Ca{sup 2+} influx as well as tension in physiological salt solution, (PSS) in contrast to the priming effects due to the depolarization originally reported. Disparity, however, was found between the Ca{sup 2+} entered and tension developed. Correlation between the tension and {sup 45}Ca influx showed a typical threshold phenomenon; the basal Ca{sup 2+} influx can be raised to a certain level (25%) without tension induction, after which a minor increase in Ca{sup 2+} influx produced significant tension. This subthreshold Ca{sup 2+} influx was found accumulated in the caffeine-sensitive Ca stores, the SR. This confirmed the dependency of tension on the rate of Ca{sup 2+} entry demonstrated by a previous report.

  20. Sodium-dependent calcium extrusion and sensitivity regulation in retinal cones of the salamander.

    PubMed Central

    Nakatani, K; Yau, K W

    1989-01-01

    1. Membrane current was recorded from an isolated, dark-adapted salamander cone by sucking its inner segment into a tight-fitting glass pipette containing Ringer solution. The outer segment of the cell was exposed to a bath solution that could be changed rapidly. 2. After removing Na+ from the bath Ringer solution for a short period of time in darkness (the 'loading period'), a transient inward current was observed upon restoring it in bright light. A similar but longer-lasting current was observed when Na+ was restored in the light after a large Ca2+ influx was induced through the light-sensitive conductance in darkness. 3. The above transient current was not observed if Li+ or guanidinium was substituted for Na+ in the light, or if Ba2+ was substituted for Ca2+ during the dark loading period. However, a current was observed if Sr2+ was the substituting ion for Ca2+ during loading. These observations suggested that the current was associated with an electrogenic Na+-dependent Ca2+ efflux at the cone outer segment. 4. The saturated amplitude of the exchange current was 12-25 pA with a mean around 16 pA. This is very comparable to that measured in the outer segment of a salamander rod under similar conditions. 5. By comparing a known Ca2+ load in a cone outer segment to the subsequent charge transfer through the exchange, we estimated that the stoichiometry of the exchange was near 3Na+:1Ca2+. 6. With a small Ca2+ load, or in the presence of Cs+ around the inner segment, the final temporal decline of the Na+-Ca2+ exchange current was roughly exponential, with a mean time constant of about 100 ms. This decline is about four times faster than that measured in rods. We interpret the shorter time constant in cones to reflect a faster rate of decline of intracellular free Ca2+ in their outer segments resulting from the exchange activity. 7. In the absence of external Na+, and hence any Na+-dependent Ca2+ efflux, the absolute sensitivity of a cone to a dim flash was

  1. Blockade of store-operated calcium entry alleviates high glucose-induced neurotoxicity via inhibiting apoptosis in rat neurons.

    PubMed

    Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang

    2016-07-25

    Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. PMID:27234048

  2. Calmodulin-dependent protein kinases mediate calcium-induced slow motility of mammalian outer hair cells.

    PubMed

    Puschner, B; Schacht, J

    1997-08-01

    Cochlear outer hair cells in vitro respond to elevation of intracellular calcium with slow shape changes over seconds to minutes ('slow motility'). This process is blocked by general calmodulin antagonists suggesting the participation of calcium/calmodulin-dependent enzymatic reactions. The present study proposes a mechanism for these reactions. Length changes of outer hair cells isolated from the guinea pig cochlea were induced by exposure to the calcium ionophore ionomycin. ATP levels remained unaffected by this treatment ruling out depletion of ATP (by activation of calcium-dependent ATPases) as a cause of the observed shape changes. Involvement of protein kinases was suggested by the inhibition of shape changes by K252a, a broad-spectrum inhibitor of protein kinase activity. Furthermore, the inhibitors ML-7 and ML-9 blocked the shape changes at concentrations compatible with inhibition of myosin light chain kinase (MLCK). KN-62, an inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), also attenuated the length changes. Inhibitors with selectivity for cyclic nucleotide-dependent protein kinases (H-89, staurosporine) were tested to assess potential additional contributions by such enzymes. The dose dependence of their action supported the notion that the most likely mechanism of slow motility involves phosphorylation reactions catalyzed by MLCK or CaMKII or both. PMID:9282907

  3. The role of prenucleation clusters in surface-induced calcium phosphate crystallization

    NASA Astrophysics Data System (ADS)

    Dey, Archan; Bomans, Paul H. H.; Müller, Frank A.; Will, Julia; Frederik, Peter M.; de With, Gijsbertus; Sommerdijk, Nico A. J. M.

    2010-12-01

    Unravelling the processes of calcium phosphate formation is important in our understanding of both bone and tooth formation, and also of pathological mineralization, for example in cardiovascular disease. Serum is a metastable solution from which calcium phosphate precipitates in the presence of calcifiable templates such as collagen, elastin and cell debris. A pathological deficiency of inhibitors leads to the uncontrolled deposition of calcium phosphate. In bone and teeth the formation of apatite crystals is preceded by an amorphous calcium phosphate (ACP) precursor phase. ACP formation is thought to proceed through prenucleation clusters-stable clusters that are present in solution already before nucleation-as was recently demonstrated for CaCO3 (refs 15,16). However, the role of such nanometre-sized clusters as building blocks for ACP has been debated for many years. Here we demonstrate that the surface-induced formation of apatite from simulated body fluid starts with the aggregation of prenucleation clusters leading to the nucleation of ACP before the development of oriented apatite crystals.

  4. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    PubMed Central

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  5. Comparison of calcium phosphate coatings formed on femtosecond laser-induced and sand-blasted titanium

    NASA Astrophysics Data System (ADS)

    Liang, C. Y.; Yang, X. J.; Wei, Q.; Cui, Z. D.

    2008-11-01

    High energy femtosecond laser process was employed to create regular surface patterning on titanium while sand blasting treatment made a coarse surface. Both laser-induced titanium and blasted titanium could promote the formation of calcium phosphate compounds after the acid and alkali treatment, but little crystallized hydroxyapatite was grown on the laser-induced titanium in 1.5SBF only for 6 h, whereas Ca 4P 6O 19 was formed on the sand-blasted titanium. The femtosecond laser process together with common acid and alkali treatment might provide potential choice to enhance the biocompatibility of titanium and its alloys.

  6. High dietary calcium intake does not counteract disuse-induced bone loss

    NASA Astrophysics Data System (ADS)

    Baecker, N.; Boese, A.; Smith, S. M.; Heer, M.

    Reduction of mechanical stress on bone inhibits osteoblast-mediated bone formation, increases osteoclast-mediated bone resorption, and leads to what has been called disuse osteoporosis. Prolonged therapeutic bed rest, immobilization and space flight are common causes of disuse osteoporosis. There are sufficient data supporting the use of calcium in combination with vitamin D in the prevention and treatment of postmenopausal osteoporosis. In our study we examined the potential of high dietary calcium intake as a nutrition therapy for disuse-induced bone loss during head-down bed rest in healthy young men. In 2 identical metabolic ward, head-down bed rest (HDBR) experiments (crossover design), we studied the effect of high dietary calcium intake (2000 mg/d) in comparison to the recommended calcium intake of 1000 mg/d on markers of bone turnover. Experiment A (EA) was a 6-day randomized, controlled HDBR study. Experiment B (EB) was a 14-day randomized, controlled HDBR study. In both experiments, the test subjects stayed under well-controlled environmental conditions in our metabolic ward. Subjects' diets in the relevant study phases (HDBR versus Ambulatory Control) of EA and EB were identical except for the calcium intake. The subjects obtained 2000 mg/d Calcium in EA and 2000 mg/d in EB. Blood was drawn at baseline, before entering the relevant intervention period, on day 5 in study EA, and on days 6, 11 and 14 in study EB. Serum calcium, bone formation markers - Procollagen-I-C-Propeptide (PICP) and bone alkaline phosphatase (bAP) were analyzed in serum. 24h-urine was collected throughout the studies for determination of the excretion of calcium (UCaV) and a bone resorption marker, C-terminal telopeptide of collagen type I (UCTX). In both studies, serum calcium levels were unchanged. PICP tended to decrease in EA (p=0.08). In EB PICP decreased significantly over time (p=0.003) in both the control and HDBR periods, and tended to further decrease in the HDBR period (p

  7. Effects of L/N-type calcium channel antagonist, cilnidipine on progressive renal injuries in Dahl salt-sensitive rats.

    PubMed

    Konda, Tomoyuki; Enomoto, Azusa; Takahara, Akira; Yamamoto, Hiroshi

    2006-05-01

    The sympathetic nerve activity plays an important role on the renal function through the vasoactive system and the renin-angiotensin system. Although interest in the renal protective effects of anti-sympathetic agents has been increased, there are not enough data to clarify this efficiency. Therefore, we investigated the effects of L/N-type calcium channel antagonist, cilnidipine on progressive renal injury in Dahl salt-sensitive (Dahl S) rats. Male Dahl S rats (6 weeks of age) were fed a high salt (4% NaCl) diet. They were divided into groups with similar blood pressure at 12 weeks of age and they received vehicle (n=7) or cilnidipine (30 mg/kg/d as food admix, n=9) for 8 weeks. Cilnidipine treatment suppressed the increase in systolic blood pressure. Although urinary protein excretion was not influenced, cilnidipine inhibited the increase in blood urea nitrogen and decrease in creatinine clearance. Histological investigation revealed that progression of glomerular sclerosis was inhibited in cilnidipine treatment group. Of notes, cilnidipine reduced plasma norepinephrine level and plasma rennin activity compared with vehicle-treated Dahl S rats. These data indicated that cilnidipine has suppressive effects against progressive renal injury in Dahl S rats. This effect is not only explained by the L-type calcium channel blocking action that lowered blood pressure, but also partially explained by the N-type calcium channel blocking action that lead to suppression of the sympathetic nerve activity and renin-angiotensin system. PMID:16651722

  8. Parathyroid hormone suppression by intravenous 1,25-dihydroxyvitamin D. A role for increased sensitivity to calcium.

    PubMed Central

    Delmez, J A; Tindira, C; Grooms, P; Dusso, A; Windus, D W; Slatopolsky, E

    1989-01-01

    Numerous in vitro studies in experimental animals have demonstrated a direct suppressive effect of 1,25-dihydroxyvitamin D (1,25(OH)2D) on parathyroid hormone (PTH) synthesis. We therefore sought to determine whether such an effect could be demonstrated in uremic patients undergoing maneuvers designed to avoid changes in serum calcium concentrations. In addition, the response of the parathyroid gland in patients undergoing hypercalcemic suppression (protocol I) and hypocalcemic stimulation (protocol II) before and after 2 wk of intravenous 1,25(OH)2D was evaluated. In those enlisted in protocol I, PTH values fell from 375 +/- 66 to 294 +/- 50 pg (P less than 0.01) after 1,25(OH)2D administration. During hypercalcemic suppression, the "set point" (PTH max + PTH min/2) for PTH suppression by calcium fell from 5.24 +/- 0.14 to 5.06 +/- 0.15 mg/dl (P less than 0.05) with 1,25(OH)2D. A similar decline in PTH levels after giving intravenous 1,25(OH)2D was noted in protocol II patients. During hypocalcemic stimulation, the parathyroid response was attenuated by 1,25(OH)2D. We conclude that intravenous 1,25(OH)2D directly suppresses PTH secretion in uremic patients. This suppression, in part, appears to be due to increased sensitivity of the gland to ambient calcium levels. PMID:2703535

  9. Fracture Sealing with Microbially-Induced Calcium Carbonate Precipitation: A Field Study.

    PubMed

    Phillips, Adrienne J; Cunningham, Alfred B; Gerlach, Robin; Hiebert, Randy; Hwang, Chiachi; Lomans, Bartholomeus P; Westrich, Joseph; Mantilla, Cesar; Kirksey, Jim; Esposito, Richard; Spangler, Lee

    2016-04-01

    A primary environmental risk from unconventional oil and gas development or carbon sequestration is subsurface fluid leakage in the near wellbore environment. A potential solution to remediate leakage pathways is to promote microbially induced calcium carbonate precipitation (MICP) to plug fractures and reduce permeability in porous materials. The advantage of microbially induced calcium carbonate precipitation (MICP) over cement-based sealants is that the solutions used to promote MICP are aqueous. MICP solutions have low viscosities compared to cement, facilitating fluid transport into the formation. In this study, MICP was promoted in a fractured sandstone layer within the Fayette Sandstone Formation 340.8 m below ground surface using conventional oil field subsurface fluid delivery technologies (packer and bailer). After 24 urea/calcium solution and 6 microbial (Sporosarcina pasteurii) suspension injections, the injectivity was decreased (flow rate decreased from 1.9 to 0.47 L/min) and a reduction in the in-well pressure falloff (>30% before and 7% after treatment) was observed. In addition, during refracturing an increase in the fracture extension pressure was measured as compared to before MICP treatment. This study suggests MICP is a promising tool for sealing subsurface fractures in the near wellbore environment. PMID:26911511

  10. Construction of two ureolytic model organisms for the study of microbially induced calcium carbonate precipitation.

    PubMed

    Connolly, James; Kaufman, Megan; Rothman, Adam; Gupta, Rashmi; Redden, George; Schuster, Martin; Colwell, Frederick; Gerlach, Robin

    2013-09-01

    Two bacterial strains, Pseudomonas aeruginosa MJK1 and Escherichia coli MJK2, were constructed that both express green fluorescent protein (GFP) and carry out ureolysis. These two novel model organisms are useful for studying bacterial carbonate mineral precipitation processes and specifically ureolysis-driven microbially induced calcium carbonate precipitation (MICP). The strains were constructed by adding plasmid-borne urease genes (ureABC, ureD and ureFG) to the strains P. aeruginosa AH298 and E. coli AF504gfp, both of which already carried unstable GFP derivatives. The ureolytic activities of the two new strains were compared to the common, non-GFP expressing, model organism Sporosarcina pasteurii in planktonic culture under standard laboratory growth conditions. It was found that the engineered strains exhibited a lower ureolysis rate per cell but were able to grow faster and to a higher population density under the conditions of this study. Both engineered strains were successfully grown as biofilms in capillary flow cell reactors and ureolysis-induced calcium carbonate mineral precipitation was observed microscopically. The undisturbed spatiotemporal distribution of biomass and calcium carbonate minerals were successfully resolved in 3D using confocal laser scanning microscopy. Observations of this nature were not possible previously because no obligate urease producer that expresses GFP had been available. Future observations using these organisms will allow researchers to further improve engineered application of MICP as well as study natural mineralization processes in model systems. PMID:23835134

  11. Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death

    PubMed Central

    Voccoli, V; Tonazzini, I; Signore, G; Caleo, M; Cecchini, M

    2014-01-01

    Globoid cell leukodystrophy (GLD) is a metabolic disease caused by mutations in the galactocerebrosidase (GALC) gene. GALC is a lysosomal enzyme whose function is to degrade galacto-lipids, including galactosyl-ceramide and galactosyl-sphingosine (psychosine, PSY). GALC loss of function causes progressive intracellular accumulation of PSY. It is widely held that PSY is the main trigger for the degeneration of myelinating cells and progressive white-matter loss. However, still little is known about the molecular mechanisms by which PSY imparts toxicity. Here, we address the role of calcium dynamics during PSY-induced cell death. Using the human oligodendrocyte cell line MO3.13, we report that cell death by PSY is accompanied by robust cytosolic and mitochondrial calcium (Ca2+) elevations, and by mitochondrial reactive oxygen species (ROS) production. Importantly, we demonstrate that the reduction of extracellular calcium content by the chelating agent ethylenediaminetetraacetic acid can decrease intra-mitochondrial ROS production and enhance cell viability. Antioxidant administration also reduces mitochondrial ROS production and cell loss, but this treatment does not synergize with Ca2+ chelation. Our results disclose novel intracellular pathways involved in PSY-induced death that may be exploited for therapeutic purposes to delay GLD onset and/or slow down its progression. PMID:25412308

  12. Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes

    PubMed Central

    Homma, Ryota; Baker, Bradley J.; Jin, Lei; Garaschuk, Olga; Konnerth, Arthur; Cohen, Lawrence B.; Zecevic, Dejan

    2009-01-01

    This review presents three examples of using voltage- or calcium-sensitive dyes to image the activity of the brain. Our aim is to discuss the advantages and disadvantages of each method with particular reference to its application to the study of the brainstem. Two of the examples use wide-field (one-photon) imaging; the third uses two-photon scanning microscopy. Because the measurements have limited signal-to-noise ratio, the paper also discusses the methodological aspects that are critical for optimizing the signal. The three examples are the following. (i) An intracellularly injected voltage-sensitive dye was used to monitor membrane potential in the dendrites of neurons in in vitro preparations. These experiments were directed at understanding how individual neurons convert complex synaptic inputs into the output spike train. (ii) An extracellular, bath application of a voltage-sensitive dye was used to monitor population signals from different parts of the dorsal brainstem. We describe recordings made during respiratory activity. The population signals indicated four different regions with distinct activity correlated with inspiration. (iii) Calcium-sensitive dyes can be used to label many individual cells in the mammalian brain. This approach, combined with two-photon microscopy, made it possible to follow the spike activity in an in vitro brainstem preparation during fictive respiratory rhythms. The organic voltage- and ion-sensitive dyes used today indiscriminatively stain all of the cell types in the preparation. A major effort is underway to develop fluorescent protein sensors of activity for selectively staining individual cell types. PMID:19651647

  13. Calcium binding domains and calcium-induced conformational transition of SPARC/BM-40/osteonectin, an extracellular glycoprotein expressed in mineralized and nonmineralized tissues

    SciTech Connect

    Engel, J.; Taylor, W.; Paulsson, M.; Sage, H.; Hogan, B.

    1987-11-03

    PSARC, BM-40, and osteonectin are identical or very closely related extracellular proteins of apparent M/sub r/ 43,000 (M/sub r/ 33,000 predicted from sequence). They were originally isolated from parietal endoderm cells, basement membrane producing tumors, and bone, respectively, but are rather widely distributed in various tissues. In view of the calcium binding activity reported for osteonectin, the authors analyzed the SPARC sequence and found two putative calcium binding domains. One is an N-terminal acid region with clusters of glutamic acid residues. This region, although neither ..gamma..-carboxylated nor homologous, resembles the ..gamma..-carboxyglutamic acid (Gla) domain of vitamin K dependent proteins of the blood clotting system in charge density, size of negatively charged clusters, and linkage to the rest of the molecule by a cysteine-rich domain. The other region is an EF-hand calcium binding domain located near the C-terminus. A disulfide bond between the E and F helix is predicted from modeling the EF-hand structure with the known coordinates of intestinal calcium binding protein. The disulfide bridge apparently serves to stabilize the isolated calcium loop in the extracellular protein. As observed for cytoplasmic EF-hand-containing proteins and for Gla domain containing proteins, a major conformational transition is induced in BM-40 upon binding of several Ca/sup 2 +/ ions. This is accompanied by a 35% increase in ..cap alpha..-helicity. A pronounced sigmoidicity of the dependence of the circular dichroism signal at 220 nm on calcium concentration indicates that the process is cooperative. In view of its properties, abundance, and wide distribution, it is proposed that SPARC/BM-40/osteonectin has a rather general regulatory function in calcium-dependent processes of the extra-cellular matrix.

  14. Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death.

    PubMed

    Liao, Yajin; Hao, Yumin; Chen, Hong; He, Qing; Yuan, Zengqiang; Cheng, Jinbo

    2015-06-01

    Mitochondrial calcium uniporter (MCU) is a conserved Ca(2+) transporter at mitochondrial in eukaryotic cells. However, the role of MCU protein in oxidative stress-induced cell death remains unclear. Here, we showed that ectopically expressed MCU is mitochondrial localized in both HeLa and primary cerebellar granule neurons (CGNs). Knockdown of endogenous MCU decreases mitochondrial Ca(2+) uptake following histamine stimulation and attenuates cell death induced by oxidative stress in both HeLa cells and CGNs. We also found MCU interacts with VDAC1 and mediates VDAC1 overexpression-induced cell death in CGNs. This finding demonstrates that MCU-VDAC1 complex regulates mitochondrial Ca(2+) uptake and oxidative stress-induced apoptosis, which might represent therapeutic targets for oxidative stress related diseases. PMID:25753332

  15. Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Sierra, Ana; Zhu, Zhiyong; Sapay, Nicolas; Sharotri, Vikas; Kline, Crystal F.; Luczak, Elizabeth D.; Subbotina, Ekaterina; Sivaprasadarao, Asipu; Snyder, Peter M.; Mohler, Peter J.; Anderson, Mark E.; Vivaudou, Michel; Zingman, Leonid V.; Hodgson-Zingman, Denice M.

    2013-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac KATP channels. We used real-time monitoring of KATP channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant KATP channel subunits to track the dynamics of KATP channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of KATP channels. This process required phosphorylation of threonine at 180 and 224 and an intact 330YSKF333 endocytosis motif of the KATP channel Kir6.2 pore-forming subunit. A molecular model of the μ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that μ2 docks by interaction with 330YSKF333 and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on μ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac KATP channel subunits. This mechanism couples the surface expression of cardiac KATP channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance. PMID:23223335

  16. Calcium-induced associations of the caseins: a thermodynamic linkage approach to precipitation and resolubilization.

    PubMed

    Farrell, H M; Kumosinski, T F; Pulaski, P; Thompson, M P

    1988-08-15

    Calcium-induced changes in protein solubility play a role in a variety of important biological processes including the deposition of bone and dentin and the secretion of milk. The phenomena of salt-induced (calcium) precipitation of proteins (salting-out), and the resolubilization of these proteins at higher salt concentrations (salting-in) have been studied and quantitated using an approach based on the concepts of Wyman's thermodynamic linkage. Salting-out has been described by a salt-binding constant, k1, the number of moles of salt bound per mole of protein, n, and S1, the fraction soluble at saturation of n; salting-in has been described by corresponding constants k2, m, and S2. Analysis of salt-induced solubility profiles was performed using nonlinear regression analysis. Results of calcium-induced solubility profiles of two genetic variants of alpha s1-casein (alpha s1-A), (alpha s1-B), and beta-casein C (beta-C) at 37 degrees C, where hydrophobic interactions are maximized, showed no salting-in behavior and for salting-out, yielded k1 values of 157, 186, and 156 liters.mol-1 and n values of 8, 8, and 4, respectively. The values of k1 can be correlated with the apparent association constant for calcium binding to casein, while the values of n can be correlated with the number of calcium binding sites of the respective caseins. At 1 degree C, where hydrophobic interactions are minimized, nominally only hydrophilic and electrostatic interactions can be linked to the salt-induced solubility profiles; here beta-C is totally soluble at all calcium concentrations and alpha s1-B and alpha s1-A were now found to have salting-in parameters, k2 and m, of 2.5 liters.mol-1 and 4, and 11 liters.mol-1 and 8, respectively. alpha s1-A is more readily salted-in and studies on the variation of S1 with added KCl for this protein at 1 degree C indicated that salting-in is also mainly electrostatic in nature and may result from competition between K+ and Ca2+ for binding sites

  17. Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1992-01-01

    Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.

  18. Spontaneous calcium signals induced by gap junctions in a network model of astrocytes

    NASA Astrophysics Data System (ADS)

    Kazantsev, V. B.

    2009-01-01

    The dynamics of a network model of astrocytes coupled by gap junctions is investigated. Calcium dynamics of the single cell is described by the biophysical model comprising the set of three nonlinear differential equations. Intercellular dynamics is provided by the diffusion of inositol 1,4,5-trisphosphate (IP3) through gap junctions between neighboring astrocytes. It is found that the diffusion induces the appearance of spontaneous activity patterns in the network. Stability of the network steady state is analyzed. It is proved that the increase of the diffusion coefficient above a certain critical value yields the generation of low-amplitude subthreshold oscillatory signals in a certain frequency range. It is shown that such spontaneous oscillations can facilitate calcium pulse generation and provide a certain time scale in astrocyte signaling.

  19. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes.

    PubMed

    Larman, Mark G; Sheehan, Courtney B; Gardner, David K

    2006-01-01

    Despite the success of embryo cyropreservation, routine oocyte freezing has proved elusive with only around 200 children born since the first reported birth in 1986. The reason for the poor efficiency is unclear, but evidence of zona pellucida hardening following oocyte freezing indicates that current protocols affect oocyte physiology. Here we report that two cryoprotectants commonly used in vitrification procedures, dimethyl sulfoxide (DMSO) and ethylene glycol, cause a large transient increase in intracellular calcium concentration in mouse metaphase II (MII) oocytes comparable to the initial increase triggered at fertilization. Removal of extracellular calcium from the medium failed to affect the response exacted by DMSO challenge, but significantly reduced the ethylene glycol-induced calcium increase. These results suggest that the source of the DMSO-induced calcium increase is solely from the internal calcium pool, as opposed to ethylene glycol that causes an influx of calcium across the plasma membrane from the external medium. By carrying out vitrification in calcium-free media, it was found that zona hardening is significantly reduced and subsequent fertilization and development to the two-cell stage significantly increased. Furthermore, such calcium-free treatment appears not to affect the embryo adversely, as shown by development rates to the blastocyst stage and cell number/allocation. Since zona hardening is one of the early activation events normally triggered by the sperm-induced calcium increases observed at fertilization, it is possible that other processes are negatively affected by the calcium rise caused by cryoprotectants used during oocyte freezing, which might explain the current poor efficiency of this technique. PMID:16388009

  20. Different Stress-Induced Calcium Signatures Are Reported by Aequorin-Mediated Calcium Measurements in Living Cells of Aspergillus fumigatus

    PubMed Central

    Bettgenhaeuser, Jan; Iakobachvili, Nino; Bignell, Elaine M.; Read, Nick D.

    2015-01-01

    Aspergillus fumigatus is an inhaled fungal pathogen of human lungs, the developmental growth of which is reliant upon Ca2+-mediated signalling. Ca2+ signalling has regulatory significance in all eukaryotic cells but how A. fumigatus uses intracellular Ca2+ signals to respond to stresses imposed by the mammalian lung is poorly understood. In this work, A. fumigatus strains derived from the clinical isolate CEA10, and a non-homologous recombination mutant ΔakuBKU80, were engineered to express the bioluminescent Ca2+-reporter aequorin. An aequorin-mediated method for routine Ca2+ measurements during the early stages of colony initiation was successfully developed and dynamic changes in cytosolic free calcium ([Ca2+]c) in response to extracellular stimuli were measured. The response to extracellular challenges (hypo- and hyper-osmotic shock, mechanical perturbation, high extracellular Ca2+, oxidative stress or exposure to human serum) that the fungus might be exposed to during infection, were analysed in living conidial germlings. The ‘signatures’ of the transient [Ca2+]c responses to extracellular stimuli were found to be dose- and age-dependent. Moreover, Ca2+-signatures associated with each physico-chemical treatment were found to be unique, suggesting the involvement of heterogeneous combinations of Ca2+-signalling components in each stress response. Concordant with the involvement of Ca2+-calmodulin complexes in these Ca2+-mediated responses, the calmodulin inhibitor trifluoperazine (TFP) induced changes in the Ca2+-signatures to all the challenges. The Ca2+-chelator BAPTA potently inhibited the initial responses to most stressors in accordance with a critical role for extracellular Ca2+ in initiating the stress responses. PMID:26402916

  1. Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system.

    PubMed

    Lauchnor, Ellen G; Schultz, Logan N; Bugni, Steven; Mitchell, Andrew C; Cunningham, Alfred B; Gerlach, Robin

    2013-02-01

    Strontium-90 is a principal radionuclide contaminant in the subsurface at several Department of Energy sites in the Western U.S., causing a threat to groundwater quality in areas such as Hanford, WA. In this work, we used laboratory-scale porous media flow cells to examine a potential remediation strategy employing coprecipitation of strontium in carbonate minerals. CaCO(3) precipitation and strontium coprecipitation were induced via ureolysis by Sporosarcina pasteurii in two-dimensional porous media reactors. An injection strategy using pulsed injection of calcium mineralization medium was tested against a continuous injection strategy. The pulsed injection strategy involved periods of lowered calcite saturation index combined with short high fluid velocity flow periods of calcium mineralization medium followed by stagnation (no-flow) periods to promote homogeneous CaCO(3) precipitation. By alternating the addition of mineralization and growth media the pulsed strategy promoted CaCO(3) precipitation while sustaining the ureolytic culture over time. Both injection strategies achieved ureolysis with subsequent CaCO(3) precipitation and strontium coprecipitation. The pulsed injection strategy precipitated 71-85% of calcium and 59% of strontium, while the continuous injection was less efficient and precipitated 61% of calcium and 56% of strontium. Over the 60 day operation of the pulsed reactors, ureolysis was continually observed, suggesting that the balance between growth and precipitation phases allowed for continued cell viability. Our results support the pulsed injection strategy as a viable option for ureolysis-induced strontium coprecipitation because it may reduce the likelihood of injection well accumulation caused by localized mineral plugging while Sr coprecipitation efficiency is maintained in field-scale applications. PMID:23282003

  2. Calcium efflux from the endoplasmic reticulum regulates cisplatin-induced apoptosis in human cervical cancer HeLa cells

    PubMed Central

    SHEN, LUYAN; WEN, NAIYAN; XIA, MEIHUI; ZHANG, YU; LIU, WEIMIN; XU, YE; SUN, LIANKUN

    2016-01-01

    The function of calcium efflux from the endoplasmic reticulum (ER) in cisplatin-induced apoptosis is not fully understood in cancer cells. The present study used western blot analysis, flow cytometry, immunofluorescence and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay to investigate calcium signaling in human cervical cancer cells exposed to cisplatin. In the present study, treatment with cisplatin increased free Ca2+ levels in the cytoplasm and mitochondria of human cervical cancer HeLa cells, which further triggers the mitochondria-mediated and ER stress-associated apoptosis pathways. Notably, blocking calcium signaling using the calcium chelating agent bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid acetoxymethyl ester inhibited cisplatin-induced apoptosis via downregulation of the calcium-dependent proteases, the calpains, and innate apoptosis proteins, such as caspsae-3, caspase-4 and C/EBP homologous protein (CHOP). In addition, use of the inositol triphosphate receptor inhibitor, 2-aminoethyl diphenylborinate, to inhibit calcium efflux from the ER resulted in similar effects. This data indicated that calcium efflux from the ER plays a significant role in cisplatin-induced apoptosis in human cervical cancer HeLa cells, which provides further mechanistic insights into the tumor cell-killing effect of cisplatin and potential therapeutic strategies to improve cisplatin chemotherapy. PMID:27073489

  3. Neurotoxic effects of bisphenol AF on calcium-induced ROS and MAPKs.

    PubMed

    Lee, Soyoung; Kim, Yoo Kyeong; Shin, Tae-Yong; Kim, Sang-Hyun

    2013-04-01

    Bisphenol AF (BPAF), a newly introduced chemical structurally related to bisphenol A, is used extensively in fluoroelastomers and polyesters, and has been known to induce estrogen-dependent responses. However, the toxicity of BPAF is largely unknown except for its endocrine-related effects. In this study, we investigated the neurotoxicity of BPAF and underlying mechanisms of action using hippocampal cell line (HT-22) and mouse primary neuronal cells. We found that BPAF induced apoptosis in both HT-22 and primary neuronal cells. In order to clarify the underlying mechanisms of BPAF-induced apoptosis, various signaling molecules were evaluated. BPAF increased the level of intracellular calcium, followed by the generation of reactive oxygen species (ROS). BPAF upregulated the phosphorylation of mitogen-activated protein kinase: extracellular signal-regulated kinase, p38 and c-Jun N-terminal kinase (JNK), and nuclear translocation of nuclear factor-κB. Using specific inhibitors, we confirmed that calcium, ROS, p38, and JNK mediated the BPAF-induced apoptosis. In addition, BPAF inhibited microglial activation in a microglia/neuroblastoma coculture model by the reduction of nitric oxide production. We found that BPAF interrupted the normal physiologic functions of microglia at non-toxic levels. Taken together, our results suggest that BPAF, the substitute of BPA, also have neurotoxic properties. PMID:22996013

  4. Iron Mediates N-Methyl-d-aspartate Receptor-dependent Stimulation of Calcium-induced Pathways and Hippocampal Synaptic Plasticity*

    PubMed Central

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.

    2011-01-01

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883

  5. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan.

    PubMed

    Cuong, Dang Van; Kim, Hyoung Kyu; Marquez, Jubert; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2016-03-01

    Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca(2+), which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca(2+) uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca(2+) uniporter has an important regulatory role in BG-induced mast cell degranulation. PMID:26937218

  6. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan

    PubMed Central

    Cuong, Dang Van; Kim, Hyoung Kyu; Marquez, Jubert; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo

    2016-01-01

    Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca2+, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca2+ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca2+ uniporter has an important regulatory role in BG-induced mast cell degranulation. PMID:26937218

  7. Modulation of ischemic-induced damage to cerebral adenylate cyclase in gerbils by calcium channel blockers.

    PubMed

    Christie-Pope, B C; Palmer, G C

    1986-12-01

    It has been previously established that prolonged bilateral carotid occlusion followed by recirculation produces damage to the synaptic enzyme adenylate cyclase in the frontal cortex of the gerbil. Since calcium entrance into the brain may account in part for the deleterious consequences of stroke, the present study examined whether pretreatment with calcium channel blockers would modify the effects of 60 min of bilateral ischemia plus 40 min of reflow on various parameters of cortical adenylate cyclase activation. In this context activation of cerebral homogenates by norepinephrine with or without 5'-guanylyl imidodiphosphate was preserved by pretreatment of ischemic gerbils with verapamil but worsened by flunarizine. In contrast, in particulate fractions (treated with EGTA to reduce metallic ion levels) the damage to the Mn2+-sensitive catalytic site of adenylate cyclase was prevented only by flunarizine. Pretreatment with the two calcium channel blockers resulted in an elevated basal activity of the enzyme, thereby reducing the response in the homogenate preparation to forskolin. Gerbils pretreated with verapamil tended to have an increased ability for survival resulting from the ischemic episode. Under in vitro conditions the enzyme preparations were not markedly influenced by either drug. PMID:3508245

  8. Combined use of UV-labile calcium chelators and calcium-sensitive dyes in a microscope with two light sources influencing different regions in a group of coordinated contracting cardiac myocytes

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Goetz; Greulich, Karl-Otto

    1997-12-01

    The coordination of excitation in a biological system of cells such as cardiac myocytes in heart tissue has crucial influence on the function of the entire organ. This coordinated behavior can be visualized in a small group of embryonic cardiac myocytes derived from the hearts of unborn chicken. Loaded with a calcium sensitive dye the excitation can be imaged via the occurring transient rise in cytosolic calcium concentration. It can be shown that in regions with physiological or morphological restrictions the transient rise in cytosolic calcium occurs with a temporal delay compared to the ordinary array of coupled myocytes. The height of the transient rise of cytosolic calcium is related to the ability of the individual cell to participate in the coordinated contraction. The free cytosolic calcium concentration is decreased with the UV-labile calcium, chelator diazo-2. Our setup allows to decrease the free cytosolic calcium in a single cell of the contracting array of cells. This allows us to introduce mismatches in selected regions of the coordinated contraction and to visualize the effects simultaneously.

  9. Neuronal Expression of the Human Neuropeptide S Receptor NPSR1 Identifies NPS-Induced Calcium Signaling Pathways

    PubMed Central

    Erdmann, Frank; Kügler, Sebastian; Blaesse, Peter; Lange, Maren D.; Skryabin, Boris V.; Pape, Hans-Christian; Jüngling, Kay

    2015-01-01

    The neuropeptide S (NPS) system was discovered as a novel neurotransmitter system a decade ago and has since been identified as a key player in the modulation of fear and anxiety. Genetic variations of the human NPS receptor (NPSR1) have been associated with pathologies like panic disorders. However, details on the molecular fundamentals of NPSR1 activity in neurons remained elusive. We expressed NPSR1 in primary hippocampal cultures. Using single-cell calcium imaging we found that NPSR1 stimulation induced calcium mobilization from the endoplasmic reticulum via activation of IP3 and ryanodine receptors. Store-operated calcium channels were activated in a downstream process mediating entry of extracellular calcium. We provide the first detailed analysis of NPSR1 activity and the underlying intracellular pathways with respect to calcium mobilization in neurons. PMID:25714705

  10. D-galactosamine induced hepatocyte apoptosis is inhibited in vivo and in cell culture by a calcium calmodulin antagonist, chlorpromazine, and a calcium channel blocker, verapamil.

    PubMed

    Tsutsui, Shigeki; Itagaki, Shin-ichi; Kawamura, Seiji; Harada, Ken-ichi; Karaki, Hideaki; Doi, Kunio; Yoshikawa, Yasuhiro

    2003-01-01

    Studies were conducted in C57BL/6N Crj male mice and in cultured hepatocytes to clarify the relationship between galactosamine (GaIN) induced apoptosis and [Ca2+]i kinetics. Chlorpromazine (CPZ), a Ca(2+)-calmodulin antagonist, and verapamil (VR), a Ca(2+)-channel blocker each inhibited GaIN-induced DNA fragmentation and the appearance of apoptotic bodies. The kinetics of calcium uptake were evaluated using a calcium analyzer with the acetoxymethyl ester of fura-PE3 (fura-PE3/AM, 2.5 microM) as the calcium reporter. An increase in [Ca2+]i was detected in the cultured hepatocytes within 3 hours after treatment with 20 mM GaIN; this increase was inhibited by pretreatment with either 20 microM CPZ or 30 microM VR. Ca2+ imaging by confocal laser scanning microscopy showed that increase in [Ca2+]i after treatment with GaIN was initially localized around nuclei, while [Ca2+]i signals were later diffuse and observed throughout the cytoplasm. The activities of lactate dehydrogenase (LDH) and serum glutamate-pyruvate transaminase (sGPT), used as indicators of plasma membrane damage and leakage, however, were not reduced by pretreatment with CPZ or VR. From these findings, we infer that the DNA fragmentation in GaIN-induced hepatocyte apoptosis is associated with an elevation in the perinuclear concentration of Ca2+, but GaIN-induced necrotic cell death is triggered through pathway(s) that are insensitive to blockage of Ca2+ influx and therefore appear to occur independently of elevation in [Ca2+]i. These results help to clarify the role of calcium flux in hepatocyte apoptosis and necrosis induced by exposure to hepatotoxins in vivo and in vitro. PMID:12638236

  11. Cocaine-induced locomotor sensitization in rats correlates with nucleus accumbens activity on manganese-enhanced MRI.

    PubMed

    Perrine, Shane A; Ghoddoussi, Farhad; Desai, Kirtan; Kohler, Robert J; Eapen, Ajay T; Lisieski, Michael J; Angoa-Perez, Mariana; Kuhn, Donald M; Bosse, Kelly E; Conti, Alana C; Bissig, David; Berkowitz, Bruce A

    2015-11-01

    A long-standing goal of substance abuse research has been to link drug-induced behavioral outcomes with the activity of specific brain regions to understand the neurobiology of addiction behaviors and to search for drug-able targets. Here, we tested the hypothesis that cocaine produces locomotor (behavioral) sensitization that correlates with increased calcium channel-mediated neuroactivity in brain regions linked with drug addiction, such as the nucleus accumbens (NAC), anterior striatum (AST) and hippocampus, as measured using manganese-enhanced MRI (MEMRI). Rats were treated with cocaine for 5 days, followed by a 2-day drug-free period. The following day, locomotor sensitization was quantified as a metric of cocaine-induced neuroplasticity in the presence of manganese. Immediately following behavioral testing, rats were examined for changes in calcium channel-mediated neuronal activity in the NAC, AST, hippocampus and temporalis muscle, which was associated with behavioral sensitization using MEMRI. Cocaine significantly increased locomotor activity and produced behavioral sensitization compared with saline treatment of control rats. A significant increase in MEMRI signal intensity was determined in the NAC, but not AST or hippocampus, of cocaine-treated rats compared with saline-treated control rats. Cocaine did not increase signal intensity in the temporalis muscle. Notably, in support of our hypothesis, behavior was significantly and positively correlated with MEMRI signal intensity in the NAC. As neuronal uptake of manganese is regulated by calcium channels, these results indicate that MEMRI is a powerful research tool to study neuronal activity in freely behaving animals and to guide new calcium channel-based therapies for the treatment of cocaine abuse and dependence. PMID:26411897

  12. Cinnamaldehyde and cinnamaldehyde-containing micelles induce relaxation of isolated porcine coronary arteries: role of nitric oxide and calcium

    PubMed Central

    Raffai, Gábor; Kim, Byungkuk; Park, Sanga; Khang, Gilson; Lee, Dongwon; Vanhoutte, Paul M

    2014-01-01

    Background and purpose Cinnamaldehyde, a major component of cinnamon, induces the generation of reactive oxygen species and exerts vasodilator and anticancer effects, but its short half-life limits its clinical use. The present experiments were designed to compare the acute relaxing properties of cinnamaldehyde with those of self-assembling polymer micelles either loaded with cinnamaldehyde or consisting of a polymeric prodrug [poly(cinnamaldehyde)] that incorporates the compound in its backbone. Methods Rings of porcine coronary arteries were contracted with the thromboxane A2 receptor agonist U46619 or 40 mM KCl, and changes in isometric tension were recorded. Results Cinnamaldehyde induced concentration-dependent but endothelium-independent, nitric oxide synthase (NOS)-independent, cyclooxygenase-independent, soluble guanylyl cyclase (sGC)-independent, calcium-activated potassium-independent, and TRPA1 channel-independent relaxations. Cinnamaldehyde also inhibited the contractions induced by 40 mM KCl Ca2+ reintroduction in 40 mM KCl Ca2+-free solution or by the Ca2+ channel opener Bay K8644. Cinnamaldehyde-loaded control micelles induced complete, partly endothelium-dependent relaxations sensitive to catalase and inhibitors of NOS or sGC, but not cyclooxygenase or TRPA1, channels. Cinnamaldehyde-loaded micelles also inhibited contractions induced by 40 mM KCl Ca2+ reintroduction or Bay K8644. Poly(cinnamaldehyde) micelles induced only partial, endothelium-dependent relaxations that were reduced by inhibitors of NOS or sGC and by catalase and the antioxidant tiron, but not by indomethacin or TRPA1 channel blockers. Conclusion The present findings demonstrate that cinnamaldehyde-loaded and poly(cinnamaldehyde) micelles possess vasodilator properties, but that the mechanism underlying the relaxation that they cause differs from that of cinnamaldehyde, and thus could be used both to relieve coronary vasospasm and for therapeutic drug delivery. PMID:24904214

  13. Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis.

    PubMed

    Zhang, Xiaohui; Zhang, Xiaohua; Xiong, Yiqun; Xu, Chaoying; Liu, Xinliang; Lin, Jian; Mu, Guiping; Xu, Shaogang; Liu, Wenhe

    2016-09-01

    The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction. PMID:27430376

  14. The role of calcium in hypoxia-induced signal transduction and gene expression.

    PubMed

    Seta, Karen A; Yuan, Yong; Spicer, Zachary; Lu, Gang; Bedard, James; Ferguson, Tsuneo K; Pathrose, Peterson; Cole-Strauss, Allyson; Kaufhold, Alexa; Millhorn, David E

    2004-01-01

    Mammalian cells require a constant supply of oxygen in order to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. Sophisticated mechanisms have therefore evolved which allow cells to respond and adapt to hypoxia. Specialized oxygen-sensing cells have the ability to detect changes in oxygen tension and transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in a wide variety of different organisms. An increase in intracellular calcium levels is a primary response of many cell types to hypoxia/ischemia. The response to hypoxia is complex and involves the regulation of multiple signaling pathways and coordinated expression of perhaps hundreds of genes. This review discusses the role of calcium in hypoxia-induced regulation of signal transduction pathways and gene expression. An understanding of the molecular events initiated by changes in intracellular calcium will lead to the development of therapeutic approaches toward the treatment of hypoxic/ischemic diseases and tumors. PMID:15261489

  15. Lead Poisoning Disturbs Oligodendrocytes Differentiation Involved in Decreased Expression of NCX3 Inducing Intracellular Calcium Overload

    PubMed Central

    Ma, Teng; Wu, Xiyan; Cai, Qiyan; Wang, Yun; Xiao, Lan; Tian, Yanping; Li, Hongli

    2015-01-01

    Lead (Pb) poisoning has always been a serious health concern, as it permanently damages the central nervous system. Chronic Pb accumulation in the human body disturbs oligodendrocytes (OLs) differentiation, resulting in dysmyelination, but the molecular mechanism remains unknown. In this study, Pb at 1 μM inhibits OLs precursor cells (OPCs) differentiation via decreasing the expression of Olig 2, CNPase proteins in vitro. Moreover, Pb treatment inhibits the sodium/calcium exchanger 3 (NCX3) mRNA expression, one of the major means of calcium (Ca2+) extrusion at the plasma membrane during OPCs differentiation. Also addition of KB-R7943, NCX3 inhibitor, to simulate Pb toxicity, resulted in decreased myelin basic protein (MBP) expression and cell branching. Ca2+ response trace with Pb and KB-R7943 treatment did not drop down in the same recovery time as the control, which elevated intracellular Ca2+ concentration reducing MBP expression. In contrast, over-expression of NCX3 in Pb exposed OPCs displayed significant increase MBP fluorescence signal in positive regions and CNPase expression, which recovered OPCs differentiation to counterbalance Pb toxicity. In conclusion, Pb exposure disturbs OLs differentiation via affecting the function of NCX3 by inducing intracellular calcium overload. PMID:26287169

  16. A rice membrane calcium-dependent protein kinase is induced by gibberellin.

    PubMed Central

    Abo-el-Saad, M; Wu, R

    1995-01-01

    A rice (Oryza sativa) seed plasma-membrane calcium-dependent serine/threonine protein kinase (CDPK) has been partially purified. Comparing results in seeds that were treated with and without the plant hormone gibberellin (GA) for 10 min showed that rice CDPK was highly induced by GA. After separating solubilized membrane proteins by sodium dodecyl sulfate-gel electrophoresis, followed by renaturation, a radiolabeled phosphoprotein band of approximately 58 kD was detected, and it was apparently produced by autophosphorylation. There are five aspects of the rice CDPK that show similarity to mammalian protein kinase C (PKC) and to other plant CDPKs: (a) Histone IIIS and PKC peptide-ser25 (19-31) are phosphorylated by rice CDPK. (b) The phosphorylation reaction is strictly dependent on calcium. (c) The activity of the rice CDPK is inhibited by either staurosporine or the PKC inhibitory peptide (19-36). (d) Addition of calmodulin has no effect on the activity of the enzyme; however, the CDPK is inhibited by the calmodulin antagonists trifluoperazine and W-7. (e) The rice CDPK reacts with a mammalian anti-PKC antibody in immunoblotting analysis. However, there is one major difference between the rice CDPK and other CDPKs: the rice CDPK is induced by GA, whereas no mammalian PKC or other plant CDPKs are known to be induced by any hormone. PMID:7610167

  17. Cadmium Induces Apoptosis in Freshwater Crab Sinopotamon henanense through Activating Calcium Signal Transduction Pathway

    PubMed Central

    Wang, Jinxiang; Zhang, Pingping; Liu, Na; Wang, Qian; Luo, Jixian; Wang, Lan

    2015-01-01

    Calcium ion (Ca2+) is one of the key intracellular signals, which is implicated in the regulation of cell functions such as impregnation, cell proliferation, differentiation and death. Cadmium (Cd) is a toxic environmental pollutant that can disturb cell functions and even lead to cell death. Recently, we have found that Cd induced apoptosis in gill cells of the freshwater crab Sinopotamon henanense via caspase activation. In the present study, we further investigated the role of calcium signaling in the Cd-induced apoptosis in the animals. Our data showed that Cd triggered gill cell apoptosis which is evidenced by apoptotic DNA fragmentation, activations of caspases-3, -8 and -9 and the presence of apoptotic morphological features. Moreover, Cd elevated the intracellular concentration of Ca2+, the protein concentration of calmodulin (CaM) and the activity of Ca2+-ATPase in the gill cells of the crabs. Pretreatment of the animals with ethylene glycol-bis-(b-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), Ca2+ chelator, inhibited Cd-induced activation of caspases-3, -8 and -9 as well as blocked the Cd-triggered apoptotic DNA fragmentation. The apoptotic morphological features were no longer observed in gill cells pretreated with the Ca2+ signaling inhibitors before Cd treatment. Our results indicate that Cd evokes gill cell apoptosis through activating Ca2+-CaM signaling transduction pathway. PMID:26714174

  18. Glucose-induced alterations of cytosolic free calcium in cultured rat tail artery vascular smooth muscle cells.

    PubMed Central

    Barbagallo, M; Shan, J; Pang, P K; Resnick, L M

    1995-01-01

    We have previously suggested that hyperglycemia per se may contribute to diabetic hypertensive and vascular disease by altering cellular ion content. To more directly investigate the potential role of glucose in this process, we measured cytosolic free calcium in primary cultures of vascular smooth muscle cells isolated from Sprague-Dawley rat tail artery before and after incubation with 5 (basal), 10, 15, and 20 mM glucose. Glucose significantly elevated cytosolic free calcium in a dose- and time-dependent manner, from 110.0 +/- 5.4 to 124.5 +/- 9.0, 192.7 +/- 20.4, and 228.4 +/- 21.9 nM at 5, 10, 15, and 20 mM glucose concentrations, respectively. This glucose-induced cytosolic free calcium elevation was also specific, no change being observed after incubation with equivalent concentrations of L-glucose or mannitol. This glucose effect was also dependent on extracellular calcium and pH, since these calcium changes were inhibited in an acidotic or a calcium-free medium, or by the competitive calcium antagonist lanthanum. We conclude that ambient glucose concentrations within clinically observed limits may alter cellular calcium ion homeostasis in vascular smooth muscle cells. We suggest that these cellular ionic effects of hyperglycemia may underlie the predisposition to hypertension and vascular diseases among diabetic subjects and/or those with impaired glucose tolerance. PMID:7860758

  19. Isoflurane-Induced Caspase-3 Activation Is Dependent on Cytosolic Calcium and Can Be Attenuated by Memantine

    PubMed Central

    Zhang, Guohua; Dong, Yuanlin; Zhang, Bin; Ichinose, Fumito; Wu, Xu; Culley, Deborah J.; Crosby, Gregory

    2008-01-01

    Increasing evidence indicates that caspase activation and apoptosis are associated with a variety of neurodegenerative disorders, including Alzheimer's disease. We reported that anesthetic isoflurane can induce apoptosis, alter processing of the amyloid precursor protein (APP), and increase amyloid-β protein (Aβ) generation. However, the mechanism by which isoflurane induces apoptosis is primarily unknown. We therefore set out to assess effects of extracellular calcium concentration on isoflurane-induced caspase-3 activation in H4 human neuroglioma cells stably transfected to express human full-length APP (H4-APP cells). In addition, we tested effects of RNA interference (RNAi) silencing of IP3 receptor, NMDA receptor, and endoplasmic reticulum (ER) calcium pump, sacro-/ER calcium ATPase (SERCA1). Finally, we examined the effects of the NMDA receptor partial antagonist, memantine, in H4-APP cells and brain tissue of naive mice. EDTA (10 mm), BAPTA (10 μm), and RNAi silencing of IP3 receptor, NMDA receptor, or SERCA1 attenuated capase-3 activation. Memantine (4 μm) inhibited isoflurane-induced elevations in cytosolic calcium levels and attenuated isoflurane-induced caspase-3 activation, apoptosis, and cell viability. Memantine (20 mg/kg, i.p.) reduced isoflurane-induced caspase-3 activation in brain tissue of naive mice. These results suggest that disruption of calcium homeostasis underlies isoflurane-induced caspase activation and apoptosis. We also show for the first time that the NMDA receptor partial antagonist, memantine, can prevent isoflurane-induced caspase-3 activation and apoptosis in vivo and in vitro. These findings, indicating that isoflurane-induced caspase activation and apoptosis are dependent on cytosolic calcium levels, should facilitate the provision of safer anesthesia care, especially for Alzheimer's disease and elderly patients. PMID:18434534

  20. Calcium Flux between the Endoplasmic Reticulum and Mitochondrion Contributes to Poliovirus-Induced Apoptosis▿

    PubMed Central

    Brisac, Cynthia; Téoulé, François; Autret, Arnaud; Pelletier, Isabelle; Colbère-Garapin, Florence; Brenner, Catherine; Lemaire, Christophe; Blondel, Bruno

    2010-01-01

    We show that poliovirus (PV) infection induces an increase in cytosolic calcium (Ca2+) concentration in neuroblastoma IMR5 cells, at least partly through Ca2+ release from the endoplasmic reticulum lumen via the inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) channels. This leads to Ca2+ accumulation in mitochondria through the mitochondrial Ca2+ uniporter and the voltage-dependent anion channel (VDAC). This increase in mitochondrial Ca2+ concentration in PV-infected cells leads to mitochondrial dysfunction and apoptosis. PMID:20861253

  1. Involvement of calcium-sensing receptor in ischemia/reperfusion-induced apoptosis in rat cardiomyocytes

    SciTech Connect

    Zhang Weihua; Fu Songbin; Lu Fanghao . E-mail: lufanghao1973@yahoo.com.cn; Wu Bo; Gong Dongmei; Pan, Zhen-wei; Lv Yanjie; Zhao Yajun; Li Quanfeng; Wang Rui; Yang Baofeng; Xu Changqing . E-mail: xucq@163.com

    2006-09-08

    The calcium-sensing receptor (CaR) is a seven-transmembrane G-protein coupled receptor, which activates intracellular effectors, for example, it causes inositol phosphate (IP) accumulation to increase the release of intracellular calcium. Although intracellular calcium overload has been implicated in the cardiac ischemia/reperfusion (I/R)-induced apoptosis, the role of CaR in the induction of apoptosis has not been fully understood. This study tested the hypothesis that CaR is involved in I/R cardiomyocyte apoptosis by increasing [Ca{sup 2+}]{sub i}. The isolated rat hearts were subjected to 40-min ischemia followed by 2 h of reperfusion, meanwhile GdCl{sub 3} was added to reperfusion solution. The expression of CaR increased at the exposure to GdCl{sub 3} during I/R. By laser confocal microscopy, it was observed that the intracellular calcium was significantly increased and exhibited a collapsed {delta}{psi} {sub m}, as monitored by 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide (JC-1) during reperfusion with GdCl{sub 3}. Furthermore, the number of apoptotic cells was significantly increased as shown by TUNEL assay. Typical apoptotic cells were observed with transmission electron microscopy in I/R with GdCl{sub 3} but not in the control group. The expression of cytosolic cytochrome c and activated caspase-9 and caspase-3 was significantly increased whereas the expression of mitochondrial cytochrome c significantly decreased in I/R with GdCl{sub 3} in comparison to the control. In conclusion, these results suggest that CaR is involved in the induction of cardiomyocyte apoptosis during ischemia/reperfusion through activation of cytochrome c-caspase-3 signaling pathway.

  2. Riboflavin and vitamin E increase brain calcium and antioxidants, and microsomal calcium-ATP-ase values in rat headache models induced by glyceryl trinitrate.

    PubMed

    Bütün, Ayşe; Nazıroğlu, Mustafa; Demirci, Serpil; Çelik, Ömer; Uğuz, Abdulhadi Cihangir

    2015-04-01

    The essential use of riboflavin is the prevention of migraine headaches, although its effect on migraines is considered to be associated with the increased mitochondrial energy metabolism. Oxidative stress is also important in migraine pathophysiology. Vitamin E is a strong antioxidant in nature and its analgesic effect is not completely clear in migraines. The current study aimed to investigate the effects of glyceryl trinitrate (GTN)-sourced exogen nitric oxide (NO), in particular, and also riboflavin and/or vitamin E on involved in the headache model induced via GTN-sourced exogen NO on oxidative stress, total brain calcium levels, and microsomal membrane Ca(2+)-ATPase levels. GTN infusion is a reliable method to provoke migraine-like headaches in experimental animals and humans. GTN resulted in a significant increase in brain cortex and microsomal lipid peroxidation levels although brain calcium, vitamin A, vitamin C, and vitamin E, and brain microsomal-reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and plasma-membrane Ca(2+)-ATPase values decreased through GTN. The lipid peroxidation, GSH, vitamin A, β-carotene, vitamin C, and vitamin E, and calcium concentrations, GSH-Px, and the Ca(2+)-ATPase activities were increased both by riboflavin and vitamin E treatments. Brain calcium and vitamin A concentrations increased through riboflavin only. In conclusion, riboflavin and vitamin E had a protective effect on the GTN-induced brain injury by inhibiting free radical production, regulation of calcium-dependent processes, and supporting the antioxidant redox system. However, the effects of vitamin E on the values seem more important than in riboflavin. PMID:25425044

  3. Image-based Modeling of Biofilm-induced Calcium Carbonate Precipitation

    NASA Astrophysics Data System (ADS)

    Connolly, J. M.; Rothman, A.; Jackson, B.; Klapper, I.; Cunningham, A. B.; Gerlach, R.

    2013-12-01

    Pore scale biological processes in the subsurface environment are important to understand in relation to many engineering applications including environmental contaminant remediation, geologic carbon sequestration, and petroleum production. Specifically, biofilm induced calcium carbonate precipitation has been identified as an attractive option to reduce permeability in a lasting way in the subsurface. This technology may be able to replace typical cement-based grouting in some circumstances; however, pore-scale processes must be better understood for it to be applied in a controlled manor. The work presented will focus on efforts to observe biofilm growth and ureolysis-induced mineral precipitation in micro-fabricated flow cells combined with finite element modelling as a tool to predict local chemical gradients of interest (see figure). We have been able to observe this phenomenon over time using a novel model organism that is able to hydrolyse urea and express a fluorescent protein allowing for non-invasive observation over time with confocal microscopy. The results of this study show the likely existence of a wide range of local saturation indices even in a small (1 cm length scale) experimental system. Interestingly, the locations of high predicted index do not correspond to the locations of higher precipitation density, highlighting the need for further understanding. Figure 1 - A micro-fabricated flow cell containing biofilm-induced calcium carbonate precipitation. (A) Experimental results: Active biofilm is in green and dark circles are calcium carbonate crystals. Note the channeling behavior in the top of the image, leaving a large hydraulically inactive area in the biofilm mass. (B) Finite element model: The prediction of relative saturation of calcium carbonate (as calcite). Fluid enters the system at a low saturation state (blue) but areas of high supersaturation (red) are predicted within the hydraulically inactive area in the biofilm. If only effluent

  4. Extracellular group A Streptococcus induces keratinocyte apoptosis by dysregulating calcium signalling.

    PubMed

    Cywes Bentley, Colette; Hakansson, Anders; Christianson, Jennifer; Wessels, Michael R

    2005-07-01

    Group A Streptococcus (GAS) colonizes the oropharynx and damaged skin. To cause local infection or severe invasive syndromes the bacteria must gain access into deeper tissues. Host cell death may facilitate this process. GAS internalization has been identified to induce apoptosis. We now report an alternate mechanism of GAS-mediated apoptosis of primary human keratinocytes, initiated by extracellular GAS and involving dysregulation of intracellular calcium to produce endoplasmic reticulum stress. Two bacterial virulence factors are required for effective induction of apoptosis by extracellular GAS: (i) hyaluronic acid capsule that inhibits bacterial internalization and (ii) secreted cytolysin, streptolysin O (SLO), that forms transmembrane pores that permit extracellular calcium influx into the cytosol. Induction of keratinocyte apoptosis by wild-type GAS was accompanied by cell detachment and loss of epithelial integrity, a phenomenon not observed with GAS deficient in capsule or SLO. We propose that cell signalling initiated by extracellular GAS compromises the epithelial barrier by inducing premature keratinocyte differentiation and apoptosis, thereby facilitating GAS invasion of deeper tissues. PMID:15953027

  5. Pharmacological blockade of the calcium plateau provides neuroprotection following organophosphate paraoxon induced status epilepticus in rats.

    PubMed

    Deshpande, Laxmikant S; Blair, Robert E; Huang, Beverly A; Phillips, Kristin F; DeLorenzo, Robert J

    2016-01-01

    Organophosphate (OP) compounds which include nerve agents and pesticides are considered chemical threat agents. Currently approved antidotes are crucial in limiting OP mediated acute mortality. However, survivors of lethal OP exposure exhibit delayed neuronal injury and chronic behavioral morbidities. In this study, we investigated neuroprotective capabilities of dantrolene and carisbamate in a rat survival model of paraoxon (POX) induced status epilepticus (SE). Significant elevations in hippocampal calcium levels were observed 48-h post POX SE survival, and treatment with dantrolene (10mg/kg, i.m.) and carisbamate (90mg/kg, i.m.) lowered these protracted calcium elevations. POX SE induced delayed neuronal injury as characterized by Fluoro Jade C labeling was observed in critical brain areas including the dentate gyrus, parietal cortex, amygdala, and thalamus. Dantrolene and carisbamate treatment provided significant neuroprotection against delayed neuronal damage in these brain regions when administered one-hour after POX-SE. These results indicate that dantrolene or carisbamate could be effective adjuvant therapies to the existing countermeasures to reduce neuronal injury and behavioral morbidities post OP SE survival. PMID:27224207

  6. Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death.

    PubMed

    Esterberg, Robert; Linbo, Tor; Pickett, Sarah B; Wu, Patricia; Ou, Henry C; Rubel, Edwin W; Raible, David W

    2016-09-01

    Exposure to aminoglycoside antibiotics can lead to the generation of toxic levels of reactive oxygen species (ROS) within mechanosensory hair cells of the inner ear that have been implicated in hearing and balance disorders. Better understanding of the origin of aminoglycoside-induced ROS could focus the development of therapies aimed at preventing this event. In this work, we used the zebrafish lateral line system to monitor the dynamic behavior of mitochondrial and cytoplasmic oxidation occurring within the same dying hair cell following exposure to aminoglycosides. The increased oxidation observed in both mitochondria and cytoplasm of dying hair cells was highly correlated with mitochondrial calcium uptake. Application of the mitochondrial uniporter inhibitor Ru360 reduced mitochondrial and cytoplasmic oxidation, suggesting that mitochondrial calcium drives ROS generation during aminoglycoside-induced hair cell death. Furthermore, targeting mitochondria with free radical scavengers conferred superior protection against aminoglycoside exposure compared with identical, untargeted scavengers. Our findings suggest that targeted therapies aimed at preventing mitochondrial oxidation have therapeutic potential to ameliorate the toxic effects of aminoglycoside exposure. PMID:27500493

  7. Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization

    SciTech Connect

    Han, T Y; Aizenberg, J

    2007-08-31

    Calcium carbonate crystallization in organisms often occurs through the transformation from the amorphous precursor. It is believed that the amorphous phase could be temporarily stabilized and stored, until its templated transition to the crystalline form is induced. Here we develop a bio-inspired crystallization strategy that is based on the above mechanism. Amorphous calcium carbonate (ACC) spherulitic particles are formed and stabilized on a self-assembled monolayer (SAM) of hydroxy-terminated alkanethiols on Au surface. The ACC is stored as a reservoir for ions and is induced to crystallize on command by introducing a secondary surface that is functionalized with carboxylic acid-terminated SAM. This secondary surface acts as a template for oriented and patterned nucleation. Various oriented crystalline arrays and micropatterned films are formed. We also show that the ACC phase can be doped with foreign ions (e.g. Mg) and organic molecules (e.g. dyes) and that these dopants later function as growth modifiers of calcite crystals and become incorporated into the crystals during the transformation process of ACC to calcite. We believe that our strategy opens the way of using a stabilized amorphous phase as a versatile reservoir system that can be converted in a highly controlled fashion to a crystalline form upon contacting the nucleating template.

  8. Mechanisms of Pyrethroid Insecticide-Induced Stimulation of Calcium Influx in Neocortical Neurons

    PubMed Central

    Cao, Zhengyu; Shafer, Timothy J.

    2011-01-01

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated calcium channels. Therefore, the present study compared the ability of 11 structurally diverse pyrethroids to evoke Ca2+ influx in primary cultures of mouse neocortical neurons. Nine pyrethroids (tefluthrin, deltamethrin, λ-cyhalothrin, β-cyfluthrin, esfenvalerate, S-bioallethrin, fenpropathrin, cypermethrin, and bifenthrin) produced concentration-dependent elevations in intracellular calcium concentration ([Ca2+]i) in neocortical neurons. Permethrin and resmethrin were without effect on [Ca2+]i. These pyrethroids displayed a range of efficacies on Ca2+ influx; however, the EC50 values for active pyrethroids all were within one order of magnitude. Tetrodotoxin blocked increases in [Ca2+]i caused by all nine active pyrethroids, indicating that the effects depended on VGSC activation. The pathways for deltamethrin- and tefluthrin-induced Ca2+ influx include N-methyl-d-aspartic acid receptors, L-type Ca2+ channels, and reverse mode of operation of the Na+/Ca2+ exchanger inasmuch as antagonists of these sites blocked deltamethrin-induced Ca2+ influx. These data demonstrate that pyrethroids stimulate Ca2+ entry into neurons subsequent to their actions on VGSCs. PMID:20881019

  9. Physiological Levels of Virion-Associated Human Immunodeficiency Virus Type 1 Envelope Induce Coreceptor-Dependent Calcium Flux▿ †

    PubMed Central

    Melar, Marta; Ott, David E.; Hope, Thomas J.

    2007-01-01

    Human immunodeficiency virus (HIV) entry into target cells requires the engagement of receptor and coreceptor by envelope glycoprotein (Env). Coreceptors CCR5 and CXCR4 are chemokine receptors that generate signals manifested as calcium fluxes in response to binding of the appropriate ligand. It has previously been shown that engagement of the coreceptors by HIV Env can also generate Ca2+ fluxing. Since the sensitivity and therefore the physiological consequence of signaling activation in target cells is not well understood, we addressed it by using a microscopy-based approach to measure Ca2+ levels in individual CD4+ T cells in response to low Env concentrations. Monomeric Env subunit gp120 and virion-bound Env were able to activate a signaling cascade that is qualitatively different from the one induced by chemokines. Env-mediated Ca2+ fluxing was coreceptor mediated, coreceptor specific, and CD4 dependent. Comparison of the observed virion-mediated Ca2+ fluxing with the exact number of viral particles revealed that the viral threshold necessary for coreceptor activation of signaling in CD4+ T cells was quite low, as few as two virions. These results indicate that the physiological levels of virion binding can activate signaling in CD4+ T cells in vivo and therefore might contribute to HIV-induced pathogenesis. PMID:17121788

  10. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca{sup 2+} influx

    SciTech Connect

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck; Choi, Yung-Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree; Kim, Gi-Young

    2012-02-15

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  11. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process

    NASA Astrophysics Data System (ADS)

    Gower, Laurie B.; Odom, Damian J.

    2000-03-01

    A polypeptide additive has been used to transform the solution crystallization of calcium carbonate to a solidification process of a liquid-phase mineral precursor. In situ observations reveal that polyaspartate induces liquid-liquid phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, and the defect textures and crystal morphologies are atypical of solution grown crystals. The formation of nonequilibrium crystal morphologies using an acidic polypeptide may have implications in the field of biomineralization, and the environmentally friendly aspects of this polymer-induced liquid-precursor (PILP) process may offer new techniques for aqueous-based processing of ceramic films, coatings, and particulates.

  12. Titanium dioxide/calcium fluoride nanocrystallite for efficient dye-sensitized solar cell. A strategy of enhancing light harvest

    NASA Astrophysics Data System (ADS)

    Wang, Zubin; Tang, Qunwei; He, Benlin; Chen, Xiaoxu; Chen, Haiyan; Yu, Liangmin

    2015-02-01

    Enhancement of light harvest for dye excitation is a persistent objective in dye-sensitized solar cell (DSSC). We present here the fabrication of titanium dioxide/calcium fluoride (TiO2/CaF2) photoanodes for efficient DSSC applications. Owing to the interference effect of incident light beams reflected from TiO2/CaF2 and CaF2/electrolyte interfaces, the light intensity and therefore dye excitation have been markedly enhanced. The crystal structure and therefore photovoltaic performance are optimized by adjusting CaF2 dosage. A maximum power conversion efficiency of 7.66% is measured from the DSSC employing TiO2/0.5 wt% CaF2 nanocrystallite in comparison with 6.02% for the solar cell with pristine TiO2 anode.

  13. The calcium-sensing receptor participates in testicular damage in streptozotocin-induced diabetic rats.

    PubMed

    Kong, Wei-Yuan; Tong, Li-Quan; Zhang, Hai-Jun; Cao, Yong-Gang; Wang, Gong-Chen; Zhu, Jin-Zhi; Zhang, Feng; Sun, Xue-Ying; Zhang, Tie-Hui; Zhang, Lin-Lin

    2016-01-01

    Male infertility caused by testicular damage is one of the complications of diabetes mellitus. The calcium-sensing receptor (CaSR) is expressed in testicular tissues and plays a pivotal role in calcium homeostasis by activating cellular signaling pathways, but its role in testicular damage induced by diabetes remains unclear. A diabetic model was established by a single intraperitoneal injection of streptozotocin (STZ, 40 mg kg-1 ) in Wistar rats. Animals then received GdCl 3 (an agonist of CaSR, 8.67 mg kg-1 ), NPS-2390 (an antagonist of CaSR, 0.20 g kg-1 ), or a combination of both 2 months after STZ injection. Diabetic rats had significantly lower testes weights and serum levels of testosterone compared to healthy rats, indicating testicular damage and dysfunction in STZ-induced diabetic rats. Compared with healthy controls, the testicular tissues of diabetic rats overexpressed the CaSR protein and had higher levels of malondialdehyde (MDA), lower superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and higher numbers of apoptotic germ cells. The testicular tissues from diabetic rats also expressed lower levels of Bcl-2 and higher levels of Bax and cleaved caspase-3 in addition to higher phosphorylation rates of c-Jun NH 2 -terminal protein kinase (JNK), p38, and extracellular signaling-regulated kinase (ERK) 1/2. The above parameters could be further increased or aggravated by the administration of GdCl 3 , but could be attenuated by injection of NPS-2390. In conclusion, the present results indicate that CaSR activation participates in diabetes-induced testicular damage, implying CaSR may be a potential target for protective strategies against diabetes-induced testicular damage and could help to prevent infertility in diabetic men. PMID:26387585

  14. The calcium-sensing receptor participates in testicular damage in streptozotocin-induced diabetic rats

    PubMed Central

    Kong, Wei-Yuan; Tong, Li-Quan; Zhang, Hai-Jun; Cao, Yong-Gang; Wang, Gong-Chen; Zhu, Jin-Zhi; Zhang, Feng; Sun, Xue-Ying; Zhang, Tie-Hui; Zhang, Lin-Lin

    2016-01-01

    Male infertility caused by testicular damage is one of the complications of diabetes mellitus. The calcium-sensing receptor (CaSR) is expressed in testicular tissues and plays a pivotal role in calcium homeostasis by activating cellular signaling pathways, but its role in testicular damage induced by diabetes remains unclear. A diabetic model was established by a single intraperitoneal injection of streptozotocin (STZ, 40 mg kg−1) in Wistar rats. Animals then received GdCl3 (an agonist of CaSR, 8.67 mg kg−1), NPS-2390 (an antagonist of CaSR, 0.20 g kg−1), or a combination of both 2 months after STZ injection. Diabetic rats had significantly lower testes weights and serum levels of testosterone compared to healthy rats, indicating testicular damage and dysfunction in STZ-induced diabetic rats. Compared with healthy controls, the testicular tissues of diabetic rats overexpressed the CaSR protein and had higher levels of malondialdehyde (MDA), lower superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and higher numbers of apoptotic germ cells. The testicular tissues from diabetic rats also expressed lower levels of Bcl-2 and higher levels of Bax and cleaved caspase-3 in addition to higher phosphorylation rates of c-Jun NH2-terminal protein kinase (JNK), p38, and extracellular signaling-regulated kinase (ERK) 1/2. The above parameters could be further increased or aggravated by the administration of GdCl3, but could be attenuated by injection of NPS-2390. In conclusion, the present results indicate that CaSR activation participates in diabetes-induced testicular damage, implying CaSR may be a potential target for protective strategies against diabetes-induced testicular damage and could help to prevent infertility in diabetic men. PMID:26387585

  15. The role of calcium in growth induced by indole-3-acetic acid and gravity in the leaf-sheath pulvinus of oat (Avena sativa)

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Burg, J.; Ghosheh, N. S.; Kaufman, P. B.

    1992-01-01

    Leaf-sheath pulvini of excised segments from oat (Avena sativa L.) were induced to grow by treatment with 10 micromoles indole-3-acetic acid (IAA), gravistimulation, or both, and the effects of calcium, EGTA, and calcium channel blockers on growth were evaluated. Unilaterally applied calcium (10 mM CaCl2) significantly inhibited IAA-induced growth in upright pulvini but had no effect on growth induced by either gravity or gravity plus IAA. Calcium alone had no effect on upright pulvini. The calcium chelator EGTA alone (10 mM) stimulated growth in upright pulvini. However, EGTA had no effect on either IAA- or gravity-induced growth but slightly diminished growth in IAA-treated gravistimulated pulvini. The calcium channel blockers lanthanum chloride (25 mM), verapamil (2.5 mM), and nifedipine (2.5 mM) greatly inhibited growth as induced by IAA (> or = 50% inhibition) or IAA plus gravity (20% inhibition) but had no effect on gravistimulated pulvini. Combinations of channel blockers were similar in effect on IAA action as individual blockers. Since neither calcium ions nor EGTA significantly affected the graviresponse of pulvini, we conclude that apoplastic calcium is unimportant in leaf-sheath pulvinus gravitropism. The observation that calcium ions and calcium channel blockers inhibit IAA-induced growth, but have no effect on gravistimulated pulvini, further supports previous observations that gravistimulation alters the responsiveness of pulvini to IAA.

  16. Calcium/calmodulin-dependent protein kinase IV mediates acute nicotine-induced antinociception in acute thermal pain tests

    PubMed Central

    Jackson, Kia J.; Damaj, M. Imad

    2014-01-01

    Calcium activated second messengers such as calcium/calmodulin-dependent protein kinase II have been implicated in drug-induced antinociception. The less abundant calcium activated second messenger, calcium/calmodulin-dependent protein kinase IV (CaMKIV), mediates emotional responses to pain and tolerance to morphine analgesia; however its role in nicotine-mediated antinociception is currently unknown. The goal of this study was to evaluate the role of CaMKIV in the acute effects of nicotine, primarily acute nicotine- induced antinociception. CaMKIV knockout (−/−), heterozygote (+/−), and wild-type (+/+) mice were injected with various doses of nicotine and evaluated in a battery of tests, including the tail-flick and hot-plate tests for antinociception, body temperature, and locomotor activity. Our results show a genotype-dependent reduction in tail-flick and hot- plate latency in CaMKIV (+/−) and (−/−) mice after acute nicotine treatment, while no difference was observed between genotypes in the body temperature and locomotor activity assessments. The results of this study support a role for CaMKIV in acute nicotine-induced spinal and supraspinal pain mechanisms, and further implicate involvement of calcium-dependent mechanisms in drug-induced antinociception. PMID:24196027

  17. Presence of a thapsigargin-sensitive calcium pump in Trypanosoma evansi: Immunological, physiological, molecular and structural evidences.

    PubMed

    Pérez-Gordones, M C; Serrano, M L; Rojas, H; Martínez, J C; Uzcanga, G; Mendoza, M

    2015-12-01

    In higher eukaryotes, the sarco-endoplasmic reticulum (ER) Ca(2+)-ATPase (SERCA) is characterized for its high sensitivity to low concentrations of thapsigargin (TG), a very specific inhibitor. In contrast, SERCA-like enzymes with different sensitivities to TG have been reported in trypanosomatids. Here, we characterized a SERCA-like enzyme from Trypanosoma evansi and evaluated its interaction with TG. Confocal fluorescence microscopy using BODIPY FL TG and specific anti-SERCA antibodies localized the T. evansi SERCA-like enzyme in the ER and confirmed its direct interaction with TG. Moreover, the use of either 1 μM TG or 25 μM 2',5'-di (tert-butyl)-1,4-benzohydroquinone prevented the reuptake of Ca(2+) and consequently produced a small increase in the parasite cytosolic calcium concentration in a calcium-free medium, which was released from the ER pool. A 3035 bp-sequence coding for a protein with an estimated molecular mass of 110.2 kDa was cloned from T. evansi. The corresponding gene product contained all the invariant residues and conserved motifs found in other P-type ATPases but lacked the calmodulin binding site. Modeling of the three-dimensional structure of the parasite enzyme revealed that the amino acid changes found in the TG-SERCA binding pocket do not compromise the interaction between the enzyme and the inhibitor. Therefore, we concluded that T. evansi possesses a SERCA-like protein that is inhibited by TG. PMID:26297682

  18. Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons.

    PubMed

    Orellana, D I; Quintanilla, R A; Gonzalez-Billault, C; Maccioni, R B

    2005-11-01

    Recent studies show that inflammation has an active role in the onset of neurodegenerative diseases. It is known that in response to extracellular insults microglia and/or astrocytes produce inflammatory agents. These contribute to the neuropathological events in the aging process and neuronal degeneration. Interleukin-6 (IL-6) has been involved in the pathogenesis of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Here, we show that IL-6 treatment of rat hippocampal neurons increases the calcium influx via NMDA-receptor, an effect that is prevented by the specific NMDA receptor antagonist MK-801 (dizocilpine). We also show that this calcium influx is mediated by the JAKs/STATs pathway, since the inhibitor of JAKs/STATs pathway, JAK 3 inhibitor, blocks calcium influx even in the presence of IL-6. This increase in calcium signal was dependent on external sources, since this signal was not observed in the presence of EGTA. Additional studies indicate that the increase in cytosolic calcium induces tau protein hyperphosphorylation, as revealed by using specific antibodies against Alzheimer phosphoepitopes. This anomalous tau hyperphosphorylation was dependent on both the JAKs/STATs pathway and NMDA receptor. These results suggest that IL-6 would induce a cascade of molecular events that produce a calcium influx through NMDA receptors, mediated by the JAKs/STATs pathway, which subsequently modifies the tau hyperphosphorylation patterns. PMID:16371324

  19. A MUTANT PRION PROTEIN SENSITIZES NEURONS TO GLUTAMATE-INDUCED EXCITOTOXICITY

    PubMed Central

    Biasini, Emiliano; Unterberger, Ursula; Solomon, Isaac H.; Massignan, Tania; Senatore, Assunta; Bian, Hejiao; Voigtlaender, Till; Bowman, Frederick P.; Bonetto, Valentina; Chiesa, Roberto; Luebke, Jennifer; Toselli, Paul; Harris, David A.

    2013-01-01

    Growing evidence suggests that a physiological activity of the cellular prion protein (PrPC) plays a crucial role in several neurodegenerative disorders, including prion and Alzheimer’s diseases. However, how the functional activity of PrPC is subverted to deliver neurotoxic signals remains uncertain. Transgenic mice expressing PrP with a deletion of residues 105–125 in the central region (referred to as ΔCR PrP) provide important insights into this problem. Tg(ΔCR) mice exhibit neonatal lethality and massive degeneration of cerebellar granule neurons, a phenotype that is dose-dependently suppressed by the presence of wild-type PrP. When expressed in cultured cells, ΔCR PrP induces large, ionic currents that can be detected by patch-clamping techniques. Here, we have tested the hypothesis that abnormal ion channel activity underlies the neuronal death seen in Tg(ΔCR) mice. We find that ΔCR PrP induces abnormal ionic currents in neurons in culture and in cerebellar slices, and that this activity sensitizes the neurons to glutamate-induced, calcium-mediated death. In combination with ultrastructural and biochemical analyses, these results demonstrate a role for glutamate-induced excitotoxicity in PrP-mediated neurodegeneration. A similar mechanism may operate in other neurodegenerative disorders due to toxic, β-rich oligomers that bind to PrPC. PMID:23392670

  20. Peptide induced crystallization of calcium carbonate on wrinkle patterned substrate: implications for chitin formation in molluscs.

    PubMed

    Ghatak, Anindita Sengupta; Koch, Marcus; Guth, Christina; Weiss, Ingrid M

    2013-01-01

    We here present the nucleation and growth of calcium carbonate under the influence of synthetic peptides on topographically patterned poly(dimethylsiloxane) (PDMS) substrates, which have a controlled density of defects between the wrinkles. Experiments with two lysine-rich peptides derived from the extracellular conserved domain E22 of the mollusc chitin synthase Ar-CS1, AKKKKKAS (AS8) and EEKKKKKES (ES9) on these substrates showed their influence on the calcium carbonate morphology. A transition from polycrystalline composites to single crystalline phases was achieved with the peptide AS8 by changing the pH of the buffer solution. We analyzed three different pH values as previous experiments showed that E22 interacts with aragonite biominerals more strongly at pH 7.75 than at pH 9.0. At any given pH, crystals appeared in characteristic morphologies only on wrinkled substrates, and did not occur on the flat, wrinkle-free PDMS substrate. These results suggest that these wrinkled substrates could be useful for controlling the morphologies of other mineral/peptide and mineral/protein composites. In nature, these templates are formed enzymatically by glycosyltransferases containing pH-sensitive epitopes, similar to the peptides investigated here. Our in vitro test systems may be useful to gain understanding of the formation of distinct 3D morphologies in mollusc shells in response to local pH shifts during the mineralization of organic templates. PMID:23736692

  1. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx.

    PubMed

    Douda, David Nobuhiro; Khan, Meraj A; Grasemann, Hartmut; Palaniyar, Nades

    2015-03-01

    Neutrophils cast neutrophil extracellular traps (NETs) to defend the host against invading pathogens. Although effective against microbial pathogens, a growing body of literature now suggests that NETs have negative impacts on many inflammatory and autoimmune diseases. Identifying mechanisms that regulate the process termed "NETosis" is important for treating these diseases. Although two major types of NETosis have been described to date, mechanisms regulating these forms of cell death are not clearly established. NADPH oxidase 2 (NOX2) generates large amounts of reactive oxygen species (ROS), which is essential for NOX-dependent NETosis. However, major regulators of NOX-independent NETosis are largely unknown. Here we show that calcium activated NOX-independent NETosis is fast and mediated by a calcium-activated small conductance potassium (SK) channel member SK3 and mitochondrial ROS. Although mitochondrial ROS is needed for NOX-independent NETosis, it is not important for NOX-dependent NETosis. We further demonstrate that the activation of the calcium-activated potassium channel is sufficient to induce NOX-independent NETosis. Unlike NOX-dependent NETosis, NOX-independent NETosis is accompanied by a substantially lower level of activation of ERK and moderate level of activation of Akt, whereas the activation of p38 is similar in both pathways. ERK activation is essential for the NOX-dependent pathway, whereas its activation is not essential for the NOX-independent pathway. Despite the differential activation, both NOX-dependent and -independent NETosis require Akt activity. Collectively, this study highlights key differences in these two major NETosis pathways and provides an insight into previously unknown mechanisms for NOX-independent NETosis. PMID:25730848

  2. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx

    PubMed Central

    Douda, David Nobuhiro; Khan, Meraj A.; Grasemann, Hartmut; Palaniyar, Nades

    2015-01-01

    Neutrophils cast neutrophil extracellular traps (NETs) to defend the host against invading pathogens. Although effective against microbial pathogens, a growing body of literature now suggests that NETs have negative impacts on many inflammatory and autoimmune diseases. Identifying mechanisms that regulate the process termed “NETosis” is important for treating these diseases. Although two major types of NETosis have been described to date, mechanisms regulating these forms of cell death are not clearly established. NADPH oxidase 2 (NOX2) generates large amounts of reactive oxygen species (ROS), which is essential for NOX-dependent NETosis. However, major regulators of NOX-independent NETosis are largely unknown. Here we show that calcium activated NOX-independent NETosis is fast and mediated by a calcium-activated small conductance potassium (SK) channel member SK3 and mitochondrial ROS. Although mitochondrial ROS is needed for NOX-independent NETosis, it is not important for NOX-dependent NETosis. We further demonstrate that the activation of the calcium-activated potassium channel is sufficient to induce NOX-independent NETosis. Unlike NOX-dependent NETosis, NOX-independent NETosis is accompanied by a substantially lower level of activation of ERK and moderate level of activation of Akt, whereas the activation of p38 is similar in both pathways. ERK activation is essential for the NOX-dependent pathway, whereas its activation is not essential for the NOX-independent pathway. Despite the differential activation, both NOX-dependent and -independent NETosis require Akt activity. Collectively, this study highlights key differences in these two major NETosis pathways and provides an insight into previously unknown mechanisms for NOX-independent NETosis. PMID:25730848

  3. Mechanism of Calcium Current Modulation Underlying Presynaptic Facilitation and Behavioral Sensitization in Aplysia

    NASA Astrophysics Data System (ADS)

    Klein, Marc; Kandel, Eric R.

    1980-11-01

    Behavioral sensitization of the gill-withdrawal reflex of Aplysia is caused by presynaptic facilitation at the synapses of the mechanoreceptor sensory neurons of the reflex onto the motor neurons and interneurons. The presynaptic facilitation has been shown to be simulated by serotonin (the putative presynaptic facilitatory transmitter) and by cyclic AMP and to be accompanied by an increase in the Ca2+ current of sensory neuron cell bodies exposed to tetraethylammonium. This increase in the Ca2+ current could result from either a direct action on the Ca2+ channel or an action on an opposing K+ current. Here we report voltage clamp experiments which indicate that the increase in Ca2+ current associated with presynaptic facilitation results from a decrease in a K+ current. Stimulation of the connective (the pathway that mediates sensitization) or application of serotonin causes a decrease in a voltage-sensitive, steady-state outward current measured under voltage clamp as well as an increase in the transient net inward and a decrease in the transient outward currents elicited by brief depolarizing command steps. The reversal potential of the steady-state synaptic current is sensitive to extracellular K+ concentration, and both the steady-state synaptic current and the changes in the transient currents are blocked by K+ current blocking agents and by washout of K+. These results suggest that serotonin and the natural transmitter released by connective stimulation act to decrease a voltage-sensitive K+ current. The decrease in K+ current prolongs the action potential, and this in turn increases the duration of the inward Ca2+ current and thereby enhances transmitter release.

  4. Vitamin D receptor is required for dietary calcium-induced repression of calbindin-D9k expression in mice.

    PubMed

    Bolt, Merry J G; Cao, Li-Ping; Kong, Juan; Sitrin, Michael D; Li, Yan Chun

    2005-05-01

    Calbindin (CaBP), the vitamin D-dependent calcium-binding protein, is believed to play an important role in intracellular calcium transport. The aim of this study was to investigate the effect of high dietary calcium on the expression of CaBP-D9k and CaBP-D28k in the presence and absence of a functional vitamin D receptor (VDR). Treatment with the HCa-Lac diet containing 2% calcium, 1.5% phosphorus and 20% lactose reversed the hypocalcemia seen in adult VDR-null mice in 3 weeks but did not significantly change the blood ionized calcium in wild-type mice. This dietary treatment dramatically suppressed both the duodenal and the renal CaBP-D9k expression in wild-type mice at both mRNA and protein levels but had little effect on the expression of the same gene in VDR-null mice. Removal of this diet gradually restored the expression of CaBP-D9k to the untreated level in wild-type mice. Only moderate or little change in CaBP-D28k expression was seen in wild-type and VDR-null mice fed with the HCa-Lac diet. The VDR content in the duodenum or kidney of wild-type mice was not altered by the dietary treatment. These results suggest that calcium regulates CaBP-D9k expression by modulating the circulating 1,25-dihydrxyvitamin D(3) level and that VDR is thus required for the dietary calcium-induced suppression of CaBP-D9k expression. Calcium regulation of the CaBP-D9k level may represent an important mechanism by which animals maintain their calcium balance. PMID:15866228

  5. Recording Temperature-induced Neuronal Activity through Monitoring Calcium Changes in the Olfactory Bulb of Xenopus laevis

    PubMed Central

    Kludt, Eugen; Schild, Detlev

    2016-01-01

    The olfactory system, specialized in the detection, integration and processing of chemical molecules is likely the most thoroughly studied sensory system. However, there is piling evidence that olfaction is not solely limited to chemical sensitivity, but also includes temperature sensitivity. Premetamorphic Xenopus laevis are translucent animals, with protruding nasal cavities deprived of the cribriform plate separating the nose and the olfactory bulb. These characteristics make them well suited for studying olfaction, and particularly thermosensitivity. The present article describes the complete procedure for measuring temperature responses in the olfactory bulb of X. laevis larvae. Firstly, the electroporation of olfactory receptor neurons (ORNs) is performed with spectrally distinct dyes loaded into the nasal cavities in order to stain their axon terminals in the bulbar neuropil. The differential staining between left and right receptor neurons serves to identify the γ-glomerulus as the only structure innervated by contralateral presynaptic afferents. Secondly, the electroporation is combined with focal bolus loading in the olfactory bulb in order to stain mitral cells and their dendrites. The 3D brain volume is then scanned under line-illumination microscopy for the acquisition of fast calcium imaging data while small temperature drops are induced at the olfactory epithelium. Lastly, the post-acquisition analysis allows the morphological reconstruction of the thermosensitive network comprising the γ-glomerulus and its innervating mitral cells, based on specific temperature-induced Ca2+ traces. Using chemical odorants as stimuli in addition to temperature jumps enables the comparison between thermosensitive and chemosensitive networks in the olfactory bulb. PMID:27286501

  6. Recording Temperature-induced Neuronal Activity through Monitoring Calcium Changes in the Olfactory Bulb of Xenopus laevis.

    PubMed

    Brinkmann, Alexander; Okom, Camille; Kludt, Eugen; Schild, Detlev

    2016-01-01

    The olfactory system, specialized in the detection, integration and processing of chemical molecules is likely the most thoroughly studied sensory system. However, there is piling evidence that olfaction is not solely limited to chemical sensitivity, but also includes temperature sensitivity. Premetamorphic Xenopus laevis are translucent animals, with protruding nasal cavities deprived of the cribriform plate separating the nose and the olfactory bulb. These characteristics make them well suited for studying olfaction, and particularly thermosensitivity. The present article describes the complete procedure for measuring temperature responses in the olfactory bulb of X. laevis larvae. Firstly, the electroporation of olfactory receptor neurons (ORNs) is performed with spectrally distinct dyes loaded into the nasal cavities in order to stain their axon terminals in the bulbar neuropil. The differential staining between left and right receptor neurons serves to identify the γ-glomerulus as the only structure innervated by contralateral presynaptic afferents. Secondly, the electroporation is combined with focal bolus loading in the olfactory bulb in order to stain mitral cells and their dendrites. The 3D brain volume is then scanned under line-illumination microscopy for the acquisition of fast calcium imaging data while small temperature drops are induced at the olfactory epithelium. Lastly, the post-acquisition analysis allows the morphological reconstruction of the thermosensitive network comprising the γ-glomerulus and its innervating mitral cells, based on specific temperature-induced Ca(2+) traces. Using chemical odorants as stimuli in addition to temperature jumps enables the comparison between thermosensitive and chemosensitive networks in the olfactory bulb. PMID:27286501

  7. Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture

    SciTech Connect

    Dutta, S.K.; Subramoniam, A.; Ghosh, B.; Parshad, R.

    1984-01-01

    Monolayer cultures of human neuroblastoma cells were exposed to 915-MHz radiation, with or without sinusoidal amplitude modulation (80%) at 16 Hz, at specific absorption rates (SAR) for the culture medium and cells of 0.00, 0.01, 0.05, 0.075, 0.1, 0.5, 0.75, 1.0, 1.5, 2, or 5 mW/g. A significant increase in the efflux of calcium ions (45Ca2+) as compared to unexposed control cultures occurred at two SAR values: 0.05 and 1 mW/g. Increased efflux at 0.05 mW/g was dependent on the presence of amplitude modulation at 16 Hz but at the higher value it was not. These results indicate that human neuroblastoma cells are sensitive to extremely low levels of microwave radiation at certain narrow ranges of SAR.

  8. Calcium signaling is involved in ethanol-induced volume decrease and gap junction closure in cultured rat gastric mucosal cells.

    PubMed

    Mustonen, Harri; Kiviluoto, Tuula; Paimela, Hannu; Puolakkainen, Pauli; Kivilaakso, Eero

    2005-01-01

    Ethanol is a well-established "barrier breaker" in gastric mucosa, but its detailed effects at the cellular level remain unclear. We have previously shown that the intracellular free calcium concentration is increased, gap junctions are closed, and cell volume is decreased after exposure to 5% (v/v) ethanol in primarily cultured rabbit gastric epithelial cells. Rat gastric mucosal (RGM) cells were grown to confluence on a coverslip or on a filter membrane. Gap junctional diffusion was measured in 5-carboxyfluorescein-loaded cells by bleaching a small area with a laser and measuring the recovery with confocal microscope. Intracellular calcium was measured spectrofluorometrically in fura-2-loaded cells. For cell volume measurements the cell monolayer was loaded with calcein and imaged along the Z-axis with a confocal microscope. The changes in fluorescence intensity were intercepted as a measure of cell volume change. TMB-8 was used to inhibit intracellular calcium release and lanthanum to block plasma membrane calcium selective ion channels, while BABTA served as an intracellular calcium chelating agent. Results showed that ethanol (7.5%, v/v) exposure increased intracellular calcium from 69 +/- 7 to 142 +/- 11 nM (N = 5; P < 0.05), decreased cell volume by -23 +/- 5% (N = 8; P < 0.05), and induced gap junction closure (fluorescence recovery from 37 +/- 9 to 15 +/- 3%; N = 6; P < 0.05). A serosal potassium channel blocker, quinine, almost completely prevented the ethanol-induced cell volume decrease (from -23 +/- 5 to -3 +/- 3%), suggesting that opening of basolateral potassium channels underlies cell shrinkage. BABTA inhibited completely (from 35 +/- 3 to 39 +/- 4 nM; N = 6; P < 0.05), and TMB-8 + lanthanum partially (from 60 +/- 6 to 92 +/- 12 nM; N = 6; P < 0.05), the ethanol-induced intracellular calcium increase. BABTA also abolished the ethanol-induced volume decrease (from -23 +/- 5 to 1 +/- 4%; N = 6; P < 0.05), while TMB-8 + lanthanum had a lesser effect on

  9. High Sodium-Induced Oxidative Stress and Poor Anticrystallization Defense Aggravate Calcium Oxalate Crystal Formation in Rat Hyperoxaluric Kidneys.

    PubMed

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    Enhanced sodium excretion is associated with intrarenal oxidative stress. The present study evaluated whether oxidative stress caused by high sodium (HS) may be involved in calcium oxalate crystal formation. Male rats were fed a sodium-depleted diet. Normal-sodium and HS diets were achieved by providing drinking water containing 0.3% and 3% NaCl, respectively. Rats were fed a sodium-depleted diet with 5% hydroxyl-L-proline (HP) for 7 and 42 days to induce hyperoxaluria and/or calcium oxalate deposition. Compared to normal sodium, HS slightly increased calcium excretion despite diuresis; however, the result did not reach statistical significance. HS did not affect the hyperoxaluria, hypocalciuria or supersaturation caused by HP; however, it increased calcium oxalate crystal deposition soon after 7 days of co-treatment. Massive calcium oxalate formation and calcium crystal excretion in HS+HP rats were seen after 42 days of treatment. HP-mediated hypocitraturia was further exacerbated by HS. Moreover, HS aggravated HP-induced renal injury and tubular damage via increased apoptosis and oxidative stress. Increased urinary malondialdehyde excretion, in situ superoxide production, NAD(P)H oxidase and xanthine oxidase expression and activity, and decreased antioxidant enzyme expression or activity in the HS+HP kidney indicated exaggerated oxidative stress. Interestingly, this redox imbalance was associated with reduced renal osteopontin and Tamm-Horsfall protein expression (via increased excretion) and sodium-dependent dicarboxylate cotransporter NaDC-1 upregulation. Collectively, our results demonstrate that a HS diet induces massive crystal formation in the hyperoxaluric kidney; this is not due to increased urinary calcium excretion but is related to oxidative injury and loss of anticrystallization defense. PMID:26241473

  10. Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists

    SciTech Connect

    Eltze, M.; Boer, R.; Sanders, K.H.; Boss, H.; Ulrich, W.R.; Flockerzi, D. )

    1990-01-01

    The biological activity of the (+)-S- and (-)-R-enantiomers of niguldipine, of the (-)-S- and (+)-R-enantiomers of felodipine and nitrendipine, and of rac-nisoldipine and rac-nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)-mimetic U-46619 in guinea pig Langendorff hearts, displacement of (+)-({sup 3}H)isradipine from calcium channel binding sites of guinea pig skeletal muscle T-tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross-contamination was less than 0.5% for both S- and R-enantiomers of niguldipine and nitrendipine and less than 1% for those of felodipine. From the doses necessary for a 50% inhibition of coronary vasoconstriction, stereoselectivity ratios for (+)-(S)-/(-)-(R)-niguldipine, (-)-(S)-/(+)-(R)-felodipine, and (-)-(S)-/(+)-(R)-nitrendipine of 28, 13, and 7, respectively, were calculated. The potency ratio rac-nisoldipine/rac-nimodipine was 3.5. Ratios obtained from binding experiments and antihypertensive activity were (+)-(S)-/(-)-(R)-niguldipine = 45 and 35, (-)-(S)-/(+)-(R)-felodipine = 12 and 13, (-)-(S)-/(+)-(R)-nitrendipine = 8 and 8, and rac-nisoldipine/rac-nimodipine = 8 and 7, respectively. Highly significant correlations were found between the in vitro potency of the substances to prevent U-46619-induced coronary vasoconstriction and their affinity for calcium channel binding sites as well as their antihypertensive activity.

  11. Shock-induced devolatilization of calcium sulfate and implications for K-T extinctions

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Tyburczy, James A.; Ahrens, Thomas J.

    1994-01-01

    The devolatilization of calcium sulfate, which is present in the target rock of the Chicxulub, Mexico impact structure, and dispersal in the stratosphere of the resultant sulfuric acid aerosol have been suggested as a possible mechanism for the Cretaceous-Tertiary extinctions. We measured the amount of SO2 produced from two shock-induced devolatilization reactions of calcium sulfate up to 42 GPa in the laboratory. We found both to proceed to a much lower extent than calculated by equilibrium thermodynamic calculations. Reaction products are found to be approx. 10(exp -2) times those calculated for equilibrium. Upon modeling the quantity of sulfur oxides degassed into the atmosphere from shock devolatilization of CaSO4 in the Chicxulub lithographic section, the resulting 9 x 10(exp 16) to 6 x 10(exp 17) g (in sulfur mass) is lower by a factor of 10-100 than previous upper limit estimates, the related environmental stress arising from the resultant global cooling and fallout of acid rain is insufficient to explain the widespread K-T extinctions.

  12. Shock-induced devolatization of calcium sulfate and implications for K-T extinctions

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Tyburczy, James A.; Ahrens, Thomas J.

    1993-01-01

    Calcium sulfate devolatization during the impact at Chicxulub, Mexico and dispersal in the stratosphere of the resultant sulfuric acid aerosol have been suggested as a possible mechanism for the Cretaceous-Tertiary extinctions. In this paper, we investigated two shock-induced devolatization reactions of calcium sulfate up to 42 GPa in the laboratory: CaSO4 + SiO2 yields CaSiO3 + SO3(degassed) and CaSO4 yields CaO + SO2(degassed) + 1/2 O2(degassed). We found both to proceed to a much less extent than calculated by equilibrium thermodynamic calculations. Reaction products are found to be 10(exp -2) times those calculated for equilibrium. Consequently our estimate of the amount of sulfur oxides degassed into the atmosphere from shock devolatization of CaS04 in the Chicxulub lithographic section (6x10(exp 15)-2x10(exp 16)g in sulfur mass) is lower by a factor of 70 to 400 than previous estimates; the related environmental stress arising from the resultant global cooling of approximately 4 K and fallout of acid rain does not appear to suffice to explain the widespread K-T extinctions.

  13. Evidence for role of cytosolic free calcium in hypoxia-induced proximal tubule injury.

    PubMed Central

    Kribben, A; Wieder, E D; Wetzels, J F; Yu, L; Gengaro, P E; Burke, T J; Schrier, R W

    1994-01-01

    The role of cytosolic free Ca2+ ([Ca2+]i) in hypoxic injury was investigated in rat proximal tubules. [Ca2+]i was measured using fura-2 and cell injury was estimated with propidium iodide (PI) in individual tubules using video imaging fluorescence microscopy. [Ca2+]i increased from approximately 170 to approximately 390 nM during 5 min of hypoxia. This increase preceded detectable cell injury as assessed by PI and was reversible with reoxygenation. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA; 100 microM) reduced [Ca2+]i under basal conditions (approximately 80 nM) and during hypoxia (approximately 120 nM) and significantly attenuated hypoxic injury. When [Ca2+]i and hypoxic cell injury were studied concurrently in the same individual tubules, the 10 min [Ca2+]i rise correlated significantly with subsequent cell damage observed at 20 min. 2 mM glycine did not block the rise in [Ca2+]i, yet protected the tubules from hypoxic injury. These results indicate that in rat proximal tubules, hypoxia induces an increase of [Ca2+]i which occurs before cell damage. The protective effect of BAPTA supports a role for [Ca2+]i in the initiation of hypoxic proximal tubule injury. The glycine results, however, implicate calcium-independent mechanisms of injury and/or blockade of calcium-mediated processes of injury such as activation of phospholipases or proteases. Images PMID:8182125

  14. Development affects in vitro vascular tone and calcium sensitivity in ovine cerebral arteries

    PubMed Central

    Geary, Greg G; Osol, George J; Longo, Lawrence D

    2004-01-01

    We have shown recently that development from neonatal to adult life affects cerebrovascular tone of mouse cerebral arteries through endothelium-derived vasodilatory mechanisms. The current study tested the hypothesis that development from fetal to adult life affects cerebral artery vascular smooth muscle (VSM) [Ca2+]i sensitivity and tone through a mechanism partially dependent upon endothelium-dependent signalling. In pressurized resistance sized cerebral arteries (∼150 μm) from preterm (95 ± 2 days gestation (95 d)) and near-term (140 ± 2 days gestation (140 d)) fetuses, and non-pregnant adults, we measured vascular diameter (μm) and [Ca2+]i (nm) as a function of intravascular pressure. We repeated these studies in the presence of inhibition of nitric oxide synthase (NOS; with l-NAME), cyclo-oxygenase (COX; with indomethacin) and endothelium removal (E–). Cerebrovasculature tone (E+) was greater in arteries from 95 d fetuses and adults compared to 140 d sheep. Ca2+ sensitivity was similar in 95 d fetuses and adults, but much lower in 140 d fetuses. Removal of endothelium resulted in a reduction in lumen diameter as a function of pressure (greater tone) in all treatment groups. [Ca2+]i sensitivity differences among groups were magnified after E–. NOS inhibition decreased diameter as a function of pressure in each age group, with a significant increase in [Ca2+]i to pressure ratio only in the 140 d fetuses. Indomethacin increased tone and increased [Ca2+]i in the 140 d fetuses, but not the other age groups. Development from near-term to adulthood uncovered an interaction between NOS- and COX-sensitive substances that functioned to modulate artery diameter but not [Ca2+]i. This study suggests that development is associated with significant alterations in cerebral vascular smooth muscle (VSM), endothelium, NOS and COX responses to intravascular pressure. We speculate that these changes have important implications in the regulation of cerebral blood flow in

  15. Brief reactive psychosis induced by sensitivity training: similarities between sensitivity training and brainwashing situations.

    PubMed

    Satoh, S; Morita, N; Matsuzaki, I; Seno, E; Obata, S; Yoshikawa, M; Okada, T; Nishimura, A; Konishi, T; Yamagami, A

    1996-10-01

    Sensitivity training (ST), which originated in the USA during the late 1940s, has been used as part of training seminars in Japanese corporations since the late 1950s. The possibility of negative psychiatric effects of ST, and especially its role in inducing psychiatric symptoms, is yet to be clarified. A case of a 41-year-old male company worker whose brief psychosis was induced by a sensitivity training seminar held by the company he worked for is presented. In reviewing the psychopathology of the case with records from the ST seminar, we found similarities between the patient's ST seminar and brainwashing situations. Specifically, the patient experienced severe conflict (of thought process) between his Christian beliefs and being labeled a coward at the seminar. We conclude that monitoring of the ST programs is crucial in order to ensure the psychological safety of ST participants in Japan. PMID:9201788

  16. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    NASA Astrophysics Data System (ADS)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  17. Calcium sensitivity extends the length of ATP-reactivated ciliary axonemes.

    PubMed Central

    Tamm, S L; Tamm, S

    1989-01-01

    We use the Ca-dependent activation response of macrocilia of the ctenophore Beroë to map the distribution of Ca sensitivity along axonemes of detergent-extracted ATP-reactivated models. Local iontophoretic application of Ca (or Sr or Ba) to any site along the length of demembranated macrocilia in ATP-Mg solution elicits oscillatory bending. Bending responses are localized to the site of application of these cations and do not propagate. Ca sensitivity for initiating bends is, therefore, distributed along the entire length of the axonemes. Since Ca triggers ATP-dependent microtubule sliding disintegration of macrociliary axonemes, a Ca-sensitive mechanism for activating microtubule sliding extends the length of the axonemes. In contrast, local application of Ca to living dissociated macrociliary cells elicits beating only when applied to the base of the macrocilium, indicating that the effective site of Ca entry is localized to the membrane at the ciliary base. Therefore, the spatial distributions of membrane Ca permeability and axonemal Ca sensors do not coincide. Images PMID:2780555

  18. Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis

    PubMed Central

    Wang, Yan-Wei; Zhang, Ji-Hang; Yu, Yang; Yu, Jie; Huang, Lan

    2016-01-01

    Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that H2O2-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by H2O2. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by H2O2 and may serve as a potential therapeutic strategy against vascular endothelial injury. PMID:27169819

  19. Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis.

    PubMed

    Wang, Yan-Wei; Zhang, Ji-Hang; Yu, Yang; Yu, Jie; Huang, Lan

    2016-07-01

    Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that H2O2-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by H2O2. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by H2O2 and may serve as a potential therapeutic strategy against vascular endothelial injury. PMID:27169819

  20. Calcium-dependent trichosanthin-induced generation of reactive oxygen species involved in apoptosis of human choriocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chunyang; Ma, Hui; Chen, Die Yan

    2001-04-01

    The type-I ribosome-inactivating protein trichosanthin (TCS) has a broad spectrum of biological and pharmacological activities, including abortifacient, anti-tumor and anti-HIV. We found for the first time that TCS induced production of reactive oxygen species (ROS) in JAR cells by using fluorescent probe 2',7'-dichlorofluorescin diacetate with confocal laser scanning microscopy. TCS-induced ROS showed dependence on the increase in intracellular calcium and on the presence of extracellular calcium. The production of ROS increased rapidly after the application of TCS, which paralleled TCS-indued increase in intracellular calcium monitored using fluo 3-AM, suggesting that TCS-induced ROS might mediate by the increase in intracellular Ca2PLU concentration. Simultaneous observation of the nuclear morphological changes and production of ROS in JAR cells with two-photon laser scanning microscopy and confocal laser scanning microscopy revealed that ROS involved in the apoptosis of JAR cells, which was confirmed by that antioxidant (alpha) -tocopherol prevented TCS-induced ROS formation and cell death. The finding that calcium-dependent TCS-induced ROS involved in the apoptosis of JAR cells might provide new insight into the anti-tumor and anti-HIV mechanism of TCS.

  1. Calcium-myristoyl Tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclase-activating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity.

    PubMed

    Peshenko, Igor V; Olshevskaya, Elena V; Lim, Sunghyuk; Ames, James B; Dizhoor, Alexander M

    2012-04-20

    Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca(2+)-bound and Mg(2+)-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca(2+) sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca(2+) binding to EF-hand 4 and Ca(2+) sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu(80) and Val(180)) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or "tug") between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca(2+) sensitivity. PMID:22383530

  2. EFFECTS OF PYRETHROIDS ON VOLTAGE-SENSITIVE CALCIUM CHANNELS: A CRITICAL EVALUATION OF STRENGTHS, WEAKNESSES, DATA NEEDS, AND RELATIONSHIP TO ASSESSMENT OF CUMULATIVE NEUROTOXICITY.

    EPA Science Inventory

    A recently published review (Soderlund et al., 2002, Toxicology 171, 3-59.) of the mechanisms of acute neurotoxicity of pyrethroid compounds postulated that voltage-sensitive calcium channels (VSCC) may be a target of some pyrethroid compounds and that effects on VSCC may contrib...

  3. Bradykinin induced a positive chronotropic effect via stimulation of T- and L-type calcium currents in heart cells.

    PubMed

    El-Bizri, Nesrine; Bkaily, Ghassan; Wang, Shimin; Jacques, Danielle; Regoli, Domenico; D'Orléans-Juste, Pedro; Sukarieh, Rami

    2003-03-01

    Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone. PMID:12733823

  4. Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells.

    PubMed

    Allen, G J; Kuchitsu, K; Chu, S P; Murata, Y; Schroeder, J I

    1999-09-01

    Elevations in cytoplasmic calcium ([Ca(2)+](cyt)) are an important component of early abscisic acid (ABA) signal transduction. To determine whether defined mutations in ABA signal transduction affect [Ca(2)+](cyt) signaling, the Ca(2)+-sensitive fluorescent dye fura 2 was loaded into the cytoplasm of Arabidopsis guard cells. Oscillations in [Ca(2)+](cyt) could be induced when the external calcium concentration was increased, showing viable Ca(2)+ homeostasis in these dye-loaded cells. ABA-induced [Ca(2)+](cyt) elevations in wild-type stomata were either transient or sustained, with a mean increase of approximately 300 nM. Interestingly, ABA-induced [Ca(2)+](cyt) increases were significantly reduced but not abolished in guard cells of the ABA-insensitive protein phosphatase mutants abi1 and abi2. Plasma membrane slow anion currents were activated in wild-type, abi1, and abi2 guard cell protoplasts by increasing [Ca(2)+](cyt), demonstrating that the impairment in ABA activation of anion currents in the abi1 and abi2 mutants was bypassed by increasing [Ca(2)+](cyt). Furthermore, increases in external calcium alone (which elevate [Ca(2)+](cyt)) resulted in stomatal closing to the same extent in the abi1 and abi2 mutants as in the wild type. Conversely, stomatal opening assays indicated different interactions of abi1 and abi2, with Ca(2)+-dependent signal transduction pathways controlling stomatal closing versus stomatal opening. Together, [Ca(2)+](cyt) recordings, anion current activation, and stomatal closing assays demonstrate that the abi1 and abi2 mutations impair early ABA signaling events in guard cells upstream or close to ABA-induced [Ca(2)+](cyt) elevations. These results further demonstrate that the mutations can be bypassed during anion channel activation and stomatal closing by experimental elevation of [Ca(2)+](cyt). PMID:10488243

  5. Phosphorylation of a twitchin-related protein controls catch and calcium sensitivity of force production in invertebrate smooth muscle

    PubMed Central

    Siegman, Marion J.; Funabara, Daisuke; Kinoshita, Shigeharu; Watabe, Shugo; Hartshorne, David J.; Butler, Thomas M.

    1998-01-01

    “Catch” is a condition of prolonged, high-force maintenance at resting intracellular Ca2+ concentration ([Ca2+]) and very low energy usage, occurring in invertebrate smooth muscles, including the anterior byssus retractor muscle (ABRM) of Mytilus edulis. Relaxation from catch is rapid on serotonergic nerve stimulation in intact muscles and application of cAMP in permeabilized muscles. This release of catch occurs by protein kinase A-mediated phosphorylation of a high (≈600 kDa) molecular mass protein, the regulator of catch. Here, we identify the catch-regulating protein as a homologue of the mini-titin, twitchin, based on (i) a partial cDNA of the purified isolated protein showing 77% amino acid sequence identity to the kinase domain of Aplysia californica twitchin; (ii) a polyclonal antibody to a synthetic peptide in this sequence reacting with the phosphorylated catch-regulating protein band from permeabilized ABRM; and (iii) the similarity of the amino acid composition and molecular weight of the protein to twitchin. In permeabilized ABRM, at all but maximum [Ca2+], phosphorylation of twitchin results in a decreased calcium sensitivity of force production (half-maximum at 2.5 vs. 1.3 μM calcium). At a given submaximal force, with equal numbers of force generators, twitchin phosphorylation increased unloaded shortening velocity ≈2-fold. These data suggest that aspects of the catch state exist not only at resting [Ca2+], but also at higher submaximal [Ca2+]. The mechanism that gives rise to force maintenance in catch probably operates together, to some extent, with that of cycling myosin crossbridges. PMID:9560285

  6. Myofilament calcium sensitization delays decompensated hypertrophy differently between the sexes following myocardial infarction

    PubMed Central

    Shioura, Krystyna M.; Farjah, Mariam; Geenen, David L.; Solaro, R. John

    2011-01-01

    Contractile dysfunction is common to many forms of cardiovascular disease. Approaches directed at enhancing cardiac contractility at the level of the myofilaments during heart failure (HF) may provide a means to improve overall cardiovascular function. We are interested in gender-based differences in cardiac function and the effect of sarcomere activation agents that increase contractility. Thus, we studied the effect of gender and time on integrated arterial-ventricular function (A-V relationship) following myocardial infarction (MI). In addition, transgenic mice that overexpress the slow skeletal troponin I isoform were used to determine the impact of increased myofilament Ca2+ sensitivity following MI. Based on pressure-volume (P-V) loop measurements, we used derived parameters of cardiovascular function to reveal the effects of sex, time, and increased myofilament Ca2+ sensitivity among groups of post-MI mice. Analysis of the A-V relationship revealed that the initial increase was similar between the sexes, but the vascular unloading of the heart served to delay the decompensated stage in females. Conversely, the vascular response at 6 and 10 wk post-MI in males contributed to the continuous decline in cardiovascular function. Increasing the myofilament Ca2+ sensitivity appeared to provide sufficient contractile support to improve contractile function in both male and female transgenic mice. However, the improved contractile function was more beneficial in males as the concurrent vascular response contributed to a delayed decompensated stage in female transgenic mice post-MI. This study represents a quantitative approach to integrating the vascular-ventricular relationship to provide meaningful and diagnostic value following MI. Consequently, the data provide a basis for understanding how the A-V relationship is coupled between males and females and the enhanced ability of the cardiovascular system to tolerate pathophysiological stresses associated with HF in

  7. Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling

    PubMed Central

    Missiroli, Sonia; Poletti, Federica; Ramirez, Fabian Galindo; Morciano, Giampaolo; Morganti, Claudia; Pandolfi, Pier Paolo; Mammano, Fabio; Pinton, Paolo

    2015-01-01

    One challenge in biology is signal transduction monitoring in a physiological context. Intravital imaging techniques are revolutionizing our understanding of tumor and host cell behaviors in the tumor environment. However, these deep tissue imaging techniques have not yet been adopted to investigate the second messenger calcium (Ca2+). In the present study, we established conditions that allow the in vivo detection of Ca2+ signaling in three-dimensional tumor masses in mouse models. By combining intravital imaging and a skinfold chamber technique, we determined the ability of photodynamic cancer therapy to induce an increase in intracellular Ca2+ concentrations and, consequently, an increase in cell death in a p53-dependent pathway. PMID:25544762

  8. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation.

    PubMed

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. PMID:26652403

  9. Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor.

    PubMed

    Bimis, A; Karalekas, D; Bouropoulos, N; Mouzakis, D; Zaoutsos, S

    2016-07-01

    This study initially deals with the investigation of the induced strains during hardening stage of a self-setting calcium phosphate bone cement using fiber-Bragg grating (FBG) optical sensors. A complementary Scanning Electron Microscopy (SEM) investigation was also conducted at different time intervals of the hardening period and its findings were related to the FBG recordings. From the obtained results, it is demonstrated that the FBG response is affected by the microstructural changes taking place when the bone cement is immersed into the hardening liquid media. Subsequently, the FBG sensor was used to monitor the absorption process and hygroscopic response of the hardened and dried biocement when exposed to a liquid/humid environment. From the FBG-based calculated hygric strains as a function of moisture concentration, the coefficient of moisture expansion (CME) of the examined bone cement was obtained, exhibiting two distinct linear regions. PMID:26807773

  10. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts

    SciTech Connect

    Zeng, Xiao R.; Sun Yubo; Wenger, Leonor; Cheung, Herman S. . E-mail: hcheung@med.miami.edu

    2005-05-13

    Previously, we have reported that basic calcium phosphate (BCP) crystals stimulate mitogenesis and synthesis of matrix metalloproteinases in cultured human foreskin and synovial fibroblasts. However, the detailed mechanisms involved are still unclear. In the present study, using RT-PCR and Egr-1 promoter analysis we showed that BCP crystals could stimulate early growth response gene Egr-1 transcription through a PKC{alpha}-dependent p44/p42 MAPK pathway. Using a retrovirus gene expression system (Clontech) to overexpress Egr-1 in human fibroblast BJ-1 cells resulted in promotion of mitogenesis measured either by MTT cell proliferation analysis or by direct cell counting. The results demonstrate that Egr-1 may play a key role in mediating BCP crystal-induced synovial fibroblast mitogenesis.

  11. Calcium-dependent phospholipase A2 modulates infection-induced diaphragm dysfunction.

    PubMed

    Supinski, Gerald S; Alimov, Alexander P; Wang, Lin; Song, Xiao-Hong; Callahan, Leigh A

    2016-05-15

    Calpain activation contributes to the development of infection-induced diaphragm weakness, but the mechanisms by which infections activate calpain are poorly understood. We postulated that skeletal muscle calcium-dependent phospholipase A2 (cPLA2) is activated by cytokines and has downstream effects that induce calpain activation and muscle weakness. We determined whether cPLA2 activation mediates cytokine-induced calpain activation in isolated skeletal muscle (C2C12) cells and infection-induced diaphragm weakness in mice. C2C12 cells were treated with the following: 1) vehicle; 2) cytomix (TNF-α 20 ng/ml, IL-1β 50 U/ml, IFN-γ 100 U/ml, LPS 10 μg/ml); 3) cytomix + AACOCF3, a cPLA2 inhibitor (10 μM); or 4) AACOCF3 alone. At 24 h, we assessed cell cPLA2 activity, mitochondrial superoxide generation, calpain activity, and calpastatin activity. We also determined if SS31 (10 μg/ml), a mitochondrial superoxide scavenger, reduced cytomix-mediated calpain activation. Finally, we determined if CDIBA (10 μM), a cPLA2 inhibitor, reduced diaphragm dysfunction due to cecal ligation puncture in mice. Cytomix increased C2C12 cell cPLA2 activity (P < 0.001) and superoxide generation; AACOCF3 and SS31 blocked increases in superoxide generation (P < 0.001). Cytomix also activated calpain (P < 0.001) and inactivated calpastatin (P < 0.01); both AACOCF3 and SS31 prevented these changes. Cecal ligation puncture reduced diaphragm force in mice, and CDIBA prevented this reduction (P < 0.001). cPLA2 modulates cytokine-induced calpain activation in cells and infection-induced diaphragm weakness in animals. We speculate that therapies that inhibit cPLA2 may prevent diaphragm weakness in infected, critically ill patients. PMID:26968769

  12. On the effect of the injection of potassium phosphate in vivo inducing the precipitation of serum calcium with inorganic phosphate

    PubMed Central

    Soares, Alcimar B; Ticianeli, José G; Soares, Letícia B M; Amaro, George

    2013-01-01

    High concentrations of inorganic phosphate (Pi) resulted from the hydrolysis of ATP is strongly associated to the weakness of the contractile mechanism of muscles due to its attractiveness to calcium. The majority of the experiments to study such effect are conducted in vitro. This work investigates the effects of different concentrations of Pi, induced by the injection of potassium phosphate in live animals, in the precipitation with serum calcium and the generation of calcium phosphate composites. The experiments were also designed to find out the ideal amount of potassium phosphate to induce an effective reaction. Potassium phosphate was injected in Wistar rats, randomly separated and distributed into seven groups. Group I was injected with 0.5 ml of saline solution (control) and groups II through VII were injected with 0.5, 1.5, 2.5, 5.0, 7.5 and 10.0 mg/kg of potassium phosphate, respectively. Blood collected from the inferior vena cava was submitted to biochemical analyses to measure the concentrations of calcium, Pi, urea and creatinine. The results showed that Pi, induced by the injection of potassium phosphate in live animals, causes precipitation with serum calcium, with statistically significant differences between the control and the treatment groups for doses up to 5.0 mg/kg. No statistically significant differences were found between the different doses and the concentration of urea and creatinine in the plasma. We conclude that potassium phosphate can be used to induce serum calcium precipitation in-vivo, with minor effects on other physiological variables, and the ideal dose to do so is 5.0 mg/kg. PMID:24379908

  13. Dopamine-induced oscillations of the pyloric pacemaker neuron rely on release of calcium from intracellular stores.

    PubMed

    Kadiri, Lolahon R; Kwan, Alex C; Webb, Watt W; Harris-Warrick, Ronald M

    2011-09-01

    Endogenously bursting neurons play central roles in many aspects of nervous system function, ranging from motor control to perception. The properties and bursting patterns generated by these neurons are subject to neuromodulation, which can alter cycle frequency and amplitude by modifying the properties of the neuron's ionic currents. In the stomatogastric ganglion (STG) of the spiny lobster, Panulirus interruptus, the anterior burster (AB) neuron is a conditional oscillator in the presence of dopamine (DA) and other neuromodulators and serves as the pacemaker to drive rhythmic output from the pyloric network. We analyzed the mechanisms by which DA evokes bursting in the AB neuron. Previous work showed that DA-evoked bursting is critically dependent on external calcium (Harris-Warrick RM, Flamm RE. J Neurosci 7: 2113-2128, 1987). Using two-photon microscopy and calcium imaging, we show that DA evokes the release of calcium from intracellular stores well before the emergence of voltage oscillations. When this release from intracellular stores is blocked by antagonists of ryanodine or inositol trisphosphate (IP(3)) receptor channels, DA fails to evoke AB bursting. We further demonstrate that DA enhances the calcium-activated inward current, I(CAN), despite the fact that it significantly reduces voltage-activated calcium currents. This suggests that DA-induced release of calcium from intracellular stores activates I(CAN), which provides a depolarizing ramp current that underlies endogenous bursting in the AB neuron. PMID:21676929

  14. Myosin Phosphatase Isoforms as Determinants of Smooth Muscle Contractile Function and Calcium Sensitivity of Force Production

    PubMed Central

    DIPPOLD, RACHAEL P.; FISHER, STEVEN A.

    2014-01-01

    The dephosphorylation of myosin by the MP causes smooth muscle relaxation. MP is also a key target of signals that regulate vascular tone and thus blood flow and pressure. Here, we review studies from the past two decades that support the hypothesis that the regulated expression of MP subunits is a critical determinant of smooth muscle responses to constrictor and dilator signals. In particular, the highly regulated splicing of the regulatory subunit Mypt1 Exon 24 is proposed to tune sensitivity to NO/cGMP-mediated relaxation. The regulated transcription of the MP inhibitory subunit CPI-17 is proposed to determine sensitivity to agonist-mediated constriction. The expression of these subunits is specific in the microcirculation and varies in developmental and disease contexts. To date, the relationship between MP subunit expression and vascular function in these different contexts is correlative; confirmation of the hypothesis will require the generation of genetically engineered mice to test the role of MP subunits and their isoforms in the specificity of vascular smooth muscle responses to constrictor and dilator signals. PMID:24112301

  15. Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes.

    PubMed

    Bal-Price, Anna; Moneer, Zahid; Brown, Guy C

    2002-12-01

    Nitric oxide (NO; 1 microM) or an NO donor (500 microM diethylenetriamine-nitric oxide, DETA-NONOate) caused rapid glutamate and ATP release from cultured rat cortical astrocytes. NO-induced glutamate release was prevented by calcium chelators (EGTA or BAPTA-AM) and an inhibitor of vesicular exocytosis (botulinum neurotoxin C, BoTx-C), but not by a glutamate transport inhibitor, L-trans-pyrrolidine-2,4-dicarboxylate (t-PDC), a cyclooxygenase inhibitor (indomethacin), or an inhibitor of soluble guanylate cyclase 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), and was not induced by mitochondrial respiratory inhibitors (myxothiazol or azide). Similarly to glutamate, NO-induced ATP release was also completely blocked by BAPTA-AM and BoTx-C, suggesting again a vesicular, calcium-dependent mechanism of release. Addition of DETA-NONOate (500 microM) to fura-2-loaded astrocytes induced a rapid, transient increase in intracellular calcium levels followed by a lower, sustained level of calcium entry. The latter was blocked by gadolinium (1 microM), an inhibitor of capacitative Ca(2+) entry. Thus, NO appears to cause rapid exocytosis of vesicular glutamate and ATP from astrocytes by raising intracellular calcium levels. Astrocytes activated by lipopolysaccharide/endotoxin and interferon-gamma to express inducible NO synthase (iNOS) maintained substantially higher extracellular glutamate levels than nonactivated cells or activated cells treated with an iNOS inhibitor (1400W), but the rate of glutamate uptake by these cells was similar. This suggests that NO from inflammatory-activated astrocytes causes release of astrocytic glutamate. NO-induced release of astrocytic glutamate and ATP may be important in physiological or pathological communication between astrocytes and neurons. PMID:12420311

  16. Endothelin induces two types of contractions of rat uterus: phasic contractions by way of voltage-dependent calcium channels and developing contractions through a second type of calcium channels

    SciTech Connect

    Kozuka, M.; Ito, T.; Hirose, S.; Takahashi, K.; Hagiwara, H.

    1989-02-28

    Effects of endothelin on nonvascular smooth muscle have been examined using rat uterine horns and two modes of endothelin action have been revealed. Endothelin (0.3 nM) caused rhythmic contractions of isolated uterus in the presence of extracellular calcium. The rhythmic contractions were completely inhibited by calcium channel antagonists. These characteristics of endothelin-induced contractions were very similar to those induced by oxytocin. Binding assays using /sup 125/I-endothelin showed that endothelin and the calcium channel blockers did not compete for the binding sites. However, endothelin was unique in that it caused, in addition to rhythmic contractions, a slowly developing monophasic contraction that was insensitive to calcium channel blockers. This developing contraction became dominant at higher concentrations of endothelin and was also calcium dependent.

  17. POWER DENSITY, FIELD INTENSITY, AND CARRIER FREQUENCY DETERMINANTS OF RF-ENERGY-INDUCED CALCIUM-ION EFFLUX FROM BRAIN TISSUE

    EPA Science Inventory

    To explain a carrier frequency dependence reported for radiofrequency (RF)-induced calcium-ion efflux from brain tissue, a chick-brain hemisphere bathed in buffer solution is modeled as a sphere within the uniform field of the incident electromagnetic wave. Calculations on a sphe...

  18. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    ERIC Educational Resources Information Center

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  19. Allicin Induces Calcium and Mitochondrial Dysregulation Causing Necrotic Death in Leishmania

    PubMed Central

    Corral, María J.; Benito-Peña, Elena; Jiménez-Antón, M. Dolores; Cuevas, Laureano; Moreno-Bondi, María C.; Alunda, José M.

    2016-01-01

    Background Allicin has shown antileishmanial activity in vitro and in vivo. However the mechanism of action underlying its antiproliferative effect against Leishmania has been virtually unexplored. In this paper, we present the results obtained in L.infantum and a mechanistic basis is proposed. Methodology/Principal Finding Exposure of the parasites to allicin led to high Ca2+ levels and mitochondrial reactive oxygen species (ROS), collapse of the mitochondrial membrane potential, reduced production of ATP and elevation of cytosolic ROS. The incubation of the promastigotes with SYTOX Green revealed that decrease of ATP was not associated with plasma membrane permeabilization. Annexin V and propidium iodide (PI) staining indicated that allicin did not induce phospholipids exposure on the plasma membrane. Moreover, DNA agarose gel electrophoresis and TUNEL analysis demonstrated that allicin did not provoke DNA fragmentation. Analysis of the cell cycle with PI staining showed that allicin induced cell cycle arrest in the G2/M phase. Conclusions/Significance We conclude that allicin induces dysregulation of calcium homeostasis and oxidative stress, uncontrolled by the antioxidant defense of the cell, which leads to mitochondrial dysfunction and a bioenergetic catastrophe leading to cell necrosis and cell cycle arrest in the premitotic phase. PMID:27023069

  20. Ethanol induces calcium influx via the Cch1-Mid1 transporter in Saccharomyces cerevisiae.

    PubMed

    Courchesne, William E; Vlasek, Christopher; Klukovich, Rachel; Coffee, Sara

    2011-05-01

    Yeast suffers from a variety of environmental stresses, such as osmotic pressure and ethanol produced during fermentation. Since calcium ions are protective for high concentrations of ethanol, we investigated whether Ca(2+) flux occurs in response to ethanol stress. We find that exposure of yeast to ethanol induces a rise in the cytoplasmic concentration of Ca(2+). The response is enhanced in cells shifted to high-osmotic media containing proline, galactose, sorbitol, or mannitol. Suspension of cells in proline and galactose-containing media increases the Ca(2+) levels in the cytoplasm independent of ethanol exposure. The enhanced ability for ethanol to induce Ca(2+) flux after the hypertonic shift is transient, decreasing rapidly over a period of seconds to minutes. There is partial recovery of the response after zymolyase treatment, suggesting that cell wall integrity affects the ethanol-induced Ca(2+) flux. Acetate inhibits the Ca(2+) accumulation elicited by the ethanol/osmotic stress. The Ca(2+) flux is primarily via the Cch1 Ca(2+) influx channel because strains carrying deletions of the cch1 and mid1 genes show greater than 90% reduction in Ca(2+) flux. Furthermore, a functional Cch1 channel reduced growth inhibition by ethanol. PMID:21259000

  1. Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells.

    PubMed

    Mergler, Stefan; Derckx, Raissa; Reinach, Peter S; Garreis, Fabian; Böhm, Arina; Schmelzer, Lisa; Skosyrski, Sergej; Ramesh, Niraja; Abdelmessih, Suzette; Polat, Onur Kerem; Khajavi, Noushafarin; Riechardt, Aline Isabel

    2014-01-01

    Uveal melanoma (UM) is both the most common and fatal intraocular cancer among adults worldwide. As with all types of neoplasia, changes in Ca(2+) channel regulation can contribute to the onset and progression of this pathological condition. Transient receptor potential channels (TRPs) and cannabinoid receptor type 1 (CB1) are two different types of Ca(2+) permeation pathways that can be dysregulated during neoplasia. We determined in malignant human UM and healthy uvea and four different UM cell lines whether there is gene and functional expression of TRP subtypes and CB1 since they could serve as drug targets to either prevent or inhibit initiation and progression of UM. RT-PCR, Ca(2+) transients, immunohistochemistry and planar patch-clamp analysis probed for their gene expression and functional activity, respectively. In UM cells, TRPV1 and TRPM8 gene expression was identified. Capsaicin (CAP), menthol or icilin induced Ca(2+) transients as well as changes in ion current behavior characteristic of TRPV1 and TRPM8 expression. Such effects were blocked with either La(3+), capsazepine (CPZ) or BCTC. TRPA1 and CB1 are highly expressed in human uvea, but TRPA1 is not expressed in all UM cell lines. In UM cells, the CB1 agonist, WIN 55,212-2, induced Ca(2+) transients, which were suppressed by La(3+) and CPZ whereas CAP-induced Ca(2+) transients could also be suppressed by CB1 activation. Identification of functional TRPV1, TRPM8, TRPA1 and CB1 expression in these tissues may provide novel drug targets for treatment of this aggressive neoplastic disease. PMID:24084605

  2. Polarity Alteration of a Calcium Site Induces a Hydrophobic Interaction Network and Enhances Cel9A Endoglucanase Thermostability.

    PubMed

    Wang, Hsiu-Jung; Hsiao, Yu-Yuan; Chen, Yu-Pei; Ma, Tien-Yang; Tseng, Ching-Ping

    2016-03-01

    Structural calcium sites control protein thermostability and activity by stabilizing native folds and changing local conformations. Alicyclobacillus acidocaldarius survives in thermal-acidic conditions and produces an endoglucanase Cel9A (AaCel9A) which contains a calcium-binding site (Ser465 to Val470) near the catalytic cleft. By superimposing the Ca(2+)-free and Ca(2+)-bounded conformations of the calcium site, we found that Ca(2+) induces hydrophobic interactions between the calcium site and its nearby region by driving a conformational change. The hydrophobic interactions at the high-B-factor region could be enhanced further by replacing the surrounding polar residues with hydrophobic residues to affect enzyme thermostability and activity. Therefore, the calcium-binding residue Asp468 (whose side chain directly ligates Ca(2+)), Asp469, and Asp471 of AaCel9A were separately replaced by alanine and valine. Mutants D468A and D468V showed increased activity compared with those of the wild type with 0 mM or 10 mM Ca(2+) added, whereas the Asp469 or Asp471 substitution resulted in decreased activity. The D468A crystal structure revealed that mutation D468A triggered a conformational change similar to that induced by Ca(2+) in the wild type and developed a hydrophobic interaction network between the calcium site and the neighboring hydrophobic region (Ala113 to Ala117). Mutations D468V and D468A increased 4.5°C and 5.9°C, respectively, in melting temperature, and enzyme half-life at 75°C increased approximately 13 times. Structural comparisons between AaCel9A and other endoglucanases of the GH9 family suggested that the stability of the regions corresponding to the AaCel9A calcium site plays an important role in GH9 endoglucanase catalysis at high temperature. PMID:26729722

  3. Structure-Function Analysis of Nod Factor-Induced Root Hair Calcium Spiking in Rhizobium-Legume Symbiosis1

    PubMed Central

    Wais, Rebecca J.; Keating, David H.; Long, Sharon R.

    2002-01-01

    In the Rhizobium-legume symbiosis, compatible bacteria and host plants interact through an exchange of signals: Host compounds promote the expression of bacterial biosynthetic nod (nodulation) genes leading to the production of a lipochito-oligosaccharide signal, the Nod factor (NF). The particular array of nod genes carried by a given species of Rhizobium determines the NF structure synthesized and defines the range of legume hosts by which the bacterium is recognized. Purified NF can induce early host responses even in the absence of live Rhizobium One of the earliest known host responses to NF is an oscillatory behavior of cytoplasmic calcium, or calcium spiking, in root hair cells, initially observed in Medicago spp. and subsequently characterized in four other genera (D.W. Ehrhardt, R. Wais, S.R. Long [1996] Cell 85: 673–681; S.A. Walker, V. Viprey, J.A. Downie [2000] Proc Natl Acad Sci USA 97: 13413–13418; D.W. Ehrhardt, J.A. Downie, J. Harris, R.J. Wais, and S.R. Long, unpublished data). We sought to determine whether live Rhizobium trigger a rapid calcium spiking response and whether this response is NF dependent. We show that, in the Sinorhizobium meliloti-Medicago truncatula interaction, bacteria elicit a calcium spiking response that is indistinguishable from the response to purified NF. We determine that calcium spiking is a nod gene-dependent host response. Studies of calcium spiking in M. truncatula and alfalfa (Medicago sativa) also uncovered the possibility of differences in early NF signal transduction. We further demonstrate the sufficiency of the nod genes for inducing calcium spiking by using Escherichia coli BL21 (DE3) engineered to express 11 S. meliloti nod genes. PMID:12011352

  4. Polarity Alteration of a Calcium Site Induces a Hydrophobic Interaction Network and Enhances Cel9A Endoglucanase Thermostability

    PubMed Central

    Wang, Hsiu-Jung; Hsiao, Yu-Yuan; Chen, Yu-Pei; Ma, Tien-Yang

    2016-01-01

    Structural calcium sites control protein thermostability and activity by stabilizing native folds and changing local conformations. Alicyclobacillus acidocaldarius survives in thermal-acidic conditions and produces an endoglucanase Cel9A (AaCel9A) which contains a calcium-binding site (Ser465 to Val470) near the catalytic cleft. By superimposing the Ca2+-free and Ca2+-bounded conformations of the calcium site, we found that Ca2+ induces hydrophobic interactions between the calcium site and its nearby region by driving a conformational change. The hydrophobic interactions at the high-B-factor region could be enhanced further by replacing the surrounding polar residues with hydrophobic residues to affect enzyme thermostability and activity. Therefore, the calcium-binding residue Asp468 (whose side chain directly ligates Ca2+), Asp469, and Asp471 of AaCel9A were separately replaced by alanine and valine. Mutants D468A and D468V showed increased activity compared with those of the wild type with 0 mM or 10 mM Ca2+ added, whereas the Asp469 or Asp471 substitution resulted in decreased activity. The D468A crystal structure revealed that mutation D468A triggered a conformational change similar to that induced by Ca2+ in the wild type and developed a hydrophobic interaction network between the calcium site and the neighboring hydrophobic region (Ala113 to Ala117). Mutations D468V and D468A increased 4.5°C and 5.9°C, respectively, in melting temperature, and enzyme half-life at 75°C increased approximately 13 times. Structural comparisons between AaCel9A and other endoglucanases of the GH9 family suggested that the stability of the regions corresponding to the AaCel9A calcium site plays an important role in GH9 endoglucanase catalysis at high temperature. PMID:26729722

  5. Calcium phosphate nanoparticles are associated with inorganic phosphate-induced osteogenic differentiation of rat bone marrow stromal cells.

    PubMed

    Chen, Xiao-rong; Bai, Jing; Yuan, Shuai-jun; Yu, Cai-xia; Huang, Jian; Zhang, Tian-lan; Wang, Kui

    2015-08-01

    In the present study, we demonstrated that calcium phosphate (CaP) nanoparticles formed in cell culture media were implicated in the process of high inorganic phosphate (Pi) mediated osteogenic differentiation of rat bone marrow stromal cells (BMSCs). Exposure of BMSCs in vitro to high Pi-containing media reduced alkaline phosphatase (ALP) activity and the expressions of osteoblast-specific genes. The sediments of CaP nanoparticles were observed at the cell surface and some of them were concomitantly found inside cells at high Pi concentration. In addition, treatment the cells with pyrophosphate (PPi), an inhibitor of calcium crystal formation, abrogated the ALP activity induced by high Pi, suggesting the contribution of CaP nanoparticles. Moreover, for isolated CaP nanoparticles, there was a trend of conversion from amorphous calcium phosphate to hydroxyapatite with elevated Pi. The particle size of CaP increased and the surface morphology changed from spherical to irregular due to increased concentrations of serum proteins incorporated into CaP nanoparticles. The study demonstrated that those physicochemical properties of CaP nanoparticles played an important role in modulating BMSCs differentiation. Furthermore, the addition of Pi in the osteogenic media resulted in a dose-dependent increase in matrix mineralization, while treatment of the cells with PPi suppressed Pi-induced calcium deposition. The findings indicated that calcium deposition in the matrix partly came from the spontaneous precipitation of CaP nanoparticles. PMID:26111760

  6. Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation.

    PubMed

    Felmy, Felix; Neher, Erwin; Schneggenburger, Ralf

    2003-03-01

    In nerve terminals, residual Ca(2+) remaining from previous activity can cause facilitation of transmitter release by a mechanism that is still under debate. Here we show that the intracellular Ca(2+) sensitivity of transmitter release at the calyx of Held is largely unchanged during facilitation, which leaves an increased microdomain Ca(2+) signal as a possible mechanism for facilitation. We measured the Ca(2+) dependencies of facilitation, as well as of transmitter release, to estimate the required increment in microdomain Ca(2+). These measurements show that linear summation of residual and microdomain Ca(2+) accounts for only 30% of the observed facilitation. However, a small degree of supralinearity in the summation of intracellular Ca(2+) signals, which might be caused by saturation of cytosolic Ca(2+) buffer(s), is sufficient to explain facilitation at this CNS synapse. PMID:12628170

  7. Licochalcone A induces T24 bladder cancer cell apoptosis by increasing intracellular calcium levels.

    PubMed

    Yang, Xinhui; Jiang, Jiangtao; Yang, Xinyan; Han, Jichun; Zheng, Qiusheng

    2016-07-01

    Licochalcone A (LCA) has been reported to significantly inhibit cell proliferation, increase reactive oxygen species (ROS) levels, and induce apoptosis of T24 human bladder cancer cells via mitochondria and endoplasmic reticulum (ER) stress-triggered signaling pathways. Based on these findings, the present study aimed to investigate the mechanisms by which LCA induces apoptosis of T24 cells. Cultured T24 cells were treated with LCA, and cell viability was measured using the sulforhodamine B assay. Apoptosis was detected by flow cytometry with Annexin V/propidium iodide staining, and by fluorescent microscopy with Hoechst 33258 staining. The levels of intracellular free calcium ions were determined using Fluo-3 AM dye marker. Intracellular ROS levels were assessed using the 2',7'-dichlorodihydrofluorescein diacetate probe assay. The mitochondrial membrane potential was measured using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazole carbocyanine iodide. Furthermore, the mRNA expression levels of B‑cell lymphoma (Bcl)‑extra large, Bcl‑2‑associated X protein, Bcl‑2‑interacting mediator of cell death, apoptotic protease activating factor‑1 (Apaf‑1), calpain 2, cysteinyl aspartate specific proteinase (caspase)‑3, caspase‑4 and caspase‑9 were determined using reverse transcription semiquantitative and quantitative polymerase chain reaction analyses. Treatment with LCA inhibited proliferation and induced apoptosis of T24 cells, and increased intracellular Ca2+ levels and ROS production. Furthermore, LCA induced mitochondrial dysfunction, decreased mitochondrial membrane potential, and increased the mRNA expression levels of Apaf‑1, caspase‑9 and caspase‑3. Exposure of T24 cells to LCA also triggered calpain 2 and caspase‑4 activation, resulting in apoptosis. These findings indicated that LCA increased intracellular Ca2+ levels, which may be associated with mitochondrial dysfunction. In addition, the ER stress pathway may be

  8. Prostaglandin F2 alpha-induced calcium transient in ovine large luteal cells: II. Modulation of the transient and resting cytosolic free calcium alters progesterone secretion.

    PubMed

    Wegner, J A; Martinez-Zaguilan, R; Gillies, R J; Hoyer, P B

    1991-02-01

    A previous study demonstrated that prostaglandin F2 alpha (PGF2 alpha) stimulates a transient increase in cytosolic free Ca2+ levels [( Ca2+]i) in ovine large luteal cells. In the present study, the magnitude of the PGF2 alpha (0.5 microM)-induced calcium transient in Hanks' medium (87 +/- 2 nM increase above resting levels) was reduced (P less than 0.05) but not completely eliminated in fura-2 loaded large luteal cells incubated in Ca2(+)-free or phosphate- and carbonate-free medium (10 +/- 1 nM, 32 +/- 6 nM, above resting levels; respectively). Preincubation for 2 min with 1 mM LaCl3 (calcium antagonist) eliminated the PGF2 alpha-induced calcium transient. The inhibitory effect of PGF2 alpha on secretion of progesterone was reduced in Ca2(+)-free medium or medium plus LaCl3. Resting [Ca2+]i levels and basal secretion of progesterone were both reduced (P less than 0.05) in large cells incubated in Ca2(+)-free medium (27 +/- 4 nM; 70 +/- 6% control, respectively) or with 5 microM 5,5'-dimethyl bis-(O-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid (40 +/- 2 nM; 49 +/- 1% control; respectively). In addition, secretion of progesterone was inhibited (P less than 0.05) by conditions that increased (P less than 0.05) [Ca2+]i; that is LaCl3 ([Ca2+]i, 120 +/- 17 nM; progesterone, 82 +/- 8% control) and PGF2 alpha ([Ca2+]i, 102 +/- 10 nM; progesterone, 82 +/- 3% control). In small luteal cells, resting [Ca2+]i levels and secretion of progesterone were reduced by incubation in Ca2(+)-free Hanks ([Ca2+]i, 28 +/- 2 nM; progesterone, 71 +/- 6% control), however, neither LaCl3 nor PGF2 alpha increased [Ca2+]i levels or inhibited secretion of progesterone. The findings presented here provide evidence that extracellular as well as intracellular calcium contribute to the PGF2 alpha-induced [Ca2+]i transient in large cells. Furthermore, whereas an adequate level of [Ca2+]i is required to support progesterone production in both small and large cells, optimal progesterone production in

  9. Biphasic modulation by mGlu5 receptors of TRPV1-mediated intracellular calcium elevation in sensory neurons contributes to heat sensitivity

    PubMed Central

    Masuoka, T; Nakamura, T; Kudo, M; Yoshida, J; Takaoka, Y; Kato, N; Ishibashi, T; Imaizumi, N; Nishio, M

    2015-01-01

    Background and Purpose Elevation of glutamate, an excitatory amino acid, during inflammation and injury plays a crucial role in the reception and transmission of sensory information via ionotropic and metabotropic receptors. This study aimed to investigate the mechanisms underlying the biphasic effects of metabotropic glutamate mGlu5 receptor activation on responses to noxious heat. Experimental Approach We assessed the effects of intraplantar quisqualate, a non-selective glutamate receptor agonist, on heat and mechanical pain behaviours in mice. In addition, the effects of quisqualate on the intracellular calcium response and on membrane currents mediated by TRPV1 channels, were examined in cultured dorsal root ganglion neurons from mice. Key Results Activation of mGlu5 receptors in hind paw transiently increased, then decreased, the response to noxious heat. In sensory neurons, activation of mGlu5 receptors potentiated TRPV1-mediated intracellular calcium elevation, while terminating activation of mGlu5 receptors depressed it. TRPV1-induced currents were potentiated by activation of mGlu5 receptors under voltage clamp conditions and these disappeared after washout. However, voltage-gated calcium currents were inhibited by the mGlu5 receptor agonist, even after washout. Conclusions and Implications These results suggest that, in sensory neurons, mGlu5 receptors biphasically modulate TRPV1-mediated intracellular calcium response via transient potentiation of TRPV1 channel-induced currents and persistent inhibition of voltage-gated calcium currents, contributing to heat hyper- and hypoalgesia. PMID:25297838

  10. Depolarization-induced contractile activity of smooth muscle in calcium-free solution.

    PubMed

    Mangel, A W; Nelson, D O; Rabovsky, J L; Prosser, C L; Connor, J A

    1982-01-01

    In calcium-free solution, strips of cat intestinal muscle developed slow, rhythmic electrical potential changes that triggered contractions. Some strips failed to develop spontaneous electrical activity in calcium-free solution but responded with contractions to depolarization by direct electrical stimulation or by treatment with barium chloride, potassium chloride, or acetylcholine. Similar results were obtained with segments of cat stomach, colon, esophagus, bladder, uterus, and vena cava, as well as with rabbit vena cava. In calcium-free saline, rat small intestinal muscle showed fast electrical activity with accompanying development of a tetanuslike contraction. After 60 min in calcium-free solution, cat small intestinal muscle retained 17.7% of its original concentration of calcium. It is concluded that in some smooth muscles, depolarization-triggered release of intracellular calcium does not require an associated influx of calcium. PMID:7058877

  11. Tetrodotoxin-sensitive calcium-conducting channels in the rat hippocampal CA1 region.

    PubMed Central

    Akaike, N; Takahashi, K

    1992-01-01

    1. Tetrodotoxin (TTX)-sensitive Ca2+ conducting channels which produce a transient inward current were investigated in pyramidal neurones freshly dissociated from the dorsal part of rat hippocampal CA1 region by the use of the suction-pipette technique, which allows for intracellular perfusion under a single-electrode voltage clamp. 2. In all cells superfused with Na(+)- and K(+)-free external solution containing 10 mM-Ca2+ and 10(-5) M-La3+, a transient inward Ca2+ current was evoked by a step depolarization to potentials more positive than about -50 mV from a holding potential (VH) of -100 mV. This current was inhibited by either removing the extracellular Ca2+ or adding TTX (termed as 'TTX-ICa'). 3. Activation and inactivation processes of the TTX-ICa were highly potential dependent at 20-22 degrees C, and the latter was fitted by a double exponential function. The time to peak of the current decreased from 5.0 to 2.3 ms at a test potential change from -50 to 0 mV. The time constants of the current decay decreased from 2.8 to 2.2 ms for fast component (tau if) and from 16.0 to 8.2 ms for slow component (tau is) at a potential change from -35 to -10 mV. 4. The TTX-ICa was activated at threshold potential of about -55 mV and reached full activation at -30 mV. The steady-state inactivation of TTX-ICa could be fitted by a Boltzmann equation with a slope factor of 6.0 mV and a half-inactivation voltage of -72.5 mV. 5. Biphasic recovery (reactivation) from the complete inactivation of TTX-ICa was observed. The time constant of the major component (78.8 to 91.6% of total) of the reactivation was 13.1 ms, and that of the minor one was 120 to 240 ms. Therefore, TTX-ICa remained fairly constant at a train of stimulation up to 3 Hz. However, the inhibition of current amplitude occurred as the repetitive stimulation increased more than 10 Hz, and considerable tonic inhibition occurred with increasing stimulation frequency. 6. When the peak amplitudes in the individual

  12. R-Type Calcium Channels Are Crucial for Semaphorin 3A–Induced DRG Axon Growth Cone Collapse

    PubMed Central

    Jover, Emmanuel; Bagnard, Dominique; Šatkauskas, Saulius

    2014-01-01

    Semaphorin 3A (Sema3A) is a secreted protein involved in axon path-finding during nervous system development. Calcium signaling plays an important role during axonal growth in response to different guidance cues; however it remains unclear whether this is also the case for Sema3A. In this study we used intracellular calcium imaging to figure out whether Sema3A-induced growth cone collapse is a Ca2+ dependent process. Intracellular Ca2+ imaging results using Fura-2 AM showed Ca2+ increase in E15 mice dorsal root ganglia neurons upon Sema3A treatment. Consequently we analyzed Sema3A effect on growth cones after blocking or modifying intracellular and extracellular Ca2+ channels that are expressed in E15 mouse embryos. Our results demonstrate that Sema3A increased growth cone collapse rate is blocked by the non-selective R- and T- type Ca2+ channel blocker NiCl2 and by the selective R-type Ca2+ channel blocker SNX482. These Ca2+ channel blockers consistently decreased the Sema3A-induced intracellular Ca2+ concentration elevation. Overall, our results demonstrate that Sema3A-induced growth cone collapses are intimately related with increase in intracellular calcium concentration mediated by R-type calcium channels. PMID:25032951

  13. Involvements of calcium channel and potassium channel in Danshen and Gegen decoction induced vasodilation in porcine coronary LAD artery.

    PubMed

    Hu, Fan; Koon, Chi Man; Chan, Judy Yuet Wa; Lau, Kit Man; Kwan, Y W; Fung, Kwok Pui

    2012-09-15

    Danshen (Salviae Miltiorrhizae Radix) and Gegen (Puerariae Lobatae Radix) have been widely used in treating cardiovascular diseases for thousands of years in China. The present study was carried out to evaluate the effects of a Danshen and Gegen decoction (DG) on the vascular reactivity of a porcine isolated coronary artery and the underlying mechanisms involved. Porcine coronary rings were precontracted with 15 nM U46619. The involvement of endothelium-dependent mechanisms was explored by removing the endothelium; the involvement of potassium channels was investigated by the pretreatment of the artery rings with various blockers, and the involvement of the calcium channels was investigated by incubating the artery rings with Ca²⁺-free buffer and priming them with high [K⁺] prior to adding CaCl₂ to elicit contraction. The involvement of Ca²⁺ sensitization was explored by evaluating the Rho-activity expression. The results revealed that DG elicited a concentration-dependent relaxation on a U46619-precontracted coronary artery ring. These relaxation responses were not altered by the pretreatment of inhibitors of endothelium-related dilator synthases, cGMP and cAMP pathway inhibitors, potassium channel (BK(Ca), SK(Ca), K(V) and K(ATP)) blockers and endothelium removal. The K(IR) channel blocker BaCl₂ only slightly attenuated the DG-induced relaxation. However, the Ca²⁺-induced artery contraction was inhibited by DG. Additionally, the expression of the phosphorylated myosin light chain was inhibited by DG whereas the activity of RhoA was not affected. Therefore, DG could be a useful cardioprotective agent for vasodilation in patients who have hypertension. PMID:22889578

  14. Ammonium-induced calcium mobilization in 1321N1 astrocytoma cells

    SciTech Connect

    Hillmann, Petra; Koese, Meryem; Soehl, Kristina; Mueller, Christa E.

    2008-02-15

    High blood levels of ammonium/ammonia (NH{sub 4}{sup +}/NH{sub 3}) are associated with severe neurotoxicity as observed in hepatic encephalopathy (HE). Astrocytes are the main targets of ammonium toxicity, while neuronal cells are less vulnerable. In the present study, an astrocytoma cell line 1321N1 and a neuroblastoma glioma hybrid cell line NG108-15 were used as model systems for astrocytes and neuronal cells, respectively. Ammonium salts evoked a transient increase in intracellular calcium concentrations ([Ca{sup 2+}]{sub i}) in astrocytoma (EC{sub 50} = 6.38 mM), but not in NG108-15 cells. The ammonium-induced increase in [Ca{sup 2+}]{sub i} was due to an intracellular effect of NH{sub 4}{sup +}/NH{sub 3} and was independent of extracellular calcium. Acetate completely inhibited the ammonium effect. Ammonium potently reduced calcium signaling by G{sub q} protein-coupled receptors (H{sub 1} and M3) expressed on the cells. Ammonium (5 mM) also significantly inhibited the proliferation of 1321N1 astrocytoma cells. While mRNA for the mammalian ammonium transporters RhBG and RhCG could not be detected in 1321N1 astrocytoma cells, both transporters were expressed in NG108-15 cells. RhBG and RhBC in brain may promote the excretion of NH{sub 3}/NH{sub 4}{sup +} from neuronal cells. Cellular uptake of NH{sub 4}{sup +}/NH{sub 3} was mainly by passive diffusion of NH{sub 3}. Human 1321N1 astrocytoma cells appear to be an excellent, easily accessible human model for studying HE, which can substitute animal studies, while NG108-15 cells may be useful for investigating the role of the recently discovered Rhesus family type ammonium transporters in neuronal cells. Our findings may contribute to the understanding of pathologic ammonium effects in different brain cells, and to the treatment of hyperammonemia.

  15. Involvement of mouse and porcine PLCζ-induced calcium oscillations in preimplantation development of mouse embryos

    SciTech Connect

    Yoneda, Akihiro; Watanabe, Tomomasa

    2015-05-01

    In mammals, phospholipase Cζ (PLCζ) has the ability to trigger calcium (Ca{sup 2+}) oscillations in oocytes, leading to oocyte activation. Although there is a species-specific difference in the PLCζ-induced Ca{sup 2+} oscillatory pattern, whether PLCζ-induced Ca{sup 2+} oscillations affect preimplantation embryonic development remains unclear. Here, we show that Ca{sup 2+} oscillations in mouse PLCζ cRNA-injected oocytes stopped just before pronuclear formation, while that in porcine PLCζ cRNA-injected oocytes continued for several hours after pronuclei had been formed. This difference of Ca{sup 2+} oscillations in oocytes after pronuclear formation was dependent on the difference in the nuclear localization signal (NLS) sequence of PLCζ between the mouse and pig. However, mouse and porcine PLCζ cRNA-injected oocytes parthenogenetically developed to blastocysts regardless of the absence or presence of Ca{sup 2+} oscillations after pronuclear formation. Furthermore, the developmental rate of mouse or porcine PLCζ-activated oocytes injected with round spermatids to the blastocyst stage was not significantly different from that of strontium-activated oocytes injected with round spermatids. These results suggest that the PLCζ-induced Ca{sup 2+} oscillatory pattern in mouse oocytes is dependent on the NLS sequence of PLCζ and injection of PLCζ may be a useful method for activation of round spermatid-injected and somatic nuclear transferred oocytes. - Highlights: • Porcine PLCζ-induced Ca{sup 2+} oscillations continued after pronuclear formation. • The Ca{sup 2+} oscillatory pattern was dependent on the difference in the NLS sequence of PLCζ. • PLCζ-activated oocytes parthenogenetically developed to blastocysts. • PLCζ-activated oocytes injected with round spermatids developed to blastocysts.

  16. The calcium pump plasma membrane Ca2+-ATPase 2 (PMCA2) regulates breast cancer cell proliferation and sensitivity to doxorubicin

    PubMed Central

    Peters, Amelia A.; Milevskiy, Michael J. G.; Lee, Wei C.; Curry, Merril C.; Smart, Chanel E.; Saunus, Jodi M.; Reid, Lynne; da Silva, Leonard; Marcial, Daneth L.; Dray, Eloise; Brown, Melissa A.; Lakhani, Sunil R.; Roberts-Thomson, Sarah J.; Monteith, Gregory R.

    2016-01-01

    Regulation of Ca2+ transport is vital in physiological processes, including lactation, proliferation and apoptosis. The plasmalemmal Ca2+ pump isoform 2 (PMCA2) a calcium ion efflux pump, was the first protein identified to be crucial in the transport of Ca2+ ions into milk during lactation in mice. In these studies we show that PMCA2 is also expressed in human epithelia undergoing lactational remodeling and also report strong PMCA2 staining on apical membranes of luminal epithelia in approximately 9% of human breast cancers we assessed. Membrane protein expression was not significantly associated with grade or hormone receptor status. However, PMCA2 mRNA levels were enriched in Basal breast cancers where it was positively correlated with survival. Silencing of PMCA2 reduced MDA-MB-231 breast cancer cell proliferation, whereas silencing of the related isoforms PMCA1 and PMCA4 had no effect. PMCA2 silencing also sensitized MDA-MB-231 cells to the cytotoxic agent doxorubicin. Targeting PMCA2 alone or in combination with cytotoxic therapy may be worthy of investigation as a therapeutic strategy in breast cancer. PMCA2 mRNA levels are also a potential tool in identifying poor responders to therapy in women with Basal breast cancer. PMID:27148852

  17. The calcium pump plasma membrane Ca(2+)-ATPase 2 (PMCA2) regulates breast cancer cell proliferation and sensitivity to doxorubicin.

    PubMed

    Peters, Amelia A; Milevskiy, Michael J G; Lee, Wei C; Curry, Merril C; Smart, Chanel E; Saunus, Jodi M; Reid, Lynne; da Silva, Leonard; Marcial, Daneth L; Dray, Eloise; Brown, Melissa A; Lakhani, Sunil R; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2016-01-01

    Regulation of Ca(2+) transport is vital in physiological processes, including lactation, proliferation and apoptosis. The plasmalemmal Ca(2+) pump isoform 2 (PMCA2) a calcium ion efflux pump, was the first protein identified to be crucial in the transport of Ca(2+) ions into milk during lactation in mice. In these studies we show that PMCA2 is also expressed in human epithelia undergoing lactational remodeling and also report strong PMCA2 staining on apical membranes of luminal epithelia in approximately 9% of human breast cancers we assessed. Membrane protein expression was not significantly associated with grade or hormone receptor status. However, PMCA2 mRNA levels were enriched in Basal breast cancers where it was positively correlated with survival. Silencing of PMCA2 reduced MDA-MB-231 breast cancer cell proliferation, whereas silencing of the related isoforms PMCA1 and PMCA4 had no effect. PMCA2 silencing also sensitized MDA-MB-231 cells to the cytotoxic agent doxorubicin. Targeting PMCA2 alone or in combination with cytotoxic therapy may be worthy of investigation as a therapeutic strategy in breast cancer. PMCA2 mRNA levels are also a potential tool in identifying poor responders to therapy in women with Basal breast cancer. PMID:27148852

  18. Impaired Compensation for Salt-Induced Urinary Calcium Loss in a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Navidi, Meena; Harper, J. S.; Evans, J.; Fung, P.; Wolinsky, I.; Arnaud, S. B.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    The loss of urinary calcium (UCa) induced by high sodium (HiNa) diets is compensated for by an increase in net intestinal Ca absorption (abs.). To determine the capacity of the intestine to absorb Ca in a space flight model in which the formation of 1,25-dihydroxyvitamin D (1,25-D) is suppressed, we induced Ca loss with HiNa diets (8%) and restricted dietary Ca (0.2%). In 200 g rats with hind limbs unloaded by tail suspension (S), we examined intestinal Ca abs. by direct measurement in the duodenum (everted gut sac or S/M), vitamin D receptors (VDR) and Ca balance. We also measured serum ionized calcium (ICa), pH, parathyroid hormone (PTH) and 1,25D. PTH was related to ICa (r = -0.44, p is less than 0.02), pH (r = -0.47, p is less than 0.02) and %Ca abs. (r = -0.40, p is less than 0.05). 1,25-D was related to %Ca abs. (r = 0.60, p is less than 0.001) but not VDR or S/M. Effects of the model were lower serum 1,25-D (110 +/- 59 vs. 199 +/- 80 pg/ml, p is less than 0.005), %Ca abs. (83 +/- 6.9 vs. 93 +/- 3.2, p is less than 0.03) and Ca balance (27 +/- 0.2 vs. 30 +/- 0.3 mg/d, p is less than 0.001) in S than controls (C). The HiNa diet increased UCa excretion from 2 to 13% of dietary Ca. Responses to HiNa diets, compared to normal Na, revealed no differences in 1,25-D, Ca abs. or VDR. Ca balances were lower in HiNa (27 +/- 0.3 vs. 30 +/- 0.4 mg/d, p is less than 0.001) in spite of higher Ca intakes. The failure of S rats fed HiNa diets to increase Ca abs. in response to Na-induced Ca loss appears to be related to suppressed 1,25-D in the space flight model, the cause of which remains obscure.

  19. Trimetazidine protects cardiomyocytes against hypoxia-induced injury through ameliorates calcium homeostasis.

    PubMed

    Wei, Jinhong; Xu, Hao; Shi, Liang; Tong, Jie; Zhang, Jianbao

    2015-07-01

    Intracellular calcium (Ca(2+)i) overload induced by chronic hypoxia alters Ca(2+)i homeostasis, which plays an important role on mediating myocardial injury. We tested the hypothesis that treatment with trimetazidine (TMZ) would improve Ca(2+)i handling in hypoxic myocardial injury. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to chronic hypoxia (1% O2, 5% CO2, 37 °C). Intracellular calcium concentration ([Ca(2+)]i) was measured with Fura-2/AM. Perfusion of cardiomyocytes with a high concentration of caffeine (10 mM) was carried out to verify the function of the cardiac Na(+)/Ca(2+) exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca(2+)-ATPase (SERCA2a). For TMZ-treated cardiomyocytes exposured in hypoxia, we observed a decrease in mRNA expression of proapoptotic Bax, caspase-3 activation and enhanced expression of anti-apoptotic Bcl-2. The cardiomyocyte hypertrophy were also alleviated in hypoxic cardiomyocyte treated with TMZ. Moreover, we found that TMZ treatment cardiomyocytes enhanced "metabolic shift" from lipid oxidation to glucose oxidation. Compared with hypoxic cardiomyocyte, the diastolic [Ca(2+)]i was decreased, the amplitude of Ca(2+)i oscillations and sarcoplasmic reticulum Ca(2+) load were recovered, the activities of ryanodine receptor 2 (RyR2), NCX and SERCA2a were increased in cardiomyocytes treated with TMZ. TMZ attenuated abnormal changes of RyR2 and SERCA2a genes in hypoxic cardiomyocytes. In addition, cholinergic signaling are involved in hypoxic stress and the cardioprotective effects of TMZ. These results suggest that TMZ ameliorates Ca(2+)i homeostasis through switch of lipid to glucose metabolism, thereby producing the cardioprotective effect and reduction in hypoxic cardiomyocytes damage. PMID:25937560

  20. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  1. Studies of the voltage-sensitive calcium channels in smooth muscle, neuronal, and cardiac tissues using 1,4-dihydropyridine calcium channel antagonists and activators

    SciTech Connect

    Wei, X.

    1988-01-01

    This study describes the investigation of the voltage-sensitive Ca{sup +} channels in vascular and intestinal smooth muscle, chick neural retina cells and neonatal rat cardiac myocytes using 1,4-dihydropyridine Ca{sup 2+} channel antagonists and activators. In rat aorta, the tumor promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) produced Ca{sup 2+}-dependent contractile responses. The responses to TPA were blocked by the Ca{sup 2+} channel antagonists. The effects of the enantiomers of Bay K 8644 and 202-791 were characterized in both rat tail artery and guinea pig ileal longitudinal smooth muscle preparations using pharmacologic and radioligand binding assays. The (S)-enantiomers induced contraction and potentiated the responses to K{sup +} depolarization. The (R)-enantiomers inhibited the tension responses to K{sup +}. All the enantiomers inhibited specific ({sup 3}H)nitrendipine binding. The pharmacologic activities of both activator and antagonist ligands correlated on a 1:1 basis with the binding affinities. In chick neural retina cells the (S)-enantiomers of Bay K 8644 and 202-791 enhanced Ca{sup 2+} influx. In contrast, the (R)-enantiomers inhibited Ca{sup 2+} influx. The enantiomers of Bay K 8644 and 202-791 inhibited specific ({sup 3}H)PN 200-110 binding competitively. Binding of 1,4-dihydropyridines was characterized in neonatal rat heart cells.

  2. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    PubMed

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls. PMID:24329301

  3. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family

    NASA Astrophysics Data System (ADS)

    Kaufman, I.; Luchinsky, D. G.; Tindjong, R.; McClintock, P. V. E.; Eisenberg, R. S.

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Qf at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Qf=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Qf for the sodium-calcium channels family. An increase of Qf leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Qf(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca2+/Na+ valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  4. Zinc deficiency induced in Swiss 3T3 cells by a low-zinc medium impairs calcium entry and two mechanisms of entry are involved.

    PubMed

    O'Dell, Boyd L; Browning, Jimmy D

    2013-04-01

    Zinc deficiency in 3T3 cells induced by the use of diethylenetriaminepentaacetate (DTPA) has been shown to impair calcium entry associated with failure of proliferation when the cells are stimulated with polypeptide growth factors (GF). These functions of zinc have been evaluated here in the same clone of cells by simple depletion using a low-zinc medium (0.05 μmol/L zinc) without chelator. Confluent cells were maintained for 1 day in the low-zinc medium without GF, then loaded with Fluo-4, and stimulated with GF. Calcium entry was measured by the increase in sustained fluorescence. It was preceded by the release of stored calcium as observed in the previous study using DTPA. Zinc deprivation decreased calcium entry when calcium was added at 0 or 0.05 mmol/L but not when 0.1 mmol/L or higher. Cell proliferation reflected similar effects of zinc and calcium concentrations. In a newly acquired clone of 3T3 cells, GF did not induce internal calcium release but thapsigargin (TG) did. When added in a low-calcium medium, both agonists stimulated calcium entry when external calcium was added, suggesting that two different mechanisms of entry were impaired by zinc deficiency. Zinc deficiency produced by DTPA in the newer clones gave similar results, decreasing calcium entry induced by both agonists. The effects of GF and TG were not additive. The results confirm the earlier observation that zinc deficiency impairs calcium entry into 3T3 cells when stimulated by GF and show that the cells can take up calcium by either store-operated or receptor-operated mechanisms. PMID:23292302

  5. Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway

    PubMed Central

    Lee, Eunkyung; Choi, So-Young; Yang, Jae-Ho

    2016-01-01

    Early life neuronal exposure to environmental toxicants has been suggested to be an important etiology of neurodegenerative disease development. Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds, is widely distributed environmental contaminants. We have reported that PFHxS induces neuronal apoptosis via ERK-mediated pathway. Imperatorin is a furanocoumarin found in various edible plants and has a wide range of pharmacological effects including neuroprotection. In this study, the effects of imperatorin on PFHxS-induced neuronal apoptosis and the underlying mechanisms are examined using cerebellar granule cells (CGC). CGC were isolated from seven-day old rats and were grown in culture for seven days. Caspase-3 activity and TUNEL staining were used to determine neuronal apoptosis. PFHxS-induced apoptosis of CGC was significantly reduced by imperatorin and PD98059, an ERK pathway inhibitor. PFHxS induced a persistent increase in intracellular calcium, which was significantly blocked by imperatorin, NMDA receptor antagonist, MK801 and the L-type voltage-dependent calcium channel blockers, diltiazem and nifedipine. The activation of caspase-3 by PFHxS was also inhibited by MK801, diltiazem and nifedipine. PFHxS-increased ERK activation was inhibited by imperatorin, MK801, diltiazem and nifedipine. Taken together, imperatorin protects CGC against PFHxS-induced apoptosis via inhibition of NMDA receptor/intracellular calcium-mediated ERK pathway. PMID:27382356

  6. Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway.

    PubMed

    Lee, Eunkyung; Choi, So-Young; Yang, Jae-Ho; Lee, Youn Ju

    2016-07-01

    Early life neuronal exposure to environmental toxicants has been suggested to be an important etiology of neurodegenerative disease development. Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds, is widely distributed environmental contaminants. We have reported that PFHxS induces neuronal apoptosis via ERK-mediated pathway. Imperatorin is a furanocoumarin found in various edible plants and has a wide range of pharmacological effects including neuroprotection. In this study, the effects of imperatorin on PFHxS-induced neuronal apoptosis and the underlying mechanisms are examined using cerebellar granule cells (CGC). CGC were isolated from seven-day old rats and were grown in culture for seven days. Caspase-3 activity and TUNEL staining were used to determine neuronal apoptosis. PFHxS-induced apoptosis of CGC was significantly reduced by imperatorin and PD98059, an ERK pathway inhibitor. PFHxS induced a persistent increase in intracellular calcium, which was significantly blocked by imperatorin, NMDA receptor antagonist, MK801 and the L-type voltage-dependent calcium channel blockers, diltiazem and nifedipine. The activation of caspase-3 by PFHxS was also inhibited by MK801, diltiazem and nifedipine. PFHxS-increased ERK activation was inhibited by imperatorin, MK801, diltiazem and nifedipine. Taken together, imperatorin protects CGC against PFHxS-induced apoptosis via inhibition of NMDA receptor/intracellular calcium-mediated ERK pathway. PMID:27382356

  7. Protective effect of nifedipine against cytotoxicity and intracellular calcium alterations induced by acetaminophen in rat hepatocyte cultures.

    PubMed

    Ellouk-Achard, S; Mawet, E; Thibault, N; Dutertre-Catella, H; Thevenin, M; Claude, J R

    1995-01-01

    Alteration of calcium homeostasis has been proposed to play a major role in cell necrosis induced by a variety of chemical agents such as acetaminophen (APAP). In this study, a potential protective effect of the dihydropyridine calcium channel blocking agent, nifedipine, was investigated in vitro on acetaminophen-induced hepatocyte damage. Rat hepatocytes were exposed during 20 hours to various concentrations of APAP (0.50 to 4.00 mM). The following metabolic and functional parameters were investigated: -lactate dehydrogenase (LDH) release as an indicator of plasma membrane integrity, -cell viability evaluated by the colorimetric MTT assay, and intracellular calcium concentration as evaluated by two fluorimetric methods: a scanning laser cytometer using indo-1-AM as fluorescent probe and a fluorescence plate reader using fluo-3-AM as calcium indicator. Incubation of hepatocytes with APAP alone in the range 0.50 to 4.00mM resulted in a dose-response relationship with regard to LDH release (243% to 750% of control) and to the loss of cell viability (0 to 67% of control). Moreover these results were correlated with a significant increase in cytosolic calcium content (189 to 406 nM). Nifedipine treatment prior to APAP exposure, partially prevented LDH release, the plasma membrane blebbing, and thereby the loss of viability. In addition, intracellular calcium level progressively returned within the limits of the control values with increasing concentrations of nifedipine. It can be concluded that, in vitro conditions, nifedipine pretreatment exhibits a preventive effect against acetaminophen hepatocyte injury. PMID:7497906

  8. L-type calcium channels and MAP kinase contribute to thyrotropin-releasing hormone-induced depolarization in thalamic paraventricular nucleus neurons

    PubMed Central

    Kolaj, Miloslav; Zhang, Li

    2016-01-01

    In rat paraventricular thalamic nucleus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances neuronal excitability via concurrent decrease in a G protein-coupled inwardly rectifying K (GIRK)-like conductance and opening of a cannabinoid receptor-sensitive transient receptor potential canonical (TRPC)-like conductance. Here, we investigated the calcium (Ca2+) contribution to the components of this TRH-induced response. TRH-induced membrane depolarization was reduced in the presence of intracellular BAPTA, also in media containing nominally zero [Ca2+]o, suggesting a critical role for both intracellular Ca2+ release and Ca2+ influx. TRH-induced inward current was unchanged by T-type Ca2+ channel blockade, but was decreased by blockade of high-voltage-activated Ca2+ channels (HVACCs). Both the pharmacologically isolated GIRK-like and the TRPC-like components of the TRH-induced response were decreased by nifedipine and increased by BayK8644, implying Ca2+ influx via L-type Ca2+ channels. Only the TRPC-like conductance was reduced by either thapsigargin or dantrolene, suggesting a role for ryanodine receptors and Ca2+-induced Ca2+ release in this component of the TRH-induced response. In pituitary and other cell lines, TRH stimulates MAPK. In PVT neurons, only the GIRK-like component of the TRH-induced current was selectively decreased in the presence of PD98059, a MAPK inhibitor. Collectively, the data imply that TRH-induced depolarization and inward current in PVT neurons involve both a dependency on extracellular Ca2+ influx via opening of L-type Ca2+ channels, a sensitivity of a TRPC-like component to intracellular Ca2+ release via ryanodine channels, and a modulation by MAPK of a GIRK-like conductance component. PMID:27009047

  9. Effects of calcium phosphate/chitosan composite on bone healing in rats: calcium phosphate induces osteon formation.

    PubMed

    Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi

    2014-07-01

    Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone. PMID:24460696

  10. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films.

    PubMed

    Wang, Yuemeng; Liu, Anjun; Ye, Ran; Wang, Wenhang; Li, Xin

    2015-01-01

    The effects of transglutaminase (TGase) on the rheological profiles and interactions of gelatin-calcium carbonate solutions were studied. In addition, mechanical properties, water vapour permeability and microstructures of gelatin-calcium carbonate films were also investigated and compared. Fluorescence data suggested that the interaction of TGase and gelation-calcium carbonate belonged to a static quenching mechanism, and merely one binding site between TGase and gelatin-calcium carbonate was identified. Moreover, differential scanning calorimetry (DSC), the mechanical properties and the water vapour permeability studies revealed that TGase favoured the strong intramolecular polymerisation of the peptides in gelatin. The microstructures of the surfaces and cross sections in gelatin-calcium carbonate films were shown by scanning electron microscope (SEM) micrographs. The results of the fourier transform infrared spectroscopy (FTIR) indicated that TGase caused conformational changes in the proteins films. Therefore, TGase successfully facilitated the formation of gelatin-calcium carbonate composite films. PMID:25053075

  11. Glutamate-induced sensitization of rat masseter muscle fibers.

    PubMed

    Cairns, B E; Gambarota, G; Svensson, P; Arendt-Nielsen, L; Berde, C B

    2002-01-01

    In rats, intradermal or intraarticular injection of glutamate or selective excitatory amino acid receptor agonists acting at peripheral excitatory amino acid receptors can decrease the intensity of mechanical stimulation required to evoke nocifensive behaviors, an indication of hyperalgesia. Since excitatory amino acid receptors have been found on the terminal ends of cutaneous primary afferent fibers, it has been suggested that increased tissue glutamate levels may have a direct sensitizing effect on primary afferent fibers, in particular skin nociceptors. However, less is known about the effects of glutamate on deep tissue afferent fibers. In the present study, a series of experiments were undertaken to investigate the effect of intramuscular injection of glutamate on the excitability and mechanical threshold of masseter muscle afferent fibers in anesthetized rats of both sexes. Injection of 1.0 M, but not 0.1 M glutamate evoked masseter muscle afferent activity that was significantly greater than that evoked by isotonic saline. The mechanical threshold of masseter muscle afferent fibers, which was assessed with a Von Frey hair, was reduced by approximately 50% for a period of 30 min after injection of 1.0 M glutamate, but was unaffected by injections of 0.1 M glutamate or isotonic saline. Injection of 25% dextrose, which has the same osmotic strength as 1.0 M glutamate, did not evoke significant activity in or decrease the mechanical threshold of masseter muscle afferent fibers. Magnetic resonance imaging experiments confirmed that injection of 25% dextrose and 1.0 M glutamate produced similar edema volumes in the masseter muscle tissue. Co-injection of 0.1 M kynurenate, an excitatory amino acid receptor antagonist, and 1.0 M glutamate attenuated glutamate-evoked afferent activity and prevented glutamate-induced mechanical sensitization. When male and female rats were compared, no difference in the baseline mechanical threshold or in the magnitude of glutamate-induced

  12. Spermidine-induced improvement of reconsolidation of memory involves calcium-dependent protein kinase in rats.

    PubMed

    Girardi, Bruna Amanda; Ribeiro, Daniela Aymone; Signor, Cristiane; Muller, Michele; Gais, Mayara Ana; Mello, Carlos Fernando; Rubin, Maribel Antonello

    2016-01-01

    In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus. Twenty-four hours after training, animals were re-exposed to the apparatus in the absence of shock (reactivation session). Immediately after the reactivation session, spermidine (2-200 pmol/site), the PKC inhibitor 3-[1-(dimethylaminopropyl)indol-3-yl]-4-(indol-3-yl) maleimide hydrochloride (GF 109203X, 0.3-30 pg/site), the antagonist of the polyamine-binding site at the NMDA receptor, arcaine (0.2-200 pmol/site), or the PKC activator phorbol 12-myristate 13-acetate (PMA, 0.02-2 nmol/site) was injected. While the post-reactivation administration of spermidine (20 and 200 pmol/site) and PMA (2 nmol/site) improved memory reconsolidation, GF 109203X (1, 10, and 30 pg/site) and arcaine (200 pmol/site) impaired it. GF 109203X (0.3 pg/site) impaired memory reconsolidation in the presence of spermidine (200 pmol/site). PMA (0.2 nmol/site) prevented the arcaine (200 pmol/site)-induced impairment of memory reconsolidation. Anisomycin (2 µg/site) also impaired memory reconsolidation in the presence of spermidine (200 pmol/site). Drugs had no effect when they were administered in the absence of reactivation. These results suggest that the spermidine-induced enhancement of memory reconsolidation involves PKC activation. PMID:26670183

  13. Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway

    PubMed Central

    Ye, Jingjing; Ai, Wei; Zhang, Fenglin; Zhu, Xiaotong; Shu, Gang; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, YongLiang; Jiang, Qingyan; Wang, Songbo

    2016-01-01

    Porcine bone marrow mesenchymal stem cells (pBMSCs) have the potential for application in regenerative medicine. This study aims to investigate the effects of extracellular calcium ([Ca2+]o) on pBMSCs proliferation and to explore the possible underlying mechanisms. The results demonstrated that 4 mM [Ca2+]o significantly promoted pBMSCs proliferation by reducing the G0/G1 phase cell percentage and by increasing the S phase cell proportion and the proliferation index of pBMSCs. Accordingly, [Ca2+]o stimulated the expression levels of proliferative genes such as cyclin A2, cyclin D1/3, cyclin E2, and PCNA and inhibited the expression of p21. In addition, [Ca2+]o resulted in a significant elevation of intracellular calcium and an increased ratio of p-ERK/ERK. However, inhibition of calcium-sensing receptor (CaSR) by its antagonist NPS2143 abolished the aforementioned effects of [Ca2+]o. Moreover, [Ca2+]o-induced promotion of pBMSCs proliferation, the changes of proliferative genes expression levels, and the activation of ERK1/2 signaling pathway were effectively blocked by U0126, a selective ERK kinase inhibitor. In conclusion, our findings provided evidence that the enhanced pBMSCs proliferation in response to [Ca2+]o was associated with the activation of CaSR and ERK1/2 signaling pathway, which may be useful for the application of pBMSCs in future clinical studies aimed at tissue regeneration and repair. PMID:27123007

  14. Up-regulation of ryanodine receptor expression increases the calcium-induced calcium release and spontaneous calcium signals in cerebral arteries from hindlimb unloaded rats.

    PubMed

    Morel, Jean-Luc; Dabertrand, Fabrice; Porte, Yves; Prevot, Anne; Macrez, Nathalie

    2014-08-01

    Microgravity induces a redistribution of blood volume. Consequently, astronauts' body pressure is modified so that the upright blood pressure gradient is abolished, thereby inducing a modification in cerebral blood pressure. This effect is mimicked in the hindlimb unloaded rat model. After a duration of 8 days of unloading, Ca2+ signals activated by depolarization and inositol-1,4,5-trisphosphate intracellular release were increased in cerebral arteries. In the presence of ryanodine and thapsigargin, the depolarization-induced Ca2+ signals remained increased in hindlimb suspended animals, indicating that Ca2+ influx and Ca2+-induced Ca2+ release mechanism were both increased. Spontaneous Ca2+ waves and localized Ca2+ events were also investigated. Increases in both amplitude and frequency of spontaneous Ca2+ waves were measured in hindlimb suspension conditions. After pharmacological segregation of Ca2+ sparks and Ca2+ sparklets, their kinetic parameters were characterized. Hindlimb suspension induced an increase in the frequencies of both Ca2+ localized events, suggesting an increase of excitability. Labeling with bodipy compounds suggested that voltage-dependent Ca2+ channels and ryanodine receptor expressions were increased. Finally, the expression of the ryanodine receptor subtype 1 (RyR1) was increased in hindlimb unloading conditions. Taken together, these results suggest that RyR1 expression and voltage-dependent Ca2+ channels activity are the focal points of the regulation of Ca2+ signals activated by vasoconstriction in rat cerebral arteries with an increase of the voltage-dependent Ca2+ influx. PMID:24233561

  15. L-Type Calcium Channels Do Not Play a Critical Role in Chest Blow Induced Ventricular Fibrillation: Commotio Cordis

    PubMed Central

    Madias, Christopher; Garlitski, Ann C.; Kalin, John; Link, Mark S.

    2016-01-01

    Background. In a commotio cordis swine model, ventricular fibrillation (VF) can be induced by a ball blow to the chest believed secondary to activation of mechanosensitive ion channels. The purpose of the current study is to evaluate whether stretch induced activation of the L-type calcium channel may cause intracellular calcium overload and underlie the VF in commotio cordis. Method and Results. Anesthetized juvenile swine received 6 chest wall strikes with a 17.9 m/s lacrosse ball timed to the vulnerable period for VF induction. Animals were randomized to IV verapamil (n = 6) or placebo (n = 6). There was no difference in the observed frequency of VF between verapamil (19/26: 73%) and placebo (20/36: 56%) treated animals (p = 0.16). There was also no significant difference in the combined endpoint of VF or nonsustained VF (21/26: 81% in verapamil versus 24/36: 67% in controls, p = 0.22). Conclusions. In this experimental model of commotio cordis, verapamil did not prevent VF induction. Thus, in commotio cordis it is unlikely that stretch activation of the L-type calcium channel with resultant intracellular calcium overload plays a prominent role. PMID:26925288

  16. Intracellular calcium disturbances induced by arsenic and its methylated derivatives in relation to genomic damage and apoptosis induction.

    PubMed

    Florea, Ana-Maria; Yamoah, Ebenezer N; Dopp, Elke

    2005-06-01

    Arsenic and its methylated derivatives are contaminants of air, water, and food and are known as toxicants and carcinogens. Arsenic compounds are also being used as cancer chemotherapeutic agents. In humans, inorganic arsenic is metabolically methylated to mono-, di-, and trimethylated forms. Recent findings suggest that the methylation reactions represent a toxification rather than a detoxification pathway. In recent years, the correlation between arsenic exposure, cytotoxicity and genotoxicity, mutagenicity, and tumor promotion has been established, as well as the association of arsenic exposure with perturbation of physiologic processes, generation of reactive oxygen species, DNA damage, and apoptosis induction. Trivalent forms of arsenic have been found to induce apoptosis in several cellular systems with involvement of membrane-bound cell death receptors, activation of caspases, release of calcium stores, and changes of the intracellular glutathione level. It is well known that calcium ion deregulation plays a critical role in apoptotic cell death. A calcium increase in the nuclei might lead to toxic effects in the cell. In this review, we highlight the relationship between induced disturbances of calcium homeostasis, genomic damage, and apoptotic cell death caused by arsenic and its organic derivatives. PMID:15929885

  17. Characterization of L-type calcium channel activity in atrioventricular nodal myocytes from rats with streptozotocin-induced Diabetes mellitus

    PubMed Central

    Yuill, Kathryn H; Al Kury, Lina T; Howarth, Frank Christopher

    2015-01-01

    Cardiovascular complications are common in patients with Diabetes mellitus (DM). In addition to changes in cardiac muscle inotropy, electrical abnormalities are also commonly observed in these patients. We have previously shown that spontaneous cellular electrical activity is altered in atrioventricular nodal (AVN) myocytes, isolated from the streptozotocin (STZ) rat model of type-1 DM. In this study, utilizing the same model, we have characterized the changes in L-type calcium channel activity in single AVN myocytes. Ionic currents were recorded from AVN myocytes isolated from the hearts of control rats and from those with STZ-induced diabetes. Patch-clamp recordings were used to assess the changes in cellular electrical activity in individual myocytes. Type-1 DM significantly altered the cellular characteristics of L-type calcium current. A reduction in peak ICaL density was observed, with no corresponding changes in the activation parameters of the current. L-type calcium channel current also exhibited faster time-dependent inactivation in AVN myocytes from diabetic rats. A negative shift in the voltage dependence of inactivation was also evident, and a slowing of restitution parameters. These findings demonstrate that experimentally induced type-1 DM significantly alters AVN L-type calcium channel cellular electrophysiology. These changes in ion channel activity may contribute to the abnormalities in cardiac electrical function that are associated with high mortality levels in patients with DM. PMID:26603460

  18. Agonist-induced Ca2+ Sensitization in Smooth Muscle

    PubMed Central

    Artamonov, Mykhaylo V.; Momotani, Ko; Stevenson, Andra; Trentham, David R.; Derewenda, Urszula; Derewenda, Zygmunt S.; Read, Paul W.; Gutkind, J. Silvio; Somlyo, Avril V.

    2013-01-01

    Many agonists, acting through G-protein-coupled receptors and Gα subunits of the heterotrimeric G-proteins, induce contraction of smooth muscle through an increase of [Ca2+]i as well as activation of the RhoA/RhoA-activated kinase pathway that amplifies the contractile force, a phenomenon known as Ca2+ sensitization. Gα12/13 subunits are known to activate the regulator of G-protein signaling-like family of guanine nucleotide exchange factors (RhoGEFs), which includes PDZ-RhoGEF (PRG) and leukemia-associated RhoGEF (LARG). However, their contributions to Ca2+-sensitized force are not well understood. Using permeabilized blood vessels from PRG(−/−) mice and a new method to silence LARG in organ-cultured blood vessels, we show that both RhoGEFs are activated by the physiologically and pathophysiologically important thromboxane A2 and endothelin-1 receptors. The co-activation is the result of direct and independent activation of both RhoGEFs as well as their co-recruitment due to heterodimerization. The isolated recombinant C-terminal domain of PRG, which is responsible for heterodimerization with LARG, strongly inhibited Ca2+-sensitized force. We used photolysis of caged phenylephrine, caged guanosine 5′-O-(thiotriphosphate) (GTPγS) in solution, and caged GTPγS or caged GTP loaded on the RhoA·RhoGDI complex to show that the recruitment and activation of RhoGEFs is the cause of a significant time lag between the initial Ca2+ transient and phasic force components and the onset of Ca2+-sensitized force. PMID:24106280

  19. Sex and age dependent effects of androgens on glutamate-induced cell death and intracellular calcium regulation in the developing hippocampus

    PubMed Central

    Zup, Susan L.; Edwards, N. Shalon; McCarthy, Margaret M.

    2014-01-01

    Hippocampal neurons must maintain control over cytosolic calcium levels, especially during development, as excitation and calcium flux is necessary for proper growth and function. But excessive calcium can lead to excitotoxic cell death. Previous work suggests that neonatal male and female hippocampal neurons regulate cytosolic calcium differently, thereby leading to differential susceptibility to excitotoxic damage. Hippocampal neurons are also exposed to gonadal hormones during development and express high levels of androgen receptors. Androgens have both neuroprotective and neurotoxic effects in adults and developing animals. The present study sought to examine the effect of androgen on cell survival after an excitatory stimulus in the developing hippocampus, and whether androgen mediated calcium regulation was the governing mechanism. We observed that glutamate did not induce robust or sexually dimorphic apoptosis in cultured hippocampal neurons at an early neonatal time point, but did five days later – only in males. Further, pretreatment with the androgen dihydrotestosterone (DHT) protected males from apoptosis during this time, but had no effect on females. Calcium imaging of sex specific cultures revealed that DHT decreased the peak of intracellular calcium induced by glutamate, but only in males. To determine a possible mechanism for this androgen neuroprotection and calcium regulation, we quantified three calcium regulatory proteins, plasma membrane calcium ATPase1 (PMCA1), sodium/calcium exchanger1 (NCX1), and the sarco/endoplasmic reticulum calcium ATPase 2 (SERCA2). Surprisingly, there was no sex difference in the level of any of the three proteins. Treatment with DHT significantly decreased PMCA1 and NCX1, but increased SERCA2 protein levels in very young animals but not at a later timepoint. Taken together, these data suggest a complex interaction of sex, hormones, calcium regulation and developmental age; however androgens acting during the first

  20. PERK/CHOP contributes to the CGK733-induced vesicular calcium sequestration which is accompanied by non-apoptotic cell death

    PubMed Central

    Wang, Yufeng; Kuramitsu, Yasuhiro; Baron, Byron; Kitagawa, Takao; Akada, Junko; Tokuda, Kazuhiro; Cui, Dan; Nakamura, Kazuyuki

    2015-01-01

    Calcium ions (Ca2+) are indispensable for the physiology of organisms and the molecular regulation of cells. We observed that CGK733, a synthetic chemical substance, induced non-apoptotic cell death and stimulated reversible calcium sequestration by vesicles in pancreatic cancer cells. The endoplasmic reticulum (ER) stress eukaryotic translation initiation factor 2-alpha kinase 3/C/EBP homologous protein (PERK/CHOP) signaling pathway was shown to be activated by treatment with CGK733. Ionomycin, an ER stress drug and calcium ionophore, can activate PERK/CHOP signaling and accelerate CGK733-induced calcium sequestration. Knockdown of CHOP diminished CGK733-induced vesicular calcium sequestration, but had no effects on the cell death. Proteomic analysis demonstrated that the ER-located calcium-binding proteins, calumenin and protein S100-A11, were altered in CGK733-treated cells compared to non-treated controls. Our study reveals that CGK733-induced intracellular calcium sequestration is correlated with the PERK/CHOP signaling pathway and may also be involved in the dysregulations of calcium-binding proteins. PMID:26259235

  1. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling

    PubMed Central

    Shih, Yu-Ru V.; Hwang, YongSung; Phadke, Ameya; Kang, Heemin; Hwang, Nathaniel S.; Caro, Eduardo J.; Nguyen, Steven; Siu, Michael; Theodorakis, Emmanuel A.; Gianneschi, Nathan C.; Vecchio, Kenneth S.; Chien, Shu; Lee, Oscar K.; Varghese, Shyni

    2014-01-01

    Synthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment, we examine a molecular mechanism through which CaP minerals induce osteogenesis of human mesenchymal stem cells with an emphasis on phosphate metabolism. Our studies show that extracellular phosphate uptake through solute carrier family 20 (phosphate transporter), member 1 (SLC20a1) supports osteogenic differentiation of human mesenchymal stem cells via adenosine, an ATP metabolite, which acts as an autocrine/paracrine signaling molecule through A2b adenosine receptor. Perturbation of SLC20a1 abrogates osteogenic differentiation by decreasing intramitochondrial phosphate and ATP synthesis. Collectively, this study offers the demonstration of a previously unknown mechanism for the beneficial role of CaP biomaterials in bone repair and the role of phosphate ions in bone physiology and regeneration. These findings also begin to shed light on the role of ATP metabolism in bone homeostasis, which may be exploited to treat bone metabolic diseases. PMID:24395775

  2. Tooth discoloration induced by calcium-silicate-based pulp-capping materials

    PubMed Central

    Yun, Da-A; Park, Su-Jung; Lee, Seok-Ryun; Min, Kyung-San

    2015-01-01

    Objectives: The aim of this study was to evaluate tooth discoloration induced by contact with various calcium silicate-based pulp capping materials in the presence or absence of blood in vitro. Materials and Methods: Eighty bovine samples were divided into six experimental groups and two control groups according to the type of material used (ProRoot [PR], Endocem [EC], or EndocemZr [ECZ]) and the presence or absence of contamination with blood. A spectrophotometer was used to calculate the color difference (ΔE) between the baseline measurement (after placement of materials) and measurements taken 1, 2, 4, and 8 weeks. The results were analyzed with repeated measures analysis of variance, Tukey's post-hoc tests and independent t-tests (P = 0.05). Results: The PR group and EC group showed significantly higher mean values of ΔE than the negative control group after 2 weeks (P < 0.05), whereas ECZ did not. There were larger ΔE values when there was contact with blood, especially in PR and EC group (P < 0.05). Conclusions: ECZ which contains zirconium oxide as a radiopacifier showed less discoloration irrespective of blood contamination compared to PR and EC. PMID:26038644

  3. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.

    PubMed

    Carrasco, Loreto; Cea, Paola; Rocco, Paola; Peña-Oyarzún, Daniel; Rivera-Mejias, Pablo; Sotomayor-Flores, Cristian; Quiroga, Clara; Criollo, Alfredo; Ibarra, Cristian; Chiong, Mario; Lavandero, Sergio

    2014-04-01

    In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gβγ signaling, βARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, βARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and β-myosin heavy chain (β-MHC), was prevented by AG538, PTX, βARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/βγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin. PMID:24243530

  4. Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line

    PubMed Central

    2013-01-01

    Background Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER). Methods Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR. Results and conclusions These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis. PMID:23890218

  5. Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries.

    PubMed

    Hedegaard, Elise R; Gouliaev, Anja; Winther, Anna K; Arcanjo, Daniel D R; Aalling, Mathilde; Renaltan, Nirthika S; Wood, Mark E; Whiteman, Matthew; Skovgaard, Nini; Simonsen, Ulf

    2016-01-01

    Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation. PMID:26493746

  6. Purification and Characterization of a Psychrophilic, Calcium-Induced, Growth-Phase-Dependent Metalloprotease from the Fish Pathogen Flavobacterium psychrophilum

    PubMed Central

    Secades, P.; Alvarez, B.; Guijarro, J. A.

    2001-01-01

    Flavobacterium psychrophilum is a fish pathogen that commonly affects salmonids. This bacterium produced an extracellular protease with an estimated molecular mass of 55 kDa. This enzyme, designated Fpp1 (F. psychrophilum protease 1), was purified to electrophoretic homogeneity from the culture supernatant by using ammonium sulfate precipitation, ion-exchange chromatography, hydrophobic chromatography, and size exclusion chromatography. On the basis of its biochemical characteristics, Fpp1 can be included in the group of metalloproteases that have an optimum pH for activity of 6.5 and are inhibited by 1,10-phenanthroline, EDTA, or EGTA but not by phenylmethylsulfonyl fluoride. Fpp1 activity was dependent on calcium ions not only for its activity but also for its thermal stability. In addition to calcium, strontium and barium can activate the protein. The enzyme showed typical psychrophilic behavior; it had an activation energy of 5.58 kcal/mol and was more active at temperatures between 25 and 40°C, and its activity decreased rapidly at 45°C. Fpp1 cleaved gelatin, laminin, fibronectin, fibrinogen, collagen type IV, and, to a lesser extent, collagen types I and II. Fpp1 also degraded actin and myosin, basic elements of the fish muscular system. The presence of this enzyme in culture media was specifically dependent on the calcium concentration. Fpp1 production started early in the exponential growth phase and reached a maximum during this period. Addition of calcium during the stationary phase did not induce Fpp1 production at all. Besides calcium and the growth phase, temperature also seems to play a role in production of Fpp1. In this study we found that production of Fpp1 depends on factors such as calcium concentration, growth phase of the culture, and temperature. The combination of these parameters corresponds to the combination in the natural host during outbreaks of disease caused by F. psychrophilum. Consequently, we suggest that environmental host

  7. Calcium Hydroxylapatite

    PubMed Central

    Yutskovskaya, Yana Alexandrovna; Philip Werschler, WM.

    2015-01-01

    Background: Calcium hydroxylapatite is one of the most well-studied dermal fillers worldwide and has been extensively used for the correction of moderate-to-severe facial lines and folds and to replenish lost volume. Objectives: To mark the milestone of 10 years of use in the aesthetic field, this review will consider the evolution of calcium hydroxylapatite in aesthetic medicine, provide a detailed injection protocol for a global facial approach, and examine how the unique properties of calcium hydroxylapatite provide it with an important place in today’s market. Methods: This article is an up-to-date review of calcium hydroxylapatite in aesthetic medicine along with procedures for its use, including a detailed injection protocol for a global facial approach by three expert injectors. Conclusion: Calcium hydroxylapatite is a very effective agent for many areas of facial soft tissue augmentation and is associated with a high and well-established safety profile. Calcium hydroxylapatite combines high elasticity and viscosity with an ability to induce long-term collagen formation making it an ideal agent for a global facial approach. PMID:25610523

  8. The effects of calcium channel inhibitors and other procedures affecting calcium translocation on drug-induced rhythmic contractions in the rat vas deferens.

    PubMed Central

    Hay, D. W.; Wadsworth, R. M.

    1983-01-01

    In the rat isolated vas deferens, methoxamine 8.1 microM produced an initial phasic response that declined towards baseline and was followed by rhythmic contractions that continued until wash-out. These responses were predominant in the epididymal half. BaCl2 1 mM produced a similar type of response which was not mediated by noradrenaline release or activation of alpha-adrenoceptors. The barium responses were similar in the epididymal and prostatic halves. Incubation in nominally Ca2+-free solution caused abolition or near abolition of rhythmic contractions produced by barium or methoxamine. The initial phasic response to methoxamine was abolished in Ca2+-free solution, whereas that produced by barium persisted. Rhythmic contractions produced by methoxamine or barium were inhibited by Mg2+ (2.4-20 mM) and by La3+ (1-5 mM). Mg2+ had selectivity for inhibition of the frequency of methoxamine- but not barium-induced rhythmic contractions. Despite their dependence on [Ca2+]o, barium- and methoxamine-induced rhythmic contractions were resistant to inhibition by calcium channel inhibitors. Verapamil, nifedipine and flunarazine inhibited the amplitude of rhythmic contractions more readily than the frequency (methoxamine IC50 for verapamil: amplitude = 29.8 +/- 5.40 microM, n = 6, frequency = 96.7 +/- 31.0 microM, n = 5, for nifedipine: amplitude = 2.42 +/- 0.34 microM, n = 7, frequency = 3.24 +/- 0.75 microM, n = 7, and for flunarizine: amplitude = 15.9 +/- 5.95 microM, n = 7, frequency = 153 +/- 28.6 microM, n = 7). There was no differentiation between inhibition of methoxamine and barium-induced responses. Like Mg2+, methoxyverapamil selectively inhibited the frequency of methoxamine-induced contractions (IC50: amplitude = 16.8 +/- 2.86 microM, n = 5, frequency = 2.07 +/- 0.81 microM, n = 5) but not barium-induced contractions (IC50: amplitude = 13.9 +/- 1.95 microM, n = 5, frequency = 48.5 +/- 8.98 microM, n = 5). Diazoxide (43.3-2167 microM) and nitroprusside (3

  9. Calcium and magnesium disorders.

    PubMed

    Goff, Jesse P

    2014-07-01

    Hypocalcemia is a clinical disorder that can be life threatening to the cow (milk fever) and predisposes the animal to various other metabolic and infectious disorders. Calcium homeostasis is mediated primarily by parathyroid hormone, which stimulates bone calcium resorption and renal calcium reabsorption. Parathyroid hormone stimulates the production of 1,25-dihydroxyvitamin D to enhance diet calcium absorption. High dietary cation-anion difference interferes with tissue sensitivity to parathyroid hormone. Hypomagnesemia reduces tissue response to parathyroid hormone. PMID:24980727

  10. Reorientation of Seedlings in the Earth's Gravitational Field Induces Cytosolic Calcium Transients1

    PubMed Central

    Plieth, Christoph; Trewavas, Anthony J.

    2002-01-01

    The gravitational field controls plant growth, morphology, and development. However, the underlying transduction mechanisms are not well understood. Much indirect evidence has implicated the cytoplasmic free calcium concentration ([Ca2+]c) as an important factor, but direct evidence for changes in [Ca2+]c is currently lacking. We now have made measurements of [Ca2+]c in groups of young seedlings of Arabidopsis expressing aequorin in the cytoplasm and reconstituted in vivo with cp-coelenterazine, a synthetic high-affinity luminophore. Distinct [Ca2+]c signaling occurs in response to gravistimulation with kinetics very different from [Ca2+]c transients evoked by other mechanical stimuli (e.g. movement and wind). [Ca2+]c changes produced in response to gravistimulation are transient but with a duration of many minutes and dependent on stimulus strength (i.e. the angle of displacement). The auxin transport blockers 2,3,5-tri-iodo benzoic acid and N-(1-naphthyl) phthalamic acid interfere with gravi-induced [Ca2+]c responses and addition of methyl indole-3-acetic acid to whole seedlings induces long-lived [Ca2+]c transients, suggesting that changes in auxin transport may interact with [Ca2+]c. Permanent nonaxial rotation of seedlings on a two-dimensional clinostat, however, produced a sustained elevation of the [Ca2+]c level. This probably reflects permanent displacement of gravity-sensing cellular components and/or disturbance of cytoskeletal tension. It is concluded that [Ca2+]c is part of the gravity transduction mechanism in young Arabidopsis seedlings. PMID:12068119

  11. [Parkinsonism, depression and akathisia induced by flunarizine, a calcium entry blockade--report of 31 cases].

    PubMed

    Kuzuhara, S; Kohara, N; Ohkawa, Y; Fuse, S; Yamanouchi, H

    1989-06-01

    Flunarizine hydrochloride (FZ), a calcium entry blockade, has been used nationwide in Japan as a cerebral active vasodilator since October, 1984. The present paper reports 31 cases of FZ-induced Parkinsonism, depression and akathisia, referred to our hospital between October 1986 and September 1988. Out of the 31 patients, four including two with Parkinson's disease and one each with progressive supranuclear palsy and olivopontocerebellar atrophy showed worsening of their parkinsonian symptoms within a few months after FZ administration. The remaining 27 patients (7 males and 20 females) newly developed Parkinsonism after treatment with FZ. Symptoms appeared one week to two years (mean: 6.1 months) after starting FZ of a daily dose of 10 mg. FZ had been used in 6 patients for cerebrovascular episodes confirmed by clinical history or brain CT, and in the remainder, for dizziness, light-headedness, hypertension, amnesia or hypochondric neurotic complaints. Akinesia and bradykinesia progressed rather rapidly after onset, and patients became unambulatory within several months. Symptoms had worsened, and L-dopa, anticholinergic drugs, and bromocriptine had been ineffective until FZ was discontinued. Their Parkinsonism was characterized by marked akinesia, bradykinesia, and moderate rigidity. Masked face was seen in most of them. Tremor was absent at rest, and induced in 12 patients by posture and/or action. Sixteen patients were accompanied by depression, and five, by akathisia. Improvement began several weeks after withdrawal of FZ, and most patients recovered almost completely within a few months although mild rigidity and bradykinesia remained in some.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2582681

  12. Effect of dietary calcium and magnesium on experimental renal tubular deposition of calcium oxalate crystal induced by ethylene glycol administration and its prevention with phytin and citrate.

    PubMed

    Ebisuno, S; Morimoto, S; Yoshida, T; Fukatani, T; Yasukawa, S; Ohkawa, T

    1987-01-01

    Oral administration of ethylene glycol to rats, and the resultant intratubular depositions of microcrystals of calcium oxalate were studied investigating the influences of dietary calcium or magnesium and assessing the protective efficacies against the crystallizations by treatment with phytin and sodium citrate. With increase of calcium intake and consequent increase of urinary calcium excretion there was a marked increase in the amount of tubular deposit of calcium oxalate crystal and in the calcium content of renal tissue. Although magnesium deficiency accelerated renal tubular calcium oxalate deposition, the protection against the crystal formation was not observed with excessive dietary magnesium. When rats were fed a high-calcium diet supplemented with phytin, a significant inhibition of the intratubular crystallization was observed. It appeared obvious that a hypocalciuric action of phytin was attributed to the effect of the prevention. There was vigorous protection of crystal formation by treatment with sodium citrate, which correlated with the level of citrate concentration in the drinking water. PMID:3433579

  13. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    SciTech Connect

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-06-24

    Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  14. Postweaning low-calcium diet promotes later-life obesity induced by a high-fat diet.

    PubMed

    He, Yong-Han; Li, Song-Tao; Wang, Yan-Yan; Wang, Guan; He, Ying; Liao, Xi-Lu; Sun, Chang-Hao; Li, Ying

    2012-10-01

    The aim of this study was to investigate the effects of a postweaning low-calcium diet on later obesity and explore the underlying mechanisms. Ninety-six male rats were weaned at 3 weeks of age, fed standard (STD: 0.50% calcium, n=48) and low-calcium (LC: 0.15% calcium, n=48) diets for 3 weeks, and then fed the standard diet for a 3-week washout period successively. Finally, the STD rats were divided into STD control and high-fat diet (HFD) groups, and the LC ones into LC control and LC+HFD (LCHF) groups. The STD and LC rats were fed the standard diet, while the HFD control and LCFD ones were fed a high-fat diet for 6 weeks to induce obesity. During the three feeding periods, adenosine-monophosphate-activated protein kinase (AMPK) and its responsive proteins phospho-acetyl-coA carboxylase, carnitine palmitoyltransferase 1 and uncoupling protein 3 were persistently down-regulated in the LC group (decreased by 18%, 24%, 18% and 20%, respectively) versus the STD group, and these effects were significantly more pronounced in the LCHFD group (decreased by 21%, 30%, 23% and 25%, respectively) than the HFD group by a later high-fat stimuli, causing more fat and body weight in adulthood. However, lipolysis enzymes, serum leptin, insulin and lipids were not significantly affected until the body weight and fat content changed at 15 weeks of age. The results suggest that the low-calcium diet after weaning promotes rat adult-onset obesity induced by high-fat diet, which might be achieved by programming expressions of genes involved in AMPK pathway. PMID:22209003

  15. Chronic fluoxetine treatment increases NO bioavailability and calcium-sensitive potassium channels activation in rat mesenteric resistance arteries.

    PubMed

    Pereira, Camila A; Ferreira, Nathanne S; Mestriner, Fabiola L; Antunes-Rodrigues, José; Evora, Paulo R B; Resstel, Leonardo B M; Carneiro, Fernando S; Tostes, Rita C

    2015-10-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment. PMID:26362752

  16. Xenon-induced changes in CNS sensitization to pain.

    PubMed

    Adolph, Oliver; Köster, Sarah; Georgieff, Michael; Bäder, Stefan; Föhr, Karl J; Kammer, Thomas; Herrnberger, Bärbel; Grön, Georg

    2010-01-01

    Electrophysiological investigations of the spinal cord in animals have shown that pain sensitizes the central nervous system via glutamate receptor dependent long-term potentiation (LTP) related to an enhancement of pain perception. To expand these findings, we used functional magnetic resonance (fMRI), blood oxygen level dependent (BOLD) and perfusion imaging in combination with repeated electrical stimulation in humans. Specifically we monitored modulation of somatosensory processing during inhibition of excitatory transmission by ocular application of the glutamate receptor antagonist xenon. BOLD responses upon secondary stimulation increased in mid insular and in primary/secondary sensory cortices under placebo and decreased under xenon treatments. Xenon-induced decreases in regional perfusion were confined to stimulation responsive brain regions and correlated with time courses of xenon concentrations in the cranial blood. Moreover, effects of xenon on behavioral, fMRI and perfusion data scaled with stimulus intensity. The dependence of pain sensitization on sufficient pre-activation reflects a multistage process which is characteristic for glutamate receptor related processes of LTP. This study demonstrates how LTP related processes known from the cellular level can be investigated at the brain systems level. PMID:19703572

  17. Light-induced basilar membrane vibrations in the sensitive cochlea

    NASA Astrophysics Data System (ADS)

    Grosh, Karl; Ren, Tianying; He, Wenxuan; Fridberger, Anders; Li, Yizeng; Nankali, Amir

    2015-12-01

    The exceptional sensitivity of mammalian hearing organ is attributed to an outer hair cell-mediated active process, where forces produced by sensory cells boost sound-induced vibrations, making soft sounds audible. This process is thought to be local, with each section of the hearing organ capable of amplifying sound-evoked movement, and nearly instantaneous, since amplification can work for sounds at frequencies up to 100 kHz in some species. To test these precepts, we developed a method for focally stimulating the living hearing organ with light. Light pulses caused intense and highly damped mechanical responses followed by traveling waves that developed with considerable delay. The delayed response was identical to movements evoked by click-like sounds. A physiologically based mathematical model shows that such waves engage the active process, enhancing hearing sensitivity. The experiments and the theoretical analysis show that the active process is neither local nor instantaneous, but requires mechanical waves traveling from the cochlear base toward its apex.

  18. Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals.

    PubMed

    Patel, Sandip; Marchant, Jonathan S; Brailoiu, Eugen

    2010-06-01

    NAADP is a potent regulator of cytosolic calcium levels. Much evidence suggests that NAADP activates a novel channel located on an acidic (lysosomal-like) calcium store, the mobilisation of which results in further calcium release from the endoplasmic reticulum. Here, we discuss the recent identification of a family of poorly characterized ion channels (the two-pore channels) as endo-lysosomal NAADP receptors. The generation of calcium signals by these channels is likened to those evoked by depolarisation during excitation-contraction coupling in muscle. We discuss the idea that two-pore channels can mediate a trigger release of calcium which is then amplified by calcium-induced calcium release from the endoplasmic reticulum. This is similar to the activation of voltage-sensitive calcium channels and subsequent mobilisation of sarcoplasmic reticulum calcium stores in cardiac tissue. We suggest that two-pore channels may physically interact with ryanodine receptors to account for more direct release of calcium from the endoplasmic reticulum in analogy with the conformational coupling of voltage-sensitive calcium channels and ryanodine receptors in skeletal muscle. Interaction of two-pore channels with other calcium release channels likely occurs between stores "trans-chatter" and possibly within the same store "cis-chatter". We also speculate that trafficking of two-pore channels through the endo-lysosomal system facilitates interactions with calcium entry channels. Strategic placing of two-pore channels thus provides a versatile means of generating spatiotemporally complex cellular calcium signals. PMID:20621760

  19. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    SciTech Connect

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  20. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  1. Nuclear Calcium Signaling Induces Expression of the Synaptic Organizers Lrrtm1 and Lrrtm2*

    PubMed Central

    Hayer, Stefanie N.; Bading, Hilmar

    2015-01-01

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2–4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca2+/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. PMID:25527504

  2. Laser-induced breakdown spectroscopy with high detection sensitivity

    NASA Astrophysics Data System (ADS)

    Shen, X. K.; Ling, H.; Lu, Y. F.

    2009-02-01

    Laser-induced breakdown spectroscopy (LIBS) with spatial confinement and LIBS combined with laser-induced fluorescence (LIF) have been investigated to improve the detection sensitivity and selectivity of LIBS. An obvious enhancement in the emission intensity of Al atomic lines was observed when a cylindrical wall was placed to spatially confine the plasma plumes. The maximum enhancement factor for the emission intensity of Al atomic lines was measured to be around 10. Assuming local thermodynamic equilibrium conditions, the plasma temperatures are estimated to be in the range from 4000 to 5800 K. It shows that the plasma temperature increased by around 1000 K when the cylindrical confinement was applied. Fast imaging of the laser-induced Al plasmas shows that the plasmas were compressed into a smaller volume with a pipe presented. LIBS-LIF has been investigated to overcome the matrix effects in LIBS for the detection of trace uranium in solids. A wavelength-tunable laser with an optical parametric oscillator was used to resonantly excite the uranium atoms and ions within the plasma plumes generated by a Q-switched Nd:YAG laser. Both atomic and ionic lines can be selected to detect their fluorescence lines. A uranium concentration of 462 ppm in a glass sample can be detected using this technique at an excitation wavelength of 385.96 nm for resonant excitation of U II and a fluorescence line wavelength of 409.01 nm from U II. The mechanism of spatial confinement effects and the influence of relevant operational parameters of LIBS-LIF are discussed.

  3. Infrasound sensitizes human glioblastoma cells to cisplatin-induced apoptosis.

    PubMed

    Rachlin, Kenneth; Moore, Dan H; Yount, Garret

    2013-11-01

    The development of nontoxic agents that can selectively enhance the cytotoxicity of chemotherapy is an important aim in oncology. This study evaluates the ability of infrasound exposure to sensitize glioblastoma cells to cisplatin-induced apoptosis. The infrasound was delivered using a device designed to replicate the unique infrasound emissions measured during external Qigong treatments. Human glioblastoma cell lines harboring wild-type p53 (U87) or mutant p53 (U251, SF210, and SF188) were treated in culture with cisplatin, infrasound emissions, or the combination of the 2 agents. Induction of apoptosis was quantified after 24 hours by flow cytometry following annexin V/propidium iodide staining. Infrasound emissions alone, delivered at moderate levels (~10 mPa) with dynamic frequency content (7-13 Hz), did not induce apoptosis, yet combining infrasound with cisplatin augmented the induction of apoptosis by cisplatin in all the 4 cell lines (P < .05). Increased cellular uptake of the fluorophore calcein associated with infrasound exposure was quantified by fluorescence microscopy as well as flow cytometry, demonstrating increased cell membrane permeability. The 4 cell lines differed in the degree to which infrasound exposure increased calcein uptake, and these differences were predictive of the extent to which infrasound enhanced cisplatin-induced apoptosis. When exposed to specific frequencies, membrane permeabilization also appeared to be differentially responsive for each cell line, suggesting the potential for selective targeting of tissue types using isolated infrasonic frequencies. Additionally, the pressure amplitudes used in this study were several orders of magnitude less than those used in similar studies involving ultrasound and shock waves. The results of this study provide support for using infrasound to enhance the chemotherapeutic effects of cisplatin in a clinical setting. PMID:23165942

  4. Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    PubMed Central

    Akundi, Ravi S.; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D.; Zhi, Lianteng; Cass, Wayne A.; Sullivan, Patrick G.; Büeler, Hansruedi

    2011-01-01

    Background PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca2+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1−/− mice. Methods and Findings Purified brain mitochondria of Pink1−/− mice showed impaired Ca2+ storage capacity, resulting in increased Ca2+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1−/− mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1−/− mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1−/− mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1−/− embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1−/− mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Conclusions Increased mitochondrial Ca2+ sensitivity and JNK activity are early defects in Pink1−/− mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1−/− mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant

  5. Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells*

    PubMed Central

    Borahay, Mostafa A.; Kilic, Gokhan S.; Yallampalli, Chandrasekha; Snyder, Russell R.; Hankins, Gary D. V.; Al-Hendy, Ayman; Boehning, Darren

    2014-01-01

    Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery. PMID:25359773

  6. Simple and sensitive method for monitoring drug-induced cell injury in cultured cells

    SciTech Connect

    Shirhatti, V.; Krishna, G.

    1985-06-01

    A simple, sensitive method has been developed for evaluating cell injury noninvasively in monolayer cells in culture. The cell ATP pool was radiolabeled by incubating the cells with (/sup 14/C)adenine. The uptake and incorporation of (/sup 14/C)adenine was shown to proportional to the number of cells. As determined by HPLC, about 65-70% of the incorporated /sup 14/C label was in the ATP pool, 15-20% was in the ADP pool, and the rest was in the 5'-AMP pool. When prelabeled cells were exposed to toxic drugs (acetaminophen, calcium ionophore A-23187, or daunomycin) there was a marked decrease in cell ATP with a concomitant increase in leakage of labeled nucleotides, mainly 5'-AMP and 5'IMP. The authors have shown that leakage of /sup 14/C label into the medium from the prelabeled cells may be employed for quantitation of cell injury. This new measure of toxicity was shown to correlate very well with LDH leakage from the cells, which is a well accepted measure of cell injury. The leakage of 5'-(/sup 14/C)AMP also correlated very well with the reduction of cell ATP in cardiac myocytes. This method has been used for monitoring drug-induced toxicity in liver cells, cardiac myocytes, and LB cells.

  7. Rasagiline prevents cyclosporine A-sensitive superoxide flashes induced by PK11195, the initial signal of mitochondrial membrane permeabilization and apoptosis.

    PubMed

    Wu, Yuqiu; Shamoto-Nagai, Masayo; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2016-05-01

    Rasagiline, a neuroprotective inhibitor of type B monoamine oxidase, prevented PK111195-induced apoptosis in SH-SY5Y cells through inhibition of mitochondrial apoptosis signaling (J Neural Transm 120:1539-1551, 2013, J Neural Transm 122:1399-1407, 2015). This paper presents that PK11195 induced superoxide flashes, the transit production burst, mediated by cyclosporine A-sensitive membrane permeability transition. Rasagiline prevented superoxide flashes, calcium efflux, and cell death by PK11195. Regulation of the initial pore formation at the inner mitochondrial membrane was confirmed as the decisive mechanism of neuroprotection by rasagiline. PMID:26931622

  8. Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers

    PubMed Central

    Park, Hwan-Woo; Park, Haeli; Semple, Ian A.; Jang, Insook; Ro, Seung-Hyun; Kim, Myungjin; Cazares, Victor A.; Stuenkel, Edward L.; Kim, Jung-Jae; Kim, Jeong Sig; Lee, Jun Hee

    2014-01-01

    Autophagy deregulation during obesity contributes to the pathogenesis of diverse metabolic disorders. However, without understanding the molecular mechanism of obesity interference in autophagy, development of therapeutic strategies for correcting such defects in obese individuals is challenging. Here we show that chronic increase of cytosolic calcium concentration in hepatocytes upon obesity and lipotoxicity attenuates autophagic flux by preventing the fusion between autophagosomes and lysosomes. As a pharmacological approach to restore cytosolic calcium homeostasis in vivo, we administered the clinically approved calcium channel blocker verapamil to obese mice. Such treatment successfully increases autophagosome-lysosome fusion in liver, preventing accumulation of protein inclusions and lipid droplets and suppressing inflammation and insulin resistance. As calcium channel blockers have been safely used in clinics for the treatment of hypertension for more than thirty years, our results suggest they may be a safe therapeutic option for restoring autophagic flux and treating metabolic pathologies in obese patients. PMID:25189398

  9. Cytoskeletal changes induced by allosteric modulators of calcium-sensing receptor in esophageal epithelial cells

    PubMed Central

    Abdulnour-Nakhoul, Solange; Brown, Karen L; Rabon, Edd C; Al-Tawil, Youhanna; Islam, Mohammed T; Schmieg, John J; Nakhoul, Nazih L

    2015-01-01

    The calcium-sensing receptor (CaSR), a G-protein-coupled receptor, plays a role in glandular and fluid secretion in the gastrointestinal tract, and regulates differentiation and proliferation of epithelial cells. We examined the expression of CaSR in normal and pathological conditions of human esophagus and investigated the effect of a CaSR agonist, cinacalcet (CCT), and antagonist, calhex (CHX), on cell growth and cell–cell junctional proteins in primary cultures of porcine stratified squamous esophageal epithelium. We used immunohistochemistry and Western analysis to monitor expression of CaSR and cell–cell adhesion molecules, and MTT assay to monitor cell proliferation in cultured esophageal cells. CCT treatment significantly reduced proliferation, changed the cell shape from polygonal to spindle-like, and caused redistribution of E-cadherin and β-catenin from the cell membrane to the cytoplasm. Furthermore, it reduced expression of β-catenin by 35% (P < 0.02) and increased expression of a proteolysis cleavage fragment of E-cadherin, Ecad/CFT2, by 2.3 folds (P < 0.01). On the other hand, CHX treatment enhanced cell proliferation by 27% (P < 0.01), increased the expression of p120-catenin by 24% (P < 0.04), and of Rho, a GTPase involved in cytoskeleton remodeling, by 18% (P < 0.03). In conclusion, CaSR is expressed in normal esophagus as well as in Barrett’s, esophageal adenocarcinoma, squamous cell carcinoma, and eosinophilic esophagitis. Long-term activation of CaSR with CCT disrupted the cadherin–catenin complex, induced cytoskeletal remodeling, actin fiber formation, and redistribution of CaSR to the nuclear area. These changes indicate a significant and complex role of CaSR in epithelial remodeling and barrier function of esophageal cells. PMID:26603452

  10. Vascularization of plastic calcium phosphate cement in vivo induced by in-situ-generated hollow channels.

    PubMed

    Yu, Tao; Dong, Chao; Shen, Zhonghua; Chen, Yan; Yu, Bo; Shi, Haishan; Zhou, Changren; Ye, Jiandong

    2016-11-01

    Despite calcium phosphate cement (CPC) is promising for bone repair therapy, slow biodegradation and insufficient vascularization in constructs negatively impacts its clinical application. A self-setting CPC composited with gelatin fiber is investigated to test the utility of this tissue engineering strategy to support rapid and extensive vascularization process. The interconnected hollow channels in CPC are formed after dissolution of gelatin fibers in vivo. The CPC-gelatin samples exhibit relatively decent/enhanced mechanical property, compared to the control. When implanted in vivo, the pre-established vascular networks in material anastomose with host vessels and accelerate vascular infiltration throughout the whole tissue construct. Different channel sizes induce different vascularization behaviors in vivo. Results indicate that the channel with the size of 250μm increases the expression of the representative angiogenic factors HIF1α, PLGF and migration factor CXCR4, which benefit the formation of small vessels. On the other hand, the channel with the size of 500μm enhances VEGF-A expression, which benefit the development of large vessels. Notably, the intersection area of channels has high invasive, sprouting and vasculogenesis potential under hypoxic condition, because more HIF1α-positive cells are observed there. Observation of the CD31-positive lumen in the border of scaffold indicates the ingrowth of blood vessels from its host into material through channel, benefited from gradually increased HIF1α expression. This kind of material was suggested to promote the effective application of bone regeneration through the combination of in situ self-setting, plasticity, angiogenesis, and osteoconductivity. PMID:27524007

  11. Intracellular influx of calcium induced by quartz particles in alveolar macrophages.

    PubMed

    Tian, Feng; Zhu, Tong; Shang, Yu

    2010-01-15

    Historical studies report that cellular injury and silicosis are related to cytosolic free calcium (Ca2+). Moreover, reactive oxygen species (ROS) have been linked to cellular injury. However, the detail mechanism of the increase in [Ca2+]i and the relationship between [Ca2+]i and ROS production remains unknown. Quartz particle has been found to increase [Ca2+]i and activate the generation of ROS. Our hypothesis is that [Ca2+]i increase induced by quartz particle is from extracellular Ca2+ through the Ca2+ channel, and [Ca2+]i increase is believed to activate ROS production. In order to examine this hypothesis, we treated rat alveolar macrophages with quartz (SiO2) particles and used laser scanning confocal microscopy to measure [Ca2+]i and the fluorescence intensity of ROS. Time- and dose-dependent increases in [Ca2+]I and ROS in macrophages as well as cell viability were observed. Through chelating extracellular Ca2+ with ethylene glycol tetraacetic acid and releasing intracellular Ca2+ with thapsigargin, we found that 72.7% of the [Ca2+]i increase was due to the influx of Ca2+ from the extracellular environment, via Ca2+ channels in the plasma membrane. By adding mannitol to scavenge hydroxyl radicals (OH(.)), and removing surface iron from the quartz particles to reduce OH(.) generation, we observed a reduced level of ROS generation, whereas the increase in [Ca2+]i was unaffected. When using EGTA to reduce [Ca2+]i, we observed a decrease in ROS production. This study suggests that the [Ca2+]i influx was independent of OH(.) production, and the [Ca2+]i increase resulted in ROS production. These results further indicate that there is a strong relationship between cytosolic free Ca2+ content and cellular injury as well as silica exposure. PMID:19835900

  12. PhTx3-4, a Spider Toxin Calcium Channel Blocker, Reduces NMDA-Induced Injury of the Retina

    PubMed Central

    Binda, Nancy Scardua; Porto Petruceli Carayon, Charles; Agostini, Rafael Mourão; do Nascimento Pinheiro, Ana Cristina; Nascimento Cordeiro, Marta; Romano Silva, Marco Aurélio; Figueira Silva, Juliana; Rita Pereira, Elizete Maria; da Silva Junior, Claudio Antonio; de Castro Junior, Célio José; Sena Guimarães, Andre Luiz; Gomez, Marcus Vinicius

    2016-01-01

    The in vivo neuroprotective effect of PhTx3-4, a spider toxin N-P/Q calcium channel blocker, was studied in a rat model of NMDA-induced injury of the retina. NMDA (N-Methyl-d-Aspartate)-induced retinal injury in rats reduced the b-wave amplitude by 62% ± 3.6%, indicating the severity of the insult. PhTx3-4 treatment increased the amplitude of the b-wave, which was almost equivalent to the control retinas that were not submitted to injury. The PhTx3-4 functional protection of the retinas recorded on the ERG also was observed in the neuroprotection of retinal cells. NMDA-induced injury reduced live cells in the retina layers and the highest reduction, 84%, was in the ganglion cell layer. Notably, PhTx3-4 treatment caused a remarkable reduction of dead cells in the retina layers, and the highest neuroprotective effect was in the ganglion cells layer. NMDA-induced cytotoxicity of the retina increased the release of glutamate, reactive oxygen species (ROS) production and oxidative stress. PhTx3-4 treatment reduced glutamate release, ROS production and oxidative stress measured by malondialdehyde. Thus, we presented for the first time evidence of in vivo neuroprotection from NMDA-induced retinal injury by PhTx3-4 (-ctenitoxin-Pn3a), a spider toxin that blocks N-P/Q calcium channels. PMID:26978403

  13. PhTx3-4, a Spider Toxin Calcium Channel Blocker, Reduces NMDA-Induced Injury of the Retina.

    PubMed

    Binda, Nancy Scardua; Porto Petruceli Carayon, Charles; Agostini, Rafael Mourão; do Nascimento Pinheiro, Ana Cristina; Nascimento Cordeiro, Marta; Romano Silva, Marco Aurélio; Figueira Silva, Juliana; Rita Pereira, Elizete Maria; da Silva Junior, Claudio Antonio; de Castro Junior, Célio José; Sena Guimarães, Andre Luiz; Gomez, Marcus Vinicius

    2016-01-01

    The in vivo neuroprotective effect of PhTx3-4, a spider toxin N-P/Q calcium channel blocker, was studied in a rat model of NMDA-induced injury of the retina. NMDA (N-Methyl-d-Aspartate)-induced retinal injury in rats reduced the b-wave amplitude by 62% ± 3.6%, indicating the severity of the insult. PhTx3-4 treatment increased the amplitude of the b-wave, which was almost equivalent to the control retinas that were not submitted to injury. The PhTx3-4 functional protection of the retinas recorded on the ERG also was observed in the neuroprotection of retinal cells. NMDA-induced injury reduced live cells in the retina layers and the highest reduction, 84%, was in the ganglion cell layer. Notably, PhTx3-4 treatment caused a remarkable reduction of dead cells in the retina layers, and the highest neuroprotective effect was in the ganglion cells layer. NMDA-induced cytotoxicity of the retina increased the release of glutamate, reactive oxygen species (ROS) production and oxidative stress. PhTx3-4 treatment reduced glutamate release, ROS production and oxidative stress measured by malondialdehyde. Thus, we presented for the first time evidence of in vivo neuroprotection from NMDA-induced retinal injury by PhTx3-4 (-ctenitoxin-Pn3a), a spider toxin that blocks N-P/Q calcium channels. PMID:26978403

  14. Molecular mechanisms of corticotropin-releasing factor receptor-induced calcium signaling.

    PubMed

    Gutknecht, Eric; Van der Linden, Ilse; Van Kolen, Kristof; Verhoeven, Kim F C; Vauquelin, Georges; Dautzenberg, Frank M

    2009-03-01

    The molecular mechanisms governing calcium signal transduction of corticotropin-releasing factor (CRF) receptors CRF(1) and CRF(2(a)) stably expressed in human embryonic kidney (HEK) 293 cells were investigated. Calcium signaling strictly depended on intracellular calcium sources, and this is the first study to establish a prominent contribution of the three major G-protein families to CRF receptor-mediated calcium signaling. Overexpression of Galpha(q/11) and Galpha(16) led to leftward shifts of the agonist concentration-response curves. Blockade of Galpha(q/11) proteins by the small interfering RNA (siRNA) technology partially reduced agonist-mediated calcium responses in CRF(1)- and CRF(2(a))-expressing HEK293 cells, thereby proving a contribution of the G(q) protein family. A small but significant inhibition of calcium signaling was recorded by pharmacological inhibition of G(i/o) proteins with pertussis toxin treatment. This effect was mediated by direct binding of Gbetagamma subunits to phospholipase C. G(i/o) inhibition also elevated cAMP responses in CRF receptor-overexpressing HEK293 cells and in Y79 retinoblastoma cells endogenously expressing human CRF(1) and CRF(2(a)) receptors, thereby demonstrating natural coupling of G(i) proteins to both CRF receptors. The strongest reduction of CRF receptor-mediated calcium mobilization was noted when blocking the G(s) signaling protein either by cholera toxin or by siRNA. It is noteworthy that simultaneous inhibition of two G-proteins shed light on the additive effects of G(s) and G(q) on the calcium signaling and, hence, that they act in parallel. On the other hand, G(i) coupling required prior G(s) activation. PMID:19098121

  15. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells.

    PubMed Central

    Fabiato, A; Fabiato, F

    1975-01-01

    1. Fragments of single cardiac cells were obtained by homogenization of ventricular tissue from adult rats. Remaining pieces of sacrolemma were removed by micro-dissection. Tension was recorded from the ends of the skinned (sarcolemma-free) cells with a photodiode force transducer. 2. In the presence of a strong buffering of the free [Ca2+] with 4-0 mM total EGTA, a tonic tension was obtained that increased according to t sigmoid curve when the free ([Ca2+] was increased from 10(-6-75)M to 10(-5-0)M. This curve was not modified by the destruction of the sarcoplasmic reticulum (SR) by the detergent Brij 58. Therefore, the tonic tension corresponded to the direct effect of the free [Ca2+] present in the buffer on the myofilaments. 3. In the presence of a slight buffering of the free [Ca2+] with 0-050 mM total EGTA, cyclic contractions were observed that were attributed to cyclic releases and re-sequestrations of Ca2+ by the SR. The absence of effect of azide and ruthenium red on the cyclic contractions obtained at a free [Ca2+] lower than 10(-6-50)M demonstrated that the mitochondria played no role in the triggering of these contractions. 4. Cyclic contractions were induced by a slight variation of free [Ca2+] in the buffer from 10(-7-65)M to 10(-7-40)M. Their amplitude at 10(-7-40)M free Ca2+ was equal to the tonic tension developed by a free [Ca2+] 20 times higher applied to the myofilaments when the SR was destroyed by detergent or functionally inhibited by high total [EGTA]. It was concluded that these cyclic contractions corresponded to a Ca2+-triggered release of Ca2+ from the SR. 5. The cyclic contractions were induced by the filling of the SR with Ca2+ to a critical level at which it released a fraction of the Ca2+ it contained. Each contraction was followed by a re-sequestration of Ca2+, the kinetics of which conditioned the duration of the cycles. 6. The amplitude of the cyclic contractions increased when the free [Ca2+] that triggered them was increased

  16. NO contributes to abnormal vascular calcium regulation and reactivity induced by peritonitis-associated septic shock in rats.

    PubMed

    Chen, Shiu-Jen; Li, Shaio-Yun; Shih, Chih-Chin; Liao, Mei-Huei; Wu, Chin-Chen

    2010-05-01

    Calcium plays an important role in determining vascular smooth muscle tone. Norepinephrine (NE)-induced vascular contraction contains two components: 1) Ca2+ release from the sarcoplasmic reticulum as the fast phase and 2) Ca2+ influx via a voltage-dependent calcium channel as the slow phase. This study used functional isometric tension recording to evaluate mediators contributing to abnormal NE-induced Ca2+ handling and reactivity in isolated thoracic aortas from septic rats. Sepsis was induced by cecal ligation and puncture (CLP), and thoracic aortas were removed at 18 h after CLP. Our results showed that rats that received CLP for 18 h manifested severe hypotension and vascular hyporeactivity to NE in vivo. This vascular hyporeactivity to NE was also observed in the aorta obtained from CLP-induced sepsis rat. Both the fast and slow phases of NE-induced contraction were reduced in aortas from sepsis rats. To clarify what possible mediators contribute to the abnormal Ca2+ handling in aortas from sepsis animals, inhibitors of Ca2+ channel and release were used. Inhibition by 2-aminoethoxy-diphenyl borane, ryanodine, and cyclopiazonic acid of the NE-induced contraction in Ca2+-free solution was greater in the aorta from sepsis rats and inhibitions of cyclopiazonic acid and ryanodine, but not of 2-aminoethoxy-diphenyl borane, were attenuated by NOS inhibitor N[omega]-nitro-l-arginine methyl ester. In addition, the attenuation of NE-induced contraction by nifedipine in the aorta was also greater in the CLP group. Our results suggest that abnormal NE-induced Ca2+ handling associated with vascular hyporeactivity in the CLP-induced sepsis is caused by a major decrease in sarcoplasmic reticulum function and a minor impairment of voltage-dependent Ca2+ channels on membrane to Ca2+ handling, at least, in the aorta, and this could be attributed to an overproduction of NO in sepsis. PMID:19749606

  17. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice

    PubMed Central

    Wang, Xue-Long; Tian, Bin; Huang, Ya; Peng, Xiao-Yan; Chen, Li-Hua; Li, Jun-Cheng; Liu, Tong

    2015-01-01

    The contributions of gasotransmitters to itch sensation are largely unknown. In this study, we aimed to investigate the roles of hydrogen sulfide (H2S), a ubiquitous gasotransmitter, in itch signaling. We found that intradermal injection of H2S donors NaHS or Na2S, but not GYY4137 (a slow-releasing H2S donor), dose-dependently induced scratching behavior in a μ-opioid receptor-dependent and histamine-independent manner in mice. Interestingly, NaHS induced itch via unique mechanisms that involved capsaicin-insensitive A-fibers, but not TRPV1-expressing C-fibers that are traditionally considered for mediating itch, revealed by depletion of TRPV1-expressing C-fibers by systemic resiniferatoxin treatment. Moreover, local application of capsaizapine (TRPV1 blocker) or HC-030031 (TRPA1 blocker) had no effects on NaHS-evoked scratching. Strikingly, pharmacological blockade and silencing of Cav3.2 T-type calcium channel by mibefradil, ascorbic acid, zinc chloride or Cav3.2 siRNA dramatically decreased NaHS-evoked scratching. NaHS induced robust alloknesis (touch-evoked itch), which was inhibited by T-type calcium channels blocker mibefradil. Compound 48/80-induced itch was enhanced by an endogenous precursor of H2S (L-cysteine) but attenuated by inhibitors of H2S-producing enzymes cystathionine γ-lyase and cystathionine β-synthase. These results indicated that H2S, as a novel nonhistaminergic itch mediator, may activates Cav3.2 T-type calcium channel, probably located at A-fibers, to induce scratching and alloknesis in mice. PMID:26602811

  18. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice.

    PubMed

    Wang, Xue-Long; Tian, Bin; Huang, Ya; Peng, Xiao-Yan; Chen, Li-Hua; Li, Jun-Cheng; Liu, Tong

    2015-01-01

    The contributions of gasotransmitters to itch sensation are largely unknown. In this study, we aimed to investigate the roles of hydrogen sulfide (H2S), a ubiquitous gasotransmitter, in itch signaling. We found that intradermal injection of H2S donors NaHS or Na2S, but not GYY4137 (a slow-releasing H2S donor), dose-dependently induced scratching behavior in a μ-opioid receptor-dependent and histamine-independent manner in mice. Interestingly, NaHS induced itch via unique mechanisms that involved capsaicin-insensitive A-fibers, but not TRPV1-expressing C-fibers that are traditionally considered for mediating itch, revealed by depletion of TRPV1-expressing C-fibers by systemic resiniferatoxin treatment. Moreover, local application of capsaizapine (TRPV1 blocker) or HC-030031 (TRPA1 blocker) had no effects on NaHS-evoked scratching. Strikingly, pharmacological blockade and silencing of Cav3.2 T-type calcium channel by mibefradil, ascorbic acid, zinc chloride or Cav3.2 siRNA dramatically decreased NaHS-evoked scratching. NaHS induced robust alloknesis (touch-evoked itch), which was inhibited by T-type calcium channels blocker mibefradil. Compound 48/80-induced itch was enhanced by an endogenous precursor of H2S (L-cysteine) but attenuated by inhibitors of H2S-producing enzymes cystathionine γ-lyase and cystathionine β-synthase. These results indicated that H2S, as a novel nonhistaminergic itch mediator, may activates Cav3.2 T-type calcium channel, probably located at A-fibers, to induce scratching and alloknesis in mice. PMID:26602811

  19. Cadmium-Induced Apoptosis in Primary Rat Cerebral Cortical Neurons Culture Is Mediated by a Calcium Signaling Pathway

    PubMed Central

    Xu, Hui; Sun, Ya; Hu, Fei-fei; Bian, Jian-chun; Liu, Xue-zhong; Gu, Jian-hong; Liu, Zong-ping

    2013-01-01

    Cadmium (Cd) is an extremely toxic metal, capable of severely damaging several organs, including the brain. Studies have shown that Cd disrupts intracellular free calcium ([Ca2+]i) homeostasis, leading to apoptosis in a variety of cells including primary murine neurons. Calcium is a ubiquitous intracellular ion which acts as a signaling mediator in numerous cellular processes including cell proliferation, differentiation, and survival/death. However, little is known about the role of calcium signaling in Cd-induced apoptosis in neuronal cells. Thus we investigated the role of calcium signaling in Cd-induced apoptosis in primary rat cerebral cortical neurons. Consistent with known toxic properties of Cd, exposure of cerebral cortical neurons to Cd caused morphological changes indicative of apoptosis and cell death. It also induced elevation of [Ca2+]i and inhibition of Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities. This Cd-induced elevation of [Ca2+]i was suppressed by an IP3R inhibitor, 2-APB, suggesting that ER-regulated Ca2+ is involved. In addition, we observed elevation of reactive oxygen species (ROS) levels, dysfunction of cytochrome oxidase subunits (COX-I/II/III), depletion of mitochondrial membrane potential (ΔΨm), and cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP) during Cd exposure. Z-VAD-fmk, a pan caspase inhibitor, partially prevented Cd-induced apoptosis and cell death. Interestingly, apoptosis, cell death and these cellular events induced by Cd were blocked by BAPTA-AM, a specific intracellular Ca2+ chelator. Furthermore, western blot analysis revealed an up-regulated expression of Bcl-2 and down-regulated expression of Bax. However, these were not blocked by BAPTA-AM. Thus Cd toxicity is in part due to its disruption of intracellular Ca2+ homeostasis, by compromising ATPases activities and ER-regulated Ca2+, and this elevation in Ca2+ triggers the activation of the Ca2+-mitochondria apoptotic signaling pathway. This

  20. Coral calcium hydride prevents hepatic steatosis in high fat diet-induced obese rats: A potent mitochondrial nutrient and phase II enzyme inducer.

    PubMed

    Hou, Chen; Wang, Yongyao; Zhu, Erkang; Yan, Chunhong; Zhao, Lin; Wang, Xiaojie; Qiu, Yingfeng; Shen, Hui; Sun, Xuejun; Feng, Zhihui; Liu, Jiankang; Long, Jiangang

    2016-03-01

    Diet-induced nonalcoholic fatty liver disease (NAFLD) is characterized by profound lipid accumulation and associated with an inflammatory response, oxidative stress and hepatic mitochondrial dysfunction. We previously demonstrated that some mitochondrial nutrients effectively ameliorated high fat diet (HFD)-induced hepatic steatosis and metabolic disorders. Molecular hydrogen in hydrogen-rich liquid or inhaling gas, which has been confirmed in scavenging reactive oxygen species and preventing mitochondrial decay, improved metabolic syndrome in patients and animal models. Coral calcium hydride (CCH) is a new solid molecular hydrogen carrier made of coral calcium. However, whether and how CCH impacts HFD-induced hepatic steatosis remains uninvestigated. In the present study, we applied CCH to a HFD-induced NAFLD rat model for 13 weeks. We found that CCH durably generated hydrogen in vivo and in vitro. CCH treatment significantly reduced body weight gain, improved glucose and lipid metabolism and attenuated hepatic steatosis in HFD-induced obese rats with no influence on food and water intake. Moreover, CCH effectively improved HFD-induced hepatic mitochondrial dysfunction, reduced oxidative stress, and activated phase II enzymes. Our results suggest that CCH is an efficient hydrogen-rich agent, which could prevent HFD-induced NAFLD via activating phase II enzymes and improving mitochondrial function. PMID:26774456

  1. Heat-induced gelation of bovine serum albumin/low-methoxyl pectin systems and the effect of calcium ions.

    PubMed

    Donato, Laurence; Garnier, Catherine; Novales, Bruno; Durand, Sylvie; Doublier, Jean-Louis

    2005-01-01

    Influence of low-methoxyl pectin (LM pectin) and calcium ions (3 mM) on mechanical behavior and microstructure of bovine serum albumin (BSA) gels (pH 6.8, in 0.1 M NaCl) was evaluated. Protein and LM pectin concentrations were fixed at 2, 4, and 8 wt % and 0.21, 0.43, and 0.85 wt %, respectively. Rheological measurements and confocal laser scanning microscopy coupled with texture image analysis by use of the co-occurrence method were performed. Heat treatment of BSA/LM pectin mixtures induced protein gelation and a phase separation process between the two biopolymers, which was kinetically trapped. Calcium ions induced pectin gelation and modified BSA gel properties. Depending on biopolymer concentrations, a balance between pectin and/or protein gel contribution on final gel strength exists. The microstructures of the mixed systems in the presence of calcium can be interpreted as interpenetrated structures. Texture image analysis allowed one to classify more precisely the different microstructures observed in relation with mechanical properties. PMID:15638542

  2. Cardioprotective activity of alcoholic extract of Tinospora cordifolia (Willd.) Miers in calcium chloride-induced cardiac arrhythmia in rats

    PubMed Central

    Sharma, Ashish Kumar; Kishore, Kunal; Sharma, Divya; Srinivasan, B.P; Agarwal, Shyam Sunder; Sharma, Ashok; Singh, Santosh Kumar; Gaur, Samir; Jatav, Vijay Singh

    2011-01-01

    The present study investigated the antiarrhythmic activity of alcoholic extract of Tinospora cordifolia (T. cordifolia) in CaCl2 induced arrhythmia. CaCl2 (25 mg/kg) was administered by intravenous infusion (iv) to produce arrhythmia in rats. The animals were then treated with T. cordifolia extract (150, 250, and 450 mg/kg) and verapamil (5 mg/kg,iv). Lead II electrocardiogram was monitored. Plasma calcium, sodium and potassium levels were measured. In CaCl2 induced arrhythmia, heart rate was decreased by 41.10%, T. cordifolia at 150, 300, and 450 mg/kg decreased the heart rate by 26.30%, 29.16%, and 38.29%, respectively, and verapamil reduced the heart rate by 9.70% compared to the normal group. The PQRST waves were normalized and atrial and ventricular fibrillation was controlled in rats treated with verapamil and T. cordifolia. CaCl2 increased calcium and sodium levels and decreased potassium levels in blood. T. cordifolia dose-dependently decreased calcium and sodium levels and increased potassium levels. Hence, T. cordifolia can be used in antiarrhythmic clinical settings and beneficial in atrial and ventricular fibrillation and flutter and may be indicated in ventricular tachyarrhythmia. PMID:23554702

  3. Copper-induced activation of TRP channels promotes extracellular calcium entry, activation of CaMs and CDPKs, copper entry and membrane depolarization in Ulva compressa

    PubMed Central

    Gómez, Melissa; González, Alberto; Sáez, Claudio A.; Morales, Bernardo; Moenne, Alejandra

    2015-01-01

    In order to identify channels involved in membrane depolarization, Ulva compressa was incubated with agonists of TRP channels C5, A1 and V1, and the level of intracellular calcium was detected. Agonists of TRPC5, A1 and V1 induced increases in intracellular calcium at 4, 9, and 11 min of exposure, respectively, and antagonists of TRPC5, A1, and V1 corresponding to SKF-96365 (SKF), HC-030031 (HC), and capsazepin (CPZ), respectively, inhibited calcium increases indicating that functional TRPs exist in U. compressa. In addition, copper excess induced increases in intracellular calcium at 4, 9, and 12 min which were inhibited by SKF, HC, and CPZ, respectively, indicating that copper activate TRPC5, A1, and V1 channels. Moreover, copper-induced calcium increases were inhibited by EGTA, a non-permeable calcium chelating agent, but not by thapsigargin, an inhibitor of endoplasmic reticulum (ER) calcium ATPase, indicating that activation of TRPs leads to extracellular calcium entry. Furthermore, copper-induced calcium increases were not inhibited by W-7, an inhibitor of CaMs, and staurosporine, an inhibitor of CDPKs, indicating that extracellular calcium entry did not require activation of CaMs and CDPKs. In addition, copper induced membrane depolarization events at 4, 8, and 11 min and these events were inhibited by SKF, HC, CPZ, and bathocuproine, a specific copper chelating agent, indicating that copper entry through TRP channels leads to membrane depolarization. Moreover, membrane depolarization events were inhibited by W-7 and staurosporine, indicating that activation of CaMs and CDPKs is required to allow copper entry through TRPs. Interestingly, copper-induced calcium increases and depolarization events were light-dependent and were inhibited by DCMU, an inhibitor of photosystem II, and ATP-γ-S, a non-hydrolizable analog of ATP, suggesting that ATP derived from photosynthesis is required to activate TRPs. Thus, light-dependent copper-induced activation TRPC5, A1

  4. [Amelioration of glucose tolerance and correction of reactive hypoglycemias induced by intravenous calcium infusion cannot be explained by modifications in blood glucagon levels].

    PubMed

    Vexiau, P; Cathelineau, G; Luyckx, A; Lefebvre, P

    1986-08-01

    Glucagon is not involved in intravenous calcium-induced improvement in glucose tolerance nor in correction of reactive hypoglycemia. Recent investigations have shown that intravenous (IV) calcium infusion improved blood glucose values in patients with moderately impaired glucose tolerance, and suppressed hypoglycemia in patients with isolated reactive hypoglycemia. The aim of this study was to investigate the possibility that these changes were secondary to calcium induced alterations in glucagon (IRG) secretion. Four groups of subjects were studied: group 1: normal controls (n = 7); group 2: patients with isolated hypoglycemia (n = 9); group 3: patients with impaired glucose tolerance without reactive hypoglycemia (n = 9) and group 4: patients with impaired glucose tolerance and reactive hypoglycemia (n = 10). All patients were submitted in randomized order to two 5 hour oral glucose tolerance tests (OGTT, 75 g glucose), during a simultaneous infusion, either of saline or of calcium (calcium gluconate 36.3 mEq/5 h.), starting 30 minutes before the OGTT. In none of the groups did calcium infusion influence basal plasma IRG. In group 1 and 3, oral glucose significantly suppressed IRG, and during IV calcium infusion this suppression disappeared. In group 2, glucose ingestion resulted in a paradoxical increase in IRG both during saline and during calcium infusion. In group 4, oral glucose induced a significant drop in plasma IRG and a rebound rise during hypoglycemia, results which were unaffected by IV calcium infusion. These data suggest that glucagon is not involved in the alterations of blood glucose profiles during OGTT observed during intravenous calcium infusion. PMID:3770273

  5. AN IP3 RECEPTOR-SENSITIVE CALCIUM STORE MEDIATES DISTURBANCES IN INTRACELLULAR CALCIUM UPON EXPOSURE TO AROCLOR 1254 AND ORTHO-SUBSTITUTED PCBS.

    EPA Science Inventory

    An IP3 Receptor-Sensitive Ca2+ Store Mediates Disturbances In Intracellular Ca2+ Upon Exposure To Aroclor 1254 And Ortho-Substituted PCBs JR Inglefield, WR Mundy, and TJ Shafer. Neurotoxicol. Div., NHEERL, US EPA, RTP, NC. Sponsor: L Birnbaum

    Polychlorinated biphenyls (...

  6. Differential sensitivity of mouse oocytes to colchicine-induced aneuploidy

    SciTech Connect

    Mailhes, J.B.; Yuan, Z.P.

    1987-01-01

    Unpublished results from our laboratory showed that colchicine increased the incidence of hyperploid mouse metaphase II (MII) oocytes when injected at the same time as human chorionic gonadotrophin (HCG). The objective of the present study was to determine whether the time of administering colchicine influenced the incidence of aneuploidy in MII oocytes. CD-1 mice were given pregnant mare's serum (PMS) and, 48 hr later, HCG. An intraperitoneal injection of 0.2 mg/kg colchicine was given at +4, +2, 0, -2, or -4 hr relative to HCG. Oocytes were collected 17 hr post-HCG and processed, and chromosomes were subsequently C-banded. The percentage of hyperploid oocytes was 0.77, 2.56, 5.71, 7.79, 3.54, and 2.70 for control, +4, +2, 0, -2, or -4 hr pre/post-HCG, respectively. Chi-square analyses of these data demonstrated that colchicine significantly increases the proportion of aneuploid oocytes, and that the relative sensitivity of colchicine-induced aneuploidy depends upon the time that this drug is administered relative to HCG.

  7. Radiation-induced Genomic Instability and Radiation Sensitivity

    SciTech Connect

    Varnum, Susan M.; Sowa, Marianne B.; Kim, Grace J.; Morgan, William F.

    2013-01-19

    The obvious relationships between reactive oxygen and nitrogen species, mitochondrial dysfunction, inflammatory type responses and reactive chemokines and cytokines suggests a general stress response induced by ionizing radiation most likely leads to the non-targeted effects described after radiation exposure. We argue that true bystander effects do not occur in the radiation therapy clinic. But there is no question that effects outside the target volume do occur. These “out of field effects” are considered very low dose effects in the context of therapy. So what are the implications of non-targeted effects on radiation sensitivity? The primary goal of therapy is to eradicate the tumor. Given the genetic diversity of the human population, lifestyle and environment factors it is likely some combination of these will influence patient outcome. Non-targeted effects may contribute to a greater or lesser extent. But consider the potential situation involving a partial body exposure due to a radiation accident or radiological terrorism. Non-targeted effects suggest that the tissue at risk for demonstrating possible detrimental effects of radiation exposure might be greater than the volume actually irradiated.

  8. Noise-Induced Increase of Sensitivity in Bacterial Chemotaxis.

    PubMed

    He, Rui; Zhang, Rongjing; Yuan, Junhua

    2016-07-26

    Flagellated bacteria, like Escherichia coli, can swim toward beneficial environments by modulating the rotational direction of their flagellar motors through a chemotaxis signal transduction network. The noise of this network, the random fluctuation of the intracellular concentration of the signal protein CheY-P with time, has been identified in studies of single cell behavioral variability, and found to be important in coordination of multiple motors in a bacterium and in enhancement of bacterial drift velocity in chemical gradients. Here, by comparing the behavioral difference between motors of wild-type E. coli and mutants without signal noise, we measured the magnitude of this noise in wild-type cells, and found that the noise increases the sensitivity of the bacterial chemotaxis network downstream at the level of the flagellar motor. This provided a simple mechanism for the noise-induced enhancement of chemotactic drift, which we confirmed by simulating the E. coli chemotactic motion in various spatial profiles of chemo-attractant concentration. PMID:27463144

  9. Relationships between hormone-induced calcium release and 86rubidium uptake stimulation in starfish oocytes.

    PubMed

    Guerrier, P; Moreau, M; Dorée, M

    1979-09-01

    86Rubidium+ uptake, but not 86Rubidium efflux, is strongly stimulated after addition of the meiosis inducing hormone 1-methyladenine (1-MeAde) to prophase blocked oocytes of the starfish Marthasterias glacialis. This stimulation is a transient process which does not require the continuous presence of 1-MeAde and is elicited within 1 minute of contact. 1-MeAde and its biologically active structural analogs fully stimulate Rb+ uptake at concentrations which are about two orders of magnitude lower than those required to trigger meiosis reinitiation but which already release underthreshold levels of Ca2+ from the inner part of the plasma membrane. External Ca2+ concentrations effective in triggering meiosis reinitiation also stimulate Rb+ influx, while drugs like D600, theophyllin and caffein which suppress the hormone induced Ca2+ release, simultaneously preclude the stimulation of Rb+ uptake. Dithiothreitol (DTT) which mimicks 1-MeAde action in releasing Ca2+ and inducing meiosis acts both on the efflux and on active and passive Rb+ influxes. Ouabain, the classical inhibitor of the Na+, K+ pump does not preclude meiosis reinitiation under the influence of 1-MeAde, its agonists of mimetics. It suppresses the active component of Rb+ uptake both in control or stimulate oocytes. When applied only in preincubation before starting the hormone treatment, it cannot however inhibit the stimulation of Rb+ uptake, while basal pump inhibition is preserved. These results demonstrate that stimulation of the active Rb+ or K+ transport is not indispensable to meiosis reinitiation. They suggest moreover that the hormone induced Ca2+ release from the plasma membrane may be responsible for unmasking new ouabain sensitive transport sites. PMID:515475

  10. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    SciTech Connect

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-08-26

    Highlights: {yields} Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. {yields} The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. {yields} Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  11. Calcium-43 chemical shift and electric field gradient tensor interplay: a sensitive probe of structure, polymorphism, and hydration.

    PubMed

    Widdifield, Cory M; Moudrakovski, Igor; Bryce, David L

    2014-07-14

    Calcium is the 5th most abundant element on earth, and is found in numerous biological tissues, proteins, materials, and increasingly in catalysts. However, due to a number of unfavourable nuclear properties, such as a low magnetogyric ratio, very low natural abundance, and its nuclear electric quadrupole moment, development of solid-state (43)Ca NMR has been constrained relative to similar nuclides. In this study, 12 commonly-available calcium compounds are analyzed via(43)Ca solid-state NMR and the information which may be obtained by the measurement of both the (43)Ca electric field gradient (EFG) and chemical shift tensors (the latter of which are extremely rare with only a handful of literature examples) is discussed. Combined with density functional theory (DFT) computations, this 'tensor interplay' is, for the first time for (43)Ca, illustrated to be diagnostic in distinguishing polymorphs (e.g., calcium formate), and the degree of hydration (e.g., CaCl2·2H2O and calcium tartrate tetrahydrate). For Ca(OH)2, we outline the first example of (1)H to (43)Ca cross-polarization on a sample at natural abundance in (43)Ca. Using prior knowledge of the relationship between the isotropic calcium chemical shift and the calcium quadrupolar coupling constant (CQ) with coordination number, we postulate the coordination number in a sample of calcium levulinate dihydrate, which does not have a known crystal structure. Natural samples of CaCO3 (aragonite polymorph) are used to show that the synthetic structure is present in nature. Gauge-including projector augmented-wave (GIPAW) DFT computations using accepted crystal structures for many of these systems generally result in calculated NMR tensor parameters which are in very good agreement with the experimental observations. This combination of (43)Ca NMR measurements with GIPAW DFT ultimately allows us to establish clear correlations between various solid-state (43)Ca NMR observables and selected structural parameters

  12. Calcium-mediated responses and glutamine synthetase expression in greater duckweed (Spirodela polyrhiza L.) under diethyl phthalate-induced stress.

    PubMed

    Cheng, Lee-Ju; Hung, Meng-Ju; Cheng, Yen-I; Cheng, Tai-Sheng

    2013-11-15

    This study was carried out to assess the influence of diethyl phthalate (DEP) alone or associated with calcium chloride (CaCl2) on greater duckweed plants, emphasizing the implications of calcium in amelioration of DEP-induced stress on plant growth. Greater duckweed were treated with DEP in variable concentrations, as 0, 0.25, 0.5, 1.0 and 2.0mM for 7 days, or treated with the same concentration either 2mM DEP or 2mM DEP plus 10mM CaCl2·2H2O in different duration 0-7 days. Treatment with 2mM DEP resulted in increasing proline content, protease activity, and ammonia accumulation in duckweed tissues. NADH-glutamate dehydrogenase (NADH-GDH; EC 1.4.1.2) and Δ(1)-pyrroline-5-carboxylate reductase (P5CR; EC 1.5.1.2), two key enzymes in the glutamate pathway of proline synthesis, showed increase in activity with DEP treatment and positively correlated with proline accumulation. No further increase in proline accumulation was observed with addition of calcium chloride to the DEP-treated cultures. However, supplementation of Ca(2+) can mitigate the adverse effect of DEP, at least in part to decrease the DEP-induced superoxide accumulation and increase in GDH activity for ammonia assimilation in duckweed fronds. In addition, effects of calcium on mitigation of DEP injury were also observed in glutamine synthetase (GS; EC 6.3.1.2) expression. Both GS1 and GS2 polypeptide accumulation and the level of total GS activity were nearly equivalent to the control. Exogenous proline protects GS2 from DEP-modulated redox damage in the chloroplast lysates but there is no remarkable protection effects on D1 (the 32kDa protein in photosystem II reaction center) degradation. In conclusion, the glutamate pathway of proline synthesis might be involved in mitigation of DEP-induced injury, and calcium plays an important role in increasing GDH, P5CR, and GS expression. PMID:24177215

  13. The TRPC6 channel activator hyperforin induces the release of zinc and calcium from mitochondria.

    PubMed

    Tu, Peng; Gibon, Julien; Bouron, Alexandre

    2010-01-01

    Hyperforin, an extract of the medicinal plant hypericum perforatum (also named St John's wort), possesses antidepressant properties. Recent data showed that it elevates the intracellular concentration of Ca(2+) by activating diacylglycerol-sensitive C-class of transient receptor potential (TRPC6) channels without activating the other isoforms (TRPC1, TRPC3, TRPC4, TRPC5, and TRPC7). This study was undertaken to further characterize the cellular neuronal responses induced by hyperforin. Experiments conducted on cortical neurons in primary culture and loaded with fluorescent probes for Ca(2+) (Fluo-4) and Zn(2+) (FluoZin-3) showed that it not only controls the activity of plasma membrane channels but it also mobilizes these two cations from internal pools. Experiments conducted on isolated brain mitochondria indicated that hyperforin, like the inhibitor of oxidative phosphorylation, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), collapses the mitochondrial membrane potential. Furthermore, it promotes the release of Ca(2+) and Zn(2+) from these organelles via a ruthenium red-sensitive transporter. In fact, hyperforin exerts complex actions on CNS neurons. This antidepressant not only triggers the entry of cations via plasma membrane TRPC6 channels but it displays protonophore-like properties. As hyperforin is now use to probe the functions of native TRPC6 channels, our data indicate that caution is required when interpreting results obtained with this antidepressant. PMID:19845832

  14. Calcium Induced Regulation of Skeletal Troponin — Computational Insights from Molecular Dynamics Simulations

    PubMed Central

    Genchev, Georgi Z.; Kobayashi, Tomoyoshi; Lu, Hui

    2013-01-01

    The interaction between calcium and the regulatory site(s) of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N2-OE12/N9-OE12) in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation. PMID:23554884

  15. Calcium Induces Long-Term Legacy Effects in a Subalpine Ecosystem

    PubMed Central

    Schaffner, Urs; Alewell, Christine; Eschen, René; Matthies, Diethart; Spiegelberger, Thomas; Hegg, Otto

    2012-01-01

    Human activities have transformed a significant proportion of the world’s land surface, with profound effects on ecosystem processes. Soil applications of macronutrients such as nitrate, phosphorus, potassium or calcium are routinely used in the management of croplands, grasslands and forests to improve plant health or increase productivity. However, while the effects of continuous fertilization and liming on terrestrial ecosystems are well documented, remarkably little is known about the legacy effect of historical fertilization and liming events in terrestrial ecosystems and of the mechanisms involved. Here, we show that more than 70 years after the last application of lime on a subalpine grassland, all major soil and plant calcium pools were still significantly larger in limed than in unlimed plots, and that the resulting shift in the soil calcium/aluminium ratio continues to affect ecosystem services such as primary production. The difference in the calcium content of the vegetation and the topmost 10 cm of the soil in limed vs. unlimed plots amounts to approximately 19.5 g m−2, equivalent to 16.3% of the amount that was added to the plots some 70 years ago. In contrast, plots that were treated with nitrogen-phosphorus-potassium fertilizer in the 1930s did not differ from unfertilized plots in any of the soil and vegetation characteristics measured. Our findings suggest that the long-term legacy effect of historical liming is due to long-term storage of added calcium in stable soil pools, rather than a general increase in nutrient availability. Our results demonstrate that single applications of calcium in its carbonated form can profoundly and persistently alter ecosystem processes and services in mountain ecosystems. PMID:23284779

  16. The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity*

    PubMed Central

    Tian, Weihua; Wang, Yu; Xu, Yan; Guo, Xiangpeng; Wang, Bo; Sun, Li; Liu, Longqi; Cui, Fenggong; Zhuang, Qiang; Bao, Xichen; Schley, Gunnar; Chung, Tung-Liang; Laslett, Andrew L.; Willam, Carsten; Qin, Baoming; Maxwell, Patrick H.; Esteban, Miguel A.

    2014-01-01

    Megadose vitamin C (Vc) is one of the most enduring alternative treatments for diverse human diseases and is deeply engrafted in popular culture. Preliminary studies in the 1970s described potent effects of Vc on prolonging the survival of patients with terminal cancer, but these claims were later criticized. An improved knowledge of the pharmacokinetics of Vc and recent reports using cancer cell lines have renewed the interest in this subject. Despite these findings, using Vc as an adjuvant for anticancer therapy remains questionable, among other things because there is no proper mechanistic understanding. Here, we show that a Warburg effect triggered by activation of the hypoxia-inducible factor (HIF) pathway greatly enhances Vc-induced toxicity in multiple cancer cell lines, including von Hippel-Lindau (VHL)-defective renal cancer cells. HIF increases the intracellular uptake of oxidized Vc through its transcriptional target glucose transporter 1 (GLUT1), synergizing with the uptake of its reduced form through sodium-dependent Vc transporters. The resulting high levels of intracellular Vc induce oxidative stress and massive DNA damage, which then causes metabolic exhaustion by depleting cellular ATP reserves. HIF-positive cells are particularly sensitive to Vc-induced ATP reduction because they mostly rely on the rather inefficient glycolytic pathway for energy production. Thus, our experiments link Vc-induced toxicity and cancer metabolism, providing a new explanation for the preferential effect of Vc on cancer cells. PMID:24371136

  17. The hypoxia-inducible factor renders cancer cells more sensitive to vitamin C-induced toxicity.

    PubMed

    Tian, Weihua; Wang, Yu; Xu, Yan; Guo, Xiangpeng; Wang, Bo; Sun, Li; Liu, Longqi; Cui, Fenggong; Zhuang, Qiang; Bao, Xichen; Schley, Gunnar; Chung, Tung-Liang; Laslett, Andrew L; Willam, Carsten; Qin, Baoming; Maxwell, Patrick H; Esteban, Miguel A

    2014-02-01

    Megadose vitamin C (Vc) is one of the most enduring alternative treatments for diverse human diseases and is deeply engrafted in popular culture. Preliminary studies in the 1970s described potent effects of Vc on prolonging the survival of patients with terminal cancer, but these claims were later criticized. An improved knowledge of the pharmacokinetics of Vc and recent reports using cancer cell lines have renewed the interest in this subject. Despite these findings, using Vc as an adjuvant for anticancer therapy remains questionable, among other things because there is no proper mechanistic understanding. Here, we show that a Warburg effect triggered by activation of the hypoxia-inducible factor (HIF) pathway greatly enhances Vc-induced toxicity in multiple cancer cell lines, including von Hippel-Lindau (VHL)-defective renal cancer cells. HIF increases the intracellular uptake of oxidized Vc through its transcriptional target glucose transporter 1 (GLUT1), synergizing with the uptake of its reduced form through sodium-dependent Vc transporters. The resulting high levels of intracellular Vc induce oxidative stress and massive DNA damage, which then causes metabolic exhaustion by depleting cellular ATP reserves. HIF-positive cells are particularly sensitive to Vc-induced ATP reduction because they mostly rely on the rather inefficient glycolytic pathway for energy production. Thus, our experiments link Vc-induced toxicity and cancer metabolism, providing a new explanation for the preferential effect of Vc on cancer cells. PMID:24371136

  18. Stimulation of large-conductance calcium-activated potassium channels inhibits neurogenic contraction of human bladder from patients with urinary symptoms and reverses acetic acid-induced bladder hyperactivity in rats.

    PubMed

    La Fuente, José M; Fernández, Argentina; Cuevas, Pedro; González-Corrochano, Rocío; Chen, Mao Xiang; Angulo, Javier

    2014-07-15

    We have analysed the effects of large-conductance calcium-activated potassium channel (BK) stimulation on neurogenic and myogenic contraction of human bladder from healthy subjects and patients with urinary symptoms and evaluated the efficacy of activating BK to relief bladder hyperactivity in rats. Bladder specimens were obtained from organ donors and from men with benign prostatic hyperplasia (BPH). Contractions elicited by electrical field stimulation (EFS) and carbachol (CCh) were evaluated in isolated bladder strips. in vivo cystometric recordings were obtained in anesthetized rats under control and acetic acid-induced hyperactive conditions. Neurogenic contractions of human bladder were potentiated by blockade of BK and small-conductance calcium-activated potassium channels (SK) but were unaffected by the blockade of intermediate calcium-activated potassium channels (IK). EFS-induced contractions were inhibited by BK stimulation with NS-8 or NS1619 or by SK/IK stimulation with NS309 (3µM). CCh-induced contractions were not modified by blockade or stimulation of BK, IK or SK. The anti-cholinergic agent, oxybutynin (0.3µM) inhibited either neurogenic or CCh-induced contractions. Neurogenic contractions of bladders from BPH patients were less sensitive to BK inhibition and more sensitive to BK activation than healthy bladders. The BK activator, NS-8 (5mg/kg; i.v.), reversed bladder hyperactivity induced by acetic acid in rats, while oxybutynin was ineffective. NS-8 did not significantly impact blood pressure or heart rate. BK stimulation specifically inhibits neurogenic contractions in patients with urinary symptoms and relieves bladder hyperactivity in vivo without compromising bladder contractile capacity or cardiovascular safety, supporting its potential therapeutic use for relieving bladder overactivity. PMID:24747752

  19. Ischemia induces partial loss of surface membrane polarity and accumulation of putative calcium ionophores.

    PubMed Central

    Molitoris, B A; Wilson, P D; Schrier, R W; Simon, F R

    1985-01-01

    To determine if ischemia induces alterations in renal proximal tubule surface membranes, brush border (BBM) and basolateral membranes (BLM) were isolated simultaneously from the same cortical homogenate after 50 min of renal pedicle clamping. Ischemia caused a selective decrease in the specific activity of BBM marker enzymes leucine aminopeptidase and alkaline phosphatase, but did not effect enrichment (15 times). Neither specific activity nor enrichment (10 times) of BLM NaK-ATPase was altered by ischemia. Contamination of BBM by intracellular organelles was also unchanged, but there was an increase in the specific activity (41.1 vs. 60.0, P less than 0.01) and enrichment (2.3 vs. 4.3, P less than 0.01) of NaK-ATPase in the ischemic BBM fraction. Ischemia increased BLM lysophosphatidylcholine (1.3 vs. 2.5%, P less than 0.05) and phosphatidic acid (0.4 vs. 1.3%, P less than 0.05). Ischemia also decreased BBM sphingomyelin (38.5 vs. 29.6%, P less than 0.01) and phosphatidylserine (16.1 vs. 11.4%, P less than 0.01), and increased phosphatidylcholine (17.2 vs. 29.7%, P less than 0.01), phosphatidylinositol (1.8 vs. 4.6%, P less than 0.01), and lysophosphatidylcholine (1.0 vs. 1.8%, P less than 0.05). The large changes in BBM phospholipids did not result from new phospholipid synthesis, since the specific activity (32P dpm/nmol Pi) of prelabeled individual and total phospholipids was unaltered by ischemia. We next evaluated if these changes were due to inability of ischemic cells to maintain surface membrane polarity. Cytochemical evaluation showed that while NaK-ATPase could be detected only in control BLM, specific deposits of reaction product were present in the BBM of ischemic kidneys. Furthermore, using continuous sucrose gradients, the enzymatic profile of ischemic BBM NaK-ATPase shifted away from ischemic BLM NaK-ATPase and toward the BBM enzymatic marker leucine aminopeptidase. Taken together, these data suggest that NaK-ATPase activity determined enzymatically

  20. Intracellular influx of calcium induced by quartz particles in alveolar macrophages

    SciTech Connect

    Feng Tian; Tong Zhu; Yu Shang

    2010-01-15

    Historical studies report that cellular injury and silicosis are related to cytosolic free calcium (Ca{sup 2+}). Moreover, reactive oxygen species (ROS) have been linked to cellular injury. However, the detail mechanism of the increase in [Ca{sup 2+}]{sub i} and the relationship between [Ca{sup 2+}]{sub i} and ROS production remains unknown. Quartz particle has been found to increase [Ca{sup 2+}]{sub i} and activate the generation of ROS. Our hypothesis is that [Ca{sup 2+}]{sub i} increase induced by quartz particle is from extracellular Ca{sup 2+} through the Ca{sup 2+} channel, and [Ca{sup 2+}]{sub i} increase is believed to activate ROS production. In order to examine this hypothesis, we treated rat alveolar macrophages with quartz (SiO{sub 2}) particles and used laser scanning confocal microscopy to measure [Ca{sup 2+}]{sub i} and the fluorescence intensity of ROS. Time- and dose-dependent increases in [Ca{sup 2+}]{sub I} and ROS in macrophages as well as cell viability were observed. Through chelating extracellular Ca{sup 2+} with ethylene glycol tetraacetic acid and releasing intracellular Ca{sup 2+} with thapsigargin, we found that 72.7% of the [Ca{sup 2+}]{sub i} increase was due to the influx of Ca{sup 2+} from the extracellular environment, via Ca{sup 2+} channels in the plasma membrane. By adding mannitol to scavenge hydroxyl radicals (OH.), and removing surface iron from the quartz particles to reduce OH. generation, we observed a reduced level of ROS generation, whereas the increase in [Ca{sup 2+}]{sub i} was unaffected. When using EGTA to reduce [Ca{sup 2+}]{sub i}, we observed a decrease in ROS production. This study suggests that the [Ca{sup 2+}]{sub i} influx was independent of OH. production, and the [Ca{sup 2+}]{sub i} increase resulted in ROS production. These results further indicate that there is a strong relationship between cytosolic free Ca{sup 2+} content and cellular injury as well as silica exposure.

  1. Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts

    PubMed Central

    Itoh, Hideki; Oyama, Kotaro; Suzuki, Madoka; Ishiwata, Shin’ichi

    2014-01-01

    Temperature-sensitive Ca2+ dynamics occur primarily through transient receptor potential channels, but also by means of Ca2+ channels and pumps on the endoplasmic reticulum membrane. As such, cytoplasmic Ca2+ concentration ([Ca2+]cyt) is re-equilibrated by changes in ambient temperature. The present study investigated the effects of heat pulses (heating duration: 2 s or 150 s) on [Ca2+]cyt in single WI-38 fibroblasts, which are considered as normal cells. We found that Ca2+ burst occurred immediately after short (2 s) heat pulse, which is similar to our previous report on HeLa cells, but with less thermosensitivity. The heat pulses originated from a focused 1455-nm infrared laser light were applied in the vicinity of cells under the optical microscope. Ca2+ bursts induced by the heat pulse were suppressed by treating cells with inhibitors for sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) or inositol trisphosphate receptor (IP3R). Long (150 s) heat pulses also induced Ca2+ bursts after the onset of heating and immediately after re-cooling. Cells were more thermosensitive at physiological (37°C) than at room (25°C) temperature; however, at 37°C, cells were responsive at a higher temperature (ambient temperature+heat pulse). These results strongly suggest that the heat pulse-induced Ca2+ burst is caused by a transient imbalance in Ca2+ flow between SERCA and IP3R, and offer a potential new method for thermally controlling Ca2+-regulated cellular functions. PMID:27493505

  2. Light-induced changes of sensitivity in Limulus ventral photoreceptors

    PubMed Central

    1975-01-01

    The responses of Limulus ventral photoreceptors to brief test flashes and to longer adapting lights were measured under voltage clamp conditions. When the cell was dark adapted, there was a range of energy of the test flashes over which the peak amplitude of the responses (light-induced currents) was directly proportional to the flash energy. This was also true when test flashes were superposed on adapting stimuli but the proportionality constant (termed peak currently/photon) was reduced. The peak current/photon was attenuated more by brighter adapting stimuli than by less bright adapting stimuli. The peak current/photon is a measure of the sensitivity of the conductance- increase mechanism underlying the light response of the photo-receptor. The response elicited by an adapting stimulus had a large initial transient which declined to a smaller plateau. The peak current/photon decreased sharply during the declining phase of the transient and was relatively stable during the plateau. This indicates that the onset of light adaptation is delayed with respect to the onset of the response to the adapting stimulus. If the adaptational state just before the onset of each of a series of adapting stimuli was constant, the amplitude of the transient was a nearly linear function of intensity. When the total intensity was rapidly doubled (or halved) during a plateau response, the total current approximately doubled (or halved). We argue that the transition from transient to plateau, light-elicited changes of threshold, and the nonlinear function relating the plateau response to stimulus intensity all reflect changes of the responsiveness of the conductance-increase mechanism. PMID:1181378

  3. Proteomic identification of a novel hsp90-containing protein-mineral complex which can be induced in cells in response to massive calcium influx.

    PubMed

    Ho, Wen-Hsiung; Lee, Der-Yen; Chang, Geen-Dong

    2012-06-01

    Fetuin-A is known for limiting the expansion and formation of hydroxyapatite crystals from calcium phosphate aggregates in circulation by forming a soluble fetuin-mineral complex. This study was aimed to uncover potential proteins involved in the regulation of calcium phosphate precipitation within cells. We found that a novel protein-mineral complex (PMC) can be generated after introduction of calcium chloride and sodium phosphate into the porcine brain protein extract prepared in Tris-HCl buffer. Selectively enriched proteins in the pellet were confirmed by immunoblotting, including heat shock protein 90 (Hsp90), annexin A5, calreticulin, nucleolin, and other proteins. In addition, purified native Hsp90 directly bound both amorphous calcium phosphate and hydroxyapatite and underwent conformational changes and oligomerization in the presence of excess calcium and phosphate. The morphology of the PMC prepared from Hsp90, calcium, and phosphate was distinctly different from that of hydroxyapatite under transmission electron microscope observation. When cultured SiHa cells were treated with a calcium ionophore or damaged by scratch to induce the massive calcium influx, a complex was formed and observed at discrete sites near the plasma membrane as revealed by antibodies against Hsp90, annexin A5, calreticulin, nucleolin, and other proteins. This complex could also be probed in situ with fetuin-A suggesting the existence of calcium phosphate aggregates in this complex. Inhibition of the complex formation by bisphosphonates hindered cell recovery from A23187 assault. Our results show that following membrane damage amorphous calcium phosphate develops at sites near membrane rupture where saturated calcium phosphate concentration is achieved. As a result, Hsp90 and other proteins are recruited, and the cytosolic PMC is formed. Inhibition of the cytosolic PMC formation may in part contribute to the cellular toxicity and in vivo side effects of bisphosphonates

  4. Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters

    PubMed Central

    Shinnawi, Rami; Huber, Irit; Maizels, Leonid; Shaheen, Naim; Gepstein, Amira; Arbel, Gil; Tijsen, Anke J.; Gepstein, Lior

    2015-01-01

    Summary The advent of the human-induced pluripotent stem cell (hiPSC) technology has transformed biomedical research, providing new tools for human disease modeling, drug development, and regenerative medicine. To fulfill its unique potential in the cardiovascular field, efficient methods should be developed for high-resolution, large-scale, long-term, and serial functional cellular phenotyping of hiPSC-derived cardiomyocytes (hiPSC-CMs). To achieve this goal, we combined the hiPSC technology with genetically encoded voltage (ArcLight) and calcium (GCaMP5G) fluorescent indicators. Expression of ArcLight and GCaMP5G in hiPSC-CMs permitted to reliably follow changes in transmembrane potential and intracellular calcium levels, respectively. This allowed monitoring short- and long-term changes in action-potential and calcium-handling properties and the development of arrhythmias in response to several pharmaceutical agents and in hiPSC-CMs derived from patients with different inherited arrhythmogenic syndromes. Combining genetically encoded fluorescent reporters with hiPSC-CMs may bring a unique value to the study of inherited disorders, developmental biology, and drug development and testing. PMID:26372632

  5. Nitric Oxide-Induced Calcium Release: Activation of Type 1 Ryanodine Receptor, a Calcium Release Channel, through Non-Enzymatic Post-Translational Modification by Nitric Oxide

    PubMed Central

    Kakizawa, Sho

    2013-01-01

    Nitric oxide (NO) is a typical gaseous messenger involved in a wide range of biological processes. In our classical knowledge, effects of NO are largely achieved by activation of soluble guanylyl cyclase to form cyclic guanosine-3′, 5′-monophosphate. However, emerging evidences have suggested another signaling mechanism mediated by NO: “S-nitrosylation” of target proteins. S-nitrosylation is a covalent addition of an NO group to a cysteine thiol/sulfhydryl (RSH), and categorized into non-enzymatic post-translational modification (PTM) of proteins, contrasted to enzymatic PTM of proteins, such as phosphorylation mediated by various protein kinases. Very recently, we found novel intracellular calcium (Ca2+) mobilizing mechanism, NO-induced Ca2+ release (NICR) in cerebellar Purkinje cells. NICR is mediated by type 1 ryanodine receptor (RyR1), a Ca2+ release channel expressed in endoplasmic-reticular membrane. Furthermore, NICR is indicated to be dependent on S-nitrosylation of RyR1, and involved in synaptic plasticity in the cerebellum. In this review, molecular mechanisms and functional significance of NICR, as well as non-enzymatic PTM of proteins by gaseous signals, are described. PMID:24130553

  6. Modulation by dihydropyridine-type calcium channel antagonists of cytokine-inducible gene expression in vascular smooth muscle cells

    PubMed Central

    Cattaruzza, Marco; Wachter, Rolf; Wagner, Andreas H; Hecker, Markus

    2000-01-01

    The 1,4-dihydropyridine nifedipine is frequently used in the therapy of hypertension and heart failure. In addition, nifedipine has been shown to exert distinct anti-arteriosclerotic effects both in experimental animal models and in patients. In the present study we have investigated the hypothesis that the latter effect of this class of drugs is mediated by an interference with the expression of pro-arteriosclerotic gene products in the vessel wall. Moreover, to elucidate as to whether nifedipine acts via L-type calcium channel blockade, its effects were compared to those of another dihydropyridine, Bay w 9798, which has no calcium-antagonistic properties in concentrations up to 10 μM, as verified by superfusion bioassay. Both, nifedipine and Bay w 9798, in concentrations ranging from 0.01 to 1 μM, augmented the interleukin-1β/tumour necrosis factor-α (IL-1β/TNF-α)-induced expression of the inducible isoform of nitric oxide synthase (iNOS) in rat aortic cultured smooth muscle cells (raSMC) 2–3 fold, as judged by RT–PCR and Western blot analyses. In contrast, cytokine-induced mRNA expression of monocyte chemoattractant protein 1 (MCP-1) in these cells was down-regulated by more than 60% in the presence of both dihydropyridines, as judged by RT–PCR and Northern blot analyses. Nuclear run-on assays and incubation with the transcription-terminating drug actinomycin D revealed that both drugs acted at the level of mRNA synthesis rather than stability. These findings suggest that 1,4-dihydropyridines such as nifedipine affect the expression of both potentially pro-arteriosclerotic (MCP-1) and anti-arteriosclerotic (iNOS) gene products in the vessel wall at the level of transcription, and that these effects are unrelated to their calcium channel-blocking properties. PMID:10725264

  7. Effect of neurotrophin-3 precursor on glutamate-induced calcium homeostasis deregulation in rat cerebellum granule cells.

    PubMed

    Safina, Dina R; Surin, Alexander M; Pinelis, Vsevolod G; Kostrov, Sergey V

    2015-12-01

    Neurotrophin-3 (NT-3) belongs to the family of highly conserved dimeric growth factors that controls the differentiation and activity of various neuronal populations. Mammals contain both the mature (NT-3) and the precursor (pro-NT-3) forms of neurotrophin. Members of the neurotrophin family are involved in the regulation of calcium homeostasis in neurons; however, the role of NT-3 and pro-NT-3 in this process remains unclear. The current study explores the effects of NT-3 and pro-NT-3 on disturbed calcium homeostasis and decline of mitochondrial potential induced by a neurotoxic concentration of glutamate (Glu; 100 µM) in the primary culture of rat cerebellar granule cells. In this Glu excitotoxicity model, mature NT-3 had no effect on the induced changes in Ca²⁺ homeostasis. In contrast, pro-NT-3 decreased the period of delayed calcium deregulation (DCD) and concurrent strong mitochondrial depolarization. According to the amplitude of the increase in the intracellular free Ca²⁺ concentration ([Ca²⁺]i ) and Fura-2 fluorescence quenching by Mn²⁺ within the first 20 sec of exposure to Glu, pro-NT-3 had no effect on the initial rate of Ca²⁺ entry into neurons. During the lag period preceding DCD, the mean amplitude of [Ca²⁺]i rise was 1.2-fold greater in the presence of pro-NT-3 than in the presence of Glu alone (1.67 ±  0.07 and 1.39 ± 0.04, respectively, P < 0.05). The Glu-induced changes in Са²⁺ homeostasis in the presence of pro-NT-3 likely are due to the decreased rate of Са²⁺ removal from the cytosol during the DCD latency period. PMID:26346533

  8. Pleiotropic effects of the beta-adrenoceptor blocker carvedilol on calcium regulation during oxidative stress-induced apoptosis in cardiomyocytes.

    PubMed

    Wang, Ruijuan; Miura, Toshiro; Harada, Nozomu; Kametani, Ryosuke; Shibuya, Masaki; Fukagawa, Yasuhiro; Kawamura, Shuji; Ikeda, Yasuhiro; Hara, Masayuki; Matsuzaki, Masunori

    2006-07-01

    Carvedilol is a nonselective beta-adrenoceptor blocker with multiple pleiotropic actions. A recent clinical study suggested that carvedilol may be superior to other beta-adrenoceptor blockers in the treatment of heart failure. Despite numerous investigations, the underlying mechanisms of carvedilol on improving heart failure are yet to be fully established. The purpose of this study is to clarify the pleiotropic effect of carvedilol on cytosolic and mitochondrial calcium regulation during oxidative stress-induced apoptosis in cardiomyocytes. Carvedilol (10 microM), but not metoprolol (10 microM), reduced H2O2 (100 microM)-induced apoptosis in neonatal rat cardiomyocytes. During the process, changes in cytosolic calcium concentration ([Ca2+]i) and mitochondrial calcium concentration ([Ca2+]m) and mitochondrial membrane potential (DeltaPsim) were measured by fluorescent probes [Fluo-3/acetoxymethyl ester (AM), Rhod-2/AM, and tetramethylrhodamine ethyl ester, respectively] and imaged by laser confocal microscopy. The results showed that H2O2 caused [Ca2]m overload first, followed by [Ca2+]i overload, leading to DeltaPsim dissipation and the induction of apoptosis. Carvedilol (10 microM) significantly delayed these processes and reduced apoptosis. These effects were not observed with other beta-adrenoceptor blockers (metoprolol, atenolol, and propranolol) or with a combination of the alpha (phentolamine)- and the beta-adrenoceptor blocker. The antioxidant N-acetyl-L-cysteine (NAC, 5 mM) and the combination of NAC and propranolol (10 microM) showed an effect similar to that of carvedilol. Therefore, the effect of carvedilol on H2O2-induced changes in [Ca2+]m, [Ca2+]i, and DeltaPsi(m) is independent of alpha- and beta-adrenoceptors but is probably dependent on the antioxidant effect. PMID:16611853

  9. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  10. Epac2 contributes to PACAP-induced astrocytic differentiation through calcium ion influx in neural precursor cells

    PubMed Central

    Seo, Hyunhyo; Lee, Kyungmin

    2016-01-01

    Astrocytes play a critical role in normal brain functions and maintaining the brain microenvironment, and defects in astrocytogenesis during neurodevelopment could give rise to severe mental illness and psychiatric disorders. During neuro-embryogenesis, astrocytogenesis involves astrocytic differentiation of neural precursor cells (NPCs) induced by signals from ciliary neurotrophic factor (CNTF) or pituitary adenylate cyclase-activating peptide (PACAP). However, in contrast to the CNTF signaling pathway, the exact mechanism underlying astrocytic differentiation induced by PACAP is unknown. In the present study, we aimed to verify a signaling pathway specific to PACAP-induced astrocytogenesis, using exchange protein directly activated by cAMP2 (Epac2)-knockout mice. We found that PACAP could trigger astrocytic differentiation of NPCs via Epac2 activation and an increase in the intracellular calcium concentration via a calcium ion influx. Taken together, we concluded that astrocytogenesis stimulated by PACAP occurs through a novel signaling pathway independent from CNTF-JAK/STAT signaling, that is the well-known pathway of astrocytogenesis. [BMB Reports 2016; 49(2): 128-133] PMID:26645637

  11. Epac2 contributes to PACAP-induced astrocytic differentiation through calcium ion influx in neural precursor cells.

    PubMed

    Seo, Hyunhyo; Lee, Kyungmin

    2016-02-01

    Astrocytes play a critical role in normal brain functions and maintaining the brain microenvironment, and defects in astrocytogenesis during neurodevelopment could give rise to severe mental illness and psychiatric disorders. During neuro-embryogenesis, astrocytogenesis involves astrocytic differentiation of neural precursor cells (NPCs) induced by signals from ciliary neurotrophic factor (CNTF) or pituitary adenylate cyclase-activating peptide (PACAP). However, in contrast to the CNTF signaling pathway, the exact mechanism underlying astrocytic differentiation induced by PACAP is unknown. In the present study, we aimed to verify a signaling pathway specific to PACAP-induced astrocytogenesis, using exchange protein directly activated by cAMP2 (Epac2)-knockout mice. We found that PACAP could trigger astrocytic differentiation of NPCs via Epac2 activation and an increase in the intracellular calcium concentration via a calcium ion influx. Taken together, we concluded that astrocytogenesis stimulated by PACAP occurs through a novel signaling pathway independent from CNTF-JAK/STAT signaling, that is the well-known pathway of astrocytogenesis. [BMB Reports 2016; 49(2): 128-133]. PMID:26645637

  12. Avermectin induces P-glycoprotein expression in S2 cells via the calcium/calmodulin/NF-κB pathway.

    PubMed

    Luo, Liang; Sun, Yin-Jian; Yang, Lin; Huang, Shile; Wu, Yi-Jun

    2013-04-25

    Avermectin (AVM) is a macrocyclic lactone agent widely used as a nematicide, acaricide and insecticide in veterinary medicine and plant protection. P-glycoprotein (P-gp) is an ATP-dependent drug efflux pump for xenobiotic compounds, and is involved in multidrug resistance. To understand the development of AVM resistance in invertebrates, we investigated the mechanisms by which AVM affected P-gp expression in Drosophila S2 cells. We found that AVM induced upregulation of P-gp protein expression, increased P-gp ATPase activity and enhanced cellular efflux of the P-gp substrate rhodamine 123 from cells. Furthermore, we observed that AVM-induced expression of P-gp was due to elevation of intracellular calcium concentration ([Ca(2+)](i)). This occurred both directly, by activating calcium ion channels, and indirectly, by activating chloride ion channels. These results are supported by our observations that verapamil, a Ca(2+) channel blocker, and niflumic acid, a chloride channel antagonist, significantly attenuated AVM-induced [Ca(2+)](i) elevation, thereby reducing P-gp expression. Inhibition of P-gp with anti-P-gp antibody or cyclosporine A (a P-gp inhibitor) reduced the AVM-induced elevation of [Ca(2+)](i), implying that P-gp and [Ca(2+)](i) regulate each other. Finally, we found that trifluoperazine, a calmodulin inhibitor, and pyrrolidine dithiocarbamic acid, an NF-κB inhibitor, attenuated the AVM-induced expression of P-gp, suggesting that AVM induces P-gp protein expression via the calmodulin/Relish (NF-κB) signaling pathway. PMID:23523950

  13. Amino acid substitutions in the FXYD motif enhance phospholemman-induced modulation of cardiac L-type calcium channels.

    PubMed

    Guo, Kai; Wang, Xianming; Gao, Guofeng; Huang, Congxin; Elmslie, Keith S; Peterson, Blaise Z

    2010-11-01

    We have found that phospholemman (PLM) associates with and modulates the gating of cardiac L-type calcium channels (Wang et al., Biophys J 98: 1149-1159, 2010). The short 17 amino acid extracellular NH(2)-terminal domain of PLM contains a highly conserved PFTYD sequence that defines it as a member of the FXYD family of ion transport regulators. Although we have learned a great deal about PLM-dependent changes in calcium channel gating, little is known regarding the molecular mechanisms underlying the observed changes. Therefore, we investigated the role of the PFTYD segment in the modulation of cardiac calcium channels by individually replacing Pro-8, Phe-9, Thr-10, Tyr-11, and Asp-12 with alanine (P8A, F9A, T10A, Y11A, D12A). In addition, Asp-12 was changed to lysine (D12K) and cysteine (D12C). As expected, wild-type PLM significantly slows channel activation and deactivation and enhances voltage-dependent inactivation (VDI). We were surprised to find that amino acid substitutions at Thr-10 and Asp-12 significantly enhanced the ability of PLM to modulate Ca(V)1.2 gating. T10A exhibited a twofold enhancement of PLM-induced slowing of activation, whereas D12K and D12C dramatically enhanced PLM-induced increase of VDI. The PLM-induced slowing of channel closing was abrogated by D12A and D12C, whereas D12K and T10A failed to impact this effect. These studies demonstrate that the PFXYD motif is not necessary for the association of PLM with Ca(V)1.2. Instead, since altering the chemical and/or physical properties of the PFXYD segment alters the relative magnitudes of opposing PLM-induced effects on Ca(V)1.2 channel gating, PLM appears to play an important role in fine tuning the gating kinetics of cardiac calcium channels and likely plays an important role in shaping the cardiac action potential and regulating Ca(2+) dynamics in the heart. PMID:20720179

  14. Streptococcus pneumoniae Infection of Host Epithelial Cells via Polymeric Immunoglobulin Receptor Transiently Induces Calcium Release from Intracellular Stores*

    PubMed Central

    Asmat, Tauseef M.; Agarwal, Vaibhav; Räth, Susann; Hildebrandt, Jan-Peter; Hammerschmidt, Sven

    2011-01-01

    The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca2+]i) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca2+]i from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca2+]i was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca2+]i. In addition, we demonstrated the effect of [Ca2+]i on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca2+-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ATPase, which increases [Ca2+]i in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca2+]i from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial internalization by host epithelial

  15. Effects of angiotensin II blockade on inflammation-induced alterations of pharmacokinetics and pharmacodynamics of calcium channel blockers

    PubMed Central

    Hanafy, S; Dagenais, N J; Dryden, W F; Jamali, F

    2007-01-01

    Background and purpose: Inflammation elevates plasma verapamil concentrations but diminishes pharmacological response. Angiotensin II is a pro-inflammatory mediator. We examined the effect of angiotensin II receptor blockade on the pharmacokinetics and pharmacodynamics of verapamil, as well as the binding properties and amounts of its target protein in calcium channels, in a rat model of inflammation. Experimental approach: We used 4 groups of male Sprague–Dawley rats (220–280 g): inflamed-placebo, inflamed-treated, control-placebo and control-treated. Inflammation as pre-adjuvant arthritis was induced by injecting Mycobacterium butyricum on day 0. From day 6 to 12, 30 mg kg−1 oral valsartan or placebo was administered twice daily. On day 12, a single oral dose of 25 mg kg−1 verapamil was administered and prolongation of the PR interval measured and plasma samples collected for verapamil and nor-verapamil analysis. The amounts of the target protein Cav1.2 subunit of L-type calcium channels in heart was measured by Western blotting and ligand binding with 3H-nitrendipine. Key results: Inflammation reduced effects of verapamil, although plasma drug concentrations were increased. This was associated with a reduction in ligand binding capacity and amount of the calcium channel target protein in heart extracts. Valsartan significantly reversed the down-regulating effect of inflammation on verapamil's effects on the PR interval, and the lower level of protein binding and the decreased target protein. Conclusions and implications: Reduced responses to calcium channel blockers in inflammatory conditions appeared to be due to a reduced amount of target protein that was reversed by the angiotensin II antagonist, valsartan. PMID:17965735

  16. POLYCHLORINATED BIPHENYL (AROCLOR 1254) INDUCED NEPHROTOXICITY, CHANGES IN FEMUR MORPHOMETRY AND CALCIUM METABOLISM

    EPA Science Inventory

    Experiments were performed to investigate the effects of polychlorinated biphenyl (PCB) on calcium metabolism, femur morphometry, and nephrotoxicity. ischer 344 rats Here dosed daily 1G for 5, 10 or 15 weeks with 0, 0.1, 1, 10 or 25 mg PCB/kg body weight. fter 5, 10 and 15 weeks,...

  17. Mechanisms of pyrethroid insecticide-induced stimulation of calcium influx in neocortical neurons

    EPA Science Inventory

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated Ca2+ calcium chann...

  18. Ozone-Induced Cell Death Mediated with Oxidative and Calcium Signaling Pathways in Tobacco Bel-W3 and Bel-B Cell Suspension Cultures

    PubMed Central

    Kadono, Takashi; Yamaguchi, Yuka; Furuichi, Takuya; Hirono, Manabu; Garrec, Jean Pierre

    2006-01-01

    Ozone (O3)-induced cell death in two suspension-cultured cell lines of tobacco (Nicotiana tabacum L.) derived from Bel-W3 (hyper-sensitive to O3) and Bel-B (highly tolerant to O3) varieties were studied. By exposing the newly prepared cell lines to the pulse of ozonized air, we could reproduce the conditions demonstrating the difference in O3 sensitivity as observed in their original plants, depending on the exposure time. Since O3-induced acute cell death was observed in the dark, the requirement for photochemical reactions could be eliminated. Addition of several ROS scavengers and chelators inhibited the cell death induced by O3, indicating that singlet oxygen (1O2), hydrogen peroxide (H2O2), hydroxyl radical and redox-active metals such as Fe2+ play central roles in O3-induced acute damages to the cells. As expected, we observed the generation of 1O2 and H2O2 in the O3-treated cells using chemiluminescent probes. On the other hand, an NADPH oxidase inhibitor, superoxide dismutase (SOD), and some SOD mimics showed no inhibitory effect. Thiols added as antioxidants unexpectedly behaved as prooxidants drastically enhancing the O3-induced cell death. It is noteworthy that some ROS scavengers effectively rescued the cells from dying even treated after the pulse of O3 exposure, confirming the post-ozone progress of ROS-dependent cell death mechanism. Since one of the key differences between Bel-B and Bel-W3 was suggested to be the capacity for ROS detoxification by catalase, the endogenous catalase activities were compared in vivo in two cell lines. As expected, catalase activity in Bel-B cells was ca. 7-fold greater than that in Bel-W3 cells. Interestingly, Ca2+ chelators added prior to (not after) the pulse of O3 effectively inhibited the induction of cell death. In addition, increases in cytosolic Ca2+ concentration sensitive to Ca2+ chelators, ion channel blockers, and ROS scavengers were observed in the transgenic Bel-W3 cells expressing aequorin, suggesting the

  19. Two-photon calcium imaging from motion-sensitive neurons in head-fixed Drosophila during optomotor walking behavior

    PubMed Central

    Seelig, Johannes D.; Chiappe, M. Eugenia; Lott, Gus K.; Dutta, Anirban; Osborne, Jason E.; Reiser, Michael B.; Jayaraman, Vivek

    2010-01-01

    Drosophila melanogster is a model organism rich in genetic tools to manipulate and identify neural circuits involved in specific behaviors. Here we present a novel technique for two-photon calcium imaging in the central brain of head-fixed Drosophila walking on an air-supported ball. The ball’s motion is tracked at high resolution and can be treated as a proxy for the fly’s own movements. We used the genetically encoded calcium sensor, GCaMP3.0, to record from important elements of the motion-processing pathway, the horizontal-system (HS) lobula plate tangential cells (LPTCs) in the fly optic lobe. We presented motion stimuli to the tethered fly and found that calcium transients in HS-neurons correlated with robust optomotor behavior during walking. Our technique allows an entirely new set of questions to be addressed by monitoring behavior and physiology in identified neurons in a powerful genetic model organism with an extensive repertoire of walking behaviors. PMID:20526346

  20. Rapid and Persistent Suppression of Feeding Behavior Induced by Sensitization Training in "Aplysia"

    ERIC Educational Resources Information Center

    Acheampong, Ama; Kelly, Kathleen; Shields-Johnson, Maria; Hajovsky, Julie; Wainwright, Marcy; Mozzachiodi, Riccardo

    2012-01-01

    In "Aplysia," noxious stimuli induce sensitization of defensive responses. However, it remains largely unknown whether such stimuli also alter nondefensive behaviors. In this study, we examined the effects of noxious stimuli on feeding. Strong electric shocks, capable of inducing sensitization, also led to the suppression of feeding. The use of…

  1. Ontogeny of methamphetamine-induced and cocaine-induced one-trial behavioral sensitization in preweanling and adolescent rats.

    PubMed

    Kozanian, Olga O; Gutierrez, Arnold; Mohd-Yusof, Alena; McDougall, Sanders A

    2012-08-01

    The ontogenetic profile of psychostimulant-induced one-trial behavioral sensitization has not been determined. The purpose of this study was to systematically assess the ontogeny of methamphetamine-induced and cocaine-induced behavioral sensitization across the preweanling and adolescent periods. To this end, rats were injected with methamphetamine, cocaine, or saline in either an activity chamber or home cage during the preweanling [postnatal day (PD) 12, PD 16, or PD 20], preadolescent (PD 24), or adolescent (PD 34) periods. One day later, rats were challenged with the same psychostimulant and locomotion was measured in an activity chamber. The results showed that methamphetamine produced one-trial locomotor sensitization on PD 13 and PD 17; whereas, cocaine-induced behavioral sensitization was only evident on PD 21. The sensitized responding of preweanling rats was not influenced by environmental context. Interestingly, preadolescent and adolescent rats did not exhibit locomotor sensitization. The latter result is generally consistent with past studies showing that rats from the middle and late adolescent periods do not exhibit cocaine-induced one-trial behavioral sensitization. The present results show that methamphetamine, as well as cocaine, can produce one-trial context-independent behavioral sensitization during early ontogeny, but sensitized responding is only apparent within a narrow developmental window. PMID:22732208

  2. Caloric restriction improves diabetes-induced cognitive deficits by attenuating neurogranin-associated calcium signaling in high-fat diet-fed mice.

    PubMed

    Kim, Hwajin; Kang, Heeyoung; Heo, Rok Won; Jeon, Byeong Tak; Yi, Chin-Ok; Shin, Hyun Joo; Kim, Jeonghyun; Jeong, Seon-Yong; Kwak, Woori; Kim, Won-Ho; Kang, Sang Soo; Roh, Gu Seob

    2016-06-01

    Diabetes-induced cognitive decline has been recognized in human patients of type 2 diabetes mellitus and mouse model of obesity, but the underlying mechanisms or therapeutic targets are not clearly identified. We investigated the effect of caloric restriction on diabetes-induced memory deficits and searched a molecular mechanism of caloric restriction-mediated neuroprotection. C57BL/6 mice were fed a high-fat diet for 40 weeks and RNA-seq analysis was performed in the hippocampus of high-fat diet-fed mice. To investigate caloric restriction effect on differential expression of genes, mice were fed high-fat diet for 20 weeks and continued on high-fat diet or subjected to caloric restriction (2 g/day) for 12 weeks. High-fat diet-fed mice exhibited insulin resistance, glial activation, blood-brain barrier leakage, and memory deficits, in that we identified neurogranin, a down-regulated gene in high-fat diet-fed mice using RNA-seq analysis; neurogranin regulates Ca(2+)/calmodulin-dependent synaptic function. Caloric restriction increased insulin sensitivity, reduced high-fat diet-induced blood-brain barrier leakage and glial activation, and improved memory deficit. Furthermore, caloric restriction reversed high-fat diet-induced expression of neurogranin and the activation of Ca(2+)/calmodulin-dependent protein kinase II and calpain as well as the downstream effectors. Our results suggest that neurogranin is an important factor of high-fat diet-induced memory deficits on which caloric restriction has a therapeutic effect by regulating neurogranin-associated calcium signaling. PMID:26661177

  3. Melatonin treatment during the incubation of sensitization attenuates methamphetamine-induced locomotor sensitization and MeCP2 expression.

    PubMed

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao

    2016-02-01

    Behavior sensitization is a long-lasting enhancement of locomotor activity after exposure to psychostimulants. Incubation of sensitization is a phenomenon of remarkable augmentation of locomotor response after withdrawal and reflects certain aspects of compulsive drug craving. However, the mechanisms underlying these phenomena remain elusive. Here we pay special attention to the incubation of sensitization and suppose that the intervention of this procedure will finally decrease the expression of sensitization. Melatonin is an endogenous hormone secreted mainly by the pineal gland. It is effective in treating sleep disorder, which turns out to be one of the major withdrawal symptoms of methamphetamine (MA) addiction. Furthermore, melatonin can also protect neuronal cells against MA-induced neurotoxicity. In the present experiment, we treated mice with low dose (10mg/kg) of melatonin for 14 consecutive days during the incubation of sensitization. We found that melatonin significantly attenuated the expression of sensitization. In contrast, the vehicle treated mice showed prominent enhancement of locomotor activity after incubation. MeCP2 expression was also elevated in the vehicle treated mice and melatonin attenuated its expression. Surprisingly, correlation analysis suggested significant correlation between MeCP2 expression in the nucleus accumbens (NAc) and locomotion in both saline control and vehicle treated mice, but not in melatonin treated ones. MA also induced MeCP2 over-expression in PC12 cells. However, melatonin failed to reduce MeCP2 expression in vitro. Our results suggest that melatonin treatment during the incubation of sensitization attenuates MA-induced expression of sensitization and decreases MeCP2 expression in vivo. PMID:26416230

  4. Calcium inhibits promotion by hot dog of 1,2-dimethylhydrazine-induced mucin-depleted foci in rat colon.

    PubMed

    Santarelli, Raphaelle L; Naud, Nathalie; Taché, Sylviane; Guéraud, Françoise; Vendeuvre, Jean-Luc; Zhou, Lin; Anwar, Muhammad M; Mirvish, Sidney S; Corpet, Denis E; Pierre, Fabrice H F

    2013-12-01

    Epidemiology suggests that processed meat is associated with colorectal cancer risk, but few experimental studies support this association. We have shown that a model of cured meat made in a pilot workshop promotes preneoplastic lesions, mucin-depleted foci (MDF) in the colon of rats. This study had two aims: to check if real store-bought processed meats also promote MDF, and to test if calcium carbonate, which suppresses heme-induced promotion, can suppress promotion by processed meat. A 14-day study was done to test the effect of nine purchased cured meats on fecal and urinary biomarkers associated with heme-induced carcinogenesis promotion. Fecal water from rats given hot dog or fermented raw dry sausage was particularly cytotoxic. These two cured meats were thus given to rats pretreated with 1,2-dimethylhydrazine, to evaluate their effect on colorectal carcinogenesis. After a 100-days feeding period, fecal apparent total N-nitroso compounds (ATNC) were assayed and colons were scored for MDF. Hot dog diet increased fecal ATNC and the number of MDF per colon compared with the no-meat control diet (3.0 ± 1.7 vs. 1.2 ± 1.4, p < 0.05). In a third study, addition of calcium carbonate (150 µmol/g) to the hot dog diet decreased the number of MDF/colon and fecal ATNC compared with the hot dog diet without calcium carbonate (1.2 ± 1.1 vs. 2.3 ± 1.4, respectively, p < 0.05). This is the first experimental evidence that a widely consumed processed meat promotes colon carcinogenesis in rats. It also shows that dietary prevention of this detrimental effect is possible. PMID:23712585

  5. Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation.

    PubMed

    Yan, Jin; Leal, Karina; Magupalli, Venkat G; Nanou, Evanthia; Martinez, Gilbert Q; Scheuer, Todd; Catterall, William A

    2014-11-01

    Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity. PMID:25447945

  6. Curcumin induces crosstalk between autophagy and apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and mitochondrial events

    PubMed Central

    Moustapha, A; Pérétout, PA; Rainey, NE; Sureau, F; Geze, M; Petit, J-M; Dewailly, E; Slomianny, C; Petit, PX

    2015-01-01

    Curcumin, a major active component of turmeric (Curcuma longa, L.), has anticancer effects. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying these effects is still unclear. Here, we investigated the mechanisms leading to apoptosis in curcumin-treated cells. Curcumin induced endoplasmic reticulum stress causing calcium release, with a destabilization of the mitochondrial compartment resulting in apoptosis. These events were also associated with lysosomal membrane permeabilization and of caspase-8 activation, mediated by cathepsins and calpains, leading to Bid cleavage. Truncated tBid disrupts mitochondrial homeostasis and enhance apoptosis. We followed the induction of autophagy, marked by the formation of autophagosomes, by staining with acridine orange in cells exposed curcumin. At this concentration, only the early events of apoptosis (initial mitochondrial destabilization with any other manifestations) were detectable. Western blotting demonstrated the conversion of LC3-I to LC3-II (light chain 3), a marker of active autophagosome formation. We also found that the production of reactive oxygen species and formation of autophagosomes following curcumin treatment was almost completely blocked by N-acetylcystein, the mitochondrial specific antioxidants MitoQ10 and SKQ1, the calcium chelators, EGTA-AM or BAPTA-AM, and the mitochondrial calcium uniporter inhibitor, ruthenium red. Curcumin-induced autophagy failed to rescue all cells and most cells underwent type II cell death following the initial autophagic processes. All together, these data imply a fail-secure mechanism regulated by autophagy in the action of curcumin, suggesting a therapeutic potential for curcumin. Offering a novel and effective strategy for the treatment of malignant cells. PMID:27551451

  7. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling.

    PubMed

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I; Nienhaus, G Ulrich; Gierschik, Peter

    2015-07-10

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca(2+). The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca(2+) and regulation of Ca(2+)-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca(2+) release from intracellular stores; (iii) Ca(2+) entry from the extracellular compartment; and (iv) nuclear translocation of the Ca(2+)-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca(2+) signaling. PMID:25903139

  8. Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death.

    PubMed

    Knight, Martin M; Roberts, Susan R; Lee, David A; Bader, Dan L

    2003-04-01

    Isolated chondrocytes stained with fluo 4-AM and visualized using standard confocal microscopy techniques exhibited Ca2- transients and oscillations. Decreasing the power of the laser light decreased the percent-age of cells exhibiting these Ca2+ signals. Treatment with the antioxidant ascorbate reduced the Ca2+ response, suggesting that it was mediated by light-induced release of reactive oxygen species (ROS). Cell viability 24 h after the 1-h confocal imaging period was approximately 90% for cells that were neither fluorescently stained nor subjected to laser excitation. By contrast, fluorescently stained cells imaged for 1 h exhibited greatly reduced viability. Treatment with ascorbate reduced the level of cell death, suggesting that the effect was mediated by release of exogenous ROS associated with the interaction of light and the fluorochrome. Ca2+ oscillations were not always associated with cell death, suggesting that separate light-sensitive pathways mediate the two processes. Light-activated Ca2+ signaling may trigger alterations in numerous cell processes and thereby represent an important and hitherto overlooked artifact in fluorescent microscopy of viable cells. PMID:12661552

  9. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  10. Biopolymer-induced calcium phosphate scaling in membrane-based water treatment systems: Langmuir model films studies.

    PubMed

    Dahdal, Yara N; Oren, Yoram; Schwahn, Dietmar; Pipich, Vitaliy; Herzberg, Moshe; Ying, Wang; Kasher, Roni; Rapaport, Hanna

    2016-07-01

    Biofouling and scaling on reverse osmosis (RO) or nanofiltration (NF) membranes during desalination of secondary and tertiary effluents pose an obstacle that limits the reuse of wastewater. In this study we explored the mineral scaling induced by biopolymers originated from bacterial biofilms: bovine serum albumin (BSA), fibrinogen, lysozyme and alginic acid, as well as an extracts of extracellular polymeric substances (EPS) from bio-fouled RO membranes from wastewater treatment facility. Mineralization studies were performed on Langmuir films of the biopolymers deposited at the interface of a solution simulating RO desalination of secondary-treated wastewater effluents. All studied biopolymers and EPS induced heterogeneous mineralization of mainly calcium phosphate. Using IR spectroscopy coupled with systematic quantitative analysis of the surface pressure versus molecular-area isotherms, we determined the mineralization tendencies of the biopolymers to be in the order of: fibrinogen>lysozyme>BSA>alginic acid. The biopolymers and EPS studied here were found to be accelerators of calcium-phosphate mineralization. This study demonstrates the utilization of Langmuir surface-pressure area isotherms and a model solution in quantitatively assessing the mineralization tendencies of various molecular components of EPS in context of membrane-based water treatment systems. PMID:27015648

  11. A new system for profiling drug-induced calcium signal perturbation in human embryonic stem cell-derived cardiomyocytes.

    PubMed

    Lewis, Kimberley J; Silvester, Nicole C; Barberini-Jammaers, Steven; Mason, Sammy A; Marsh, Sarah A; Lipka, Magdalena; George, Christopher H

    2015-03-01

    The emergence of human stem cell-derived cardiomyocyte (hSCCM)-based assays in the cardiovascular (CV) drug discovery sphere requires the development of improved systems for interrogating the rich information that these cell models have the potential to yield. We developed a new analytical framework termed SALVO (synchronization, amplitude, length, and variability of oscillation) to profile the amplitude and temporal patterning of intra- and intercellular calcium signals in hSCCM. SALVO quantified drug-induced perturbations in the calcium signaling "fingerprint" in spontaneously contractile hSCCM. Multiparametric SALVO outputs were integrated into a single index of in vitro cytotoxicity that confirmed the rank order of perturbation as astemizole > thioridazine > cisapride > flecainide > valdecoxib > sotalol > nadolol ≈ control. This rank order of drug-induced Ca(2+) signal disruption is in close agreement with the known arrhythmogenic liabilities of these compounds in humans. Validation of the system using a second set of compounds and hierarchical cluster analysis demonstrated the utility of SALVO to discriminate drugs based on their mechanisms of action. We discuss the utility of this new mechanistically agnostic system for the evaluation of in vitro drug cytotoxicity in hSCCM syncytia and the potential placement of SALVO in the early stage drug screening framework. PMID:25367900

  12. A New System for Profiling Drug-Induced Calcium Signal Perturbation in Human Embryonic Stem Cell–Derived Cardiomyocytes

    PubMed Central

    Lewis, Kimberley J.; Silvester, Nicole C.; Barberini-Jammaers, Steven; Mason, Sammy A.; Marsh, Sarah A.; Lipka, Magdalena

    2015-01-01

    The emergence of human stem cell–derived cardiomyocyte (hSCCM)–based assays in the cardiovascular (CV) drug discovery sphere requires the development of improved systems for interrogating the rich information that these cell models have the potential to yield. We developed a new analytical framework termed SALVO (synchronization, amplitude, length, and variability of oscillation) to profile the amplitude and temporal patterning of intra- and intercellular calcium signals in hSCCM. SALVO quantified drug-induced perturbations in the calcium signaling “fingerprint” in spontaneously contractile hSCCM. Multiparametric SALVO outputs were integrated into a single index of in vitro cytotoxicity that confirmed the rank order of perturbation as astemizole > thioridazine > cisapride > flecainide > valdecoxib > sotalol > nadolol ≈ control. This rank order of drug-induced Ca2+ signal disruption is in close agreement with the known arrhythmogenic liabilities of these compounds in humans. Validation of the system using a second set of compounds and hierarchical cluster analysis demonstrated the utility of SALVO to discriminate drugs based on their mechanisms of action. We discuss the utility of this new mechanistically agnostic system for the evaluation of in vitro drug cytotoxicity in hSCCM syncytia and the potential placement of SALVO in the early stage drug screening framework. PMID:25367900

  13. Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes.

    PubMed

    Granqvist, Emma; Sun, Jongho; Op den Camp, Rik; Pujic, Petar; Hill, Lionel; Normand, Philippe; Morris, Richard J; Downie, J Allan; Geurts, Rene; Oldroyd, Giles E D

    2015-08-01

    Plants that form root-nodule symbioses are within a monophyletic 'nitrogen-fixing' clade and associated signalling processes are shared with the arbuscular mycorrhizal symbiosis. Central to symbiotic signalling are nuclear-associated oscillations in calcium ions (Ca(2+) ), occurring in the root hairs of several legume species in response to the rhizobial Nod factor signal. In this study we expanded the species analysed for activation of Ca(2+) oscillations, including nonleguminous species within the nitrogen-fixing clade. We showed that Ca(2+) oscillations are a common feature of legumes in their association with rhizobia, while Cercis, a non-nodulating legume, does not show Ca(2+) oscillations in response to Nod factors from Sinorhizobium fredii NGR234. Parasponia andersonii, a nonlegume that can associate with rhizobia, showed Nod factor-induced calcium oscillations to S. fredii NGR234 Nod factors, but its non-nodulating sister species, Trema tomentosa, did not. Also within the nitrogen-fixing clade are actinorhizal species that associate with Frankia bacteria and we showed that Alnus glutinosa induces Ca(2+) oscillations in root hairs in response to exudates from Frankia alni, but not to S. fredii NGR234 Nod factors. We conclude that the ability to mount Ca(2+) oscillations in response to symbiotic bacteria is a common feature of nodulating species within the nitrogen-fixing clade. PMID:26010117

  14. Proteomic Study of Microsomal Proteins Reveals a Key Role for Arabidopsis Annexin 1 in Mediating Heat Stress-Induced Increase in Intracellular Calcium Levels*

    PubMed Central

    Wang, Xu; Ma, Xiaolong; Wang, Hui; Li, Bingjie; Clark, Greg; Guo, Yi; Roux, Stan; Sun, Daye; Tang, Wenqiang

    2015-01-01

    To understand the early signaling steps in the response of plant cells to increased environmental temperature, 2-D difference gel electrophoresis was used to study the proteins in microsomes of Arabidopsis seedlings that are regulated early during heat stress. Using mass spectrometry, 19 microsomal proteins that showed an altered expression level within 5 min after heat treatment were identified. Among these proteins, annexin 1 (AtANN1) was one of those up-regulated rapidly after heat-shock treatment. Functional studies show loss-of-function mutants for AtANN1 and its close homolog AtANN2 were more sensitive to heat-shock treatment, whereas plants overexpressing AtANN1 showed more resistance to this treatment. Correspondingly, the heat-induced expression of heat-shock proteins and heat-shock factors is inhibited in ann1/ann2 double mutant, and the heat-activated increase in cytoplasmic calcium concentration ([Ca2+]cyt) is greatly impaired in the ann1 mutant and almost undetectable in ann1/ann2 double mutant. Taken together these results suggest that AtANN1 is important in regulating the heat-induced increase in [Ca2+]cyt and in the response of Arabidopsis seedlings to heat stress. PMID:25587034

  15. Pressure Induced Metal-Nonmetal and FCC-BCC Transitions in Calcium*

    NASA Astrophysics Data System (ADS)

    Wang, G. M.; Blaisten-Barojas, E.; Papaconstantopoulos, D. A.

    2001-04-01

    The band structure of fcc and bcc calcium at different densities is obtained with the Augmented Plane Wave (APW) method using a soft-core approximation and Gaspar-Kohn-Sham potential. A tight-binding(TB) model is then built successfully to reproduce the first principles band structure and density of states. Properties examined within TB include bulk modulus, elastic constants, metal-nonmetal transition and fcc to bcc structural transition under pressure. Results are in an excellent agreement with experimental observations. Several dynamical properties of calcium under pressure are further explored with TB molecular dynamics at finite temperature. *Work supported in part by the Office of Naval Research grant N00014-98-1-0832

  16. Glutamate-induced glutamate release: A proposed mechanism for calcium bursting in astrocytes

    NASA Astrophysics Data System (ADS)

    Larter, Raima; Craig, Melissa Glendening

    2005-12-01

    Here we present a new model for the generation of complex calcium-bursting patterns in astrocytes, a type of brain cell recently implicated in a variety of neural functions including memory formation. The model involves two positive feedback processes, in which the key feedback species are calcium ion and glutamate. The latter is the most abundant excitatory neurotransmitter in the brain and has been shown to be involved in bidirectional communication between astrocytes and nearby neurons. The glutamate feedback process considered here is shown to be critical for the generation of complex bursting oscillations in the astrocytes and to, perhaps, code for information which may be passed from neuron to neuron via the astrocyte. These processes may be involved in memory storage and formation as well as in mechanisms which lead to dynamical diseases such as epilepsy.

  17. Nonlinear Time Series Analysis of Nodulation Factor Induced Calcium Oscillations: Evidence for Deterministic Chaos?

    PubMed Central

    Hazledine, Saul; Sun, Jongho; Wysham, Derin; Downie, J. Allan; Oldroyd, Giles E. D.; Morris, Richard J.

    2009-01-01

    Legume plants form beneficial symbiotic interactions with nitrogen fixing bacteria (called rhizobia), with the rhizobia being accommodated in unique structures on the roots of the host plant. The legume/rhizobial symbiosis is responsible for a significant proportion of the global biologically available nitrogen. The initiation of this symbiosis is governed by a characteristic calcium oscillation within the plant root hair cells and this signal is activated by the rhizobia. Recent analyses on calcium time series data have suggested that stochastic effects have a large role to play in defining the nature of the oscillations. The use of multiple nonlinear time series techniques, however, suggests an alternative interpretation, namely deterministic chaos. We provide an extensive, nonlinear time series analysis on the nature of this calcium oscillation response. We build up evidence through a series of techniques that test for determinism, quantify linear and nonlinear components, and measure the local divergence of the system. Chaos is common in nature and it seems plausible that properties of chaotic dynamics might be exploited by biological systems to control processes within the cell. Systems possessing chaotic control mechanisms are more robust in the sense that the enhanced flexibility allows more rapid response to environmental changes with less energetic costs. The desired behaviour could be most efficiently targeted in this manner, supporting some intriguing speculations about nonlinear mechanisms in biological signaling. PMID:19675679

  18. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in Rats

    PubMed Central

    Peng, Qian-Yi; Zou, Yu; Zhang, Li-Na; Ai, Mei-Lin; Liu, Wei; Ai, Yu-Hang

    2016-01-01

    Background: Acute lung injury (ALI) is a common complication of sepsis that is associated with high mortality. Intracellular Ca2+ overload plays an important role in the pathophysiology of sepsis-induced ALI, and cyclic adenosine diphosphate ribose (cADPR) is an important regulator of intracellular Ca2+ mobilization. The cluster of differentiation 38 (CD38)/cADPR pathway has been found to play roles in multiple inflammatory processes but its role in sepsis-induced ALI is still unknown. This study aimed to investigate whether the CD38/cADPR signaling pathway is activated in sepsis-induced ALI and whether blocking cADPR-mediated calcium overload attenuates ALI. Methods: Septic rat models were established by cecal ligation and puncture (CLP). Rats were divided into the sham group, the CLP group, and the CLP+ 8-bromo-cyclic adenosine diphosphate ribose (8-Br-cADPR) group. Nicotinamide adenine dinucleotide (NAD+), cADPR, CD38, and intracellular Ca2+ levels in the lung tissues were measured at 6, 12, 24, and 48 h after CLP surgery. Lung histologic injury, tumor necrosis factor (TNF)-α, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities were measured. Results: NAD+, cADPR, CD38, and intracellular Ca2+ levels in the lungs of septic rats increased significantly at 24 h after CLP surgery. Treatment with 8-Br-cADPR, a specific inhibitor of cADPR, significantly reduced intracellular Ca2+ levels (P = 0.007), attenuated lung histological injury (P = 0.023), reduced TNF-α and MDA levels (P < 0.001 and P = 0.002, respectively) and recovered SOD activity (P = 0.031) in the lungs of septic rats. Conclusions: The CD38/cADPR pathway is activated in the lungs of septic rats, and blocking cADPR-mediated calcium overload with 8-Br-cADPR protects against sepsis-induced ALI. PMID:27411462

  19. A9C sensitive Cl− - accumulation in A. thaliana root cells during salt stress is controlled by internal and external calcium

    PubMed Central

    Saleh, Livia; Plieth, Christoph

    2013-01-01

    The involvement of chloride in salt stress symptoms and salt tolerance mechanisms in plants has been less investigated in the past. Therefore, we studied the salt-induced chloride influx in Arabidopsis expressing the GFP-based anion indicator Clomeleon. High salt concentrations induce two phases of chloride influx. The fast kinetic phase is likely caused by membrane depolarization, and is assumed to be mediated by channels. This is followed by a slower "saturation" phase, where chloride is accumulated in the cytoplasm. Both phases of chloride uptake are dependent on the presence of external calcium. In general: with high [Ca2+] less chloride is accumulated in the cytoplasm. Surprisingly, also the internal calcium availability has an impact on chloride transport. A complete block of the second phase of chloride influx is achieved by the anion channel blocker A9C and trivalent cations (La3+, Gd3+, and Al3+). Other channel blockers and diuretics were found to inhibit the process partially. The results suggest that several transporter species are involved here, including electroneutral cation-chloride-cotransporters, and a part of chloride possibly enters the cells through cation channels after salt application. PMID:23603974

  20. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    SciTech Connect

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-10-01

    We had earlier shown that exposure to arsenic (0.50 {mu}M) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca{sup 2+}) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca{sup 2+} homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca{sup 2+} levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: > Altered Ca{sup 2+} homeostasis leads to arsenic-induced HKM apoptosis. > Calpain-2 plays a critical role in the process. > ERK is pro-apoptotic in arsenic-induced HKM apoptosis. > Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  1. The effect of the calcium-antagonist nitrendipine on intracellular calcium concentration in endothelial cells.

    PubMed Central

    Salameh, A.; Schomecker, G.; Breitkopf, K.; Dhein, S.; Klaus, W.

    1996-01-01

    1. Nitrendipine induces NO-release from coronary vascular endothelium presumably by activating endothelial NO-synthase. We have investigated whether this effect may be mediated by an influence on the intracellular calcium in endothelial cells. 2. Bovine aortic endothelial cells (BAEC) were incubated with Fura-2/AM (1 microM) for 30 min and Fura-2 fluorescence was measured at 510 nm in response to chopped excitation with both 340 and 380 nm. The ratio 340/380 nm (known to reflect changes in intracellular calcium) was calculated from these data. 3. Nitrendipine (0.1 to 100 microM) led to a significant, concentration-dependent, monophasic increase in [Ca2+]i in suspended BAEC by 11 +/- 2 nM (0.1 microM), 23 +/- 3 nM (1 microM), 34 +/- 4 nM (10 microM) and by 47 +/- 5 nM (100 microM) from a control levels of 118 +/- 10 nM. 4. This elevation of intracellular calcium was prevented by pretreatment of BAECs with gadolinium (100 microM) or by incubation with calcium free saline solution. In contrast, the application of 0.3 microM thapsigargin did not abolish the nitrendipine-induced calcium signal. In additional experiments it was shown that the nitrendipine-induced NO-release (as measured with the oxy-haemoglobin-method could also be inhibited by gadolinium and was absent in calcium-free solution. 5. Thus, nitrendipine elevates intracellular calcium in suspended BAECs in a concentration-dependent manner. This elevation is mainly due to a gadolinium-sensitive calcium influx from the extracellular space rather than a calcium release from intracellular stores. Images Figure 5 PMID:8864521

  2. Expression and characterization of the calcium-activated photoprotein from the ctenophore Bathocyroe fosteri: insights into light-sensitive photoproteins

    PubMed Central

    Powers, Meghan L.; McDermott, Amy G.; Shaner, Nathan; Haddock, Steven H.D.

    2012-01-01

    Calcium-binding photoproteins have been discovered in a variety of luminous marine organisms [1]. Recent interest in photoproteins from the phylum Ctenophora has stemmed from cloning and expression of several photoproteins from this group [2-5]. Additional characterization has revealed unique biochemical properties found only in ctenophore photoproteins, such as inactivation by light. Here we report the cloning, expression, and characterization of the photoprotein responsible for luminescence in the deep-sea ctenophore Bathocyroe fosteri. This animal was of particular interest due to the unique broad color spectrum observed in live specimens [6]. Full-length sequences were identified by BLAST searches of known photoprotein sequences against Bathocyroe transcripts obtained from 454 sequencing. Recombinantly expressed Bathocyroe photoprotein (BfosPP) displayed an optimal coelenterazine-loading pH of 8.5, and produced calcium-triggered luminescence with peak wavelengths closely matching the 493nm peak observed in the spectrum of live Bathocyroe fosteri specimens. Luminescence from recombinant BfosPP was inactivated most efficiently by UV and blue light. Primary structure alignment of BfosPP with other characterized photoproteins showed very strong sequence similarity to other ctenophore photoproteins and conservation of EF-hand motifs. Both alignment and structural prediction data provide more insight into the formation of the coelenterazine-binding domain and the probable mechanism of photoinactivation. PMID:23262181

  3. Expression and characterization of the calcium-activated photoprotein from the ctenophore Bathocyroe fosteri: insights into light-sensitive photoproteins.

    PubMed

    Powers, Meghan L; McDermott, Amy G; Shaner, Nathan C; Haddock, Steven H D

    2013-02-01

    Calcium-binding photoproteins have been discovered in a variety of luminous marine organisms [1]. Recent interest in photoproteins from the phylum Ctenophora has stemmed from cloning and expression of several photoproteins from this group [2-5]. Additional characterization has revealed unique biochemical properties found only in ctenophore photoproteins, such as inactivation by light. Here we report the cloning, expression, and characterization of the photoprotein responsible for luminescence in the deep-sea ctenophore Bathocyroe fosteri. This animal was of particular interest due to the unique broad color spectrum observed in live specimens [6]. Full-length sequences were identified by BLAST searches of known photoprotein sequences against Bathocyroe transcripts obtained from 454 sequencing. Recombinantly expressed Bathocyroe photoprotein (BfosPP) displayed an optimal coelenterazine-loading pH of 8.5, and produced calcium-triggered luminescence with peak wavelengths closely matching the 493 nm peak observed in the spectrum of live B. fosteri specimens. Luminescence from recombinant BfosPP was inactivated most efficiently by UV and blue light. Primary structure alignment of BfosPP with other characterized photoproteins showed very strong sequence similarity to other ctenophore photoproteins and conservation of EF-hand motifs. Both alignment and structural prediction data provide more insight into the formation of the coelenterazine-binding domain and the probable mechanism of photoinactivation. PMID:23262181

  4. Role of the Mitochondrial Calcium Uniporter in Rat Hippocampal Neuronal Death After Pilocarpine-Induced Status Epilepticus.

    PubMed

    Wang, Cui; Xie, Nanchang; Wang, Yunlong; Li, Yulin; Ge, Xinjie; Wang, Menglu

    2015-08-01

    The mitochondrial calcium uniporter (MCU) is reportedly involved in oxidative stress, apoptosis, and many neurological diseases. However, the role of the MCU in epilepsy remains unknown. In this study, we found that the MCU inhibitor Ru360 significantly attenuated neuronal death and exerted an anti-apoptotic effect on rat hippocampal neurons after pilocarpine-induced status epilepticus (SE), while the MCU activator spermine increased seizure-induced neuronal death and apoptosis. In addition, Ru360 decreased the level of seizure-induced reactive oxygen species (ROS) in mitochondria isolated from rat hippocampi. Moreover, Ru360 restored the altered mitochondrial membrane potential and cytochrome c (CytC) release in epileptic hippocampi. However, spermine treatment exerted an opposite effect on seizure-induced ROS production and mitochondrial membrane potential alteration and CytC release compared with Ru360 treatment. Altogether, the findings of this study suggest that MCU inhibition exerts a neuroprotective effect on seizure-induced brain injury possibly through the mitochondria/ROS/CytC pathway. PMID:26148531

  5. Butyrate-induced changes in nuclease sensitivity of chromatin cannot be correlated with transcriptional activation

    SciTech Connect

    Birren, B.W.; Taplitz, S.J.; Herschman, H.R.

    1987-11-01

    The authors examined in the H4IIE rat heptoma cell line the relationship between butyrate-induced changes in the nuclease sensitivity of chromatin and changes in transcriptional activity of specific genes. The butyrate-inducible metallothionein I (MT-I) gene underwent a dramatic increase in DNase I sensitivity after 3 h of butyrate treatment. However, genes not transcribed in H4IIE cells underwent the same changes in DNase I sensitivity. Thus, butyrate-induced increases in DNase I sensitivity are not sufficient for the transcriptional activation of a gene. Butyrate treatment has also been reported to alter the sensitivity of sequence to micrococcal nuclease (MNase) in a manner reflecting their tissue-specific expression. Butyrate exposure caused increased digestion of the MT-I gene by MNase. However, butyrate-induced MNase sensitivity also occurred for genes which are neither transcribed in untreated cells nor butyrate inducible. Moreover, cadmium, a potent transcriptional activator of the MT-I gene, does not alter the sensitivity of the MT-I gene to MNase. Thus, the butyrate-induced alterations in MNase sensitivity are neither sufficient for, necessary for, nor indicative of transcriptional activation.

  6. A Blocker of N- and T-type Voltage-Gated Calcium Channels Attenuates Ethanol-Induced Intoxication, Place Preference, Self-Administration, and Reinstatement

    PubMed Central

    Newton, Philip M.; Zeng, Lily; Wang, Victoria; Connolly, Jacklyn; Wallace, Melisa J.; Kim, Chanki; Shin, Hee-Sup; Belardetti, Francesco; Snutch, Terrance P.; Messing, Robert O.

    2011-01-01

    There is a clear need for new therapeutics to treat alcoholism. Here, we test our hypothesis that selective inhibitors of neuronal calcium channels will reduce ethanol consumption and intoxication, based on our previous studies using knock-out mice and cell culture systems. We demonstrate that pretreatment with the novel mixed N-type and T-type calcium channel antagonist 1-(6,6-bis(4-fluorophenyl)hexyl)-4-(3,4,5-trimethoxybenzyl)piperazine (NP078585) reduced ethanol intoxication. NP078585 also attenuated the reinforcing and rewarding properties of ethanol, measured by operant self-administration and the expression of an ethanol conditioned place preference, and abolished stress-induced reinstatement of ethanol seeking. NP078585 did not affect alcohol responses in mice lacking N-type calcium channels. These results suggest that selective calcium channel inhibitors may be useful in reducing acute ethanol intoxication and alcohol consumption by human alcoholics. PMID:18987207

  7. Disruption of Calcium Signaling in Fibroblasts and Attenuation of Bleomycin-Induced Fibrosis by Nifedipine.

    PubMed

    Mukherjee, Subhendu; Ayaub, Ehab A; Murphy, James; Lu, Chao; Kolb, Martin; Ask, Kjetil; Janssen, Luke J

    2015-10-01

    Fibrotic lung disease afflicts millions of people; the central problem is progressive lung destruction and remodeling. We have shown that external growth factors regulate fibroblast function not only through canonical signaling pathways but also through propagation of periodic oscillations in Ca(2+). In this study, we characterized the pharmacological sensitivity of the Ca(2+)oscillations and determined whether a blocker of those oscillations can prevent the progression of fibrosis in vivo. We found Ca(2+) oscillations evoked by exogenously applied transforming growth factor β in normal human fibroblasts were substantially reduced by 1 μM nifedipine or 1 μM verapamil (both L-type blockers), by 2.7 μM mibefradil (a mixed L-/T-type blocker), by 40 μM NiCl2 (selective at this concentration against T-type current), by 30 mM KCl (which partially depolarizes the membrane and thereby fully inactivates T-type current but leaves L-type current intact), or by 1 mM NiCl2 (blocks both L- and T-type currents). In our in vivo study in mice, nifedipine prevented bleomycin-induced fibrotic changes (increased lung stiffness, overexpression of smooth muscle actin, increased extracellular matrix deposition, and increased soluble collagen and hydroxyproline content). Nifedipine had little or no effect on lung inflammation, suggesting its protective effect on lung fibrosis was not due to an antiinflammatory effect but rather was due to altering the profibrotic response to bleomycin. Collectively, these data show that nifedipine disrupts Ca(2+) oscillations in fibroblasts and prevents the impairment of lung function in the bleomycin model of pulmonary fibrosis. Our results provide compelling proof-of-principle that interfering with Ca(2+) signaling may be beneficial against pulmonary fibrosis. PMID:25664495

  8. The effects of calcium channel blockade on agouti-induced obesity

    SciTech Connect

    Kim, Jung Han; Moustaid, N.; Zemel, M.B.

    1996-12-01

    We have previously observed that obese viable yellow (A{sup vy}/a) mice exhibit increased intracellular Ca{sup 2+} ([Ca{sup 2+}]i) and fatty acid synthase (FAS) gene expression; further, recombinant agouti protein increases in cultured adipocytes and these effects are inhibited by Ca{sup 2+} channel blockade. Accordingly, we determined the effect of Ca{sup 2+} channel blockade (nifedipine for 4 wk) on FAS and obesity in transgenic mice expressing the agouti gene in a ubiquitous manner. The transgenic mice initially were significantly heavier (30.5 {+-} 0.6 vs. 27.3 {+-} 0.3 g; P<0.001) and exhibited a 0.81{degrees}C lower initial core temperature (P<0.0005), an approximately twofold increase in fat pad weights (P=0.002), a sevenfold increase in adipose FAS activity (P=0.009), and a twofold increase in plasma insulin level (P<0.05) compared to control mice. Nifedipine treatment resulted in an 18% decrease in fat pad weights (P<0.007) and a 74% decrease in adipose FAS activity (P=0.03), normalized circulating insulin levels and insulin sensitivity (P,0.05), and transiently elevated core temperature in the transgenic mice, but was without effect in the control mice. These data suggest that agouti regulates FAS, fat storage, and possibly thermogenesis, at least partially, via a [Ca{sup 2+}]{sub i}-dependent mechanism, and that Ca{sup 2+} channel blockade may partially attenuate agouti-induced obesity. 42 refs., 4 figs., 1 tab.

  9. Resonance-induced sensitivity enhancement method for conductivity sensors

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Shih, Chi-yuan (Inventor); Li, Wei (Inventor); Zheng, Siyang (Inventor)

    2009-01-01

    Methods and systems for improving the sensitivity of a variety of conductivity sensing devices, in particular capacitively-coupled contactless conductivity detectors. A parallel inductor is added to the conductivity sensor. The sensor with the parallel inductor is operated at a resonant frequency of the equivalent circuit model. At the resonant frequency, parasitic capacitances that are either in series or in parallel with the conductance (and possibly a series resistance) is substantially removed from the equivalent circuit, leaving a purely resistive impedance. An appreciably higher sensor sensitivity results. Experimental verification shows that sensitivity improvements of the order of 10,000-fold are possible. Examples of detecting particulates with high precision by application of the apparatus and methods of operation are described.

  10. Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide

    SciTech Connect

    Jian Qishen; He Sailing

    2006-12-15

    A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.

  11. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase.

    PubMed

    Larsson, Sara; Jones, Helena A; Göransson, Olga; Degerman, Eva; Holm, Cecilia

    2016-03-01

    Parathyroid hormone (PTH) is secreted from the parathyroid glands in response to low plasma calcium levels. Besides its classical actions on bone and kidney, PTH may have other important effects, including metabolic effects, as suggested for instance by increased prevalence of insulin resistance and type 2 diabetes in patients with primary hyperparathyroidism. Moreover, secondary hyperparathyroidism may contribute to the metabolic derangements that characterize states of vitamin D deficiency. PTH has been shown to induce adipose tissue lipolysis, but the details of the lipolytic action of PTH have not been described. Here we used primary mouse adipocytes to show that intact PTH (1-84) as well as the N-terminal fragment (1-37) acutely stimulated lipolysis in a dose-dependent manner, whereas the C-terminal fragment (38-84) was without lipolytic effect. The lipolytic action of PTH was paralleled by phosphorylation of known protein kinase A (PKA) substrates, i.e. hormone-sensitive lipase (HSL) and perilipin. The phosphorylation of HSL in response to PTH occurred at the known PKA sites S563 and S660, but not at the non-PKA site S565. PTH-induced lipolysis, as well as phosphorylation of HSL at S563 and S660, was blocked by both the PKA-inhibitor H89 and the adenylate cyclase inhibitor MDL-12330A, whereas inhibitors of extracellular-regulated kinase (ERK), protein kinase B (PKB), AMP-activated protein kinase (AMPK) and Ca(2+)/calmodulin-dependent protein kinase (CaMK) had little or no effect. Inhibition of phosphodiesterase 4 (PDE4) strongly potentiated the lipolytic action of PTH, whereas inhibition of PDE3 had no effect. Our results show that the lipolytic action of PTH is mediated by the PKA signaling pathway with no or minor contribution of other signaling pathways and, furthermore, that the lipolytic action of PTH is limited by simultaneous activation of PDE4. Knowledge of the signaling pathways involved in the lipolytic action of PTH is important for our

  12. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate

    PubMed Central

    Song, Guodong; Habibovic, Pamela; Bao, Chongyun; Hu, Jing; van Blitterswijk, Clemens A.; Yuan, Huipin; Chen, Wenchuan; Xu, Hockin H.K.

    2013-01-01

    Osteoinductive biomaterials are promising for bone repair. There is no direct proof that bone marrow mesenchymal stem cells (BMSCs) home to non-osseous sites and participate in ectopic bone formation induced by osteoinductive bioceramics. The objective of this study was to use a sex-mismatched beagle dog model to investigate BMSC homing via blood circulation to participate in ectopic bone formation via osteoinductive biomaterial. BMSCs of male dogs were injected into female femoral marrow cavity. The survival and stable chimerism of donor BMSCs in recipients were confirmed with polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH). Biphasic calcium phosphate (BCP) granules were implanted in dorsal muscles of female dogs. Y chromosomes were detected in samples harvested from female dogs which had received male BMSCs. At 4 weeks, cells with Y-chromosomes were distributed in the new bone matrix throughout the BCP granule implant. At 6 weeks, cells with Y chromosomes were present in newly mineralized woven bone. TRAP positive osteoclast-like cells were observed in 4-week implants, and the number of such cells decreased from 4 to 6 weeks. These results show that osteoprogenitors were recruited from bone marrow and homed to ectopic site to serve as a cell source for calcium phosphate-induced bone formation. In conclusion, BMSCs were demonstrated to migrate from bone marrow through blood circulation to non-osseous bioceramic implant site to contribute to ectopic bone formation in a canine model. BCP induced new bone in muscles without growth factor delivery, showing excellent osteoinductivity that could be useful for bone tissue engineering. PMID:23298780

  13. Intravenous Calcium and Magnesium for Oxaliplatin-Induced Sensory Neurotoxicity in Adjuvant Colon Cancer: NCCTG N04C7

    PubMed Central

    Grothey, Axel; Nikcevich, Daniel A.; Sloan, Jeff A.; Kugler, John W.; Silberstein, Peter T.; Dentchev, Todor; Wender, Donald B.; Novotny, Paul J.; Chitaley, Umesh; Alberts, Steven R.; Loprinzi, Charles L.

    2011-01-01

    Purpose Cumulative sensory neurotoxicity (sNT) is the dose-limiting toxicity of oxaliplatin, which commonly leads to early discontinuation of oxaliplatin-based therapy in the palliative and adjuvant settings. In a nonrandomized, retrospective study, intravenous (IV) calcium/magnesium (Ca/Mg) was associated with reduced oxaliplatin-induced sNT. Methods Patients with colon cancer undergoing adjuvant therapy with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX) were randomly assigned to Ca/Mg (1g calcium gluconate plus 1g magnesium sulfate pre- and post-oxaliplatin) or placebo, in a double-blinded manner. The primary end point was the percentage of patients with grade 2 or greater sNT at any time during or after oxaliplatin-based therapy by National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE; version 3) criteria. An oxaliplatin-specific sNT scale and patient questionnaires were also used to assess sNT. After 104 of 300 planned patients were enrolled, the study was closed. This was due to preliminary reports from another trial that suggested that Ca/Mg decreased treatment efficacy; these data were subsequently found to be incorrect. Results Overall, 102 patients were available for analysis. Ca/Mg decreased the incidence of chronic, cumulative, grade 2 or greater sNT, as measured by NCI CTCAE (P = .038) and also by the oxaliplatin-specific sNT scale (P = .018). In addition, acute muscle spasms associated with oxaliplatin were significantly reduced (P = .01) No effect on acute, cold-induced sNT was found. No substantial differences in adverse effects were noted between Ca/Mg and placebo. Conclusion Despite early termination and decreased statistical power, this study supports IV Ca/Mg as an effective neuroprotectant against oxaliplatin-induced cumulative sNT in adjuvant colon cancer. PMID:21189381

  14. Effect of subclinical, clinical and supraclinical doses of calcium channel blockers on models of drug-induced hepatotoxicity in rats

    PubMed Central

    Okwa, Iniviefien B.; Akindele, Abidemi J.; Agbaje, Esther O.; Oshinuga, Oladoyin T.; Anunobi, Chidozie C.; Adeyemi, Olufunmilayo O.

    2013-01-01

    Drug-related hepatotoxicity is the leading cause of acute liver failure, and hepatic problems are responsible for a significant number of liver transplantations and deaths worldwide. Calcium has been associated with various metabolic processes that lead to cell death and apoptosis, and increased cytosolic Ca2+ has been implicated in hepatotoxicity. This study was designed to investigate the effects of calcium channel blockers (CCBs) on isoniazid-rifampicin, zidovudine and erythromycin-induced hepatotoxicity in rats. Treatment groups comprised control, hepatotoxicant, hepatotoxicant along with each of silymarin, nifedipine, verapamil and diltiazem at subclinical, clinical and supraclinical doses. A day to the end of treatment for each model, rats were subjected to the hexobarbitone-induced hypnosis test. On the last days of treatment, blood samples were collected and serum was analyzed for relevant biochemical parameters. Animals were sacrificed after blood collection and livers were harvested, and samples obtained for in vivo antioxidant indices assay and histopathology. The hepatotoxicants significantly increased serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), as well as duration of sleep in the hypnosis test. These drugs significantly reduced the hepatic levels of reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and increased the level of malondialdehyde (MDA). The CCBs at the various doses significantly reversed the effects of isoniazid-rifampicin, zidovudine and erythromycin. The results obtained in this study suggest that the CCBs possess hepatoprotective activity in drug-induced hepatotoxicity and may be beneficial at the subclinical and clinical doses. PMID:26417229

  15. Changes in root gravitropism, ultrastructure, and calcium balance of pea root statocytes induced by A23187

    NASA Astrophysics Data System (ADS)

    Belyavskaya, N.

    The role for calcium in the regulation of a wide variety of cellular events in plants is well known. Calcium signaling has been implicated in plant gravitropism. A carboxylic acid antibiotic A23187 (calcimycin) has been widely used in biological studies since it can translocate calcium across membranes. Seedlings of Pisum sativum L. cv. Uladovsky germinated in a vertically oriented cylinder of moist filter paper soaked in water during 4.5 day had been treated with 10-5 M A23187 for 12 hr. Tips of primary roots of control and A23187-treated pea seedlings were fixed for electron microscopy and electron cytochemistry. Experiments with Pisum sativum 5- day seedlings placed horizontally for 4 h after treatment with 10 μM A23187 during 12 h found that the graviresponsiveness of their primary roots was lost completely (91 % of roots) or inhibited (24 +/- 6° in comparison with 88 +/- 8° in control). At ultrastructural level, there were observed distribution of amyloplasts around the nucleus, remarkable lengthening of statocytes, advanced vacuolization, changes in dictyosome structure, ER fragmentation, cell wall thinning in A23187-treated statocytes. Cytochemical study has indicated that statocytes exposed to calcimycin have contained a number of Ca-pyroantimonate granules detected Ca 2 + ions in organelles and hyaloplasm (unlike the control ones). The deposits were mainly associated with the plasma membrane. Among organelles, mitochondria were notable for their ability to accumulate Ca 2 +. In amyloplasts, a fine precipitate was predominately located in their stroma and envelope lumens. In cell walls, deposits of the reaction product were observed along the periphery and in the median zone. Localization of electron-dense granules of lead phosphate, which indicated Ca 2 +- ATPase activities in pea statocytes exposed to A23187, was generally consistent with that in untreated roots. Apart from plasma membrane, chromatin, and nucleolus components, the cytochemical reaction

  16. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    ERIC Educational Resources Information Center

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  17. Gd3+ and Calcium Sensitive, Sodium Leak Currents Are Features of Weak Membrane-Glass Seals in Patch Clamp Recordings

    PubMed Central

    Chemin, Jean; Monteil, Arnaud; Spafford, J. David

    2014-01-01

    The properties of leaky patch currents in whole cell recording of HEK-293T cells were examined as a means to separate these control currents from expressed sodium and calcium leak channel currents from snail NALCN leak channels possessing both sodium (EKEE) and calcium (EEEE) selectivity filters. Leak currents were generated by the weakening of gigaohm patch seals by artificial membrane rupture using the ZAP function on the patch clamp amplifier. Surprisingly, we found that leak currents generated from the weakened membrane/glass seal can be surprisingly stable and exhibit behavior that is consistent with a sodium leak current derived from an expressible channel. Leaky patch currents differing by 10 fold in size were similarly reduced in size when external sodium ions were replaced with the large monovalent ion NMDG+. Leaky patch currents increased when external Ca2+ (1.2 mM) was lowered to 0.1 mM and were inhibited (>40% to >90%) with 10 µM Gd3+, 100 µM La3+, 1 mM Co2+ or 1 mM Cd2+. Leaky patch currents were relatively insensitive (<30%) to 1 mM Ni2+ and exhibited a variable amount of block with 1 mM verapamil and were insensitive to 100 µM mibefradil or 100 µM nifedipine. We hypothesize that the rapid changes in leak current size in response to changing external cations or drugs relates to their influences on the membrane seal adherence and the electro-osmotic flow of mobile cations channeling in crevices of a particular pore size in the interface between the negatively charged patch electrode and the lipid membrane. Observed sodium leak conductance currents in weak patch seals are reproducible between the electrode glass interface with cell membranes, artificial lipid or Sylgard rubber. PMID:24945283

  18. Stimulation of calcium-sensing receptors induces endothelium-dependent vasorelaxations via nitric oxide production and activation of IKCa channels.

    PubMed

    Greenberg, Harry Z E; Shi, Jian; Jahan, Kazi S; Martinucci, Matthew C; Gilbert, Steven J; Vanessa Ho, W-S; Albert, Anthony P

    2016-05-01

    Stimulation of vascular calcium-sensing receptors (CaSRs) is reported to induce both constrictions and relaxations. However, cellular mechanisms involved in these responses remain unclear. The present study investigates the effect of stimulating CaSRs on vascular contractility and focuses on the role of the endothelium, nitric oxide (NO) and K(+) channels in these responses. In wire myography studies, increasing [Ca(2+)]o from 1mM to 6mM induced concentration-dependent relaxations of methoxamine pre-contracted rabbit mesenteric arteries. [Ca(2+)]o-induced relaxations were dependent on a functional endothelium, and were inhibited by the negative allosteric CaSR modulator Calhex-231. [Ca(2+)]o-induced relaxations were reduced by inhibitors of endothelial NO synthase, guanylate cyclase, and protein kinase G. CaSR activation also induced NO production in freshly isolated endothelial cells (ECs) in experiments using the fluorescent NO indicator DAF-FM. Pre-treatment with inhibitors of large (BKCa) and intermediate (IKCa) Ca(2+)-activated K(+) channels (iberiotoxin and charybdotoxin), and Kv7 channels (linopirdine) also reduced [Ca(2+)]o-induced vasorelaxations. Increasing [Ca(2+)]o also activated IKCa currents in perforated-patch recordings of isolated mesenteric artery ECs. These findings indicate that stimulation of CaSRs induces endothelium-dependent vasorelaxations which are mediated by two separate pathways involving production of NO and activation of IKCa channels. NO stimulates PKG leading to BKCa activation in vascular smooth muscle cells, whereas IKCa activity contributes to endothelium-derived hyperpolarisations. PMID:26772767

  19. Stimulation of calcium-sensing receptors induces endothelium-dependent vasorelaxations via nitric oxide production and activation of IKCa channels

    PubMed Central

    Greenberg, Harry Z.E.; Shi, Jian; Jahan, Kazi S.; Martinucci, Matthew C.; Gilbert, Steven J.; Vanessa Ho, W.-S.; Albert, Anthony P.

    2016-01-01

    Stimulation of vascular calcium-sensing receptors (CaSRs) is reported to induce both constrictions and relaxations. However, cellular mechanisms involved in these responses remain unclear. The present study investigates the effect of stimulating CaSRs on vascular contractility and focuses on the role of the endothelium, nitric oxide (NO) and K+ channels in these responses. In wire myography studies, increasing [Ca2 +]o from 1 mM to 6 mM induced concentration-dependent relaxations of methoxamine pre-contracted rabbit mesenteric arteries. [Ca2 +]o-induced relaxations were dependent on a functional endothelium, and were inhibited by the negative allosteric CaSR modulator Calhex-231. [Ca2 +]o-induced relaxations were reduced by inhibitors of endothelial NO synthase, guanylate cyclase, and protein kinase G. CaSR activation also induced NO production in freshly isolated endothelial cells (ECs) in experiments using the fluorescent NO indicator DAF-FM. Pre-treatment with inhibitors of large (BKCa) and intermediate (IKCa) Ca2 +-activated K+ channels (iberiotoxin and charybdotoxin), and Kv7 channels (linopirdine) also reduced [Ca2 +]o-induced vasorelaxations. Increasing [Ca2 +]o also activated IKCa currents in perforated-patch recordings of isolated mesenteric artery ECs. These findings indicate that stimulation of CaSRs induces endothelium-dependent vasorelaxations which are mediated by two separate pathways involving production of NO and activation of IKCa channels. NO stimulates PKG leading to BKCa activation in vascular smooth muscle cells, whereas IKCa activity contributes to endothelium-derived hyperpolarisations. PMID:26772767

  20. ATP release due to Thy-1–integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation

    PubMed Central

    Henríquez, Mauricio; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Alvarez, Alvaro; Kong, Milene; Muñoz, Nicolás; Eisner, Verónica; Jaimovich, Enrique; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2011-01-01

    Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion. PMID:21502139

  1. Polyamines as Possible Modulators of Gravity-induced Calcium Transport in Plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Slocum, R. D.

    1985-01-01

    Data from various laboratories indicate a probable relationship between calcium movement and some aspects of graviperception and tropistic bending responses. The movement of calcium in response to gravistimulation appears to be rapid, polar and opposite in direction to polar auxin transport. What might be the cause of such rapid Ca(2+) movement? Data from studies on polyamine (PA) metabolism may furnish a clue. A transient increase in the activity of ornithine decarboxylase (ODC) and titers of various PAs occurs