Science.gov

Sample records for calcium-and-magnesium ion-dependent adenosine

  1. Effects of calcium and magnesium on strontium distribution coefficients

    USGS Publications Warehouse

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.; Hemming, C.H.; Welhan, J.

    1997-01-01

    The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K(d)'s) using simulated wastewater solutions prepared at pH 8.0??0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K(d)'s ranged from 12??1 to 85??3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment.

  2. Dependence of Marine Bdellovibrios on Potassium, Calcium, and Magnesium Ions

    PubMed Central

    Marbach, A.; Shilo, M.

    1978-01-01

    Marine bdellovibrios show a specific requirement for K+, Ca2+, and Mg2+. Potassium is essential for high velocity and seems to be necessary for attachment of the free bdellovibrios. Calcium and magnesium are necessary for attachment and penetration. Magnesium also plays a role in maintaining the integrity of the bdelloplast. The adaptation of these bdellovibrios to the marine environment is manifested by their stringent cation requirements. Images PMID:16345304

  3. Automatic photometric titrations of calcium and magnesium in carbonate rocks

    USGS Publications Warehouse

    Shapiro, L.; Brannock, W.W.

    1955-01-01

    Rapid nonsubjective methods have been developed for the determination of calcium and magnesium in carbonate rocks. From a single solution of the sample, calcium is titrated directly, and magnesium is titrated after a rapid removal of R2O3 and precipitation of calcium as the tungstate. A concentrated and a dilute solution of disodium ethylenediamine tetraacetate are used as titrants. The concentrated solution is added almost to the end point, then the weak solution is added in an automatic titrator to determine the end point precisely.

  4. Effects of thyroid status on renal calcium and magnesium handling.

    PubMed

    McCaffrey, C; Quamme, G A

    1984-01-01

    Renal calcium and magnesium handling was studied in rats with chronic thyroid hormone deficiency or excess, hyperthyroidism. Mean kidney weight of the thyroid deficient rats was 42% of age matched, euthyroid and hyperthyroid animals and glomerular filtration rate was 71% of normal. Fractional sodium excretion was consistently elevated in thyroid deficient rats (0.26%) as compared to euthyroid (0.07%) and hyperthyroid animals (0.07%). Urinary calcium excretion (0.39%) was also elevated and parallel to sodium excretion in thyroid deficiency. Despite this renal leak of sodium and calcium, thyroid deficient animals conserved magnesium much more efficiently than either euthyroid or hyperthyroid rats (5.7% vs 17.4% respectively). Plasma magnesium concentration was elevated by acute MgCl2 infusions to determine the reabsorptive capacity of magnesium. Thyroid deficient rats reabsorbed 15-30% more of the filtered magnesium at any given plasma concentration. Although these effects on electrolyte reabsorption are modest compared to the hemodynamic alterations, the data suggest that thyroid hormone has a direct effect on the tubule which if chronically absent results in subtle sodium and calcium wasting and renal retention of magnesium. Administration of thyroid hormone to euthyroid or thyroid deficient rats twenty-four hours prior to experimentation had no effect on calcium and magnesium handling. PMID:6713257

  5. Impact of Testosterone, Zinc, Calcium and Magnesium Concentrations on Sperm Parameters in Subfertile Men

    NASA Astrophysics Data System (ADS)

    Aydemir, Birsen; Kiziler, Ali Riza; Onaran, Ilhan; Alici, Bülent; Özkara, Hamdi; Akyolcu, Mehmet Can

    2007-04-01

    To investigate the impact of testosterone, zinc, calcium and magnesium concentrations in serum and seminal plasma on sperm parameters. There were significant decrease in sperm parameters, serum and seminal plasma zinc levels in subfertile males. It indicates zinc has a essential role in male infertility; the determination the level of zinc during infertility investigation is recommended.

  6. Comparison of Serum Calcium and Magnesium Between Preeclamptic and Normotensive Pregnant Nigerian Women in Abakaliki, Nigeria

    PubMed Central

    Ugwuja, EI; Famurewa, AC; Ikaraoha, CI

    2016-01-01

    Background: Evidence suggests the involvement of calcium and magnesium metabolism in the pathophysiology of preeclampsia. However, findings from studies are heterogenous and inconsistent. Aim: The study aimed to compare the total serum calcium and magnesium levels in preeclamptic women with that of normotensive pregnant women. Subjects and Methods: A cross-sectional subjects of eighty pregnant women living in Abakaliki, Ebonyi state, South-East Nigeria, were recruited into the study. The present study compared serum calcium and magnesium in forty preeclamptic (cases) and forty normotensive (control) pregnant women matched for age, parity, and socioeconomic status. Serum calcium and magnesium levels were measured using atomic absorption spectrophotometer. Statistical analysis was done using SPSS Version 20 statistical software. Differences between means were compared using Student's t-test with P < 0.05 considered as statistically significant. Results: While the mean serum calcium was comparable between preeclamptic and normotensive pregnant women (13.99 [3.29] vs. 14.02 [5.68] μg/dl), the preeclamptic pregnant women have significantly (P < 0.001) lower serum magnesium in comparison to their normotensive counterparts (3.22 [1.05] vs. 4.15 [0.78]). Conclusion: It may be concluded that serum magnesium seems to play a crucial role in the pathophysiology of preeclampsia in this environment. PMID:27144074

  7. Stability and broad-sense heritability of mineral content in potato: calcium and magnesium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium and magnesium are two minerals with prominent roles in animal and plant metabolism. Advanced potato breeding lines were found to contain between 266 and 944 µg per gram fresh weight of calcium and between 705 1089 µg per gram fresh weight of magnesium. All trials had significant genotype b...

  8. A field method for the determination of calcium and magnesium in limestone and dolomite

    USGS Publications Warehouse

    Shapiro, Leonard; Brannock, Walter Wallace

    1957-01-01

    The method is an adaptation of a procedure described by Betz and Noll1 in 1950. Calcium and magnesium are determined by visual titration using Versene (disodium ethylenediamine tetraacetate) with Murexide (ammonium purpurate) as the indicator for calcium and Eriochrome Black T as the indicator for magnesium.

  9. Relation of myocardial protection to cardioplegic solution pH: modulation by calcium and magnesium.

    PubMed

    Geffin, G A; Reynolds, T R; Titus, J S; O'Keefe, D D; Daggett, W M

    1991-10-01

    The relationship between myocardial preservation and cardioplegic solution pH was assessed in isolated, perfused rat hearts. A base solution without calcium or magnesium and the same solution containing 0.2 mmol/L ionized calcium or 16 mmol/L magnesium or both ions were studied at several values of pH between 6.8 and 8.7. Hearts were arrested at 8 degrees C by multidose infusions of these bicarbonate-buffered solutions bubbled with oxygen and a varying percentage of carbon dioxide to control pH. Diastolic tone (left ventricular balloon) and adenosine triphosphate (ATP) depletion during arrest both increased as the cardioplegic solution became more alkaline. Calcium increased these effects of pH. Magnesium weakened the effect of pH on diastolic tone, maintained ATP at all pH levels, and inhibited the effects of calcium on the relationships of pH to diastolic tone and ATP. When data from all solutions were considered together, ATP depletion was shown to be linearly related to diastolic tone. Calcium depressed functional recovery (left ventricular developed pressure during reperfusion expressed as a percentage of its prearrest value) at all pH levels. With the other solutions, recovery was similar and best within a broad and relatively alkaline pH range. With the solution containing calcium and magnesium, at pH levels of 8.28 +/- 0.02, 7.87 +/- 0.03, 7.58 +/- 0.02, 7.41 +/- 0.01, 7.06 +/- 0.02, and 6.80 +/- 0.01, recovery at 5 minutes of reperfusion was 101.4% +/- 3.7%, 102.9% +/- 2.8%, 107.3% +/- 3.7%, 102.8% +/- 2.9%, 91.8% +/- 3.6%, and 94.3% +/- 3.5%, respectively. This effect of alkalinity was short-lived. Extreme alkalinity of the base, acalcemic solution produced the calcium paradox, as reported previously. Good preservation of ATP by the most acid solutions did not predict good functional recovery. Magnesium increased the persistence of frequent extrasystoles during early reperfusion, but the effect was attenuated by calcium. The data support the inclusion of magnesium in cardioplegic solutions, particularly when they contain calcium, show that cardioplegic solution pH can have major effects on the arrested heart, and suggest that a relatively alkaline pH may modestly benefit functional recovery. PMID:1929661

  10. [Systemic cytomegalovirus infection: changes in serum calcium and magnesium levels with foscarnet treatment].

    PubMed

    Marzal-Alfaro, M B; Manrique-Rodríguez, S; Alcaraz Romero, A; García San Prudencio, M; Fernández-Llamazares, C M

    2015-01-01

    Cytomegalovirus infection is common in cardiac transplant patients. Foscarnet is used, with limited evidence, as second-line treatment after ganciclovir failure in these patients. We describe the case of a paediatric cardiac transplant patient who developed electrolyte disturbances during foscarnet treatment for cytomegalovirus infection. The infection resolved after 6 weeks of treatment. Low ionized calcium and magnesium levels were observed during the drug infusion, which were treated with supplements. The serum levels reverted to normal after drug withdrawal. PMID:24785445

  11. [Simultaneous determination of calcium and magnesium in urines by flame atomic absorption spectrometry].

    PubMed

    Bai, Yu; Ouyang, Jian-Ming; Bai, Yan; Chen, Mei-Luan

    2004-08-01

    The contents of calcium and magnesium in urines were simultaneously determined by flame atomic absorption spectrometry. The optimized working conditions were ascertained. For the determination of calcium, the used wavelength was 422.8 nm, and the current of HCL(Hollow Cathode Lamp) was 3 mA; for the determination of magnesium, the used wavelength was 285.2 nm, and the current of HCL (Hollow Cathode Lamp) was 4 mA. The height of burner and the air-acetylene ratio were 8 mm and 6:1, respectively, for the determination of both calcium and magnesium. In order to remove the disturbance of phosphate, sulphate and silicate on the determination of calcium, a releasing reagent can be used. Lanthanum chloride (LaCl3) was tested as a better releasing reagent than strontium chloride (SrCl2). The disturbance of urinary substrate could be avoided after the urines were diluted to 1:100 with distilled water. The concentrations of Ca and Mg in 15 urines were determined under the optimized conditions. The obtained results were consistent with the archived data. The recovery was 96%-104%, the relative standard deviation for a sample was 1.8% with P < 0.05. PMID:15766134

  12. THE EFFECT OF EXTERNAL CALCIUM AND MAGNESIUM DEPLETION ON SINGLE NERVE FIBERS

    PubMed Central

    Adelman, William J.

    1956-01-01

    The three types of motor axons found in the walking legs of the lobster were shown to respond differently upon exposure to calcium-free solutions. While all fiber types became more excitable initially in calcium-free solutions, only openers became spontaneously active. Fast closers showed the least reduction in rheobase value upon calcium depletion. After 5 minutes in calcium-free solution all fibers showed a rise in rheobase value, and more rapid accommodation. A natural period for spontaneous firing of opener fibers was disclosed. Following such a spontaneous discharge, low amplitude rhythmical potentials were recorded. These small potentials had the same period as the spontaneous spikes. The role of calcium ion in the excitable process was discussed. Magnesium ion was shown to act synergistically with calcium ion. All fiber types became spontaneously active in solutions deprived of both calcium and magnesium. Subsequent hypoexcitability was more pronounced in calcium- and magnesium-depleted solutions than it was in only calcium-depleted solutions. PMID:13319660

  13. Effects of dietary vitamin D on calcium and magnesium levels in mice with abnormal calcium metabolism

    SciTech Connect

    Spurlock, B.G.; West, W.L.; Knight, E.M. )

    1991-03-11

    In previous studies vitamin D has been used to induce cardiac calcium overload in laboratory animals. Interrelationships between calcium and magnesium metabolism are also documented. The authors have investigated the effect of varying vitamin D in the diet on calcium and magnesium levels in plasma, kidney and heart of DBA mice which exhibit genetic abnormalities in cardiac calcium metabolism. Weanling DBA mice were maintained for 28 days on an AIN-76 diet containing either 1,000 I.U. of vitamin D{sub 3} per kg of diet (control); 4,000 I.U. of vitamin D{sub 3} per kg of diet; or no vitamin D. When compared to controls, supplemented animals showed significantly higher plasma magnesium, kidney calcium and kidney magnesium levels; animals receiving the vitamin D-deficient diet exhibited increases in cardiac calcium levels. The authors results support previous findings that vitamin D deficiency increases cardiac calcium uptake and suggest a possible role of vitamin D in magnesium metabolism.

  14. Simultaneous determination of inorganic anions, calcium and magnesium by suppressed ion chromatography.

    PubMed

    García-Fernández, Ruben; García-Alonso, J Ignacio; Sanz-Medel, Alfredo

    2004-04-01

    Suppressed conductimetric detection ion chromatography (IC) was investigated for the separation and detection of common inorganic anions, calcium and magnesium by anion-exchange chromatography using a sodium carbonate-EDTA mobile phase. The formation of anionic Ca2+ -EDTA and Mg2+ -EDTA complexes allowed its separation from other inorganic anions opening the way for their simultaneous determination in a single chromatographic run. The effect of the pH, carbonate and EDTA concentrations in the eluent and the previous addition of EDTA to the samples has been studied. The optimised experimental conditions were applied to the determination of Ca2+ and Mg2+ in mineral waters with results in agreement with alternative ICP-MS methodologies. PMID:15072297

  15. Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium isotopes

    NASA Astrophysics Data System (ADS)

    Kasemann, Simone A.; Pogge von Strandmann, Philip A. E.; Prave, Anthony R.; Fallick, Anthony E.; Elliott, Tim; Hoffmann, Karl-Heinz

    2014-06-01

    A marked ocean acidification event and elevated atmospheric carbon dioxide concentrations following the extreme environmental conditions of the younger Cryogenian glaciation have been inferred from boron isotope measurements. Calcium and magnesium isotope analyses offer additional insights into the processes occurring during this time. Data from Neoproterozoic sections in Namibia indicate that following the end of glaciation the continental weathering flux transitioned from being of mixed carbonate and silicate character to a silicate-dominated one. Combined with the effects of primary dolomite formation in the cap dolostones, this caused the ocean to depart from a state of acidification and return to higher pH after climatic amelioration. Differences in the magnitude of stratigraphic isotopic changes across the continental margin of the southern Congo craton shelf point to local influences modifying and amplifying the global signal, which need to be considered in order to avoid overestimation of the worldwide chemical weathering flux.

  16. STUDYING THE EFFECTS OF CALCIUM AND MAGNESIUM ON SIZE-DISTRIBUTED NITRATE AND AMMONIUM WITH EQUISOLV II. (R823186)

    EPA Science Inventory

    Abstract

    A chemical equilibrium code was improved and used to show that calcium and magnesium have a large yet different effect on the aerosol size distribution in different regions of Los Angeles. In the code, a new technique of solving individual equilibrium equation...

  17. Chronic dietary fiber supplementation with wheat dextrin does not inhibit calcium and magnesium absorption in premenopausal and postmenopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This placebo-controlled, randomized, crossover clinical study examined the effect of chronic wheat dextrin intake on calcium and magnesium absorption. Forty premenopausal and post menopausal women (mean +/- SD age 49.9 +/- 9.8 years)consumed wheat dextrin or placebo (15 g/day) for 2 weeks prior to 4...

  18. Revised Model of Calcium and Magnesium Binding to the Bacterial Cell Wall

    PubMed Central

    Thomas, Kieth J.; Rice, Charles V.

    2014-01-01

    Metals bind to the bacterial cell wall yet the binding mechanisms and affinity constants are not fully understood. The cell wall of gram positive bacteria is characterized by a thick layer of peptidoglycan and anionic teichoic acids anchored in the cytoplasmic membrane (lipoteichoic acid) or covalently bound to the cell wall (wall teichoic acid). The polyphosphate groups of teichoic acid provide one-half of the metal binding sites for calcium and magnesium, contradicting previous reports that calcium binding is 100% dependent on teichoic acid. The remaining binding sites are formed with the carboxyl units of peptidoglycan. In this work we report equilibrium association constants and total metal binding capacities for the interaction of calcium and magnesium ions with the bacterial cell wall. Metal binding is much stronger and previously reported. Curvature of Scatchard plots from the binding data and the resulting two regions of binding affinity suggest the presence of negative cooperative binding, meaning that the binding affinity decreases as more ions become bound to the sample. For Ca2+, Region I has a KA = (1.0 ± 0.2) × 106 M−1 and Region II has a KA = (0.075 ± 0.058) × 106 M−1. For Mg2+, KA1 = (1.5 ± 0.1) × 106 and KA2 = (0.17 ± 0.10) × 106. A binding capacity (η) is reported for both regions. However, since binding is still occurring in Region II, the total binding capacity is denoted by η2, which are 0.70 ± 0.04 µmol/mg and 0.67 ± 0.03 µmol/mg for Ca2+ and Mg2+ respectively. These data contradict the current paradigm of there being a single metal affinity value that is constant over a range of concentrations. We also find that measurement of equilibrium binding constants is highly sample dependent, suggesting a role for diffusion of metals through heterogeneous cell wall fragments. As a result, we are able to reconcile many contradictory theories that describe binding affinity and the binding mode of divalent metal cations. PMID:25315444

  19. Dietary calcium and magnesium in the development of hypertension in the spontaneously hypertensive rat

    SciTech Connect

    Evans, G.; Weaver, C.M.; Harrington, D.D.; Babbs, C.F.

    1986-03-01

    The role of dietary calcium and magnesium in attenuation of hypertension was studied in 9 groups of 9 spontaneously hypertensive rats ages 8 to 31 weeks. The animals were fed AIN 76 semipurified diets altered in calcium (0.075%, 0.5%, and 2.5%) and magnesium (0.01%, 0.05%, and 0.75%) using a 3 x 3 factorial design. An inverse relationship between dietary calcium and systolic blood pressure as determined by the photoelectric tail cuff method became significant (p<0.05) after 12 weeks. Repeated measures analysis of variance indicated that dietary magnesium had no effect on systolic blood pressure; no calcium x magnesium interaction was observed. Total and ultrafiltrable serum calcium had a significant inverse correlation with blood pressure (-0.4642, p = .001 and -0.5568, p = .001 respectively). Total and ultrafiltrable serum magnesium reflected dietary magnesium concentration. Magnesium deficiency signs, deposition of calcium in kidneys, and histological lesions were observed in high calcium fed groups receiving normal and low levels of magnesium. Thus, a lowering of blood pressure by calcium supplementation without concomitant magnesium supplementation was accompanied by biochemical and histologic abnormalities in this animal model.

  20. Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells.

    PubMed

    Ewald, Andrea; Helmschrott, Kerstin; Knebl, Georg; Mehrban, Nazia; Grover, Liam M; Gbureck, Uwe

    2011-02-01

    Bone loss due to accidents or tissue diseases requires replacement of the structure by either autografts, allografts, or artificial materials. Reactive cements, which are based on calcium phosphate chemistry, are commonly used in nonload bearing areas such as the craniofacial region. Some of these materials are resorbed by the host under physiological conditions and replaced by bone. The aim of this study was to test different calcium and magnesium cement composites in vitro for their use as bone substitution material. Phase composition of calcium deficient hydroxyapatite (Ca(9) (PO(4) )(5) HPO(4) OH), brushite (CaHPO(4) ·2H(2) O), and struvite (MgNH(4) PO(4) ·6H(2) O) specimens has been determined by means of X-ray diffraction, and compressive strength was measured. Cell growth and activity of osteoblastic cells (MG 63) on the different surfaces was determined, and the expression of bone marker proteins was analyzed by western blotting. Cell activity normalized to cell number revealed higher activity of the osteoblasts on brushite and struvite when compared to hydroxyapatite and also the expression of osteoblastic marker proteins was highest on brushite scaffolds. While brushite sets under acidic conditions, formation of struvite occurs under physiological pH, similar to hydroxyapatite cements, providing the possibility of additional modifications with proteins or other active components. PMID:21210513

  1. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model.

    PubMed

    Klammert, Uwe; Ignatius, Anita; Wolfram, Uwe; Reuther, Tobias; Gbureck, Uwe

    2011-09-01

    Bone replacement using synthetic and degradable materials is desirable in various clinical conditions. Most applied commercial materials are based on hydroxyapatite, which is not chemically degradable under physiological conditions. Here we report the effect of a long-term intramuscular implantation regime on the dissolution of various low temperature calcium and magnesium phosphate ceramics in vivo. The specimens were analysed by consecutive radiographs, micro-computed tomography scans, compressive strength testing, scanning electron microscopy and X-ray diffractometry. After 15months in vivo, the investigated materials brushite (CaHPO(4)·2H(2)O), newberyite (MgHPO(4)·3H(2)O), struvite (MgNH(4)PO(4)·6H(2)O) and hydroxyapatite (Ca(9)(PO(4))(5)HPO(4)OH) showed significant differences regarding changes of their characteristics. Struvite presented the highest loss of mechanical performance (95%), followed by newberyite (67%) and brushite (41%). This was accompanied by both a distinct extent of cement dissolution as well as changes of the phase composition of the retrieved cement implants. While the secondary phosphate phases (brushite, newberyite, struvite) completely dissolved, re-precipitates of whitlockite and octacalcium phosphate were formed in either particulate or whisker-like morphology. Furthermore, for the first time the possibility of a macropore-free volume degradation mechanism of bioceramics was demonstrated. PMID:21658480

  2. Dietary calcium and magnesium intakes and the risk of type 2 diabetes: the Shanghai Women's Health Study123

    PubMed Central

    Villegas, Raquel; Gao, Yu-Tang; Dai, Qi; Yang, Gong; Cai, Hui; Li, Honglan; Zheng, Wei; Shu, Xiao Ou

    2009-01-01

    Background: Diet plays a key role in the development of type 2 diabetes (T2D), but little is known about the contributions of specific nutrients in populations in which dietary patterns differ from Western populations. Objective: We examined associations between calcium and magnesium intakes and the risk of T2D in a Chinese population. Design: We used data from a population-based, prospective study of 64,191 women who were free of T2D or other chronic diseases at study recruitment and were living in urban Shanghai, China. Dietary intake, physical activity, and anthropometric measurements were assessed through in-person interviews. A Cox regression model was used to evaluate the association of the exposures under study with the risk of T2D. Results: An inverse association between calcium and magnesium intakes and T2D risk was observed. The relative risks for the lowest to the highest quintiles of calcium intake were 1.00, 0.82, 0.73, 0.67, and 0.74 (P for trend < 0.001), and for magnesium they were 1.00, 0.84, 0.84, 0.79, and 0.86 (P for trend < 0.001). Milk intake was also inversely associated with the risk of T2D. Conclusion: Our data suggest that calcium and magnesium intakes may protect against the development of T2D in this population. PMID:19225116

  3. Synthesis and Structural Studies of Calcium and Magnesium Phosphinate and Phosphonate Compounds

    NASA Astrophysics Data System (ADS)

    Bampoh, Victoria Naa Kwale

    The work presented herein describes synthetic methodologies leading to the design of a wide array of magnesium and calcium based phosphinate and phosphonates with possible applications as bone scaffolding materials or additives to bone cements. The challenge to the chemistry of the alkaline earth phosphonate target compounds includes poor solubility of compounds, and poorly understood details on the control of the metal's coordination environment. Hence, less is known on phosphonate based alkaline earth metal organic frameworks as compared to transition metal phosphonates. Factors governing the challenges in obtaining crystalline, well-defined magnesium and calcium solids lie in the large metal diameters, the absence of energetically available d-orbitals to direct metal geometry, as well as the overall weakness of the metal-ligand bonds. A significant part of this project was concerned with the development of suitable reaction conditions to obtain X-ray quality crystals of the reaction products to allow for structural elucidation of the novel compounds. Various methodologies to aid in crystal growth including hydrothermal methods and gel crystallization were employed. We have used phosphinate and phosphonate ligands with different number of phosphorus oxygen atoms as well as diphosphonates with different linker lengths to determine their effects on the overall structural features. An interesting correlation is observed between the dimensionality of products and the increasing number of donor oxygen atoms in the ligands as we progress from phosphinic acid to the phosphorous acids. As an example, monophosphinate ligand only yielded one-dimensional compounds, whereas the phosphonates crystallize as one and two-dimensional compounds, and the di- and triphosphonate based compounds display two or three-dimensional geometries. This thesis provides a selection of calcium and magnesium compounds with one-dimensional geometry, as represented in a calcium phosphinate to novel two-dimensional sheets of magnesium and pillared calcium phosphonates. The preparation of these novel compounds has led to the establishment of synthetic protocols that allow for the direct preparation of compounds with defined structural features.

  4. Calcium and magnesium in exocrine secretion--an X-ray microanalytical study

    SciTech Connect

    Roomans, G.M.; Barnard, T.

    1982-01-01

    Calcium and magnesium distribution in mammalian exocrine glands under resting, stimulated and pathological conditions was investigated by X-ray microanalysis of thick and ultrathin cryosections. Ultrathin sections were cut from tissue frozen in the presence of a polymer cryoprotectant, dextran. The effect of this treatment on isolated rabbit pancreas. Dextran caused a disturbance in water and ion transport, partly due to an osmotic effect and the impermeability of the pancreatic epithelium to dextran; this does, however, not necessarily invalidate intracellular measurements on frozen-dried sections. Cholinergic stimulation of the rat pancreas caused a change of Ca distribution from the basal to the apical part of the cell; this may be a component of the secretory Ca flux. Kinetic considerations make a significant Ca movement via the ER-Golgi endomembrane space less likely. The mitochondrial Ca concentration is low, and not significantly changed by cholinergic stimulation. X-ray microanalysis was carried out on submandibular glands of rats after chronic treatment with reserpin and/or isoproterenol (an animal model for cystic fibrosis, CF). The acinar cells had elevated Mg and Ca and lowered K concentrations. Analysis of ultrathin cryosections showed high levels of Ca and Mg in secretory granules, mucus globules and the ER. Ca and Mg in the ER may be transported intracellularly with secretory proteins to secretion granules or mucus globules. The decrease in cell K may be due to efflux of K caused by elevated cytoplasmic Ca levels. A similar decrease in cell K was caused by incubation of rat salivary glands with diluted serum from CF patients, a treatment which has been reported to mimic the effect of a rise in cytoplasmic Ca.

  5. Total calcium and magnesium determined in serum with an automated stopped-flow analyzer.

    PubMed

    Koupparis, M A; Diamandis, E P; Malmstadt, H V

    1982-10-01

    We describe the measurement of total calcium and magnesium in serum with an automated microcomputer-controlled stopped-flow analyzer. The calcium method is based on the cresolphthalein complexone procedure, with 2-amino-3-methyl-1-propanol as the alkalinizing agent. The assay, performed on 60-fold prediluted samples, requires 50 microL of serum. Absorbance is measured at 580 nm for 1 s, after a 5-s delay. Response is linearly related to concentration up to 5 mmol/L; analytical recovery averaged 97.8%. Within-day CVs were 0.7 to 1.5%, day-to-day CVs 1.8 to 2.5%. Results compared well with those by continuous-flow Technicon SMA II method. A sample throughput of as many as 260 samples per hour is possible. The magnesium determination, a complexometric procedure, involves magnesium/calmagite complex in an alkaline reagent mixture and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to eliminate calcium interference. Prediluted serum samples are used (100 microL of serum diluted 25-fold), and absorbance at 520 nm is linear with concentration to 50 mg/L. Within-run CVs were 0.5 to 1.1%, and day-to-day 1.3 to 3.8%; analytical recovery was 99.3%. Results compared well with those by atomic absorption spectrometry (r = 0.994). A delay time of 10 and a measurement time of 2.5 s allows for a throughput of as many as 180 samples per hour. PMID:7127745

  6. Chelatometric determination of calcium and magnesium in iron ores, slags, anorthosite, limestone, copper-nickel-lead-zinc ores and divers materials.

    PubMed

    Hitchen, A; Zechanowitsch, G

    1980-03-01

    Chelatometric methods for the determination of calcium and magnesium in iron ores, slags, anorthosite, copper-nickel-lead-zinc ores and various other materials are described. Potential interfering elements are masked with triethanolamine and potassium cyanide. In one aliquot calcium is titrated at pH > 12, with calcein and thymolphthalein mixed indicator and in another aliquot calcium and magnesium are titrated in ammonia buffer, with o-cresolphthalein complexone screened with Naphthol Green B as indicator. The results compare favourably with certified values for reference materials of diverse nature. PMID:18962661

  7. Measurement and calculation of the Stark-broadening parameters for the resonance lines of singly ionized calcium and magnesium.

    NASA Technical Reports Server (NTRS)

    Jones, W. W.; Sanchez, A.; Greig, J. R.; Griem, H. R.

    1972-01-01

    The electron-impact-broadened profiles of the resonance lines of singly ionized calcium and magnesium have been measured using an electromagnetically driven shock tube and a rapid-scanning Fabry-Perot spectrometer. For an electron density of 10 to the 17th power per cu cm and a temperature of 19,000 K, we found the Lorentzian half-width of the Ca+ line to be 0.086 A plus or minus 10% and of the Mg+ line to be 0.044 A plus or minus 10%. Using the quantum-mechanical theory of Barnes and Peach and our semiclassical calculation for the calcium lines, we found that the temperature dependence of the theoretical curves is close to that measured, although both theories predict actual values which are somewhat large.

  8. Changes in Sodium, Calcium, and Magnesium Ion Concentrations That Inhibit Geobacillus Biofilms Have No Effect on Anoxybacillus flavithermus Biofilms

    PubMed Central

    Somerton, B.; Lindsay, D.; Palmer, J.; Brooks, J.

    2015-01-01

    This study investigated the effects of varied sodium, calcium, and magnesium concentrations in specialty milk formulations on biofilm formation by Geobacillus spp. and Anoxybacillus flavithermus. The numbers of attached viable cells (log CFU per square centimeter) after 6 to 18 h of biofilm formation by three dairy-derived strains of Geobacillus and three dairy-derived strains of A. flavithermus were compared in two commercial milk formulations. Milk formulation B had relatively high sodium and low calcium and magnesium concentrations compared with those of milk formulation A, but the two formulations had comparable fat, protein, and lactose concentrations. Biofilm formation by the three Geobacillus isolates was up to 4 log CFU cm−2 lower in milk formulation B than in milk formulation A after 6 to 18 h, and the difference was often significant (P ≤ 0.05). However, no significant differences (P ≤ 0.05) were found when biofilm formations by the three A. flavithermus isolates were compared in milk formulations A and B. Supplementation of milk formulation A with 100 mM NaCl significantly decreased (P ≤ 0.05) Geobacillus biofilm formation after 6 to 10 h. Furthermore, supplementation of milk formulation B with 2 mM CaCl2 or 2 mM MgCl2 significantly increased (P ≤ 0.05) Geobacillus biofilm formation after 10 to 18 h. It was concluded that relatively high free Na+ and low free Ca2+ and Mg2+ concentrations in milk formulations are collectively required to inhibit biofilm formation by Geobacillus spp., whereas biofilm formation by A. flavithermus is not impacted by typical cation concentration differences of milk formulations. PMID:26002898

  9. [Determination of calcium and magnesium in tobacco by near-infrared spectroscopy and least squares-support vector machine].

    PubMed

    Tian, Kuang-da; Qiu, Kai-xian; Li, Zu-hong; Lü, Ya-qiong; Zhang, Qiu-ju; Xiong, Yan-mei; Min, Shun-geng

    2014-12-01

    The purpose of the present paper is to determine calcium and magnesium in tobacco using NIR combined with least squares-support vector machine (LS-SVM). Five hundred ground and dried tobacco samples from Qujing city, Yunnan province, China, were surveyed by a MATRIX-I spectrometer (Bruker Optics, Bremen, Germany). At the beginning of data processing, outliers of samples were eliminated for stability of the model. The rest 487 samples were divided into several calibration sets and validation sets according to a hybrid modeling strategy. Monte-Carlo cross validation was used to choose the best spectral preprocess method from multiplicative scatter correction (MSC), standard normal variate transformation (SNV), S-G smoothing, 1st derivative, etc., and their combinations. To optimize parameters of LS-SVM model, the multilayer grid search and 10-fold cross validation were applied. The final LS-SVM models with the optimizing parameters were trained by the calibration set and accessed by 287 validation samples picked by Kennard-Stone method. For the quantitative model of calcium in tobacco, Savitzky-Golay FIR smoothing with frame size 21 showed the best performance. The regularization parameter λ of LS-SVM was e16.11, while the bandwidth of the RBF kernel σ2 was e8.42. The determination coefficient for prediction (Rc(2)) was 0.9755 and the determination coefficient for prediction (Rp(2)) was 0.9422, better than the performance of PLS model (Rc(2)=0.9593, Rp(2)=0.9344). For the quantitative analysis of magnesium, SNV made the regression model more precise than other preprocess. The optimized λ was e15.25 and σ2 was e6.32. Rc(2) and Rp(2) were 0.9961 and 0.9301, respectively, better than PLS model (Rc(2)=0.9716, Rp(2)=0.8924). After modeling, the whole progress of NIR scan and data analysis for one sample was within tens of seconds. The overall results show that NIR spectroscopy combined with LS-SVM can be efficiently utilized for rapid and accurate analysis of calcium and magnesium in tobacco. PMID:25881420

  10. Influence of increasing the calcium and magnesium content of the drinking water on performance and bone and plasma minerals of broiler chickens.

    PubMed

    Atteh, J O; Leeson, S

    1983-05-01

    Calcium and magnesium contents of drinking water for broiler chicks were adjusted by additions of calcium and magnesium to provide levels of 0, 25, 50, 75, or 100 ppm Mg and 0, 50, or 100 ppm Ca, arranged in a factorial design. During a 3-week trial, increasing the water magnesium concentration significantly (P less than .05) improved feed efficiency and significantly (P less than .05) increased the incidence of swollen hocks and shortened tibia but had no effect on other measures of performance. Bone ash and bone mineral content were not significantly affected by the calcium treatment. However, increasing magnesium level to 100 ppm significantly (P less than .05) increased bone magnesium and phosphorus levels. Plasma minerals were not affected by these same water treatments. PMID:6878125

  11. The role of calcium and magnesium ions in uptake of beta-amyloid peptides by microglial cells.

    PubMed

    Choucair, N; Laporte, V; Levy, R; Tranchant, C; Gies, J-P; Poindron, P; Lombard, Y

    2006-01-01

    Amyloid peptides 1-40 and 1-42 (Abeta 1-40 and Abeta 1-42) are major components of diffuse and neuritic senile plaques present in the brain of patients with Alzheimers disease. Their interaction with microglial cells was studied using a system partly mimicking these plaques, which consisted in heat-killed yeast particles coated with either Abeta 1-40 or Abeta 1-42. Using these particles, it has been shown in our laboratory that LRP is involved mainly in the elimination of Abeta 1-42-coated heat-killed yeast particles and partly in that of Abeta 1-40-coated heat-killed yeast particles by microglial cells in culture. We show here that in the presence of calcium and magnesium ions extracellular chelators, namely EDTA (for both ions) and EGTA (for calcium ions), the internalization of coated heat-killed particles was impaired. In the presence of BAPTA-AM, an intracellular chelator of calcium ions and thapsigargin, an inhibitor of the endoplasmic reticulum calcium pump, no effect was observed on the phagocytosis of Abeta 1-40-coated heat-killed yeast particles, whereas that of Abeta 1-42-coated heat-killed yeast particles was affected. These results suggest that different signaling mechanisms are involved after the internalization of Abeta 1-40 and Abeta 1-42. PMID:17026853

  12. Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    A chemical equilibrium code was improved and used to show that calcium and magnesium have a large yet different effect on the aerosol size distribution in different regions of Los Angeles. In the code, a new technique of solving individual equilibrium equations was developed. The technique, the analytical equilibrium iteration (AEI) method, gives the same solutions (to at least 7 decimal places) as the previous technique used, the mass-flux iteration (MFI) method, but consumes 13-48 times less computer time. The model was also updated to include treatment of potassium, calcium, magnesium, and carbonate. Previously, it treated only nitrate, ammonium, chloride, sulfate, and sodium. Predictions from the updated code, EQUISOLV II, were compared with data from an eight-stage Berner impactor at Long Beach, Claremont, and Riverside during the Southern California Air Quality Study. When any equilibrium solver is applied between the gas phase and multiple aerosol size bins, unique solutions are possible only when solids (e.g., NH 4NO 3) that form from two gas-phase species are absent. For this study, unique solutions were possible only when the relative humidity exceeded 62%, and only cases in this regime are discussed. Base-case predictions of nitrate and ammonium matched observations well in most size bins of every case. When Ca and Mg were removed from calculations, coarse-mode nitrate decreased at Long Beach, as expected, to maintain charge balance. At Riverside, removing Ca and Mg had the opposite effect, increasing coarse-mode nitrate, shifting it from the accumulation mode. The reason is explained in terms of mean mixed activity coefficients. At Claremont, the charge-balance and activity-coefficient effects nearly canceled each other.

  13. Calcium and magnesium disorders.

    PubMed

    Goff, Jesse P

    2014-07-01

    Hypocalcemia is a clinical disorder that can be life threatening to the cow (milk fever) and predisposes the animal to various other metabolic and infectious disorders. Calcium homeostasis is mediated primarily by parathyroid hormone, which stimulates bone calcium resorption and renal calcium reabsorption. Parathyroid hormone stimulates the production of 1,25-dihydroxyvitamin D to enhance diet calcium absorption. High dietary cation-anion difference interferes with tissue sensitivity to parathyroid hormone. Hypomagnesemia reduces tissue response to parathyroid hormone. PMID:24980727

  14. [An analysis of the mechanism of the effect of intragastric calcium and magnesium on the release of gastrin and insulin in dogs].

    PubMed

    Popovych, I L; Ivasivka, S V; Butusova, I A

    1992-01-01

    The experiments have been carried out on four intact awake dogs to study the influence of intragastric introduction of deionized water, 5 mmol/l of calcium and magnesium chloride solutions in a dose of 3 ml/kg on release of gastrin and insulin into blood. It is stated that during the first 4 min after infusion of deionized water the release of gastrin decreases by 89 +/- 32 conventional units (c.u.), CaCl2 exerts a more pronounced inhibitory effect (168 +/- 36 c.u.), while MgCl2, on the contrary, increases the gastrin release by 398 +/- 92 c.u. Atropin (0.03 mg/kg, subcutaneous injection, 10 min before infusion) absolutely takes away the gastrin-stimulating effect of magnesium, but it has almost no influence on the gastrin-inhibitory effect of calcium. The latter can be taken away by 62% by ornid (5 mg/kg subcutaneously, 20 min before infusion). Preliminary anaesthesia of the stomach mucosa by trymecain or novocain absolutely remove the effect of both calcium and magnesium. Insulin release remained significantly unchanged in any series of experiments. PMID:1286691

  15. Short term spatio-temporal variability of soil water-extractable calcium and magnesium after a low severity grassland fire in Lithuania.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Martin, David

    2014-05-01

    Fire has important impacts on soil nutrient spatio-temporal distribution (Outeiro et al., 2008). This impact depends on fire severity, topography of the burned area, type of soil and vegetation affected, and the meteorological conditions post-fire. Fire produces a complex mosaic of impacts in soil that can be extremely variable at small plot scale in the space and time. In order to assess and map such a heterogeneous distribution, the test of interpolation methods is fundamental to identify the best estimator and to have a better understanding of soil nutrients spatial distribution. The objective of this work is to identify the short-term spatial variability of water-extractable calcium and magnesium after a low severity grassland fire. The studied area is located near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Four days after the fire, it was designed in a burned area a plot with 400 m2 (20 x 20 m with 5 m space between sampling points). Twenty five samples from top soil (0-5 cm) were collected immediately after the fire (IAF), 2, 5, 7 and 9 months after the fire (a total of 125 in all sampling dates). The original data of water-extractable calcium and magnesium did not respected the Gaussian distribution, thus a neperian logarithm (ln) was applied in order to normalize data. Significant differences of water-extractable calcium and magnesium among sampling dates were carried out with the Anova One-way test using the ln data. In order to assess the spatial variability of water-extractable calcium and magnesium, we tested several interpolation methods as Ordinary Kriging (OK), Inverse Distance to a Weight (IDW) with the power of 1, 2, 3 and 4, Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multilog (MTG), Multiquadratic (MTQ) Natural Cubic Spline (NCS) and Thin Plate Spline (TPS) - and Local Polynomial (LP) with the power of 1 and 2. Interpolation tests were carried out with Ln data. The best interpolation method was assessed using the cross validation method. Cross-validation was obtained by taking each observation in turn out of the sample pool and estimating from the remaining ones. The errors produced (observed-predicted) are used to evaluate the performance of each method. With these data, the mean error (ME) and root mean square error (RMSE) were calculated. The best method was the one which had the lower RMSE (Pereira et al. in press). The results shown significant differences among sampling dates in the water-extractable calcium (F= 138.78, p< 0.001) and extractable magnesium (F= 160.66; p< 0.001). Water-extractable calcium and magnesium was high IAF decreasing until 7 months after the fire, rising in the last sampling date. Among the tested methods, the most accurate to interpolate the water-extractable calcium were: IAF-IDW1; 2 Months-IDW1; 5 months-OK; 7 Months-IDW4 and 9 Months-IDW3. In relation to water-extractable magnesium the best interpolation techniques were: IAF-IDW2; 2 Months-IDW1; 5 months- IDW3; 7 Months-TPS and 9 Months-IDW1. These results suggested that the spatial variability of these water-extractable is variable with the time. The causes of this variability will be discussed during the presentation. References Outeiro, L., Aspero, F., Ubeda, X. (2008) Geostatistical methods to study spatial variability of soil cation after a prescribed fire and rainfall. Catena, 74: 310-320. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, (In Press), DOI: 10.1002/ldr.2195

  16. DETERMINATION OF MATERNAL SERUM ZINC, IRON, CALCIUM AND MAGNESIUM DURING PREGNANCY IN PREGNANT WOMEN AND UMBILICAL CORD BLOOD AND THEIR ASSOCIATION WITH OUTCOME OF PREGNANCY

    PubMed Central

    Khoushabi, Fahimeh; Shadan, Mohammad Reza; Miri, Ali; Sharifi-Rad, Javad

    2016-01-01

    Background: Trace elements and specially minerals are critical for the development of fetus. Many minerals are transferred to the fetus for fetal stores in the latter part of the pregnancy. It has been shown that various trace elements such as Zinc, Iron, Calcium and Magnesium are metabolically interrelated and there is alteration in their concentration during pregnancy. Beyond pregnancy is associated with increased demand of all the nutrients and deficiency of any of these could affect pregnancy, delivery and outcome of pregnancy. Aim: To study the levels of trace elements namely zinc, iron, magnesium and calcium in maternal and umbilical cord blood and their association with pregnancy outcome. Methods: Sixty pregnant women in Zabol, Iran were selected from those who had registered their names for the prenatal care and who had followed up till the 3rd trimester of pregnancy ending in child birth. Biochemical parameters analyzed with help of the biochemical laboratory. Data were analyzed by SPSS software. Results: The mean biochemical profile such, serum calcium, magnesium, zinc and iron in the pregnant women were as follow: in the 1st trimester 8.3, 1.9, 74.9 and 74.4 µg/dl respectively; in the 2nd trimester 8.5, 1.9, 73.1 and 79.3 µg/dl, respectively; in the 3rd trimester 8.6, 1.9, 68.4, and 82.2 µg/dl, respectively. In the umbilical cord blood, the mean serum calcium, magnesium, zinc and iron were 8.5, 1.9, 84.1, and 89.8 µg/dl, respectively. The mean serum calcium and magnesium during the three trimesters of pregnancy were not significantly different from that in the umbilical cord blood, while the mean serum zinc and iron in the umbilical cord blood were significantly different (p<0.05) in the three trimester of pregnancy. The mean birth weight of neonates was 3.1 kg and 12% of neonates showed low birth weight. Our findings showed that, except magnesium, the profile of other biochemical variables, namely, calcium, zinc and iron in the umbilical cord blood of the neonates with normal birth weight (NBW) were significantly higher than in the umbilical cord blood of neonates with low birth weight (LBW). Conclusion: The results suggest that maternal serum zinc, iron and calcium concentration influenced the birth weight of neonates as outcome of pregnancy, and however, there is need for proper, adequate and balanced micronutrient during pregnancy to affect neonates as healthy outcome. PMID:27147914

  17. The effects of secular calcium and magnesium concentration changes on the thermodynamics of seawater acid/base chemistry: Implications for Eocene and Cretaceous ocean carbon chemistry and buffering

    NASA Astrophysics Data System (ADS)

    Hain, Mathis P.; Sigman, Daniel M.; Higgins, John A.; Haug, Gerald H.

    2015-05-01

    Reconstructed changes in seawater calcium and magnesium concentration ([Ca2+], [Mg2+]) predictably affect the ocean's acid/base and carbon chemistry. Yet inaccurate formulations of chemical equilibrium "constants" are currently in use to account for these changes. Here we develop an efficient implementation of the MIAMI Ionic Interaction Model to predict all chemical equilibrium constants required for carbon chemistry calculations under variable [Ca2+] and [Mg2+]. We investigate the impact of [Ca2+] and [Mg2+] on the relationships among the ocean's pH, CO2, dissolved inorganic carbon (DIC), saturation state of CaCO3 (Ω), and buffer capacity. Increasing [Ca2+] and/or [Mg2+] enhances "ion pairing," which increases seawater buffering by increasing the concentration ratio of total to "free" (uncomplexed) carbonate ion. An increase in [Ca2+], however, also causes a decline in carbonate ion to maintain a given Ω, thereby overwhelming the ion pairing effect and decreasing seawater buffering. Given the reconstructions of Eocene [Ca2+] and [Mg2+] ([Ca2+]~20 mM; [Mg2+]~30 mM), Eocene seawater would have required essentially the same DIC as today to simultaneously explain a similar-to-modern Ω and the estimated Eocene atmospheric CO2 of ~1000 ppm. During the Cretaceous, at ~4 times modern [Ca2+], ocean buffering would have been at a minimum. Overall, during times of high seawater [Ca2+], CaCO3 saturation, pH, and atmospheric CO2 were more susceptible to perturbations of the global carbon cycle. For example, given both Eocene and Cretaceous seawater [Ca2+] and [Mg2+], a doubling of atmospheric CO2 would require less carbon addition to the ocean/atmosphere system than under modern seawater composition. Moreover, increasing seawater buffering since the Cretaceous may have been a driver of evolution by raising energetic demands of biologically controlled calcification and CO2 concentration mechanisms that aid photosynthesis.

  18. Abnormalities of serum calcium and magnesium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neonatal hypocalcemia is defined as a total serum calcium concentration of <7 mg/dL or an ionized calcium concentration of <4 mg/dL (1mmol/L). In very low birth weight (VLBW) infants, ionized calcium values of 0.8 to 1 mmol/L are common and not usually associated with clinical symptoms. In larger in...

  19. The influence of calcium and magnesium in drinking water and diet on cardiovascular risk factors in individuals living in hard and soft water areas with differences in cardiovascular mortality

    PubMed Central

    Nerbrand, Christina; Agrus, Lars; Lenner, Ragnhild Arvidsson; Nyberg, Per; Svrdsudd, Kurt

    2003-01-01

    Background The role of water hardness as a risk factor for cardiovascular disease has been widely investigated and evaluated as regards regional differences in cardiovascular disease. This study was performed to evaluate the relation between calcium and magnesium in drinking water and diet and risk factors for cardiovascular disease in individuals living in hard and soft water areas with considerable differences in cardiovascular mortality. Methods A random sample of 207 individuals living in two municipalities characterised by differences in cardiovascular mortality and water hardness was invited for an examination including a questionnaire about health, social and living conditions and diet. Intake of magnesium and calcium was calculated from the diet questionnaire with special consideration to the use of local water. Household water samples were delivered by each individual and were analysed for magnesium and calcium. Results In the total sample, there were positive correlations between the calcium content in household water and systolic blood pressure (SBP) and negative correlations with s-cholesterol and s-LDL-cholesterol. No correlation was seen with magnesium content in household water to any of the risk factors. Calcium content in diet showed no correlation to cardiovascular risk factors. Magnesium in diet was positively correlated to diastolic blood pressure (DBP). In regression analyses controlled for age and sex 18.5% of the variation in SBP was explained by the variation in BMI, HbA1c and calcium content in water. Some 27.9% of the variation in s-cholesterol could be explained by the variation in s-triglycerides (TG), and calcium content in water. Conclusions This study of individuals living in soft and hard water areas showed significant correlations between the content of calcium in water and major cardiovascular risk factors. This was not found for magnesium in water or calcium or magnesium in diet. Regression analyses indicated that calcium content in water could be a factor in the complexity of relationships and importance of cardiovascular risk factors. From these results it is not possible to conclude any definite causal relation and further research is needed. PMID:12814520

  20. Adenosine dysfunction in epilepsy

    PubMed Central

    Boison, Detlev

    2011-01-01

    Extracellular levels of the brain’s endogenous anticonvulsant and neuroprotectant adenosine largely depend on an astrocyte-based adenosine cycle, comprised of ATP release, rapid degradation of ATP into adenosine, and metabolic reuptake of adenosine through equilibrative nucleoside transporters and phosphorylation by adenosine kinase (ADK). Changes in ADK expression and activity therefore rapidly translate into changes of extracellular adenosine, which exerts its potent anticonvulsive and neuroprotective effects by activation of pre- and postsynaptic adenosine A1 receptors. Increases in ADK increase neuronal excitability, whereas decreases in ADK render the brain resistant to seizures and injury. Importantly, ADK was found to be overexpressed and associated with astrogliosis and spontaneous seizures in rodent models of epilepsy, as well as in human specimen resected from patients with hippocampal sclerosis and temporal lobe epilepsy. Several lines of evidence indicate that overexpression of astroglial ADK and adenosine deficiency are pathological hallmarks of the epileptic brain. Consequently, adenosine augmentation therapies constitute a powerful approach for seizure prevention, which is effective in models of epilepsy that are resistant to conventional antiepileptic drugs. The adenosine kinase hypothesis of epileptogenesis suggests that adenosine dysfunction in epilepsy undergoes a biphasic response: An acute surge of adenosine that can be triggered by any type of injury might contribute to the development of astrogliosis via adenosine receptor –dependent and –independent mechanisms. Astrogliosis in turn is associated with overexpression of ADK, which was shown to be sufficient to trigger spontaneous recurrent electrographic seizures. Thus, ADK emerges as a promising target for the prediction and prevention of epilepsy. PMID:22700220

  1. Adenosine receptor neurobiology: overview.

    PubMed

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases. PMID:25175959

  2. Adenosine and sleep

    SciTech Connect

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  3. Adenosine and the Auditory System

    PubMed Central

    Vlajkovic, Srdjan M; Housley, Gary D; Thorne, Peter R

    2009-01-01

    Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A1, A2A, A2B, and A3. This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A1 adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A1 and A2A receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea. PMID:20190966

  4. Rat cardiac myocyte adenosine transport and metabolism

    SciTech Connect

    Ford, D.A.; Rovetto, M.J.

    1987-01-01

    Based on the importance of myocardial adenosine and adenine nucleotide metabolism, the adenosine salvage pathway in ventricular myocytes was studied. Accurate estimates of transport rates, separate from metabolic fllux, were determined. Adenosine influx was constant between 3 and 60 s. Adenosine metabolism maintained intracellular adenosine concentrations < 10% of the extracellular adenosine concentrations and thus unidirectional influx could be measured. Myocytes transported adenosine via saturable and nonsaturable processes. A minimum estimate of the V/sub max/ of myocytic adenosine kinase indicated the saturable component of adenosine influx was independent of adenosine kinase activity. Saturable transport was inhibited by nitrobenzylthioinosine and verapamil. Extracellular adenosine taken up myocytes was rapidly phosphorylated to adenine taken up by myocytes was rapidly phosphorylated to adenine nucleotides. Not all extracellular adenosine, though, was phosphorylated on entering myocytes, since free, as opposed to protein-bound, intracellular adenosine was detected after digitonin extraction of cells in the presence of 1 mM ethylene-diaminetetraacetic acid.

  5. Genetics Home Reference: adenosine deaminase 2 deficiency

    MedlinePlus

    ... Health Conditions adenosine deaminase 2 deficiency adenosine deaminase 2 deficiency Enable Javascript to view the expand/collapse ... All Open All Close All Description Adenosine deaminase 2 (ADA2) deficiency is a disorder characterized by abnormal ...

  6. [Adenosine and its role in physiology].

    PubMed

    Novotný, J

    2015-01-01

    Adenosine is not just a major component of adenine nucleotides and ribonucleic acids, but also has its own signaling functions. ExtraceIlular level of adenosine in an organism is strictly maintained through the balance between its formation, degradation and transport. Adenosine is formed by enzymatic degradation of adenosine triphosphate and eliminated by phosphorylation to adenosine monophosphate or by deamination to inosine. Transport of adenosine across the cell membrane is ensured by equilibrative and concentrative nucleoside transporters. All these processes participate in maintenance of adenosine level under normal conditions, but a balanced equilibrium can be disrupted in some pathophysiological situations. Extracellular adenosine as a signaling molecule binds to adenosine receptors, which may trigger via their cognate trimeric G proteins different signaling pathways. In this way, adenosine regulates energy homeostasis and affects the function of various organs. Targeted pharmacological manipulations of specific adenosine receptor subtypes or enzymes involved in its metabolism can potentially be used for therapeutic purposes. PMID:26738245

  7. Metal Ion Dependence of Cooperative Collapse Transitions in RNA

    SciTech Connect

    Moghaddam, Sarvin; Caliskan, Gokhan; Chauhan, Seema; Hyeon, Changbong; Briber, R.M.; Thirumalai, D.; Woodson, Sarah A.

    2010-10-12

    Positively charged counterions drive RNA molecules into compact configurations that lead to their biologically active structures. To understand how the valence and size of the cations influences the collapse transition in RNA, small-angle X-ray scattering was used to follow the decrease in the radius of gyration (R{sub g}) of the Azoarcus and Tetrahymena ribozymes in different cations. Small, multivalent cations induced the collapse of both ribozymes more efficiently than did monovalent ions. Thus, the cooperativity of the collapse transition depends on the counterion charge density. Singular value decomposition of the scattering curves showed that folding of the smaller and more thermostable Azoarcus ribozyme is well described by two components, whereas collapse of the larger Tetrahymena ribozyme involves at least one intermediate. The ion-dependent persistence length, extracted from the distance distribution of the scattering vectors, shows that the Azoarcus ribozyme is less flexible at the midpoint of transition in low-charge-density ions than in high-charge-density ions. We conclude that the formation of sequence-specific tertiary interactions in the Azoarcus ribozyme overlaps with neutralization of the phosphate charge, while tertiary folding of the Tetrahymena ribozyme requires additional counterions. Thus, the stability of the RNA structure determines its sensitivity to the valence and size of the counterions.

  8. Spectrophotometric Titration of a Mixture of Calcium and Magnesium.

    ERIC Educational Resources Information Center

    Fulton, Robert; And Others

    1986-01-01

    Describes a spectrophotometric titration experiment which uses a manual titration spectrophotometer and manually operated buret, rather than special instrumentation. Identifies the equipment, materials, and procedures needed for the completion of the experiment. Recommends the use of this experiment in introductory quantitative analysis

  9. Health Significance of Calcium and Magnesium: Examples from Human Studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is clear that many people do not consume recommended intakes of calcium (Ca) and magnesium (Mg), yet biochemical and/or functional changes indicative of deficiencies in these nutrients have been rare. This prompted two series of studies: one addressing an apparent Ca-deficiency rickets in child...

  10. Biogeochemistry cycling of calcium and magnesium by Ceanothus and chamise

    SciTech Connect

    Quideau, S.A.; Graham, R.C.; Chadwick, O.A.; Wood, H.B.

    1999-12-01

    Vegetation has long been recognized as a fundamental factor in soil formation, but vegetation and soils commonly covary in response to other environmental factors, confounding the specific effects of vegetation on soil properties. The lysimeter installation at the San Dimas Experimental Forest in southern California offers a rarely found opportunity for quantifying cation-cycling processes in a setting where all factors except vegetation are kept constant. The lysimeters were filled in 1937 with homogenized, fine sandy loam and planted in 1946 with chamise (Adenostoma fasciculatum Hook, and Arn.) and ceanothus (Ceanothus crassifolius Torr.). Comparison of the chamise and ceanothus lysimeters was best achieved by using the Ca/Mg ration of the different cation pools and fluxes as an index. In 1987, the ceanothus exchangeable soil pool contained proportionally more Ca than Mg compared with chamise; that is, the Ca/Mg ratio in the ceanothus exchangeable soil pool was higher than that in chamise. Strong evidence supports vegetation influence on intra-system fluxes (weathering and biocycling) as the basis for these differences. First, more Ca than Mg was released by weathering under ceanothus than under chamise. Second, the ceanothus aboveground biomass exhibited a higher Ca/Mg ration that the chamise. Third, differences between vegetation types widened with time since construction of the lysimeter installation in both the aboveground biomass and exchangeable soil pools. Differences in cation storage measured for the lysimeter chamise and ceanothus stands appear representative of natural chaparral communities throughout California, and may result in distinct Ca and Mg biogeochemical processes in associated ecosystems.

  11. Spectrophotometric Titration of a Mixture of Calcium and Magnesium.

    ERIC Educational Resources Information Center

    Fulton, Robert; And Others

    1986-01-01

    Describes a spectrophotometric titration experiment which uses a manual titration spectrophotometer and manually operated buret, rather than special instrumentation. Identifies the equipment, materials, and procedures needed for the completion of the experiment. Recommends the use of this experiment in introductory quantitative analysis…

  12. Adenosine receptors as therapeutic targets

    PubMed Central

    Jacobson, Kenneth A.; Gao, Zhan-Guo

    2012-01-01

    Adenosine receptors are major targets of caffeine, the most commonly consumed drug in the world. There is growing evidence that they could also be promising therapeutic targets in a wide range of conditions, including cerebral and cardiac ischaemic diseases, sleep disorders, immune and inflammatory disorders and cancer. After more than three decades of medicinal chemistry research, a considerable number of selective agonists and antagonists of adenosine receptors have been discovered, and some have been clinically evaluated, although none has yet received regulatory approval. However, recent advances in the understanding of the roles of the various adenosine receptor subtypes, and in the development of selective and potent ligands, as discussed in this review, have brought the goal of therapeutic application of adenosine receptor modulators considerably closer. PMID:16518376

  13. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  14. Allosteric modulation of adenosine receptors

    PubMed Central

    Göblyös, Anikó

    2008-01-01

    Allosteric modulators for adenosine receptors may have potential therapeutic advantage over orthosteric ligands. Allosteric enhancers at the adenosine A1 receptor have been linked to antiarrhythmic and antilipolytic activity. They may also have therapeutic potential as analgesics and neuroprotective agents. A3 allosteric enhancers are postulated to be useful against ischemic conditions or as antitumor agents. In this review, we address recent developments regarding the medicinal chemistry of such compounds. Most efforts have been and are directed toward adenosine A1 and A3 receptors, whereas limited or no information is available for A2A and A2B receptors. We also discuss some findings, mostly receptor mutation studies, regarding localization of the allosteric binding sites on the receptors. PMID:18615273

  15. Adenosine Receptors and Cancer

    PubMed Central

    Fishman, P.; Bar-Yehuda, S.; Synowitz, M.; Powell, J.D.; Klotz, K.N.; Gessi, S.; Borea, P.A.

    2013-01-01

    The A1, A2A, A2B and A3 G-protein-coupled cell surface adenosine receptors (ARs) are found to be upregulated in various tumor cells. Activation of the receptors by specific ligands, agonists or antagonists, modulates tumor growth via a range of signaling pathways. The A1AR was found to play a role in preventing the development of glioblastomas. This antitumor effect of the A1AR is mediated via tumor-associated microglial cells. Activation of the A2AAR results in inhibition of the immune response to tumors via suppression of T regulatory cell function and inhibition of natural killer cell cytotoxicity and tumor-specific CD4+/CD8+ activity. Therefore, it is suggested that pharmacological inhibition by specific antagonists may enhance immunotherapeutics in cancer therapy. Activation of the A2BAR plays a role in the development of tumors via upregulation of the expression levels of angiogenic factors in microvascular endothelial cells. In contrast, it was evident that activation of A2BAR results in inhibition of ERK1/2 phosphorylation and MAP kinase activity, which are involved in tumor cell growth signals. Finally, A3AR was found to be highly expressed in tumor cells and tissues while low expression levels were noted in normal cells or adjacent tissue. Receptor expression in the tumor tissues was directly correlated to disease severity. The high receptor expression in the tumors was attributed to overexpression of NF-κB, known to act as an A3AR transcription factor. Interestingly, high A3AR expression levels were found in peripheral blood mononuclear cells (PBMCs) derived from tumor-bearing animals and cancer patients, reflecting receptor status in the tumors. A3AR agonists were found to induce tumor growth inhibition, both in vitro and in vivo, via modulation of the Wnt and the NF-κB signaling pathways. Taken together, A3ARs that are abundantly expressed in tumor cells may be targeted by specific A3AR agonists, leading to tumor growth inhibition. The unique characteristics of these A3AR agonists make them attractive as drug candidates. PMID:19639290

  16. Adenosine and Autism: A Spectrum of Opportunities

    PubMed Central

    Masino, Susan A.; Kawamura, Masahito; Cote, Jessica L.; Williams, Rebecca B.; Ruskin, David N.

    2012-01-01

    In rodents, insufficient adenosine produces behavioral and physiological symptoms consistent with several comorbidities of autism. In rodents and humans, stimuli postulated to increase adenosine can ameliorate these comorbidities. Because adenosine is a broad homeostatic regulator of cell function and nervous system activity, increasing adenosine’s influence might be a new therapeutic target for autism with multiple beneficial effects. PMID:22940000

  17. Xanthines as Adenosine Receptor Antagonists

    PubMed Central

    Jacobson, Kenneth A.

    2013-01-01

    The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR) antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A large number of derivatives and analogs have subsequently been synthesized and evaluated as AR antagonists. Very potent antagonists have thus been developed with selectivity for each of the four AR subtypes. PMID:20859796

  18. Adenosine decreases neurotransmitter release at central synapses.

    PubMed Central

    Prince, D A; Stevens, C F

    1992-01-01

    Adenosine, at concentrations ranging from 5 to 100 microM, decreases the efficacy of transmission at the perforant path synapses on dentate granule cells. We have used whole cell recording from these cells in slices to determine the mechanism of the reduced synaptic strength. We find that size of miniature excitatory postsynaptic currents (mepscs) is unaffected by adenosine at concentrations up to 100 microM, an observation that indicates adenosine's mode of action is not through a decreased postsynaptic sensitivity to neurotransmitter. A quantal analysis indicates, however, that the quantity of neurotransmitter released is sufficiently diminished by adenosine to account entirely for the adenosine-produced decrease in synaptic strength. Application of 3-isobutyl-1-methylxanthine (IBMX), a drug that antagonizes the effects of endogenous adenosine, produces an increase in synaptic strength. This observation suggests that the resting level of adenosine in our slices is appreciable, and an analysis of the adenosine dose-response relation is consistent with endogenous adenosine levels of about 10 microM. IBMX application produces only slight changes in the amplitude of mepscs, whereas a quantal analysis demonstrates that the drug significantly increases the amount of neurotransmitter released. Thus IBMX acts as an "anti-adenosine" in our experiments. In some experiments we have been able to record excitatory and inhibitory synaptic currents produced by the same perforant path stimulus. In these instances we find that inhibitory transmission is unaffected by concentrations of adenosine that produce a marked decrease in the strength of excitatory synapses. PMID:1382294

  19. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  20. A(3) adenosine receptor antagonists.

    PubMed

    Müller, C E

    2001-11-01

    During the past years a number of potent and selective antagonists for the human A(3) adenosine receptor (AR) have been developed, including tricyclic compounds, such as triazoloquinazoline, pyrazolo-triazolopyridine, imidazopurinone, triazoloquinoxaline and pyrazoloquinoline derivatives. Bicyclic compounds include isoquinoline and related quinazoline derivatives. Monocyclic dihydropyridine and pyridine also proved to be potent selective A(3) AR antagonists. So far, no potent, selective antagonist is available for rodent A(3) ARs. Most of the A(3) AR antagonists are highly lipophilic and exhibit very poor water-solubility. Potential therapeutic applications for A(3) AR antagonists include inflammatory diseases, asthma, stroke, and glaucoma. PMID:12369967

  1. Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina

    SciTech Connect

    Braas, K.M.; Zarbin, M.A.; Snyder, S.H.

    1987-06-01

    Using specific sensitive antisera against adenosine, we have immunocytochemically localized endogenous adenosine to specific layers of rat, guinea pig, monkey, and human retina. Highest adenosine immunoreactivity was observed in ganglion cells and their processes in the optic nerve fiber layer. Substantial staining was also found throughout the inner plexiform layer and in select cells in the inner nuclear layer. Adenosine A1 receptors, labeled with the agonists L-(/sup 3/H)phenylisopropyladenosine and /sup 125/I-labeled hydroxy-phenylisopropyladenosine, were autoradiographically localized. The highest levels of binding sites occurred in the nerve fiber, ganglion cell, and inner plexiform layers of the retina in all the species examined. The distribution of adenosine A1 receptor sites closely parallels that of retinal neurons and fibers containing immunoreactive adenosine. These results suggest a role for endogenous adenosine as a coneurotransmitter in ganglion cells and their fibers in the optic nerve.

  2. Adenosine deaminase activity in rheumatoid pleural effusion.

    PubMed Central

    Ocaña, I; Ribera, E; Martinez-Vázquez, J M; Ruiz, I; Bejarano, E; Pigrau, C; Pahissa, A

    1988-01-01

    The activity of adenosine deaminase was studied in nine cases of rheumatoid pleural effusion, showing an increase in enzyme activity in all. Rheumatoid arthritis seems unique, however, as it cannot be differentiated from pleural tuberculosis on the basis of this test. Selective increase of adenosine deaminase in both conditions is attributed to stimulation of T lymphocytes in the pleural fluid. PMID:3389927

  3. Adenosine postsynaptically modulates supraoptic neuronal excitability.

    PubMed

    Ponzio, Todd A; Hatton, Glenn I

    2005-01-01

    Effects of adenosine on the excitability of supraoptic nucleus neurons were investigated in whole cell patch-clamp experiments conducted in horizontal slices of rat hypothalamus. Adenosine (10-100 muM) inhibited all neurons tested by reducing or abolishing spontaneous or evoked discharge. Large hyperpolarizations were seen, averaging -6.08 +/- 0.83 mV below resting membrane potential, and action potential durations were significantly reduced by 134 +/- 41 mus in the presence of 100 muM adenosine. The A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 muM) blocked these effects, whereas the A(1) agonists N(6)-cyclopentyladenosine (CPA) and N(6)-cyclohexyladenosine (CHA) mimicked the actions of adenosine. A(2) receptor contributions to excitability were assessed by application of an A(2) agonist, carboxamidoadenosine (CPCA). This resulted in membrane depolarizations (3.56 +/- 0.65 mV) and maintenance of firing. The presence of endogenous adenosine in the slice was revealed by both the application of the adenosine uptake inhibitor dilazep (1-100 muM), which resulted in a strong inhibition of firing activity, and the application of DPCPX, which induced firing in cells silenced by negative current injection. We tested for postsynaptic actions of adenosine by blocking G protein activation via GDP-beta-S infusion into recorded neurons. Under these conditions, the adenosinergic inhibition of firing and reduction of spike duration were blocked, suggesting the effects were mediated by postsynaptic adenosine receptors. That the effects on excitability could be due to direct activation of adenosine A(1) receptors on supraoptic neurons was further explored immunocytochemically via the co-labeling of magnocellular neurons with polyclonal antibodies raised against the A(1) receptors. It is concluded that adenosine, acting at postsynaptic A(1) receptors, exhibits a powerful inhibitory influence on supraoptic magnocellular activity and is an important endogenous regulator of magnocellular neuroendocrine function. PMID:15356187

  4. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, Hordur; Sadler, Martha H.; Hochstein, Lawrence I.

    1986-01-01

    Membranes prepared from various members of the genus Halobacterium contained a Triton X-l00 activated adenosine triphosphatase. The enzyme from Halobacterium saccharovorum was unstable in solutions of low ionic strength and maximally active in the presence of 3.5 M NaCl. A variety of nucleotide triphosphates was hydrolyzed. MgADP, the product of ATP hydrolysis, was not hydrolyzed and was a competitive inhibitor with respect to MgATP. The enzyme from H. saccharovorum was composed of at least 2 and possibly 4 subunits. The 83-kDa and 60-kDa subunits represented about 90 percent of total protein. The 60-kDa subunit reacted with dicyclohexyl-carbodiimide when inhibition was carried out in an acidic medium. The enzyme from H. saccharovorum, possesses properties of an F(1)F(0) as well as an E(1)E(2) ATPase.

  5. Homeostatic Control of Synaptic Activity by Endogenous Adenosine is Mediated by Adenosine Kinase

    PubMed Central

    Diógenes, Maria José; Neves-Tomé, Raquel; Fucile, Sergio; Martinello, Katiuscia; Scianni, Maria; Theofilas, Panos; Lopatář, Jan; Ribeiro, Joaquim A.; Maggi, Laura; Frenguelli, Bruno G.; Limatola, Cristina; Boison, Detlev; Sebastião, Ana M.

    2014-01-01

    Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders. PMID:22997174

  6. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  7. Gas-phase protonation thermochemistry of adenosine.

    PubMed

    Touboul, David; Bouchoux, Guy; Zenobi, Renato

    2008-09-18

    The goal of this work was to obtain a detailed insight on the gas-phase protonation energetic of adenosine using both mass spectrometric experiments and quantum chemical calculations. The experimental approach used the extended kinetic method with nanoelectrospray ionization and collision-induced dissociation tandem mass spectrometry. This method provides experimental values for proton affinity, PA(adenosine) = 979 +/- 1 kJ.mol (-1), and for the "protonation entropy", Delta p S degrees (adenosine) = S degrees (adenosineH +) - S degrees (adenosine) = -5 +/- 5 J.mol (-1).K (-1). The corresponding gas-phase basicity is consequently equal to: GB(adenosine) = 945 +/- 2 kJ.mol (-1) at 298K. Theoretical calculations conducted at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level, including 298 K enthalpy correction, predict a proton affinity value of 974 kJ.mol (-1) after consideration of isodesmic proton transfer reactions with pyridine as the reference base. Moreover, computations clearly showed that N3 is the most favorable protonation site for adenosine, due to a strong internal hydrogen bond involving the hydroxyl group at the 2' position of the ribose sugar moiety, unlike observations for adenine and 2'-deoxyadenosine, where protonation occurs on N1. The existence of negligible protonation entropy is confirmed by calculations (theoretical Delta p S degrees (adenosine) approximately -2/-3 J.mol (-1).K (-1)) including conformational analysis and entropy of hindered rotations. Thus, the calculated protonation thermochemical properties are in good agreement with our experimental measurements. It may be noted that the new PA value is approximately 10 kJ.mol (-1) lower than the one reported in the National Institute of Standards and Technology (NIST) database, thus pointing to a correction of the tabulated protonation thermochemistry of adenosine. PMID:18720985

  8. Adenosine receptors as drug targets — what are the challenges?

    PubMed Central

    Chen, Jiang-Fan; Eltzschig, Holger K.; Fredholm, Bertil B.

    2014-01-01

    Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of adenosine receptors. There is strong evidence that adenosine has a functional role in many diseases, and several pharmacological compounds specifically targeting individual adenosine receptors — either directly or indirectly — have now entered the clinic. However, only one adenosine receptor-specific agent — the adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas Pharma) — has so far gained approval from the US Food and Drug Administration (FDA). Here, we focus on the biology of adenosine signalling to identify hurdles in the development of additional pharmacological compounds targeting adenosine receptors and discuss strategies to overcome these challenges. PMID:23535933

  9. Genetics Home Reference: adenosine deaminase deficiency

    MedlinePlus

    ... to adenosine deaminase deficiency University of Utah Genetic Science Learning Center Patient Support and Advocacy Resources (4 links) Children Living with Inherited Metabolic Diseases Immune Deficiency Foundation Jeffrey Modell Foundation National Organization for Rare Disorders (NORD) Gene Reviews (1 ...

  10. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  11. Endothelial catabolism of extracellular adenosine during hypoxia: the role of surface adenosine deaminase and CD26

    PubMed Central

    Eltzschig, Holger K.; Faigle, Marion; Knapp, Simone; Karhausen, Jorn; Ibla, Juan; Rosenberger, Peter; Odegard, Kirsten C.; Laussen, Peter C.; Thompson, Linda F.; Colgan, Sean P.

    2006-01-01

    Extracellular levels of adenosine increase during hypoxia. While acute increases in adenosine are important to counterbalance excessive inflammation or vascular leakage, chronically elevated adenosine levels may be toxic. Thus, we reasoned that clearance mechanisms might exist to offset deleterious influences of chronically elevated adenosine. Guided by microarray results revealing induction of endothelial adenosine deaminase (ADA) mRNA in hypoxia, we used in vitro and in vivo models of adenosine signaling, confirming induction of ADA protein and activity. Further studies in human endothelia revealed that ADA-complexing protein CD26 is coordinately induced by hypoxia, effectively localizing ADA activity at the endothelial cell surface. Moreover, ADA surface binding was effectively blocked with glycoprotein 120 (gp120) treatment, a protein known to specifically compete for ADA-CD26 binding. Functional studies of murine hypoxia revealed inhibition of ADA with deoxycoformycin (dCF) enhances protective responses mediated by adenosine (vascular leak and neutrophil accumulation). Analysis of plasma ADA activity in pediatric patients with chronic hypoxia undergoing cardiac surgery demonstrated a 4.1 ± 0.6-fold increase in plasma ADA activity compared with controls. Taken together, these results reveal induction of ADA as innate metabolic adaptation to chronically elevated adenosine levels during hypoxia. In contrast, during acute hypoxia associated with vascular leakage and excessive inflammation, ADA inhibition may serve as therapeutic strategy. PMID:16670267

  12. CD73-generated adenosine promotes osteoblast differentiation

    PubMed Central

    Takedachi, Masahide; Oohara, Hiroyuki; Smith, Brenda J.; Iyama, Mitsuyoshi; Kobashi, Mariko; Maeda, Kenichiro; Long, Courtney L.; Humphrey, Mary B.; Stoecker, Barbara J.; Toyosawa, Satoru; Thompson, Linda F.; Murakami, Shinya

    2011-01-01

    CD73 is a GPI-anchored cell surface protein with ecto-5′-nucleotidase enzyme activity that plays a crucial role in adenosine production. While the roles of adenosine receptors (AR) on osteoblasts and osteoclasts have been unveiled to some extent, the roles of CD73 and CD73-generated adenosine in bone tissue are largely unknown. To address this issue, we first analyzed the bone phenotype of CD73-deficient (cd73−/−) mice. The mutant male mice showed osteopenia, with significant decreases of osteoblastic markers. Levels of osteoclastic markers were, however, comparable to those of wild type mice. A series of in vitro studies revealed that CD73 deficiency resulted in impairment in osteoblast differentiation but not in the number of osteoblast progenitors. In addition, over expression of CD73 on MC3T3-E1 cells resulted in enhanced osteoblastic differentiation. Moreover, MC3T3-E1 cells expressed adenosine A2A receptors (A2AAR) and A2B receptors (A2BAR) and expression of these receptors increased with osteoblastic differentiation. Enhanced expression of osteocalcin (OC) and bone sialoprotein (BSP) observed in MC3T3-E1 cells over expressing CD73 were suppressed by treatment with an A2BAR antagonist but not with an A2AAR antagonist. Collectively, our results indicate that CD73 generated adenosine positively regulates osteoblast differentiation via A2BAR signaling. PMID:21882189

  13. Working memory and the homeostatic control of brain adenosine by adenosine kinase

    PubMed Central

    Singer, Philipp; McGarrity, Stéphanie; Shen, Hai-Ying; Boison, Detlev; Yee, Benjamin K.

    2012-01-01

    The neuromodulator adenosine maintains brain homeostasis and regulates complex behaviour via activation of inhibitory and excitatory adenosine receptors (ARs) in a brain region-specific manner. AR antagonists such as caffeine have been shown to ameliorate cognitive impairments in animal disease models but their effects on learning and memory in normal animals are equivocal. An alternative approach to reduce AR activation is to lower the extracellular tone of adenosine, which can be achieved by up-regulating adenosine kinase (ADK), the key enzyme of metabolic adenosine clearance. However, mice that globally over-express an Adk transgene (‘Adk-tg’ mice) were devoid of a caffeine-like pro-cognitive profile; they instead exhibited severe spatial memory deficits. This may be mechanistically linked to cortical/hippocampal N-methyl-D-aspartate receptor (NMDAR) hypofunction because the motor response to acute MK-801 was also potentiated in Adk-tg mice. Here, we evaluated the extent to which the behavioural phenotypes of Adk-tg mice might be modifiable by up-regulating adenosine levels in the cortex/hippocampus. To this end, we investigated mutant ‘fb-Adk-def’ mice in which ADK expression was specifically reduced in the telencephalon leading to a selective increase in cortical/hippocampal adenosine, while the rest of the brain remained as adenosine-deficient as in Adk-tg mice. The fb-Adk-def mice showed an even greater impairment in spatial working memory and a more pronounced motor response to NMDAR blockade than Adk-tg mice. These outcomes suggest that maintenance of cortical/hippocampal adenosine homeostasis is essential for effective spatial memory and deviation in either direction is detrimental with increased expression seemingly more disruptive than decreased expression. PMID:22521820

  14. Emerging adenosine receptor agonists—an update

    PubMed Central

    Gao, Zhan-Guo; Jacobson, Kenneth A

    2012-01-01

    Adenosine receptors (ARs), the major targets of caffeine and theophylline, comprise four receptor subtypes designated as A1, A2A, A2B and A3. Over a dozen AR agonists are currently in clinical trials for various conditions, including cardiac arrhythmias, neuropathic pain, myocardial perfusion imaging, cardiac ischemia, inflammatory diseases and cancer. Adenosine (non-selective), regadenoson (A2A) and dipyridamole (act indirectly via ARs) have received regulatory approval for clinical use. The present editorial will give a brief update on the current status of AR agonists in clinical trials. PMID:22148938

  15. TIM-4 structures identify a Metal Ion-dependent Ligand Binding Site where phosphatidylserine binds

    PubMed Central

    Santiago, Cesar; Ballesteros, Angela; Martinez-Muñoz, Laura; Mellado, Mario; Kaplan, Gerardo G.; Freeman, Gordon J.; Casasnovas, José M.

    2008-01-01

    The T-cell immunoglobulin and mucin domain (TIM) proteins are important regulators of T cell responses. They have been linked to autoimmunity and cancer. Structures of the murine TIM-4 identified a Metal Ion-dependent Ligand Binding Site (MILIBS) in the immunoglobulin (Ig) domain of the TIM family. The characteristic CC’ loop of the TIM domain and the hydrophobic FG loop shaped a narrow cavity where acidic compounds penetrate and coordinate to a metal ion bound to conserved residues in the TIM proteins. The structure of phosphatidylserine bound to the Ig domain showed that the hydrophilic head penetrates into the MILIBS and coordinates with the metal ion, while the aromatic residues on the tip of the FG loop interacted with the fatty acid chains and could insert into the lipid bilayer. Our results also revealed a significant role of the MILIBS in trafficking of TIM-1 to the cell surface. PMID:18083575

  16. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Adenosine triphosphate release assay. (a) Identification. An adenosine triphosphate release assay is...

  17. INTERACTIONS OF FLAVONES AND OTHER PHYTOCHEMICALS WITH ADENOSINE RECEPTORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adenosine receptors are involved in the homeostasis of the immune, cardiovascular, and central nervous systems, and adenosine agonists/ antagonists exert many similar effects. The affinity of flavonoids to adenosine receptors suggests that a wide range of natural substances in the diet may potentia...

  18. Adenosine induced coronary spasm – A rare presentation

    PubMed Central

    Arora, P.; Bhatia, V.; Arora, M.; Kaul, U.

    2014-01-01

    Adenosine is commonly used as a pharmacological agent in myocardial perfusion imaging, as an antiarrhythmic agent, and in Cath Lab. during PCI for treating no reflow phenomenon. Coronary spasm has been reported following adenosine injection during stress imaging. We report a rare complication with ST segment elevation, following adenosine injection, given for treatment of supraventricular tachycardia. PMID:24581102

  19. Shaping of monocyte and macrophage function by adenosine receptors

    PubMed Central

    Haskó, György; Pacher, Pál; Deitch, Edwin A.; Vizi, E. Sylvester

    2008-01-01

    Adenosine is an endogenous purine nucleoside that, following its release into the extracellular space, binds to specific adenosine receptors expressed on the cell surface. Adenosine appears in the extracellular space under metabolically stressful conditions, which are associated with ischemia, inflammation, and cell damage. There are 4 types of adenosine receptors (A1, A2A, A2B and A3) and all adenosine receptors are members of the G protein-coupled family of receptors. Adenosine receptors are expressed on monocytes and macrophages and through these receptors adenosine modulates monocyte and macrophage function. Since monocytes and macrophages are activated by the same danger signals that cause accumulation of extracellular adenosine, adenosine receptors expressed on macrophages represent a sensor system that provide monocytes and macrophages with information about the stressful environment. Adenosine receptors, thus, allow monocytes and macrophages to fine-tune their responses to stressful stimuli. Here, we review the consequences of adenosine receptor activation on monocyte/macrophage function. We will detail the effect of stimulating the various adenosine receptor subtypes on macrophage differentiation/proliferation, phagocytosis, and tissue factor (TF) expression. We will also summarize our knowledge of how adenosine impacts the production of extracellular mediators secreted by monocytes and macrophages in response to toll-like receptor (TLR) ligands and other inflammatory stimuli. Specifically, we will delineate how adenosine affects the production of superoxide, nitric oxide (NO), tumor necrosis factor-α, interleukin (IL)-12, IL-10, and vascular endothelial growth factor (VEGF). A deeper insight into the regulation of monocyte and macrophage function by adenosine receptors should assist in developing new therapies for inflammatory diseases. PMID:17056121

  20. Neuroprotective effects of adenosine deaminase in the striatum.

    PubMed

    Tamura, Risa; Ohta, Hiroyuki; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-04-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  1. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    SciTech Connect

    Pawlowska, D.; Granger, J.P.; Knox, F.G.

    1987-04-01

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, (/sup 3/H)NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine.

  2. 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors.

    PubMed

    Gao, Zhan-Guo; Mamedova, Liaman K; Chen, Peiran; Jacobson, Kenneth A

    2004-11-15

    The affinity and efficacy at four subtypes (A(1), A(2A), A(2B) and A(3)) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N(6)-position, several 2-substituents were found to be critical structural determinants for the A(3)AR activation. The following adenosine 2-ethers were moderately potent partial agonists (K(i), nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A(3)AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)adenosine as an A(3)AR antagonist right-shifted the concentration-response curve for the inhibition by NECA of cyclic AMP accumulation with a K(B) value of 212 nM, which is similar to its binding affinity (K(i) = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A(1)AR in comparison to the A(3)AR, but fully efficacious, with binding K(i) values over 100 nM. The 2-phenylethyl moiety resulted in higher A(3)AR affinity (K(i) in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (K(i) = 3.8 nM) was found to be the most potent and selective (>50-fold) A(2A) agonist in this series. Mixed A(2A)/A(3)AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A(2B)AR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC(50) = 1.4 microM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC(50) = 1.8 microM) were found to be relatively potent A(2B) agonists, although less potent than NECA (EC(50) = 140 nM). PMID:15476669

  3. A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity.

    PubMed

    Rivera-Perez, Crisalejandra; Nyati, Pratik; Noriega, Fernando G

    2015-09-01

    Farnesyl diphosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis, it catalyzes the head-to-tail condensation of dimethylallyl diphosphate (DMAPP) with two molecules of isopentenyl diphosphate (IPP) to generate farnesyl diphosphate (FPP), a precursor of juvenile hormone (JH). In this study, we functionally characterized an Aedes aegypti FPPS (AaFPPS) expressed in the corpora allata. AaFPPS is the only FPPS gene present in the genome of the yellow fever mosquito, it encodes a 49.6 kDa protein exhibiting all the characteristic conserved sequence domains on prenyltransferases. AaFPPS displays its activity in the presence of metal cofactors; and the product condensation is dependent of the divalent cation. Mg(2+) ions lead to the production of FPP, while the presence of Co(2+) ions lead to geranyl diphosphate (GPP) production. In the presence of Mg(2+) the AaFPPS affinity for allylic substrates is GPP > DMAPP > IPP. These results suggest that AaFPPS displays "catalytic promiscuity", changing the type and ratio of products released (GPP or FPP) depending on allylic substrate concentrations and the presence of different metal cofactors. This metal ion-dependent regulatory mechanism allows a single enzyme to selectively control the metabolites it produces, thus potentially altering the flow of carbon into separate metabolic pathways. PMID:26188328

  4. 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors

    PubMed Central

    Gao, Zhan-Guo; Mamedova, Liaman K.; Chen, Peiran; Jacobson, Kenneth A.

    2012-01-01

    The affinity and efficacy at four subtypes (A1, A2A, A2B and A3) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N6-position, several 2-substituents were found to be critical structural determinants for the A3AR activation. The following adenosine 2-ethers were moderately potent partial agonists (Ki, nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A3AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)a-denosine as an A3AR antagonist right-shifted the concentration–response curve for the inhibition by NECA of cyclic AMP accumulation with a KB value of 212 nM, which is similar to its binding affinity (Ki = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A1AR in comparison to the A3AR, but fully efficacious, with binding Ki values over 100 nM. The 2-phenylethyl moiety resulted in higher A3AR affinity (Ki in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (Ki = 3.8 nM) was found to be the most potent and selective (>50-fold) A2A agonist in this series. Mixed A2A/A3AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A2BAR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC50 = 1.4 µM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC50 = 1.8 (M) were found to be relatively potent A2B agonists, although less potent than NECA (EC50 = 140 nM). PMID:15476669

  5. Characterization of adenosine receptors in isolated cerebral arteries of cat.

    PubMed Central

    Edvinsson, L.; Fredholm, B. B.

    1983-01-01

    The effect of some adenosine analogues and xanthine derivatives were studied on isolated cerebral arteries from cats. The adenosine analogues caused an almost complete relaxation of cerebral arteries contracted by prostaglandin F2 alpha (PGF2 alpha, 30 microM). The order of potency was: 5-N-ethylcarboxamide adenosine (NECA) greater than 2-chloroadenosine greater than adenosine greater than L-N6-phenylisopropyl adenosine (L-PIA). The analogue D-PIA was very weak and its maximum effect was small. NECA and L-PIA enhanced [3H]-cyclic AMP accumulation in [3H]-adenine labelled feline pial vessels with similar absolute and relative potency to their relaxant effects. The relaxant effects of adenosine and of NECA were competitively antagonized by 8-phenyl-theophylline (pA2 = 6.5). The effect of theophylline and enprofylline could not be tested in higher concentrations than 30 or 10 microM because they affected the vessels directly. At these concentrations they were essentially inactive as adenosine antagonists. The non-xanthine phosphodiesterase inhibitor rolipram (0.1 and 100 microM) caused a slight but non-significant potentiation of the relaxant effect of adenosine. The results are compatible with the opinion that adenosine relaxes cerebral vessels by an action on adenosine A2-receptors. The effect may be linked to adenylate cyclase and can be antagonized by 8-phenyl-theophylline. PMID:6100842

  6. Silk polymer-based adenosine release: therapeutic potential for epilepsy.

    PubMed

    Wilz, Andrew; Pritchard, Eleanor M; Li, Tianfu; Lan, Jing-Quan; Kaplan, David L; Boison, Detlev

    2008-09-01

    Adenosine augmentation therapies (AAT) make rational use of the brain's own adenosine-based seizure control system and hold promise for the therapy of refractory epilepsy. In an effort to develop an AAT compatible with future clinical application, we developed a novel silk protein-based release system for adenosine. Adenosine releasing brain implants with target release doses of 0, 40, 200, and 1000ng adenosine per day were prepared by embedding adenosine containing microspheres into nanofilm-coated silk fibroin scaffolds. In vitro, the respective polymers released 0, 33.4, 170.5, and 819.0ng adenosine per day over 14 days. The therapeutic potential of the implants was validated in a dose-response study in the rat model of kindling epileptogenesis. Four days prior to the onset of kindling, adenosine releasing polymers were implanted into the infrahippocampal cleft and progressive acquisition of kindled seizures was monitored over a total of 48 stimulations. We document a dose-dependent retardation of seizure acquisition. In recipients of polymers releasing 819ng adenosine per day, kindling epileptogenesis was delayed by one week corresponding to 18 kindling stimulations. Histological analysis of brain samples confirmed the correct location of implants and electrodes. We conclude that silk-based delivery of around 1000ng adenosine per day is a safe and efficient strategy to suppress seizures. PMID:18514814

  7. Adenosine thallium 201 myocardial perfusion scintigraphy

    SciTech Connect

    Verani, M.S. )

    1991-07-01

    Pharmacologic coronary vasodilation as an adjunct to myocardial perfusion imaging has become increasingly important in the evaluation of patients with coronary artery disease, in view of the large number of patients who cannot perform an adequate exercise test or in whom contraindications render exercise inappropriate. Adenosine is a very potent coronary vasodilator and when combined with thallium 201 scintigraphy produces images of high quality, with the added advantages of a very short half-life (less than 10 seconds) and the ability to adjust the dose during the infusion, which may enhance safety and curtail the duration of side effects. The reported sensitivity and specificity of adenosine thallium 201 scintigraphy for the detection of coronary artery disease are high and at least comparable with imaging after exercise or dipyridamole administration. 23 refs.

  8. Adenosine Receptors: Expression, Function and Regulation

    PubMed Central

    Sheth, Sandeep; Brito, Rafael; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram

    2014-01-01

    Adenosine receptors (ARs) comprise a group of G protein-coupled receptors (GPCR) which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF)-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined. PMID:24477263

  9. Chemoelectrical energy conversion of adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  10. Effect of adenosine and adenosine analogs on ( sup 14 C)aminopyrine accumulation by rabbit parietal cells

    SciTech Connect

    Ota, S.; Hiraishi, H.; Terano, A.; Mutoh, H.; Kurachi, Y.; Shimada, T.; Ivey, K.J.; Sugimoto, T. )

    1989-12-01

    Adenosine receptors that modulate adenylate cyclase activity have been identified recently in a number of tissues. Adenosine A2 receptor is stimulatory to adenylate cyclase, whereas adenosine A1 receptor is inhibitory to adenylate cyclase. We investigated the effect of adenosine and its analogs on (14C)aminopyrine accumulation by rabbit parietal cells. Rabbit gastric mucosal cells were isolated by enzyme digestion. Parietal cells were enriched by nonlinear percoll gradients. (14C)Aminopyrine accumulation was used as an indicator of acid secretion. The effect of 2-chloroadenosine on histamine-stimulated (14C)aminopyrine accumulation was studied. The effects of N-ethylcarboxamideadenosine, 2-chloroadenosine, stable analogs of adenosine, and adenosine on (14C)aminopyrine accumulation were assessed. Cyclic AMP content of parietal cells was determined by radioimmunoassay. Histamine and carbachol, known secretagogues, stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine did not suppress histamine-stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine dose dependently increased (14C)aminopyrine accumulation. The order of potency was N-ethylcarboxamideadenosine greater than 2-chloroadenosine greater than adenosine. 8-Phenyltheophylline and theophylline, adenosine-receptor antagonists, or cimetidine did not have significant effects on the increase of AP uptake induced by 2-chloroadenosine. Coadministration of dipyridamole, and adenosine uptake inhibitor, augmented the effect of adenosine on (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine each induced a significant increase in cellular cyclic AMP. We conclude that there may be adenosine A2 receptors on rabbit parietal cells which modulate gastric acid secretion.

  11. Use of adenosine echocardiography for diagnosis of coronary artery disease

    SciTech Connect

    Zoghbi, W.A. )

    1991-07-01

    Two-dimensional echocardiography combined with exercise is sensitive and specific in the detection of coronary artery disease (CAD) by demonstrating transient abnormalities in wall motion. Frequently, however, patients cannot achieve maximal exercise because of various factors. Pharmacologic stress testing with intravenous adenosine was evaluated as a means of detecting CAD in a noninvasive manner. Patients with suspected CAD underwent echocardiographic imaging and simultaneous thallium 201 single-photon emission computed tomography during the intravenous administration of 140 micrograms/kg/min of adenosine. An increase in heart rate, decrease in blood pressure, and increase in double product were observed during adenosine administration. Initial observations revealed that wall motion abnormalities were induced by adenosine in areas of perfusion defects. The adenosine infusion was well tolerated, and symptoms disappeared within 1 to 2 minutes after termination of the infusion. Therefore preliminary observations suggest that adenosine echocardiography appears to be useful in the assessment of CAD.

  12. Measurement of plasma adenosine concentration: methodological and physiological considerations

    SciTech Connect

    Gewirtz, H.; Brown, P.; Most, A.S.

    1987-05-01

    This study tested the hypothesis that measurements of plasma adenosine concentration made on samples of blood obtained in dipyridamole and EHNA (i.e., stopping solution) may be falsely elevated as a result of ongoing in vitro production and accumulation of adenosine during sample processing. Studies were performed with samples of anticoagulated blood obtained from anesthesized domestic swine. Adenosine concentration of ultra filtrated plasma was determined by HPLC. The following parameters were evaluated: (i) rate of clearance of (/sup 3/H)adenosine added to plasma, (ii) endogenous adenosine concentration of matched blood samples obtained in stopping solution alone, stopping solution plus EDTA, and perchloric acid (PCA), (iii) plasma and erythrocyte endogenous adenosine concentration in nonhemolyzed samples, and (iv) plasma adenosine concentration of samples hemolyzed in the presence of stopping solution alone or stopping solution plus EDTA. We observed that (i) greater than or equal to 95% of (/sup 3/H)adenosine added to plasma is removed from it by formed elements of the blood in less than 20 s, (ii) plasma adenosine concentration of samples obtained in stopping solution alone is generally 10-fold greater than that of matched samples obtained in stopping solution plus EDTA, (iii) deliberate mechanical hemolysis of blood samples obtained in stopping solution alone resulted in substantial augmentation of plasma adenosine levels in comparison with matched nonhemolyzed specimens--addition of EDTA to stopping solution prevented this, and (iv) adenosine content of blood samples obtained in PCA agreed closely with the sum of plasma and erythrocyte adenosine content of samples obtained in stopping solution plus EDTA.

  13. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment

    PubMed Central

    Ohta, Akio

    2016-01-01

    Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia–adenosine pathway for cancer immunotherapy. PMID:27066002

  14. Adenosine analogs inhibit fighting in isolated male mice

    SciTech Connect

    Palmour, R.M.; Lipowski, C.J.; Simon, C.K.; Ervin, F.R.

    1989-01-01

    The potent adenosine analogs N-ethylcarboxamide adenosine (NECA) and phenylisopropyladenosine (PIA) inhibit fighting and associated agonistic behaviors in isolated male mice. These effects are reversed by methylxanthines; moderate doses of NECA which inhibit fighting have minimal effects on spontaneous locomotor activity. At very low doses, both NECA and PIA increase fighting in parallel with previously reported increases of motor activity. Brain levels of (/sup 3/H)-NECA and (/sup 3/H)-PIA achieved at behaviorally effective doses suggest an involvement of adenosine receptors. The biochemical mechanism of adenosine receptor action with respect to fighting is unknown, but may include neuromodulatory effects on the release of other, more classical neurotransmitters.

  15. Cardioprotection with adenosine: 'a riddle wrapped in a mystery'.

    PubMed

    Przyklenk, Karin; Whittaker, Peter

    2005-07-01

    Review of the published literature on adenosine and cardioprotection could lead one to paraphrase the famous words of Sir Winston Churchill (Radio broadcast, 1 October 1939 (in reference to Russia)) and conclude: 'I cannot forecast to you the action of adenosine. It is a riddle wrapped in a mystery inside an enigma'. That is, although it is well-established that adenosine can render cardiomyocytes resistant to lethal ischemia/reperfusion-induced injury, new and intriguing insights continue to emerge as to the mechanisms by which adenosine might limit myocardial infarct size. PMID:15895103

  16. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment.

    PubMed

    Ohta, Akio

    2016-01-01

    Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia-adenosine pathway for cancer immunotherapy. PMID:27066002

  17. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat

    PubMed Central

    Ozacmak, V Haktan; Sayan, Hale

    2007-01-01

    AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury. METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase, malondialdehyde, and reduced glutathione levels were measured. RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist. CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content. PMID:17278219

  18. The molecular mechanism of ion-dependent gating in secondary transporters.

    PubMed

    Zhao, Chunfeng; Noskov, Sergei Yu

    2013-10-01

    LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method) followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5). The Potential of Mean Force (PMF) computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable than that to the site S2 for all studied bound combinations of ions and a substrate. PMID:24204233

  19. Voltage and ion dependences of the slow currents which mediate bursting in Aplysia neurone R15.

    PubMed

    Adams, W B; Levitan, I B

    1985-03-01

    The previous paper described a slow depolarizing tail current, ID, and a slow hyperpolarizing tail current, IH, that are activated by action potentials and by brief depolarizing pulses in Aplysia neurone R15. ID and IH are necessary for the generation of bursting pace-maker activity in this cell. In this paper, the voltage and ion dependence of ID and IH are studied in an effort to determine the charge carriers for the two currents. When the slow currents are activated by brief depolarizing pulses delivered under voltage clamp in normal medium, an increase in the size of the pulse of 5-10 mV is usually sufficient to bring about full activation of ID. The apparent threshold in normal medium is approximately -20 mV. In medium in which K+ channels are blocked, full activation of an inward tail current that resembles ID requires increasing the pulse amplitude by only 1-2 mV. In contrast, IH is activated in a graded fashion over a 40 mV range of pulse amplitudes. After activating the currents with action potentials or with supramaximal pulses, ID remains an inward current and IH an outward current over a range of membrane potentials spanning -20 to -120 mV. In normal medium, ID is dependent on both extracellular Na+ concentration ( [Na+]o) and extracellular Ca2+ concentration ( [Ca2+]o). When K+ channels are blocked, ID can be supported by either [Na+]o or [Ca2+]o. IH depends only on [Ca2+]o as long as [Na+]o is at least 50 mM. Neither ID nor IH is decreased by decreasing the K+ gradient or by application of K+ channel blockers. These treatments increase somewhat the apparent amplitude of ID, probably by unmasking it from the large K+ tail current that follows the depolarizing pulse. A direct comparison in the same cell of the tetraethylammonium sensitivity of IH and of the Ca2+-activated K+ current demonstrates that these two currents flow through separate and distinct populations of channels. We conclude that in R15, ID arises in response to the triggering of an axonal action potential which in turn, through an as yet unknown mechanism, causes an increased influx of Na+ and/or Ca2+. We conclude that the apparent outward current IH, which is responsible for the interburst hyperpolarization in a normally bursting R15, in fact arises from a decrease in a resting inward Ca2+ current, possibly as the result of Ca2+-induced inactivation of Ca2+ channels. PMID:2580972

  20. Introduction to Adenosine Receptors as Therapeutic Targets

    PubMed Central

    Jacobson, Kenneth A.

    2012-01-01

    Adenosine acts as a cytoprotective modulator in response to stress to an organ or tissue. Although short-lived in the circulation, it can activate four sub-types of G protein-coupled adenosine receptors (ARs): A1, A2A, A2B, and A3. The alkylxanthines caffeine and theophylline are the prototypical antagonists of ARs, and their stimulant actions occur primarily through this mechanism. For each of the four AR subtypes, selective agonists and antagonists have been introduced and used to develop new therapeutic drug concepts. ARs are notable among the GPCR family in the number and variety of agonist therapeutic candidates that have been proposed. The selective and potent synthetic AR agonists, which are typically much longer lasting in the body than adenosine, have potential therapeutic applications based on their anti-inflammatory (A2A and A3), cardioprotective (preconditioning by A1 and A3 and postconditioning by A2B), cerebroprotective (A1 and A3), and antinociceptive (A1) properties. Potent and selective AR antagonists display therapeutic potential as kidney protective (A1), antifibrotic (A2A), neuroprotective (A2A), and antiglaucoma (A3) agents. AR agonists for cardiac imaging and positron-emitting AR antagonists are in development for diagnostic applications. Allosteric modulators of A1 and A3 ARs have been described. In addition to the use of selective agonists/antagonists as pharmacological tools, mouse strains in which an AR has been genetically deleted have aided in developing novel drug concepts based on the modulation of ARs. PMID:19639277

  1. Adenosine: Tipping the balance towards hepatic steatosis and fibrosis

    PubMed Central

    Robson, Simon C.; Schuppan, Detlef

    2010-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the histochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5?-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:20395005

  2. Nitrogen and phosphorus leaching as affected by gypsum amendment and exchangeable calcium and magnesium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The movement of N and P from the soil by leaching contributes to losses from agricultural land and represents an important environmental and human health concern. The objective of this study was to evaluate the effect of gypsum amendment and the resultant impact of different levels of exchangeable C...

  3. Effect of Calcium and Magnesium on Phosphatidylserine Membranes: Experiments and All-Atomic Simulations

    PubMed Central

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-01-01

    It is known that phosphatidylserine (PS−) lipids have a very similar affinity for Ca2+ and Mg2+ cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca2+ or Mg2+ induces very different aggregation behavior for PS− liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca2+ or Mg2+ cations. These puzzling results suggest that although these two cations have a similar affinity for PS− lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS− membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca2+ and Mg2+ cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca2+ cations present a peak at a distance ∼2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg2+ cations has two different peaks, located a few angstroms before and after the Ca2+ peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca2+ and Mg2+, respectively. PMID:22824273

  4. Nitrate Absorption and Assimilation in Ryegrass as Influenced by Calcium and Magnesium 1

    PubMed Central

    Morgan, M. A.; Jackson, W. A.; Volk, R. J.

    1972-01-01

    The absorption and assimilation patterns of 15NO3− supplied as the Ca2+ and Mg2+ salts to intact ryegrass (Lolium perenne) seedlings were compared. No statistically significant effect of ambient cation on the amounts of 15NO3− absorbed was observed in the initial six hours, but during the subsequent six hours, absorption from Ca(15NO3)2 exceeded that from Mg (15NO3)2. Lower rates of 15NO3− assimilation were found in roots exposed to Mg(15NO3)2 than in those exposed to Ca(15NO3)2. It was proposed that Mg2+ initiated a restriction in 15NO3− reduction in roots, probably as a consequence of a Mg2+-induced physiological Ca2+ deficiency. Lower 15N translocation rates were also observed from Mg(15NO3)2. These effects of Mg2+ in depressing 15NO3− assimilation and translocation occurred prior to an effect on 15NO3− uptake. In shoots, larger amounts of reduced 15N products occurred with Ca(15NO3)2 than with Mg(15NO3)2. It was concluded that this was due to enhanced translocation of 15NO3− (and possibly its reduced products) in presence of Ca2+ rather than to specific cation effects on 15NO3− assimilation in the shoots. PMID:16658201

  5. Decadal changes in potassium, calcium, and magnesium in a deciduous forest soil

    SciTech Connect

    Mulholland, Patrick J; Johnson, Dale W.; Todd Jr, Donald E; Trettin, Carl

    2008-01-01

    Decadal changes in soil exchangeable K{sup +}, Ca{sup 2+}, and Mg{sup 2+} concentrations and contents from 1972 to 2004 in eight intensively monitored plots on Walker Branch Watershed were compared with estimates of increments or decrements in vegetation and detritus. The results from these eight plots compared favorably with those from a more extensive set from 24 soil sampling plots sampled in 1972 and 2004. Increases in exchangeable K{sup +} were noted between 1972 and 1982, but few changes were noted between 1982 and 2004 despite significant increments in vegetation and detritus and significant potential losses by leaching. Total K contents of soils in the 0- to 60-cm sampling depth were very large and a slight amount of weathering could have replenished the K{sup +} lost from exchanges sites. With one notable exception, exchangeable Ca{sup 2+} and Mg{sup 2+} concentrations and contents decreased continuously during the sampling period. Decreases in exchangeable Ca{sup 2+} could be attributed mostly to increments in biomass and detritus, whereas decreases in exchangeable Mg{sup 2+} could not and were attributed to leaching. The major exception to these patterns was in the case of exchangeable Ca{sup 2+}, where significant increases were noted in one plot and attributed to Ca release from the decomposition of Ca-rich coarse woody debris from oak (Quercus spp.) mortality. With minor exceptions, soils and changes in soils among the eight intensively sampled core plots were similar to those in a more extensive set of plots distributed across the watershed. This study shows that averaging among plots can mask significant and important spatial patterns in soil change that must be taken into account in assessing long-term trends.

  6. Calcium and Magnesium Self-Diffusion in Natural Diopside Single Crystals

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Ganguly, J.; Ito, M.; Hervig, R. L.

    2006-12-01

    Clinopyroxenes in slowly cooled igneous rocks in both planetary and terrestrial environments (e.g. lunar basalts, layered igneous intrusives) commonly show exsolution lamellae of augite and pigeonite (which may be inverted to orthopyroxene) normal to the c-axis. The Ca-Mg-Fe zoning and thickness of these lamellae depend on the cooling rate of the host rock. This can be retrieved if the self-diffusion data for these cations are available. We have, thus, been engaged in systematic experimental studies to determine self-diffusion coefficients of divalent cations and report recent results on Ca and Mg. Gem quality diopside single crystals were oriented in a four-circle X ray diffractometer and cut as thin slabs normal to the c, b and a* axial directions. The cut pieces were polished, then the polished slabs were pre- annealed for 1-2 days at or close to experimental temperature and oxygen fugacity conditions. The source materials for Mg and Ca diffusion, which were ^{26}MgO or 44CaO powders, respectively, were deposited on the polished surfaces by thermal evaporation in an evacuated chamber. The diffusion experiments were conducted at 1 bar pressure at 950-1100 °C in a vertical tube-furnace. The oxygen fugacity was imposed by a computer controlled flowing mixture of CO and CO2, with a mixing ratio corresponding to the f (O2) of the wustite-iron buffer. The induced diffusion profiles were measured by Secondary Ion Mass Spectrometry, and modeled by either thin film source or constant surface solutions for one-dimensional diffusion. The choice of the appropriate model was dictated by the criteria of better fit to the experimental data. Our results show that diffusion in diopside is anisotropic with the fastest diffusion parallel to c- and slowest diffusion parallel to a*-axis, with D(//c) ~ 2D(//a*). D(Mg) is slightly faster than D(Ca) but are ~ an order magnitude faster than the D(Ca) determined by Dimanov (1996). The activation energy for diffusion of Ca parallel to the c-axis is ~ 350 kJ/mol. These results will be updated with additional experimental data and applied to the modeling of exsolution processes in natural clinopyroxenes.

  7. Effects of boron supplements on bones from rats fed calcium and magnesium deficient diets

    SciTech Connect

    McCoy, H.; Irwin, A.; Kenney, M.A.; Williams, L. )

    1991-03-15

    Sixty female, weanling rats were fed, for 6 wks, diets providing: casein, 20; CHO, 40; fat, 40. Vitamins and minerals, except Ca and Mg, were fed according to AIN'76 recommendations. Gp A (control) was fed 100% AIN Ca, Mg and P with no boron (B) added. Gps CD and CD+B were fed 30% AIN Ca and 100% AIN Mg and P; Gps MD and MD+B were fed 20% AIN Mg and 100% AIN Ca and P; Gps CMD and CMD+B were fed 20% AIN Mg, 30% AIN Ca and 100% AIN P. The +B groups were supplemented with B at 12 mcg/g diet. Femurs (F) and 2 vertebrae (V) were scraped clean, weighed, sealed in saline-wet gauze, and refrigerated overnight. Bones were equilibrated at {sup {approximately}}25C. F lengths and diameters at the breakpoint were measured before a 3-point flexure test. V were subjected to a compression test. Maximum force (kg) at breakpoint was recorded. Data for right and left F and for 2 V were pooled. Although DIET' (CD, MD, CMD) affected numerous characteristics of F and V, B supplementation of diets affected only % moisture in F, Ca concentration in dry F and in F ash for CD and CMD diets. Interactions between B and diet affected F Mg concentrations in bone and in ash. Group CMD+B had higher Mg/g F than CMD. B increased Mg/g ash for CMD, decreased it for CD and did not affect it for MD.

  8. Comparison of serum copper, zinc, calcium, and magnesium levels in preeclamptic and healthy pregnant women.

    PubMed

    Kumru, Selahattin; Aydin, Suleyman; Simsek, Mehmet; Sahin, Kazim; Yaman, Mehmet; Ay, Gul

    2003-08-01

    Deficient or excessive levels of blood trace elements can be an adverse factor in human and animal pregnancy. The aim of this study was to investigate possible differences in the levels of serum magnesium, calcium, copper, and zinc in preeclamptic and healthy pregnant women. Samples were collected from 30 preeclamptic (PE) and 30 healthy pregnant (HP) women. The serum copper concentration was significantly lower in the PE group by 68% (p<0.0001) when compared to the healthy controls. The serum zinc and calcium were 43% and 10% lower in the PE women, respectively (both with p<0.0001), whereas the magnesium concentration showed nonsignificant differences between the two groups. Measurement of these elements may be useful for the early diagnosis of a preeclamptic condition. PMID:12958401

  9. Calcium and magnesium transport by in situ mitochondria: electron probe analysis of vascular smooth muscle

    SciTech Connect

    Broderick, R.; Somlyo, A.P.

    1987-10-01

    The extent, time course, and reversibility of mitochondrial Ca/sup 2 +/ uptake secondary to cellular Ca/sup 2 +/ influx stimulated by massive Na+ efflux were evaluated by electron probe microanalysis of rabbit portal vein smooth muscle. Strips of portal vein were Na+ loaded for 3 hours at 37/sup 0/C in a K+-free 1 mM ouabain solution, after which rapid Na+ efflux was induced by washing with a Na+-free K+-Li+ solution (1 mM ouabain). Li+ washing Na+-loaded portal vein produced a large transient contraction accompanied by an increase (over 100-fold) in mitochondrial Ca/sup 2 +/ and also significant (p less than 0.05) increases in phosphorus and Mg/sup 2 +/. The Ca/sup 2 +/ loading of the mitochondria was reversed during prolonged Li+ wash, and by 2 hours, mitochondrial Ca/sup 2 +/, Mg/sup 2 +/, and phosphorus had returned to control levels. The maximal contractile response to stimulation remained normal, demonstrating that pathologic Ca/sup 2 +/ loading of mitochondria is reversible in situ and compatible with normal maximal force developed by the smooth muscle. Mitochondrial Ca/sup 2 +/ and phosphorus uptake were reduced but still significant when the Li+ wash contained 0.2 mM Ca/sup 2 +/ or when ouabain was omitted. The fact that mitochondrial Ca/sup 2 +/ loading accompanied submaximal contractions during 0.2 mM Ca/sup 2 +/-Li wash suggests supranormal affinity of mitochondria for Ca/sup 2 +/ and may be due, in part, to reverse operation of the mitochondrial Na+-Ca/sup 2 +/ exchanger. Mitochondrial Ca/sup 2 +/, Mg/sup 2 +/, and phosphorus uptake were eliminated when the Li+ wash was performed at 2/sup 0/C or when the wash contained no Ca/sup 2 +/.

  10. Effect of iron deficiency on the digestive utilization of iron, phosphorus, calcium and magnesium in rats.

    PubMed

    Pallarés, I; Lisbona, F; Aliaga, I L; Barrionuevo, M; Alférez, M J; Campos, M S

    1993-09-01

    The influence of the source of dietary Fe (ferric citrate alone or mixed with bovine blood at a proportion of 1:1 (v/v)) on the digestive utilization of Fe, P, Ca and Mg, and on haemoglobin regeneration efficiency (HRE) was investigated in control and Fe-deficient rats. Diet A contained (by analysis) 43.5 mg Fe/kg diet (as ferric citrate), and diet B contained 44.3 mg Fe/kg diet (ferric citrate-bovine blood). In Fe-deficient rats fed on diet A or B the apparent digestibility coefficient (ADC) of Fe increased by 42.3 and 45.7% respectively. The ADC of Ca and Mg decreased significantly in Fe-deficient rats regardless of the source of dietary Fe. The HRE increased by 72.9% in Fe-deficient rats fed on diet A, and by 91.1% in Fe-deficient animals fed on diet B. In Fe-deficient rats fed on Fe for 10 d the values of haematological variables approached normality. However, serum Fe remained low, indicating that Fe reserves were still depleted. A deficient dietary supply of Fe for 30 d did not significantly modify the numbers of circulating leucocytes. PMID:8260485

  11. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    NASA Astrophysics Data System (ADS)

    Fernández-Sanjurjo, M. J.; Alvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Marcos, M. L.; Romar-Gasalla, A.

    2014-12-01

    The objective of this work was to study nutrients release from two compressed nitrogen-potassium-phosphorous (NPK) fertilizers. In the Lourizán Forest Center, tablet-type controlled-release fertilizers (CRF) were prepared by compressing various mixtures of fertilizers without covers or binders. We used soil columns (50 cm long and 7.3 cm inner diameter) that were filled with soil from the surface layer (0-20 cm) of an A horizon corresponding to a Cambic Umbrisol. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil (within the first 3 cm), and then water was percolated through the columns in a saturated regime for 80 days. Percolates were analyzed for N, P, K+, Ca2+ and Mg2+. These elements were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first leachates and reached a steady state when 1426 mm of water had been percolated, which is equivalent to approximately 1.5 years of rainfall in this geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K+, Ca2+ and Mg2+ were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with a composition of 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident, with a significant increase of pH, available Ca2+, Mg2+, K+, P and effective cation exchange capacity (eCEC) in the fertilized columns, as well as a significant decrease in exchangeable Al3+, reaching values < 0.08 cmol (+) kg-1.

  12. Factors affecting ex-situ aqueous mineral carbonation using calcium and magnesium silicate minerals

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin, David C.; O'Connor, William K.; Penner, Larry R.; Rush, G.E.

    2004-01-01

    Carbonation of magnesium- and calcium-silicate minerals to form their respective carbonates is one method to sequester carbon dioxide. Process development studies have identified reactor design as a key component affecting both the capital and operating costs of ex-situ mineral sequestration. Results from mineral carbonation studies conducted in a batch autoclave were utilized to design and construct a unique continuous pipe reactor with 100% recycle (flow-loop reactor). Results from the flow-loop reactor are consistent with batch autoclave tests, and are being used to derive engineering data necessary to design a bench-scale continuous pipeline reactor.

  13. Experimental study of aluminum-, calcium-, and magnesium-acetate complexing at 80 degree C

    SciTech Connect

    Fein, J.B. )

    1991-04-01

    The stabilities of Al-, Ca-, and Mg-acetate complexes were determined separately at 80{degree}C by measuring the solubilities of gibbsite, portlandite, and brucite as functions of acetate concentrations. The experiments were conducted using geologically realistic acetate concentrations in order to observe the acetate complexes that are important in sedimentary basin fluids. The experimental measurements are used to calculate the stoichiometries and thermodynamic properties of the important Al-, Ca-, and Mg-acetate complexes. The data indicate that Al(OAc){sup 2+} and Al(OAc){sup +}{sub 2} are the important Al-acetate complexes in the gibbsite system. Ca(OAc){sup +} and Mg(OAc){sup +} are the dominant acetate complexes in the portlandite and the brucite systems, respectively. The calculated values of the log of the dissociation constants for Al(OAc){sup +}{sub 2}, Al (OAc){sup 2+}, Ca(OAc){sup +}, and Mg(OAc){sup +} are -4.8 {plus minus} 0.2, -2.9 {plus minus} 0.1, -1.2 {plus minus} 0.2, and -1.3 {plus minus} 0.3, respectively. Thermodynamic models that incorporate these results indicate that the presence of acetate in sedimentary basin fluids can not markedly enhance rock porosity through mineral dissolution.

  14. Renal calcium and magnesium excretion during vasopressin administration into sheep with acid or alkaline urine.

    PubMed Central

    Beal, A M

    1979-01-01

    1. The proposition that changes in renal calcium excretion during vasopressin administration are positively correlated with concurrent changes in urine hydrogen ion concentration was tested by administration of vasopressin into twelve conscious diuresing sheep receiving either alkalinizing or acidifying infusions. 2. Vasopressin-induced antidiuresis in sheep with alkaline urine was associated with significant increases in urinary pH and decreases in the rate of calcium excretion whereas antidiuresis in sheep with acid urine was associated with significant decreases in urinary pH and no consistent effect on calcium excretion. 3. Magnesium excretion increased during vasopressin administration in most experiments regardless of urinary pH changes. 4. Vasopressin administration did not significantly alter the rate of excretion of sodium, potassium, chloride and phosphate or the rates of sodium, potassium, chloride, inulin, para-aminohippurate and osmolal clearance in sheep with either acid or alkaline urine. Potassium excretion and clearance in sheep with alkaline ruine was higher than that of sheep with acid urine during vasopressin infusion. 5. The results support the hypothesis that changes in renal tubular hydrogen ion concentration or bicarbonate concentration caused by water reabsorption from the collecting duct and possibly the late distal tubule could be part of the explanation for changes in renal calcium excretion which occur during vasopressin-induced antidiuresis. PMID:41939

  15. Relationship of Cotton Fiber Calcium and Magnesium Contents on Dye Uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton from a single bale was processed into knit fabrics and prepared for dyeing. Following scouring, fabrics were soaked in either a metal sequestering solution or a water solution, bleached and dyed using 5 dye shades from both reatice and direct dye classes. Results indicate that removal of re...

  16. Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells.

    PubMed

    Grossardt, Christian; Ewald, Andrea; Grover, Liam M; Barralet, Jake E; Gbureck, Uwe

    2010-12-01

    Biocements are clinically applied materials for bone replacement in non-load-bearing defects. Depending on their final composition, cements can be either resorbed or remain stable at the implantation site. Degradation can occur by two different mechanisms, by simple dissolution (passive) or after osteoclastic bone remodeling (active). This study investigated both the passive and active in vitro resorption behavior of brushite (CaHPO₄ · 2H₂O), monetite (CaHPO₄), calcium-deficient hydroxyapatite (CDHA; Ca₉(PO₄)₅HPO₄OH), and struvite (MgNH₄PO₄ · 6H₂O) cements. Passive resorption was measured by incubating the cement samples in a cell culture medium, whereas active resorption was determined during the surface culture of multinuclear osteoclastic cells derived from RAW 264.7 macrophages. Osteoclast formation was confirmed by showing tartrate resistant acid phosphatase (TRAP) activity on CDHA, brushite, and monetite surfaces, as well as by measuring calcitonin receptor (CT-R) expression as an osteoclast-specific protein by Western blot analysis for struvite ceramics. An absence of passive degradation and only marginally active degradation of <0.01% were found for CDHA matrices. For the secondary calcium phosphates brushite and monetite, active degradation was predominant with a cumulative Ca²+ release of 2.02 (1.20) μmol during 13 days, whereas passive degradation released only 0.788 (0.04) μmol calcium ions into the medium. The struvite cement was the most degradable with a passive (active) release of 9.26 (2.92) Mg²+ ions and a total weight loss of 4.7% over 13 days of the study. PMID:20673025

  17. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    NASA Astrophysics Data System (ADS)

    Fernndez-Sanjurjo, M. J.; Alvarez-Rodrguez, E.; Nez-Delgado, A.; Fernndez-Marcos, M. L.; Romar-Gasalla, A.

    2014-07-01

    We used soil columns to study nutrients release from two compressed NPK fertilizers. The columns were filled with soil material from the surface horizon of a granitic soil. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil, and then water was percolated through the columns in a saturated regime. Percolates were analyzed for N, P, K, Ca and Mg. These nutrients were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first percolates, reaching a steady state when 1426 mm water have percolated, which is equivalent to approximately 1.5 years of rainfall in the geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K, Ca and Mg were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with composition 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident.

  18. Comorbidities in Neurology: Is adenosine the common link?

    PubMed

    Boison, Detlev; Aronica, Eleonora

    2015-10-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the 'adenosine hypothesis of comorbidities' implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic 'comorbidity model', in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain co-morbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  19. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence

    PubMed Central

    Jing, Lili; Tamplin, Owen J.; Chen, Michael J.; Deng, Qing; Patterson, Shenia; Kim, Peter G.; Durand, Ellen M.; McNeil, Ashley; Green, Julie M.; Matsuura, Shinobu; Ablain, Julien; Brandt, Margot K.; Schlaeger, Thorsten M.; Huttenlocher, Anna; Daley, George Q.; Ravid, Katya

    2015-01-01

    Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1+/cmyb+ HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl+ hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP–protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates. PMID:25870200

  20. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence.

    PubMed

    Jing, Lili; Tamplin, Owen J; Chen, Michael J; Deng, Qing; Patterson, Shenia; Kim, Peter G; Durand, Ellen M; McNeil, Ashley; Green, Julie M; Matsuura, Shinobu; Ablain, Julien; Brandt, Margot K; Schlaeger, Thorsten M; Huttenlocher, Anna; Daley, George Q; Ravid, Katya; Zon, Leonard I

    2015-05-01

    Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1(+)/cmyb(+) HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl(+) hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP-protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates. PMID:25870200

  1. Adenosine: Essential for life but licensed to kill

    PubMed Central

    Gama, Vivian; Deshmukh, Mohanish

    2016-01-01

    In this issue of Molecular Cell, Long et al. (Long et al., 2013) report a cell death priming mechanism activated by p53 that senses extracellular adenosine accumulated following chemotherapy or hypoxia, providing a novel connection between adenosine signaling and apoptosis. PMID:25884366

  2. Norepinephrines effect on adenosine transport in the proximal straight tubule

    SciTech Connect

    Barfuss, D.W.; McCann, W.P.; Katholi, R.E.

    1986-03-01

    The effect of norepinephrine on C/sup 14/-adenosine transport in the rabbit proximal tubule (S/sub 2/) was studied. The transepithelial transport of adenosine (0.02 mM0 from lumin to bathing solution was measured by its rate of appearance (J/sub A/) in the bathing solution and by its disappearances (J/sub D/) from the luminal fluid. Norepinephrine (0.24 ..mu..M) was added to the bathing solution after a control flux period. After three samples from the experiment period the tubules were quickly harvested and the cellular concentration of C/sup 14/-adenosine was determined. The high cellular adenosine concentration and th marked difference in adenosine appearance rate in the bathing solution compared to the luminal disappearance rate indicates the absorbed adenosine is trapped in the cells. This trapping may be due to adenosine metabolism or difficulty of crossing the basolateral membrane. Whichever is the case, norepinephrine appears to stimulate movement of adenosine or its metabolites into the bathing solution across the basolateral membrane.

  3. Different mechanisms of extracellular adenosine accumulation by reduction of the external Ca(2+) concentration and inhibition of adenosine metabolism in spinal astrocytes.

    PubMed

    Eguchi, Ryota; Akao, Sanae; Otsuguro, Ken-ichi; Yamaguchi, Soichiro; Ito, Shigeo

    2015-05-01

    Extracellular adenosine is a neuromodulator in the central nervous system. Astrocytes mainly participate in adenosine production, and extracellular adenosine accumulates under physiological and pathophysiological conditions. Inhibition of intracellular adenosine metabolism and reduction of the external Ca(2+) concentration ([Ca(2+)]e) participate in adenosine accumulation, but the precise mechanisms remain unclear. This study investigated the mechanisms underlying extracellular adenosine accumulation in cultured rat spinal astrocytes. The combination of adenosine kinase and deaminase (ADK/ADA) inhibition and a reduced [Ca(2+)]e increased the extracellular adenosine level. ADK/ADA inhibitors increased the level of extracellular adenosine but not of adenine nucleotides, which was suppressed by inhibition of equilibrative nucleoside transporter (ENT) 2. Unlike ADK/ADA inhibition, a reduced [Ca(2+)]e increased the extracellular level not only of adenosine but also of ATP. This adenosine increase was enhanced by ENT2 inhibition, and suppressed by sodium polyoxotungstate (ecto-nucleoside triphosphate diphosphohydrolase inhibitor). Gap junction inhibitors suppressed the increases in adenosine and adenine nucleotide levels by reduction of [Ca(2+)]e. These results indicate that extracellular adenosine accumulation by ADK/ADA inhibition is due to the adenosine release via ENT2, while that by reduction of [Ca(2+)]e is due to breakdown of ATP released via gap junction hemichannels, after which ENT2 incorporates adenosine into the cells. PMID:26003082

  4. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  5. An adenosine kinase inhibitor, ABT-702, inhibits spinal nociceptive transmission by adenosine release via equilibrative nucleoside transporters in rat.

    PubMed

    Otsuguro, Ken-ichi; Tomonari, Yuki; Otsuka, Saori; Yamaguchi, Soichiro; Kon, Yasuhiro; Ito, Shigeo

    2015-10-01

    Adenosine kinase (AK) inhibitor is a potential candidate for controlling pain, but some AK inhibitors have problems of adverse effects such as motor impairment. ABT-702, a non-nucleoside AK inhibitor, shows analgesic effect in animal models of pain. Here, we investigated the effects of ABT-702 on synaptic transmission via nociceptive and motor reflex pathways in the isolated spinal cord of neonatal rats. The release of adenosine from the spinal cord was measured by HPLC. ABT-702 inhibited slow ventral root potentials (sVRPs) in the nociceptive pathway more potently than monosynaptic reflex potentials (MSRs) in the motor reflex pathway. The inhibitory effects of ABT-702 were mimicked by exogenously applied adenosine, blocked by 8CPT (8-cyclopentyl-1,3-dipropylxanthine), an adenosine A1 receptor antagonist, and augmented by EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), an adenosine deaminase (ADA) inhibitor. Equilibrative nucleoside transporter (ENT) inhibitors reversed the effects of ABT-702, but not those of adenosine. ABT-702 released adenosine from the spinal cord, an effect that was also reversed by ENT inhibitors. The ABT-702-facilitated release of adenosine by way of ENTs inhibits nociceptive pathways more potently than motor reflex pathways in the spinal cord via activation of A1 receptors. This feature is expected to lead to good analgesic effects, but, caution may be required for the use of AK inhibitors in the case of ADA dysfunction or a combination with ENT inhibitors. PMID:26066576

  6. Synthesis and biological evaluation of adenosines with heterobicyclic and polycyclic N(6)-substituents as adenosine A(1) receptor agonists.

    PubMed

    Gosling, Joshua I; Baker, Stephen P; Haynes, John M; Kassiou, Michael; Pouton, Colin W; Warfe, Lyndon; White, Paul J; Scammells, Peter J

    2012-07-01

    A concise synthesis of a series of N(6)-substituted adenosines with bicyclo[3.2.1]octan-6-yl and polycyclic N(6)-substituents has been developed. The adenosine A(1) receptor (A(1)R) affinity and potency of these compounds was initially assessed using competitive binding assays and cyclic adenosine monophosphate (cAMP) accumulation assays in DDT(1) MF-2 cells. The potency and receptor subtype selectivity of selected examples was further evaluated by measuring their effects on cAMP accumulation at all human adenosine receptor subtypes expressed in CHO cells. The results of these assays indicated that all of the synthesised N(6)-substituted adenosines are full agonists at A(1) R and activate this receptor selectively over the other adenosine receptor subtypes. The two standout compounds in terms of potency were N(6)-(3-thiabicyclo[3.2.1]octan-6-yl)adenosine and N(6)-(cubanylmethyl)adenosine with EC(50) values at human A(1)R of 2.3 nM and 1.1 nM, respectively. The cubanylmethyl derivative in particular proved to be highly receptor subtype selective. These two compounds were further evaluated in a simulated ischaemia model in cultured cardiomyoblasts, where they were found to impart protective effects under hypoxic conditions that resulted in a significant reduction in cell death. PMID:22684887

  7. Chaperoning of the A1-adenosine receptor by endogenous adenosine - an extension of the retaliatory metabolite concept.

    PubMed

    Kusek, Justyna; Yang, Qiong; Witek, Martin; Gruber, Christian W; Nanoff, Christian; Freissmuth, Michael

    2015-01-01

    Cell-permeable orthosteric ligands can assist folding of G protein-coupled receptors in the endoplasmic reticulum (ER); this pharmacochaperoning translates into increased cell surface levels of receptors. Here we used a folding-defective mutant of human A1-adenosine receptor as a sensor to explore whether endogenously produced adenosine can exert a chaperoning effect. This A1-receptor-Y(288)A was retained in the ER of stably transfected human embryonic kidney 293 cells but rapidly reached the plasma membrane in cells incubated with an A1 antagonist. This was phenocopied by raising intracellular adenosine levels with a combination of inhibitors of adenosine kinase, adenosine deaminase, and the equilibrative nucleoside transporter: mature receptors with complex glycosylation accumulated at the cell surface and bound to an A1-selective antagonist with an affinity indistinguishable from the wild-type A1 receptor. The effect of the inhibitor combination was specific, because it did not result in enhanced surface levels of two folding-defective human V2-vasopressin receptor mutants, which were susceptible to pharmacochaperoning by their cognate antagonist. Raising cellular adenosine levels by subjecting cells to hypoxia (5% O2) reproduced chaperoning by the inhibitor combination and enhanced surface expression of A1-receptor-Y(288)A within 1 hour. These findings were recapitulated for the wild-type A1 receptor. Taken together, our observations document that endogenously formed adenosine can chaperone its cognate A1 receptor. This results in a positive feedback loop that has implications for the retaliatory metabolite concept of adenosine action: if chaperoning by intracellular adenosine results in elevated cell surface levels of A1 receptors, these cells will be more susceptible to extracellular adenosine and thus more likely to cope with metabolic distress. PMID:25354767

  8. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells.

    PubMed

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-01-01

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5'-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a 'calm down' signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001. PMID:24668173

  9. Identification of possible adenosine receptors in vascular smooth muscle

    SciTech Connect

    Doctrow, S.R.

    1985-01-01

    Adenosine is a vasodilator and has been implicated in increased blood flow in tissues that undergo energy deficiency. During conditions such as hypoxia and ischemia, adenosine is produced and is said to increase blood flow by relaxing the vascular smooth muscle (VSM) lining the resistance vessels. The goal of this research was to identify receptors that might be responsible for adenosine-mediated VSM relaxation. When an insoluble fraction from calf aortic VSM was incubated with /sup 32/P-ATP, two components were phosphorylated. One was identified as myosin light chain by MW, pl, and immunoprecipitation. The other product was identified as phosphatidylinositol-4-phosphate (DPI) by tic. Both phosphorylations were inhibited by adenosine and by 5'-chloro-5'-deoxyadenosine (Cl-Ado). DPI production was much more sensitive to the nucleosides than was myosin phosphorylation. Neither inhibition involved change in cAMP production. Phosphatidylinositol (Pl) kinase in the VSM membranes required magnesium, was activated and solubilized by Triton X-100, and phosphorylated both endogenous and exogenous Pl. Cl-Ado inhibited Pl kinase in a manner competitive with respect to ATP and noncompetitive with respect to Pl. Adenosine and adenosine analogs modified in the ribose ring were inhibitors with potencies comparable to that of Cl-Ado. Adenine nucleotides and purine-modified adenosine analogs were weaker inhibitors than Cl-Ado.

  10. Increased Cortical Extracellular Adenosine Correlates with Seizure Termination

    PubMed Central

    Van Gompel, Jamie J.; Bower, Mark R.; Worrell, Gregory A.; Stead, Matt; Chang, Su-Youne; Goerss, Stephan J.; Kim, Inyong; Bennet, Kevin E.; Meyer, Fredric B.; Marsh, W. Richard; Blaha, Charles D.; Lee, Kendall H.

    2014-01-01

    Objective Seizures are currently defined by their electrographic features. However, neuronal networks are intrinsically dependent upon neurotransmitters of which little is known regarding their peri-ictal dynamics. Evidence supports adenosine as having a prominent role in seizure termination, as its administration can terminate and reduce seizures in animal models. Further, microdialysis studies in humans suggest adenosine is elevated peri-ictally, but the relationship to the seizure is obscured by its temporal measurement limitations. Because electrochemical techniques can provide vastly superior temporal resolution, we test the hypothesis that extracellular adenosine concentrations rise during seizure termination in an animal model and humans using electrochemistry. Methods White farm swine (n=45) were used in an acute cortical model of epilepsy and 10 human epilepsy patients were studied during intraoperative electrocorticography (Ecog). Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) based fast scan cyclic voltametry (FSCV) and fixed potential amperometry were obtained utilizing an adenosine specific triangular waveform or biosensors respectively. Results Simultaneous Ecog and electrochemistry demonstrated an average adenosine rise of 260% compared to baseline at 7.5 ± 16.9 seconds with amperometry (n=75 events) and 2.6 ± 11.2 seconds with FSCV (n=15 events) prior to electrographic seizure termination. In agreement with these animal data, adenosine elevation prior to seizure termination in a human patient utilizing FSCV was also seen. Significance Simultaneous Ecog and electrochemical recording supports the hypothesis that adenosine rises prior to seizure termination, suggesting that adenosine itself may be responsible for seizure termination. Future work using intraoperative WINCS based FSCV recording may help to elucidate the precise relationship between adenosine and seizure termination. PMID:24483230

  11. Adenosine deaminase in disorders of purine metabolism and in immune deficiency

    SciTech Connect

    Tritsch, G.L.

    1985-01-01

    This book consists of five parts and a section of poster papers. Some of the selection titles are: Adenosine Deaminase Impairment and Ribonucleotide Reductase in Human Cells; Adenosine Deaminase and Malignant Cells; Inhibition of Adenosine Deaminase to Increase the Antitumor Activity of Adenine Nucleoside Analogues; and Molecular Biology of the Adenosine Deaminase Gene and Messenger RNA.

  12. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  13. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety.

    PubMed

    Chiu, Gabriel S; Darmody, Patrick T; Walsh, John P; Moon, Morgan L; Kwakwa, Kristin A; Bray, Julie K; McCusker, Robert H; Freund, Gregory G

    2014-10-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by 2-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  14. Extracellular adenosine mediates a systemic metabolic switch during immune response.

    PubMed

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-04-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the "selfish" immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  15. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  16. [Adenosine induces ventricular arrythmias in hearts with chronic chagas cardiomyopathy].

    PubMed

    Alvarado-Tapias, Edilmar; Rivas-Coppola, Marianna; Alvarado, Alfonso; Bello, María; Briceño, Mario; Rodríguez-Bonfante, Claudina; Bonfante-Cabarcas, Rafael

    2010-04-01

    Adenosine released during ischemia and hypoxia can induce ventricular arrhythmias. This phenomenon is also observed in Chagas disease. This study involved pharmacologic analysis of the arrhythmogenic properties of adenosine in healthy Sprague-Dawley rats (n=14) and in rats with chronic Chagas cardiomyopathy (n=14). Electrocardiographic and pharmacologic studies were performed on isolated hearts prepared using the Langendorff method. Adenosine increased ventricular arrhythmias in both groups of animals in a dose-dependent manner: 50% of chagasic rats developed ventricular fibrillation compared with 7.14% of healthy rats (P< .05). Fibrillation was prevented by A1 (i.e., DPCPX) and A2a (i.e., 8-CSC) receptor antagonists. Arrhythmia was associated with a prolonged QT interval, early depolarization, and the R-on-T and torsade de pointes phenomena. In conclusion, adenosine is a proarrythmic drug that is able to induce ventricular fibrillation in chagasic rat hearts. PMID:20334814

  17. [Sleep-wake regulation by prostaglandin D2 and adenosine].

    PubMed

    Nagata, Nanae; Urade, Yoshihiro

    2012-06-01

    Prostaglandin (PG) D2 and adenosine are potent endogenous somnogens that accumulate in the brain during prolonged wakefulness. Lipocalin-type PGD synthase (L-PGDS) catalyzes the isomerization of PGH2, a common precursor of various prostanoids, to produce PGD2. L-PGDS is localized in the leptomeninges, choroid plexus, and oligodendrocytes of the central nervous system. PGD2 stimulates DP1 receptors localized in the basal forebrain and increases the local extracellular concentration of adenosine, a paracrine signaling molecule, to promote sleep. Adenosine activates adenosine A2A receptor-expressing neurons in the basal forebrain and ventrolateral preoptic area (VLPO) and inhibits adenosine A1 receptor-possessing arousal neurons. Sleep-promoting neurons in the VLPO send inhibitory signals to suppress the histaminergic neurons in the tuberomammillary nucleus (TMN); the histaminergic neurons contribute to arousal through histamine H1 receptors. GABAergic inhibition of TMN is involved in the induction of non-rapid eye movement (non-REM) sleep by PGD2 and adenosine A2A agonists. The neural network between the VLPO and TMN is considered to play a key role in regulation of vigilance states. Administering an L-PGD inhibitor (SeCl4), DP1 antagonist (ONO-4127Na), or adenosine A2A receptor antagonist (caffeine) suppresses both non-REM and REM sleep, indicating that the PGD2-adenosine system is crucial for maintaining physiological sleep. Selective gene-deletion strategies based on Cre/loxP technology and focal RNA interference have been used for silencing the expression of the A2A receptor by local infection with adeno-associated virus carrying Cre-recombinase or short hairpin RNA. The results of these studies have shown that the A2Asubreceptors in the shell region of the nucleus accumbens are responsible for the effect of caffeine on wakefulness. PMID:22647469

  18. Mucosal adenosine deaminase activity and gastric ulcer healing.

    PubMed

    Namiot, Z; Marcinkiewicz, M; Jaroszewicz, W; Stasiewicz, J; Gorski, J

    1993-10-26

    Adenosine deaminase activity was studied in gastric corpus mucosa close to an ulcer crater. It was found that 6 weeks of therapy with ranitidine was accompanied by a decrease in enzyme activity in the mucosa around healed ulcers and an increase around those which failed to heal. The different activities of adenosine deaminase in the vicinity of healed and unhealed ulcers may indicate its possible role in peptic ulcer healing. PMID:8276083

  19. Effect of inhaled heparin on adenosine-induced bronchial hyperreactivity.

    PubMed

    Ceyhan, B B; Celikel, T

    1997-05-01

    Glycosaminoglycan heparin possesses multiple noncoagulant properties including antiinflammatory actions. We have previously shown that heparin attenuates the methacholine-induced bronchoconstriction in humans. In contrast to methacholine, a stimulus that induces airway constriction mainly by "direct" stimulation of airway smooth muscle cells, adenosine airway responsiveness reflects "indirectly" induced airway narrowing via inflammatory mediators or neural reflex mechanisms. Whether heparin modulates bronchial hyperreactivity induced by adenosine, is not well known. We investigated the effect of inhaled heparin on adenosine-induced bronchoconstriction and compared the inhibitory role of heparin on the adenosine challenge test with that on the methacholine challenge test. Fifteen subjects (7 males, 8 females) with mild asthma were included in the study. Bronchial provocation tests were performed in a single-blind, crossover, randomized order, and repeated 45 minutes after placebo or aerosolized heparin inhalation (1,000 U/kg). The heparin increased the geometric mean log methacholine PD20 value from 0.47 +/- 0.16 (2.95 mg/ml) to 0.96 +/- 0.10 (8.91 mg/ml), (P < 0.0009) in 15 patients and the geometric mean log adenosine PD20 values from 1.59 +/- 0.23 (38.9 mg/ml) to 1.98 +/- 0.14 (97.7 mg/ml) (NS) in 7 patients whose baseline adenosine PD20 levels were less than 200 mg/ml. The degree of protection by heparin against adenosine-induced bronchoconstriction was not correlated with that against methacholine-induced bronchoconstriction (r = 0.60, NS). The data suggest that inhaled heparin may have an inhibitory effect on the methacholine bronchial challenge, and thus, most likely directs its effect against smooth muscle. Heparin caused less attenuation of a challenge with adenosine and probably does not affect mast cell degranulation. PMID:9174876

  20. Adenosine analogues decrease myocardial. beta. -adrenergic receptor affinity for isoproterenol

    SciTech Connect

    Romano, F.D.; Fenton, R.A.; Dobson, J.G. Jr.

    1986-03-05

    Adenosine and its analogues have been shown to attenuate catecholamine-induced activation of adenylate cyclase in rat myocardial membranes via adenosine R/sub i/ (inhibitory) receptors. The effects of adenosine analogues on binding characteristics of ..beta..-adrenergic receptors (BAR) in rat heart ventricular membranes were examined in the present study. Neither phenylisopropyladenosine (PIA, 1..mu..M) nor 2-chloroadenosine (CADO, 10..mu..M) significantly influenced /sup 125/I-cyanopinodolol (ICYP) binding to membranes as assessed by BAR affinity (Kd, 20 pM) or concentration (B/sub max/, 35 fmol/mg protein). However, in isoproterenol (ISO)-ICYP competition experiments, PIA, an R/sub i/ agonist, significantly shifted the ISO competition curve to the right 3.6 fold. The IC/sub 50/s of control and PIA treated membranes were 5.04 x 10/sup -8/M, and 1.81 X 10/sup -7/M respectively. The slope of the control curve (-0.58) was also increased in the PIA treated membranes (-0.94). CADO, a less specific adenosine R/sub i/ receptor agonist, shifted the curve to the right only 2 fold and increased the slope from -0.5 to -0.75. 2',5'-dideoxyadenosine, an adenosine P-site agonist, had no significant effect on ISO binding. These data suggest that adenosine R/sub i/ agonists may attenuate catecholamine-induced activation of adenylate cyclase by decreasing the affinity of BAR for agonists.

  1. Cell type-specific effects of adenosine on cortical neurons.

    PubMed

    van Aerde, Karlijn I; Qi, Guanxiao; Feldmeyer, Dirk

    2015-03-01

    The neuromodulator adenosine is widely considered to be a key regulator of sleep homeostasis and an indicator of sleep need. Although the effect of adenosine on subcortical areas has been previously described, the effects on cortical neurons have not been addressed systematically to date. To that purpose, we performed in vitro whole-cell patch-clamp recordings and biocytin staining of pyramidal neurons and interneurons throughout all layers of rat prefrontal and somatosensory cortex, followed by morphological analysis. We found that adenosine, via the A1 receptor, exerts differential effects depending on neuronal cell type and laminar location. Interneurons and pyramidal neurons in layer 2 and a subpopulation of layer 3 pyramidal neurons that displayed regular spiking were insensitive to adenosine application, whereas other pyramidal cells in layers 3-6 were hyperpolarized (range 1.2-10.8 mV). Broad tufted pyramidal neurons with little spike adaptation showed a small adenosine response, whereas slender tufted pyramidal neurons with substantial adaptation showed a bigger response. These studies of the action of adenosine at the postsynaptic level may contribute to the understanding of the changes in cortical circuit functioning that take place between sleep and awakening. PMID:24108800

  2. Detrimental effects of adenosine signaling in sickle cell disease

    PubMed Central

    Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang

    2016-01-01

    Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A2B receptor (A2BR)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A2BR has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease. PMID:21170046

  3. Adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate are synthesized by yeast acetyl coenzyme A synthetase.

    PubMed Central

    Guranowski, A; Günther Sillero, M A; Sillero, A

    1994-01-01

    Yeast (Saccharomyces cerevisiae) acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5'-tetraphosphate (P4A) and adenosine 5'-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4), with relative velocities of 7:1, respectively. Of 12 nucleotides tested as potential donors of nucleotidyl moiety, only ATP, adenosine-5'-O-[3-thiotriphosphate], and acetyl-AMP were substrates, with relative velocities of 100, 62, and 80, respectively. The Km values for ATP, P3, and acetyl-AMP were 0.16, 4.7, and 1.8 mM, respectively. The synthesis of p4A could proceed in the absence of exogenous acetate but was stimulated twofold by acetate, with an apparent Km value of 0.065 mM. CoA did not participate in the synthesis of p4A (p5A) and inhibited the reaction (50% inhibitory concentration of 0.015 mM). At pH 6.3, which was optimum for formation of p4A (p5A), the rate of acetyl-CoA synthesis (1.84 mumol mg-1 min-1) was 245 times faster than the rate of synthesis of p4A measured in the presence of acetate. The known formation of p4A (p5A) in yeast sporulation and the role of acetate may therefore be related to acetyl-CoA synthetase. Images PMID:7910605

  4. Adenosine deaminase inhibition enhances the inotropic response mediated by A1 adenosine receptor in hyperthyroid guinea pig atrium.

    PubMed

    Kemeny-Beke, Adam; Jakab, Anita; Zsuga, Judit; Vecsernyes, Miklos; Karsai, Denes; Pasztor, Fanni; Grenczer, Maria; Szentmiklosi, Andras Jozsef; Berta, Andras; Gesztelyi, Rudolf

    2007-08-01

    The aim of the present study was to test the hypothesis that inhibition of adenosine deaminase (ADA) enhances the efficiency of signal-transduction of myocardial A1 adenosine receptors in hyperthyroidism. The inotropic response to N6-cyclopentyladenosine (CPA), a selective A1 adenosine receptor agonist resistant to ADA, was investigated in the absence or presence of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), an ADA and cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase (PDE2) inhibitor, or of pentostatin (2'-deoxycoformycin; DCF), an exclusive ADA inhibitor, in left atria isolated from eu- or hyperthyroid guinea pigs. Both ADA inhibitors enhanced the effect of CPA only in hyperthyroid atria. EHNA significantly increased the Emax (mean+/-S.E.M.) from 83.8+/-1.2% to 93.4+/-1.2%, while DCF significantly decreased the logEC50 from -7.5+/-0.07 to -7.83+/-0.07 in hyperthyroid samples. Conversely, EHNA also diminished the logEC50 (from -7.5+/-0.07 to -7.65+/-0.07) and DCF also raised the Emax (from 83.8+/-1.2% to 85.7+/-2%) in hyperthyroidism, but these changes were not significant. In conclusion, ADA inhibition moderately but significantly enhanced the efficiency of A(1) adenosine receptor signaling pathway in the hyperthyroid guinea pig atrium. This suggests that elevated intracellular adenosine level caused by ADA inhibition may improve the suppressed responsiveness to A1 adenosine receptor agonists associated with the hyperthyroid state. Alternatively or in addition, the role of decreased concentration of adenosine degradation products cannot be excluded. Furthermore, in the case of EHNA, inhibition of PDE2 also appears to contribute to the enhanced A1 adenosine receptor signaling in the hyperthyroid guinea pig atrium. PMID:17574432

  5. Preparation of liposome-encapsulating adenosine triphosphate.

    PubMed

    Arakawa, A; Ishiguro, S; Ohki, K; Tamai, M

    1998-01-01

    Liposomes encapsulating adenosine triphosphate (ATP) were prepared by sonication, and the liposomes were evaluated for use in a drug delivery system. The liposomes, which were composed of phosphatidylcholine and cholesterol, were about 1.1 microm in size, as observed under a microscope. From their size, the vesicles were thought to be multilamellar. The maximum concentration of ATP in the liposomes was 1.0 mM, when the initial concentrations of lipid and ATP were 20 mM and 300 mM, respectively. The maximum entrapment ratio of ATP in the liposomes was 88%, when the initial concentrations of lipid and ATP were 20 mM and 500 mM, respectively. About 4% of ATP was encapsulated in these experiments. When liposomes contained 4-7% of cholesterol, about 35% of encapsulated ATP was released from the liposomes for 90 hours at 37 degrees C in vitro. These findings indicated that liposomes encapsulating ATP could be used for the treatment of ischemic retina. PMID:9607397

  6. An adenosine nucleoside inhibitor of dengue virus

    PubMed Central

    Yin, Zheng; Chen, Yen-Liang; Schul, Wouter; Wang, Qing-Yin; Gu, Feng; Duraiswamy, Jeyaraj; Kondreddi, Ravinder Reddy; Niyomrattanakit, Pornwaratt; Lakshminarayana, Suresh B.; Goh, Anne; Xu, Hao Ying; Liu, Wei; Liu, Boping; Lim, Joanne Y. H.; Ng, Chuan Young; Qing, Min; Lim, Chin Chin; Yip, Andy; Wang, Gang; Chan, Wai Ling; Tan, Hui Pen; Lin, Kai; Zhang, Bo; Zou, Gang; Bernard, Kristen A.; Garrett, Christine; Beltz, Karen; Dong, Min; Weaver, Margaret; He, Handan; Pichota, Arkadius; Dartois, Veronique; Keller, Thomas H.; Shi, Pei-Yong

    2009-01-01

    Dengue virus (DENV), a mosquito-borne flavivirus, is a major public health threat. The virus poses risk to 2.5 billion people worldwide and causes 50 to 100 million human infections each year. Neither a vaccine nor an antiviral therapy is currently available for prevention and treatment of DENV infection. Here, we report a previously undescribed adenosine analog, NITD008, that potently inhibits DENV both in vitro and in vivo. In addition to the 4 serotypes of DENV, NITD008 inhibits other flaviviruses, including West Nile virus, yellow fever virus, and Powassan virus. The compound also suppresses hepatitis C virus, but it does not inhibit nonflaviviruses, such as Western equine encephalitis virus and vesicular stomatitis virus. A triphosphate form of NITD008 directly inhibits the RNA-dependent RNA polymerase activity of DENV, indicating that the compound functions as a chain terminator during viral RNA synthesis. NITD008 has good in vivo pharmacokinetic properties and is biologically available through oral administration. Treatment of DENV-infected mice with NITD008 suppressed peak viremia, reduced cytokine elevation, and completely prevented the infected mice from death. No observed adverse effect level (NOAEL) was achieved when rats were orally dosed with NITD008 at 50 mg/kg daily for 1 week. However, NOAEL could not be accomplished when rats and dogs were dosed daily for 2 weeks. Nevertheless, our results have proved the concept that a nucleoside inhibitor could be developed for potential treatment of flavivirus infections. PMID:19918064

  7. An adenosine nucleoside inhibitor of dengue virus.

    PubMed

    Yin, Zheng; Chen, Yen-Liang; Schul, Wouter; Wang, Qing-Yin; Gu, Feng; Duraiswamy, Jeyaraj; Kondreddi, Ravinder Reddy; Niyomrattanakit, Pornwaratt; Lakshminarayana, Suresh B; Goh, Anne; Xu, Hao Ying; Liu, Wei; Liu, Boping; Lim, Joanne Y H; Ng, Chuan Young; Qing, Min; Lim, Chin Chin; Yip, Andy; Wang, Gang; Chan, Wai Ling; Tan, Hui Pen; Lin, Kai; Zhang, Bo; Zou, Gang; Bernard, Kristen A; Garrett, Christine; Beltz, Karen; Dong, Min; Weaver, Margaret; He, Handan; Pichota, Arkadius; Dartois, Veronique; Keller, Thomas H; Shi, Pei-Yong

    2009-12-01

    Dengue virus (DENV), a mosquito-borne flavivirus, is a major public health threat. The virus poses risk to 2.5 billion people worldwide and causes 50 to 100 million human infections each year. Neither a vaccine nor an antiviral therapy is currently available for prevention and treatment of DENV infection. Here, we report a previously undescribed adenosine analog, NITD008, that potently inhibits DENV both in vitro and in vivo. In addition to the 4 serotypes of DENV, NITD008 inhibits other flaviviruses, including West Nile virus, yellow fever virus, and Powassan virus. The compound also suppresses hepatitis C virus, but it does not inhibit nonflaviviruses, such as Western equine encephalitis virus and vesicular stomatitis virus. A triphosphate form of NITD008 directly inhibits the RNA-dependent RNA polymerase activity of DENV, indicating that the compound functions as a chain terminator during viral RNA synthesis. NITD008 has good in vivo pharmacokinetic properties and is biologically available through oral administration. Treatment of DENV-infected mice with NITD008 suppressed peak viremia, reduced cytokine elevation, and completely prevented the infected mice from death. No observed adverse effect level (NOAEL) was achieved when rats were orally dosed with NITD008 at 50 mg/kg daily for 1 week. However, NOAEL could not be accomplished when rats and dogs were dosed daily for 2 weeks. Nevertheless, our results have proved the concept that a nucleoside inhibitor could be developed for potential treatment of flavivirus infections. PMID:19918064

  8. Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.

    PubMed

    Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír

    2007-09-01

    Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine. PMID:17882653

  9. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity.

    PubMed

    Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung

    2015-02-01

    This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine. PMID:25604821

  10. Attenuation of exercise vasodilatation by adenosine deaminase in anaesthetized dogs.

    PubMed

    Goonewardene, I P; Karim, F

    1991-10-01

    1. In dogs anaesthetized with sodium pentobarbitone and artificially ventilated, the gracilis muscles were vascularly isolated and perfused at a constant flow of 28.4 +/- 4.6 ml min-1 (100 g muscle tissue)-1 (99.8 +/- 4.5% of maximum free flow, means +/- standard error of the mean (S.E.M.), n = 9). 2. Three to five minutes of electrical stimulation of the cut peripheral end of the obturator nerve (4 Hz, 6 V, 0.2 ms) resulted in muscle contraction (0.61 +/- 0.14 kg (100 g)-1 during solvent infusion and 0.56 +/- 0.10 kg (100 g)-1 during intra-arterial adenosine deaminase infusion (50 U min-1) and an immediate decrease in arterial perfusion pressure from 184.5 +/- 8.1 mmHg to 148.2 +/- 5.7 mmHg (18.7 +/- 3.4% decrease) during solvent infusion, and from 193.5 +/- 7.16 to 142.0 +/- 10.2 mmHg (25.4 +/- 6.1% decrease) during adenosine deaminase infusion 10 s after the commencement of muscle stimulation. After about 5 min of muscle contractions, the arterial perfusion pressure decreased to 120.8 +/- 7.8 mmHg (32.9 +/- 5.8% decrease) during solvent infusion, and to 152.8 +/- 11.2 mmHg (20.9 +/- 5.3% decrease) during adenosine deaminase infusion (i.e. 37.9 +/- 6.2% attenuation of the fall in arterial perfusion pressure). The time taken for 90% recovery of the arterial perfusion pressure was 72.1 +/- 10.9 s during solvent infusion, and 51.5 +/- 9.3 s during adenosine deaminase infusion (P less than 0.05). 3. Adenosine (2 x 10(-3) mol l-1) infusion in the resting muscle during solvent infusion (final concentration in arterial blood 1.3 x 10(-4) +/- 6.0 x 10(-5) mol l-1) resulted in a 34.8 +/- 7.2% fall in arterial perfusion pressure but a fall of only 7.2 +/- 1.8% during adenosine deaminase infusion (50 U min-1; P less than 0.05; n = 5) indicating that adenosine deaminase infused at 50 U min-1 was more than adequate to metabolize endogenous adenosine produced during muscle contractions. 4. These data suggest that adenosine contributes about 40% to the sustained-exercise vasodilatation under constant high-flow conditions and also in post-exercise vasodilatation, but does not contribute to the initiation of exercise vasodilatation. PMID:1798047

  11. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8 %) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis. PMID:26081145

  12. Regulation of Adenosine Deaminase on Induced Mouse Experimental Autoimmune Uveitis.

    PubMed

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J; Sun, Deming

    2016-03-15

    Adenosine is an important regulator of the immune response, and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies showed that adenosine receptor agonists can be anti- or proinflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1-20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8-14 d postimmunization, shortly before EAU expression; however, ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses, and this effect was γδ T cell dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help to improve the design of ADA- and adenosine receptor-targeted therapies. PMID:26856700

  13. Enhancement by benzodiazepines of the inhibitory effect of adenosine on skeletal neuromuscular transmission.

    PubMed Central

    Chiou, L. C.; Ling, J. Y.; Chang, C. C.

    1995-01-01

    1. Interactions of benzodiazepines with adenosine on the neuromuscular transmission were studied in mouse diaphragm preparations. 2. In tubocurarine (0.6-0.8 microM)-partially paralyzed preparations, diazepam (35 microM) and Ro 5-4864 (3-30 microM), a peripheral type benzodiazepine receptor agonist, potentiated the inhibitory effect of adenosine on indirect twitch responses. 3. The central type receptor agonist, clonazepam did not affect the inhibitory effect of adenosine. 4. The peripheral benzodiazepine receptor antagonist, PK11195 (1-10 microM) attenuated the adenosine inhibition and antagonized the potentiation by Ro 5-4864. 5. Ro 5-4864 failed to enhance further the inhibitory effect of adenosine in the presence of dipyridamole, an adenosine uptake inhibitor that also potentiated adenosine inhibition. 6. Neither Ro 5-4864 nor PK 11195 affected the inhibition produced by a stable adenosine analogue, 2-chloroadenosine, which is not a substrate for the adenosine uptake system. 7. Ro 5-4864 did not affect endplate potentials (e.p.ps) in the absence of adenosine, but reduced the amplitude of e.p.ps in the presence of adenosine without affecting miniature e.p.ps. 8. It is suggested that benzodiazepines potentiate the adenosine-effected presynaptic inhibition of neuromuscular transmission by an inhibition of adenosine uptake through activation of peripheral type benzodiazepine receptors. PMID:8528572

  14. The binding of [3H]adenosine to synaptosomal and other preparations from the mammalian brain.

    PubMed Central

    Newman, M E; Patel, J; McIlwain, H

    1981-01-01

    1. A high-affinity adenosine-binding site with Kd(adenosine) 0.5-1.3 microM was demonstrated in particulate and synaptosomal fractions isolated from the cerebral cortex of guinea pig, rat and ox. 2. Binding of [3H]adenosine to this site was inhibited by theophylline and by 2-chloroadenosine, but not by four other adenosine analogues. 3. Endogenous adenosine, found to be present in some preparations at approx. 1 pmol/mg of protein, diminished the binding capacity of the preparations for [3H]adenosine. 4. Addition of the adenosine deaminase inhibitor erythro-9-[1-(1-hydroxyethyl)heptyl]-adenine revealed the presence of a second lower affinity binding site with Kd (adenosine) 5-9 microM and a higher maximal adenosine-binding capacity. The inhibitor partially blocked binding to the high-affinity site in preparations from which adenosine deaminase had been removed by washing. 5. To preparations of particulate fractions maintained under iso-osmotic conditions, adenosine attachment was non-saturable and temperature-dependent, indicating the existence of an active uptake process. 6. The location and binding constant of the high-affinity adenosine-binding site suggest that it corresponds to the receptor site for adenosine-activated adenylate cyclase. PMID:7306006

  15. Adenosine receptor agonists for promotion of dermal wound healing

    PubMed Central

    Valls, María D.; Cronstein, Bruce N.; Montesinos, M. Carmen

    2009-01-01

    Wound healing is a dynamic and complex process that involves a well coordinated, highly regulated series of events including inflammation, tissue formation, revascularization and tissue remodeling. However, this orderly sequence is impaired in certain pathophysiological conditions such as diabetes mellitus, venous insufficiency, chronic glucocorticoid use, aging and malnutrition. Together with proper wound care, promotion of the healing process is the primary objective in the management of chronic poorly healing wounds. Recent studies have demonstrated that A2A adenosine receptor agonists promote wound healing in normal and diabetic animals and one such agonist, Sonedenoson, is currently being evaluated as a prospective new therapy of diabetic foot ulcers. We will review the mechanisms by which adenosine receptor activation affects the function of the cells and tissues that participate in wound healing, emphasizing the potential beneficial impact of adenosine receptor agonists in diabetic impaired healing. PMID:19041853

  16. Mucosal adenosine deaminase activity and stump ulcer healing.

    PubMed

    Namiot, Z; Namiot, A; Stasiewicz, J; Marcinkiewicz, M; Jaroszewicz, W; Górski, J

    1995-06-01

    Adenosine deaminase activity was studied in endoscopically taken slices from gastric mucosa in patient after partial gastric resection performed due to complicated duodenal ulcer, and currently with peptic ulcer in the stump. The samples of gastric mucosa were taken before and after 6 weeks of treatment with ranitidine, 150 mg twice daily, at a distance within 2 cm and greater than 2 cm from the ulcer crater. Adenosine deaminase activity was measured in mucosa homogenates by determination of ammonia liberated from substrate. It was found that therapy with ranitidine was accompanied by an increase in enzyme activity in the mucosa surrounding unhealed stump ulcers, while no changes were noted in mucosa around healed stump ulcers. A possible role of mucosal adenosine deaminase activity in stump ulcer healing is postulated. PMID:7670131

  17. A SURVEY OF NONXANTHINE DERIVATIVES AS ADENOSINE RECEPTOR LIGANDS1

    PubMed Central

    Siddiqi, Suhaib M.; Ji, Xiao-duo; Melman, Neli; Olah, Mark E.; Jain, Rahul; Evans, Patricia; Glashofer, Marc; Padgett, William L.; Cohen, Louis A.; Daly, John W.; Stiles, Gary L.; Jacobson, Kenneth A.

    2016-01-01

    The binding affinities at rat A1, A2a, and A3 adenosine receptors of a wide range of heterocyclic derivatives have been determined. Mono-, bi-, tricyclic and macrocyclic compounds were screened in binding assays, using either [3H]PIA or [3H]CGS 21680 in rat brain membranes or [125I]AB-MECA in CHO cells stably transfected with rat A3 receptors. Several new classes of adenosine antagonists (e.g. 5-oxoimidazopyrimidines and a pyrazoloquinazoline) were identified. Various sulfonylpiperazines, 11-hydroxytetrahydrocarbazolenine, 4H-pyrido[1,2-a]pyrimidinone, folic acid, and cytochalasin H and J bound to A3 receptors selectively. Moreover, cytochalasin A, which bound to A1 adenosine receptors with Ki value of 1.9 μM, inhibited adenylyl cyclase in rat adipocytes, but not via reversible A1 receptor binding.

  18. [Adenosine deaminase as costimulatory molecule and marker of cellular immunity].

    PubMed

    Pérez-Aguilar, Mary Carmen; Goncalves, Loredana; Ibarra, Alba; Bonfante-Cabarcas, Rafael

    2010-12-01

    Adenosine deaminase (ADA) is an enzyme of purine metabolism which has been the subject of much interest because the congenital defect of this enzyme causes severe combined immunodeficiency syndrome. One of the three isoforms of the enzyme (ecto-ADA) is capable of binding to the glycoprotein CD26 and adenosine receptors A1 and A2B. ADA-CD26 interaction produces a costimulatory signal in the events of T cell activation and secretion of IFN-gamma, TNF-alpha and IL-6. During this activation, the enzyme activity is regulated positively by IL-2 and IL-12 and negatively by IL-4, based on the mechanism of translocation. Diverse studies suggest that seric and plasmatic levels of ADA rise in some diseases caused by microorganisms infecting mainly the macrophages and in hypertensive disorders, which may represent a compensatory mechanism resulting from increased adenosine levels and the release of hormones and inflammatory mediators estimulated by hipoxia. PMID:21365880

  19. Surface expression of adenosine deaminase in mitogen-stimulated lymphocytes.

    PubMed Central

    Martin, M; Centelles, J J; Huguet, J; Echevarne, F; Colomer, D; Vives-Corrons, J L; Franco, R

    1993-01-01

    Adenosine deaminase (ADA) expression on the surface of mitogen-stimulated lymphocytes was studied by flow cytometry. The gate for lymphocytes was located by cell size (forward scatter), cytoplasmic complexity (side scatter) and by expression of the markers CD2, CD4, CD8 and CD19. After mitogenic proliferation two populations appeared, one corresponding to non-stimulated cells, and the other consisting of larger cells which showed relatively high expression of adenosine deaminase on their surface. The increase was similar to that observed for CD71 expression, and paralleled the increase in 3H-thymidine incorporation. There was a correlation between ADA and CD71 expression (r = 0.92 for phytohaemagglutinin (PHA) and 0.97 for pokeweed mitogen (PWM)). These results suggest a role for ecto-adenosine deaminase in lymphocyte proliferation and/or triggering. PMID:8348757

  20. Stability of Diluted Adenosine Solutions in Polyolefin Infusion Bags

    PubMed Central

    Almagambetova, Elise; Hutchinson, David; Blais, Danielle M.; Zhao, Fang

    2013-01-01

    Background: Intravenous or intracoronary adenosine is used in the cardiac catherization lab to achieve maximal coronary blood flow and determine fractional flow reserve. Objective: To determine the stability of adenosine 10 and 50 µg/mL in either 0.9% sodium chloride injection or 5% dextrose injection in polyolefin infusion bags stored at 2 temperatures, refrigeration (2°C-8°C) or controlled room temperature (20°C-25°C). Methods: Adenosine 10 µg/mL and 50 µg/mL solutions were prepared in 50 mL polyolefin infusion bags containing 0.9% sodium chloride injection or 5% dextrose injection and stored at controlled room temperature or under refrigeration. Each combination of concentration, diluent, and storage was prepared in triplicate. Samples were assayed using stability-indicating, reversed-phase high-performance liquid chromatography immediately at time 0 and at 24 hours, 48 hours, 7 days, and 14 days. Stability was defined as retaining 90% to 110% of the initial adenosine concentration. The samples were also visually inspected against a light background for clarity, color, and the presence of particulate matter. Results: After 14 days, all samples retained 99% to 101% of the initial adenosine concentration. No considerable change in pH or visual appearance was noted. The stability data indicated no significant loss of drug due to chemical degradation or physical interactions during storage. Conclusion: Adenosine solutions of 10 and 50 µg/mL were stable for at least 14 days in 50 mL polyolefin infusion bags of 0.9% sodium chloride injection or 5% dextrose injection stored at controlled room temperature and refrigerated conditions. PMID:24421510

  1. Intravenous adenosine for surgical management of penetrating heart wounds.

    PubMed

    Kokotsakis, John; Hountis, Panagiotis; Antonopoulos, Nikolaos; Skouteli, Elian; Athanasiou, Thanos; Lioulias, Achilleas

    2007-01-01

    Accurate suturing of penetrating cardiac injuries is difficult. Heart motion, ongoing blood loss, arrhythmias due to heart manipulation, and the near-death condition of the patient can all affect the outcome. Rapid intravenous injection of adenosine induces temporary asystole that enables placement of sutures in a motionless surgical field. Use of this technique improves surgical conditions, and it is faster than other methods. Herein, we describe our experience with the use of intravenous adenosine to successfully treat 3 patients who had penetrating heart wounds. PMID:17420798

  2. Why do premature newborn infants display elevated blood adenosine levels?

    PubMed

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW infants may be regarded as those in which premature exposure to ambient oxygen concentrations and oxidative stress causes a premature functioning of the extra-mitochondrial oxidative phosphorylation primarily in axons and endothelium. Adenosine may become a biomarker of prematurity risk, whose implications further studies may assess. PMID:27063086

  3. Adenosine-dependent activation of tyrosine hydroxylase is defective in adenosine kinase-deficient PC12 cells.

    PubMed Central

    Erny, R; Wagner, J A

    1984-01-01

    (R)-N6-Phenylisopropyladenosine (PIA) stimulates dopa production 3- to 5-fold in PC12 cells, with a half-maximal effective concentration (EC50) of 50 nM. This increase can be explained by a stable activation of tyrosine hydroxylase [TyrOHase; L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] when it is phosphorylated by a cAMP-dependent protein kinase. The activation of TyrOHase is mediated by the adenosine-dependent activation of adenylate cyclase (EC50 = 600 nM). PIA (10 microM) is as effective as cholera toxin or dibutyryl cAMP in activating TyrOHase in wild-type cells. Adenosine kinase-deficient mutants of PC12 were found to be resistant to PIA-dependent activation of TyrOHase (EC50 = 100-1000 nM). This phenomenon was explored in detail in one adenosine kinase-deficient mutant and was shown to occur because the mutant was resistant to the adenosine-dependent activation of adenylate cyclase. In this mutant, TyrOHase was activated 14-fold by cholera toxin, suggesting that activated TyrOHase is about 14 times as active as unactivated TyrOHase. These studies with kinase-deficient PC12 cells provide genetic evidence that adenosine-dependent activation of TyrOHase is mediated by acute increases in cAMP. When the adenosine receptor found on PC12 cells is expressed in vivo, it might function as either a presynaptic (i.e., localized on the nerve terminal) or a postsynaptic (i.e., localized on the cell body or dendrite) receptor that regulates rates of transmitter synthesis in response to cell activity. PMID:6146982

  4. ATP-Sensitive K+ Channels Regulate the Concentrative Adenosine Transporter CNT2 following Activation by A1 Adenosine Receptors

    PubMed Central

    Duflot, Sylvie; Riera, Bárbara; Fernández-Veledo, Sonia; Casadó, Vicent; Norman, Robert I.; Casado, F. Javier; Lluís, Carme; Franco, Rafael; Pastor-Anglada, Marçal

    2004-01-01

    This study describes a novel mechanism of regulation of the high-affinity Na+-dependent adenosine transporter (CNT2) via the activation of A1 adenosine receptors (A1R). This regulation is mediated by the activation of ATP-sensitive K+ (KATP) channels. The high-affinity Na+-dependent adenosine transporter CNT2 and A1R are coexpressed in the basolateral domain of the rat hepatocyte plasma membrane and are colocalized in the rat hepatoma cell line FAO. The transient increase in CNT2-mediated transport activity triggered by (−)-N6-(2-phenylisopropyl)adenosine is fully inhibited by KATP channel blockers and mimicked by a KATP channel opener. A1R agonist activation of CNT2 occurs in both hepatocytes and FAO cells, which express Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B mRNA channel subunits. With the available antibodies against Kir6.X, SUR2A, and SUR2B, it is shown that all of these proteins colocalize with CNT2 and A1R in defined plasma membrane domains of FAO cells. The extent of the purinergic modulation of CNT2 is affected by the glucose concentration, a finding which indicates that glycemia and glucose metabolism may affect this cross-regulation among A1R, CNT2, and KATP channels. These results also suggest that the activation of KATP channels under metabolic stress can be mediated by the activation of A1R. Cell protection under these circumstances may be achieved by potentiation of the uptake of adenosine and its further metabolization to ATP. Mediation of purinergic responses and a connection between the intracellular energy status and the need for an exogenous adenosine supply are novel roles for KATP channels. PMID:15024061

  5. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias.

    PubMed

    Welihinda, Ajith A; Kaur, Manmeet; Greene, Kelly; Zhai, Yongjiao; Amento, Edward P

    2016-06-01

    Inosine is an endogenous purine nucleoside that is produced by catabolism of adenosine. Adenosine has a short half-life (approximately 10s) and is rapidly deaminated to inosine, a stable metabolite with a half-life of approximately 15h. Resembling adenosine, inosine acting through adenosine receptors (ARs) exerts a wide range of anti-inflammatory and immunomodulatory effects in vivo. The immunomodulatory effects of inosine in vivo, at least in part, are mediated via the adenosine A2A receptor (A2AR), an observation that cannot be explained fully by in vitro pharmacological characterization of inosine at the A2AR. It is unclear whether the in vivo effects of inosine are due to inosine or a metabolite of inosine engaging the A2AR. Here, utilizing a combination of label-free, cell-based, and membrane-based functional assays in conjunction with an equilibrium agonist-binding assay we provide evidence for inosine engagement at the A2AR and subsequent activation of downstream signaling events. Inosine-mediated A2AR activation leads to cAMP production with an EC50 of 300.7μM and to extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation with an EC50 of 89.38μM. Our data demonstrate that inosine produces ERK1/2-biased signaling whereas adenosine produces cAMP-biased signaling at the A2AR, highlighting pharmacological differences between these two agonists. Given the in vivo stability of inosine, our data suggest an additional, previously unrecognized, mechanism that utilizes inosine to functionally amplify and prolong A2AR activation in vivo. PMID:26903141

  6. Anticancer effect of adenosine on gastric cancer via diverse signaling pathways.

    PubMed

    Tsuchiya, Ayako; Nishizaki, Tomoyuki

    2015-10-21

    Extracellular adenosine induces apoptosis in a variety of cancer cells via intrinsic and extrinsic pathways. In the former pathway, adenosine uptake into cells triggers apoptosis, and in the latter pathway, adenosine receptors mediate apoptosis. Extracellular adenosine also induces apoptosis of gastric cancer cells. Extracellular adenosine is transported into cells through an adenosine transporter and converted to AMP by adenosine kinase. In turn, AMP activates AMP-activated protein kinase (AMPK). AMPK is the factor responsible for caspase-independent apoptosis of GT3-TKB gastric cancer cells. Extracellular adenosine, on the other hand, induces caspase-dependent apoptosis of MKN28 and MKN45 gastric cancer cells by two mechanisms. Firstly, AMP, converted from intracellularly transported adenosine, initiates apoptosis, regardless of AMPK. Secondly, the A3 adenosine receptor, linked to Gi/Gq proteins, mediates apoptosis by activating the Gq protein effector, phospholipase C?, to produce inositol 1,4,5-trisphosphate and diacylglycerol, which activate protein kinase C. Consequently, the mechanisms underlying adenosine-induced apoptosis vary, depending upon gastric cancer cell types. Understand the contribution of each downstream target molecule of adenosine to apoptosis induction may aid the establishment of tailor-made chemotherapy for gastric cancer. PMID:26494951

  7. Adenosine transporters and receptors: key elements for retinal function and neuroprotection.

    PubMed

    Dos Santos-Rodrigues, Alexandre; Pereira, Mariana R; Brito, Rafael; de Oliveira, Nádia A; Paes-de-Carvalho, Roberto

    2015-01-01

    Adenosine is an important neuroactive substance in the central nervous system, including in the retina where subclasses of adenosine receptors and transporters are expressed since early stages of development. Here, we review some evidence showing that adenosine plays important functions in the mature as well as in the developing tissue. Adenosine transporters are divided into equilibrative and concentrative, and the major transporter subtype present in the retina is the ENT1. This transporter is responsible for a bidirectional transport of adenosine and the uptake or release of this nucleoside appears to be regulated by different signaling pathways that are also controlled by activation of adenosine receptors. Adenosine receptors are also key players in retina physiology regulating a variety of functions in the mature and developing tissue. Regulation of excitatory neurotransmitter release and neuroprotection are the main functions played be adenosine in the mature tissue, while regulation of cell survival and neurogenesis are some of the functions played by adenosine in developing retina. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosine-related drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases. PMID:25817878

  8. Adenosine receptor modulation of seizure susceptibility in rats

    SciTech Connect

    Szot, P.

    1987-01-01

    Adenosine is considered to be a neuromodulator or cotransmitter in the periphery and CNS. This neuromodulatory action of adenosine may be observed as an anticonvulsant effect. Dose-response curves for R-phenylisopropyladenosine (PIA), cycohexyladenosine (CHA), 2-chloroadenosine (2-ClAdo), N-ethylcarboxamidoadenosine (NECA) and S-PIA were generated against PTZ seizure thresholds in the rat. The rank order of potency for adenosine agonists to elevate PTZ seizure threshold was R-PIA > 2-ClAdo > NECA > CHA > S-PIA. R-PIA was approximately 80-fold more potent than S-PIA. This 80-fold difference in potency between the diasteriomers of PIA was consistent with an A{sub 1} adenoise receptor-mediated response. The anticonvulsant action of 2-ClAdo was reversed by pretreatment with theoplylline. Chronic administration of theophylline significantly increased the specific binding of {sup 3}H-cyclohexyladenosine in membranes of the cerebral cortex and cerebellum of the rat. Chronic exposure to theophylline produced a significant increase in the densities of both the high- and low-affinity forms of A{sub 1} adenosine receptors in the cerebral cortex.

  9. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  10. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  11. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  12. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet...

  13. Multi-objective evolutionary design of adenosine receptor ligands.

    PubMed

    van der Horst, Eelke; Marqués-Gallego, Patricia; Mulder-Krieger, Thea; van Veldhoven, Jacobus; Kruisselbrink, Johannes; Aleman, Alexander; Emmerich, Michael T M; Brussee, Johannes; Bender, Andreas; Ijzerman, Adriaan P

    2012-07-23

    A novel multiobjective evolutionary algorithm (MOEA) for de novo design was developed and applied to the discovery of new adenosine receptor antagonists. This method consists of several iterative cycles of structure generation, evaluation, and selection. We applied an evolutionary algorithm (the so-called Molecule Commander) to generate candidate A1 adenosine receptor antagonists, which were evaluated against multiple criteria and objectives consisting of high (predicted) affinity and selectivity for the receptor, together with good ADMET properties. A pharmacophore model for the human A1 adenosine receptor (hA1AR) was created to serve as an objective function for evolution. In addition, three support vector machine models based on molecular fingerprints were developed for the other adenosine receptor subtypes (hA2A, hA2B, and hA3) and applied as negative objective functions, to aim for selectivity. Structures with a higher evolutionary fitness with respect to ADMET and pharmacophore matching scores were selected as input for the next generation and thus developed toward overall fitter ("better") compounds. We finally obtained a collection of 3946 unique compounds from which we derived chemical scaffolds. As a proof-of-principle, six of these templates were selected for actual synthesis and subsequently tested for activity toward all adenosine receptors subtypes. Interestingly, scaffolds 2 and 3 displayed low micromolar affinity for many of the adenosine receptor subtypes. To further investigate our evolutionary design method, we performed systematic modifications on scaffold 3. These modifications were guided by the substitution patterns as observed in the set of generated compounds that contained scaffold 3. We found that an increased affinity with appreciable selectivity for hA1AR over the other adenosine receptor subtypes was achieved through substitution of the scaffold; compound 3a had a Ki value of 280 nM with approximately 10-fold selectivity with respect to hA2AR, while 3g had a 1.6 μM affinity for hA1AR with negligible affinity for the hA2A, hA2B, and hA3 receptor subtypes. PMID:22647079

  14. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1 receptor heteromers is postulated. Read the Editorial Highlight for this article on page 897. PMID:26526685

  15. Adenosine inhibits excitatory transmission to substantia gelatinosa neurons of the adult rat spinal cord through the activation of presynaptic A(1) adenosine receptor.

    PubMed

    Lao, L J; Kumamoto, E; Luo, C; Furue, H; Yoshimura, M

    2001-12-01

    Although intrathecal administration of adenosine analogues or A(1) adenosine receptor agonists is known to result in antinociception, this has not been examined yet at the cellular level. In the present study, we examined in pharmacology an action of adenosine on glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in substantia gelatinosa (SG) neurons of an adult rat spinal cord slice; this was done under the condition where a postsynaptic action of adenosine was blocked. In 65% of the neurons examined (n=72), adenosine at a concentration of 100 microM depressed the frequency of mEPSC in a reversible manner; the remaining neurons exhibited an inhibition followed by potentiation of the frequency. When examined quantitatively in extent in some cells (n=25), the inhibition was 40+/-3% (n=25) while the potentiation was 42+/-8% (n=6). These actions were not accompanied by a change in mEPSC amplitude. The inhibitory action on mEPSC frequency was dose-dependent in a range of 10-500 microM with an EC(50) value of 277 microM. The inhibitory action of adenosine was mimicked by a selective A(1) adenosine receptor agonist, CPA (1 microM; depression: 54+/-9%, n=4); this action of adenosine (100 microM) was not observed in the presence of a specific A(1) adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (1 microM; 94+/-4% of control, n=3). The facilitatory action of adenosine (100 microM) was unaffected by an A(2a) antagonist, ZM 241385 (0.1 microM, n=3); an A(2a) agonist, CGS 21680 (0.1-10 microM; n=6), was without actions on mEPSC frequency. It is concluded that adenosine inhibits excitatory transmission to SG neurons through the activation of presynaptic A(1) adenosine receptor and that some of the inhibition is followed by a potentiation of the transmission. It remains to be examined which subtypes of adenosine receptors except for the A(1)- and A(2a)-subtypes are involved in the potentiating action. Considering that adenosine-like immunoreactivity and adenosine receptors are expressed at a high density in the SG, which is thought to play an important role in modulating nociceptive transmission from the periphery to the central nervous system, this inhibitory action of adenosine could contribute to a negative modulation of pain transmission. PMID:11731068

  16. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    PubMed Central

    Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Dias, Ana Sofia; Pelletier, Julie

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders. PMID:25210228

  17. Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix.

    PubMed

    Briggs, David C; Birchenough, Holly L; Ali, Tariq; Rugg, Marilyn S; Waltho, Jon P; Ievoli, Elena; Jowitt, Thomas A; Enghild, Jan J; Richter, Ralf P; Salustri, Antonietta; Milner, Caroline M; Day, Anthony J

    2015-11-27

    The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix. PMID:26468290

  18. Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix*

    PubMed Central

    Briggs, David C.; Birchenough, Holly L.; Ali, Tariq; Rugg, Marilyn S.; Waltho, Jon P.; Ievoli, Elena; Jowitt, Thomas A.; Enghild, Jan J.; Richter, Ralf P.; Salustri, Antonietta; Milner, Caroline M.; Day, Anthony J.

    2015-01-01

    The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix. PMID:26468290

  19. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  20. Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat.

    PubMed

    Tsai, Yung-Jen; Lin, Lie-Chwen; Tsai, Tung-Hu

    2010-04-28

    Cordycepin is a bioactive constituent of Cordyceps sinensis that has been shown to regulate homeostatic function. As an adenosine analogue, it is possible cordycepin goes through a similar metabolic pathway to that of adenosine. To investigate this hypothesis, a sensitive liquid chromatography with photodiode-array detector (HPLC-PDA) coupled to a microdialysis sampling system was developed to monitor cordycepin and adenosine in rat blood and liver. Other endogenous nucleosides were simultaneously measured to further understand the downstream metabolic pathway. The experiments were divided into six parallel groups for drug administration: (1) normal saline vehicle, (2) adenosine, (3) cordycepin, (4) normal saline + erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA; a potent adenosine deaminase inhibitor), (5) adenosine + EHNA, and (6) cordycepin + EHNA. The pharmacokinetic results suggest that the levels of both adenosine and cordycepin decreased rapidly in blood around 30 min after drug administration. When adenosine was given, the concentrations of adenosine metabolites, hypoxanthinosine and hypoxanthine, increased in rat blood. This phenomenon was inhibited by EHNA pretreatment. An unidentified peak was observed in the blood and liver samples after cordycepin administration. The decline of this unidentified peak paralleled the decreased of the concentration of cordycepin, and it was not observed in the presence of the adenosine deaminase inhibitor. It is concluded that adenosine and cordycepin had short elimination half-lives and high rates of clearance and their biotransformation was suppressed by EHNA. PMID:20302371

  1. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    PubMed Central

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A1 receptors with 2-chloro-N6-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A1 receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis. PMID:22552934

  2. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release

    PubMed Central

    Nguyen, Michael D.; Venton, B. Jill

    2014-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future. PMID:26900429

  3. The relationship between the neuromodulator adenosine and behavioral symptoms of autism

    PubMed Central

    Masino, Susan A.; Kawamura, Masahito; Plotkin, Louisa M.; Svedova, Julia; DiMario, Francis J.; Eigsti, Inge-Marie

    2013-01-01

    The neuromodulator adenosine is an endogenous sleep promoter, neuroprotector and anticonvulsant, and people with autism often suffer from sleep disruption and/or seizures. We hypothesized that increasing adenosine can decrease behavioral symptoms of autism, and, based on published research, specific physiological stimuli are expected to increase brain adenosine. To test the relationship between adenosine and autism, we developed a customized parent-based questionnaire to assess child participation in activities expected to influence adenosine and quantify behavioral changes following these experiences. Parents were naive to study hypotheses and all conditions were pre-assigned. Results demonstrate significantly better behavior associated with events pre-established as predicted to increase rather than decrease or have no influence on adenosine. Understanding the physiological relationship between adenosine and autism could open new therapeutic strategies - potentially preventing seizures, improving sleep, and reducing social and behavioral dysfunction. PMID:21693172

  4. Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats.

    PubMed

    Mandhane, S N; Chopde, C T; Ghosh, A K

    1997-06-11

    The effect of adenosine A1 and A2 receptor agonists and antagonists was investigated on haloperidol-induced catalepsy in rats. Pretreatment (i.p.) with the non-selective adenosine receptor antagonist, theophylline, or the selective adenosine A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX), significantly reversed haloperidol-induced catalepsy, whereas the selective adenosine A1 receptor antagonists, 8-phenyltheophylline and 8-cyclopentyl-1,3-dipropylxanthine produced no effect. Similar administration of the adenosine A2 receptor agonists, 5'-(N-cyclopropyl)-carboxamidoadenosine and 5'-N-ethylcarboxamidoadenosine (NECA), and the mixed agonists with predominantly A1 site of action, N6-(2-phenylisopropyl) adenosine or 2-chloroadenosine, potentiated haloperidol-induced catalepsy. Higher doses of the adenosine agonists produced catalepsy when given alone. However, N6-cyclopentyladenosine, a highly selective adenosine A1 receptor agonist, was ineffective in these respects. The per se cataleptic effect of adenosine agonists was blocked by DMPX and the centrally acting anticholinergic agent, scopolamine. Scopolamine also attenuated the potentiation of haloperidol-induced catalepsy by adenosine agonists. Further, i.c.v. administration of NECA and DMPX produced a similar effect as that produced after their systemic administration. These findings demonstrate the differential influence of adenosine A1 and A2 receptors on haloperidol-induced catalepsy and support the hypothesis that the functional interaction between adenosine and dopamine mechanisms might occur through adenosine A2 receptors at the level of cholinergic neurons. The results suggest that adenosine A2, but not A1, receptor antagonists may be of potential use in the treatment of Parkinson's disease. PMID:9218695

  5. Effects of adenosine metabolism in astrocytes on central nervous system oxygen toxicity.

    PubMed

    Yu-Liang, Chen; Ya-Nan, Zhang; Zhong-Zhuang, Wang; Wei-Gang, Xu; Run-Ping, Li; Jun-Dong, Zhang

    2016-03-15

    Hyperbaric oxygen (HBO) is widely used in military operations, especially underwater missions. However, prolonged and continuous inhalation of HBO can cause central nervous system oxygen toxicity (CNS-OT), which greatly limits HBO׳s application. The regulation of astrocytes to the metabolism of adenosine is involved in epilepsy. In our study, we aimed to observe the effects of HBO exposure on the metabolism of adenosine in the brain. Furthermore, we aimed to confirm the possible mechanism underlying adenosine׳s mediation of the CNS-OT. Firstly, anesthetized rats exposed to 5atm absolute HBO for 80min. The concentrations of extracellular adenosine, ATP, ADP, and AMP were detected. Secondly, free-moving rats were exposed to HBO at the same pressure for 20min, and the activities of 5'-nucleotidase and ADK in brain tissues were measured. For the mechanism studies, we observed the effects of a series of different doses of drugs related to adenosine metabolism on the latency of CNS-OT. Results showed HBO exposure could increase adenosine content by inhibiting ADK activity and improving 5'-nucleotidase activity. And adenosine metabolism during HBO exposure may be a protective response against HBO-induced CNS-OT. Moreover, the improvement of adenosine concentration, activation of adenosine A1R, or suppression of ADK and adenosine A2AR, which are involved in the prevention of HBO-induced CNS-OT. This is the first study to demonstrate HBO exposure regulated adenosine metabolism in the brain. Adenosine metabolism and adenosine receptors are related to HBO-induced CNS-OT development. These results will provide new potential targets for the termination or the attenuation of CNS-OT. PMID:26806404

  6. Extracellular adenosine levels are associated with the progression and exacerbation of pulmonary fibrosis.

    PubMed

    Luo, Fayong; Le, Ngoc-Bao; Mills, Tingting; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Molina, Jose G; Davies, Jonathan; Philip, Kemly; Volcik, Kelly A; Liu, Hong; Xia, Yang; Eltzschig, Holger K; Blackburn, Michael R

    2016-02-01

    Idiopathic pulmonary fibrosis is a devastating lung disease with limited treatment options. The signaling molecule adenosine is produced in response to injury and serves a protective role in early stages of injury and is detrimental during chronic stages of disease such as seen in lung conditions such as pulmonary fibrosis. Understanding the association of extracellular adenosine levels and the progression of pulmonary fibrosis is critical for designing adenosine based approaches to treat pulmonary fibrosis. The goal of this study was to use various models of experimental lung fibrosis to understand when adenosine levels are elevated during pulmonary fibrosis and whether these elevations were associated with disease progression and severity. To accomplish this, extracellular adenosine levels, defined as adenosine levels found in bronchioalveolar lavage fluid, were determined in mouse models of resolvable and progressive pulmonary fibrosis. We found that relative bronchioalveolar lavage fluid adenosine levels are progressively elevated in association with pulmonary fibrosis and that adenosine levels diminish in association with the resolution of lung fibrosis. In addition, treatment of these models with dipyridamole, an inhibitor of nucleoside transporters that potentiates extracellular adenosine levels, demonstrated that the resolution of lung fibrosis is blocked by the failure of adenosine levels to subside. Furthermore, exacerbating adenosine levels led to worse fibrosis in a progressive fibrosis model. Increased adenosine levels were associated with elevation of IL-6 and IL-17, which are important inflammatory cytokines in pulmonary fibrosis. These results demonstrate that extracellular adenosine levels are closely associated with the progression of experimental pulmonary fibrosis and that this signaling pathway may mediate fibrosis by regulating IL-6 and IL-17 production.-Luo, F., Le, N.-B., Mills, T., Chen, N.-Y., Karmouty-Quintana, H., Molina, J. G., Davies, J., Philip, K., Volcik, K. A., Liu, H., Xia, Y., Eltzschig, H. K., Blackburn, M. R. Extracellular adenosine levels are associated with the progression and exacerbation of pulmonary fibrosis. PMID:26527068

  7. Prolonged in vitro exposure of rat brain slices to adenosine analogues: selective desensitization of adenosine A1 but not A2 receptors.

    PubMed

    Abbracchio, M P; Fogliatto, G; Paoletti, A M; Rovati, G E; Cattabeni, F

    1992-11-01

    Agonist-induced desensitization of adenosine A1 and A2 receptors was studied in rat striatum slices maintained in carbo-oxygenated Krebs buffer. Slices were exposed to adenosine analogues (either cyclo-pentyl-adenosine or N-ethyl-carboxamido-adenosine) for selected time periods (15-60 min) and repeatedly washed at the end of agonist exposure. Agonist-induced changes of adenosine receptors were then evaluated in P2 fractions prepared from slices by measuring A1 and A2 receptor-regulated adenylate cyclase. A1 receptors were rapidly desensitized by agonist exposure, as shown by a gradual loss of A1 receptor-mediated inhibition of basal cyclase activity and cAMP formation, which was evident within 15-30 min after addition of the adenosine analogue. Agonist-induced desensitization of A1 receptors was dose- and time-dependent, and seemed quicker in onset with cyclo-pentyl-adenosine, according to the higher A1 selectivity of this receptor agonist, with respect to N-ethyl-carboxamido-adenosine. Binding of the A1-selective agonist [3H]cyclo-hexyl-adenosine was unaffected by the desensitization procedure at any of the exposure periods utilized, suggesting that an uncoupling of A1 receptors from their transduction system is indeed responsible for the loss of functional activity. Loss of A1 receptor function was accompanied by a time-dependent amplification of A2 receptor-mediated stimulation of adenylate cyclase activity, likely due to an 'unmasking' of A2 stimulatory receptor function as a consequence of the desensitization of A1 inhibitory receptors. All these effects could be completely counteracted by the concomitant exposure to an adenosine receptor antagonist, and specifically involved the coupling mechanisms of adenosine receptors with their effector system.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1473554

  8. Adenosine receptor control of cognition in normal and disease.

    PubMed

    Chen, Jiang-Fan

    2014-01-01

    Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles, additional animal and human studies to better understand the mechanism underlying the AR-mediated control of cognition under normal and disease conditions will provide the required rationale to stimulate the necessary clinical investigation to rapidly translate adenosine and AR drug as a novel strategy to control memory impairment in neuropsychiatric disorders. PMID:25175970

  9. Sustained adenosine exposure causes lung endothelial apoptosis: a possible contributor to cigarette smoke-induced endothelial apoptosis and lung injury

    PubMed Central

    Sakhatskyy, Pavlo; Newton, Julie; Shamirian, Paul; Hsiao, Vivian; Curren, Sean; Gabino Miranda, Gustavo Andres; Pedroza, Mesias; Blackburn, Michael R.; Rounds, Sharon

    2013-01-01

    Pulmonary endothelial cell (EC) apoptosis has been implicated in the pathogenesis of emphysema. Cigarette smoke (CS) causes lung EC apoptosis and emphysema. In this study, we show that CS exposure increased lung tissue adenosine levels in mice, an effect associated with increased lung EC apoptosis and the development of emphysema. Adenosine has a protective effect against apoptosis via adenosine receptor-mediated signaling. However, sustained elevated adenosine increases alveolar cell apoptosis in adenosine deaminase-deficient mice. We established an in vitro model of sustained adenosine exposure by incubating lung EC with adenosine in the presence of an adenosine deaminase inhibitor, deoxycoformicin. We demonstrated that sustained adenosine exposure caused lung EC apoptosis via nucleoside transporter-facilitated intracellular adenosine uptake, subsequent activation of p38 and JNK in mitochondria, and ultimately mitochondrial defects and activation of the mitochondria-mediated intrinsic pathway of apoptosis. Our results suggest that sustained elevated adenosine may contribute to CS-induced lung EC apoptosis and emphysema. Our data also reconcile the paradoxical effects of adenosine on apoptosis, demonstrating that prolonged exposure causes apoptosis via nucleoside transporter-mediated intracellular adenosine signaling, whereas acute exposure protects against apoptosis via activation of adenosine receptors. Inhibition of adenosine uptake may become a new therapeutic target in treatment of CS-induced lung diseases. PMID:23316066

  10. Adenosine modulates the (Na(+)+K(+))ATPase activity in malpighian tubules isolated from Rhodnius prolixus.

    PubMed

    Caruso-Neves, C; Monteiro, S O; de Oliveira, C F; Filho, C C; Lopes, A G

    2000-02-01

    The role of adenosine on regulation of the (Na(+)+K(+))ATPase activity present in the Malpighian tubules isolated from Rhodnius prolixus was investigated. Adenosine decreases the (Na(+)+K(+)) ATPase specific activity by 88%, in a dose-dependent manner, with maximal effect at a concentration of 10(-9) M. This effect was mimicked by N(6)-cyclohexyladenosine (CHA) at 10(-8) M, an agonist for A(1) adenosine receptor, and was reversed by 10(-9) M 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), an antagonist for A(1) adenosine receptor. On the other hand, 5'-N-ethyl-carboxamide adenosine (NECA), an agonist for A(2) adenosine receptor, used in the range of 10(-9)-10(-5) M, did not change the (Na(+)+K(+))ATPase specific activity. In the same way, 10(-8) M 3, 7-dimethyl-1-propargylxanthine (DMPX), an antagonist for A(2) adenosine receptor, did not modify the inhibitory effect of adenosine. These data suggest that the inhibitory effect of adenosine on the (Na(+)+K(+))ATPase specific activity present in Malpighian tubules from Rhodnius prolixus is mediated by A(1) adenosine receptor activation. Arch. PMID:10644971

  11. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice

    PubMed Central

    Witts, Emily C.; Nascimento, Filipe

    2015-01-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925–1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output. PMID:26311185

  12. Abiotic regioselective phosphorylation of adenosine with borate in formamide.

    PubMed

    Furukawa, Yoshihiro; Kim, Hyo-Joong; Hutter, Daniel; Benner, Steven A

    2015-04-01

    Nearly 40 years ago, Schoffstall and his coworkers used formamide as a solvent to permit the phosphorylation of nucleosides by inorganic phosphate to give nucleoside phosphates, which (due to their thermodynamic instability with respect to hydrolysis) cannot be easily created in water by an analogous phosphorylation (the "water problem" in prebiotic chemistry). More recently, we showed that borate could stabilize certain carbohydrates against degradation (the "asphalt problem"). Here, we combine the two concepts to show that borate can work in formamide to guide the reactivity of nucleosides under conditions where they are phosphorylated. Specifically, reaction of adenosine in formamide with inorganic phosphate and pyrophosphate in the presence of borate gives adenosine-5'-phosphate as the only detectable phosphorylated product, with formylation (as opposed to hydrolysis) being the competing reaction. PMID:25826074

  13. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis

    PubMed Central

    Alsharif, Khalaf F.; Thomas, Mark R.; Judge, Heather M.; Khan, Haroon; Prince, Lynne R.; Sabroe, Ian; Ridger, Victoria C.; Storey, Robert F.

    2015-01-01

    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10− 8 M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7% ± 4.4 vs. control 22.6% ± 2.4; p < 0.01) by acting on the high-affinity A1 receptor. Erythrocytes attenuated the effect of adenosine, although this was preserved by ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10− 8 M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6 ± 6.6 vs. 28.0 ± 6.6; p = 0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection. PMID:25869515

  14. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis.

    PubMed

    Alsharif, Khalaf F; Thomas, Mark R; Judge, Heather M; Khan, Haroon; Prince, Lynne R; Sabroe, Ian; Ridger, Victoria C; Storey, Robert F

    2015-08-01

    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10(-8)M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7%±4.4 vs. control 22.6%±2.4; p<0.01) by acting on the high-affinity A1 receptor. Erythrocytes attenuated the effect of adenosine, although this was preserved by ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10(-8)M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6±6.6 vs. 28.0±6.6; p=0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection. PMID:25869515

  15. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    PubMed Central

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  16. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme.

    PubMed Central

    Ortoleva-Donnelly, L; Szewczak, A A; Gutell, R R; Strobel, S A

    1998-01-01

    Adenosines are present at a disproportionately high frequency within several RNA structural motifs. To explore the importance of individual adenosine functional groups for group I intron activity, we performed Nucleotide Analog Interference Mapping (NAIM) with a collection of adenosine analogues. This paper reports the synthesis, transcriptional incorporation, and the observed interference pattern throughout the Tetrahymena group I intron for eight adenosine derivatives tagged with an alpha-phosphorothioate linkage for use in NAIM. All of the analogues were accurately incorporated into the transcript as an A. The sites that interfere with the 3'-exon ligation reaction of the Tetrahymena intron are coincident with the sites of phylogenetic conservation, yet the interference patterns for each analogue are different. These interference data provide several biochemical constraints that improve our understanding of the Tetrahymena ribozyme structure. For example, the data support an essential A-platform within the J6/6a region, major groove packing of the P3 and P7 helices, minor groove packing of the P3 and J4/5 helices, and an axial model for binding of the guanosine cofactor. The data also identify several essential functional groups within a highly conserved single-stranded region in the core of the intron (J8/7). At four sites in the intron, interference was observed with 2'-fluoro A, but not with 2'-deoxy A. Based upon comparison with the P4-P6 crystal structure, this may provide a biochemical signature for nucleotide positions where the ribose sugar adopts an essential C2'-endo conformation. In other cases where there is interference with 2'-deoxy A, the presence or absence of 2'-fluoro A interference helps to establish whether the 2'-OH acts as a hydrogen bond donor or acceptor. Mapping of the Tetrahymena intron establishes a basis set of information that will allow these reagents to be used with confidence in systems that are less well understood. PMID:9582093

  17. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    SciTech Connect

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  18. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms. PMID:25509166

  19. Activities and some properties of 5'-nucleotidase, adenosine kinase and adenosine deaminase in tissues from vertebrates and invertebrates in relation to the control of the concentration and the physiological role of adenosine.

    PubMed Central

    Arch, J R; Newsholme, E A

    1978-01-01

    1. The maximal activities of 5'-nucleotidase, adenosine kinase and adenosine deaminase together with the Km values for their respective substrates were measured in muscle, nervous tissue and liver from a large range of animals to provide information on the mechanism of control of adenosine concentration in the tissues. 2. Detailed evidence that the methods used were optimal for the extraction and assay of these enzymes has been deposited as Supplementary Publication SUP 50088 (16pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K.,from whom copies can be obtained on the terms indicated in Biochem. J. (1978), 169, 5. This evidence includes the effects of pH and temperature on the activities of the enzymes. 3. In many tissues, the activities of 5'-nucleotidase were considerably higher than the sum of the activities of adenosine kinase and deaminase, which suggests that the activity of the nucleotidase must be markedly inhibited in vivo so that adenosine does not accumulate. In the tissues in which comparison is possible, the Km of the nucleotidase is higher than the AMP content of the tissue, and since some of the latter may be bound within the cell, the low concentration of substrate may, in part, be responsible for a low activity in vivo. 4. In most tissues and animals investigated, the values of the Km of adenosine kinase for adenosine are between one and two orders of magnitude lower than those for the deaminase. It is suggested that 5'-nucleotidase and adenosine kinase are simultaneously active so that a substrate cycle between AMP and adenosine is produced: the difference in Km values between kinase and deaminase indicates that, via the cycle, small changes in activity of kinase or nucleotidase produce large changes in adenosine concentration. 5. The activities of adenosine kinase or deaminase from vertebrate muscles are inversely correlated with the activities of phosphorylase in these muscles. Since the magnitude of the latter activities are indicative of the anaerobic nature of muscles, this negative correlation supports the hypothesis that an important role of adenosine is the regulation of blood flow in the aerobic muscles. PMID:215126

  20. Dissecting striatal adenosine-cannabinoid receptor interactions. New clues from rats over-expressing adenosine A2A receptors.

    PubMed

    Ferré, Sergi; Sebastião, Ana Maria

    2016-03-01

    This Editorial highlights a study by Chiodi et al. () showing that the effects mediated by cannabinoid CB1 receptor (CB1R) activation in the striatum are significantly reduced in rats with neuronal over-expression of adenosine A2A receptors (A2AR). Two hypotheses are derived from that study. Hypothesis A: two subpopulations of pre-synaptic CB1R in corticostriatal glutamatergic terminals exist, one forming and another not forming heteromers with A2AR. Hypothesis B: CB1R are predominantly forming heteromers with A2AR. In the case of hypothesis A, the A2AR might be required for CB1R-A2AR heteromeric signaling, whereas non-heteromeric CB1R activity is inhibited by A2ARs. In the case of hypothesis B, up-regulation of A2ARs may perturb heteromeric stoichiometry, thus reducing CB1R functioning. In any case, pre-synaptic striatal A2AR-CB1R heteromers emerge as important targets of the effects of cannabinoids demonstrated at the neuronal and behavioral level. Read the highlighted article 'Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors' on page 907. PMID:26806455

  1. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  2. Discovery of aminoquinazoline derivatives as human A2A adenosine receptor antagonists.

    PubMed

    Zhou, Gang; Aslanian, Robert; Gallo, Gioconda; Khan, Tanweer; Kuang, Rongze; Purakkattle, Biju; Ruiz, Manuel De; Stamford, Andrew; Ting, Pauline; Wu, Heping; Wang, Hongwu; Xiao, Dong; Yu, Tao; Zhang, Yonglian; Mullins, Deborra; Hodgson, Robert

    2016-02-15

    Novel bicyclic adenosine A2A antagonists with an aminoquinazoline moiety were designed and synthesized. The optimization of the initial lead compound based on in vitro and in vivo activity has led to the discovery of a potent and selective class of adenosine A2A antagonists. The structure-activity relationships of this novel series of bicyclic aminoquinazoline derivatives as adenosine A2A antagonists are described in detail. PMID:26781932

  3. Regulation by equilibrative nucleoside transporter of adenosine outward currents in adult rat spinal dorsal horn neurons.

    PubMed

    Liu, Tao; Fujita, Tsugumi; Kawasaki, Yasuhiko; Kumamoto, Eiichi

    2004-07-30

    A current response induced by superfusing adenosine was examined in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. In 78% of the neurons examined, adenosine induced an outward current at -70 mV [18.8 +/- 1.1 pA (n = 98) at 1mM] in a dose-dependent manner (EC(50) = 177 microM). A similar current was induced by A(1) agonist N(6)-cyclopentyladenosine (1 microM), whereas A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (1 microM) reversed the adenosine action. The adenosine current reversed its polarity at a potential being close to the equilibrium potential for K(+), and was attenuated by Ba(2+) (100 microM) and 4-aminopyridine (5mM) but not tetraethylammonium (5mM). The adenosine current was enhanced in duration by equilibrative nucleoside-transport (rENT1) inhibitor S-(4-nitrobenzyl)-6-thioinosine (1 microM) and adenosine deaminase (ADA) inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (1 microM), and slowed in falling phase by adenosine kinase (AK) inhibitor iodotubercidine (1 microM). We conclude that a Ba(2+)- and 4-aminopyridine-sensitive K(+) channel in SG neurons is opened via the activation of A(1) receptors by adenosine whose level is possibly regulated by rENT1, adenosine deaminase and adenosine kinase. Considering that intrathecally-administered adenosine analogues produce antinociception, the regulatory systems of adenosine may serve as targets for antinociceptive drugs. PMID:15275960

  4. Action of adenosine on energetics, protein synthesis and K(+) homeostasis in teleost hepatocytes.

    PubMed

    Krumschnabel, G; Biasi, C; Wieser, W

    2000-09-01

    In a comparative study, we analysed the effects of adenosine on the energetics, protein synthesis and K(+ )homeostasis of hepatocytes from the anoxia-tolerant goldfish Carassius auratus and the anoxia-intolerant trout Oncorhynchus mykiss. The rate of oxygen consumption did not respond immediately to the addition of adenosine to the cells from either species, but showed a significant decrease in trout hepatocytes after 30 min. The anaerobic rate of lactate formation was not significantly affected by adenosine in goldfish hepatocytes, but was increased in trout cells. We also studied the effects of adenosine on the two most prominent ATP consumers in these cells, protein synthesis and Na(+)/K(+)-ATPase activity. Under aerobic conditions, adenosine inhibited protein synthesis of hepatocytes from goldfish by 51% and of hepatocytes from trout by 32%. During anoxia, the rate of protein synthesis decreased by approximately 50% in goldfish hepatocytes and by 90% in trout hepatocytes, and this decrease was not altered by the presence of adenosine. Adenosine inhibited normoxic Na(+)/K(+)-ATPase activity and K(+ )efflux by 20-35% in the cells of both species. An investigation into the mechanism underlying the inhibition of protein synthesis by adenosine indicated that, in the goldfish cells, adenosine acts via a membrane receptor-mediated pathway, i.e. the effect of adenosine was abolished by applying the A1 receptor antagonist 8-phenyltheophylline. In the trout, however, the uptake of adenosine into hepatocytes seems to be required for an effect on protein synthesis. [Ca(2+)](i) does not seem to be involved in the inhibition of protein synthesis by adenosine. PMID:10934006

  5. Intravenous Calcium and Magnesium for Oxaliplatin-Induced Sensory Neurotoxicity in Adjuvant Colon Cancer: NCCTG N04C7

    PubMed Central

    Grothey, Axel; Nikcevich, Daniel A.; Sloan, Jeff A.; Kugler, John W.; Silberstein, Peter T.; Dentchev, Todor; Wender, Donald B.; Novotny, Paul J.; Chitaley, Umesh; Alberts, Steven R.; Loprinzi, Charles L.

    2011-01-01

    Purpose Cumulative sensory neurotoxicity (sNT) is the dose-limiting toxicity of oxaliplatin, which commonly leads to early discontinuation of oxaliplatin-based therapy in the palliative and adjuvant settings. In a nonrandomized, retrospective study, intravenous (IV) calcium/magnesium (Ca/Mg) was associated with reduced oxaliplatin-induced sNT. Methods Patients with colon cancer undergoing adjuvant therapy with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX) were randomly assigned to Ca/Mg (1g calcium gluconate plus 1g magnesium sulfate pre- and post-oxaliplatin) or placebo, in a double-blinded manner. The primary end point was the percentage of patients with grade 2 or greater sNT at any time during or after oxaliplatin-based therapy by National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE; version 3) criteria. An oxaliplatin-specific sNT scale and patient questionnaires were also used to assess sNT. After 104 of 300 planned patients were enrolled, the study was closed. This was due to preliminary reports from another trial that suggested that Ca/Mg decreased treatment efficacy; these data were subsequently found to be incorrect. Results Overall, 102 patients were available for analysis. Ca/Mg decreased the incidence of chronic, cumulative, grade 2 or greater sNT, as measured by NCI CTCAE (P = .038) and also by the oxaliplatin-specific sNT scale (P = .018). In addition, acute muscle spasms associated with oxaliplatin were significantly reduced (P = .01) No effect on acute, cold-induced sNT was found. No substantial differences in adverse effects were noted between Ca/Mg and placebo. Conclusion Despite early termination and decreased statistical power, this study supports IV Ca/Mg as an effective neuroprotectant against oxaliplatin-induced cumulative sNT in adjuvant colon cancer. PMID:21189381

  6. Effects of calcium and magnesium on the frequency of miniature end-plate potentials during prolonged tetanization

    PubMed Central

    Hurlbut, W. P.; Longenecker, H. B.; Mauro, Alexander

    1971-01-01

    1. End-plate potentials (e.p.p.s) and miniature end-plate potentials (min.e.p.p.s) were recorded intracellularly from the cutaneous pectoris nerve-muscle preparation of the frog during prolonged stimulation at low frequencies (5/sec—50/sec). 2. When Ca was present in the bathing solution, the quantum content of the e.p.p. and the frequency of occurrence of the min.e.p.p.s gradually increased during the period of stimulation. During the first few minutes of stimulation, the min.e.p.p. frequency increased linearly with time, and the rate of increase was dependent on the Ca concentration of the bathing solution. However, Mg had no effect on this Ca-dependent increase in min.e.p.p. frequency. 3. A large maintained increase in min.e.p.p. frequency also occurred during prolonged stimulation in solutions that contained no added Ca and 1-2 mM-EGTA. Under these conditions the increase in min.e.p.p. frequency was dependent on the Mg concentration of the bathing solution and was exponential in time. 4. It is suggested that the rise in min.e.p.p. frequency is caused by an accumulation of Ca or Mg ions in the nerve terminal, and it is suggested that these ions enter the terminal at relatively non-specific sites distinct from the Ca-specific sites that trigger the `phasic' release of transmitter. PMID:5316661

  7. Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems

    NASA Astrophysics Data System (ADS)

    Sepehr, Mohammad Noori; Zarrabi, Mansur; Kazemian, Hossein; Amrane, Abdeltif; Yaghmaian, Kamiar; Ghaffari, Hamid Reza

    2013-06-01

    Natural and alkaline modified pumice stones were used for the adsorption of water hardening cations, Ca2+ and Mg2+. The adsorbents were characterized using XRF, XRD, SEM and FTIR instrumental techniques. At equilibrium time and for 150 mg/L of a given cation, removal efficiencies were 83% and 94% for calcium and 48% and 73% for magnesium for raw and modified pumices, respectively. The optimal pH for raw and modified pumices were found to be 6.0, leading to the removal of 79 and 96% of calcium and 51 and 93% of magnesium by 10 g/L of raw and modified pumice adsorbents, respectively. Maximum adsorption capacities were 57.27 and 62.34 mg/g for Ca2+ and 44.53 and 56.11 mg/g for Mg2+ on the raw and modified pumices, respectively. Ca2+ and Mg2+ adsorption capacities of the pumice adsorbents decreased in the presence of competing cations. Less than 300 min were needed to achieve 99 and 92% desorption of the adsorbed Ca2+ and 100 and 89% of the adsorbed Mg2+ from the natural and modified pumices, respectively. After treating synthetic water solution simulating an actual water stream with the alkali-modified pumice, total hardness of the treated sample met the required standard for drinking water, namely below 300 mg/L of CaCO3 (297.5 mg/L). The studied pumice adsorbents, and especially the treated pumice, can be therefore considered as promising low cost adsorbents, suitable for the removal of hardness ions from drinking water.

  8. Calcium and Magnesium Ions Are Membrane-Active against Stationary-Phase Staphylococcus aureus with High Specificity

    PubMed Central

    Xie, Yuntao; Yang, Lihua

    2016-01-01

    Staphylococcus aureus (S. aureus) is notorious for its ability to acquire antibiotic-resistance, and antibiotic-resistant S. aureus has become a wide-spread cause of high mortality rate. Novel antimicrobials capable of eradicating S. aureus cells including antibiotic-resistant ones are thus highly desired. Membrane-active bactericides and species-specific antimicrobials are two promising sources of novel anti-infective agents for fighting against bacterial antibiotic-resistance. We herein show that Ca2+ and Mg2+, two alkaline-earth-metal ions physiologically essential for diverse living organisms, both disrupt model S. aureus membranes and kill stationary-phase S. aureus cells, indicative of membrane-activity. In contrast to S. aureus, Escherichia coli and Bacillus subtilis exhibit unaffected survival after similar treatment with these two cations, indicative of species-specific activity against S. aureus. Moreover, neither Ca2+ nor Mg2+ lyses mouse red blood cells, indicative of hemo-compatibility. This works suggests that Ca2+ and Mg2+ may have implications in targeted eradication of S. aureus pathogen including the antibiotic-resistant ones. PMID:26865182

  9. Calcium and magnesium elimination enhances accumulation of cardenolides in callus cultures of endemic Digitalis species of Turkey.

    PubMed

    Sahin, G; Verma, S K; Gurel, E

    2013-12-01

    Elimination of calcium (Ca), magnesium (Mg) or both from the medium of callus cultures of Digitalis davisiana Heywood, Digitalis lamarckii Ivanina, Digitalis trojana Ivanina and Digitalis cariensis Boiss. ex Jaub. et Spach increased cardenolides production. Callus was induced from hypocotyl segments from one-month old seedlings were cultured on MS medium containing 0.5 μg ml(-1) thidiazuron (TDZ) and 0.25 μg ml(-1) indole acetic acid (IAA). After 30 days of culture, callus was transferred in hormone-free MS medium (MSO) as well as Ca or Mg or both were completely eliminated from same medium. The amount of five cardenolides from D. davisiana Heywood, D. lamarckii Ivanina, D. trojana Ivanina and D. cariensis Boiss. ex Jaub. et Spach were compared. Higher amounts of five cardenolides and total cardenolides were obtained when callus of four Digitalis species were incubated on MS medium lacking both Ca and Mg. The mean contents of total cardenolides obtained were in the order of D. lamarckii (2017.97 μg g(-1))>D. trojana (1385.75 μg g(-1))>D. cariensis (1038.65 μg g(-1))>D. davisiana (899.86 μg g(-1)) when both Ca and Mg were eliminated from the medium, respectively. This protocol is useful for development of new strategies for the large-scale production of cardenolides. PMID:24095920

  10. Reactions Involving Calcium and Magnesium Sulfates as Potential Sources of Sulfur Dioxide During MSL SAM Evolved Gas Analyses

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Knudson, C. A.; Sutter, B.; Franz, H. B.; Archer, P. D., Jr.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Hurowitz, J. A.; Mahaffy, P. R.; Navarro-Gonzalez, R.

    2016-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analyzed several subsamples of <150 micron fines from ten sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform (RN) and drilled Sheepbed mudstone from sites John Klein (JK) and Cumberland (CB). One was drilled from the Windjana (WJ) site on a sandstone of the Kimberly formation. Four were drilled from sites Confidence Hills (CH), Mojave (MJ), Telegraph Peak (TP) and Buckskin (BK) of the Murray Formation at the base of Mt. Sharp. Two were drilled from sandstones of the Stimson formation targeting relatively unaltered (Big Sky, BY) and then altered (Greenhorn, GH) material associated with a light colored fracture zone. CheMin analyses provided quantitative sample mineralogy. SAM's evolved gas analysis mass spectrometry (EGA-MS) detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases. This contribution will focus on evolved SO2. All samples evolved SO2 above 500 C. The shapes of the SO2 evolution traces with temperature vary between samples but most have at least two "peaks' within the wide high temperature evolution, from approx. 500-700 and approx. 700-860 C (Fig. 1). In many cases, the only sulfur minerals detected with CheMin were Ca sulfates (e.g., RN and GH), which should thermally decompose at temperatures above those obtainable by SAM (>860 C). Sulfides or Fe sulfates were detected by CheMin (e.g., CB, MJ, BK) and could contribute to the high temperature SO2 evolution, but in most cases they are not present in enough abundance to account for all of the SO2. This additional SO2 could be largely associated with x-ray amorphous material, which comprises a significant portion of all samples. It can also be attributed to trace S phases present below the CheMin detection limit, or to reactions which lower the temperatures of SO2 evolution from sulfates that are typically expected to thermally decompose at temperatures outside the SAM temperature range (e.g., Ca and Mg sulfates). Here we discuss the results of SAM-like laboratory analyses targeted at understanding this last possibility, focused on understanding if reactions of HCl or an HCl evolving phase (oxychlorine phases, chlorides, etc.) and Ca and Mg sulfates can result in SO2 evolution in the SAM temperature range.

  11. Effects of calcium and magnesium hardness on the fertilization and hatching success of channel X blue hybrid catfish eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aquifer used for hybrid catfish hatcheries is less than 10 mg/L of calcium hardness and 1- 25 mg/L of magnesium hardness. Embryonic development is deemed to be the most sensitive stage in the life cycle of a teleost. As egg development takes outside the fish’s body, water hardness is one abioti...

  12. Seasonal patterns of nitrogen, phosphorus, potassium, calcium and magnesium in the leaves of the Massachusetts cranberry. [Vaccinium macrocarpon

    SciTech Connect

    DeMoranville, C.J.; Deubert, K.H.

    1986-01-01

    Leaf samples from cranberry plants in Wareham, MA, were collected during the 1980-82 growing seasons and analyzed for N, P, K, Ca and Mg. The seasonal patterns which emerged allowed the proposal of normal ranges for the elements and optimum times for sampling. The foliar nutrient levels obtained were compared to those for cranberries grown in other areas as well as to those for crops which are grown under similar conditions.

  13. Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts.

    PubMed

    Suliburska, Joanna; Krejpcio, Zbigniew

    2014-03-01

    The objective of this study was to determine the content and the bioaccessibility of minerals (Fe, Zn, Ca and Mg) in commonly consumed food products, such as cereal groats, rice, leguminous grains and nuts purchased from the local market. The contents of Fe, Zn, Ca and Mg in foods were assayed after dry ashing of samples, while the bioaccessibility of these minerals after enzymatic in vitro digestion, was determined by flame atomic absorption spectrometry. A relatively high content of Fe was found in cashew nuts and green lentils, while cashew nuts and buckwheat groats had the highest concentration of Zn. It was found that the highest amount of macro-elements was generally in nuts, in particular: brazil nuts (Ca and Mg), cashews (Mg) and hazelnuts (Ca and Mg). Concerning the mineral bioaccessibility, the highest values for Fe were obtained in cashew nuts and green lentils (2.8 and 1.7 mg/100 g), for Zn in green lentils (2.1 mg/100 g), for Ca in brazil nuts and shelled pea (32.6 and 29.1 mg/100 g), while for Mg in shelled peas and green lentils (43.4 and 33.9 mg/100 g). Generally, the best sources of bioaccessible minerals seem to be leguminous grains and nuts. PMID:24587537

  14. Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat.

    PubMed

    Younes, H; Demigné, C; Rémésy, C

    1996-02-01

    The effect of fermentation on colonic absorption of Ca and Mg was investigated in 8-week-old rats adapted to diets containing either digestible wheat starch (DS diets) or including resistant starch, i.e. 350 g raw potato starch/kg (RS diets). The dietary Ca level of the DS and RS diets was 2.5 or 7.5 g/kg. RS diets resulted in enlargements of the caecum together with hypertrophy of the caecal wall. Acidification of the caecal contents by microbial fermentation of RS was influenced by the dietary Ca level. Very acidic pH conditions and relatively low concentrations of short-chain fatty acids, in the presence of lactic acid fermentation, were observed with the 2.5 g Ca/kg level. Rats fed on RS diets had a higher percentage of soluble Ca (and inorganic phosphate) in the caecum, particularly of rats adapted to the high Ca level. As a result of the hypertrophy of the caecal wall and of an elevated concentration of soluble Ca, the caecal absorption of Ca was 5-6-fold higher in the RS groups than in the DS groups. The difference between dietary intake and faecal excretion (DI-FE) of Ca was higher in rats fed on RS diets than in those fed on DS diets, when the dietary Ca level was 2.5 g/kg. With the higher Ca intake the elevated rate of Ca absorption from the caecum in RS-fed rats was not paralleled by an enhanced DI-EE difference: this suggests a shift of the Ca absorption towards the large intestine. Feeding RS diets also enhanced Mg caecal absorption, resulting in a substantially higher DI-FE difference for Mg, especially with the 2.5 g Ca/kg diets, because a high Ca intake tends to inhibit Mg absorption. The present findings support the view that the large intestine may represent a major site of Ca (and Mg) absorption when acidic fermentations take place. This process could improve the digestive Ca balance when the dietary Ca supply is low; when the Ca supply is affluent, it rather shifts Ca absorption towards a more distal site of the digestive tract. PMID:8785206

  15. Structural Basis for Calcium and Magnesium Regulation of a Large Conductance Calcium-activated Potassium Channel with β1 Subunits*

    PubMed Central

    Liu, Hao-Wen; Hou, Pan-Pan; Guo, Xi-Ying; Zhao, Zhi-Wen; Hu, Bin; Li, Xia; Wang, Lu-Yang; Ding, Jiu-Ping; Wang, Sheng

    2014-01-01

    Large conductance Ca2+- and voltage-activated potassium (BK) channels, composed of pore-forming α subunits and auxiliary β subunits, play important roles in diverse physiological activities. The β1 is predominately expressed in smooth muscle cells, where it greatly enhances the Ca2+ sensitivity of BK channels for proper regulation of smooth muscle tone. However, the structural basis underlying dynamic interaction between BK mSlo1 α and β1 remains elusive. Using macroscopic ionic current recordings in various Ca2+ and Mg2+ concentrations, we identified two binding sites on the cytosolic N terminus of β1, namely the electrostatic enhancing site (mSlo1(K392,R393)-β1(E13,T14)), increasing the calcium sensitivity of BK channels, and the hydrophobic site (mSlo1(L906,L908)-β1(L5,V6,M7)), passing the physical force from the Ca2+ bowl onto the enhancing site and S6 C-linker. Dynamic binding of these sites affects the interaction between the cytosolic domain and voltage-sensing domain, leading to the reduction of Mg2+ sensitivity. A comprehensive structural model of the BK(mSlo1 α-β1) complex was reconstructed based on these functional studies, which provides structural and mechanistic insights for understanding BK gating. PMID:24764303

  16. Evaluation of calcium and magnesium in scalp hair samples of population consuming different drinking water: risk of kidney stone.

    PubMed

    Panhwar, Abdul Haleem; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shaikh, Haffeezur Rehman; Arain, Salma Aslam; Arain, Sadaf Sadia; Brahman, Kapil Dev

    2013-12-01

    The objective of this study was to examine the relationship between calcium (Ca) and magnesium (Mg) in underground water (UGW), bottled mineral water (BMW), and domestic treated water (DTW) with related to risk of kidney stones. The water samples were collected from different areas of Sindh, Pakistan. The scalp hair samples of both genders, age ranged 30-60 years, consuming different types of water, have or have not kidney disorders, were selected. The Ca and Mg concentrations were determined in scalp hair of study subjects and water by flame atomic absorption spectroscopy. The Ca and Mg contents in different types of drinking water, UGW, DTW, and BMW, were found in the range of 79.1-466, 23.7-140, and 45-270 mg/L and 4.43-125, 5.23-39.6, and 7.16-51.3 mg/L, respectively. It was observed that Ca concentration in the scalp hair samples of kidney stone patients consuming different types of drinking water was found to be higher (2,895-4721 μg/g) while Mg level (84.3-101 μg/g) was lower as compare to referents subjects (2,490-2,730 μg/g for Ca, 107-128 μg/g for Mg) in both genders. The positive correlation was found between Ca and Mg levels in water with related to kidney stone formations in population, especially who consumed underground water. A relative risk and odd ratio were calculated; the relative risk had a strong positive association with incidence of kidney stone which depends on types of drinking water. PMID:24218227

  17. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deficiency of oestrogen at menopause decreases intestinal Ca absorption, contributing to a negative Ca balance and bone loss. Mg deficiency has also been associated with bone loss. The purpose of the present investigation was to test the hypothesis that treatment with a spray-dried mixture of chicor...

  18. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    PubMed Central

    Chee, Hyun Keun

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  19. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment. PMID:25490060

  20. Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism.

    PubMed

    Nguyen, Michael D; Ross, Ashley E; Ryals, Matthew; Lee, Scott T; Venton, B Jill

    2015-12-01

    Adenosine is a neuromodulator that regulates neurotransmission in the brain and central nervous system. Recently, spontaneous adenosine release that is cleared in 3-4 sec was discovered in mouse spinal cord slices and anesthetized rat brains. Here, we examined the clearance of spontaneous adenosine in the rat caudate-putamen and exogenously applied adenosine in caudate brain slices. The V max for clearance of exogenously applied adenosine in brain slices was 1.4 ± 0.1 μmol/L/sec. In vivo, the equilibrative nucleoside transport 1 (ENT1) inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI) (1 mg/kg, i.p.) significantly increased the duration of adenosine, while the ENT1/2 inhibitor, dipyridamole (10 mg/kg, i.p.), did not affect duration. 5-(3-Bromophenyl)-7-[6-(4-morpholinyl)-3-pyrido[2,3-d]byrimidin-4-amine dihydrochloride (ABT-702), an adenosine kinase inhibitor (5 mg/kg, i.p.), increased the duration of spontaneous adenosine release. The adenosine deaminase inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) (10 mg/kg, i.p.), also increased the duration in vivo. Similarly, NBTI (10 μmol/L), ABT-702 (100 nmol/L), or EHNA (20 μmol/L) also decreased the clearance rate of exogenously applied adenosine in brain slices. The increases in duration for blocking ENT1, adenosine kinase, or adenosine deaminase individually were similar, about 0.4 sec in vivo; thus, the removal of adenosine on a rapid time scale occurs through three mechanisms that have comparable effects. A cocktail of ABT-702, NBTI, and EHNA significantly increased the duration by 0.7 sec, so the mechanisms are not additive and there may be additional mechanisms clearing adenosine on a rapid time scale. The presence of multiple mechanisms for adenosine clearance on a time scale of seconds demonstrates that adenosine is tightly regulated in the extracellular space. PMID:27022463

  1. A rapid enzymatic assay for high-throughput screening of adenosine-producing strains

    PubMed Central

    Dong, Huina; Zu, Xin; Zheng, Ping; Zhang, Dawei

    2015-01-01

    Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of adenosine to inosine and NH3, the latter can be accurately determined by indophenol method. The assay system was optimized to deliver a good performance and could tolerate the addition of inorganic salts and many nutrition components to the assay mixtures. Adenosine could be accurately determined by this assay using 96-well microplates. Spike and recovery tests showed that this assay can accurately and reproducibly determine increases in adenosine in fermentation broth without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. This assay was also applied to high-throughput screening for high adenosine-producing strains. The high selectivity and accuracy of the ADA assay provides rapid and high-throughput analysis of adenosine in large numbers of samples. PMID:25580842

  2. Characterization and regulation of adenosine transport in T84 intestinal epithelial cells.

    PubMed

    Mun, E C; Tally, K J; Matthews, J B

    1998-02-01

    Adenosine release from mucosal sources during inflammation and ischemia activates intestinal epithelial Cl- secretion. Previous data suggest that A2b receptor-mediated Cl- secretory responses may be dampened by epithelial cell nucleoside scavenging. The present study utilizes isotopic flux analysis and nucleoside analog binding assays to directly characterize the nucleoside transport system of cultured T84 human intestinal epithelial cells and to explore whether adenosine transport is regulated by secretory agonists, metabolic inhibition, or phorbol ester. Uptake of adenosine across the apical membrane displayed characteristics of simple diffusion. Kinetic analysis of basolateral uptake revealed a Na(+)-independent, nitrobenzylthioinosine (NBTI)-sensitive facilitated-diffusion system with low affinity but high capacity for adenosine. NBTI binding studies indicated a single population of high-affinity binding sites basolaterally. Neither forskolin, 5'-(N-ethylcarboxamido)-adenosine, nor metabolic inhibition significantly altered adenosine transport. However, phorbol 12-myristate 13-acetate significantly reduced both adenosine transport and the number of specific NBTI binding sites, suggesting that transporter number may be decreased through activation of protein kinase C. This basolateral facilitated adenosine transporter may serve a conventional function in nucleoside salvage and a novel function as a regulator of adenosine-dependent Cl- secretory responses and hence diarrheal disorders. PMID:9486178

  3. Seizure suppression in kindled rats by intraventricular grafting of an adenosine releasing synthetic polymer.

    PubMed

    Boison, D; Scheurer, L; Tseng, J L; Aebischer, P; Mohler, H

    1999-11-01

    Adenosine, an endogenous inhibitory neuromodulator in the central nervous system, exerts anticonvulsant activity that is largely based on the inhibition of the release of excitatory amino acids. As a novel approach to treat pharmacoresistant partial epilepsies, the grafting of adenosine-releasing cells is foreseen to provide a local and sustained source of adenosine. The feasibility of this cell-based therapy was investigated in the present study by the intraventricular implantation of synthetic polymers that release adenosine. Kindled rats with a ventricular implant of an adenosine-releasing polymer showed a profound reduction of seizure activity. This was demonstrated not only by a 75% reduction of grade 5 seizures but also by a reduction of the amplitude and duration of afterdischarges in electroencephalographic (EEG) recordings. Kindled control rats that were implanted with bovine serum albumin (BSA)-containing polymers or were sham operated, continued to show their presurgery seizure pattern. Adenosine displayed antiepileptic activity when released in an amount of 20-50 ng per day. This finding sets the target for the required amount of adenosine to be released from future adenosine-releasing cells for antiepileptic therapy. The present results clearly support the feasibility of a novel therapy for epilepsy based on adenosine-releasing cells. PMID:10630201

  4. Purification and properties of adenylyl sulphate:ammonia adenylyltransferase from Chlorella catalysing the formation of adenosine 5′-phosphoramidate from adenosine 5′-phosphosulphate and ammonia

    PubMed Central

    Fankhauser, Heinz; Schiff, Jerome A.; Garber, Leonard J.

    1981-01-01

    Extracts of Chlorella pyrenoidosa, Euglena gracilis var. bacillaris, spinach, barley, Dictyostelium discoideum and Escherichia coli form an unknown compound enzymically from adenosine 5′-phosphosulphate in the presence of ammonia. This unknown compound shares the following properties with adenosine 5′-phosphoramidate: molar proportions of constituent parts (1 adenine:1 ribose:1 phosphate:1 ammonia released at low pH), co-electrophoresis in all buffers tested including borate, formation of AMP at low pH through release of ammonia, mass and i.r. spectra and conversion into 5′-AMP by phosphodiesterase. This unknown compound therefore appears to be identical with adenosine 5′-phosphoramidate. The enzyme that catalyses the formation of adenosine 5′-phosphoramidate from ammonia and adenosine 5′-phosphosulphate was purified 1800-fold (to homogeneity) from Chlorella by using (NH4)2SO4 precipitation and DEAE-cellulose, Sephadex and Reactive Blue 2–agarose chromatography. The purified enzyme shows one band of protein, coincident with activity, at a position corresponding to 60000–65000 molecular weight, on polyacrylamide-gel electrophoresis, and yields three subunits on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of 26000, 21000 and 17000 molecular weight, consistent with a molecular weight of 64000 for the native enzyme. Isoelectrofocusing yields one band of pI4.2. The pH optimum of the enzyme-catalysed reaction is 8.8. ATP, ADP or adenosine 3′-phosphate 5′-phosphosulphate will not replace adenosine 5′-phosphosulphate, and the apparent Km for the last-mentioned compound is 0.82mm. The apparent Km for ammonia (assuming NH3 to be the active species) is about 10mm. A large variety of primary, secondary and tertiary amines or amides will not replace ammonia. One mol.prop. of adenosine 5′-phosphosulphate reacts with 1 mol.prop. of ammonia to yield 1 mol.prop. each of adenosine 5′-phosphoramidate and sulphate; no AMP is found. The highly purified enzyme does not catalyse any of the known reactions of adenosine 5′-phosphosulphate, including those catalysed by ATP sulphurylase, adenosine 5′-phosphosulphate kinase, adenosine 5′-phosphosulphate sulphotransferase or ADP sulphurylase. Adenosine 5′-phosphoramidate is found in old samples of the ammonium salt of adenosine 5′-phosphosulphate and can be formed non-enzymically if adenosine 5′-phosphosulphate and ammonia are boiled. In the non-enzymic reaction both adenosine 5′-phosphoramidate and AMP are formed. Thus the enzyme forms adenosine 5′-phosphoramidate by selectively speeding up an already favoured reaction. ImagesFig. 4. PMID:6274307

  5. Adenosine 5′-triphosphate sulphurylase from Saccharomyces cerevisiae

    PubMed Central

    Hawes, Catherine S.; Nicholas, D. J. D.

    1973-01-01

    1. ATP sulphurylase from Saccharomyces cerevisiae was purified 140-fold by using heat treatment, DEAE-cellulose chromatography and Sepharose 6B gel filtration. 2. The enzyme was stable at −15°C, optimum reaction velocity was between pH7.0 and 9.0, and the activation energy was 62kJ/mol (14.7kcal/mol). 3. The substrate was shown to be the MgATP2− complex, free ATP being inhibitory. 4. Double-reciprocal plots from initial-velocity studies were intersecting and the Km of each substrate was determined at infinite concentration of the other (Km MgATP2−, 0.07mm; MoO42−, 0.17mm). 5. Radio-isotopic exchange between the substrate pairs, adenosine 5′-[35S]sulphatophosphate and SO42−, 35SO42− and adenosine 5′-sulphatophosphate, occurred only in the presence of either MgATP2− or PPi. This suggests, along with the initial-velocity data, a sequential reaction mechanism in which both substrates bind before any product is released. 6. The enzyme reaction was specific for ATP and was not inhibited by l-cysteine, l-methionine, SO32−, S2O32− (all 2mm) nor by p-chloromercuribenzoate (1mm). 7. Competitive inhibition of the enzyme with respect to MoO42− was produced by SO42− (Ki=2.0mm) and non-competitive inhibition by sulphide (Ki=3.4mm). 8. Adenosine 5′-sulphatophosphate inhibited strongly and concentrations as low as 0.02mm altered the normal hyperbolic velocity–substrate curves with both MgATP2− and MoO42− to sigmoidal forms. PMID:4582048

  6. Adenosine influences myeloid cells to inhibit aeroallergen sensitization.

    PubMed

    Pei, Hong; Linden, Joel

    2016-05-15

    Agonists of adenosine A2A receptors (A2ARs) suppress the activation of most immune cells and reduce acute inflammatory responses. Asthma is characterized by sensitization in response to initial allergen exposure and by airway hyperreactivity in response to allergen rechallenge. We sought to determine if A2AR activation with CGS-21680 (CGS) is more effective when CGS is administered during sensitization or rechallenge. C57BL/6 wild-type mice and Adora2a(f/f)LysMCre(+/-) mice, which lack A2ARs on myeloid cells, were sensitized with intranasal ovalbumin (OVA) and LPS. Airway sensitization was characterized by a rapid increase in numbers of IL-6(+) and IL-12(+) macrophages and dendritic cells in lungs. A2AR activation with CGS (0.1 μg·kg(-1)·min(-1) sc) only during sensitization reduced numbers of IL-6(+) and IL-12(+) myeloid cells in the lungs and reversed the effects of OVA rechallenge to increase airway hyperresponsiveness to methacholine. CGS treatment during sensitization also reduced the expansion of lung T helper (Th1 and Th17) cells and increased expansion of regulatory T cells in response to OVA rechallenge. Most of the effects of CGS administered during sensitization were eliminated by myeloid-selective A2AR deletion. Administration of CGS only during OVA rechallenge failed to reduce airway hyperresponsiveness. We conclude that myeloid cells are key targets of adenosine during sensitization and indirectly modify T cell polarization. The results suggest that a clinically useful strategy might be to use A2AR agonists to inhibit sensitization to new aeroallergens. We speculate that adenosine production by macrophages engulfing bacteria contributes to the curious suppression of sensitization in response to early-life infections. PMID:27016586

  7. Adenosine signaling contributes to ethanol-induced fatty liver in mice

    PubMed Central

    Peng, Zhongsheng; Borea, Pier Andrea; Wilder, Tuere; Yee, Herman; Chiriboga, Luis; Blackburn, Michael R.; Azzena, Gianfranco; Resta, Giuseppe; Cronstein, Bruce N.

    2009-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5?-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5?-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:19221436

  8. Adenosine-stimulated atrial natriuretic peptide release through A1 receptor subtype.

    PubMed

    Yuan, Kuichang; Cao, Chunhua; Han, Jeong Hee; Kim, Sung Zoo; Kim, Suhn Hee

    2005-12-01

    Adenosine acts as an important protector of ischemic myocardium through coronary vasodilation and the depression of cardiac contractility. The protective effect of adenosine may partly relate to the cardiac hormone atrial natriuretic peptide (ANP). The aim of the present study was to investigate the effects of adenosine and the adenosine receptor subtype on atrial hemodynamics and ANP release using isolated perfused beating rat atria. Adenosine, a nonselective adenosine receptor agonist, increased the ANP release with negative inotropism in a dose-dependent manner. Adenosine-stimulated ANP release was attenuated by a selective A1 antagonist but not A(2A) antagonist or A3 antagonist. The order of potency of the various agonists for the ANP release was A1 agonists>A3 agonist=adenosine>A(2A) agonist. The order of potency for the negative inotropy was A1 agonists>adenosine=A(2A) agonist>A3 agonist. The negative inotropism and ANP release by a specific A1 agonist (N6-cyclopentyl-adenosine) were also attenuated by A1 antagonist but not A(2A) antagonist or A3 antagonist. Treatment with A1 agonist resulted in a decrease of cAMP contents in atria and perfusates. The agonist-stimulated ANP release was significantly attenuated in the presence of forskolin, isoproterenol 8-Br-cAMP, or an adenylyl cyclase inhibitor. These results suggest that the A1 receptor subtype is responsible for the adenosine-induced ANP release and negative inotropism through adenylyl cyclase-cAMP pathway. PMID:16286581

  9. Hormonal role of adenosine in maintaining patency of the ductus arteriosus in fetal lambs.

    PubMed Central

    Mentzer, R M; Ely, S W; Lasley, R D; Mainwaring, R D; Wright, E M; Berne, R M

    1985-01-01

    The hypothesis that endogenously released adenosine plays an important role in maintaining patency of the fetal lamb ductus arteriosus was tested. The design of the study was (1) to determine the effect, if any, of exogenous adenosine on blood flow through the ductus arteriosus and (2) to evaluate the relationship among the partial pressure of oxygen in arterial blood, circulating endogenous plasma adenosine concentration, and the rate of blood flow through the ductus. When exogenous adenosine (5 mumoles) was administered during oxygen-induced ductal constriction, ductal blood flow increased from 101 +/- 6 ml/min to 153 +/- 4 ml/min (p less than 0.01). When fetal blood adenosine concentrations were measured during nonventilation and ventilation with 100% oxygen, endogenous adenosine concentrations fell to less than one-half of the preventilation levels, i.e., from 1.12 +/- 0.17 to 0.49 +/- 0.03 microM (p less than 0.01). Finally, when fetal lambs were ventilated with increasing concentrations of oxygen (0%, 10%, 20%, 60%, and 100%) and measurements obtained simultaneously at each level, there was a significant monoexponential relationship among the rise in PO2, the fall in plasma adenosine concentration, and the decrease in ductal blood flow. These data suggest that: (1) adenosine is a potent vasodilator of the lamb ductus arteriosus during oxygen-induced vasoconstriction; (2) fetal endogenous plasma adenosine levels fall significantly when PO2 is increased; and (3) the fall in adenosine concentrations parallels a decrease in ductal blood flow. The findings suggest that the endogenous vasodilator adenosine plays an important role in maintaining ductal patency in utero. Images FIG. 1. FIG. 2. FIG. 3. PMID:4015227

  10. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture.

    PubMed Central

    Hellsten, Y; Frandsen, U

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P < 0.05) compared with non-stimulated muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P < 0.05) in the intensely contracted, but not in the moderately contracted muscle cells. 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P < 0.05), whereas endothelial cells in culture alone did not cause extracellular accumulation of adenosine. 4. Skeletal muscle cells were found to have ecto-forms of several enzymes involved in nucleotide metabolism, including ATPases capable of converting extracellular ATP to ADP and AMP. 5. Adenosine added to the cell medium was taken up by muscle cells and incorporated into the adenine nucleotide pool so that after 30 min of incubation, over 95% of the adenosine label was present in ATP, ADP and AMP. A similar extent of incorporation of adenosine into the nucleotide pool was evident in the endothelial cells. 6. The present data suggest that contracting muscle cells induce an elevation in the extracellular adenosine concentration. Addition of endothelial cells to muscle cells enhances the contraction-induced formation of adenosine. Adenosine taken up by muscle and endothelial cells from the extracellular space is not likely to be used for storage in intracellular pools, but may serve to regulate muscle extracellular adenosine levels. PMID:9401975

  11. Adenosine Release Evoked by Short Electrical Stimulations in Striatal Brain Slices Is Primarily Activity Dependent

    PubMed Central

    2010-01-01

    Adenosine is an important neuromodulator in the brain. Traditionally, adenosine is thought to arise in the extracellular space by either an extracellular mechanism, where it is formed outside the cell by the breakdown of released ATP, or an intracellular mechanism, where adenosine made inside the cell is transported out. Recently, a third mechanism of activity dependent adenosine release has also been proposed. Here, we used fast-scan cyclic voltammetry to compare the time course and mechanism of adenosine formation evoked by either low- or high-frequency stimulations in striatal rat brain slices. Low-frequency stimulations (5 pulses at 10 Hz) resulted in an average adenosine efflux of 0.22 ± 0.02 μM, while high-frequency stimulations (5 pulses, 60 Hz) evoked 0.36 ± 0.04 μM. Blocking intracellular formation by inhibiting adenosine transporters with S-(4-nitrobenzyl)-6-thioinosine (NBTI) or propentofylline did not decrease release for either frequency, indicating that the release was not due to the intracellular mechanism. Blocking extracellular formation with ARL-67156 reduced low-frequency release about 60%, but did not affect high-frequency release. Both low- and high-frequency stimulated release were almost completely blocked by the removal of calcium, indicating activity dependence. Reducing dopamine efflux did not affect adenosine release but inhibiting ionotropic glutamate receptors did, indicating that adenosine release is dependent on downstream effects of glutamate. Therefore, adenosine release after short, high-frequency physiological stimulations is independent of transporter activity or ATP metabolism and may be due to the direct release of adenosine after glutamate receptor activation. PMID:21218131

  12. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  13. Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses

    PubMed Central

    2014-01-01

    Adenosine triphosphatases (ATPases) of double-stranded (ds) DNA archaeal viruses are structurally related to the AAA+ hexameric helicases and translocases. These ATPases have been implicated in viral life cycle functions such as DNA entry into the host, and viral genome packaging into preformed procapsids. We summarize bioinformatical analyses of a wide range of archaeal ATPases, and review the biochemical and structural properties of those archaeal ATPases that have measurable ATPase activity. We discuss their potential roles in genome delivery into the host, virus assembly and genome packaging in comparison to hexameric helicases and packaging motors from bacteriophages. PMID:25105011

  14. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting.

    PubMed

    Swami, Rajan; Singh, Indu; Jeengar, Manish Kumar; Naidu, V G M; Khan, Wahid; Sistla, Ramakrishna

    2015-01-01

    Delivering chemotherapeutics by nanoparticles into tumor is impeded majorly by two factors: nonspecific targeting and inefficient penetration. Targeted delivery of anti-cancer agents solely to tumor cells introduces a smart strategy because it enhances the therapeutic index compared with untargeted drugs. The present study was performed to investigate the efficiency of adenosine (ADN) to target solid lipid nanoparticles (SLN) to over expressing adenosine receptor cell lines such as human breast cancer and prostate cancer (MCF-7 and DU-145 cells), respectively. SLN were prepared by emulsification and solvent evaporation process using docetaxel (DTX) as drug and were characterized by various techniques like dynamic light scattering, differential scanning calorimeter and transmission electron microscopy. DTX loaded SLNs were surface modified with ADN, an adenosine receptors ligand using carbodiimide coupling. Conjugation was confirmed using infrared spectroscopy and quantified using phenol-sulfuric acid method. Conjugated SLN were shown to have sustained drug release as compared to unconjugated nanoparticles and drug suspension. Compared with free DTX and unconjugated SLN, ADN conjugated SLN showed significantly higher cytotoxicity of loaded DTX, as evidenced by in vitro cell experiments. The IC50 was 0.41 μg/ml for native DTX, 0.30 μg/ml for unconjugated SLN formulation, and 0.09 μg/ml for ADN conjugated SLN formulation in MCF-7 cell lines. Whereas, in DU-145, there was 2 fold change in IC50 of ADN-SLN as compared to DTX. IC50 was found to be 0.44 μg/ml for free DTX, 0.39 μg/ml for unconjugated SLN and 0.22 μg/ml for ADN-SLN. Annexin assay and cell cycle analysis assay further substantiated the cell cytotoxicity. Fluorescent cell uptake and competitive ligand-receptor binding assay corroborated the receptor mediated endocytosis pathway indicated role of adenosine receptors in internalization of conjugated particles. Pharmacokinetic studies of lipidic formulations depicted significant improvement in pharmacokinetic parameters than marketed formulation. ADN conjugated SLN proved to be an efficient drug delivery vehicle. Hence, ADN can be used as a potential ligand to target breast and prostate cancer. PMID:25839415

  15. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  16. Adenosine as a non-opioid analgesic in the perioperative setting.

    PubMed

    Gan, Tong J; Habib, Ashraf S

    2007-08-01

    Adenosine, a ubiquitous metabolic intermediate in the body, is involved in nearly every aspect of cell function, including neuromodulation and neurotransmission. Adenosine A(1) and A(2) receptors are widely distributed in the brain and spinal cord, and are a novel, non-opiate target for pain management. The potential of adenosine as a non-narcotic analgesic in anesthetized patients has been explored in clinical trials, including double-blind studies versus placebo and remifentanil infusion. These studies suggest that, compared to placebo or remifentanil, an intraoperative adenosine infusion stabilizes core hemodynamics and reduces the requirement for anesthesia during surgery. Further, adenosine improves postoperative recovery, as indicated by lower pain scores and less opioid consumption. The safety profile of adenosine has been well characterized based on use of currently approved adenosine products. The most common adverse events associated with its use include flushing, chest discomfort, dyspnea, headache, gastrointestinal discomfort, and lightheadedness. These effects are generally well tolerated and transient. Further studies are warranted to investigate the full potential of adenosine as a non-opioid analgesic in the perioperative setting. PMID:17646510

  17. Monoclonal antibodies to adenosine receptor by an auto-anti-idiotypic approach

    SciTech Connect

    Ku, Hsing-Hsu.

    1988-01-01

    BALB/c mice were immunized with adenosine 6-aminocaproyl-BSA. Hybridoma cell lines that secreted anti-idiotypic antibodies were identified by their binding to rabbit anti-adenosine antibodies, but not to normal rabbit immunoglobulins. Two such monoclonal antibodies, AA18 and AA21, also inhibited the binding of ({sup 3}H)adenosine to the rabbit anti-adenosine antibodies. Therefore, both appeared to recognize idiotypic determinants on the rabbit anti-adenosine antibodies. The monoclonal antibodies AA18 and AA21 were established as being directed at adenosine receptors by the following criteria: (1) they bound to both rat and bovine brain membranes, and binding could be inhibited by CHA, an adenosine receptor agonist, (2) they inhibited the binding of ({sup 3}H)R-PIA, an adenosine receptor agonist, to rat brain membranes; and (3) they inhibited the adenylate cyclase of rat brain membranes. The monoclonal antibodies were used to screen cDNA libraries in lambda gt11.

  18. Adenosine as a signaling molecule in the retina: biochemical and developmental aspects.

    PubMed

    Paes-De-Carvalho, Roberto

    2002-09-01

    The nucleoside adenosine plays an important role as a neurotransmitter or neuromodulator in the central nervous system, including the retina. In the present paper we review compelling evidence showing that adenosine is a signaling molecule in the developing retina. In the chick retina, adenosine transporters are present since early stages of development before the appearance of adenosine A1 receptors modulating dopamine-dependent adenylate cyclase activity or A2 receptors that directly activate the enzyme. Experiments using retinal cell cultures revealed that adenosine is taken up by specific cell populations that when stimulated by depolarization or neurotransmitters such as dopamine or glutamate, release the nucleoside through calcium-dependent transporter-mediated mechanisms. The presence of adenosine in the extracellular medium and the long-term activation of adenosine receptors is able to regulate the survival of retinal neurons and blocks glutamate excitoxicity. Thus, adenosine besides working as a neurotransmitter or neuromodulator in the mature retina, is considered as an important signaling molecule during retinal development having important functions such as regulation of neuronal survival and differentiation. PMID:12378312

  19. Adenosine-Activated Nanochannels Inspired by G-Protein-Coupled Receptors.

    PubMed

    Li, Pei; Kong, Xiang-Yu; Xie, Ganhua; Xiao, Kai; Zhang, Zhen; Wen, Liping; Jiang, Lei

    2016-04-01

    A bioinspired adenosine activated nanodevice is demonstrated in which the conformations of the designed aptamer change and cause signal transmission according to the emergence of adenosine. This bioinspired system exhibits very high response ratios (activated/nonactivated ratio up to 614) and excellent stability and reversibility, and shows promising applications in the fields of biosensors, pharmaceutica, and healthcare systems. PMID:26915491

  20. Adenosine inhibition of gamma-aminobutyric acid release from slices of rat cerebral cortex.

    PubMed Central

    Hollins, C.; Stone, T. W.

    1980-01-01

    1 The effect of purine compounds on the potassium-evoked release of 14C-labelled gamma-aminobutyric acid (GABA) has been studied in 400 micrometers slices of rat cerebral cortex in vitro. 2 Adenosine and adenosine 5' monophosphate (AMP) inhibited the release of GABA at 10(-5) to 10(-3) M. Adenosine triphosphate (ATP) produced a significant inhibition of release only at 10(-3) M. 3 Theophylline 10(-4) or 10(-3) M reduced the inhibitory effect of adenosine, but did not change basal release of GABA. 4 Dipyridamole 10(-5) M itself reduced evoked GABA release, but did not prevent the inhibitory effect of adenosine, implying that adenosine was acting at an extracellularly directed receptor. 5 Calcium removal or antagonism by verapamil reduced the evoked release of GABA, but adenosine did not produce any further reduction of the calcium-independent release. This may indicate that the inhibitory effect of adenosine on GABA release results from interference with calcium influx or availability within the terminals. PMID:7378648

  1. Spreading depolarization-induced adenosine accumulation reflects metabolic status in vitro and in vivo

    PubMed Central

    Lindquist, Britta E; Shuttleworth, C William

    2014-01-01

    Spreading depolarization (SD), a pathologic feature of migraine, stroke and traumatic brain injury, is a propagating depolarization of neurons and glia causing profound metabolic demand. Adenosine, the low-energy metabolite of ATP, has been shown to be elevated after SD in brain slices and under conditions likely to trigger SD in vivo. The relationship between metabolic status and adenosine accumulation after SD was tested here, in brain slices and in vivo. In brain slices, metabolic impairment (assessed by nicotinamide adenine dinucleotide (phosphate) autofluorescence and O2 availability) was associated with prolonged extracellular direct current (DC) shifts indicating delayed repolarization, and increased adenosine accumulation. In vivo, adenosine accumulation was observed after SD even in otherwise healthy mice. As in brain slices, in vivo adenosine accumulation correlated with DC shift duration and increased when DC shifts were prolonged by metabolic impairment (i.e., hypoglycemia or middle cerebral artery occlusion). A striking pattern of adenosine dynamics was observed during focal ischemic stroke, with nearly all the observed adenosine signals in the periinfarct region occurring in association with SDs. These findings suggest that adenosine accumulation could serve as a biomarker of SD incidence and severity, in a range of clinical conditions. PMID:25160669

  2. A method of the rapid preparation of adenosine 5'-gamma-[32P] triphosphate by chemical synthesis.

    PubMed

    Koziołkiewicz, W; Pankowski, J; Janecka, A

    1978-01-01

    A new chemical method for the synthesis of adenosine 5'-gamma-[32P] triphosphate has been developed based on the reaction of adenosine 5'-diphosphate with ethyl chloroformate. The resulting active mixed anhydride was able to react with [32P]-triethylammonium orthophosphate to give gamma-[32P]ATP. PMID:219425

  3. Adenosine A1 and A2a receptors modulate insulinemia, glycemia, and lactatemia in fetal sheep

    PubMed Central

    Maeda, Takatsugu; Koos, Brian J.

    2009-01-01

    Adenosine A1 and A2A receptor subtypes modulate metabolism in adult mammals. This study was designed to determine the role of these receptors in regulating plasma levels of insulin, glucose, and lactate in 20 chronically catheterized fetal sheep (>0.8 term). In normoxic fetuses (PaO2 ∼24 Torr), systemic blockade of A1 receptors with DPCPX (n = 6) increased plasma concentrations of insulin, glucose, and lactate, but antagonism of A2A receptors with ZM-241385 (n = 5) had no significant effects. Intravascular administration of adenosine (n = 9) reduced insulin concentrations and elevated glucose and lactate levels. DPCPX (n = 6) augmented the glycemic and lactatemic responses of adenosine. In contrast, ZM241385 (n = 5) virtually abolished adenosine-induced hyperglycemia and hyperlactatemia. Isocapnic hypoxia (PaO2 ∼13 Torr) suppressed insulinemia and enhanced glycemia and lactatemia, but only the hyperglycemia was blunted by blockade of A1 (n = 6) or A2A (n = 6) receptors. We conclude that 1) endogenous adenosine via A1 receptors depresses plasma concentrations of insulin, glucose, and lactate; 2) exogenous adenosine via A2A receptors increases glucose and lactate levels, but these responses are dampened by stimulation of A1 receptors; and 3) hypoxia, which increases endogenous adenosine concentrations, induces hyperglycemia that is partly mediated by activation of A1 and A2A receptors. We predict that adenosine, via A1 receptors, facilitates at least 12% of glucose uptake and utilization in normoxic fetuses. PMID:19118101

  4. ATPace™: injectable adenosine 5'-triphosphate : Diagnostic and therapeutic indications.

    PubMed

    Pelleg, Amir; Kutalek, Steven P; Flammang, Daniel; Benditt, David

    2012-02-01

    ATPace™, a novel injectable formulation of adenosine 5'-triphosphate (ATP), is developed by Cordex Pharma, Inc. (Cordex) as a diagnostic and therapeutic drug for the management of cardiac bradyarrhythmias. Extracellular ATP exerts multiple effects in various cell types by activating cell-surface receptors known as P2 receptors. In the heart, ATP suppresses the automaticity of cardiac pacemakers and atrioventricular (AV) nodal conduction via adenosine, the product of its degradation by ecto-enzymes, as well as by triggering a cardio-cardiac vagal reflex. ATP, given as a rapid intravenous bolus injection, has been used since the late 1940s as a highly effective and safe therapeutic agent for the acute termination of reentrant paroxysmal supraventricular tachycardia (PSVT) involving the AV node. In addition, preliminary studies have shown that ATP can also be used as a diagnostic agent for the identification of several cardiac disorders including sinus node dysfunction (sick sinus syndrome), dual AV nodal pathways, long QT syndrome, and bradycardic syncope. The US Food and Drug Administration has approved Cordex formulation for ATP as an Investigational New Drug and two pathways for its marketing approval; one therapeutic, i.e., acute termination of paroxysmal PSVT, and the other diagnostic, i.e., the identification of patients with bradycardic syncope who can benefit from pacemaker therapy. The scientific rationale for the development of ATPace™ is discussed. PMID:22057692

  5. Adenosine Amine Congener as a Cochlear Rescue Agent

    PubMed Central

    Vlajkovic, Srdjan M.; Chang, Hao; Paek, Song Yee; Chi, Howard H.-T.; Sreebhavan, Sreevalsan; Telang, Ravindra S.; Tingle, Malcolm; Housley, Gary D.; Thorne, Peter R.

    2014-01-01

    We have previously shown that adenosine amine congener (ADAC), a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. Methods. ADAC (25–300 μg/kg) was administered intraperitoneally to Wistar rats (8–10 weeks old) at intervals (6–72 hours) after exposure to traumatic noise (8–16 kHz, 110 dB sound pressure level, 2 hours). Hearing sensitivity was assessed using auditory brainstem responses (ABR) before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous) administration. Results. ADAC was most effective in the first 24 hours after noise exposure at doses >50 μg/kg, providing up to 21 dB protection (averaged across 8–28 kHz). Pharmacokinetic studies demonstrated a short (5 min) half-life of ADAC in plasma after intravenous administration without detection of degradation products. Conclusion. Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment. PMID:25243188

  6. Adenosine amine congener mitigates noise-induced cochlear injury

    PubMed Central

    Lee, Kyu-Hyun; Wong, Ann Chi Yan; Guo, Cindy X.; Gupta, Rita; Housley, Gary D.; Thorne, Peter R.

    2010-01-01

    Hearing loss from noise exposure is a leading occupational disease, with up to 5% of the population at risk world-wide. Here, we present a novel purine-based pharmacological intervention that can ameliorate noise-induced cochlear injury. Wistar rats were exposed to narrow-band noise (8–12 kHz, 110 dB SPL, 2–24 h) to induce cochlear damage and permanent hearing loss. The selective adenosine A1 receptor agonist, adenosine amine congener (ADAC), was administered intraperitoneally (100 µg/kg/day) at time intervals after noise exposure. Hearing thresholds were assessed using auditory brainstem responses and the hair cell loss was evaluated by quantitative histology. Free radical damage in the organ of Corti was assessed using nitrotyrosine immunohistochemistry. The treatment with ADAC after noise exposure led to a significantly greater recovery of hearing thresholds compared with controls. These results were upheld by increased survival of sensory hair cells and reduced nitrotyrosine immunoreactivity in ADAC-treated cochlea. We propose that ADAC could be a valuable treatment for noise-induced cochlear injury in instances of both acute and extended noise exposures. PMID:20806018

  7. Inhibitors of membranous adenylyl cyclases with affinity for adenosine receptors.

    PubMed

    Klotz, Karl-Norbert; Kachler, Sonja

    2016-03-01

    Membrane-bound adenylyl cyclases constitute an interesting therapeutic target for various diseases that affect a large number of patients including asthma or congestive heart failure. Many inhibitors of adenylyl cyclases are competitive inhibitors at the ATP binding site and may, therefore, also interact with one or several of numerous ATP-binding proteins other than adenylyl cyclases. Several such inhibitors also show structural similarity to adenosine receptor ligands, providing a risk for side effects mediated by an unwanted interaction with these receptors. We have investigated a potential specific binding of four representative adenylyl cyclase inhibitors and found binding with pharmacologically relevant affinity to A1 and A2A receptors for NKY80 (2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone) and SQ22,536 (9-(tetrahydro-2-furanyl)-9H-purin-6-amine). These results underscore the importance to consider potential side effects mediated via adenosine receptors in the development of potent and specific inhibitors of adenylyl cyclases. PMID:26660072

  8. Role of Adenosine Deaminase in Common Chronic ENT Infections

    PubMed Central

    Santosh, U.P.; Renukananda, G.S.

    2016-01-01

    Intoduction Adenosine Deaminase (ADA) has been suggested to be an important enzyme which is associated with the cell mediated immunity. But its clinical significance in ENT infections needs to be correlated. Aim To evaluate the role of serum adenosine deaminase level estimation in common chronic ENT infections. Materials and Methods This was a prospective randomized study. The subjects were divided into 4 groups. Group A consisted of 25 normal healthy individuals who served as the controls. Group B consisted of 25 patients, who were clinically diagnosed as chronic tonsillitis. Group C consisted of 25 patients, clinically diagnosed as chronic rhinosinusitis and Group D consisted of 25 patients, clinically diagnosed as chronic otitis media of mucosal type. The serum levels of ADA were estimated in all the subjects. Results The level of serum ADA was found to be elevated in common chronic ENT infections (Group B,C and D), when compared to control group(Group A) and p<0.05, which is statistically significant. Conclusion From the present study, it can be concluded that serum ADA level can be considered as one of the essential diagnostic tool in diagnosing common chronic ENT infections.

  9. Adenosine Signaling and the Energetic Costs of Induced Immunity

    PubMed Central

    Lazzaro, Brian P.

    2015-01-01

    Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected. PMID:25915419

  10. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis.

    PubMed

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-08-28

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[(3)H]-Adenosine NAs and [(14)C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  11. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis

    PubMed Central

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-01-01

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[3H]-Adenosine NAs and [14C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1 h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  12. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    SciTech Connect

    Wang, Yimin; Long, Mary C.; Ranganathan, Senthil; Escuyer, Vincent; Parker, William B.; Li, Rongbao

    2005-06-01

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3{sub 1}21, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme.

  13. Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays.

    PubMed

    Hinzman, Jason M; Gibson, Justin L; Tackla, Ryan D; Costello, Mark S; Burmeister, Jason J; Quintero, Jorge E; Gerhardt, Greg A; Hartings, Jed A

    2015-12-15

    Throughout the central nervous system extracellular adenosine serves important neuroprotective and neuromodulatory functions. However, current understanding of the in vivo regulation and effects of adenosine is limited by the spatial and temporal resolution of available measurement techniques. Here, we describe an enzyme-linked microelectrode array (MEA) with high spatial (7500 µm(2)) and temporal (4 Hz) resolution that can selectively measure extracellular adenosine through the use of self-referenced coating scheme that accounts for interfering substances and the enzymatic breakdown products of adenosine. In vitro, the MEAs selectively measured adenosine in a linear fashion (r(2)=0.98±0.01, concentration range=0-15 µM, limit of detection =0.96±0.5 µM). In vivo the limit of detection was 0.04±0.02 µM, which permitted real-time monitoring of the basal extracellular concentration in rat cerebral cortex (4.3±1.5 µM). Local cortical injection of adenosine through a micropipette produced dose-dependent transient increases in the measured extracellular concentration (200 nL: 6.8±1.8 µM; 400 nL: 19.4±5.3 µM) [P<0.001]. Lastly, local injection of dipyridamole, which inhibits transport of adenosine through equilibrative nucleoside transporter, raised the measured extracellular concentration of adenosine by 120% (5.6→12.3 µM) [P<0.001]. These studies demonstrate that MEAs can selectively measure adenosine on temporal and spatial scales relevant to adenosine signaling and regulation in normal and pathologic states. PMID:26183072

  14. Development of stress-induced gastric lesions involves central adenosine A1-receptor stimulation.

    PubMed

    Ushijima, I; Mizuki, Y; Yamada, M

    1985-07-29

    When rats were exposed to immobilization stress for 1-12 h, gastric lesions did not occur at 1-6 h but did at 12 h of immobilization. Exogenous adenosine increased stress-induced gastric lesions, and dipyridamole, a blocker of adenosine uptake, potentiated the action of adenosine. The selective adenosine A1-receptor stimulants N6-cyclohexyl adenosine (CHA) and N6-(L-phenylisopropyl) adenosine (L-PIA) produced gastric lesions even in non-stressed state and markedly potentiated in dose- and time-dependent manner in stressed state. The stimulatory effect of N6-(D-phenylisopropyl) adenosine (D-PIA) on ulceration was weaker than that of CHA or L-PIA. Furthermore, intracerebral ventricular (i.c.v.) injection of adenosine or adenosine analogues produced the most rapid and most potent exacerbation of stress-induced gastric lesions relative to those induced with subcutaneous (s.c.) injection. The stress lesions enhanced by CHA were not affected by phentolamine, yohimbine, prazosin, naloxone and cholecystokinin (CCK8) but were inhibited by caffeine, clonidine, morphine and beta-endorphin. The inhibitory effect of clonidine was not antagonized by yohimbine or prazosin. The inhibition by morphine was selectively antagonized by exogenous CCK8 as well as naloxone. These results suggest that endogenous adenosine is tonically active in stress lesion formation which is modulated by opiate systems. Clonidine as well as caffeine may function as a purinoceptor antagonist, and it seems unlikely that the inhibitory effect of clonidine on stress ulcer is due to activation of alpha-adrenoceptors. PMID:2992704

  15. Endogenous Production of Extracellular Adenosine by Trabecular Meshwork Cells: Potential Role in Outflow Regulation

    PubMed Central

    Wu, Jing; Li, Guorong; Luna, Coralia; Spasojevic, Ivan; Epstein, David L.; Gonzalez, Pedro

    2012-01-01

    Purpose. To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. Methods. Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-β-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. Results. PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. Conclusions. These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma. PMID:22997289

  16. Adenosine regulates the proinflammatory signaling function of thrombin in endothelial cells

    PubMed Central

    Hassanian, Seyed Mahdi; Dinarvand, Peyman; Rezaie, Alireza R.

    2014-01-01

    The plasma level of the regulatory metabolite adenosine increases during the activation of coagulation and inflammation. Here we investigated the effect of adenosine on modulation of thrombin-mediated proinflammatory responses in HUVECs. We found that adenosine inhibits the barrier-disruptive effect of thrombin in HUVECs by a concentration-dependent manner. Analysis of cell surface expression of adenosine receptors revealed that A2A and A2B are expressed at the highest level among the four receptor subtypes (A2B>A2A>A1>A3) on HUVECs. The barrier-protective effect of adenosine in response to thrombin was recapitulated by the A2A specific agonist, CGS 21680, and abrogated both by the siRNA knockdown of the A2A receptor and by the A2A-specific antagonists, ZM-241385 and SCH-58261. The thrombin-induced RhoA activation and its membrane translocation were both inhibited by adenosine in a cAMP-dependent manner, providing a molecular mechanism through which adenosine exerts a barrier-protective function. Adenosine also inhibited thrombin-mediated activation of NF-?B and decreased adhesion of monocytic THP-1 cells to stimulated HUVECs via down-regulation of expression of cell surface adhesion molecules, VCAM-1, ICAM-1 and E-selectin. Moreover, adenosine inhibited thrombin-induced elevated expression of proinflammatory cytokines, IL-6 and HMGB-1; and chemokines, MCP-1, CXCL-1 and CXCL-3. Taken together, these results suggest that adenosine may inhibit thrombin-mediated proinflammatory signaling responses, thereby protecting the endothelium from injury during activation of coagulation and inflammation. PMID:24477600

  17. Effect of adenosine and adenosine receptor antagonist on Müller cell potassium channel in Rat chronic ocular hypertension models

    PubMed Central

    Yang, Zijian; Huang, Ping; Liu, Xiaohong; Huang, Shouyue; Deng, Lianfu; Jin, Zhe; Xu, Shuo; Shen, Xi; Luo, Xunda; Zhong, Yisheng

    2015-01-01

    Müller cells are principal glial cells in rat retina and have attracted much attention in glaucoma studies. However, it is not clear whether adenosine and adenosine receptor (AR) antagonists play any roles in the regulation of potassium channels in Müller cells and subsequently in the promotion of glutamine synthetase (GS) and L-Glutamate/L-Aspartate Transporter (GLAST) functions. We found that chronic ocular hypertension (COH) in rat down-regulated Müller cells Kir2.1, Kir4.1, TASK-1, GS and GLAST expressions and attenuated the peak of inward potassium current. Retinal ganglion cells (RGC) count was lower in the COH rats than that in the sham operation animals. Intravitreal injection of selective A2A AR antagonist SCH442416 up-regulated Müller cell Kir4.1, TASK-1, GS and GLAST expressions and enhanced inward potassium currents compared with those in the COH rats with vehicle control. Meanwhile, the RGC count was higher following intravitreal injection of SCH442416 in the COH rats than that after vehicle injection. The fact that PKA inhibitor H-89 blocked these SCH442416 effects suggested that the PKA signaling pathway was involved in the observed ocular responses following the intravitreal SCH442416 injection. PMID:26063641

  18. Effect of adenosine and adenosine receptor antagonist on Müller cell potassium channel in Rat chronic ocular hypertension models.

    PubMed

    Yang, Zijian; Huang, Ping; Liu, Xiaohong; Huang, Shouyue; Deng, Lianfu; Jin, Zhe; Xu, Shuo; Shen, Xi; Luo, Xunda; Zhong, Yisheng

    2015-01-01

    Müller cells are principal glial cells in rat retina and have attracted much attention in glaucoma studies. However, it is not clear whether adenosine and adenosine receptor (AR) antagonists play any roles in the regulation of potassium channels in Müller cells and subsequently in the promotion of glutamine synthetase (GS) and L-Glutamate/L-Aspartate Transporter (GLAST) functions. We found that chronic ocular hypertension (COH) in rat down-regulated Müller cells Kir2.1, Kir4.1, TASK-1, GS and GLAST expressions and attenuated the peak of inward potassium current. Retinal ganglion cells (RGC) count was lower in the COH rats than that in the sham operation animals. Intravitreal injection of selective A2A AR antagonist SCH442416 up-regulated Müller cell Kir4.1, TASK-1, GS and GLAST expressions and enhanced inward potassium currents compared with those in the COH rats with vehicle control. Meanwhile, the RGC count was higher following intravitreal injection of SCH442416 in the COH rats than that after vehicle injection. The fact that PKA inhibitor H-89 blocked these SCH442416 effects suggested that the PKA signaling pathway was involved in the observed ocular responses following the intravitreal SCH442416 injection. PMID:26063641

  19. Role of S-adenosylhomocysteine hydrolase in adenosine-induced apoptosis in HepG2 cells.

    PubMed

    Hermes, Marina; Osswald, Hartmut; Kloor, Doris

    2007-01-15

    Adenosine has been shown to initiate apoptosis through different mechanisms: (i) activation of adenosine receptors, (ii) intracellular conversion to AMP and stimulation of AMP-activated kinase, (iii) conversion to S-adenosylhomocysteine (AdoHcy), which is an inhibitor of S-adenosylmethionine (AdoMet)-dependent methyltransferases. Since the pathways involved are still not completely understood, we further investigated the role of AdoHcy hydrolase in adenosine-induced apoptosis. In HepG2 cells, adenosine induced caspase-like activity and DNA fragmentation, a marker of apoptosis. These effects were potentiated by co-incubation with homocysteine or adenosine deaminase inhibitor, pentostatin, and were mimicked by inhibition of AdoHcy hydrolase by adenosine-2',3'-dialdehyde (Adox). Adenosine-induced effects were significantly inhibited by dipyridamole, an inhibitor of adenosine transporter, whereas inhibitors of adenosine kinase did not affect adenosine-induced changes. Various adenosine receptor agonists and AICAR, an activator of AMP-activated kinase, did not mimic the effect of adenosine. Thus, adenosine-induced apoptosis is likely due to intracellular action of AdoHcy and independent of AMP-activated kinase and adenosine receptors. Because elevated AdoHcy levels are associated with reduced mRNA methylation, we studied mRNA expression in Adox-treated cells by microarray analysis. Since several p53-target genes and other apoptosis-related genes were up-regulated by Adox, we conclude that AdoHcy is involved in adenosine-induced apoptosis by altering gene expression. PMID:17097637

  20. Fluorometric determination of adenosine nucleotide derivatives as measures of the microfouling, detrital, and sedimentary microbial biomass and physiological status

    SciTech Connect

    Davis, W. M.; White, D.C.

    1980-09-01

    Adenosine, adenine, cyclic adenosine monophophate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N/sup 6/-etheno derivatives and analyzing by high-pressure liquid chromatography with flourescence detection. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciderase method for bacterial ATP measurements. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge.

  1. Adenosine, Ketogenic Diet and Epilepsy: The Emerging Therapeutic Relationship Between Metabolism and Brain Activity

    PubMed Central

    Masino, S.A; Kawamura, M; Wasser, C.D.; Pomeroy, L.T; Ruskin, D.N

    2009-01-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a “retaliatory metabolite.” As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor–based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  2. The Role of Adenosine in Pulmonary Vein Isolation: A Critical Review

    PubMed Central

    Dallaglio, Paolo D.; Betts, Timothy R.; Ginks, Matthew; Bashir, Yaver; Anguera, Ignasi; Rajappan, Kim

    2016-01-01

    The cornerstone of atrial fibrillation (AF) ablation is pulmonary vein isolation (PVI), which can be achieved in more than 95% of patients at the end of the procedure. However, AF recurrence rates remain high and are related to recovery of PV conduction. Adenosine testing is used to unmask dormant pulmonary vein conduction (DC). The aim of this study is to review the available literature addressing the role of adenosine testing and determine the impact of ablation at sites of PV reconnection on freedom from AF. Adenosine infusion, by restoring the excitability threshold, unmasks reversible injury that could lead to recovery of PV conduction. The studies included in this review suggest that adenosine is useful to unmask nontransmural lesions at risk of reconnection and that further ablation at sites of DC is associated with improvement in freedom from AF. Nevertheless it has been demonstrated that adenosine is not able to predict all veins at risk of later reconnection, which means that veins without DC are not necessarily at low risk. The role of the waiting period in the setting of adenosine testing has also been analyzed, suggesting that in the acute phase adenosine use should be accompanied by enough waiting time. PMID:26981309

  3. Role of adenosine signalling and metabolism in β-cell regeneration

    SciTech Connect

    Andersson, Olov

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  4. Staphylococcus aureus Adenosine Inhibits sPLA2-IIA-Mediated Host Killing in the Airways.

    PubMed

    Pernet, Erwan; Brunet, Jérémy; Guillemot, Laurent; Chignard, Michel; Touqui, Lhousseine; Wu, Yongzheng

    2015-06-01

    Staphylococcus aureus is a common cause of bacterial infections in respiratory diseases. It secretes molecules to dampen host immunity, and the recently identified adenosine is one of these molecules. The type IIA secretory phospholipase A2 (sPLA2-IIA) is a host protein endowed with antibacterial properties, especially against Gram-positive bacteria such as S. aureus. However, the role of adenosine in sPLA2-IIA-mediated S. aureus killing by host is still unknown. The present studies showed that the S. aureus mutant lacking adenosine production (∆adsA strain) increased sPLA2-IIA expression in guinea pig airways and was cleared more efficiently, compared with the wild-type strain. S. aureus ∆adsA strain induced sPLA2-IIA expression by alveolar macrophages after phagocytic process via NOD2-NF-κB-dependent mechanism. However, S. aureus adenosine (wild-type and adsA-complemented strains) and exogenous adenosine downregulated S. aureus phagocytosis by alveolar macrophages, leading to inhibition of sPLA2-IIA expression. This occurred through inhibition of p38 phosphorylation via adenosine receptors A2a-, A2b-, and protein kinase A-dependent pathways. Taken together, our studies suggest that, in the airway, S. aureus escapes sPLA2-IIA-mediated killing through adenosine-mediated inhibition of phagocytosis and sPLA2-IIA expression. PMID:25904549

  5. Expression of adenosine A2b receptor in rat type II and III taste cells.

    PubMed

    Nishida, Kentaro; Dohi, Yukari; Yamanaka, Yuri; Miyata, Ai; Tsukamoto, Katsunobu; Yabu, Miharu; Ohishi, Akihiro; Nagasawa, Kazuki

    2014-05-01

    We previously demonstrated that equilibrative nucleoside transporter 1 was expressed in taste cells, suggesting the existence of an adenosine signaling system, but whether or not the expression of an adenosine receptor occurs in rat taste buds remains unknown. Therefore, we examined the expression profiles of adenosine receptors and evaluated their functionality in rat circumvallate papillae. Among adenosine receptors, the mRNA for an adenosine A2b receptor (A2bR) was expressed by the rat circumvallate papillae, and its expression level was significantly greater in the circumvallate papillae than in the non-taste lingual epithelium. A2bR-immunoreactivity was detected primarily in type II taste cells, and partial, but significant expression was also observed in type III ones, but there was no immunoreactivity in type I ones. The cAMP generation in isolated epithelium containing taste buds treated with 500 μM adenosine or 10 μM BAY60-6583 was significantly increased compared to in the controls. These findings suggest that adenosine plays a role in signaling transmission via A2bR between taste cells in rats. PMID:24327108

  6. Adenosine regulation of the immune response initiated by ischemia reperfusion injury.

    PubMed

    Boros, D; Thompson, J; Larson, D F

    2016-03-01

    It is clinically established that adenosine has negative chronotropic, antiarrhythmic effects and reduces arterial blood pressure. Adenosine addition to cardioplegic solutions used in cardiac operations is clinically well tolerated and has been shown to improve myocardial protection in several studies. However, the mechanism of action remains unclear. Therefore, it is important to define the effect of adenosine on the inflammatory cascade as immune cell activation occurs early during ischemia reperfusion injury. Adenosine appears to mediate the initial steps of the inflammatory cascade via its four G-coupled protein receptors: A1, A2A, A2B, and A3, expressed on neutrophils, lymphocytes and macrophages. The adenosine receptor isotype dictates the immune response. More specifically, the A1 and A3 receptors stimulate a pro-inflammatory immune response whereas the A2A and A2B are immunosuppressive. As the adenosine receptors are important for cardiac pre-conditioning and post-conditioning, adenosine may regulate the inflammatory responses initiated during ischemia-mediated immune injury related to myocardial protection. PMID:25987550

  7. Topical adenosine increases the proportion of thick hair in Caucasian men with androgenetic alopecia.

    PubMed

    Iwabuchi, Tokuro; Ideta, Ritsuro; Ehama, Ritsuko; Yamanishi, Haruyo; Iino, Masato; Nakazawa, Yosuke; Kobayashi, Takashi; Ohyama, Manabu; Kishimoto, Jiro

    2016-05-01

    Adenosine is an effective treatment for androgenetic alopecia (AGA) in Japanese men and women. Adenosine exerts its effects by significantly increasing the proportion of thick hair. In this study, we assessed the clinical outcome of adenosine treatment for 6 months in 38 Caucasian men. The change in proportion of thick hair (≥60 μm) compared with baseline in the adenosine group was significantly higher than that in the placebo group (P < 0.0001). The change in vellus hair proportion (<40 μm) was significantly lower in the adenosine group than that in the placebo group (P = 0.0154). The change in hair density compared with baseline of the adenosine group was also significantly higher compared with that of the placebo group (P = 0.0470). No adverse effects due to treatment were noted during this study by dermatological evaluation. Adenosine is effective in increasing the proportion of thick hair in Caucasian men with AGA as well as in Japanese men and women. PMID:26508659

  8. Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization.

    PubMed

    Alam, M Samiul; Costales, Matthew G; Cavanaugh, Christopher; Williams, Kristina

    2015-01-01

    Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine's control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection. PMID:25950510

  9. Adenosine Monophosphate-Based Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  10. Adenosine-5'-phosphosulfate kinase is essential for Arabidopsis viability.

    PubMed

    Mugford, Sarah G; Matthewman, Colette A; Hill, Lionel; Kopriva, Stanislav

    2010-01-01

    In Arabidopsis thaliana, adenosine-5'-phosphosulfate kinase (APK) provides activated sulfate for sulfation of secondary metabolites, including the glucosinolates. We have successfully isolated three of the four possible triple homozygous mutant combinations of this family. The APK1 isoform alone was sufficient to maintain WT levels of growth and development. Analysis of apk1 apk2 apk3 and apk1 apk3 apk4 mutants suggests that APK3 and APK4 are functionally redundant, despite being located in cytosol and plastids, respectively. We were, however, unable to isolate apk1 apk3 apk4 mutants, most probably because the apk1 apk3 apk4 triple mutant combination is pollen lethal. Therefore, we conclude that APS kinase is essential for plant reproduction and viability. PMID:19903478

  11. Novel and Widespread Adenosine Nucleotide-Binding in Mycobacterium tuberculosis

    PubMed Central

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2012-01-01

    Summary Computational prediction of protein function is frequently error-prone and incomplete. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins, severely limiting our understanding of Mtb pathogenicity. Here, we utilize a high throughput, quantitative, activity-based protein profiling (ABPP) platform to probe, annotate, and validate ATP-binding proteins in Mtb. We experimentally validate prior in silico predictions of >250 proteins and identify 72 hypothetical proteins as novel ATP binders. ATP interacts with proteins with diverse and unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Several hypothetical ATP binders are essential or taxonomically limited, suggesting specialized functions in mycobacterial physiology and pathogenicity. PMID:23352146

  12. Development and structural analysis of adenosine site binding tankyrase inhibitors.

    PubMed

    Haikarainen, Teemu; Waaler, Jo; Ignatev, Alexander; Nkizinkiko, Yves; Venkannagari, Harikanth; Obaji, Ezeogo; Krauss, Stefan; Lehtiö, Lari

    2016-01-15

    Tankyrases 1 and 2, the specialized members of the ARTD protein family, are druggable biotargets whose inhibition may have therapeutic potential against cancer, metabolic disease, fibrotic disease, fibrotic wound healing and HSV viral infections. We have previously identified a novel tankyrase inhibitor scaffold, JW55, and showed that it reduces mouse colon adenoma formation in vivo. Here we expanded the scaffold and profiled the selectivity of the compounds against a panel of human ARTDs. The scaffold also enables a fine modulation of selectivity towards either tankyrase 1 or tankyrase 2. In order to get insight about the binding mode of the inhibitors, we solved crystal structures of the compounds in complex with tankyrase 2. The compounds bind to the adenosine pocket of the catalytic domain and cause changes in the protein structure that are modulated by the chemical modifications of the compounds. The structural analysis allows further rational development of this compound class as a potent and selective tankyrase inhibitor. PMID:26706174

  13. Extraction and analysis of adenosine triphosphate from aquatic environments

    USGS Publications Warehouse

    Stephens, Doyle W.; Shultz, David J.

    1981-01-01

    A variety of adenosine triphosphate (ATP) extraction procedures have been investigated for their applicability to samples from aquatic environments. The cold sulfuric-oxalic acid procedure was best suited to samples consisting of water, periphyton, and sediments. Due to cation and fulvic acid interferences, a spike with a known quantity of ATP was necessary to estimate losses when sediments were extracted. Variable colonization densities for periphyton required that several replicates be extracted to characterize accurately the periphyton community. Extracted samples were stable at room temperature for one to five hours, depending on the ATP concentration, if the pH was below 2. Neutralized samples which were quick frozen and stored at -30C were stable for months. (USGS)

  14. Serum adenosine deaminase activity in bovine liver diseases.

    PubMed

    Abd Ellah, Mahmoud Rushdi; Nishimori, Kazuhiro; Goryo, Masanobu; Okada, Keiji; Yasuda, Jun

    2004-11-01

    A total of 60 cattle were examined for the presence of pathological liver lesions. The liver lesions were classified as glycogen degeneration, liver abscess, sawdust liver and fatty degeneration. The value of serum adenosine deaminase (ADA) activity was investigated as a pilot study for diagnosing liver diseases in cattle. Serum ADA activity was significantly higher in cases with glycogen degeneration (9.8 +/- 3.8 U/l) , liver abscess (10.4 +/- 3.2 U/l), sawdust liver (11.5 +/- 7.3 U/l) and fatty degeneration (20.8 +/- 7.7 U/l) than in the controls. The results indicate that ADA activity increases with the degree of hepatocellular damage. We concluded that serum ADA activity may be of value in bovine liver disease diagnosis. PMID:15585959

  15. Cardiovascular selectivity of adenosine receptor agonists in anaesthetized dogs.

    PubMed Central

    Gerencer, R. Z.; Finegan, B. A.; Clanachan, A. S.

    1992-01-01

    1. In order to determine the relevance of adenosine (Ado) receptor classification obtained from in vitro methods to the cardiovascular actions of Ado agonists in vivo, the cardiovascular effects of adenosine 5'-monophosphate (AMP), N6-cyclohexyladenosine (CHA, 400 fold A1-selective), 5'-N-ethyl-carboxamidoadenosine (NECA, A1 approximately A2) and 2-phenylaminoadenosine (PAA, 5 fold A2-selective) were compared in open-chest, fentanyl-pentobarbitone anaesthetized dogs. 2. Graded doses of CHA (10 to 1000 micrograms kg-1), NECA (0.5 to 100 micrograms kg-1) or PAA (0.1 to 20 micrograms kg-1) were administered intravenously and changes in haemodynamics and myocardial contractility were assessed 10 min following each dose. The effects of graded infusions of AMP (200 to 1000 micrograms kg-1 min-1) were also evaluated. 3. AMP and each of the Ado analogues (NECA > PAA > CHA) increased the systemic vascular conductance index (SVCI) in a dose-dependent manner and reduced mean arterial pressure (MAP). At doses causing similar increases in SVCI, these agonists caused (i) similar reflex increases in heart rate (HR) and cardiac index (CI) and decreases in AV conduction interval (AVi) and (ii) similar increases in coronary vascular conductance (CVC). 4. After cardiac autonomic blockade with atropine (0.2 mg kg-1) and propranolol (1 mg kg-1), AMP, CHA and PAA still increased SVCI and CVC and decreased MAP. CHA and PAA had no marked effects on HR, CI or AVi. As in the absence of cardiac autonomic blockade, equieffective vasodilator doses of CHA and PAA had identical effects on CVC, CI and AVi.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467827

  16. Medicinal chemistry of adenosine A3 receptor ligands.

    PubMed

    Müller, Christa E

    2003-01-01

    A(3) Adenosine receptors (ARs) exhibit large species differences. Potent, selective agonists for rat (e.g. Cl-IB-MECA, 5) and human A(3) ARs (e.g. PENECA, 17, and analogs) have been developed during the past years. Potent, selective antagonists for human A(3) ARs include the imidazopurinones PSB-10 (28) and PSB-11 (29), the pyrazolotriazolopyrimidines MRE-3005F20 (38) and analogs, and the dihydropyridines (e.g. MRS-1334, 50). For rat A(3) ARs only moderately potent antagonists have been identified, such as the pyridine derivative MRS-1523 (51) and the flavonoid MRS-1067 (52), both of which exhibit only a low degree of selectivity versus the other AR subtypes. Selective antagonist radioligands for the human A(3) receptor, [(3)H]MRE-3008F20 and [(3)H]PSB-11, have been prepared, while A(3)-selective agonist radioligands are still lacking. Recent developments also include allosteric modulators, irreversibly binding antagonists, fluorescence-labelled agonists, partial agonists and inverse agonists for A(3)ARs. Site-directed mutagenesis and molecular modeling studies have been performed in order to obtain information about the ligand binding site and the process of receptor activation. A(3)Adenosine receptors have recently attracted considerable interest as novel drug targets. A(3) Agonists may have potential as cardioprotective and cerebroprotective agents, for the treatment of asthma, as antiinflammatory and immunosuppressive agents, and in cancer therapy as cytostatics and chemoprotective compounds. A(3) AR antagonists might be therapeutically useful for the acute treatment of stroke, for glaucoma, and also as antiasthmatic and antiallergic drugs, since A(3)receptors cannot only mediate antiinflammatory, but also proinflammatory responses. The future development of further pharmacological tools, including potent, selective antagonists for rat A(3) receptors and selective agonist radioligands for rat and human receptors will facilitate the evaluation of the (patho)physiological roles of A(3) receptors and the pharmacological potential of their ligands. PMID:12570761

  17. Acute Pulmonary Embolism Decreases Adenosine Plasma Levels in Anesthetized Pigs

    PubMed Central

    Kerbaul, François; By, Youlet; Gariboldi, Vlad; Mekkaoui, Choukri; Fesler, Pierre; Collart, Frédéric; Brimioulle, Serge; Jammes, Yves; Ruf, Jean; Guieu, Régis

    2011-01-01

    Adenosine plays a role in pulmonary arterial (PA) resistance due to its vasodilator properties. However, the behavior of adenosine plasma levels (APLs) during pulmonary embolism remains unknown. We investigated the effects of gradual pulmonary embolism on right ventricular (RV) contractility and PA coupling and on APLs in an piglet experimental model of RV failure. PA distal resistance by pressure-flow relationships and pulmonary vascular impedance were measured. RV contractility was determined by the end-systolic pressure-volume relationship (Ees), PA effective elastance by the end-diastolic to end-systolic relationship (Ea), and RV-PA coupling efficiency by the Ees/Ea ratio. APLs were measured before and during gradual pulmonary embolization. PA embolism increased PA resistance and elastance, increased Ea from 1.08 ± 0.15 to 5.62 ± 0.32 mmHg/mL, decreased Ees from 1.82 ± 0.10 to 1.20 ± 0.23 mmHg/mL, and decreased Ees/Ea from 1.69 ± 0.15 to 0.21 ± 0.07. APLs decreased from 2.7 ± 0.26 to 1.3 ± 0.12 μM in the systemic bed and from 4.03 ± 0.63 to 2.51 ± 0.58 μM in the pulmonary bed during embolism procedure. Pulmonary embolism worsens PA hemodynamics and RV-PA coupling. APLs were reduced, both in the systemic and in the pulmonary bed, leading then to pulmonary vasoconstriction. PMID:22347654

  18. Structural and Metabolic Specificity of Methylthiocoformycin for Malarial Adenosine Deaminases

    SciTech Connect

    Ho, M.; Cassera, M; Madrid, D; Ting, L; Tyler, P; Kim, K; Almo, S; Schramm, V

    2009-01-01

    Plasmodium falciparum is a purine auxotroph requiring hypoxanthine as a key metabolic precursor. Erythrocyte adenine nucleotides are the source of the purine precursors, making adenosine deaminase (ADA) a key enzyme in the pathway of hypoxanthine formation. Methylthioadenosine (MTA) is a substrate for most malarial ADAs, but not for human ADA. The catalytic site specificity of malarial ADAs permits methylthiocoformycin (MT-coformycin) to act as a Plasmodium-specific transition state analogue with low affinity for human ADA. The structural basis for MTA and MT-coformycin specificity in malarial ADAs is the subject of speculation. Here, the crystal structure of ADA from Plasmodium vivax (PvADA) in a complex with MT-coformycin reveals an unprecedented binding geometry for 5?-methylthioribosyl groups in the malarial ADAs. Compared to malarial ADA complexes with adenosine or deoxycoformycin, 5?-methylthioribosyl groups are rotated 130 degrees. A hydrogen bonding network between Asp172 and the 3?-hydroxyl of MT-coformycin is essential for recognition of the 5?-methylthioribosyl group. Water occupies the 5?-hydroxyl binding site when MT-coformycin is bound. Mutagenesis of Asp172 destroys the substrate specificity for MTA and MT-coformycin. Kinetic, mutagenic, and structural analyses of PvADA and kinetic analysis of five other Plasmodium ADAs establish the unique structural basis for its specificity for MTA and MT-coformycin. Plasmodium gallinaceum ADA does not use MTA as a substrate, is not inhibited by MT-coformycin, and is missing Asp172. Treatment of P. falciparum cultures with coformycin or MT-coformycin in the presence of MTA is effective in inhibiting parasite growth.

  19. The resurgence of A2B adenosine receptor signaling

    PubMed Central

    Aherne, Carol M.; Kewley, Emily M.; Eltzschig, Holger K.

    2010-01-01

    Since its discovery as a low-affinity adenosine receptor (AR), the A2B receptor (A2BAR), has proven enigmatic in its function. The previous discovery of the A2AAR, which shares many similarities with the A2BAR but demonstrates significantly greater affinity for its endogenous ligand, led to the original perception that the A2BAR was not of substantial physiologic relevance. In addition, lack of specific pharmacological agents targeting the A2BAR made its initial characterization challenging. However, the importance of this receptor was reconsidered when it was observed that the A2BAR is highly transcriptionally regulated by factors implicated in inflammatory hypoxia. Moreover, the notion that during ischemia or inflammation extracellular adenosine is dramatically elevated to levels sufficient for A2BAR activation, indicated that A2BAR signaling may be important to dampen inflammation particularly during tissue hypoxia. In addition, the recent advent of techniques for murine genetic manipulation along with development of pharmacological agents with enhanced A2BAR specificity has provided invaluable tools for focused studies on the explicit role of A2BAR signaling in different disease models. Currently, studies performed with combined genetic and pharmacological approaches have demonstrated that A2BAR signaling plays a tissue protective role in many models of acute diseases e.g. myocardial ischemia, or acute lung injury. These studies indicate that the A2BAR is expressed on a wide variety of cell types and exerts tissue/cell specific effects. This is an important consideration for future studies where tissue or cell type specific targeting of the A2BAR may be used as therapeutic approach. PMID:20546702

  20. Adenosine modulates light responses of rat retinal ganglion cell photoreceptors througha cAMP-mediated pathway

    PubMed Central

    Sodhi, Puneet; Hartwick, Andrew T E

    2014-01-01

    Adenosine is an established neuromodulator in the mammalian retina, with A1 adenosine receptors being especially prevalent in the innermost ganglion cell layer. Activation of A1 receptors causes inhibition of adenylate cyclase, decreases in intracellular cyclic AMP (cAMP) levels and inhibition of protein kinase A (PKA). In this work, our aim was to characterize the effects of adenosine on the light responses of intrinsically photosensitive retinal ganglion cells (ipRGCs) and to determine whether these photoreceptors are subject to neuromodulation through intracellular cAMP-related signalling pathways. Using multielectrode array recordings from postnatal and adult rat retinas, we demonstrated that adenosine significantly shortened the duration of ipRGC photoresponses and reduced the number of light-evoked spikes fired by these neurons. The effects were A1 adenosine receptor-mediated, and the expression of this receptor on melanopsin-containing ipRGCs was confirmed by calcium imaging experiments on isolated cells in purified cultures. While inhibition of the cAMP/PKA pathway by adenosine shortened ipRGC light responses, stimulation of this pathway with compounds such as forskolin had the opposite effect and lengthened the duration of ipRGC spiking. Our findings reveal that the modification of ipRGC photoresponses through a cAMP/PKA pathway is a general feature of rat ganglion cell photoreceptors, and this pathway can be inhibited through activation of A1 receptors by adenosine. As adenosine levels in the retina rise at night, adenosinergic modulation of ipRGCs may serve as an internal regulatory mechanism to limit transmission of nocturnal photic signals by ipRGCs to the brain. Targeting retinal A1 adenosine receptors for ipRGC inhibition represents a potential therapeutic target for sleep disorders and migraine-associated photophobia. PMID:25038240

  1. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine.

    PubMed

    Baron, L; Gombault, A; Fanny, M; Villeret, B; Savigny, F; Guillou, N; Panek, C; Le Bert, M; Lagente, V; Rassendren, F; Riteau, N; Couillin, I

    2015-01-01

    The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation. PMID:25654762

  2. Possible therapeutic benefits of adenosine-potentiating drugs in reducing age-related degenerative disease in dogs and cats.

    PubMed

    Scaramuzzi, R J; Baker, D J

    2003-10-01

    Adenosine is a ubiquitous, biologically important molecule that is a precursor of other biologically active molecules. It also is a component of some co-factors and has distinct physiological actions in its own right. Levels are maintained by synthesis from dietary precursors and re-cycling. The daily turnover of adenosine is very high. Adenosine can act either as a hormone by binding to adenosine receptors, four adenosine receptor subtypes have been identified, and as an intracellular modulator, after transport into the cell by membrane transporter proteins. One of the principal intracellular actions of adenosine is inhibition of the enzyme phosphodiesterase. Extracellular adenosine also has specific neuromodulatory actions on dopamine and glutamate. Selective and nonselective agonists and antagonists of adenosine are available. The tasks of developing, evaluating and exploiting the therapeutic potential of these compounds is still in its infancy. Adenosine has actions in the central nervous system (CNS), heart and vascular system, skeletal muscle and the immune system and the presence of receptors suggests potential actions in the gonads and other organs. Adenosine agonists improve tissue perfusion through actions on vascular smooth muscle and erythrocyte fluidity and they can be used to improve the quality of life in aged dogs. This article reviews the therapeutic potential of adenosine-potentiating drugs in the treatment of age-related conditions in companion animals, some of which may be exacerbated by castration or spaying at an early age. PMID:14633184

  3. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R2 = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis. PMID:26778273

  4. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R2 = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis.

  5. Role of endogenous adenosine in the expression of opiate withdrawal in rats.

    PubMed

    Salem, A; Hope, W

    1999-03-12

    Samples of extracellular fluid from striatum and nucleus accumbens of anaesthetised rats undergoing opiate withdrawal were collected using microdialysis and then analysed for adenosine and its metabolites using high performance liquid chromatography (HPLC) and ultraviolet (UV) detection. Although the amount of adenosine present in the dialysate from either brain region was below the limit of detection by 90 min after probe placement, the metabolites could still be detected. Samples of dialysates collected from the nucleus accumbens contained significantly higher concentrations of hypoxanthine and inosine following naloxone challenge. The data are compatible with the hypothesis that endogenous adenosine might be involved in the expression of the opiate abstinence syndrome. PMID:10204679

  6. Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing

    PubMed Central

    Wulff, Bjorn-Erik; Sakurai, Masayuki; Nishikura, Kazuko

    2011-01-01

    Catalysed by members of the adenosine deaminase acting on RNA (ADAR) family of enzymes, adenosine-to-inosine (A-to-I) editing converts adenosines in RNA molecules to inosines, which are functionally equivalent to guanosines. Recently, global approaches to studying this widely conserved phenomenon have emerged. The use of bioinformatics, high-throughput sequencing and other approaches has increased the number of known editing sites by several orders of magnitude, and we now have a greater understanding of the control and the biological significance of editing. This Progress article reviews some of these recent global studies and their results. PMID:21173775

  7. A2B adenosine receptors mediate relaxation of the pig intravesical ureter: adenosine modulation of non adrenergic non cholinergic excitatory neurotransmission

    PubMed Central

    Hernández, Medardo; Barahona, María Victoria; Bustamante, Salvador; García-Sacristán, Albino; Orensanz, Luis M

    1999-01-01

    The present study was designed to characterize the adenosine receptors involved in the relaxation of the pig intravesical ureter, and to investigate the action of adenosine on the non adrenergic non cholinergic (NANC) excitatory ureteral neurotransmission. In U46619 (10−7  M)-contracted strips treated with the adenosine uptake inhibitor, nitrobenzylthioinosine (NBTI, 10−6  M), adenosine and related analogues induced relaxations with the following potency order: 5′-N-ethylcarboxamidoadenosine (NECA)=5′-(N-cyclopropyl)-carboxamidoadenosine (CPCA)=2-chloroadenosine (2-CA)>adenosine>cyclopentyladenosine (CPA)=N6-(3-iodobenzyl)-adenosine-5′-N-methylcarboxamide (IB-MECA)=2-[p-(carboxyethyl)-phenylethylamino]-5′-N-ethylcarboxamidoadenosine (CGS21680). Epithelium removal or incubation with indomethacin (3×10−6  M) and L-NG-nitroarginine (L-NOARG, 3×10−5  M), inhibitors of prostanoids and nitric oxide (NO) synthase, respectively, failed to modify the relaxations to adenosine. 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10−8 M) and 4-(2-[7-amino-2-(2-furyl) [1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385, 3×10−8  M and 10−7  M), A1 and A2A receptor selective antagonists, respectively, did not modify the relaxations to adenosine or NECA. 8-phenyltheophylline (8-PT, 10−5  M) and DPCPX (10−6  M), which block A1/A2-receptors, reduced such relaxations. In strips treated with guanethidine (10−5  M), atropine (10−7  M), L-NOARG (3×10−5  M) and indomethacin (3×10−6  M), both electrical field stimulation (EFS, 5 Hz) and exogenous ATP (10−4  M) induced contractions of preparations. 8-PT (10−5  M) increased both contractions. DPCPX (10−8  M), NECA (10−4  M), CPCA, (10−4  M) and 2-CA (10−4  M) did not alter the contractions to EFS. The present results suggest that adenosine relaxes the pig intravesical ureter, independently of prostanoids or NO, through activation of A2B-receptors located in the smooth muscle. This relaxation may modulate the ureteral NANC excitatory neurotransmission through a postsynaptic mechanism. PMID:10193777

  8. Adenosine A2A Receptor Binding Profile of Two Antagonists, ST1535 and KW6002: Consideration on the Presence of Atypical Adenosine A2A Binding Sites

    PubMed Central

    Riccioni, Teresa; Leonardi, Fabiana; Borsini, Franco

    2010-01-01

    Adenosine A2A receptors seem to exist in typical (more in striatum) and atypical (more in hippocampus and cortex) subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl)-9H-purin-6-xylamine] and KW6002 [(E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethyl)phenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl)-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine), an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl) [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl) phenol)] and SCH58261 [(5-amino-7-(β-phenylethyl)-2-(8-furyl)pyrazolo(4,3-e)-1,2,4-triazolo(1,5-c) pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype. PMID:21423433

  9. The binding of adenosine(5')tetraphospho(5')adenosine to calf thymus histones measured by non-equilibrium dialysis.

    PubMed Central

    Just, G; Holler, E

    1987-01-01

    Binding of adenosine(5')tetraphospho(5')adenosine (Ap4A) to histones of calf thymus was investigated by non-equilibrium dialysis. Histone H1 interacts with the dinucleotide via two strong sites and competes with Mg2+ ions. Intrinsic dissociation constants were 1.6 +/- 0.1 microM and 11 +/- 1 microM for zero and 0.4 mm-Mg2+ concentration respectively. Binding of poly(dT) and of other nucleotides to histone H1 was measured in an [3H]Ap4A-competition assay. The tendency to form complexes among nucleotides was highest for bisnucleoside tetraphosphates and decreased in the order poly(dT) greater than or equal to Ap4A approximately Gp4G greater than Ap4 much greater than Ap3A approximately Ap5A greater than or equal to ATP, GTP and dTTP. The co-ordination complex derived from Ap4A and cis-diammine-dichloroplatinum(II) was not reactive. The other histones of calf thymus also bound Ap4A with affinities decreasing in the order H4 approximately H3 greater than H1 greater than H2b greater than H2a. Ap4A stimulated the exchange of histone H1 between nucleosomes, but this effect was referred to ionic strength. It did not bind to assembled nucleosomes. Binding of Ap4A to histone H1 was decreased by salt (NaCl). At physiological saline concentration the value of the dissociation constant is commensurable with the value of the Ap4A concentration in the nucleus and thus indicative of complex-formation in vivo. PMID:3689327

  10. Association of Adenosine Receptor Gene Polymorphisms and In Vivo Adenosine A1 Receptor Binding in The Human Brain

    PubMed Central

    Hohoff, Christa; Garibotto, Valentina; Elmenhorst, David; Baffa, Anna; Kroll, Tina; Hoffmann, Alana; Schwarte, Kathrin; Zhang, Weiqi; Arolt, Volker; Deckert, Jürgen; Bauer, Andreas

    2014-01-01

    Adenosine A1 receptors (A1ARs) and the interacting adenosine A2A receptors are implicated in neurological and psychiatric disorders. Variants within the corresponding genes ADORA1 and ADORA2A were shown associated with pathophysiologic alterations, particularly increased anxiety. It is unknown so far, if these variants might modulate the A1AR distribution and availability in different brain regions. In this pilot study, the influence of ADORA1 and ADORA2A variants on in vivo A1AR binding was assessed with the A1AR-selective positron emission tomography (PET) radioligand [18F]CPFPX in brains of healthy humans. Twenty-eight normal control subjects underwent PET procedures to calculate the binding potential BPND of [18F]CPFPX in cerebral regions and to assess ADORA1 and ADORA2A single nucleotide polymorphism (SNP) effects on regional BPND data. Our results revealed SNPs of both genes associated with [18F]CPFPX binding to the A1AR. The strongest effects that withstood even Bonferroni correction of multiple SNP testing were found in non-smoking subjects (N=22) for ADORA2A SNPs rs2236624 and rs5751876 (corr. Pall<0.05). SNP alleles previously identified at risk for increased anxiety like the rs5751876 T-allele corresponded to consistently higher A1AR availability in all brain regions. Our data indicate for the first time that variation of A1AR availability was associated with ADORA SNPs. The finding of increased A1AR availability in regions of the fear network, particularly in ADORA2A risk allele carriers, strongly warrants evaluation and replication in further studies including individuals with increased anxiety. PMID:24943643

  11. The preparation of adenosine 5′-pyrophosphate by a non-enzymic method

    PubMed Central

    Dawson, R. M. C.; Ford, M.; Eichberg, J.

    1965-01-01

    1. A non-enzymic method for the preparation of adenosine 5′-diphosphate is described, in which the terminal phosphate of adenosine 5′-triphosphate is transferred to methanol in the presence of hydrochloric acid. The final purified product can be obtained in 60% yield. 2. Experiments with [14C]methanol showed that no methylation of the adenosine diphosphate occurs during the reaction. 3. Confirmation that the pyrophosphate moiety of the adenosine diphosphate produced was in the 5′-position was obtained by: (a) periodate oxidation; (b) treatment with apyrase and examination of the resulting adenylic acid isomer by paper chromatography. 4. The method appears to be generally applicable to the preparation of nucleoside 5′-diphosphates from the corresponding nucleoside 5′-triphosphates. PMID:14333545

  12. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  13. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles

    PubMed Central

    Galagudza, Michael; Korolev, Dmitry; Postnov, Viktor; Naumisheva, Elena; Grigorova, Yulia; Uskov, Ivan; Shlyakhto, Eugene

    2012-01-01

    Pharmacological agents suggested for infarct size limitation have serious side effects when used at cardioprotective doses which hinders their translation into clinical practice. The solution to the problem might be direct delivery of cardioprotective drugs into ischemic-reperfused myocardium. In this study, we explored the potential of silica nanoparticles for passive delivery of adenosine, a prototype cardioprotective agent, into ischemic-reperfused heart tissue. In addition, the biodegradation of silica nanoparticles was studied both in vitro and in vivo. Immobilization of adenosine on the surface of silica nanoparticles resulted in enhancement of adenosine-mediated infarct size limitation in the rat model. Furthermore, the hypotensive effect of adenosine was attenuated after its adsorption on silica nanoparticles. We conclude that silica nanoparticles are biocompatible materials that might potentially be used as carriers for heart-targeted drug delivery. PMID:22619519

  14. Microthalamotomy effect during Deep Brain Stimulation: Potential Involvement of Adenosine and Glutamate Efflux

    PubMed Central

    Chang, Su-Youne; Shon, Young Min; Agnesi, Filippo; Lee, Kendall H.

    2010-01-01

    Deep brain stimulation (DBS) of the thalamus is widely used in humans to treat essential tremor and tremor dominant Parkinson’s disease. After DBS lead implantation, tremor is often reduced even without electrical stimulation. Often called “microthalamotomy” effect, the exact mechanism is unknown, although it is presumed to be due to micro lesioning. Here, we tested whether microthalamotomy effect may, in fact, be mediated via release of neurotransmitters adenosine and glutamate, using fast scan cyclic voltammetry (FSCV) and amperometry, respectively. Implantation of microelectrodes into the ventrolateral (VL) thalamus of the rat resulted in transient rise in adenosine and glutamate level from mechanical stimulation. Similarly, high frequency stimulation (100 – 130 Hz) of the VL thalamus also resulted in adenosine and glutamate release. These results suggest that glutamate and adenosine release may be an important and unappreciated mechanism whereby mechanical stimulation via electrode implantation procedure may achieve the microthalamotomy effect. PMID:19964296

  15. Regulation of nociceptin mRNA expression in the septum by dopamine and adenosine systems.

    PubMed

    Dassesse, D; Ledent, C; Meunier, J C; Parmentier, M; Schiffmann, S N

    2000-09-28

    Most effects of nociceptin are related to blockade of stress and anxiolytic-like effects. This neuropeptide is highly expressed in septal nuclei, which are involved in response to stressful situations. Dopamine and adenosine may have modulatory effects on stress behaviour by acting on septal neurons. We therefore analysed the regulation of septal nociceptin expression using quantitative in situ hybridization following manipulations of adenosine and dopamine neurotransmission. No difference was observed between wild-type and A2A receptor-deficient mice. In both genotypes, chronic treatments with caffeine, an equipotent A1 and A2A adenosine receptor antagonist, did not significantly modify nociceptin expression. 6-Hydroxydopamine-induced dopamine depletion was also without effect. These results demonstrate that dopamine and adenosine are not involved in the regulation of septal nociceptin expression in spite of the involvement of these three neurotransmitters in stress and anxiety behaviours. PMID:11043556

  16. Adenosine deaminase and nucleoside phosphorylase activities in normal human blood mononuclear cell subpopulations

    PubMed Central

    Macdermott, R. P.; Tritsch, G. L.; Formeister, J. F.

    1980-01-01

    Adenosine deaminase and nucleoside phosphorylase activity is highest in T cells and macrophages; null cells have approximately half the amount and B cells have the least amount of both enzyme activities PMID:6781801

  17. [The influence of purine nucleotides and adenosine on bioelectrical activity of bat (Pipistrellus nathusii) heart].

    PubMed

    Kuz'min, V S; Abramochkin, D V; Zakarian, A A; Sukhova, G S; Rozenshtraukh, L V

    2008-01-01

    The aim of work was to investigate effects of adenosine, AMP, GMP and ADP-ribose on bioelectric activity of bat heart. Purine nucleotides decreased action potential duration at level of 90% (APD90) repolarization in bat ventricular myocardium. When preparation of right ventricle was paced with frequency of 6 Hz, APD50 and APD90 were 7 +/- 2 ms and 60 +/- 5 ms, respectively. Adenosine decreased APD90 by 50 +/- 10% (n=6), AMP - by 30 +/- 10% (n=6), GMP - by 38 +/- 5% (n=6), ADP-ribose - by 24 +/- 6% (n=6) (concentration of all compounds - 10 ). Effects of purine nucleotides and nucleoside in bat ventricular myocardium exceed effects of same compounds in rat and ground squirrel ventricular myocardium. Inhibitory effects of purine nucleotides and adenosine in bat heart could be mediated by A1 adenosine receptors. PMID:18789010

  18. The localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pig brain

    PubMed Central

    Hosie, R. Jeanette A.

    1965-01-01

    1. The distribution of adenosine triphosphatase was studied in morphologically characterized subcellular fractions of guinea-pig brain. The conditions of homogenization were selected so as to favour the survival of nerve endings as organized structures. 2. A fraction consisting mainly of the external membranes of nerve endings was rich in a ouabain-sensitive Na+–K+-stimulated adenosine triphosphatase which closely resembled that present in the classical microsomal fraction studied by other workers, but which showed a higher specific activity. 3. A dinitrophenol-stimulated adenosine triphosphatase was located in the nerve-ending mitochondria. 4. The synaptic-vesicle fraction contained a small amount of adenosine triphosphatase that differed in its response to several ions and other compounds from the membrane, myelin and mitochondrial fractions, indicating freedom from contamination by these elements. ImagesPLATE 1PLATE 2 PMID:4220903

  19. Mechanisms of pain in angina pectoris--a critical review of the adenosine hypothesis.

    PubMed

    Sylvén, C

    1993-11-01

    Clinical characteristics: Angina pectoris represents a visceral pain caused by reversible myocardial ischemia. The majority of ischemic attacks are symptomless. When pain is manifested, it appears late during the ischemic event. The pain is complex in its quality and bears little relation to the region of myocardial ischemia. Pain shows a sensitive dependence on initial conditions suggesting a mechanism with deterministic chaotic dynamics for the association between myocardial ischemia and pain. Neurophysiological substrate: Ganglia are present within the heart, particularly in epicardial fat. The blood supply of intrinsic cardiac ganglia arises primarily from branches of the proximal coronary arteries. Both afferent and efferent neurons within the intrinsic cardiac nervous system exist, while the majority of neurons in that location may be local circuit neurons. Integration takes place not only in the intrinsic cardiac nervous system, but also in mediastinal, middle cervical, and stellate ganglia. Cardiac afferent receptors are also connected to cell bodies in dorsal root and nodose ganglia, as well as intrathoracic ganglia. Myocardial regions have no spatial representation in these ganglia. Adenosine, among a number of substances, can modulate the activity generated by cardiac afferent nerve endings and intrinsic cardiac neurons. Such effects appear to be exerted at A1 receptors. Adenosine as a pain messenger: During myocardial ischemia adenosine is released in large quantities into the interstitial space. The endothelium takes up the major amount of adenosine. Thus only small increments of adenosine are detected in the blood-stream. Given as an intravenous bolus to healthy volunteers or to patients with ischemic heart disease and angina pectoris, adenosine provokes angina pectorislike pain, which is similar to habitual angina pectoris with regard to quality and location. Pain is provoked in the absence of ECG signs of ischemia. Patients with asymptomatic myocardial ischemia are less sensitive to adenosine, whereas patients with Syndrome X are more sensitive with respect to adenosine-provoked pain. When adenosine is given intraarterially, including into the coronary arteries, pain is provoked in the corresponding vascular bed. Adenosine-provoked pain and ischemic pain are counteracted by previous administration of the adenosine receptor antagonist theophylline.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8110616

  20. Analysis of normal and mutant forms of human adenosine deaminase - a review.

    PubMed

    Daddona, P E; Kelley, W N

    1980-02-01

    A deficiency of the enzyme adenosine deaminase is associated with an autosomal recessive form of severe combined immunodeficiency disease in man. The molecular forms of the normal human enzyme have now been well characterized in an effort to better understand the nature of the enzyme defect in affected patients. In some human tissues adenosine deaminase exists predominantly as a small molecular form while in other tissues a large form composed of adenosine deaminase (small form) and an adenosine deaminase-binding protein predominates. The small form of the enzyme purified to homogeneity by antibody affinity chromatography is a monomer of native molecular weight of 37,600. The adenosine deaminase-binding protein, purified by adenosine deaminase affinity chromatography, appears to be a dimer of native molecular weight 213,000 and contains carbohydrate. Based on direct binding measurements, chemical cross-linking studies and sedimentation equilibrium analyses, small form adenosine deaminase has been shown to combine with purified binding protein in a molar ratio of 2:1 respectively to produce the large form adenosine deaminase. Reduced, but widely ranging levels of adenosine deaminating activity, have been reported in various tissues of adenosine deaminase deficient patients. Further, the characteristics of this residual enzyme activity have been analyzed immunochemically to substantiate genetic heterogeneity in this disorder. While many types of immunodeficiency are currently recognized in man, in most cases the molecular defect is unknown. The discovery of a deficiency of the enzyme, adenosine deaminase, ADA, (EC 3.5.4.4), in some patients with severe combined immunodeficiency disease represented an early clue to the pathogenesis of immune dysfunction at the molecular level 1-4. Affected patients with markedly reduced levels of ADA exhibit a defect of both cellular and humoral immunity characterized clinically by severe recurrent infections with a fatal outcome if untreated. Attempts to elucidate the nature of the genetic mutation(s) leading to the reduction of ADA activity in these immunodeficient patients have been complicated in part by an incomplete understanding of the nature of ADA in normal tissues. In this review we will consider the structural characteristics of the normal and mutant forms of ADA as they are currently understood. PMID:6988697

  1. Adenosine is not essential for exercise hyperaemia in the hindlimb in conscious dogs.

    PubMed Central

    Koch, L G; Britton, S L; Metting, P J

    1990-01-01

    1. The contribution of endogenous adenosine to the increase in hindlimb blood flow that occurs during treadmill exercise was evaluated in conscious dogs. We postulated that if adenosine is essential for the hindlimb hyperaemic response, then pharmacological treatment of the animals with adenosine receptor antagonists should decrease hindlimb blood flow during treadmill exercise. 2. A total of twenty-three dogs were chronically instrumented for measurement of aortic blood pressure and hindlimb blood flow using electromagnetic or Doppler flow probes on the left external iliac artery. Measurements of arterial blood pressure, hindlimb blood flow and heart rate were made during steady-state treadmill exercise in both the presence and the absence of adenosine receptor antagonists. Four different protocols were performed using different routes of administration of two adenosine receptor antagonists. Aminophylline was used in most of the experiments, and the effects of the more potent antagonist, 8-phenyltheophylline, were also evaluated. In addition, the dogs exercised at varying intensities ranging from a low level of 5.5 km h-1 at 0% gradient to a high intensity of 5.5 km h-1 at 21% gradient. 3. Aminophylline given as a single intravenous dose, or as a constant infusion either intravenously or directly into the hindlimb artery, did not decrease hindlimb blood flow at low, moderate or high intensities of exercise. Likewise, the blockade of adenosine receptors with 8-phenyltheophylline, given systemically or as a bolus injection administered directly into the hindlimb circulation during moderate exercise, did not attenuate the hindlimb blood flow response. 4. Our data demonstrate that exercise hyperaemia of the hindlimb is not reduced by antagonism of adenosine receptors. These findings are consistent with the hypothesis that adenosine is not an essential mediator of hindlimb vasodilatation during exercise. PMID:2277358

  2. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts

    PubMed Central

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-01-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats. PMID:25388908

  3. Impacts of methylxanthines and adenosine receptors on neurodegeneration: human and experimental studies.

    PubMed

    Chen, Jiang-Fan; Chern, Yijuang

    2011-01-01

    Neurodegenerative disorders are some of the most feared illnesses in modern society, with no effective treatments to slow or halt this neurodegeneration. Several decades after the earliest attempt to treat Parkinson's disease using caffeine, tremendous amounts of information regarding the potential beneficial effect of caffeine as well as adenosine drugs on major neurodegenerative disorders have accumulated. In the first part of this review, we provide general background on the adenosine receptor signaling systems by which caffeine and methylxanthine modulate brain activity and their role in relationship to the development and treatment of neurodegenerative disorders. The demonstration of close interaction between adenosine receptor and other G protein coupled receptors and accessory proteins might offer distinct pharmacological properties from adenosine receptor monomers. This is followed by an outline of the major mechanism underlying neuroprotection against neurodegeneration offered by caffeine and adenosine receptor agents. In the second part, we discuss the current understanding of caffeine/methylxantheine and its major target adenosine receptors in development of individual neurodegenerative disorders, including stroke, traumatic brain injury Alzheimer's disease, Parkinson's disease, Huntington's disease and multiple sclerosis. The exciting findings to date include the specific in vivo functions of adenosine receptors revealed by genetic mouse models, the demonstration of a broad spectrum of neuroprotection by chronic treatment of caffeine and adenosine receptor ligands in animal models of neurodegenerative disorders, the encouraging development of several A(2A) receptor selective antagonists which are now in advanced clinical phase III trials for Parkinson's disease. Importantly, increasing body of the human and experimental studies reveals encouraging evidence that regular human consumption of caffeine in fact may have several beneficial effects on neurodegenerative disorders, from motor stimulation to cognitive enhancement to potential neuroprotection. Thus, with regard to neurodegenerative disorders, these potential benefits of methylxanthines, caffeine in particular, strongly argue against the common practice by clinicians to discourage regular human consumption of caffeine in aging populations. PMID:20859800

  4. Adenosine receptors on human airway epithelia and their relationship to chloride secretion.

    PubMed Central

    Lazarowski, E. R.; Mason, S. J.; Clarke, L.; Harden, T. K.; Boucher, R. C.

    1992-01-01

    1. We have characterized an adenosine receptor subtype present in human airway epithelial cells by measuring the changes in the intracellular levels of adenosine 3':5'-cyclic monophosphate (cyclic AMP) and the rate of transepithelial Cl- secretion. 2. Primary cultures of human nasal epithelium obtained from excised surgical airway epithelial tissues and the cell lines BEAS39 and CF/T43 derived from human airway epithelium were grown on plastic dishes and labelled with [3H]-adenine for measurement of intracellular cyclic AMP accumulation. Primary cultures were loaded with the calcium indicator fura-2 to measure [Ca2+]i and studied as polarized, ion transporting epithelia on collagen matrix supports for measurement of Cl- secretion. 3. Adenosine analogues stimulated cyclic AMP accumulation with a rank order of potency characteristic of an A2-receptor: 5-N-ethyl-carboxamidoadenosine (NECA) greater than adenosine greater than R-phenylisopropyladenosine (R-PIA), 6-N-cyclopentyladenosine (CPA) greater than S-PIA. NECA increased cyclic AMP accumulation in normal and cystic fibrosis (CF) primary cells as well as in the CF/T43 and BEAS39 cell lines with K0.5 values ranging from 0.3 to 3 microM. Preincubation with NECA resulted in the homologous desensitization of airway epithelial cells. The effect of NECA was specifically inhibited by the adenosine receptor antagonist, aminophylline, in a competitive manner. 4. The A1-adenosine receptor agonists CPA and R-PIA did not inhibit isoprenaline-stimulated cyclic AMP accumulation in CF/T43 cells, and potentiating effects of the adenosine analogues were observed on forskolin-stimulated cyclic AMP accumulation. Adenosine analogues did not cause significant changes in intracellular Ca2+ ([Ca2+]i) in airway epithelium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1327386

  5. Adverse and Protective Influences of Adenosine on the Newborn and Embryo: Implications for Preterm White Matter Injury and Embryo Protection

    PubMed Central

    Rivkees, Scott A.; Wendler, Christopher C.

    2011-01-01

    Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists include the methlyxanthines caffeine and theophylline. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). In the postnatal period, A1AR activation may contribute to white matter injury in the preterm infant by altering oligodendrocyte (OL) development. In models of perinatal brain injury, caffeine is neuroprotective against periventricular white matter injury (PWMI) and hypoxic-ischemic encephalopathy (HIE). Supporting the notion that blockade of adenosine action is of benefit in the premature infant, caffeine reduces the incidence of broncho-pulmonary dysplasia and cerebral palsy in clinical studies. In comparison with the adverse effects on the postnatal brain, adenosine acts via A1ARs to play an essential role in protecting the embryo from hypoxia. Embryo protective effects are blocked by caffeine, and caffeine intake during early pregnancy increases the risk of miscarriage and fetal growth retardation. Adenosine and adenosine antagonists play important modulatory roles during mammalian development. The protective and deleterious effects of adenosine depend on the time of exposure and target sites of action. PMID:21228731

  6. Ticagrelor Does Not Inhibit Adenosine Transport at Relevant Concentrations: A Randomized Cross-Over Study in Healthy Subjects In Vivo

    PubMed Central

    Rongen, G. A.; van den Broek, P. H. H.; Bilos, A.; Donders, A. R. T.; Gomes, M. E.; Riksen, N. P.

    2015-01-01

    Background and Purpose In patients with myocardial infarction, ticagrelor reduces cardiovascular and sepsis-related mortality, and can cause dyspnea. It is suggested that this is caused by adenosine receptor stimulation, because in preclinical studies, ticagrelor blocks the nucleoside transporter and increases cellular ATP release. We now investigated the effects of ticagrelor on the adenosine system in humans in vivo. Experimental Approach In a double-blinded, placebo-controlled cross-over trial in 14 healthy subjects, we have tested whether ticagrelor (180 mg) affects adenosine- and dipyridamole-induced forearm vasodilation, as surrogates of nucleoside uptake inhibition and adenosine formation, respectively. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was measured. Primary endpoint was adenosine-induced vasodilation. Key Results Ticagrelor did not affect adenosine- or dipyridamole-induced forearm vasodilation. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was not affected by ticagrelor. In vitro, ticagrelor dose-dependently inhibited nucleoside uptake, but only at supra-physiological concentrations. Conclusion and Implications In conclusion, at relevant plasma concentration, ticagrelor does not affect adenosine transport, nor adenosine formation in healthy subjects. Therefore, it is unlikely that this mechanism is a relevant pleiotropic effect of ticagrelor. Trial Registration ClinicalTrials.gov NCT01996735 PMID:26509673

  7. Hypertonic NaCl enhances adenosine release and hormonal cAMP production in mouse thick ascending limb.

    PubMed

    Baudouin-Legros, M; Badou, A; Paulais, M; Hammet, M; Teulon, J

    1995-07-01

    Adenosine 3',5'-cyclic monophosphate (cAMP), accumulated in the presence of adenosine, was measured in medullary portions of mouse thick ascending limbs of Henle's loop, suspended either in classic extracellular buffer or in the presence of added NaCl. Under control conditions (140 mmol/l NaCl), adenosine (< 10(-5) mol/l) and N6-cyclohexyladenosine, an A1 adenosine receptor agonist, inhibit the cAMP accumulation induced by arginine vasopressin (AVP). On the other hand, high concentrations of adenosine and CGS-21680, an A2 adenosine receptor agonist, stimulate cAMP formation. Addition of NaCl (+300 mmol/l) to extracellular buffer stimulates the release of endogenous adenosine. It also enhances A2 receptor-induced cAMP accumulation but suppresses A1 receptor-mediated inhibition of adenylyl cyclase. This hypertonic NaCl medium also potentiates the stimulatory action of AVP on adenylyl cyclase. The modifications of tubular responses to both AVP and A1 and A2 agonists, brought about by hypertonic NaCl, were all inhibited by adenosine deaminase, thereby demonstrating the involvement of endogenous adenosine. Adenosine, the release and the effects of which are modulated by hypertonic NaCl, thus appears to act as an endogenous physiological modulator of kidney medulla function. PMID:7631823

  8. Thallium-201 scintigraphy after intravenous infusion of adenosine compared with exercise thallium testing in the diagnosis of coronary artery disease

    SciTech Connect

    Coyne, E.P.; Belvedere, D.A.; Vande Streek, P.R.; Weiland, F.L.; Evans, R.B.; Spaccavento, L.J. )

    1991-05-01

    Adenosine is an endogenously produced compound that has significant effects as a coronary and systemic vasodilator. Previous studies suggest that intravenous infusion of adenosine, coupled with thallium-201 scintigraphy, may have specific value as a noninvasive means of evaluating coronary artery disease. The purpose of this study was to compare the diagnostic value of adenosine thallium testing with that of standard exercise thallium testing. One hundred subjects were studied with exercise thallium imaging and thallium imaging after adenosine infusion, including 47 with angiographically proved coronary artery disease and 53 control subjects. The overall sensitivity of the thallium procedures was 81% for the exercise study and 83% for the adenosine study (p = NS); the specificity was 74% for the exercise study and 75% for the adenosine study (p = NS). The diagnostic accuracy of the exercise study was 77% and that of the adenosine study was 79%. Ninety-four percent of subjects had an adverse effect due to the adenosine infusion; however, most of these effects were mild and well tolerated. All adverse effects abated within 30 to 45 s of the termination of the study, consistent with the very brief half-life of the agent. Thus, thallium-201 scintigraphy after intravenous infusion of adenosine has a diagnostic value similar to that of exercise thallium testing for evaluation of coronary artery disease. Adenosine thallium testing may be particularly useful in evaluating patients unable to perform treadmill exercise testing.

  9. Inhibition of enterovirus 71 by adenosine analog NITD008.

    PubMed

    Deng, Cheng-Lin; Yeo, Huimin; Ye, Han-Qing; Liu, Si-Qing; Shang, Bao-Di; Gong, Peng; Alonso, Sylvie; Shi, Pei-Yong; Zhang, Bo

    2014-10-01

    Enterovirus 71 (EV71) is a major viral pathogen in China and Southeast Asia. There is no clinically approved vaccine or antiviral therapy for EV71 infection. NITD008, an adenosine analog, is an inhibitor of flavivirus that blocks viral RNA synthesis. Here we report that NITD008 has potent antiviral activity against EV71. In cell culture, the compound inhibits EV71 at a 50% effective concentration of 0.67 μM and a 50% cytotoxic concentration of 119.97 μM. When administered at 5 mg/kg in an EV71 mouse model, the compound reduced viral loads in various organs and completely prevented clinical symptoms and death. To study the antiviral mechanism and drug resistance, we selected escape mutant viruses by culturing EV71 with increasing concentrations of NITD008. Resistance mutations were reproducibly mapped to the viral 3A and 3D polymerase regions. Resistance analysis with recombinant viruses demonstrated that either a 3A or a 3D mutation alone could lead to resistance to NITD008. A combination of both 3A and 3D mutations conferred higher resistance, suggesting a collaborative interplay between the 3A and 3D proteins during viral replication. The resistance results underline the importance of combination therapy required for EV71 treatment. Importance: Human enterovirus 71 (EV71) has emerged as a major cause of viral encephalitis in children worldwide, especially in the Asia-Pacific region. Vaccines and antivirals are urgently needed to prevent and treat EV71 infections. In this study, we report the in vitro and in vivo efficacy of NITD008 (an adenosine analog) as an inhibitor of EV71. The efficacy results validated the potential of nucleoside analogs as antiviral drugs for EV71 infections. Mechanistically, we showed that mutations in the viral 3A and 3D polymerases alone or in combination could confer resistance to NITD008. The resistance results suggest an intrinsic interaction between viral proteins 3A and 3D during replication, as well as the importance of combination therapy for the treatment of EV71 infections. PMID:25100827

  10. Label-Free Sensing of Adenosine Based on Force Variations Induced by Molecular Recognition

    PubMed Central

    Li, Jingfeng; Li, Qing; Colombi Ciacchi, Lucio; Wei, Gang

    2015-01-01

    We demonstrate a simple force-based label-free strategy for the highly sensitive sensing of adenosine. An adenosine ssDNA aptamer was bound onto an atomic force microscopy (AFM) probe by covalent modification, and the molecular-interface adsorption force between the aptamer and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). In the presence of adenosine, the molecular recognition between adenosine and the aptamer resulted in the formation of a folded, hairpin-like DNA structure and hence caused a variation of the adsorption force at the graphite/water interface. The sensitive force response to molecular recognition provided an adenosine detection limit in the range of 0.1 to 1 nM. The addition of guanosine, cytidine, and uridine had no significant interference with the sensing of adenosine, indicating a strong selectivity of this sensor architecture. In addition, operational parameters that may affect the sensor, such as loading rate and solution ionic strength, were investigated. PMID:25808841

  11. Synaptic mechanisms of adenosine A2A receptor-mediated hyperexcitability in the hippocampus.

    PubMed

    Rombo, Diogo M; Newton, Kathryn; Nissen, Wiebke; Badurek, Sylvia; Horn, Jacqueline M; Minichiello, Liliana; Jefferys, John G R; Sebastiao, Ana M; Lamsa, Karri P

    2015-05-01

    Adenosine inhibits excitatory neurons widely in the brain through adenosine A1 receptor, but activation of adenosine A2A receptor (A2A R) has an opposite effect promoting discharge in neuronal networks. In the hippocampus A2A R expression level is low, and the receptor's effect on identified neuronal circuits is unknown. Using optogenetic afferent stimulation and whole-cell recording from identified postsynaptic neurons we show that A2A R facilitates excitatory glutamatergic Schaffer collateral synapses to CA1 pyramidal cells, but not to GABAergic inhibitory interneurons. In addition, A2A R enhances GABAergic inhibitory transmission between CA1 area interneurons leading to disinhibition of pyramidal cells. Adenosine A2A R has no direct modulatory effect on GABAergic synapses to pyramidal cells. As a result adenosine A2A R activation alters the synaptic excitation - inhibition balance in the CA1 area resulting in increased pyramidal cell discharge to glutamatergic Schaffer collateral stimulation. In line with this, we show that A2A R promotes synchronous pyramidal cell firing in hyperexcitable conditions where extracellular potassium is elevated or following high-frequency electrical stimulation. Our results revealed selective synapse- and cell type specific adenosine A2A R effects in hippocampal CA1 area. The uncovered mechanisms help our understanding of A2A R's facilitatory effect on cortical network activity. PMID:25402014

  12. A ketogenic diet suppresses seizures in mice through adenosine A? receptors.

    PubMed

    Masino, Susan A; Li, Tianfu; Theofilas, Panos; Sandau, Ursula S; Ruskin, David N; Fredholm, Bertil B; Geiger, Jonathan D; Aronica, Eleonora; Boison, Detlev

    2011-07-01

    A ketogenic diet (KD) is a high-fat, low-carbohydrate metabolic regimen; its effectiveness in the treatment of refractory epilepsy suggests that the mechanisms underlying its anticonvulsive effects differ from those targeted by conventional antiepileptic drugs. Recently, KD and analogous metabolic strategies have shown therapeutic promise in other neurologic disorders, such as reducing brain injury, pain, and inflammation. Here, we have shown that KD can reduce seizures in mice by increasing activation of adenosine A1 receptors (A1Rs). When transgenic mice with spontaneous seizures caused by deficiency in adenosine metabolism or signaling were fed KD, seizures were nearly abolished if mice had intact A1Rs, were reduced if mice expressed reduced A1Rs, and were unaltered if mice lacked A1Rs. Seizures were restored by injecting either glucose (metabolic reversal) or an A1R antagonist (pharmacologic reversal). Western blot analysis demonstrated that the KD reduced adenosine kinase, the major adenosine-metabolizing enzyme. Importantly, hippocampal tissue resected from patients with medically intractable epilepsy demonstrated increased adenosine kinase. We therefore conclude that adenosine deficiency may be relevant to human epilepsy and that KD can reduce seizures by increasing A1R-mediated inhibition. PMID:21701065

  13. Intravenous adenosine (adenoscan) versus exercise in the noninvasive assessment of coronary artery disease by SPECT

    SciTech Connect

    LaManna, M.M.; Mohama, R.; Slavich, I.L. 3d.; Lumia, F.J.; Cha, S.D.; Rambaran, N.; Maranhao, V. )

    1990-11-01

    Fifteen patients at a mean age of 58 underwent adenosine and maximal exercise thallium SPECT imaging. All scans were performed 1 week apart and within 4 weeks of cardiac catheterization. SPECT imaging was performed after the infusion of 140 micrograms/kg/min of adenosine for 6 minutes. Mean heart rate increment during adenosine administration was 67 +/- 3.7 to 77 +/- 4.1. Mean blood pressure was 136 +/- 7.2 to 135 +/- 6.2 systolic and 78 +/- 1.8 to 68 +/- 2.6 diastolic. No adverse hemodynamic effects were observed. There were no changes in PR or QRS in intervals. Five stress ECGs were ischemic. No ST changes were observed with adenosine. Although 68% of the patients had symptoms of flushing, light-headedness, and dizziness during adenosine infusion, symptoms resolved within 1 minute of dosage adjustment or termination of the infusion in all but one patient, who required theophylline. Sensitivity for coronary artery detection was 77% and specificity 100%. Concordance between adenoscans and exercise thallium scintigraphy was high (13/15 = 87%). In two patients, there were minor scintigraphic differences. The authors conclude that adenosine is a sensitive, specific, and safe alternative to exercise testing in patients referred for thallium imaging and may be preferable to dipyridamole.

  14. Adenosine and the control of lipolysis in rat adipocytes during pregnancy and lactation.

    PubMed Central

    Vernon, R G; Finley, E; Taylor, E

    1983-01-01

    The rate of noradrenaline-stimulated lipolysis is lower in fat-cells from lactating than from pregnant rats; this difference is eliminated by the addition of adenosine deaminase [Aitchison, Clegg & Vernon (1982) Biochem. J. 202, 243-247]. The activity of 5'-nucleotidase, and hence the capacity of the cells to synthesize adenosine, was the same in fat-cells and also stromal cells of adipose tissue from pregnant, lactating and male rats. The response and sensitivity of fat-cells to the anti-lipolytic effects of adenosine were measured by incubating cells in the presence of noradrenaline, adenosine deaminase (to remove endogenous adenosine) and various concentrations of the adenosine analogue N6-phenylisopropyladenosine (PIA). PIA caused a greater inhibition of the rate of noradrenaline-stimulated lipolysis in adipocytes from lactating than from pregnant rats. The concentration of PIA required to inhibit by 50% the rate of noradrenaline-stimulated lipolysis fell from over 100 nM for fat-cells from pregnant rats to 30 nM for fat-cells from lactating rats. The decreased rate of noradrenaline-stimulated lipolysis during lactation was not due to the smaller mean cell volume of adipocytes during this state. PMID:6316932

  15. Metabolic Autocrine Regulation of Neurons Involves Cooperation Among Pannexin Hemichannels, Adenosine Receptors and KATP Channels

    PubMed Central

    Kawamura, Masahito; Ruskin, David N.; Masino, Susan A.

    2010-01-01

    Metabolic perturbations that decrease or limit blood glucose - such as fasting or adhering to a ketogenic diet – reduce epileptic seizures significantly. To date, the critical links between altered metabolism and decreased neuronal activity remain unknown. More generally, metabolic changes accompany numerous central nervous system disorders, and the purines ATP and its core molecule adenosine are poised to translate cell energy into altered neuronal activity. Here we show that non-pathological changes in metabolism induce a purinergic autoregulation of hippocampal CA3 pyramidal neuron excitability. During conditions of sufficient intracellular ATP, reducing extracellular glucose induces pannexin-1 hemichannel-mediated ATP release directly from CA3 neurons. This extracellular ATP is dephosphorylated to adenosine, activates neuronal adenosine A1 receptors, and, unexpectedly, hyperpolarizes neuronal membrane potential via ATP-sensitive K+ channels. Together, these data delineate an autocrine regulation of neuronal excitability via ATP and adenosine in a seizure-prone subregion of the hippocampus, and offer new mechanistic insight into the relationship between decreased glucose and increased seizure threshold. By establishing neuronal ATP release via pannexin hemichannels, and hippocampal adenosine A1 receptors coupled to ATP-sensitive K+ channels, we reveal detailed information regarding the relationship between metabolism and neuronal activity and new strategies for adenosine-based therapies in the central nervous system. PMID:20237259

  16. Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels.

    PubMed

    Kawamura, Masahito; Ruskin, David N; Masino, Susan A

    2010-03-17

    Metabolic perturbations that decrease or limit blood glucose-such as fasting or adhering to a ketogenic diet-reduce epileptic seizures significantly. To date, the critical links between altered metabolism and decreased neuronal activity remain unknown. More generally, metabolic changes accompany numerous CNS disorders, and the purines ATP and its core molecule adenosine are poised to translate cell energy into altered neuronal activity. Here we show that nonpathological changes in metabolism induce a purinergic autoregulation of hippocampal CA3 pyramidal neuron excitability. During conditions of sufficient intracellular ATP, reducing extracellular glucose induces pannexin-1 hemichannel-mediated ATP release directly from CA3 neurons. This extracellular ATP is dephosphorylated to adenosine, activates neuronal adenosine A(1) receptors, and, unexpectedly, hyperpolarizes neuronal membrane potential via ATP-sensitive K(+) channels. Together, these data delineate an autocrine regulation of neuronal excitability via ATP and adenosine in a seizure-prone subregion of the hippocampus and offer new mechanistic insight into the relationship between decreased glucose and increased seizure threshold. By establishing neuronal ATP release via pannexin hemichannels, and hippocampal adenosine A(1) receptors coupled to ATP-sensitive K(+) channels, we reveal detailed information regarding the relationship between metabolism and neuronal activity and new strategies for adenosine-based therapies in the CNS. PMID:20237259

  17. Extracellular Adenosine Generation in the Regulation of Pro-Inflammatory Responses and Pathogen Colonization

    PubMed Central

    Alam, M. Samiul; Costales, Matthew G.; Cavanaugh, Christopher; Williams, Kristina

    2015-01-01

    Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine’s control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection. PMID:25950510

  18. Highlights on the development of A(2A) adenosine receptor agonists and antagonists.

    PubMed

    Cristalli, Gloria; Cacciari, Barbara; Dal Ben, Diego; Lambertucci, Catia; Moro, Stefano; Spalluto, Giampiero; Volpini, Rosaria

    2007-03-01

    Although significant progress has been made in the past few decades demonstrating that adenosine modulates a variety of physiological and pathophysiological processes through the interaction with four subtypes of a family of cell-surface G-protein-coupled receptors, clinical evaluation of some adenosine receptor ligands has been discontinued. Major problems include side effects due to the wide distribution of adenosine receptors, low brain penetration (which is important for the targeting of CNS diseases), short half-life of compounds, or a lack of effects, in some cases perhaps due to receptor desensitization or to low receptor density in the targeted tissue. Currently, three A(2A) adenosine receptor agonists have begun phase III studies. Two of them are therapeutically evaluated as pharmacologic stress agents and the third proved to be effective in the treatment of acute spinal cord injury (SCI), while avoiding the adverse effects of steroid agents. On the other hand, the great interest in the field of A(2A) adenosine receptor antagonists is related to their application in neurodegenerative disorders, in particular, Parkinson's disease, and some of them are currently in various stages of evaluation. This review presents an update of medicinal chemistry and molecular recognition of A(2A) adenosine receptor agonists and antagonists, and stresses the strong need for more selective ligands at the A(2A) human subtype. PMID:17177231

  19. Design, Synthesis and Evaluation of Fe-S Targeted Adenosine 5′-Phosphosulfate Reductase Inhibitors

    PubMed Central

    Paritala, Hanumantharao; Suzuki, Yuta; Carroll, Kate S.

    2015-01-01

    Adenosine 5′-phosphosulfate reductase (APR) is an iron-sulfur enzyme that is vital for survival of Mycobacterium tuberculosis during dormancy and is an attractive target for the treatment of latent tuberculosis (TB) infection. The 4Fe-4S cluster is coordinated to APR by sulfur atoms of four cysteine residues, is proximal to substrate, adenosine 5′-phopsphosulfate (APS), and is essential for catalytic activity. Herein, we present an approach for the development of a new class of APR inhibitors. As an initial step, we have employed an improved solid-phase chemistry method to prepare a series of N6-substituted adenosine analogues and their 5′-phosphates as well as adenosine 5′-phosphate diesters bearing different Fe and S binding groups, such as thiols or carboxylic and hydroxamic acid moieties. Evaluation of the resulting compounds indicates a clearly defined spacing requirement between the Fe-S targeting group and adenosine scaffold and that smaller Fe-S targeting groups are better tolerated. Molecular docking analysis suggests that the S atom of the most potent inhibitor may establish a favorable interaction with an S atom in the cluster. In summary, this study showcases an improved solid-phase method that expedites the preparation of adenosine and related 5′-phosphate derivatives and presents a unique Fe-S targeting strategy for the development of APR inhibitors. PMID:25710356

  20. CD73-Dependent Generation of Adenosine and Endothelial Adora2b Signaling Attenuate Diabetic Nephropathy

    PubMed Central

    Tak, Eunyoung; Ridyard, Douglas; Kim, Jae-Hwan; Zimmerman, Michael; Werner, Tilmann; Wang, Xiaoxin X.; Shabeka, Uladzimir; Seo, Seong-Wook; Christians, Uwe; Klawitter, Jost; Moldovan, Radu; Garcia, Gabriela; Levi, Moshe; Haase, Volker; Ravid, Katya; Eltzschig, Holger K.

    2014-01-01

    Nucleotide phosphohydrolysis by the ecto-5′-nucleotidase (CD73) is the main source for extracellular generation of adenosine. Extracellular adenosine subsequently signals through four distinct adenosine A receptors (Adora1, Adora2a, Adora2b, or Adora3). Here, we hypothesized a functional role for CD73-dependent generation and concomitant signaling of extracellular adenosine during diabetic nephropathy. CD73 transcript and protein levels were elevated in the kidneys of diabetic mice. Genetic deletion of CD73 was associated with more severe diabetic nephropathy, whereas treatment with soluble nucleotidase was therapeutic. Transcript levels of renal adenosine receptors showed a selective induction of Adora2b during diabetic nephropathy. In a transgenic reporter mouse, Adora2b expression localized to the vasculature and increased after treatment with streptozotocin. Adora2b−/− mice experienced more severe diabetic nephropathy, and studies in mice with tissue-specific deletion of Adora2b in tubular epithelia or vascular endothelia implicated endothelial Adora2b signaling in protection from diabetic nephropathy. Finally, treatment with a selective Adora2b agonist (BAY 60–6583) conveyed potent protection from diabetes-associated kidney disease. Taken together, these findings implicate CD73-dependent production of extracellular adenosine and endothelial Adora2b signaling in kidney protection during diabetic nephropathy. PMID:24262796

  1. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells

    SciTech Connect

    Cronstein, B.N.; Eberle, M.A.; Levin, R.I. ); Gruber, H.E. )

    1991-03-15

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, the authors determined whether a 48-hr pretreatment with methotrexate affected adenosine release from ({sup 14}C)adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up ({sup 14}C)adenine and released {sup 14}C-labeled purine (a measure of cell injury) in a manner identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils and stimulated neutrophils. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which has previously been shown to cause adenosine release from ischemic cardiac tissue. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs.

  2. Functional proteomics of adenosine triphosphatase system in the rat striatum during aging☆

    PubMed Central

    Villa, Roberto Federico; Ferrari, Federica; Gorini, Antonella

    2012-01-01

    The maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18, and 24 months, because of their key role in presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: sodium-potassium-magnesium adenosine triphosphatase (Na+, K+, Mg2+-ATPase); ouabain-insensitive magnesium adenosine triphosphatase (Mg2+-ATPase); sodium-potassium adenosine triphosphatase (Na+, K+-ATPase); direct magnesium adenosine triphosphatase (Mg2+-ATPase); calcium-magnesium adenosine triphosphatase (Ca2+, Mg2+-ATPase); and acetylcholinesterase. The results showed that Na+, K+-ATPase decreased at 18 and 24 months, Ca2+, Mg2+-ATPase and acetylcholinesterase decreased from 6 months, while Mg2+-ATPase was unmodified. Therefore, ATPases vary independently during aging, suggesting that the ATPase enzyme systems are of neuropathological and pharmacological importance. This could be considered as an experimental model to study regeneration processes, because of the age-dependent modifications of specific synaptic plasma membranes. ATPases cause selective changes in some cerebral functions, especially bioenergetic systems. This could be of physiopathological significance, particularly in many central nervous system diseases, where, during regenerative processes, energy availability is essential. PMID:25806051

  3. Oral sucrose for heel lance enhances adenosine triphosphate use in preterm neonates with respiratory distress

    PubMed Central

    Angeles, Danilyn M; Asmerom, Yayesh; Boskovic, Danilo S; Slater, Laurel; Bacot-Carter, Sharon; Bahjri, Khaled; Mukasa, Joseph; Holden, Megan; Fayard, Elba

    2015-01-01

    Objective: To examine the effects of oral sucrose on procedural pain, and on biochemical markers of adenosine triphosphate utilization and oxidative stress in preterm neonates with mild to moderate respiratory distress. Study design: Preterm neonates with a clinically required heel lance that met study criteria (n = 49) were randomized into three groups: (1) control (n = 24), (2) heel lance treated with placebo and non-nutritive sucking (n = 15) and (3) heel lance treated with sucrose and non-nutritive sucking (n = 10). Plasma markers of adenosine triphosphate degradation (hypoxanthine, xanthine and uric acid) and oxidative stress (allantoin) were measured before and after the heel lance. Pain was measured using the Premature Infant Pain Profile. Data were analyzed using repeated measures analysis of variance, chi-square and one-way analysis of variance. Results: We found that in preterm neonates who were intubated and/or were receiving ⩾30% FiO2, a single dose of oral sucrose given before a heel lance significantly increased markers of adenosine triphosphate use. Conclusion: We found that oral sucrose enhanced adenosine triphosphate use in neonates who were intubated and/or were receiving ⩾30% FiO2. Although oral sucrose decreased pain scores, our data suggest that it also increased energy use as evidenced by increased plasma markers of adenosine triphosphate utilization. These effects of sucrose, specifically the fructose component, on adenosine triphosphate metabolism warrant further investigation. PMID:26770807

  4. Online cleanup of accelerated solvent extractions for determination of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly using high-performance liquid chromatography.

    PubMed

    Xue, Xiaofeng; Wang, Feng; Zhou, Jinhui; Chen, Fang; Li, Yi; Zhao, Jing

    2009-06-10

    Determination of the levels of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly is important for the study of its pharmacological activities, health benefits, and adenosine phosphate degradation. In this study was developed a novel method to determine ATP, ADP, and AMP levels in royal jelly using accelerated solvent extraction (ASE) followed by online cleanup and high-performance liquid chromatography (HPLC) with diode array detection (DAD). The optimum extraction conditions were obtained using an 11 mL ASE cell, ethanol/water (5:5 v/v) as the extraction solvent, 1500 psi, 80 degrees C, a 5 min static time, and a 60% flush volume. Optimum separation of the three compounds was achieved in <25 min using a Waters XBridge Shield RP18 column with 0.05 mol L(-1) NH(4)H(2)PO(4) (pH 5.70) and acetonitrile as the mobile phase. Detection was performed at 257 nm. The method was sensitive (LOD adenosine phosphate extraction procedures (perchloric acid). The results indicate that the two techniques are similar in terms of recovery and reproducibility, but when other factors such as extraction time, environmental protection, and worker's health are considered, ASE is preferable to the classical extraction method. With this ASE-HPLC method, a minisurvey of ATP, ADP, and AMP levels in 15 samples of royal jelly of different origins was performed. Sample results indicated that the AMP concentration was 24.2-2214.4 mg kg(-1), whereas ATP and ADP were not detectable or present only at low levels. PMID:19435312

  5. Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia-induced vasodilatation

    PubMed Central

    Frøbert, Ole; Haink, Gesine; Simonsen, Ulf; Gravholt, Claus H; Levin, Max; Deussen, Andreas

    2006-01-01

    We tested whether hypoxia-induced coronary artery dilatation could be mediated by an increase in adenosine concentration within the coronary artery wall or by an increase in adenosine sensitivity. Porcine left anterior descendent coronary arteries, precontracted with prostaglandin F2α (10−5m), were mounted in a pressure myograph and microdialysis catheters were inserted into the tunica media. Dialysate adenosine concentrations were analysed by HPLC. Glucose, lactate and pyruvate were measured by an automated spectrophotometric kinetic enzymatic analyser. The exchange fraction of [14C]adenosine over the microdialysis membrane increased from 0.32 ± 0.02 to 0.46 ± 0.02 (n = 4, P < 0.01) during the study period. At baseline, interstitial adenosine was in the region of 10 nm which is significantly less than previously found myocardial concentrations. Hypoxia (PO2 30 mmHg for 60 min, n = 5) increased coronary diameters by 20.0 ± 2.6% (versus continuous oxygenation −3.1 ± 2.4%, n = 6, P < 0.001) but interstitial adenosine concentration fell. Blockade of adenosine deaminase (with erythro-9-(2-hydroxy-3-nonyl-)-adenine, 5 μm), adenosine kinase (with iodotubericidine, 10 μm) and adenosine transport (with n-nitrobenzylthioinosine, 1 μm) increased interstitial adenosine but the increase was unrelated to hypoxia or diameter. A coronary dilatation similar to that during hypoxia could be obtained with 30 μm of adenosine in the organ bath and the resulting interstitial adenosine concentrations (n = 5) were 20 times higher than the adenosine concentration measured during hypoxia. Adenosine concentration–response experiments showed vasodilatation to be more pronounced during hypoxia (n = 9) than during normoxia (n = 9, P < 0.001) and the A2A receptor antagonist ZM241385 (20 nm, n = 5), attenuated hypoxia-induced vasodilatation while the selective A2B receptor antagonist MRS1754 (20 nm, n = 4), had no effect. The lactate/pyruvate ratio was significantly increased in hypoxic arteries but did not correlate with adenosine concentration. We conclude that hypoxia-induced coronary artery dilatation is not mediated by increased adenosine produced within the artery wall but might be facilitated by increased adenosine sensitivity at the A2A receptor level. PMID:16284071

  6. ADA (adenosine deaminase) gene therapy enters the competition

    SciTech Connect

    Culliton, B.J.

    1990-08-31

    Around the world, some 70 children are members of a select and deadly club. Born with an immune deficiency so severe that they will die of infection unless their immune systems can be repaired, they have captured the attention of would-be gene therapists who believe that a handful of these kids--the 15 or 20 who lack functioning levels of the enzyme adenosine deaminase (ADA)--could be saved by a healthy ADA gene. A team of gene therapists is ready to put the theory to the test. In April 1987, a team of NIH researchers headed by R. Michael Blaese and W. French Anderson came up with the first formal protocol to introduce a healthy ADA gene into an unhealthy human. After 3 years of line-by-line scrutiny by five review committees, they have permission to go ahead. Two or three children will be treated in the next year, and will be infused with T lymphocytes carrying the gene for ADA. If the experiment works, the ADA gene will begin producing normal amounts of ADA. An interesting feature of ADA deficiency, that makes it ideal for initial gene studies, is that the amount of ADA one needs for a healthy immune system is quite variable. Hence, once inside a patient's T cells, the new ADA gene needs only to express the enzyme in moderate amounts. No precise gene regulation is necessary.

  7. Adenosine triphosphate-sensitive potassium channels and cardiomyopathies (Review).

    PubMed

    Liu, Zhongwei; Cai, Hui; Dang, Yonghui; Qiu, Chuan; Wang, Junkui

    2016-02-01

    Cardiomyopathies have been indicated to be one of the leading causes of heart failure. Though it was indicated that genetic defects, viral infection and trace element deficiency were among the causes of cardiomyopathy, the etiology has remained to be fully elucidated. Cardiomyocytes require large amounts of energy to maintain their normal biological functions. Adenosine triphosphate‑sensitive potassium channels (KATP), composed of inward‑rectifier potassium ion channel and sulfonylurea receptor subunits, are present on the cell surface and mitochondrial membrane of cardiac muscle cells. As metabolic sensors sensitive to changes in intracellular energy levels, KATP adapt electrical activities to metabolic challenges, maintaining normal biological functions of myocytes. It is implied that malfunctions, mutations and altered expression of KATP are associated with the pathogenesis of conditions including c hypertrophy, diabetes as well as dilated, ischemic and endemic cardiomyopathy. However, the current knowledge is only the tip of the iceberg and the roles of KATP in cardiomyopathies largely remain to be elucidated in future studies. PMID:26707080

  8. Adenosine signaling in reserpine-induced depression in rats.

    PubMed

    Minor, Thomas R; Hanff, Thomas C

    2015-06-01

    A single, 6 mg/kg intraperitoneal injection of reserpine increased floating time during forced swim testing 24h after administration in rats in five experiments. Although such behavioral depression traditionally is attributed to drug-induced depletion of brain monoamines, we examined the potential contribution of adenosine signaling, which is plausibly activated by reserpine treatment and contributes to behavioral depression in other paradigms. Whereas peripheral administration of the highly selective A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.5, 1.0, or 5.0mg/kg i.p.) 15 min before swim testing failed to improve performance in reserpine-treated rats, swim deficits were completely reversed by 7 mg/kg of the nonselective receptor antagonist caffeine. Performance deficits were also reversed by the nonselective A2 antagonist 3,7-dimethylxanthine (0, 0.5, 1.0mg/kg i.p.), and the highly selective A2A receptor antagonist (CSC: 8-(3 chlorostyral)caffeine) (0.01, 0.1, or 1.0mg/kg i.p.) in a dose-dependent manner. The highly selective A2B antagonist alloxazine had no beneficial effect on swim performance at any dose under study (0.1, 1.0, and 5.0mg/kg i.p.). PMID:25721738

  9. Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle

    PubMed Central

    Shon, Young-Min; Chang, Su-Youne; Tye, Susannah J.; Kimble, Christopher J.; Bennet, Kevin E.; Blaha, Charles D.; Lee, Kendall H.

    2010-01-01

    Object The authors of previous studies have demonstrated that local adenosine efflux may contribute to the therapeutic mechanism of action of thalamic deep brain stimulation (DBS) for essential tremor. Real-time monitoring of the neurochemical output of DBS-targeted regions may thus advance functional neurosurgical procedures by identifying candidate neurotransmitters and neuromodulators involved in the physiological effects of DBS. This would in turn permit the development of a method of chemically guided placement of DBS electrodes in vivo. Designed in compliance with FDA-recognized standards for medical electrical device safety, the authors report on the utility of the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for real-time comonitoring of electrical stimulation–evoked adenosine and dopamine efflux in vivo, utilizing fast-scan cyclic voltammetry (FSCV) at a polyacrylonitrile-based (T-650) carbon fiber microelectrode (CFM). Methods The WINCS was used for FSCV, which consisted of a triangle wave scanned between −0.4 and +1.5 V at a rate of 400 V/second and applied at 10 Hz. All voltages applied to the CFM were with respect to an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single T-650 carbon fiber (r = 2.5 μm) into a glass capillary and pulling to a microscopic tip using a pipette puller. The exposed carbon fiber (the sensing region) extended beyond the glass insulation by ∼ 50 μm. Proof of principle tests included in vitro measurements of adenosine and dopamine, as well as in vivo measurements in urethane-anesthetized rats by monitoring adenosine and dopamine efflux in the dorsomedial caudate putamen evoked by high-frequency electrical stimulation of the ventral tegmental area and substantia nigra. Results The WINCS provided reliable, high-fidelity measurements of adenosine efflux. Peak oxidative currents appeared at +1.5 V and at +1.0 V for adenosine, separate from the peak oxidative current at +0.6 V for dopamine. The WINCS detected subsecond adenosine and dopamine efflux in the caudate putamen at an implanted CFM during high-frequency stimulation of the ventral tegmental area and substantia nigra. Both in vitro and in vivo testing demonstrated that WINCS can detect adenosine in the presence of other easily oxidizable neurochemicals such as dopamine comparable to the detection abilities of a conventional hardwired electrochemical system for FSCV. Conclusions Altogether, these results demonstrate that WINCS is well suited for wireless monitoring of high-frequency stimulation-evoked changes in brain extracellular concentrations of adenosine. Clinical applications of selective adenosine measurements may prove important to the future development of DBS technology. PMID:19731995

  10. Adenosine effects on inhibitory synaptic transmission and excitation–inhibition balance in the rat neocortex

    PubMed Central

    Zhang, Pei; Bannon, Nicholas M; Ilin, Vladimir; Volgushev, Maxim; Chistiakova, Marina

    2015-01-01

    Abstract Adenosine might be the most widespread neuromodulator in the brain: as a metabolite of ATP it is present in every neuron and glial cell. However, how adenosine affects operation of neurons and networks in the neocortex is poorly understood, mostly because modulation of inhibitory transmission by adenosine has been so little studied. To clarify adenosine's role at inhibitory synapses, and in excitation–inhibition balance in pyramidal neurons, we recorded pharmacologically isolated inhibitory responses, compound excitatory–inhibitory responses and spontaneous events in layer 2/3 pyramidal neurons in slices from rat visual cortex. We show that adenosine (1–150 μm) suppresses inhibitory transmission to these neurons in a concentration-dependent and reversible manner. The suppression was mediated by presynaptic A1 receptors (A1Rs) because it was blocked by a selective A1 antagonist, DPCPX, and associated with changes of release indices: paired-pulse ratio, inverse coefficient of variation and frequency of miniature events. At some synapses (12 out of 24) we found evidence for A2ARs: their blockade led to a small but significant increase of the magnitude of adenosine-mediated suppression. This effect of A2AR blockade was not observed when A1Rs were blocked, suggesting that A2ARs do not have their own effect on transmission, but can modulate the A1R-mediated suppression. At both excitatory and inhibitory synapses, the magnitude of A1R-mediated suppression and A2AR–A1R interaction expressed high variability, suggesting high heterogeneity of synapses in the sensitivity to adenosine. Adenosine could change the balance between excitation and inhibition at a set of inputs to a neuron bidirectionally, towards excitation or towards inhibition. On average, however, these bidirectional changes cancelled each other, and the overall balance of excitation and inhibition was maintained during application of adenosine. These results suggest that changes of adenosine concentration may lead to differential modulation of excitatory–inhibitory balance in pyramidal neurons, and thus redistribution of local spotlights of activity in neocortical circuits, while preserving the balanced state of the whole network. PMID:25565160

  11. Overexpression of adenosine kinase in cortical astrocytes generates focal neocortical epilepsy in mice: Laboratory investigation

    PubMed Central

    Shen, Hai-Ying; Sun, Hai; Hanthorn, Marissa M.; Zhi, Zhongwei; Lan, Jing-Quan; Poulsen, David J.; Wang, Ruikang K.; Boison, Detlev

    2013-01-01

    Object New experimental models and diagnostic methods are needed to better understand the pathophysiology of focal neocortical epilepsies in a search for improved epilepsy treatment options. We hypothesized that a focal disruption of adenosine homeostasis in the neocortex might be sufficient to trigger electrographic seizures. We further hypothesized that a focal disruption of adenosine homeostasis might affect microcirculation and thus offer a diagnostic opportunity for the detection of a seizure focus located in the neocortex. Methods Focal disruption of adenosine homeostasis was achieved by injecting an adeno-associated virus (AAV) engineered to overexpress adenosine kinase (ADK), the major metabolic clearance enzyme for the brain’s endogenous anticonvulsant adenosine, into the neocortex of mice. Eight weeks following virus injection, the affected brain area was imaged via optical microangiography (OMAG) to detect changes in microcirculation. After completion of imaging, cortical electroencephalography (EEG) recordings were obtained from the imaged brain area. Results Viral expression of the Adk cDNA in astrocytes generated a focal area (~ 2 mm in diameter) of ADK overexpression within the neocortex. OMAG scanning revealed a reduction in vessel density within the affected brain area of approximately 23% and 29% compared to control animals and the contralateral hemisphere, respectively. EEG recordings revealed electrographic seizures within the focal area of ADK overexpression at a rate of 1.3 ± 0.2 seizures per hour. Conclusions Our findings suggest that focal adenosine deficiency is sufficient to generate a neocortical focus of hyperexcitability, which is also characterized by reduced vessel density. We conclude that our model constitutes a useful tool to study neocortical epilepsies and that OMAG constitutes a non-invasive diagnostic tool for the imaging of seizure foci with disrupted adenosine homeostasis. PMID:24266544

  12. Physiological control of NKT cell-dependent hepatitis induction by extracellular adenosine

    PubMed Central

    Subramanian, Meenakshi; Kini, Radhika; Madasu, Manasa; Ohta, Akiko; Nowak, Michael; Exley, Mark; Sitkovsky, Michail; Ohta, Akio

    2015-01-01

    Summary Extracellular adenosine regulates inflammatory responses via A2A adenosine receptor (A2AR). A2AR-deficiency results in much exaggerated acute hepatitis, indicating non-redundancy of adenosine-A2AR pathway in inhibitory mechanisms of immune activation. To identify a critical target of immunoregulatory effect of extracellular adenosine, we focused on NKT cells, which play an indispensable role in hepatitis. A2AR agonist abolished NKT cell-dependent induction of acute hepatitis by Con A or α-galactosylceramide (α-GalCer), corresponding to down-regulation of activation markers and cytokines in NKT cells and of NK cell co-activation. These results show that A2AR signaling can down-regulate NKT cell activation and suppress NKT cell-triggered inflammatory responses. Next, we hypothesized that NKT cells might be under physiological control of the adenosine-A2AR pathway. Indeed, both Con A and α-GalCer induced more severe hepatitis in A2AR−/− mice than in wild-type controls. Transfer of A2AR−/− NKT cells into A2AR-expressing recipients resulted in exaggeration of Con A-induced liver damage, suggesting that NKT cell activation is controlled by endogenous adenosine via A2AR, and this physiological regulatory mechanism of NKT cells is critical in the control of tissue-damaging inflammation. The current study suggests the possibility to manipulate NKT cell activity in inflammatory disorders through intervention to the adenosine-A2AR pathway. PMID:24448964

  13. Inhibition of adenosine kinase attenuates inflammation and neurotoxicity in traumatic optic neuropathy.

    PubMed

    Ahmad, Saif; Elsherbiny, Nehal M; Bhatia, Kanchan; Elsherbini, Ahmed M; Fulzele, Sadanand; Liou, Gregory I

    2014-12-15

    Traumatic optic neuropathy (TON) is associated with apoptosis of retinal ganglion cells. Local productions of reactive oxygen species and inflammatory mediators from activated microglial cells have been hypothesized to underlie apoptotic processes. We previously demonstrated that the anti-inflammatory effect of adenosine, through A2A receptor activation had profound protective influence against retinal injury in traumatic optic neuropathy. This protective effect is limited due to rapid cellular re-uptake of adenosine by equilibrative nucleotside transporter-1 (ENT1) or break down by adenosine kinase (AK), the key enzyme in adenosine clearance pathway. Further, the use of adenosine receptors agonists are limited by systemic side effects. Therefore, we seek to investigate the potential role of amplifying the endogenous ambient level of adenosine by pharmacological inhibition of AK. We tested our hypothesis by comparing TON-induced retinal injury in mice with and without ABT-702 treatment, a selective AK inhibitor (AKI). The retinal-protective effect of ABT-702 was demonstrated by significant reduction of Iba-1, ENT1, TNF-α, IL-6, and iNOS/nNOS protein or mRNA expression in TON as revealed by western blot and real time PCR. TON-induced superoxide anion generation and nitrotyrosine expression were reduced in ABT-702 treated mice retinal sections as determined by immunoflourescence. In addition, ABT-702 attenuated p-ERK1/2 and p-P38 activation in LPS induced activated mouse microglia cells. The results of the present investigation suggested that ABT-702 had a protective role against marked TON-induced retinal inflammation and damage by augmenting the endogenous therapeutic effects of site- and event-specific accumulation of extracellular adenosine. PMID:25457840

  14. Angina pectoris-like pain provoked by intravenous adenosine in healthy volunteers.

    PubMed Central

    Sylvén, C; Beermann, B; Jonzon, B; Brandt, R

    1986-01-01

    In a study to characterise the chest pain induced by adenosine this agent was given as a bolus into a peripheral vein to six healthy volunteers (five men) aged 30-44. On the first day the maximum tolerable dose was determined in each case. On the second day three doses of adenosine (one third, two thirds, and the full maximum tolerable dose) and three doses of saline were given single blind in randomised order. Thereafter aminophylline 5 mg/kg was given and the procedure repeated in a different randomised order. On the third day between two thirds and the full maximum tolerable dose was given followed by 10 mg dipyridamole intravenously and a second injection of the same dose of adenosine. Heart rate and atrioventricular blocks were recorded by electrocardiography. One minute after each dose of adenosine the chest pain was scored. The maximum tolerable dose of adenosine ranged from 10.6 to 37.1 mg. All subjects experienced uneasy central chest pain provoking anxiety. The pain radiated to the shoulders, ulnar aspect of the arms, epigastric area, back, and into the throat. The pain began about 20 seconds after the injection and lasted 10-15 seconds. Increasing the dose of adenosine increased the intensity of the pain. Administration of aminophylline reduced the pain significantly. Second degree heart block was recorded in five of the six subjects during the time that the pain was experienced. After aminophylline no block was observed. Dipyridamole increased the intensity of pain. The duration of second degree heart block increased in four of the subjects, and in two of these third degree heart block occurred. These findings suggest that adenosine released from the myocardium during ischaemia induces angina pectoris by stimulating theophylline sensitive receptors. PMID:3089465

  15. Stimulation of gastric acid secretion by rabbit parietal cell A(2B) adenosine receptor activation.

    PubMed

    Arin, Rosa María; Vallejo, Ana Isabel; Rueda, Yuri; Fresnedo, Olatz; Ochoa, Begoña

    2015-12-15

    Adenosine modulates different functional activities in many cells of the gastrointestinal tract; some of them are believed to be mediated by interaction with its four G protein-coupled receptors. The renewed interest in the adenosine A2B receptor (A2BR) subtype can be traced by studies in which the introduction of new genetic and chemical tools has widened the pharmacological and structural knowledge of this receptor as well as its potential therapeutic use in cancer and inflammation- or hypoxia-related pathologies. In the acid-secreting parietal cells of the gastric mucosa, the use of various radioligands for adenosine receptors suggested the presence of the A2 adenosine receptor subtype(s) on the cell surface. Recently, we confirmed A2BR expression in native, nontransformed parietal cells at rest by using flow cytometry and confocal microscopy. In this study, we show that A2BR is functional in primary rabbit gastric parietal cells, as indicated by the fact that agonist binding to A2BR increased adenylate cyclase activity and acid production. In addition, both acid production and radioligand binding of adenosine analogs to isolated cell membranes were potently blocked by selective A2BR antagonists, whereas ligands for A1, A2A, and A3 adenosine receptors failed to abolish activation. We conclude that rabbit gastric parietal cells possess functional A2BR proteins that are coupled to Gs and stimulate HCl production upon activation. Whether adenosine- and A2BR-mediated functional responses play a role in human gastric pathophysiology is yet to be elucidated. PMID:26468208

  16. Interaction of adenosine receptors with other receptors from therapeutic perspective in Parkinson's disease.

    PubMed

    Morin, Nicolas; Di Paolo, Thérèse

    2014-01-01

    Altered dopaminergic neurotransmission in the basal ganglia is observed in Parkinson's disease (PD) and L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias (LID). An attractive alternative for treating LID is to use adjunct drugs to modulate nondopaminergic neurotransmitter systems in the basal ganglia. For example, adenosine receptors have received attention over the past years for the treatment of PD and LID. Adenosine interacts closely with dopamine and plays an important role in the function of striatal GABAergic efferent neurons. Excitatory glutamatergic neurotransmission is also modulated by adenosine in the striatum. Hence, based on the unique cellular and regional distribution of this system, adenosine neurotransmission could have an important implication for the development of new therapeutic strategies targeting the basal ganglia disorders. Indeed, A2A adenosine receptor antagonists were shown to improve motor deficits in PD and to reduce the severity of LID. A2A receptor subtypes are selectively found on striatopallidal neurons and can couple with receptors of interest in PD, such as D2 dopamine and metabotropic glutamate receptor type 5 (mGlu5) receptors, and form functional heteromeric complexes. This chapter will review relevant studies investigating the role and contribution of adenosine receptor subtypes in pathophysiology of PD and LID. The interactions of adenosine receptors, especially A1 and A2A receptor subtypes, with other receptors implicated in the pathophysiology of PD and LID such as dopaminergic and glutamatergic receptors will be reviewed. The implication of these interactions in the development and expression of PD symptoms and LID needs further investigation to find novel drug targets. PMID:25175965

  17. Dual Effect of Adenosine A1 Receptor Activation on Renal O2 Consumption.

    PubMed

    Babich, Victor; Vadnagara, Komal; Di Sole, Francesca

    2015-12-01

    The high requirement of O2 in the renal proximal tubule stems from a high rate of Na(+) transport. Adenosine A1 receptor (A1R) activation regulates Na(+) transport in this nephron segment. Thus, the effect of the acute activation and the mechanisms of A1R on the rate of O2 consumption were evaluated. The A1R-antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPX) and adenosine deaminase (ADA), which metabolize endogenous adenosine, reduced O2 consumption (40-50%). Replacing Na(+) in the buffer reversed the ADA- or CPX-mediated reduction of O2 consumption. Blocking the Na/H-exchanger activity, which decreases O2 usage per se, did not enhance the ADA- or CPX-induced inhibition of O2 consumption. These data indicate that endogenous adenosine increases O2 usage via the activation of Na(+) transport. In the presence of endogenous adenosine, A1R was further activated by the A1R-agonist N(6)-cyclopentyladenosine (CPA); CPA inhibited O2 usage (30%) and this effect also depended on Na(+) transport. Moreover, a low concentration of CPA activated O2 usage in tissue pretreated with ADA, whereas a high concentration of CPA inhibited O2 usage; both effects depended on Na(+). Protein kinase C signaling mediated the inhibitory effect of A1R, while adenylyl cyclase mediated its stimulatory effect on O2 consumption. In summary, increasing the local concentrations of adenosine can either activate or inhibit O2 consumption via A1R, and this mechanism depends on Na(+) transport. The inhibition of O2 usage by A1R activation might restore the compromised balance between energy supply and demand under pathophysiological conditions, such as renal ischemia, which results in high adenosine production. PMID:26010290

  18. Fluorometric determination of adenosine nucleotide derivatives as measures of the microfouling, detrital, and sedimentary microbial biomass and physiological status.

    PubMed

    Davis, W M; White, D C

    1980-09-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  19. Metabolism of Adenosine 3′,5′-Cyclic Monophosphate and Induction of Fruiting Bodies in Coprinus macrorhizus

    PubMed Central

    Uno, Isao; Ishikawa, Tatsuo

    1973-01-01

    The adenyl cyclase and phosphodiesterase metabolizing adenosine 3′,5′-cyclic monophosphate (cyclic AMP) were detected in mycelia of strains of Coprinus macrorhizus which form fruiting bodies, but not in those of strains which do not form fruiting bodies. The adenyl cyclase synthesized cyclic AMP from adenosine triphosphate. The phosphodiesterase degr[UNK]ded cyclic AMP to adenosine-5′-monophosphate and was inhibited by adenosine-3′-monophosphate, theophylline, and caffeine. The strains which form fruiting bodies incorporated and metabolized cyclic AMP, but strains which do not form fruiting bodies did not. The possible participation of cyclic AMP in the induction of fruiting bodies is discussed. PMID:4347968

  20. Fluorometric Determination of Adenosine Nucleotide Derivatives as Measures of the Microfouling, Detrital, and Sedimentary Microbial Biomass and Physiological Status

    PubMed Central

    Davis, William M.; White, David C.

    1980-01-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N6-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  1. Nonresolving Inflammation in gp91phox-/- Mice, a Model of Human Chronic Granulomatous Disease, Has Lower Adenosine and Cyclic Adenosine 5′-Monophoshate

    PubMed Central

    Rajakariar, Ravindra; Newson, Justine; Jackson, Edwin K.; Sawmynaden, Precilla; Smith, Andrew; Rahman, Farooq; Yaqoob, Muhammad M; Gilroy, Derek W

    2009-01-01

    In chronic granulomatous disease (CGD) there is failure to generate reactive oxygen metabolites resulting in recurrent infections and persistent inflammatory events. As responses to sterile stimuli in murine models of CGD also result in non-resolving inflammation, we investigated whether defects in endogenous counter-regulatory mechanisms and/or pro-resolution pathways contribute to the aetiology of CGD. To this end we carried out a series of experiments finding, in the first instance that adenosine and cAMP, which dampen innate immune-mediated responses, show a biphasic profile in resolving peritonitis; peaking at onset, waning as inflammation progresses and rising again at resolution. We also found elevations in adenosine and cAMP in resolving human peritonitis. In gp91phox-/- mice, an experimental model of CGD, levels of adenosine and cAMP were significantly lower at onset and again at resolution. Corroborating the finding of others, we show that adenosine, signalling through its A2A receptor and therefore elevating cAMP is not only anti-inflammatory but, importantly, it does not impair pro-resolution pathways, properties typical of nonsteroidal anti-inflammatory drugs. Conversely, antagonising the A2A receptor worsens acute inflammation and prolongs resolution. Taking this further, activating the A2A receptor in gp91phox-/- mice was dramatically anti-inflammatory regardless of the phase of the inflammatory response A2A agonists were administered i.e. onset or resolution demonstrating wide and robust pharmacological flexibility that is unlikely to subvert pro-resolution pathways. Therefore, we describe the biphasic profile of adenosine and cAMP throughout the time course of acute inflammation that is dysregulated in CGD. PMID:19234224

  2. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    PubMed

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects. PMID:26732366

  3. Adenosine 2A receptors modulate reward behaviours for methamphetamine.

    PubMed

    Chesworth, Rose; Brown, Robyn M; Kim, Jee Hyun; Ledent, Catherine; Lawrence, Andrew J

    2016-03-01

    Addiction to methamphetamine (METH) is a global health problem for which there are no approved pharmacotherapies. The adenosine 2A (A2 A ) receptor presents a potential therapeutic target for METH abuse due to its modulatory effects on striatal dopamine and glutamate transmission. Notably, A2 A receptor signalling has been implicated in the rewarding effects of alcohol, cocaine and opiates; yet, the role of this receptor in METH consumption and seeking is essentially unknown. Therefore, the current study used A2 A knockout (KO) mice to assess the role of A2 A in behaviours relevant to METH addiction. METH conditioned place preference was absent in A2 A KO mice compared with wild-type (WT) littermates. Repeated METH treatment produced locomotor sensitization in both genotypes; however, sensitization was attenuated in A2 A KO mice in a dose-related manner. METH intravenous self-administration was intact in A2 A KO mice over a range of doses and schedules of reinforcement. However, the motivation to self-administer was reduced in A2 A KO mice. Regression analysis further supported the observation that the motivation to self-administer METH was reduced in A2 A KO mice even when self-administration was similar to WT mice. Sucrose self-administration was also reduced in A2 A KO mice but only at higher schedules of reinforcement. Collectively, these data suggest that A2 A signalling is critically required to integrate rewarding and motivational properties of both METH and natural rewards. PMID:25612195

  4. Preparation of adenosine nucleotide derivatives suitable for affinity chromatography

    PubMed Central

    Trayer, Ian P.; Trayer, Hylary R.; Small, David A. P.; Bottomley, Robin C.

    1974-01-01

    Methods of synthesizing a series of chemically-defined AMP, ADP, ATP, adenylyl imidodiphosphate and pyrophosphate derivatives suitable for affinity chromatography are extensively described. Each derivative has a single primary amino group at the end of a hexamethylene `spacer' chain for attachment to CNBr-activated agarose. The synthesis of the derivative where the `spacer' arm is attached directly to the 8 position of the adenine ring to produce 8-(6-aminohexyl)amino-AMP involves the direct bromination of AMP in the 8 position followed by displacement of the halogen by 1,6-diaminohexane. This monophosphate derivative can then be converted into the corresponding di- or triphosphate forms by direct phosphate condensation with carbonyl di-imidazole. A second series of adenosine phosphate derivatives with the phosphate moieties unsubstituted has been similarly prepared from N6-(6-aminohexyl)-AMP (Guilford et al., 1972). A third type of ligand has been synthesized by condensing the phosphoryl imidazolide of AMP with 6-aminohex-1-yl phosphate. This compound, P1-(6-aminohex-1-yl) P2-(5′-adenosyl) pyrophosphate, has an unsubstituted adenine ring. The synthesis of a fourth type of ligand, 6-aminohex-1-yl pyrophosphate, was done by heating 6-aminohexan-1-ol with crystalline pyrophosphoric acid under reduced pressure. The structures of the synthesized compounds were confirmed by chemical, electrophoretic and chromatographic methods and by u.v. spectrometry. The general applicability of the synthetic methods used is discussed in relation to the preparation of other affinity adsorbents. Examples are given where these derivatives have been successful in reversibly binding dehydrogenases, kinases and myosin and its proteolytic subfragments. The partial purification of rat liver glucokinase on an ADP derivative is shown. PMID:4369034

  5. Equilibrium and kinetic selectivity profiling on the human adenosine receptors.

    PubMed

    Guo, Dong; Dijksteel, Gabrielle S; van Duijl, Tirsa; Heezen, Maxime; Heitman, Laura H; IJzerman, Adriaan P

    2016-04-01

    Classical evaluation of target selectivity is usually undertaken by measuring the binding affinity of lead compounds against a number of potential targets under equilibrium conditions, without considering the kinetics of the ligand-receptor interaction. In the present study we propose a combined strategy including both equilibrium- and kinetics-based selectivity profiling. The adenosine receptor (AR) was chosen as a prototypical drug target. Six in-house AR antagonists were evaluated in a radioligand displacement assay for their affinity and in a competition association assay for their binding kinetics on three AR subtypes. One of the compounds with a promising kinetic selectivity profile was also examined in a [(35)S]-GTPγS binding assay for functional activity. We found that XAC and LUF5964 were kinetically more selective for the A1R and A3R, respectively, although they are non-selective in terms of their affinity. In comparison, LUF5967 displayed a strong equilibrium-based selectivity for the A1R over the A2AR, yet its kinetic selectivity thereon was less pronounced. In a GTPγS assay, LUF5964 exhibited insurmountable antagonism on the A3R while having a surmountable effect on the A1R, consistent with its kinetic selectivity profile. This study provides evidence that equilibrium and kinetic selectivity profiling can both be important in the early phases of the drug discovery process. Our proposed combinational strategy could be considered for future medicinal chemistry efforts and aid the design and discovery of different or even better leads for clinical applications. PMID:26930564

  6. Allosteric Modulation of the Adenosine Family of Receptors

    PubMed Central

    Gao, Zhan-Guo; Kim, Soo-Kyung; IJzerman, Adriaan P.; Jacobson, Kenneth A.

    2012-01-01

    Allosteric modulators for adenosine receptors (ARs) are of an increasing interest and may have potential therapeutic advantage over orthosteric ligands. Benzoylthiophene derivatives (including PD 81,723), 2-aminothiazolium salts, and related allosteric modulators of the A1 AR have been studied. The benzoylthiophene derivatives were demonstrated to be selective enhancers for the A1 AR, with little or no effect on other subtypes of ARs. Allosteric modulation of the A2A AR has also been reported. A3 allosteric enhancers may be predicted to be useful against ischemic conditions. We have recently characterized two classes of A3 AR allosteric modulators: 3-(2-pyridinyl)isoquinolines (e.g. VUF5455) and 1H-imidazo-[4,5-c]quinolin-4-amines (e.g. DU124183), which selectively decreased the agonist dissociation rate at the human A3AR but not at A1 and A2A ARs. DU124183 left-shifted the agonist conc.-response curve for inhibition of forskolin-stimulated cAMP accumulation in intact cells expressing the human A3AR with up to 30% potentiation of the maximal efficacy. The increased potency of A3 agonists was evident only in the presence of an A3 antagonist, since VUF5455 and DU124183 also antagonized, i.e. displaced binding at the orthosteric site, with Ki values of 1.68 and 0.82 μM, respectively. A3AR mutagenesis studies implicated F1825.43 and N2747.45 in the action of the enhancers and was interpreted using a rhodopsin-based A3AR molecular model, suggesting multiple binding modes. Amiloride analogues, SCH-202676 (N-(2,3-diphenyl-1,2,4-thiadiazol-5(2H)-ylidene)methanamine), and sodium ions were demonstrated to be common allosteric modulators for at least three subtypes (A1, A2A, and A3) of ARs. PMID:15974932

  7. Cerebral adenosine A? receptors are upregulated in rodent encephalitis.

    PubMed

    Paul, Soumen; Khanapur, Shivashankar; Boersma, Wytske; Sijbesma, Jurgen W; Ishiwata, Kiichi; Elsinga, Philip H; Meerlo, Peter; Doorduin, Janine; Dierckx, Rudi A; van Waarde, Aren

    2014-05-15

    Adenosine A1 receptors (A1Rs) are implied in the modulation of neuroinflammation. Activation of cerebral A1Rs acts as a brake on the microglial response after traumatic brain injury and has neuroprotective properties in animal models of Parkinson's disease and multiple sclerosis. Neuroinflammatory processes in turn may affect the expression of A1Rs, but the available data is limited and inconsistent. Here, we applied an animal model of encephalitis to assess how neuroinflammation affects the expression of A1Rs. Two groups of animals were studied: Infected rats (n=7) were intranasally inoculated with herpes simplex virus-1 (HSV-1, 1 10(7) plaque forming units), sham-infected rats (n=6) received only phosphate-buffered saline. Six or seven days later, microPET scans (60 min with arterial blood sampling) were made using the tracer 8-dicyclopropyl-1-(11)C-methyl-3-propyl-xanthine ((11)C-MPDX). Tracer clearance from plasma and partition coefficient (K?/k? estimated from a 2-tissue compartment model fit) were not significantly altered after virus infection. PET tracer distribution volume calculated from a Logan plot was significantly increased in the hippocampus (+37%) and medulla (+27%) of virus infected rats. Tracer binding potential (k?/k? estimated from the model fit) was significantly increased in the cerebellum (+87%) and the medulla (+148%) which may indicate increased A1R expression. This was confirmed by immunohistochemical analysis showing a strong increase of A1R immunoreactivity in the cerebellum of HSV-1-infected rats. Both the quantitative PET data and immunohistochemical analysis indicate that A1Rs are upregulated in brain areas where active virus is present. PMID:24513151

  8. Molecular Determinants of CGS21680 Binding to the Human Adenosine A2A Receptor

    PubMed Central

    Edwards, Patricia C.; Leslie, Andrew G. W.

    2015-01-01

    The adenosine A2A receptor (A2AR) plays a key role in transmembrane signaling mediated by the endogenous agonist adenosine. Here, we describe the crystal structure of human A2AR thermostabilized in an active-like conformation bound to the selective agonist 2-[p-(2-carboxyethyl)phenylethyl-amino]-5?-N-ethylcarboxamido adenosine (CGS21680) at a resolution of 2.6 . Comparison of A2AR structures bound to either CGS21680, 5?-N-ethylcarboxamido adenosine (NECA), UK432097 [6-(2,2-diphenylethylamino)-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-tetrahydrofuran-2-yl]-N-[2-[[1-(2-pyridyl)-4-piperidyl]carbamoylamino]ethyl]purine-2-carboxamide], or adenosine shows that the adenosine moiety of the ligands binds to the receptor in an identical fashion. However, an extension in CGS21680 compared with adenosine, the (2-carboxyethyl)phenylethylamino group, binds in an extended vestibule formed from transmembrane regions 2 and 7 (TM2 and TM7) and extracellular loops 2 and 3 (EL2 and EL3). The (2-carboxyethyl)phenylethylamino group makes van der Waals contacts with side chains of amino acid residues Glu169EL2, His264EL3, Leu2677.32, and Ile2747.39, and the amine group forms a hydrogen bond with the side chain of Ser672.65. Of these residues, only Ile2747.39 is absolutely conserved across the human adenosine receptor subfamily. The major difference between the structures of A2AR bound to either adenosine or CGS21680 is that the binding pocket narrows at the extracellular surface when CGS21680 is bound, due to an inward tilt of TM2 in that region. This conformation is stabilized by hydrogen bonds formed by the side chain of Ser672.65 to CGS21680, either directly or via an ordered water molecule. Mutation of amino acid residues Ser672.65, Glu169EL2, and His264EL3, and analysis of receptor activation either in the presence or absence of ligands implicates this region in modulating the level of basal activity of A2AR. PMID:25762024

  9. Molecular Determinants of CGS21680 Binding to the Human Adenosine A2A Receptor.

    PubMed

    Lebon, Guillaume; Edwards, Patricia C; Leslie, Andrew G W; Tate, Christopher G

    2015-06-01

    The adenosine A2A receptor (A(2A)R) plays a key role in transmembrane signaling mediated by the endogenous agonist adenosine. Here, we describe the crystal structure of human A2AR thermostabilized in an active-like conformation bound to the selective agonist 2-[p-(2-carboxyethyl)phenylethyl-amino]-5'-N-ethylcarboxamido adenosine (CGS21680) at a resolution of 2.6 Å. Comparison of A(2A)R structures bound to either CGS21680, 5'-N-ethylcarboxamido adenosine (NECA), UK432097 [6-(2,2-diphenylethylamino)-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-tetrahydrofuran-2-yl]-N-[2-[[1-(2-pyridyl)-4-piperidyl]carbamoylamino]ethyl]purine-2-carboxamide], or adenosine shows that the adenosine moiety of the ligands binds to the receptor in an identical fashion. However, an extension in CGS21680 compared with adenosine, the (2-carboxyethyl)phenylethylamino group, binds in an extended vestibule formed from transmembrane regions 2 and 7 (TM2 and TM7) and extracellular loops 2 and 3 (EL2 and EL3). The (2-carboxyethyl)phenylethylamino group makes van der Waals contacts with side chains of amino acid residues Glu169(EL2), His264(EL3), Leu267(7.32), and Ile274(7.39), and the amine group forms a hydrogen bond with the side chain of Ser67(2.65). Of these residues, only Ile274(7.39) is absolutely conserved across the human adenosine receptor subfamily. The major difference between the structures of A(2A)R bound to either adenosine or CGS21680 is that the binding pocket narrows at the extracellular surface when CGS21680 is bound, due to an inward tilt of TM2 in that region. This conformation is stabilized by hydrogen bonds formed by the side chain of Ser67(2.65) to CGS21680, either directly or via an ordered water molecule. Mutation of amino acid residues Ser67(2.65), Glu169(EL2), and His264(EL3), and analysis of receptor activation either in the presence or absence of ligands implicates this region in modulating the level of basal activity of A(2A)R. PMID:25762024

  10. Spinal opioid receptors and adenosine release: neurochemical and behavioral characterization of opioid subtypes.

    PubMed

    Cahill, C M; White, T D; Sawynok, J

    1995-10-01

    Release of adenosine from the spinal cord contributes to spinal antinociception by morphine. Morphine induces a Ca(++)-dependent release of adenosine from dorsal spinal cord synaptosomes, which is augmented under partially depolarizing conditions. The present study examined the opioid receptor subtypes involved in this release, and determined whether adenosine is an important mediator of antinociception induced by the spinal administration of selective opioid agonists in rats. Nanomolar and micromolar concentrations of the selective mu opioid agonists DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin) and PLO17 ([N-MePhe3,D-Pro4]morphiceptin) induced release of adenosine in a biphasic manner in the presence of a partial depolarization (addition of 6 mM K+ to the Krebs' medium). The delta opioid agonists DPDPE ([D-Pen2,D-Pen5]enkephalin) and DELT ([D-Ala2,Cys4]deltorphin) and the kappa opioid agonist U50488H (trans-(+/-)-3,4-dichloro-N-methyl-N-(2-(1-pyrroli-zemeacetamid e) had little effect on the release of adenosine except at high micromolar concentrations. Release of adenosine by mu (nanomolar) and delta (micromolar) ligands is Ca(++)-dependent, whereas the kappa (micromolar) receptor ligand releases adenosine via a Ca(++)-independent mechanism. Behavioral antinociception using the hot-plate threshold test revealed that intrathecal administration of the mu and delta opioid receptor agonists produced dose-dependent antinociception with an order of potency of DAMGO, PLO17 > morphine, DELT > DPDPE. An ED75 dose of morphine, DAMGO or PLO17 was attenuated dose-dependently by intrathecal pretreatment with the adenosine receptor antagonist caffeine. Caffeine did not block the antinociceptive response to delta agonists, but in fact augmented antinociception when combined with DPDPE and DELT. This augmentation was dose-dependent. This study demonstrates that activation of the mu receptor subtype is responsible for the opioid-induced release of adenosine from the spinal cord, that such release contributes to the spinal antinociception by mu agonists and that only release evoked by low doses of opioids is behaviorally relevant. PMID:7562600

  11. Luciferase-based assay for adenosine: Application to S-adenosyl-L-homocysteine hydrolase

    PubMed Central

    Burgos, Emmanuel S.; Gulab, Shivali A.; Cassera, María B.; Schramm, Vern L.

    2012-01-01

    S-adenosyl-L-homocysteine hydrolase (SAHH) catalyzes the reversible conversion of S-adenosyl-L-homocysteine (SAH) to adenosine (ADO) and L-homocysteine (Hcy), promoting methyltransferases activity by relief of SAH inhibition. SAH catabolism is linked to S-adenosylmethionine metabolism and the development of SAHH inhibitors is of interest for new therapeutics with anti-cancer or cholesterol-lowering effects. We have developed a continuous enzymatic assay for adenosine that facilitates high-throughput analysis of SAHH. This luciferase-based assay is 4000-fold more sensitive than former detection methods and is well suited for continuous monitoring of ADO formation in a 96 well plate format. The high-affinity adenosine kinase from Anopheles gambiae (AgAK) efficiently converts adenosine to AMP in the presence of GTP. AMP is converted to ATP and coupled to firefly luciferase. With this procedure, kinetic parameters (Km, kcat) for SAHH were obtained, in good agreement with literature values. Assay characteristics include sustained light output combined with ultra-sensitive detection (10−7 unit SAHH). The assay is documented with the characterization of slow-onset inhibition for inhibitors of the hydrolase. Application of this assay may facilitate the development of SAHH inhibitors and provide an ultrasensitive detection for the formation of adenosine from other biological reactions. PMID:22416759

  12. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose

    PubMed Central

    Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle

    2016-01-01

    Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity. PMID:26755200

  13. Repeated Electroacupuncture Persistently Elevates Adenosine and Ameliorates Collagen-Induced Arthritis in Rats.

    PubMed

    Ye, Tian-Shen; Du, Zhong-Heng; Li, Zhi-Hui; Xie, Wen-Xia; Huang, Ka-Te; Chen, Yong; Chen, Zhou-Yang; Hu, Huan; Wang, Jun-Lu; Fang, Jian-Qiao

    2016-01-01

    The aim of this paper was to investigate the effect of repeated electroacupuncture (EA) over 21 days on the adenosine concentration in peripheral blood of rats with collagen-induced arthritis (CIA). Wistar rats were divided into three groups of 6 animals each: sham-control, CIA-control, and CIA-EA. We determined the adenosine concentration in peripheral blood and assessed pathological changes of ankle joints. Quantitative reverse-transcription-polymerase chain reaction was used to determine mRNA levels of ecto-5'-nucleotidase (CD73), adenosine deaminase (ADA), and tumor necrosis factor-alpha (TNF-α). Immunohistochemical staining was used to detect expression of ADA and CD73 in synovial tissue. Repeated EA treatment on CIA resulted in the persistence of high concentrations of adenosine in peripheral blood, significantly reduced pathological scores, TNF-α mRNA concentrations, and synovial hyperplasia. Importantly, EA treatment led to a significant increase in CD73 mRNA levels in peripheral blood but was associated with a decrease of CD73 immunostaining in synovial tissue. In addition, EA treatment resulted in a significant decrease of both ADA mRNA levels in peripheral blood and ADA immunostaining in synovial tissue. Thus, repeated EA treatment exerts an anti-inflammatory and immunoregulatory effect on CIA by increasing the concentration of adenosine. The mechanism of EA action may involve the modulation of CD73 and ADA expression levels. PMID:26941824

  14. Neurochemical measurement of adenosine in discrete brain regions of five strains of inbred mice.

    PubMed

    Pani, Amar K; Jiao, Yun; Sample, Kenneth J; Smeyne, Richard J

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  15. Content of Adenosine Phosphates and Adenylate Energy Charge in Germinating Ponderosa Pine Seeds

    PubMed Central

    Ching, Te May; Ching, Kim K.

    1972-01-01

    An average of 540 picomoles of total adenosine phosphates was found in the embryo of mature seeds of ponderosa pine (Pinus ponderosa Laws.) and 1140 picomoles in the gametophyte. Adenylate energy charges were 0.44 and 0.26, respectively. After stratification, total adenosine phosphates increased 7-fold and 6-fold in embryo and gametophyte, respectively, and energy charges rose to 0.85 and 0.75. During germination, total adenosine phosphates increased to a 20-fold peak on the 9th day in gametophytic tissue, parallel with the peak of reserve regradation and organellar synthesis, and then decreased. In embryo and seedling, total adenosine phosphates elevated 80-fold with two distinct oscillating increases of AMP and ADP. The oscillating increases occurred before the emergence of radicle and cotyledons during which the highest mitotic index prevailed in all tissues. Energy charges fluctuated between 0.65 at the rapid cell dividing stage to 0.85 at the fully differentiated stage of the seedling, while energy charges remained around 0.75 in the gametophyte. These data indicated that the content of adenosine phosphates of germinating seeds reflects growth, organogenesis, and morphogenesis, and that a compartmentalized energy metabolism must exist in dividing and growing plant cells. PMID:16658212

  16. Repeated Electroacupuncture Persistently Elevates Adenosine and Ameliorates Collagen-Induced Arthritis in Rats

    PubMed Central

    Ye, Tian-shen; Du, Zhong-heng; Li, Zhi-hui; Xie, Wen-xia; Huang, Ka-te; Chen, Yong; Chen, Zhou-yang; Hu, Huan; Wang, Jun-lu; Fang, Jian-Qiao

    2016-01-01

    The aim of this paper was to investigate the effect of repeated electroacupuncture (EA) over 21 days on the adenosine concentration in peripheral blood of rats with collagen-induced arthritis (CIA). Wistar rats were divided into three groups of 6 animals each: sham-control, CIA-control, and CIA-EA. We determined the adenosine concentration in peripheral blood and assessed pathological changes of ankle joints. Quantitative reverse-transcription-polymerase chain reaction was used to determine mRNA levels of ecto-5′-nucleotidase (CD73), adenosine deaminase (ADA), and tumor necrosis factor-alpha (TNF-α). Immunohistochemical staining was used to detect expression of ADA and CD73 in synovial tissue. Repeated EA treatment on CIA resulted in the persistence of high concentrations of adenosine in peripheral blood, significantly reduced pathological scores, TNF-α mRNA concentrations, and synovial hyperplasia. Importantly, EA treatment led to a significant increase in CD73 mRNA levels in peripheral blood but was associated with a decrease of CD73 immunostaining in synovial tissue. In addition, EA treatment resulted in a significant decrease of both ADA mRNA levels in peripheral blood and ADA immunostaining in synovial tissue. Thus, repeated EA treatment exerts an anti-inflammatory and immunoregulatory effect on CIA by increasing the concentration of adenosine. The mechanism of EA action may involve the modulation of CD73 and ADA expression levels. PMID:26941824

  17. Endogenous adenosine release is involved in the control of heart rate in rats.

    PubMed

    Jammes, Yves; Joulia, Fabrice; Steinberg, Jean Guillaume; Ravailhe, Sylvie; Delpierre, Stéphane; Condo, Jocelyne; Guieu, Regis; Delliaux, Stéphane

    2015-08-01

    Intravenous (i.v.) injections of adenosine exert marked effects on heart rate (HR) and arterial blood pressure (BP), but the role of an endogenous adenosine release by vagal stimulation has not been evaluated. In anaesthetized rats, we examined HR and BP changes induced by 1 min electrical vagal stimulation in the control condition, and then after i.v. injections of (i) atropine, (ii) propranolol, (iii) caffeine, (iv) 8 cyclopentyl-1,3-dipropylxanthine (DPCPX), or (v) dipyridamole to increase the plasma concentration of adenosine (APC). APC was measured by chromatography in the arterial blood before and at the end of vagal stimulation. The decrease in HR in the controls during vagal stimulation was markedly attenuated, but persisted after i.v. injections of atropine and propranolol. When first administered, DPCPX modestly but significantly reduced the HR response to vagal stimulation, but this disappeared after i.v. caffeine administration. Both the HR and BP responses were significantly accentuated after i.v. injection of dipyridamole. Vagal stimulation induced a significant increase in APC, proportional to the magnitude of HR decrease. Our data suggest that the inhibitory effects of electrical vagal stimulations on HR and BP were partly mediated through the activation of A1 and A2 receptors by an endogenous adenosine release. Our experimental data could help to understand the effects of ischemic preconditioning, which are partially mediated by adenosine. PMID:26222197

  18. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose.

    PubMed

    Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle

    2016-01-01

    Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity. PMID:26755200

  19. Comparative Transcriptome Analysis of Bacillus subtilis Responding to Dissolved Oxygen in Adenosine Fermentation

    PubMed Central

    Yin, Chun-Yun; Zhou, Ying; Ye, Bang-Ce

    2011-01-01

    Dissolved oxygen (DO) is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616), we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min) and low oxygen supply (agitation 450 r/min). The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow), inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine) and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism. PMID:21625606

  20. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    NASA Astrophysics Data System (ADS)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  1. Side effects during adenosine thallium imaging with single-port or double-port infusion protocols.

    PubMed

    Cave, V; Heo, J; Cassel, D; Iskandrian, B; Iskandrian, A S

    1992-09-01

    The double-port infusion protocol during adenosine thallium imaging involves the use of two infusion systems, one for adenosine and one for thallium. The single-port infusion protocol, on the other hand, uses one infusion system; both adenosine and thallium are injected via a "Y" connection. This study examined the possibility that the single infusion system, by displacing a column of blood filled with adenosine, may be responsible for a greater incidence of side effects. In a parallel study, 140 patients underwent adenosine thallium imaging with the single-port system (group 1) and 140 patients underwent imaging with the double-port system (group 2). Both groups were comparable in age (67 +/- 10 years vs 64 +/- 11 years), gender (men comprised 56% of patients in group 1 and 64% in group 2), resting heart rate, and systolic blood pressure. More patients in group 1 had chest pains (57% vs 44%; p = 0.03), ST-segment depression (25% vs 9%; p = 0.005), nausea (11% vs 4%; p = 0.04), and second- or third-degree atrioventricular block (11% vs 5%; p less than 0.08) than did patients in group 2. The other side effects were similar, and peak heart rate and peak systolic blood pressure were also similar. The thallium images that used single-photon emission computed tomography were abnormal in 61% of patients in group 1 and in 65% of patients in group 2 (p = not significant).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1514487

  2. Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice

    PubMed Central

    Pani, Amar K.; Jiao, Yun; Sample, Kenneth J.; Smeyne, Richard J.

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  3. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    PubMed

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower (t (1/2) 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A(1) receptor-mediated inhibition of evoked [(3)H]ACh release by adenosine (100 μM), NECA (1 μM), and R-PIA (0.3 μM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients. PMID:26521170

  4. An ultraviolet-inducible adenosine-adenosine cross-link reflects the catalytic structure of the Tetrahymena ribozyme

    SciTech Connect

    Downs, W.D.; Cech, T.R. )

    1990-06-12

    When a shortened enzymatic version of the Tetrahymena self-splicing intervening sequence (IVS) RNA is placed under catalytic conditions and irradiated at 254 nm, a covalent cross-link forms with high efficiency. The position of the cross-link was mapped by using three independent methods: RNase H digestion, primer extension with reverse transcriptase, and partial hydrolysis of end-labeled RNA. The cross-link is chemically unusual in that it joins two adenosines, A57 and A95. Formation of this cross-link depends upon the identity and concentration of divalent cations present and upon heat-cool renaturation of the IVS in a manner that parallels conditions required for optimal catalytic activity. Furthermore, cross-linking requires the presence of sequences within the core structure, which is conserved among group I intervening sequences and necessary for catalytic activity. Together these correlations suggest that a common folded structure permits cross-linking and catalytic activity. The core can form this structure independent of the presence of P1 and elements at the 3' end of the IVS. The cross-linked RNA loses catalytic activity under destabilizing conditions, presumably due to disruption of the folded structure by the cross-link. One of the nucleotides participating in this cross-link is highly conserved (86%) within the secondary structure of group I intervening sequences. We conclude that A57 and A95 are precisely aligned in a catalytically active conformation of the RNA. A model is presented for the tertiary arrangement in the vicinity of the cross-link.

  5. Paradoxical expression of adenosine deaminase in T cells cultured from a patient with adenosine deaminase deficiency and combine immunodeficiency.

    PubMed Central

    Arredondo-Vega, F X; Kurtzberg, J; Chaffee, S; Santisteban, I; Reisner, E; Povey, M S; Hershfield, M S

    1990-01-01

    T lymphocytes cultured from a patient (T.D.) with adenosine deaminase (ADA) deficiency expressed ADA activity in the normal range, inconsistent with her severe immunodeficiency, metabolic abnormalities, and with the absence of ADA activity in her B lymphocytes and other nucleated hematopoietic cells. ADA from T.D. T cells had normal Km, heat stability, and sensitivity to ADA inhibitors. Examination of HLA phenotype and polymorphic DNA loci indicated that T.D. was neither chimeric nor a genetic mosaic. Amplified and subcloned ADA cDNA from ADA+ T.D. T cells was shown by allele-specific oligonucleotide hybridization to possess the same mutations (Arg101----Trp, Arg211----His) previously found in the ADA-T.D. B cell line GM 2606 (Akeson, A. L., D. A. Wiginton, M. R. Dusing, J. C. States, and J. J. Hutton. 1988. J. Biol. Chem. 263:16291-16296). Our findings suggest that one of these mutant alleles can be expressed selectively in IL-2-dependent T cells as stable, active enzyme. Cultured T cells from other patients with the Arg211----His mutation did not express significant ADA activity, while some B cell lines from a patient with an Arg101----Gln mutation have been found to express normal ADA activity. We speculate that Arg101 may be at a site that determines degradation of ADA by a protease that is under negative control by IL-2 in T cells, and is variably expressed in B cells. Il-2 might increase ADA expression in T cells of patients who possess mutations of Arg101. Images PMID:1974554

  6. The Metal Ion-Dependent Adhesion Site Motif of the Enterococcus faecalis EbpA Pilin Mediates Pilus Function in Catheter-Associated Urinary Tract Infection

    PubMed Central

    Nielsen, Hailyn V.; Guiton, Pascale S.; Kline, Kimberly A.; Port, Gary C.; Pinkner, Jerome S.; Neiers, Fabrice; Normark, Staffan; Henriques-Normark, Birgitta; Caparon, Michael G.; Hultgren, Scott J.

    2012-01-01

    ABSTRACT Though the bacterial opportunist Enterococcus faecalis causes a myriad of hospital-acquired infections (HAIs), including catheter-associated urinary tract infections (CAUTIs), little is known about the virulence mechanisms that it employs. However, the endocarditis- and biofilm-associated pilus (Ebp), a member of the sortase-assembled pilus family, was shown to play a role in a mouse model of E. faecalis ascending UTI. The Ebp pilus comprises the major EbpC shaft subunit and the EbpA and EbpB minor subunits. We investigated the biogenesis and function of Ebp pili in an experimental model of CAUTI using a panel of chromosomal pilin deletion mutants. A nonpiliated pilus knockout mutant (EbpABC− strain) was severely attenuated compared to its isogenic parent OG1RF in experimental CAUTI. In contrast, a nonpiliated ebpC deletion mutant (EbpC− strain) behaved similarly to OG1RF in vivo because it expressed EbpA and EbpB. Deletion of the minor pilin gene ebpA or ebpB perturbed pilus biogenesis and led to defects in experimental CAUTI. We discovered that the function of Ebp pili in vivo depended on a predicted metal ion-dependent adhesion site (MIDAS) motif in EbpA’s von Willebrand factor A domain, a common protein domain among the tip subunits of sortase-assembled pili. Thus, this study identified the Ebp pilus as a virulence factor in E. faecalis CAUTI and also defined the molecular basis of this function, critical knowledge for the rational development of targeted therapeutics. PMID:22829678

  7. Role of adenosine in the antiepileptic effects of deep brain stimulation.

    PubMed

    Miranda, Maisa F; Hamani, Clement; de Almeida, Antônio-Carlos G; Amorim, Beatriz O; Macedo, Carlos E; Fernandes, Maria José S; Nobrega, José N; Aarão, Mayra C; Madureira, Ana Paula; Rodrigues, Antônio M; Andersen, Monica L; Tufik, Sergio; Mello, Luiz E; Covolan, Luciene

    2014-01-01

    Despite the effectiveness of anterior thalamic nucleus (AN) deep brain stimulation (DBS) for the treatment of epilepsy, mechanisms responsible for the antiepileptic effects of this therapy remain elusive. As adenosine modulates neuronal excitability and seizure activity in animal models, we hypothesized that this nucleoside could be one of the substrates involved in the effects of AN DBS. We applied 5 days of stimulation to rats rendered chronically epileptic by pilocarpine injections and recorded epileptiform activity in hippocampal slices. We found that slices from animals given DBS had reduced hippocampal excitability and were less susceptible to develop ictal activity. In live animals, AN DBS significantly increased adenosine levels in the hippocampus as measured by microdialysis. The reduced excitability of DBS in vitro was completely abolished in animals pre-treated with A1 receptor antagonists and was strongly potentiated by A1 receptor agonists. We conclude that some of the antiepileptic effects of DBS may be mediated by adenosine. PMID:25324724

  8. Role of adenosine in the antiepileptic effects of deep brain stimulation

    PubMed Central

    Miranda, Maisa F.; Hamani, Clement; de Almeida, Antônio-Carlos G.; Amorim, Beatriz O.; Macedo, Carlos E.; Fernandes, Maria José S.; Nobrega, José N.; Aarão, Mayra C.; Madureira, Ana Paula; Rodrigues, Antônio M.; Andersen, Monica L.; Tufik, Sergio; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Despite the effectiveness of anterior thalamic nucleus (AN) deep brain stimulation (DBS) for the treatment of epilepsy, mechanisms responsible for the antiepileptic effects of this therapy remain elusive. As adenosine modulates neuronal excitability and seizure activity in animal models, we hypothesized that this nucleoside could be one of the substrates involved in the effects of AN DBS. We applied 5 days of stimulation to rats rendered chronically epileptic by pilocarpine injections and recorded epileptiform activity in hippocampal slices. We found that slices from animals given DBS had reduced hippocampal excitability and were less susceptible to develop ictal activity. In live animals, AN DBS significantly increased adenosine levels in the hippocampus as measured by microdialysis. The reduced excitability of DBS in vitro was completely abolished in animals pre-treated with A1 receptor antagonists and was strongly potentiated by A1 receptor agonists. We conclude that some of the antiepileptic effects of DBS may be mediated by adenosine. PMID:25324724

  9. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    SciTech Connect

    Florio, C.; Rosati, A.M.; Traversa, U.; Vertua, R. )

    1991-01-01

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-({sup 3}H)adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system.

  10. Respiratory capacity, cyclic adenosine 3',5'-monophosphate, and morphogenesis of Mucor racemosus.

    PubMed Central

    Paznokas, J L; Sypherd, P S

    1975-01-01

    A variety of cultural conditions were examined to determine the relationship between respiratory capacity and the growth of Mucor racemosus in the yeast and mycelial form. The results show that both yeasts and hyphae can develop when the respiratory capacity is low (e.g., in N2). In addition, the yeast form of the fungus could be grown in air in the presence of cyclic adenosine 5'-monophosphate with high respiratory rates characteristic of air-grown mycelia. These results indicate that their is not an obligatory relationship between respiratory capacity and morphogenesis in M. racemosus. Low intracellular levels of cyclic adenosine 5'-monophosphate, however, were correlated with aerobic mycelial development, whereas yeast development under CO2 was characterized by higher cyclic adenosine 5'-monophosphate levels. PMID:170243

  11. Calcium mobilization in Jurkat cells via A2b adenosine receptors

    PubMed Central

    Mirabet, Maribel; Mallol, Josefa; Lluis, Carmen; Franco, Rafael

    1997-01-01

    A functional study of cell surface A2b adenosine receptors was performed on the T cell leukaemia line, Jurkat. A2b receptors were coupled both to the adenylate cyclase system and to intracellular calcium channels. In fact, the agonist of A2b receptors, 5′-N-ethylcarboxamidoadenosine (NECA), led to a transient accumulation of intracellular calcium by an inositol phosphate-independent mechanism. The NECA-induced accumulation of cGMP was not responsible for the calcium mobilization via A2b receptors. The calcium response elicited by activation of A2b receptors was independent of that evoked by activation of the T cell receptor. These findings not only delineate a novel transduction mechanism for adenosine but also support a specific role for adenosine in modulating signals elicited via the T cell receptor. PMID:9401772

  12. Autoradiographic localization of adenosine uptake sites in rat brain using (/sup 3/H)nitrobenzylthioinosine

    SciTech Connect

    Bisserbe, J.C.; Patel, J.; Marangos, P.J.

    1985-02-01

    The adenosine uptake site has been localized in rat brain by an in vitro light microscopic autoradiographic method, using (/sup 3/H)nitrobenzylthioinosine ((/sup 3/H)NBI) as the probe. The binding characteristics of (/sup 3/H)NBI on slide-mounted sections are comparable to those seen in studies performed on brain homogenates. A very high density of uptake sites occurs in the nucleus tractus solitarius, in the superficial layer of the superior colliculus, in several thalamic nuclei, and also in geniculate body nuclei. A high density of sites are also observed in the nucleus accumbens, the caudate putamen, the dorsal tegmentum area, the substantia nigra, and the central gray. The localization of the adenosine uptake site in brain may provide information on the functional activity of the site and suggests the involvement of the adenosine system in the central regulation of cardiovascular function.

  13. Autoradiographic localization of adenosine receptors in rat brain using (/sup 3/H)cyclohexyladenosine

    SciTech Connect

    Goodman, R.R.; Synder, S.H.

    1982-09-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of (/sup 3/H)N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.

  14. CD73-adenosine: a next-generation target in immuno-oncology.

    PubMed

    Allard, David; Allard, Bertrand; Gaudreau, Pierre-Olivier; Chrobak, Pavel; Stagg, John

    2016-02-01

    Cancer immunotherapy has entered in a new era with the development of first-generation immune checkpoint inhibitors targeting the PD1/PD-L1 and CTLA-4 pathways. In this context, considerable research effort is being deployed to find the next generation of cancer immunotherapeutics. The CD73-adenosine axis constitutes one of the most promising pathways in immuno-oncology. We and others have demonstrated the immunosuppressive role of CD73-adenosine in cancer and established proof-of-concept that the targeted blockade of CD73 or adenosine receptors could effectively promote anti-tumor immunity and enhance the activity of first-generation immune checkpoint blockers. With Phase I clinical trials now underway evaluating anti-CD73 or anti-A2A therapies in cancer patients, we here discuss the fundamental, preclinical and clinical findings related to the role of the CD73-adenosinergic pathway in tumor immunity. PMID:26808918

  15. Synthesis and pharmacological evaluation of dual acting antioxidant A(2A) adenosine receptor agonists.

    PubMed

    Hausler, Nicholas E; Devine, Shane M; McRobb, Fiona M; Warfe, Lyndon; Pouton, Colin W; Haynes, John M; Bottle, Steven E; White, Paul J; Scammells, Peter J

    2012-04-12

    A series of adenosine-5'-N-alkylcarboxamides and N(6)-(2,2-diphenylethyl)adenosine-5'-N-alkylcarboxamides bearing antioxidant moieties in the 2-position were synthesized from the versatile intermediate, O(6)-(benzotriazol-1-yl)-2-fluoro-2',3'-O-isopropylideneinosine-5'-N-alkylcarboxamide (1). These compounds were evaluated as A(2A) adenosine receptor (A(2A)R) agonists in a cAMP accumulation assay, and a number of potent and selective agonists were identified. Three of these compounds were evaluated further in an ischemic injury cell survival assay and a reactive oxygen species (ROS) production assay whereby 15b and 15c were shown to reduce ROS activity and cell death due to ischemia. PMID:22432713

  16. Computational study of the molecular mechanisms of caffeine action: Caffeine complexes with adenosine receptors

    NASA Astrophysics Data System (ADS)

    Poltev, V. I.; Rodríguez, E.; Grokhlina, T. I.; Deriabina, A.; Gonzalez, E.

    To understand the molecular basis of the principal biological action of the caffeine (CAF), the molecular mechanics calculations of possible complexes between CAF and the fragments of human A1 adenosine receptor were performed. The fragments were selected after considerations of the CAF molecular structure and its possible interactions, as well as after an analysis of the extensive bibliography on the structure, biological role, site-directed mutagenesis, and the modeling of the adenosine receptors. The minimum energy configurations of these complexes were obtained using two different computer programs with different force fields. The most favorable configurations correspond to the formation of two hydrogen bonds between the CAF molecule and hydrophilic amino acid residues of the fragments of transmembrane domains of the receptor. These configurations are supposed to contribute to CAF blocking of the adenosine receptors. They will be used later for the construction of model CAF complexes with two transmembrane domains simultaneously.

  17. The Three Possible 2-(Pyrenylethynyl) Adenosines: Rotameric Energy Barriers Govern the Photodynamics of These Structural Isomers.

    PubMed

    Reuss, Andreas J; Grünewald, Christian; Braun, Markus; Engels, Joachim W; Wachtveitl, Josef

    2016-05-01

    This article presents a comprehensive study of the photophysics of 2-(2-pyrenylethynyl) adenosine and 2-(4-pyrenylethynyl) adenosine, which are structural isomers of the well-established fluorescent RNA label 2-(1-pyrenylethynyl) adenosine. We performed steady-state and ultrafast transient absorption spectroscopy studies along with time-resolved fluorescence emission experiments in different solvents to work out the interplay of locally excited and charge-transfer states. We found the ultrafast photodynamics to be crucial for the fluorescence decay behavior, which extends up to tens of nanoseconds and is partially multi-exponential. These features in the ultrafast dynamics are indicative of the rotational energy barriers in the first excited state. PMID:26635201

  18. Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine

    PubMed Central

    Malave, Lauren B.

    2014-01-01

    Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo, in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction. PMID:25054079

  19. Lack of effect of adenosine on the function of rodent osteoblasts and osteoclasts in vitro.

    PubMed

    Hajjawi, Mark O R; Patel, Jessal J; Corcelli, Michelangelo; Arnett, Timothy R; Orriss, Isabel R

    2016-06-01

    Extracellular ATP, signalling through P2 receptors, exerts well-documented effects on bone cells, inhibiting mineral deposition by osteoblasts and stimulating the formation and resorptive activity of osteoclasts. The aims of this study were to determine the potential osteotropic effects of adenosine, the hydrolysis product of ATP, on primary bone cells in vitro. We determined the effect of exogenous adenosine on (1) the growth, alkaline phosphatase (TNAP) activity and bone-forming ability of osteoblasts derived from the calvariae of neonatal rats and mice and the marrow of juvenile rats and (2) the formation and resorptive activity of osteoclasts from juvenile mouse marrow. Reverse transcription polymerase chain reaction (RT-PCR) analysis showed marked differences in the expression of P1 receptors in osteoblasts from different sources. Whilst mRNA for the A1 and A2B receptors was expressed by all primary osteoblasts, A2A receptor expression was limited to rat bone marrow and mouse calvarial osteoblasts and the A3 receptor to rat bone marrow osteoblasts. We found that adenosine had no detectable effects on cell growth, TNAP activity or bone formation by rodent osteoblasts in vitro. The analogue 2-chloroadenosine, which is hydrolysed more slowly than adenosine, had no effects on rat or mouse calvarial osteoblasts but increased TNAP activity and bone formation by rat bone marrow osteoblasts by 30-50 % at a concentration of 1 μM. Osteoclasts were found to express the A2A, A2B and A3 receptors; however, neither adenosine (≤100 μM) nor 2-chloroadenosine (≤10 μM) had any effect on the formation or resorptive activity of mouse osteoclasts in vitro. These results suggest that adenosine, unlike ATP, is not a major signalling molecule in the bone. PMID:26861849

  20. Adenosine potentiates the therapeutic effects of neural stem cells expressing cytosine deaminase against metastatic brain tumors.

    PubMed

    Kang, Wonyoung; Seol, Ho Jun; Seong, Dong-Ho; Kim, Jandi; Kim, Yonghyun; Kim, Seung U; Nam, Do-Hyun; Joo, Kyeung Min

    2013-09-01

    Tumor-tropic properties of neural stem cells (NSCs) provide a novel approach with which to deliver targeting therapeutic genes to brain tumors. Previously, we developed a therapeutic strategy against metastatic brain tumors using a human NSC line (F3) expressing cytosine deaminase (F3.CD). F3.CD converts systemically administered 5-fluorocytosine (5-FC), a blood-brain barrier permeable nontoxic prodrug, into the anticancer agent 5-fluorouracil (5-FU). In this study, we potentiated a therapeutic strategy of treatment with nucleosides in order to chemically facilitate the endogenous conversion of 5-FU to its toxic metabolite 5-FU ribonucleoside (5-FUR). In vitro, 5-FUR showed superior cytotoxic activity against MDA-MB-435 cancer cells when compared to 5-FU. Although adenosine had little cytotoxic activity, the addition of adenosine significantly potentiated the in vitro cytotoxicity of 5-FU. When MDA-MB‑435 cells were co-cultured with F3.CD cells, F3.CD cells and 5-FC inhibited the growth of MDA-MB-435 cells more significantly in the presence of adenosine. Facilitated 5-FUR production by F3.CD was confirmed by an HPLC analysis of the conditioned media derived from F3.CD cells treated with 5-FC and adenosine. In vivo systemic adenosine treatment also significantly potentiated the therapeutic effects of F3.CD cells and 5-FC in an MDA-MB-435 metastatic brain tumor model. Simple adenosine addition improved the antitumor activity of the NSCs carrying the therapeutic gene. Our results demonstrated an increased therapeutic potential, and thereby, clinical applicability of NSC-based gene therapy. PMID:23828015

  1. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    SciTech Connect

    Johnston, M.E.; Geiger, J.D. )

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.

  2. Role of Adenosine and the Orexinergic Perifornical Hypothalamus in Sleep-Promoting Effects of Ethanol

    PubMed Central

    Sharma, Rishi; Sahota, Pradeep; Thakkar, Mahesh M.

    2014-01-01

    Study Objectives: Strong clinical and preclinical evidence suggests that acute ethanol promotes sleep. However, very little is known about how and where ethanol acts to promote sleep. We hypothesized that ethanol may induce sleep by increasing extracellular levels of adenosine and inhibiting orexin neurons in the perifornical hypothalamus. Design: Experiments 1 and 2: Within-Subject Design; Experiment 3: Between-Subject Design. Setting: N/A. Patients or Participants: N/A. Interventions: N/A. Measurements and Results: Using adult male Sprague-Dawley rats as our animal model, we performed three experiments to test our hypothesis. Our first experiment examined the effect of A1 receptor blockade in the orexinergic perifornical hypothalamus on sleep- promoting effects of ethanol. Bilateral microinjection of the selective A1 receptor antagonist 1,3-dipropyl-8-phenylxanthine (500 μM; 250 nL/side) into orexinergic perifornical hypothalamus significantly reduced nonrapid eye movement sleep with a concomitant increase in wakefulness, suggesting that blockade of adenosine A1 receptor attenuates ethanol-induced sleep promotion. Our second experiment examined adenosine release in the orexinergic perifornical hypothalamus during local ethanol infusion. Local infusion of pharmacologically relevant doses of ethanol significantly and dose-dependently increased adenosine release. Our final experiment used c-Fos immunohistochemistry to examine the effects of ethanol on the activation of orexin neurons. Acute ethanol exposure significantly reduced the number of orexin neurons containing c-Fos, suggesting an inhibition of orexin neurons after ethanol intake. Conclusions: Based on our results, we believe that ethanol promotes sleep by increasing adenosine in the orexinergic perifornical hypothalamus, resulting in A1 receptor-mediated inhibition of orexin neurons. Citation: Sharma R; Sahota P; Thakkar MM. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol. SLEEP 2014;37(3):525-533. PMID:24587575

  3. Role of extracellular cysteine residues in the adenosine A2A receptor.

    PubMed

    De Filippo, Elisabetta; Namasivayam, Vigneshwaran; Zappe, Lukas; El-Tayeb, Ali; Schiedel, Anke C; Müller, Christa E

    2016-06-01

    The G protein-coupled A2A adenosine receptor represents an important drug target. Crystal structures and modeling studies indicated that three disulfide bonds are formed between ECL1 and ECL2 (I, Cys71(2.69)-Cys159(45.43); II, Cys74(3.22)-Cys146(45.30), and III, Cys77(3.25)-Cys166(45.50)). However, the A2BAR subtype appears to require only disulfide bond III for proper function. In this study, each of the three disulfide bonds in the A2AAR was disrupted by mutation of one of the cysteine residues to serine. The mutant receptors were stably expressed in Chinese hamster ovary cells and analyzed in cyclic adenosine monophosphate (cAMP) accumulation and radioligand binding studies using structurally diverse agonists: adenosine, NECA, CGS21680, and PSB-15826. Results were rationalized by molecular modeling. The observed effects were dependent on the investigated agonist. Loss of disulfide bond I led to a widening of the orthosteric binding pocket resulting in a strong reduction in the potency of adenosine, but not of NECA or 2-substituted nucleosides. Disruption of disulfide bond II led to a significant reduction in the agonists' efficacy indicating its importance for receptor activation. Disulfide bond III disruption reduced potency and affinity of the small adenosine agonists and NECA, but not of the larger 2-substituted agonists. While all the three disulfide bonds were essential for high potency or efficacy of adenosine, structural modification of the nucleoside could rescue affinity or efficacy at the mutant receptors. At present, it cannot be excluded that formation of the extracellular disulfide bonds in the A2AAR is dynamic. This might add another level of G protein-coupled receptor (GPCR) modulation, in particular for the cysteine-rich A2A and A2BARs. PMID:26969588

  4. Alveolar Epithelial A2B Adenosine Receptors in Pulmonary Protection during Acute Lung Injury.

    PubMed

    Hoegl, Sandra; Brodsky, Kelley S; Blackburn, Michael R; Karmouty-Quintana, Harry; Zwissler, Bernhard; Eltzschig, Holger K

    2015-08-15

    Acute lung injury (ALI) is an acute inflammatory lung disease that causes morbidity and mortality in critically ill patients. However, there are many instances where ALI resolves spontaneously through endogenous pathways that help to control excessive lung inflammation. Previous studies have implicated the extracellular signaling molecule adenosine and signaling events through the A2B adenosine receptor in lung protection. In this context, we hypothesized that tissue-specific expression of the A2B adenosine receptor is responsible for the previously described attenuation of ALI. To address this hypothesis, we exposed mice with tissue-specific deletion of Adora2b to ALI, utilizing a two-hit model where intratracheal LPS treatment is followed by injurious mechanical ventilation. Interestingly, a head-to-head comparison of mice with deletion of Adora2b in the myeloid lineage (Adora2b(loxP/loxP) LysM Cre(+)), endothelial cells (Adora2b(loxP/loxP) VE-cadherin Cre(+)), or alveolar epithelial cells (Adora2b(loxP/loxP) SPC Cre(+)) revealed a selective increase in disease susceptibility in Adora2b(loxP/loxP) SPC Cre(+) mice. More detailed analysis of Adora2b(loxP/loxP) SPC Cre(+) mice confirmed elevated lung inflammation and attenuated alveolar fluid clearance. To directly deliver an A2B adenosine receptor-specific agonist to alveolar epithelial cells, we subsequently performed studies with inhaled BAY 60-6583. Indeed, aerosolized BAY 60-6583 treatment was associated with attenuated pulmonary edema, improved histologic lung injury, and dampened lung inflammation. Collectively, these findings suggest that alveolar epithelial A2B adenosine receptor signaling contributes to lung protection, and they implicate inhaled A2B adenosine receptor agonists in ALI treatment. PMID:26188061

  5. Effect of adenosine system in the action of oseltamivir on behavior in mice.

    PubMed

    Uchiyama, Hidemori; Hiromura, Makoto; Shiratani, Tomonori; Kuroki, Hiroaki; Honda, Sinichiro; Kosako, Kazuhiro; Soeda, Shinji; Inoue, Kazuhide; Toda, Akihisa

    2015-07-10

    Abnormal behaviors and death associated with the use of oseltamivir (Tamiflu(®)) have emerged as a major issue in influenza patients. We have previously reported that the mechanisms underlying the effects of caffeine, a non-selective adenosine A1/A2 receptor antagonist, combined with oseltamivir. Oseltamivir is rapidly hydrolyzed to its active form (oseltamivir carboxylate, OCB). In this study, we investigated the effects of an adenosine system and OCB on the action of oseltamivir on mice behavior. Oseltamivir for 1 day (150 mg/kg, intraperitoneally (i.p.)) alone did not affect ambulation at 2 h post-injection. However, caffeine (10 mg/kg, i.p.) in combination with oseltamivir for 1 day increased ambulation. Moreover, caffeine (30 mg/kg, i.p.) in combination with oseltamivir for 3 days increased ambulation, but caffeine (10 mg/kg, i.p.) in combination with oseltamivir for 3 days did not increase. These enhancements were inhibited by an adenosine A2 receptor agonist, CGS21680 (0.2 mg/kg, subcutaneously (s.c.)). Furthermore, an adenosine A2 receptor antagonist, SCH58261 (1 and 3 mg/kg, i.p.) in combination with oseltamivir for 1 day increased ambulation. Moreover, SCH58261 (3 mg/kg, i.p.) in combination with oseltamivir for 3 days increased ambulation, but SCH58261 (1 mg/kg, i.p.) in combination with oseltamivir for 3 days did not. Conversely, in phenobarbital (PB)-treated mice, caffeine (3 mg/kg, i.p.) in combination with oseltamivir for 1 day increased ambulation. Moreover, OCB for 1 day (0.3 μg/mouse intracerebroventricular (i.c.v.)) alone increased ambulation. These findings suggest that the actions of oseltamivir may involve the adenosine systems and its metabolism. Our findings suggest an interaction between the central blockade of adenosine A2 receptors by caffeine and OCB-induced behavioral changes. PMID:25980995

  6. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.

    PubMed

    Galvao, Joana; Elvas, Filipe; Martins, Tiago; Cordeiro, M Francesca; Ambrósio, António Francisco; Santiago, Ana Raquel

    2015-11-01

    Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases. PMID:26297614

  7. Serum Adenosine Deaminase as Inflammatory Marker in Rheumatoid Arthritis

    PubMed Central

    Vinapamula, Kiranmayi S.; Bhattaram, Siddartha Kumar; Bitla, Aparna R.; Manohar, Suchitra M.

    2015-01-01

    Background Rheumatoid arthritis (RA) is a prototypical inflammatory joint disease. The degree of inflammation is reflected in the extent of joint damage, which further has influence on the quality of life of patients with RA, including risk of atherosclerosis. Hence, besides clinical indices, estimation of degree of inflammation using biochemical markers helps in effecting optimum treatment strategies. C-reactive protein (CRP) is established as an inflammatory marker in patients with RA. Adenosine deaminase (ADA), an enzyme of purine metabolism is considered as a marker of cell mediated immunity and has also been suggested as a marker of inflammatory process in RA. The present study attempts to study the efficacy of serum ADA activity as an inflammatory marker in RA. Materials and Methods Forty six RA patients and forty six age and sex matched healthy controls were included in the study. ADA activity and high sensitivity C-reactive protein (hsCRP) levels in serum were measured in all the subjects. Statistical analyses were done using Medcalc statistical software version 12.2.2. Results ADA activity and hsCRP levels were increased in RA patients compared to controls (p<0.0001 and 0.0001 respectively). Significant positive correlation was obtained between hsCRP and ADA in patients (r=0.316, p=0.033). Receiver operating characteristic (ROC) curve analysis revealed statistically significant area under curve (AUC) for ADA that is comparable to that obtained for hsCRP (0.776, p<0.0001 for ADA, 0.726, p<0.0001 for hsCRP). Similar diagnostic utility was obtained with ROC generated cut-off value of 25.3 IU/L (82.6% sensitivity and 65.2% specificity) and with control mean value of 23.48 IU/L (86.96% sensitivity and 54.35% specificity) for ADA. Conclusion Findings of the present study indicate the importance of ADA as a marker of inflammation. Considering the higher sensitivity obtained, we propose control mean (23.48 IU/L) as a cut-off for serum ADA activity as an inflammatory marker. Owing to the simplicity and also the cost effectiveness of ADA assay, ADA may be recommended as a marker of inflammation in patients with RA. However, further larger and well controlled studies are needed to establish its role as inflammatory marker. PMID:26500897

  8. Molecular expression of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 human ovarian cancer cell lines

    PubMed Central

    Hajiahmadi, S.; Panjehpour, M.; Aghaei, M.; Mousavi, S.

    2015-01-01

    Adenosine receptors (A1, A2a, A2b and A3) have several physiological and pathological roles in cancer cell lines. The present study was carried out to evaluate the mRNA and protein expression profile and functional role of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 ovarian cancer cell lines. The levels of mRNA and protein expression of A1, A2a, A2b and A3 adenosine receptors in the ovarian cancer cell lines were measured by Real-time PCR and western blotting. The functional roles of adenosine receptors were investigated through measurement of cAMP levels after agonist treatment. The mRNA and protein of all adenosine receptors subtypes were expressed in the ovarian cancer cell lines. Our findings demonstrated that A2b and A3 had the most mRNA and protein expression. Moreover, cAMP assay confirmed the functional role of A2b and A3 adenosine receptors. This findings demonstrated that A2b and A3 subtypes are most important adenosine receptors in humn ovarian cancer cell lines. This information provide a strong possibility into the relationship of A2b and A3 adenosine receptor and ovarian cancer. PMID:26430456

  9. Molecular expression of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 human ovarian cancer cell lines.

    PubMed

    Hajiahmadi, S; Panjehpour, M; Aghaei, M; Mousavi, S

    2015-01-01

    Adenosine receptors (A1, A2a, A2b and A3) have several physiological and pathological roles in cancer cell lines. The present study was carried out to evaluate the mRNA and protein expression profile and functional role of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 ovarian cancer cell lines. The levels of mRNA and protein expression of A1, A2a, A2b and A3 adenosine receptors in the ovarian cancer cell lines were measured by Real-time PCR and western blotting. The functional roles of adenosine receptors were investigated through measurement of cAMP levels after agonist treatment. The mRNA and protein of all adenosine receptors subtypes were expressed in the ovarian cancer cell lines. Our findings demonstrated that A2b and A3 had the most mRNA and protein expression. Moreover, cAMP assay confirmed the functional role of A2b and A3 adenosine receptors. This findings demonstrated that A2b and A3 subtypes are most important adenosine receptors in humn ovarian cancer cell lines. This information provide a strong possibility into the relationship of A2b and A3 adenosine receptor and ovarian cancer. PMID:26430456

  10. 75 FR 8981 - Prospective Grant of Exclusive License: Treatment of Glaucoma by Administration of Adenosine A3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... Glaucoma by Administration of Adenosine A3 Antagonists AGENCY: National Institutes of Health, Public Health... the field of use may be limited to the use of adenosine A3 antagonists for treatment of glaucoma and... reduction in intraocular pressure, which is a means of treating glaucoma. The invention relates to...

  11. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    PubMed

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism. PMID:25910812

  12. Regulation of photoreceptor gap junction phosphorylation by adenosine in zebrafish retina.

    PubMed

    Li, Hongyan; Chuang, Alice Z; O'Brien, John

    2014-05-01

    Electrical coupling of photoreceptors through gap junctions suppresses voltage noise, routes rod signals into cone pathways, expands the dynamic range of rod photoreceptors in high scotopic and mesopic illumination, and improves detection of contrast and small stimuli. In essentially all vertebrates, connexin 35/36 (gene homologs Cx36 in mammals, Cx35 in other vertebrates) is the major gap junction protein observed in photoreceptors, mediating rod-cone, cone-cone, and possibly rod-rod communication. Photoreceptor coupling is dynamically controlled by the day/night cycle and light/dark adaptation, and is directly correlated with phosphorylation of Cx35/36 at two sites, serine110 and serine 276/293 (homologous sites in teleost fish and mammals, respectively). Activity of protein kinase A (PKA) plays a key role during this process. Previous studies have shown that activation of dopamine D4 receptors on photoreceptors inhibits adenylyl cyclase, down-regulates cAMP and PKA activity, and leads to photoreceptor uncoupling, imposing the daytime/light condition. In this study, we explored the role of adenosine, a nighttime signal with a high extracellular concentration at night and a low concentration in the day, in regulating photoreceptor coupling by examining photoreceptor Cx35 phosphorylation in zebrafish retina. Adenosine enhanced photoreceptor Cx35 phosphorylation in daytime, but with a complex dose-response curve. Selective pharmacological manipulations revealed that adenosine A2a receptors provide a potent positive drive to phosphorylate photoreceptor Cx35 under the influence of endogenous adenosine at night. A2a receptors can be activated in the daytime as well by micromolar exogenous adenosine. However, the higher affinity adenosine A1 receptors are also present and have an antagonistic though less potent effect. Thus, the nighttime/darkness signal adenosine provides a net positive drive on Cx35 phosphorylation at night, working in opposition to dopamine to regulate photoreceptor coupling via a push-pull mechanism. However, the lower concentration of adenosine present in the daytime actually reinforces the dopamine signal through action on the A1 receptor. PMID:24844306

  13. Adenosine-mediated effects of ticagrelor: evidence and potential clinical relevance.

    PubMed

    Cattaneo, Marco; Schulz, Rainer; Nylander, Sven

    2014-06-17

    This review constitutes a critical evaluation of recent publications that have described an additional mode of action of the P2Y12 receptor antagonist ticagrelor. The effect is mediated by inhibition of the adenosine transporter ENT1 (type 1 equilibrative nucleoside transporter), which provides protection for adenosine from intracellular metabolism, thus increasing its concentration and biological activity, particularly at sites of ischemia and tissue injury where it is formed. Understanding the mode of action of ticagrelor is of particular interest given that its clinical profile, both in terms of efficacy and adverse events, differs from that of thienopyridine P2Y12 antagonists. PMID:24768873

  14. Postirradiation administration of adenosine monophosphate combined with dipyridamole reduces early cellular damage in mice

    SciTech Connect

    Bohacek, J.; Hosek, B.; Pospisil, M. )

    1993-01-01

    The administration of dipyridamole and adenosine 5'-monophosphate (AMP) to mice 5 to 25 min after 1 Gy of total-body gamma irradiation was found to decrease cellular damage, as indicated by the thymidine level in plasma and the amount of saline soluble polynucleotides in the thymus. The drug combination used did not influence similar cytotoxic effects of hydrocortisone. Furthermore, it was shown that the addition of dipyridamole and AMP to in vitro irradiated suspensions of thymocytes enhanced the rejoining processes of DNA strand breaks. Receptor-mediated action of extracellular adenosine may be responsible for the therapeutic effects observed.

  15. Mechanism of adenosine-induced airways obstruction in allergic guinea pigs

    PubMed Central

    Keir, Sandra; Boswell-Smith, Victoria; Spina, Domenico; Page, Clive

    2006-01-01

    Inhaled adenosine induces airway obstruction in asthmatic but not healthy subjects, a phenomenon that is also observed in various animal species when they are immunised to a relevant antigen, but which does not occur in naïve animals. The purpose of this study was to investigate the mechanisms of airway responsiveness to adenosine receptor agonists in anaesthetised allergic guinea pigs. Inhaled adenosine 5′-monophosphate (AMP), the A1-selective adenosine receptor agonist N6-cyclopentyladenosine (CPA) and ovalbumin all caused airway obstruction in allergic guinea pigs, but not naïve animals, as assessed by changes in total lung resistance. In contrast, the A2a-selective (CGS 21680; 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxoamido adenosine) and A3-selective (IB-MECA; 1-deoxy-1-[6-[[3-iodophenyl)-methyl]amino]-9H-purin-9-yl]-N-methyl-β-D-ribofuranuronamide) adenosine receptor agonists failed to elicit airway obstruction in passively sensitised guinea pigs. Airway obstruction induced by AMP or CPA was not inhibited by the H1 receptor antagonist, mepyramine (1 mg kg−1) in passively sensitised guinea-pigs. In contrast, airway obstruction to ovalbumin was significantly inhibited by this antagonist. Airway obstruction induced by AMP and CPA was significantly inhibited in sensitised animals chronically treated with capsaicin. In contrast, airway obstruction to ovalbumin was not inhibited by this treatment. Airway obstruction induced by AMP, CPA and ovalbumin was significantly inhibited following bilateral vagotomy or pharmacological treatment with atropine (2 mg kg−1). Airway obstruction to CPA was inhibited by the adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX: 0.1–1 mg kg−1). In contrast, airway obstruction to ovalbumin was not inhibited by this treatment. These observations provide evidence indicating that AMP and CPA may induce airway obstruction in sensitised guinea pigs by a mechanism unrelated to histamine release from mast cells, but is mediated via an adenosine A1-receptor-dependent mechanism. The inhibition of AMP- and CPA-induced airway obstruction by atropine, capsaicin and bilateral vagotomy suggests a neuronal-dependent mechanism with the particular involvement of capsaicin-sensitive nerves. PMID:16432507

  16. Impulse oscillometry identifies peripheral airway dysfunction in children with adenosine deaminase deficiency.

    PubMed

    Komarow, Hirsh D; Sokolic, Robert; Hershfield, Michael S; Kohn, Donald B; Young, Michael; Metcalfe, Dean D; Candotti, Fabio

    2015-01-01

    Adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is characterized by impaired T-, B- and NK-cell function. Affected children, in addition to early onset of infections, manifest non-immunologic symptoms including pulmonary dysfunction likely attributable to elevated systemic adenosine levels. Lung disease assessment has primarily employed repetitive radiography and effort-dependent functional studies. Through impulse oscillometry (IOS), which is effort-independent, we prospectively obtained objective measures of lung dysfunction in 10 children with ADA-SCID. These results support the use of IOS in the identification and monitoring of lung function abnormalities in children with primary immunodeficiencies. PMID:26682746

  17. Adenosine modification may be preferred for reducing siRNA immune stimulation.

    PubMed

    Fucini, Raymond V; Haringsma, Henry J; Deng, Patricia; Flanagan, W Michael; Willingham, Aarron T

    2012-06-01

    The immune stimulation induced by short interfering RNAs (siRNAs) has been reported to be quieted or abrogated by methoxy or fluoro modifications of the 2' position of the ribose sugar. However, variables such as the type of modification, nucleotide preference, and strand bias have not been systematically evaluated. Here, we report the results of a screen of several modified siRNAs via a human peripheral blood monocyte cytokine induction assay. Unlike corresponding modifications of guanosine, cytidine, or uridine, 2'-fluoro modification of adenosine significantly reduced cytokine induction while retaining siRNA knockdown activity. The results of this study suggest adenosine as an optimal target for modification. PMID:22519815

  18. Regulation of photoreceptor gap junction phosphorylation by adenosine in zebrafish retina

    PubMed Central

    Li, Hongyan; Chuang, Alice Z.; O’Brien, John

    2014-01-01

    Electrical coupling of photoreceptors through gap junctions suppresses voltage noise, routes rod signals into cone pathways, expands the dynamic range of rod photoreceptors in high scotopic and mesopic illumination, and improves detection of contrast and small stimuli. In essentially all vertebrates, connexin 35/36 (gene homologues Cx36 in mammals, Cx35 in other vertebrates) is the major gap junction protein observed in photoreceptors, mediating rod-cone, cone-cone, and possibly rod-rod communication. Photoreceptor coupling is dynamically controlled by the day/night cycle and light/dark adaptation, and is directly correlated with phosphorylation of Cx35/36 at two sites, serine110 and serine 276/293 (homologous sites in teleost fish and mammals respectively). Activity of protein kinase A (PKA) plays a key role during this process. Previous studies have shown that activation of dopamine D4 receptors on photoreceptors inhibits adenylyl cyclase, down-regulates cAMP and PKA activity, and leads to photoreceptor uncoupling, imposing the daytime/light condition. In this study we explored the role of adenosine, a nighttime signal with a high extracellular concentration at night and a low concentration in the day, in regulating photoreceptor coupling by examining photoreceptor Cx35 phosphorylation in zebrafish retina. Adenosine enhanced photoreceptor Cx35 phosphorylation in daytime, but with a complex dose-response curve. Selective pharmacological manipulations revealed that adenosine A2a receptors provide a potent positive drive to phosphorylate photoreceptor Cx35 under the influence of endogenous adenosine at night. A2a receptors can be activated in the daytime as well by micromolar exogenous adenosine. However, the higher affinity adenosine A1 receptors are also present and have an antagonistic though less potent effect. Thus the nighttime/darkness signal adenosine provides a net positive drive on Cx35 phosphorylation at night, working in opposition to dopamine to regulate photoreceptor coupling via a push-pull mechanism. However, the lower concentration of adenosine present in the daytime actually reinforces the dopamine signal through action on the A1 receptor. PMID:24844306

  19. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  20. Chaperoning of the A1-Adenosine Receptor by Endogenous Adenosine—An Extension of the Retaliatory Metabolite Concept*

    PubMed Central

    Kusek, Justyna; Yang, Qiong; Witek, Martin; Gruber, Christian W.; Nanoff, Christian; Freissmuth, Michael

    2015-01-01

    Cell-permeable orthosteric ligands can assist folding of G protein–coupled receptors in the endoplasmic reticulum (ER); this pharmacochaperoning translates into increased cell surface levels of receptors. Here we used a folding-defective mutant of human A1-adenosine receptor as a sensor to explore whether endogenously produced adenosine can exert a chaperoning effect. This A1-receptor-Y288 A was retained in the ER of stably transfected human embryonic kidney 293 cells but rapidly reached the plasma membrane in cells incubated with an A1 antagonist. This was phenocopied by raising intracellular adenosine levels with a combination of inhibitors of adenosine kinase, adenosine deaminase, and the equilibrative nucleoside transporter: mature receptors with complex glycosylation accumulated at the cell surface and bound to an A1-selective antagonist with an affinity indistinguishable from the wild-type A1 receptor. The effect of the inhibitor combination was specific, because it did not result in enhanced surface levels of two folding-defective human V2-vasopressin receptor mutants, which were susceptible to pharmacochaperoning by their cognate antagonist. Raising cellular adenosine levels by subjecting cells to hypoxia (5% O2) reproduced chaperoning by the inhibitor combination and enhanced surface expression of A1-receptor-Y288 A within 1 hour. These findings were recapitulated for the wild-type A1 receptor. Taken together, our observations document that endogenously formed adenosine can chaperone its cognate A1 receptor. This results in a positive feedback loop that has implications for the retaliatory metabolite concept of adenosine action: if chaperoning by intracellular adenosine results in elevated cell surface levels of A1 receptors, these cells will be more susceptible to extracellular adenosine and thus more likely to cope with metabolic distress. PMID:25354767

  1. Recent developments in A2B adenosine receptor ligands.

    PubMed

    Kalla, Rao V; Zablocki, Jeff; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni

    2009-01-01

    A selective, high-affinity A(2B) adenosine receptor (AR) antagonist will be useful as a pharmacological tool to help determine the role of the A(2B)AR in inflammatory diseases and angiogenic diseases. Based on early A(2B)AR-selective ligands with nonoptimal pharmaceutical properties, such as 15 (MRS 1754: K(i)(hA(2B)) = 2 nM; K(i)(hA(1)) = 403 nM; K(i)(hA(2A)) = 503 NM, and K(i)(hA(3)) = 570 nM), several groups have discovered second-generation A(2B)AR ligands that are suitable for development. Scientists at CV Therapeutics have discovered the selective, high-affinity A(2B)AR antagonist 22, a 8-(4-pyrazolyl)-xanthine derivative, (CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM). Compound 22 has demonstrated favorable pharmacokinetic (PK) properties (T(1/2) = 4 h and F > 35% rat), and it is a functional antagonist at the A(2B)AR(K (B) = 6 nM). In a mouse model of asthma, compound 22 demonstrated a dose-dependent efficacy supporting the role of the A(2B)AR in asthma. In two Phase I clinical trails, 22 (CVT-6883) was found to be safe, well tolerated, and suitable for once-daily dosing. Baraldi et al. have independently discovered a selective, high-affinity A(2B)AR antagonist, 30 (MRE2029F20), 8-(5-pyrazolyl)-xanthine (K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) = 200 nM; K(i)(hA(2A), A(3)) > 1,000, that has been selected for development in conjunction with King Pharmaceuticals. Compound 30 has been demonstrated to be a functional antagonist of the A(2B)AR, and it has been radiolabeled for use in pharmacological studies. A third compound, 58 (LAS-38096), is a 2-aminopyrimidine derivative (discovered by the Almirall group) that has high A(2B)AR affinity and selectivity (K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM), and 58 has been moved into preclinical safety testing. A fourth selective, high-affinity A(2B)AR antagonist, 54 (OSIP339391 K(i))(hA(2B)) = 0.5 nM; K(i))(hA(1)) = 37 nM; K(i))(hA(2A)) = 328; and K(i))(hA(3)) = 450 nm) was discovered by the OSI group. The three highly selective, high-affinity A(2B)AR antagonists that have been selected for development should prove useful in subsequent clinical trials that will establish the role of the A(2B)ARs in various disease states. PMID:19639280

  2. [Central-adenosine A1 receptor involved in the thermal regulation effect of YZG-330, a N6-substituted adenosine derivative, in mice].

    PubMed

    Jia, Shao-bo; Zhang, Ying; Shi, Jian-gong; Zhang, Jian-jun

    2015-06-01

    Adenosine receptors (AR) play an important role in the regulation processes for body temperature and vigilance states. During our previous studies, we noticed that aminophylline (a non-selective, blood-brain-barrier penetrably AR antagonist) could attenuate the effects of YZG-330 [(2R,3S,4R,5R)-2-(hydroxymethyl-5-(6-(((R)-1-phenylpropyl)amino)-9H-purin-9-yl)tetrahydrofuran-3, 4-diol] on lowering the body temperature. Hereby, we focused ourselves on the character of thermal regulation effect of YZG-330 in mice and tried to specify the receptor subtype via giving typical adenosine receptor antagonists. The results showed that both of the magnitude and lasting time of the effect that YZG-330 played on decreasing body temperature are in a dose-dependent manner: within the next 3 hour after intragastric administration (ig) of 0.25, 1 or 4 mg . kg-1 YZG-330, the extreme values on body temperature decreasing were (1.2 ± 0.3) °C, (3.6 ± 0.4) °C (P<0.001) and (7.4±0.5) °C (P<0.001), separately; whereas the duration that body temperature below 34 °C were 0, (10±5) and (153±4) min, separately. Adenosine A1 receptor (A1R) antagonist (DPCPX) could effectively reverse YZG-330's effect on decreasing body temperature, with intraperitoneal administration of DPCPX (5 mg . kg-1) 20 min prior than YZG-330 (4 mg.kg-1, ig), the extreme value on body temperature decreasing was (3.5 ± 0.7) °C (P<0.001), the duration that body temperature below 34 °C was (8±6) min (P<0.001). However, adenosine A2a receptor antagonist, SCH-58261, did not show any influence on the effects of YZG-330 at all. Combined with the fact that 8-SPT (a non-selective, blood-brain-barrier impenetrably AR antagonist) did not reverse the effect of YZG-330, we come to the conclusion that central-adenosine A, receptor plays a significant role on the thermal regulation effect of YZG-330. PMID:26521438

  3. Modulation by adenosine of Adelta and C primary-afferent glutamatergic transmission in adult rat substantia gelatinosa neurons.

    PubMed

    Lao, L-J; Kawasaki, Y; Yang, K; Fujita, T; Kumamoto, E

    2004-01-01

    The present study examined the actions of adenosine on monosynaptic Adelta and C primary-afferent excitatory postsynaptic currents (EPSCs) recorded from substantia gelatinosa (SG) neurons of an adult rat spinal cord slice. In 67% of the neurons examined, adenosine reversibly decreased the amplitude of the Adelta-fiber EPSC, while in 13% of the neurons the amplitude was reduced or unaffected, which was followed by its increase persisting for several minutes after adenosine washout. The remaining neurons did not exhibit a change in the amplitude. The reduction in Adelta-fiber EPSC amplitude by adenosine was dose-dependent with an effective concentration for half-inhibition (EC50) value of 217 microM. When examined by using a paired-pulse stimulus, a ratio of the second to first Adelta-fiber EPSC amplitude under the reduction was larger than that of EPSC amplitude in the control, suggesting a presynaptic action of adenosine. In 69% of the neurons tested, the C-fiber EPSC was reversibly decreased in amplitude by adenosine (100 microM) by an extent comparable to that of Adelta-fiber EPSC; the remaining neurons were without adenosine actions. Similar inhibitory actions of adenosine were also seen in neurons where both Adelta-fiber and C-fiber EPSCs were elicited. Similar reduction in the Adelta-fiber or C-fiber EPSC amplitude was induced by an A1 adenosine-receptor agonist, N6-cyclopentyladenosine (1 microM), and the adenosine-induced reduction was not observed in the presence of an A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (1 microM). An A2a agonist, CGS 21680 (1 microM), did not significantly affect the Adelta-fiber EPSC amplitude. It is concluded that adenosine presynaptically inhibits monosynaptic Adelta-fiber and C-fiber transmission by a similar extent through the activation of the A1 receptor in many but not all SG neurons; this could contribute to at least a part of antinociception by intrathecally administered adenosine analogues and probably by endogenous adenosine. PMID:15051161

  4. Phenylephrine stimulated breakdown of phosphoinositides in brown adipocytes is attenuated by adenosine

    SciTech Connect

    Schimmel, R.J.

    1986-03-01

    Selective activation of alpha adrenergic receptors on brown adipocytes brings about increased mitochondrial respiration. This response is associated with a rapid breakdown of phosphoinositides in the plasma membrane. The authors have shown that respiration increased by alpha receptor activation can be inhibited by adenosine but the mechanisms underlying this effect are unknown. The present study probes the possibility that adenosine inhibition of alpha receptor stimulated respiration is secondary to an inhibition of stimulated breakdown of inositol phospholipids. Phospholipids were labeled with (/sup 32/P) by incubation with (/sup 32/P)-Pi for up to four hours. Phenylephrine and other ligands were then added and the radioactivity present in individual lipids determined following their resolution by thin layer chromatography. Addition of 2-chloroadenosine or phenylisopropyl adenosine, but not 2',5'-dideoxyadenosine, inhibited phenylephrine promoted breakdown of phosphoinositides. The dose response relation for this effect was similar to that for attenuation of stimulated respiration. This finding demonstrates adenosine inhibition of a phospholipase in brown fat cells and suggests the possibility that breakdown of inositol phospholipids is a critical control site for stimulation and attenuation of respiration.

  5. Cardiac myocyte–secreted cAMP exerts paracrine action via adenosine receptor activation

    PubMed Central

    Sassi, Yassine; Ahles, Andrea; Truong, Dong-Jiunn Jeffery; Baqi, Younis; Lee, Sang-Yong; Husse, Britta; Hulot, Jean-Sébastien; Foinquinos, Ariana; Thum, Thomas; Müller, Christa E.; Dendorfer, Andreas; Laggerbauer, Bernhard; Engelhardt, Stefan

    2014-01-01

    Acute stimulation of cardiac β-adrenoceptors is crucial to increasing cardiac function under stress; however, sustained β-adrenergic stimulation has been implicated in pathological myocardial remodeling and heart failure. Here, we have demonstrated that export of cAMP from cardiac myocytes is an intrinsic cardioprotective mechanism in response to cardiac stress. We report that infusion of cAMP into mice averted myocardial hypertrophy and fibrosis in a disease model of cardiac pressure overload. The protective effect of exogenous cAMP required adenosine receptor signaling. This observation led to the identification of a potent paracrine mechanism that is dependent on secreted cAMP. Specifically, FRET-based imaging of cAMP formation in primary cells and in myocardial tissue from murine hearts revealed that cardiomyocytes depend on the transporter ABCC4 to export cAMP as an extracellular signal. Extracellular cAMP, through its metabolite adenosine, reduced cardiomyocyte cAMP formation and hypertrophy by activating A1 adenosine receptors while delivering an antifibrotic signal to cardiac fibroblasts by A2 adenosine receptor activation. Together, our data reveal a paracrine role for secreted cAMP in intercellular signaling in the myocardium, and we postulate that secreted cAMP may also constitute an important signal in other tissues. PMID:25401477

  6. A Functionalized Congener Approach to Adenosine Receptor Antagonists: Amino Acid Conjugates of 1,3-Dipropylxanthine

    PubMed Central

    JACOBSON, KENNETH A.; KIRK, KENNETH L.; PADGETT, WILLIAM L.; DALY, JOHN W.

    2012-01-01

    SUMMARY 1,3-Dipropyl-8-phenylxanthine, a synthetic analog of theophylline and a potent antagonist of adenosine at A1 and A2-adenosine receptors, has been attached covalently through a functionalized chain to amino acids and oligopeptides. The xanthine conjugates have been studied as competitive inhibitors of the specific binding of [3H]N6-cyclohexyladenosine to A1-receptors of rat cerebral cortical membranes and for inhibition of cyclic AMP accumulation elicited by 2-chloroadenosine in guinea pig brain slices through A2-receptors. A free amino group on the extended chain generally resulted in high potency at A1-receptors. The potency (in some cases extending into the subnanomolar range) and selectivity for A1-receptors (up to 200-fold) suggest that this approach can yield a versatile class of “functionalized congeners” of adenosine receptor antagonists in which distal modifications of the attached moiety (“carrier”) can serve also to improve pharmacodynamic and pharmacokinetic parameters. The water solubility in many of the more potent analogs has been enhanced by two orders of magnitude over that of simple, uncharged 8-phenyl xanthine derivatives. Analogs in which the carrier contains d-tyrosine have potential for development of iodinated radioligands for adenosine receptors. The functionalized congener approach is potentially applicable to other drugs and for development of prodrugs. PMID:3005825

  7. Gestational diabetes reduces adenosine transport in human placental microvascular endothelium, an effect reversed by insulin.

    PubMed

    Salomón, Carlos; Westermeier, Francisco; Puebla, Carlos; Arroyo, Pablo; Guzmán-Gutiérrez, Enrique; Pardo, Fabián; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2012-01-01

    Gestational diabetes mellitus (GDM) courses with increased fetal plasma adenosine concentration and reduced adenosine transport in placental macrovascular endothelium. Since insulin modulates human equilibrative nucleoside transporters (hENTs) expression/activity, we hypothesize that GDM will alter hENT2-mediated transport in human placental microvascular endothelium (hPMEC), and that insulin will restore GDM to a normal phenotype involving insulin receptors A (IR-A) and B (IR-B). GDM effect on hENTs expression and transport activity, and IR-A/IR-B expression and associated cell signalling cascades (p42/44 mitogen-activated protein kinases (p42/44(mapk)) and Akt) role in hPMEC primary cultures was assayed. GDM associates with elevated umbilical whole and vein, but not arteries blood adenosine, and reduced hENTs adenosine transport and expression. IR-A/IR-B mRNA expression and p42/44(mapk)/Akt ratios ('metabolic phenotype') were lower in GDM. Insulin reversed GDM-reduced hENT2 expression/activity, IR-A/IR-B mRNA expression and p42/44(mapk)/Akt ratios to normal pregnancies ('mitogenic phenotype'). It is suggested that insulin effects required IR-A and IR-B expression leading to differential modulation of signalling pathways restoring GDM-metabolic to a normal-mitogenic like phenotype. Insulin could be acting as protecting factor for placental microvascular endothelial dysfunction in GDM. PMID:22808198

  8. Determination of Adenosine Triphosphate on Marine Particulates:Synthesis of Methods for Use on OTEC Samples

    SciTech Connect

    Jones, Anthony T.; Hartwig, Eric O.

    1982-08-01

    Adenosine triphosphate (ATP) is an indicator of living biomass in marine particulates. This report details the method used by Lawrence Berkeley Laboratory to analyze particulate ATP in samples taken from oligotrophic, tropical ocean waters. It represents a synthesis of previously published methods.

  9. Determination of adenosine triphosphate on marine particulates: synthesis of methods for use on OTEC samples

    SciTech Connect

    Jones, A.T.; Hartwig, E.O.

    1982-08-01

    Adenosine triphosphate (ATP) is an indicator of living biomass in marine particulates. This report details the method used by Lawrence Berkeley Laboratory to analyze particulate ATP in samples taken from oligotrophic, tropical ocean waters. It represents a synthesis of previously published methods.

  10. IFN-? Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response.

    PubMed

    Cohen, Heather B; Ward, Amanda; Hamidzadeh, Kajal; Ravid, Katya; Mosser, David M

    2015-10-15

    The priming of macrophages with IFN-? prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. In this study, we demonstrate that, following TLR stimulation, macrophages upregulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This upregulation of A2bR leads to the induction of macrophages with an immunoregulatory phenotype and the downregulation of inflammation. IFN-? priming of macrophages selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and to prevent this regulatory transition. IFN-?-mediated A2bR blockade leads to a prolonged production of TNF-? and IL-12 in response to TLR ligation. The pharmacologic inhibition or the genetic deletion of the A2bR results in a hyperinflammatory response to TLR ligation, similar to IFN-? treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-? effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-? contributes to host defense by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the antimicrobial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated. PMID:26355158

  11. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  12. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    SciTech Connect

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E.

    2012-10-08

    Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2{prime}-deoxy)nucleosides, generating the corresponding free base and (2{prime}-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2-1.4 {angstrom}). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  13. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    PubMed Central

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  14. An update on adenosine A2A receptors as drug target in Parkinson's disease.

    PubMed

    Vallano, Antoni; Fernandez-Duenas, Victor; Pedros, Consuelo; Arnau, Josep Maria; Ciruela, Francisco

    2011-09-01

    Adenosine receptors are G protein-coupled receptors (GPCRs) that mediate the physiological functions of adenosine. In the central nervous system adenosine A(2A) receptors (A(2A)Rs) are highly enriched in striatopallidal neurons where they form functional oligomeric complexes with other GPCRs such us the dopamine D(2) receptor (D(2)R). Furthermore, it is assumed that the formation of balanced A(2A)R/D(2)R receptor oligomers are essential for correct striatal function as the allosteric receptor-receptor interactions established within the oligomer are needed for properly sensing adenosine and dopamine. Interestingly, A(2A)R activation reduces the affinity of striatal D(2)R for dopamine and the blockade of A(2A)R with specific antagonists facilitates function of the D(2)R. Thus, it may be postulated that A(2A)R antagonists are pro-dopaminergic agents. Therefore, A(2A)R antagonists will potentially reduce the effects associated with dopamine depletion in Parkinson's disease (PD). Accordingly, this class of compounds have recently attracted considerable attention as potential therapeutic agents for PD pharmacotherapy as they have shown potential effectiveness in counteracting motor dysfunctions and also displayed neuroprotective and anti-inflammatory effects in animal models of PD. Overall, we provide here an update of the current state of the art of these A(2A)R-based approaches that are under clinical study as agents devoted to alleviate PD symptoms. PMID:21838670

  15. Blockade of striatal neurone responses to morphine by aminophylline: evidence for adenosine mediation of opiate action.

    PubMed Central

    Perkins, M. N.; Stone, T. W.

    1980-01-01

    1 The responses of cortical and striatal neurones to morphine and adenosine applied iontophoretically have been studied in the male rat. 2 The majority of cells (57%) within the corpus striatum were profoundly inhibited, and a smaller proportion (18%) excited by morphine. Adenosine depressed the firing rate of 30/44 cells in the striatum, excitation never being observed. In contrast, the responses of cortical cells to morphine were typically weak and required longer ejection pulses to effect comparable changes in firing rate. 3 Aminophylline applied iontophoretically, as an anion, proved able to antagonize reversibly both morphine and adenosine in parallel. 4 On a number of cells, gamma-aminobutyric acid (GABA) was used as a control depressant but aminophylline did not appear to reduce these responses. 5 The responses to morphine (both inhibitory and excitatory) were not easily antagonized by naloxone. Typically, excitatory reponses were easier to antagonize than the inhibitory ones. 6 It is concluded that a consequence of the interaction of morphine with its receptors may be the release of adenosine which subsequently produces the inhibition observed with morphine. PMID:7378652

  16. Increase in epithelial cyclic adenosine 3',5'-monophosphate following vanadate.

    PubMed Central

    Cuthbert, A. W.; Herrera, F. C.; Schuz, A. D.; Wilson, S. A.

    1980-01-01

    Vanadate increases the cyclic adenosine 3',5'-monophosphate (cyclic AMP) content of frog skin epithelium and apparently antagonizes the stimulation by isoprenaline. The effect appears to be a direct activation of adenyl cyclase. This new effect of vanadate together with the inhibitory effects on Na-K ATPase may explain the irregular effects on sodium transport. PMID:6247006

  17. Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states

    PubMed Central

    Little, Joshua W.; Ford, Amanda; Symons-Liguori, Ashley M.; Chen, Zhoumou; Janes, Kali; Doyle, Timothy; Xie, Jennifer; Luongo, Livio; Tosh, Dillip K.; Maione, Sabatino; Bannister, Kirsty; Dickenson, Anthony H.; Vanderah, Todd W.; Porreca, Frank; Jacobson, Kenneth A.

    2015-01-01

    Chronic pain is a global burden that promotes disability and unnecessary suffering. To date, efficacious treatment of chronic pain has not been achieved. Thus, new therapeutic targets are needed. Here, we demonstrate that increasing endogenous adenosine levels through selective adenosine kinase inhibition produces powerful analgesic effects in rodent models of experimental neuropathic pain through the A3 adenosine receptor (A3AR, now known as ADORA3) signalling pathway. Similar results were obtained by the administration of a novel and highly selective A3AR agonist. These effects were prevented by blockade of spinal and supraspinal A3AR, lost in A3AR knock-out mice, and independent of opioid and endocannabinoid mechanisms. A3AR activation also relieved non-evoked spontaneous pain behaviours without promoting analgesic tolerance or inherent reward. Further examination revealed that A3AR activation reduced spinal cord pain processing by decreasing the excitability of spinal wide dynamic range neurons and producing supraspinal inhibition of spinal nociception through activation of serotonergic and noradrenergic bulbospinal circuits. Critically, engaging the A3AR mechanism did not alter nociceptive thresholds in non-neuropathy animals and therefore produced selective alleviation of persistent neuropathic pain states. These studies reveal A3AR activation by adenosine as an endogenous anti-nociceptive pathway and support the development of A3AR agonists as novel therapeutics to treat chronic pain. PMID:25414036

  18. Unexpected Discovery of Dichloroacetate Derived Adenosine Triphosphate Competitors Targeting Pyruvate Dehydrogenase Kinase To Inhibit Cancer Proliferation.

    PubMed

    Zhang, Shao-Lin; Hu, Xiaohui; Zhang, Wen; Tam, Kin Yip

    2016-04-14

    Pyruvate dehydrogenase kinases (PDKs) have recently emerged as an attractive target for cancer therapy. Herein, we prepared a series of compounds derived from dichloroacetate (DCA) which inhibited cancer cells proliferation. For the first time, we have successfully developed DCA derived inhibitors that preferentially bind to the adenosine triphosphate (ATP) pocket of PDK isoform 1 (PDK1). PMID:27006991

  19. Altered Hypoxic-Adenosine Axis and Metabolism in Group III Pulmonary Hypertension.

    PubMed

    Garcia-Morales, Luis J; Chen, Ning-Yuan; Weng, Tingting; Luo, Fayong; Davies, Jonathan; Philip, Kemly; Volcik, Kelly A; Melicoff, Ernestina; Amione-Guerra, Javier; Bunge, Raquel R; Bruckner, Brian A; Loebe, Matthias; Eltzschig, Holger K; Pandit, Lavannya M; Blackburn, Michael R; Karmouty-Quintana, Harry

    2016-04-01

    Group III pulmonary hypertension (PH) is a highly prevalent and deadly lung disorder with limited treatment options other than transplantation. Group III PH affects patients with ongoing chronic lung injury, such as idiopathic pulmonary fibrosis (IPF). Between 30 and 40% of patients with IPF are diagnosed with PH. The diagnosis of PH has devastating consequences to these patients, leading to increased morbidity and mortality, yet the molecular mechanisms involved in the development of PH in patients with chronic lung disease remain elusive. Our hypothesis was that the hypoxic-adenosinergic system is enhanced in patients with group III PH compared with patients with IPF with no PH. Explanted lung tissue was analyzed for markers of the hypoxic-adenosine axis, including expression levels of hypoxia-inducible factor (HIF)-1A, adenosine A2B receptor, CD73, and equilibrative nucleotide transporter-1. In addition, we assessed whether altered mitochondrial metabolism was present in these samples. Increased expression of HIF-1A was observed in tissues from patients with group III PH. These changes were consistent with increased evidence of adenosine accumulation in group III PH. A novel observation of our study was of evidence suggesting altered mitochondrial metabolism in lung tissue from group III PH leading to increased succinate levels that are able to further stabilize HIF-1A. Our data demonstrate that the hypoxic-adenosine axis is up-regulated in group III PH and that subsequent succinate accumulation may play a part in the development of group III PH. PMID:26414702

  20. Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics.

    PubMed

    Janes, K; Symons-Liguori, A M; Jacobson, K A; Salvemini, D

    2016-04-01

    Chronic pain negatively impacts the quality of life in a variety of patient populations. The current therapeutic repertoire is inadequate in managing patient pain and warrants the development of new therapeutics. Adenosine and its four cognate receptors (A1 , A2A , A2B and A3 ) have important roles in physiological and pathophysiological states, including chronic pain. Preclinical and clinical studies have revealed that while adenosine and agonists of the A1 and A2A receptors have antinociceptive properties, their therapeutic utility is limited by adverse cardiovascular side effects. In contrast, our understanding of the A3 receptor is only in its infancy, but exciting preclinical observations of A3 receptor antinociception, which have been bolstered by clinical trials of A3 receptor agonists in other disease states, suggest pain relief without cardiovascular side effects and with sufficient tolerability. Our goal herein is to briefly discuss adenosine and its receptors in the context of pathological pain and to consider the current data regarding A3 receptor-mediated antinociception. We will highlight recent findings regarding the impact of the A3 receptor on pain pathways and examine the current state of selective A3 receptor agonists used for these studies. The adenosine-to-A3 receptor pathway represents an important endogenous system that can be targeted to provide safe, effective pain relief from chronic pain. PMID:26804983

  1. SELECTIVE IMMUNOTOXIC EFFECTS IN MICE TREATED WITH THE ADENOSINE DEAMINASE INHIBITOR 2-DEOXYCOFORMYCIN (JOURNAL VERSION)

    EPA Science Inventory

    Mice given the adenosine deaminase inhibitor 2-deoxycoformycin, for five days were evaluated 24 h, 72 h and 6 days after the final dose. Spleen weight was decreased for up to 6 days after treatment. The number and relative percentage of circulating lymphocytes were decreased 24 a...

  2. Stimulation of Glia Reveals Modulation of Mammalian Spinal Motor Networks by Adenosine.

    PubMed

    Acton, David; Miles, Gareth B

    2015-01-01

    Despite considerable evidence that glia can release modulators to influence the excitability of neighbouring neurons, the importance of gliotransmission for the operation of neural networks and in shaping behaviour remains controversial. Here we characterise the contribution of glia to the modulation of the mammalian spinal central pattern generator for locomotion, the output of which is directly relatable to a defined behaviour. Glia were stimulated by specific activation of protease-activated receptor-1 (PAR1), an endogenous G-protein coupled receptor preferentially expressed by spinal glia during ongoing activity of the spinal central pattern generator for locomotion. Selective activation of PAR1 by the agonist TFLLR resulted in a reversible reduction in the frequency of locomotor-related bursting recorded from ventral roots of spinal cord preparations isolated from neonatal mice. In the presence of the gliotoxins methionine sulfoximine or fluoroacetate, TFLLR had no effect, confirming the specificity of PAR1 activation to glia. The modulation of burst frequency upon PAR1 activation was blocked by the non-selective adenosine-receptor antagonist theophylline and by the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, but not by the A2A-receptor antagonist SCH5826, indicating production of extracellular adenosine upon glial stimulation, followed by A1-receptor mediated inhibition of neuronal activity. Modulation of network output following glial stimulation was also blocked by the ectonucleotidase inhibitor ARL67156, indicating glial release of ATP and its subsequent degradation to adenosine rather than direct release of adenosine. Glial stimulation had no effect on rhythmic activity recorded following blockade of inhibitory transmission, suggesting that glial cell-derived adenosine acts via inhibitory circuit components to modulate locomotor-related output. Finally, the modulation of network output by endogenous adenosine was found to scale with the frequency of network activity, implying activity-dependent release of adenosine. Together, these data indicate that glia play an active role in the modulation of mammalian locomotor networks, providing negative feedback control that may stabilise network activity. PMID:26252389

  3. Stimulation of Glia Reveals Modulation of Mammalian Spinal Motor Networks by Adenosine

    PubMed Central

    Acton, David; Miles, Gareth B.

    2015-01-01

    Despite considerable evidence that glia can release modulators to influence the excitability of neighbouring neurons, the importance of gliotransmission for the operation of neural networks and in shaping behaviour remains controversial. Here we characterise the contribution of glia to the modulation of the mammalian spinal central pattern generator for locomotion, the output of which is directly relatable to a defined behaviour. Glia were stimulated by specific activation of protease-activated receptor-1 (PAR1), an endogenous G-protein coupled receptor preferentially expressed by spinal glia during ongoing activity of the spinal central pattern generator for locomotion. Selective activation of PAR1 by the agonist TFLLR resulted in a reversible reduction in the frequency of locomotor-related bursting recorded from ventral roots of spinal cord preparations isolated from neonatal mice. In the presence of the gliotoxins methionine sulfoximine or fluoroacetate, TFLLR had no effect, confirming the specificity of PAR1 activation to glia. The modulation of burst frequency upon PAR1 activation was blocked by the non-selective adenosine-receptor antagonist theophylline and by the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, but not by the A2A-receptor antagonist SCH5826, indicating production of extracellular adenosine upon glial stimulation, followed by A1-receptor mediated inhibition of neuronal activity. Modulation of network output following glial stimulation was also blocked by the ectonucleotidase inhibitor ARL67156, indicating glial release of ATP and its subsequent degradation to adenosine rather than direct release of adenosine. Glial stimulation had no effect on rhythmic activity recorded following blockade of inhibitory transmission, suggesting that glial cell-derived adenosine acts via inhibitory circuit components to modulate locomotor-related output. Finally, the modulation of network output by endogenous adenosine was found to scale with the frequency of network activity, implying activity-dependent release of adenosine. Together, these data indicate that glia play an active role in the modulation of mammalian locomotor networks, providing negative feedback control that may stabilise network activity. PMID:26252389

  4. Effects of urea pretreatment on the binding properties of adenosine A1 receptors

    PubMed Central

    May, Lauren T; Sexton, Patrick M; Christopoulos, Arthur

    2005-01-01

    The effect of denaturation and/or extraction of nonintegral membrane proteins by 7 M urea on the binding of the antagonist [3H]cyclopentyl-1,3-dipropylxanthine 8 dipropyl-2,3 ([3H]DPCPX), and the agonists adenosine, (−)-N6-(2-phenylisopropyl)-adenosine (R-PIA) and N6-cyclohexyladenosine (CHA), was investigated at human A1 adenosine receptors stably expressed in CHO cells. Pretreatment with urea caused a 56% reduction in membrane proteins. Compared to controls, the use of adenosine deaminase (ADA), 100 μM 5′-guanylylimidodiphosphate (Gpp(NH)p) or urea each caused equivalent increases in specific [3H]DPCPX binding. Neither the binding kinetics nor the affinity of [3H]DPCPX were significantly different in urea-pretreated compared to ADA-pretreated membranes. At 25°C in ADA-pretreated membranes, the competition isotherms for R-PIA and CHA were characterized by two affinity states. Gpp(NH)p (100 μM) reduced, but did not abolish, the value of the high-affinity dissociation constant. Similar results were obtained after treatment with urea for R-PIA, whereas the high-affinity state for CHA was abolished. At 37°C, urea pretreatment, but not 100 μM Gpp(NH)p, abolished high-affinity agonist competition binding. There was no significant effect of any of the treatments on the low-affinity agonist binding state. In urea-pretreated membranes, exogenously added adenosine competed according to a simple mass-action model with a pKL of 5.66±0.05 (n=3). Compared to the more common approaches of ADA treatment and/or use of guanine nucleotides, our findings suggest that urea pretreatment represents an inexpensive and useful approach for investigating the binding properties of adenosine A1 ligands (including adenosine) to the G protein-uncoupled form of the receptor. PMID:16231004

  5. Role of nitric oxide in adenosine-induced vasodilation in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    1998-01-01

    Vasodilation is one of the most prominent effects of adenosine and one of the first to be recognized, but its mechanism of action is not completely understood. In particular, there is conflicting information about the potential contribution of endothelial factors. The purpose of this study was to explore the role of nitric oxide in the vasodilatory effect of adenosine. Forearm blood flow responses to intrabrachial adenosine infusion (125 microg/min) were assessed with venous occlusion plethysmography during intrabrachial infusion of saline or the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) (12.5 mg/min). Intrabrachial infusions of acetylcholine (50 microg/min) and nitroprusside (3 microg/min) were used as a positive and negative control, respectively. These doses were chosen to produce comparable levels of vasodilation. In a separate study, a second saline infusion was administered instead of L-NMMA to rule out time-related effects. As expected, pretreatment with L-NMMA reduced acetylcholine-induced vasodilation; 50 microg/min acetylcholine increased forearm blood flow by 150+/-43% and 51+/-12% during saline and L-NMMA infusion, respectively (P<.01, n=6). In contrast, L-NMMA did not affect the increase in forearm blood flow produced by 3 microg/min nitroprusside (165+/-30% and 248+/-41% during saline and L-NMMA, respectively) or adenosine (173+/-48% and 270+/-75% during saline and L-NMMA, respectively). On the basis of our observations, we conclude that adenosine-induced vasodilation is not mediated by nitric oxide in the human forearm.

  6. Characterization of adenosine receptors in brush-border membranes from pig kidney.

    PubMed Central

    Blanco, J.; Canela, E. I.; Mallol, J.; Lluís, C.; Franco, R.

    1992-01-01

    1. The adenosine receptors from pig kidney proximal tubules have been studied in membrane vesicle preparations derived from either luminal (brush-border membranes-BBM-) or basolateral (BL) sides. There was a substantial amount of A2-like NECA binding in both preparations, but the A1 subtype of adenosine receptors was not found in either BBM or BL membranes. The use of [3H]-CGS21680 which is a more specific ligand for A2a receptors revealed true adenosine receptors in the BBM. 2. The kinetic parameters for [3H]-CGS21680 binding to pig renal BBM were: Bmax = 1.48 pmol mg-1 protein and Kd = 150 nM. In the presence of Gpp(NH)p the affinity decreased (Kd = 220 nM), whereas the addition of Mg2+ induced a marked increase in affinity (Kd = 83 nM). These equilibrium constants are higher than those found for the A2a adenosine receptors present in pig brain striatal membranes (Kd = 12 nM), and are close to those found in rat renal BBM (Kd = 90 nM). 3. The order of potency of agonist and antagonists was not consistent with the presence of either A1 or A2 receptors, but it was very similar to the agonist order of potency for the A3 receptor subtype. Furthermore, the blockade of the [3H]-CGS21680 binding by both cholera and pertussis toxin further supports the view that the subtypes present in BBM are neither A1 nor A2. 4. Overall the results suggest the presence in BBM of an A3 receptor, or of a new subtype of adenosine receptor, which is linked to G proteins sensitive to both cholera and pertussis toxins. PMID:1335333

  7. Identification of the A2 adenosine receptor binding subunit by photoaffinity crosslinking

    SciTech Connect

    Barrington, W.W.; Jacobson, K.A.; Hutchison, A.J.; Williams, M.; Stiles, G.L. )

    1989-09-01

    A high-affinity iodinated agonist radioligand for the A2 adenosine receptor has been synthesized to facilitate studies of the A2 adenosine receptor binding subunit. The radioligand 125I-labeled PAPA-APEC (125I-labeled 2-(4-(2-(2-((4- aminophenyl)methylcarbonylamino)ethylaminocarbonyl)- ethyl)phenyl)ethylamino-5'-N-ethylcarboxamidoadenosine) was synthesized and found to bind to the A2 adenosine receptor in bovine striatal membranes with high affinity (Kd = 1.5 nM) and A2 receptor selectivity. Competitive binding studies reveal the appropriate A2 receptor pharmacologic potency order with 5'-N-ethylcarboxamidoadenosine (NECA) greater than (-)-N6-((R)-1-methyl- 2-phenylethyl)adenosine (R-PIA) greater than (+)-N6-((S)-1-methyl-2- phenylethyl)adenosine (S-PIA). Adenylate cyclase assays, in human platelet membranes, demonstrate a dose-dependent stimulation of cAMP production. PAPA-APEC (1 microM) produces a 43% increase in cAMP production, which is essentially the same degree of increase produced by 5'-N- ethylcarboxamidoadenosine (the prototypic A2 receptor agonist). These findings combined with the observed guanine nucleotide-mediated decrease in binding suggest that PAPA-APEC is a full A2 agonist. The A2 receptor binding subunit was identified by photoaffinity-crosslinking studies using 125I-labeled PAPA-APEC and the heterobifunctional crosslinking agent N-succinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate (SANPAH). After covalent incorporation, a single specifically radiolabeled protein with an apparent molecular mass of 45 kDa was observed on NaDodSO4/PAGE/autoradiography. Incorporation of 125I-labeled PAPA-APEC into this polypeptide is blocked by agonists and antagonists with the expected potency for A2 receptors and is decreased in the presence of 10(-4) M guanosine 5'-(beta, gamma-imido)triphosphate.

  8. Effects of adenosine receptor antagonism on protein tyrosine phosphatase in rat skeletal muscle.

    PubMed

    Crist, G H; Xu, B; Berkich, D A; LaNoue, K F

    2001-08-01

    Earlier studies have shown that whole body adenosine receptor antagonism increases skeletal muscle insulin sensitivity in insulin-resistant Zucker rats. To find which steps in the insulin signaling pathway are influenced by adenosine receptors, muscle from lean and obese Zucker rats, treated for 1 week with the adenosine receptor antagonist, 1,3-dipropyl-8-(4-acrylate)-phenylxanthine (BWA1433), were analyzed. All rats were first anesthetized and injected intravenously (i.v.) with 1 IU of insulin. About 3 min later the gastrocnemius was freeze clamped. Insulin receptors were partially purified on wheat germ agglutinin (WGA) columns and insulin receptor kinase activity measured in control and BWA1433-treated lean and obese Zucker rats. Protein tyrosine phosphatase (PTPase) activity was also analyzed in subcellular fractions, including the cytosolic fraction, a high-speed particulate fraction and the insulin receptor fraction eluted from WGA columns. Administration of BWA1433 increased insulin receptor kinase activity in obese but not lean Zucker rats. PTPase activities were higher in the untreated obese rat muscle particulate fractions than in the lean rat particulate fractions. The BWA1433 administration lowered the PTPase activity of the obese rats but not the lean rats. Although the PTPase activity in WGA eluate fractions containing crude insulin receptors were similar in lean and obese animals, BWA1433 administration was found to lower the PTPase activities in the fractions obtained from obese but not from the lean rats. PTPases may be upregulated in muscles from obese rats due to activated adenosine receptors. Adenosine receptor blockade, by reducing PTPase activity, may thereby increase insulin signaling. PMID:11404185

  9. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers.

    PubMed

    Brozmanova, M; Mazurova, L; Ru, F; Tatar, M; Hu, Y; Yu, S; Kollarik, M

    2016-02-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10-60 mmHg) in a concentration-dependent fashion (1-100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  10. The influence of blood flow rate on adenosine release from contracting dog skeletal muscle.

    PubMed

    Ballard, H J; Cotterrell, D; Karim, F

    1989-03-01

    The dependence of adenosine release on blood flow was investigated in greyhounds anaesthesized with sodium pentobarbitone and artificially ventilated. The gracilis muscles were neurally and vascularly isolated, and perfused at constant flow rates of 42% (low), 89% (medium) or 132% (high) of their maximum free flow during contraction induced by stimulation of the motor nerve. Stimulation produced contractions whose force declined from 716 +/- 60 to 464 +/- 46 g (100 g)-1 over 10 min. Resting perfusion pressure increased in line with the flow rate, but the fall in resistance accompanying contractions varied reciprocally with the flow (57 +/- 2.9, 39.6 +/- 6.6 and 15.3 +/- 5.6% at low, medium and high flows respectively). Venous PO2 decreased during contraction to 26.6 +/- 6.2 mmHg at 'low', 31.5 +/- 5.1 mmHg at 'medium' and 37.2 +/- 1.7 mmHg at 'high' flows. Venous plasma adenosine concentration increased significantly above resting levels during contraction at all flow rates. Adenosine release at low flow (12.0 +/- 2.7 nmol min-1 (100 g)-1) was significantly greater than that at medium or high flows (5.6 +/- 1.3 and 4.1 +/- 1.3 nmol min-1 (100 g)-1 respectively), but the latter were not different from each other. There was no correlation between adenosine release and either venous oxygen tension during muscle contraction or the ratio of oxygen supply to free-flow oxygen consumption. These data suggest that the mechanism underlying adenosine release during muscle contraction may be independent of oxygen lack. PMID:2727250

  11. Aptasensor based on fluorescence resonance energy transfer for the analysis of adenosine in urine samples of lung cancer patients.

    PubMed

    Hashemian, Zahra; Khayamian, Taghi; Saraji, Mohammad; Shirani, Marziyeh Poshteh

    2016-05-15

    A new aptasensor was designed for the analysis of adenosine based on fluorescence resonance energy transfer (FRET) between CdS quantum dot (QDs) as a donor and polypyrrole (Ppy) as an acceptor. The QDs were covalently bonded to anti-adenosine aptamer where its fluorescence was quenched by Ppy. When Ppy was replaced by adenosine, the fluorescence of QDs was restored and its intensity was proportional to the adenosine concentration. Under the optimized conditions, a linear range was found to be 23-146nM with a detection limit of 9.3nM. The method was used for analysis of adenosine in urine samples of lung cancer patients and its accuracy was evaluated by comparison of the results of the proposed method with the standard method of HPLC-UV. Furthermore, the interactions of adenosine molecules with the aptamer were investigated using molecular modeling, including molecular dynamic simulations (MDS). The results demonstrated that each G-quadruplex aptamer can capture two adenosine molecules. PMID:26722763

  12. Adenosine accelerates the healing of diabetic ischemic ulcers by improving autophagy of endothelial progenitor cells grown on a biomaterial

    PubMed Central

    Chen, Wen; Wu, Yangxiao; Li, Li; Yang, Mingcan; Shen, Lei; Liu, Ge; Tan, Ju; Zeng, Wen; Zhu, Chuhong

    2015-01-01

    Endothelial progenitor cells (EPCs) seeded on biomaterials can effectively promote diabetic ischemic wound healing. However, the function of transplanted EPCs is negatively affected by a high-glucose and ischemic microenvironment. Our experiments showed that EPC autophagy was inhibited and mitochondrial membrane potential (MMP) was increased in diabetic patients, while adenosine treatment decreased the energy requirements and increased the autophagy levels of EPCs. In animal experiments, we transplanted a biomaterial seeded with EPCs onto the surface of diabetic wounds and found that adenosine-stimulated EPCs effectively promoted wound healing. Increased microvascular genesis and survival of the transplanted cells were also observed in the adenosine-stimulated groups. Interestingly, our study showed that adenosine increased the autophagy of the transplanted EPCs seeded onto the biomaterial and maintained EPC survival at 48 and 96 hours. Moreover, we observed that adenosine induced EPC differentiation through increasing the level of autophagy. In conclusion, our study indicated that adenosine-stimulated EPCs seeded onto a biomaterial significantly improved wound healing in diabetic mice; mechanistically, adenosine might maintain EPC survival and differentiation by increasing high glucose-inhibited EPC autophagy and maintaining cellular energy metabolism. PMID:26108983

  13. A1 Adenosine Receptor-Mediated Inhibition of Parasympathetic Neuromuscular Transmission in Human and Murine Urinary Bladder.

    PubMed

    Searl, Timothy J; Dynda, Danuta I; Alanee, Shaheen R; El-Zawahry, Ahmed M; McVary, Kevin T; Silinsky, Eugene M

    2016-01-01

    The potential role of A1 adenosine receptors in modulating neuromuscular transmission in the detrusor muscle of the urinary bladder has been tested in human and murine preparations with the intent to determine the viability of using adenosine receptor agonists as adjuncts to treat overactive bladder. In human detrusor muscle preparations, contractile responses to electrical field stimulation were inhibited by the selective A1 adenosine receptor agonists 2-chloro-N(6)-cyclopentyladenosine, N(6)-cyclopentyladenosine (CPA), and adenosine (rank order of potency: 2-chloro-N(6)-cyclopentyladenosine > CPA > adenosine). Pretreatment with 8-cyclopentyl-3-[3-[[4(fluorosulphonyl)benzoyl]oxy]propyl]-1-propylxanthine, an irreversible A1 antagonist, blocked the effects of CPA, thus confirming the role of A1 receptors in human detrusor preparations. In murine detrusor muscle preparations, contractions evoked by electrical field stimulation were reduced by CPA or adenosine. Amplitudes of the P2X purinoceptor-mediated excitatory junctional potentials (EJPs) recorded with intracellular microelectrodes were reduced in amplitude by CPA and adenosine with no effect on the spontaneous EJP amplitudes, confirming the prejunctional action of these agents. 8-Cyclopentyltheophylline, a selective A1 receptor antagonist, reversed the effects of CPA on EJP amplitudes with no effect of spontaneous EJPs, confirming the role of A1 receptors in mediating these effects. PMID:26534943

  14. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors—An Update

    PubMed Central

    IJzerman, Adriaan P.; Jacobson, Kenneth A.; Linden, Joel; Müller, Christa E.

    2011-01-01

    In the 10 years since our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations. However, there have been so many other developments that an update is needed. The fact that the structure of one of the adenosine receptors has recently been solved has already led to new ways of in silico screening of ligands. The evidence that adenosine receptors can form homo- and heteromultimers has accumulated, but the functional significance of such complexes remains unclear. The availability of mice with genetic modification of all the adenosine receptors has led to a clarification of the functional roles of adenosine, and to excellent means to study the specificity of drugs. There are also interesting associations between disease and structural variants in one or more of the adenosine receptors. Several new selective agonists and antagonists have become available. They provide improved possibilities for receptor classification. There are also developments hinting at the usefulness of allosteric modulators. Many drugs targeting adenosine receptors are in clinical trials, but the established therapeutic use is still very limited. PMID:21303899

  15. Electrochemical aptasensor for the detection of adenosine by using PdCu@MWCNTs-supported bienzymes as labels.

    PubMed

    Wu, Dan; Ren, Xiang; Hu, Lihua; Fan, Dawei; Zheng, Yang; Wei, Qin

    2015-12-15

    A highly sensitive electrochemical adenosine aptasensor was fabricated by covalently immobilizing 3'-NH2-terminated capture probe (SSDNA1) and thionine (TH) on Au-GS modified glassy carbon electrode. 3'-SH-terminated adenosine aptamer (SSDNA2) was adsorbed onto palladium/copper alloyed supported on MWCNTs (PdCu@MWCNTs)-conjugated multiple bienzymes, glucose oxidase (GOx), and horseradish peroxidase (HRP) (SSDNA2/PdCu@MWCNTs/HRP/GOx). Then, it was immobilized onto the electrode surface through the hybridization between the adenosine aptamer and the capture probe. The signal was amplified based on the gradual electrocatalytic reduction of GOx-generated hydrogen peroxide by the multiple HRP through the mediating ability of the loaded multiple TH. However, the peak current of TH decreased in the presence of adenosine because the interaction between adenosine and its aptamer made SSDNA2/PdCu@MWCNTs/HRP/GOx release from the modified electrode. Various experimental parameters have been optimized for the detection of adenosine and tests for selectivity, reproducibility and stability have also been performed. Under the optimal condition, the proposed aptasensor displayed a wide linear range (10-400 nM) with the low detection limit (2.5 nM), which has been applied in human serum samples with satisfactory results. Thus, the combination of Au-GS as a sensor platform and PdCu@MWCNTs/HRP/GOx as labels can be a promising amplification strategy for highly sensitive adenosine detection. PMID:26164010

  16. Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency: Possible role of nucleoside kinase(s)

    PubMed Central

    Carson, Dennis A.; Kaye, Jonathan; Seegmiller, J. E.

    1977-01-01

    Inherited deficiencies of the enzymes adenosine deaminase (adenosine aminohydrolase; EC 3.5.4.4) and purine nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase; EC 2.4.2.1) preferentially interfere with lymphocyte development while sparing most other organ systems. Previous experiments have shown that through the action of specific kinases, nucleosides can be “trapped” intracellularly in the form of 5′-phosphates. We therefore measured the ability of newborn human tissues to phosphorylate adenosine and deoxyadenosine, the substrate of adenosine deaminase, and also inosine, deoxyinosine, guanosine, and deoxyguanosine, the substrates of purine nucleoside phosphorylase. Substantial activities of adenosine kinase were found in all tissues studied, while guanosine and inosine kinases were detected in none. However, the ability to phosphorylate deoxyadenosine, deoxyinosine, and deoxyguanosine was largely confined to lymphocytes. Adenosine deaminase, but not purine nucleoside phosphorylase, showed a similar lymphoid predominance. Other experiments showed that deoxyadenosine, deoxyinosine, and deoxyguanosine were toxic to human lymphoid cells. The toxicity of deoxyadenosine was reversed by the addition of deoxycytidine, but not uridine, to the culture medium. Based upon these and other experiments, we propose that in adenosine deaminase and purine nucleoside phosphorylase deficiency, toxic deoxyribonucleosides produced by many tissues are selectively trapped in lymphocytes by phosphorylating enzyme(s). PMID:202960

  17. Use of a newly developed technique to isolate rat pinealocytes and study the effects of adenosine agonists on melatonin production.

    PubMed

    Nicholls, J; Skene, D J; Hourani, S M

    1997-10-01

    Recent studies have suggested a role for adenosine in the regulation of rat pineal melatonin synthesis. The data, however, are conflicting and therefore the aim of this study was to characterize adenosine receptors more fully in vitro by using a range of selective adenosine agonists and the adenosine antagonist 8-sulphophenyltheophylline (8-SPT). A simple method for the mechanical separation of rat pinealocytes was developed. Pinealocytes were briefly (15 min) incubated with drugs followed by a 4 hr drug-free incubation period after which melatonin concentrations in the incubation medium were measured by radioimmunoassay. The beta-adrenoceptor agonist isoprenaline gave a dose-related increase in melatonin production, demonstrating that this pinealocyte preparation technique is suitable to evaluate the effect of drugs on pineal melatonin synthesis. Our results show that adenosine, N6-(phenylisopropyl)adenosine (R-PIA) and 2-p-(2-carboxethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS21680) did not affect melatonin synthesis alone or in combination with isoprenaline. However 5'-N-ethylcarboxamidoadenosine (NECA) (100 microM) potentiated the stimulatory effect of isoprenaline (3 microM) on pineal melatonin production and this effect appeared to be antagonized by 8-SPT (50 microM). These results are consistent with activation by NECA of an A2b adenosine receptor. PMID:9406988

  18. Effects of adenosine on bacterial lipopolysaccharide- and interleukin 1-induced nitric oxide release from equine articular chondrocytes.

    TOXLINE Toxicology Bibliographic Information

    Benton HP; MacDonald MH; Tesch AM

    2002-02-01

    OBJECTIVE: To determine whether adenosine influences the in vitro release of nitric oxide (NO) from differentiated primary equine articular chondrocytes.SAMPLE POPULATION: Articular cartilage harvested from the metacarpophalangeal and metatarsophalangeal joints of 11 horses (3 to 11 years old) without history or clinical signs of joint disease.PROCEDURE: Chondrocytes were isolated, plated at a high density (10(5) cells/well), and treated with adenosine, the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), bradykinin, or other agents that modify secondary messenger pathways alone or in combination with bacterial lipopolysaccharide (LPS) or recombinant human interleukin-1alpha (rhIL-1alpha). Nitric oxide release was measured indirectly by use of the Griess reaction and was expressed as micromol of nitrite in the supernatant/microg of protein in the cell layer. Inducible nitric oxide synthase (iNOS) activity was determined by measuring the conversion of radiolabeled arginine to radiolabeled citrulline.RESULTS: Treatment of chondrocytes with adenosine alone had no significant effect on NO release. However, adenosine and NECA inhibited LPS- and rhIL-1alpha-induced NO release. This response was mimicked by forskolin, which acts to increase adenylate cyclase activity, but not by the calcium ionophore A23187 Treatment of chondrocytes with phorbol myristate acetate, which acts to increase protein kinase C activity, potentiated LPS-induced NO release. Adenosine treatment also significantly inhibited the LPS-induced increase in iNOS activity.CONCLUSIONS AND CLINICAL RELEVANCE: Adenosine and the nonspecific adenosine receptor agonist NECA inhibited inflammatory mediator-induced release of NO from equine articular chondrocytes. Modulation of adenosine receptor-mediated pathways may offer novel methods for treatment of inflammation in horses with joint disease.

  19. Long-Term Expression of Human Adenosine Deaminase in Vascular Smooth Muscle Cells of Rats: A Model for Gene Therapy

    NASA Astrophysics Data System (ADS)

    Lynch, Carmel M.; Clowes, Monika M.; Osborne, William R. A.; Clowes, Alexander W.; Dusty Miller, A.

    1992-02-01

    Gene transfer into vascular smooth muscle cells in animals was examined by using recombinant retroviral vectors containing an Escherichia coli β-galactosidase gene or a human adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) gene. Direct gene transfer by infusion of virus into rat carotid arteries was not observed. However, gene transfer by infection of smooth muscle cells in culture and seeding of the transduced cells onto arteries that had been denuded of endothelial cells was successful. Potentially therapeutic levels of human adenosine deaminase activity were detected over 6 months of observation, indicating the utility of vascular smooth muscle cells for gene therapy in humans.

  20. Interfacial molecular recognition of adenine, adenosine and ATP by a C60-uracil adduct via complementary base pairing

    NASA Astrophysics Data System (ADS)

    Marczak, Renata; Hoang, Vu T.; Noworyta, Krzysztof; Zandler, Melvin E.; Kutner, Wlodzimierz; D'Souza, Francis

    2002-10-01

    A new C60-uracil adduct was demonstrated to recognize adenine, adenosine, or adenosine 5'-triphosphate (ATP) via complementary base pairing which led to complex formation. The base-pairing mechanism was modeled by ab initio B3LYP/3-21G(*) calculations which revealed the Watson-Crick (A-T) interactions. Stable "expanded liquid" Langmuir films of the complexes were prepared with the limiting area per molecule increasing for different subphase composition in the order: water < adenine < adenosine < ATP solution. Comparison of experimental and calculated areas per molecule and dipole moments suggest both prevailing horizontal orientation of the complexes in films.

  1. Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by adenosine receptors in the rat hippocampus.

    PubMed Central

    Morton, R A; Davies, C H

    1997-01-01

    1. Intracellular current clamp recordings were made from CA1 pyramidal neurones in rat hippocampal slices. Experiments were performed in the presence of ionotropic glutamate receptor antagonists and gamma-aminobutyric acid (GABA) receptor antagonists to block all fast excitatory and inhibitory synaptic transmission. A single stimulus, delivered extracellularly in the stratum oriens, caused a reduction in spike frequency adaptation in response to a depolarizing current step delivered 2 s after the stimulus. A 2- to 10-fold increase in stimulus intensity evoked a slow excitatory postsynaptic potential (EPSP) which was associated with a small increase in input resistance. The peak amplitude of the EPSP occurred approximately 2.5 s after the stimulus and its magnitude (up to 30 mV) and duration (10-50 s) increased with increasing stimulus intensity. 2. The slow EPSP was unaffected by the metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG; 1000 microM) but was greatly enhanced by the acetylcholinesterase inhibitor physostigmine (1-5 microM). Both the slow EPSP and the stimulus-evoked reduction in spike frequency adaptation were inhibited by the muscarinic acetylcholine receptor (mAChR) antagonist atropine (1-5 microM). These results are consistent with these effects being mediated by mAChRs. 3. Both the mAChR-mediated EPSP (EPSPm) and the associated reduction in spike frequency adaptation were reversibly depressed (up to 97%) by either adenosine (100 microM) or its non-hydrolysable analogue 2-chloroadenosine (CADO; 0.1-5.0 microM). These effects were often accompanied by postsynaptic hyperpolarization (up to 8 mV) and a reduction in input resistance (up to 11%). The selective adenosine A1 receptor agonists 2-chloro-N6-cyclopentyladenosine (CCPA; 0.1-0.4 microM) and R(-)N6-(2-phenylisopropyl)-adenosine (R-PIA; 1 microM) both depressed the EPSPm. In contrast, the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 0.5-1.0 microM) did not significantly affect the EPSPm. 4. The selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.2 microM) fully reversed the depressant effects of both adenosine (100 microM) and CADO (1 microM) on the EPSPm and the stimulus-evoked reductions in spike frequency adaptation. 5. DPCPX (0.2 microM) alone caused a small but variable mean increase in the EPSPm of 22 +/- 19% and enabled activation of an EPSPm by a previously subthreshold stimulus. In contrast, the selective adenosine kinase inhibitor 5-iodotubercidin (5-IT; 10 microM) inhibited the EPSPm by 74 +/- 10%, an effect that was reversed by DPCPX. 6. The concentration-response relationship for the depressant action of CADO on the EPSPm more closely paralleled that for its presynaptic depressant action on glutamate-mediated EPSPs than that for postsynaptic hyperpolarization. The respective mean IC50 and EC50 concentrations for these effects were 0.3, 0.8 and 3.0 microM. 7. CADO (1-5 microM) did not have a significant effect on the postsynaptic depolarization, increase in input resistance and reduction in spike frequency adaptation evoked by carbachol (0.5-3.0 microM). All these effects were abolished by atropine (1 microM). 8. These data provide good evidence for an adenosine A1 receptor-mediated inhibition of mAChR-mediated synaptic responses in hippocampal CA1 pyramidal neurones. This inhibition is mediated predominantly presynaptically, is active tonically and can be enhanced when extracellular levels of endogenous adenosine are raised. PMID:9234198

  2. Adenosine A1 Receptors (A1R) Regulate Bone Resorption II Adenosine A1R Blockade or Deletion Increases Bone Density and Prevents Ovariectomy-Induced Bone Loss

    PubMed Central

    Kara, Firas M.; Doty, Stephen B.; Boskey, Adele; Goldring, Steven; Zaidi, Mone; Fredholm, Bertil B.; Cronstein, Bruce N.

    2010-01-01

    Objective Accelerated osteoclastic bone resorption plays a central role in the pathogenesis of osteoporosis and other bone diseases. Because identifying the molecular pathways that regulate osteoclast activity provides a key to understanding the causes of these diseases and to the development of new treatments we studied the effect of adenosine A1 receptor blockade or deletion on bone density. Methods Bone mineral density (BMD) in adenosine A1 receptor knockout mice was analyzed by DEXA scan and the trabecular and cortical bone volume was determined by Micro CT. Mice were ovariectomized or sham-operated, and 5 weeks after surgery, when osteopenia had developed, several parameters were analysed by DEXA scan and MicroCT. Histological examination of bones from A1 knockout and wild type mice was carried out. Visualization of osteoblast function (bone formation) after Tetracycline double labeling was performed by fluorescence microscopy. Results MicroCT analysis of bones from A1KO mice showed significantly increased bone volume. Electron microscopy of bones from A1KO mice shows an absence of ruffled borders of osteoclasts and osteoclast bone resorption. Immunohistology demonstrates that although osteoclasts are present in the A1KO mice they are smaller and often not associated with bone. No morphologic changes in osteoblasts were observed and bone labeling studies reveal no change in bone formation rates in the A1KO mice. Conclusion These results suggest that the adenosine A1 receptor may be a useful target in treating diseases characterized by excessive bone turnover such as osteoporosis and prosthetic joint loosening. PMID:20112380

  3. Expression of calcitonin gene-related peptide, adenosine A2a receptor and adenosine A1 receptor in experiment rat migraine models

    PubMed Central

    LU, WENXIAN; LI, BIN; CHEN, JINBO; SU, YIPENG; DONG, XIAOMENG; SU, XINYANG; GAO, LIXIANG

    2016-01-01

    A migraine is a disabling neurovascular disorder characterized by a unilateral throbbing headache that lasts from 4 to 72 h. The headache is often accompanied by nausea, vomiting, phonophobia and photophobia, and may be worsened by physical exercise. The trigeminovascular system (TVS) is speculated to have an important role in migraines, although the pathophysiology of this disorder remains to be elucidated. Trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis (TNC) are important components of the TVS. Several clinical cases have provided evidence for the involvement of the brainstem in migraine initiation. Electrical stimulation of the trigeminal ganglion (ESTG) in rats can activate TVS during a migraine attack. Calcitonin gene-related peptide (CGRP) is an important vasoactive compound produced following TVS activation. Numerous studies have revealed that adenosine and its receptors have an important role in pain transmission and regulation process. However, only a few studies have examined whether adenosine A2a receptor (A2aR) and adenosine A1 receptor (A1R) are involved in migraine and nociceptive pathways. In the present study, CGRP, A2aR and A1R expression levels were detected in the TG and TNC of ESTG models through reverse transcription-quantitative polymerase chain reaction and western blot analysis. Tianshu capsule (TSC), a type of Chinese medicine, was also used in the ESTG rat models to examine its influence on the three proteins. Results demonstrated that CGRP, A2aR and A1R mediated pain transmission and the regulation process during migraine and the expression of the three proteins was regulated by TSC. PMID:26998280

  4. Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds

    PubMed Central

    2012-01-01

    Background Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Result Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. Conclusion Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation. PMID:22269093

  5. Differential Impact of Adenosine Nucleotides Released by Osteocytes on Breast Cancer Growth and Bone Metastasis

    PubMed Central

    Zhou, Jade Z.; Riquelme, Manuel A.; Gao, Xiaoli; Ellies, Lesley G.; Sun, Lu-Zhe; Jiang, Jean X.

    2015-01-01

    Extracellular ATP has been shown to either inhibit or promote cancer growth and migration; however the mechanism underlying this discrepancy remained elusive. Here, we demonstrate the divergent roles of ATP and adenosine released by bone osteocytes in breast cancers. We showed that conditioned media (CM) collected from osteocytes treated with alendronate (AD), a bisphosphonate drug, inhibited the migration of human breast cancer MDA-MB-231 cells. Removal of the extracellular ATP by apyrase in CM abolished this effect, suggesting the involvement of ATP. ATP exerted its inhibitory effect through the activation of purinergic P2X receptor signaling in breast cancer cells evidenced by the attenuation of the inhibition by an antagonist, oxidized ATP, as well as knocking down P2X07 with siRNA, and the inhibition by an agonist, BzATP. Intriguingly, ATP had a biphasic effect on breast cancer cell behaviorlower dosage inhibited, but higher dosage promoted its migration. The stimulatory effect on migration was blocked by an adenosine receptor antagonist, MRS1754, ARL67156, an ecto-ATPase inhibitor, and A2A receptor siRNA, suggesting that in contrast to the action of ATP, adenosine, a metabolic product of ATP, promoted migration of breast cancer cells. Consistently, non-hydrolyzable ATP, ATP?S, only inhibited, but did not promote cancer cell migration. ATP also had a similar inhibitory effect on the Py8119 mouse mammary carcinoma cells; however, adenosine had no effect due to the absence of the A2A receptor. Consistent with the results of cancer cell migration, ATP?S inhibited, while adenosine promoted anchorage-independent growth of breast cancer cells. Our in vivo xenograft study showed a significant delay of tumor growth with the treatment of ATP?S. Moreover, the extent of bone metastasis in a mouse intratibial model was significantly reduced with the treatment of ATP?S. Together, our results suggest the distinct roles of ATP and adenosine released by osteocytes, and the activation of corresponding receptors P2X7 and A2A signaling on breast cancer cell growth, migration and bone metastasis. PMID:24837364

  6. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis.

    PubMed

    Zhou, J Z; Riquelme, M A; Gao, X; Ellies, L G; Sun, L Z; Jiang, J X

    2015-04-01

    Extracellular ATP has been shown to either inhibit or promote cancer growth and migration; however, the mechanism underlying this discrepancy remained elusive. Here we demonstrate the divergent roles of ATP and adenosine released by bone osteocytes on breast cancers. We showed that conditioned media (CM) collected from osteocytes treated with alendronate (AD), a bisphosphonate drug, inhibited the migration of human breast cancer MDA-MB-231 cells. Removal of the extracellular ATP by apyrase in CM abolished this effect, suggesting the involvement of ATP. ATP exerted its inhibitory effect through the activation of purinergic P2X receptor signaling in breast cancer cells evidenced by the attenuation of the inhibition by an antagonist, oxidized ATP, as well as knocking down P2X7 with small interfering RNA (siRNA), and the inhibition of migration by an agonist, BzATP. Intriguingly, ATP had a biphasic effect on breast cancer cells-lower dosage inhibited but higher dosage promoted its migration. The stimulatory effect on migration was blocked by an adenosine receptor antagonist, MRS1754, ARL67156, an ecto-ATPase inhibitor, and A2A receptor siRNA, suggesting that in contrast to ATP, adenosine, a metabolic product of ATP, promoted migration of breast cancer cells. Consistently, non-hydrolyzable ATP, ATP?S, only inhibited but did not promote cancer cell migration. ATP also had a similar inhibitory effect on the Py8119 mouse mammary carcinoma cells; however, adenosine had no effect owing to the absence of the A2A receptor. Consistently, ATP?S inhibited, whereas adenosine promoted anchorage-independent growth of MDA-MB-231 cells. Our in vivo xenograft study showed a significant delay of tumor growth with the treatment of ATP?S. Moreover, the extent of bone metastasis in a mouse intratibial model was significantly reduced with the treatment of ATP?S. Together, our results suggest the distinct roles of ATP and adenosine released by osteocytes and the activation of corresponding receptors P2X7 and A2A signaling on breast cancer cell growth, migration and bone metastasis. PMID:24837364

  7. Why are A(2B) receptors low-affinity adenosine receptors? Mutation of Asn273 to Tyr increases affinity of human A(2B) receptor for 2-(1-Hexynyl)adenosine.

    PubMed

    Beukers, M W; den Dulk, H; van Tilburg, E W; Brouwer, J; Ijzerman, A P

    2000-12-01

    Adenosine A(2B) receptors are known as low-affinity receptors due to their modest-to-negligible affinity for adenosine and prototypic agonists. Despite numerous synthetic efforts, 5'-N-ethylcarboxamidoadenosine (NECA) still is the reference agonist, albeit nonselective for this receptor. In our search for higher affinity agonists, we developed decision schemes to select amino acids for mutation to the corresponding residues in the most homologous, higher affinity, human A(2A) receptor. One scheme exploited knowledge on sequence alignments and modeling data and yielded three residues, V11, L58, and F59, mutation of which did not affect agonist affinity. The second scheme combined knowledge on sequence alignments and mutation data and pointed to Ala12 and Asn273. Mutation of Ala12 to threonine did not affect the affinity for NECA, (R)-N(6)-(phenylisopropyl)adenosine (R-PIA), and 2Cl Ado. The affinity of the N273Y mutant for NECA and R-PIA and for the antagonists xanthine amine congener (XAC), ZM241385, and SCH58261 was also unaltered. However, this mutant had a slightly increased affinity for a 2-substituted adenosine derivative, CGS21680. This prompted us to investigate other 2-substituted adenosines, with selectivity and high affinity for A(2A) receptors. All four compounds tested had improved affinity for the N273Y receptor. Of these, 2-(1-hexynyl)adenosine had submicromolar affinity for the N273Y receptor, 0.18 +/- 0.10 microM, with a 61-fold affinity gain over the wt receptor. In addition, the non-NECA analog (S)-PHP adenosine had an affinity of 1.7 +/- 0.5 microM for the wt receptor. The high affinity of (S)-PHP adenosine for the wt receptor suggests that further modifications at the 2-position may yield agonists with even higher affinity for A(2B) receptors. PMID:11093773

  8. The role of calbindin-D28k on renal calcium and magnesium handling during treatment with loop and thiazide diuretics.

    PubMed

    Lee, Chien-Te; Ng, Hwee-Yeong; Lee, Yueh-Ting; Lai, Li-Wen; Lien, Yeong-Hau H

    2016-02-01

    Calbindin-D28k (CBD-28k) is a calcium binding protein located in the distal convoluted tubule (DCT) and plays an important role in active calcium transport in the kidney. Loop and thiazide diuretics affect renal Ca and Mg handling: both cause Mg wasting, but have opposite effects on Ca excretion as loop diuretics increase, but thiazides decrease, Ca excretion. To understand the role of CBD-28k in renal Ca and Mg handling in response to diuretics treatment, we investigated renal Ca and Mg excretion and gene expression of DCT Ca and Mg transport molecules in wild-type (WT) and CBD-28k knockout (KO) mice. Mice were treated with chlorothiazide (CTZ; 50 mg·kg(-1)·day(-1)) or furosemide (FSM; 30 mg·kg(-1)·day(-1)) for 3 days. To avoid volume depletion, salt was supplemented in the drinking water. Urine Ca excretion was reduced in WT, but not in KO mice, by CTZ. FSM induced similar hypercalciuria in both groups. DCT Ca transport molecules, including transient receptor potential vanilloid 5 (TRPV5), TRPV6, and CBD-9k, were upregulated by CTZ and FSM in WT, but not in KO mice. Urine Mg excretion was increased and transient receptor potential subfamily M, member 6 (TRPM6) was upregulated by both CTZ and FSM in WT and KO mice. In conclusion, CBD-28k plays an important role in gene expression of DCT Ca, but not Mg, transport molecules, which may be related to its being a Ca, but not a Mg, intracellular sensor. The lack of upregulation of DCT Ca transport molecules by thiazides in the KO mice indicates that the DCT Ca transport system is critical for Ca conservation by thiazides. PMID:26582761

  9. The content of fluoride, calcium and magnesium in the hair of young men of the Bantu language group from Tanzania versus social conditioning.

    PubMed

    Rębacz-Maron, Ewa; Baranowska-Bosiacka, Irena; Gutowska, Izabela; Krzywania, Natalia; Chlubek, Dariusz

    2013-12-01

    The present study aimed at analysing the content of fluorine (F), calcium (Ca) and magnesium (Mg) in the hair of young male students (n =52) of a secondary school in Mafinga in Tanzania (Africa) who participated in anthropological examinations. Ca and Mg concentrations were determined using atomic absorption spectrophotometer while F levels using a potentiometric method. F in the hair of boys from older group (≥16 years old; n =24) was significantly higher than in the younger group (<16 years old; n =28) versus Ca and Mg levels. High carbohydrate diet was predominant- mainly based on corn or bean and meat served once a week, with few fruit and raw vegetables. Collective catering in the dormitory reflected habits and culinary preferences at home. The lack of balanced diet, with majority of the nutritional energy supplied by easily accessible and cheap carbohydrates, was reflected in dietary deficiencies, characterised, among others, by visible skin conditions and tooth decay. PMID:24234514

  10. Effect of Hypoxia on the Calcium and Magnesium Content, Lipid Peroxidation Level, and Ca2+-ATPase Activity of Syncytiotrophoblast Plasma Membranes from Placental Explants

    PubMed Central

    Chiarello, Delia I.; Benzo, Zully; Piñero, Sandy; Botana, Desirée; Abad, Cilia

    2014-01-01

    In the current study the possible relationship between the Ca2+/Mg2+ ratio of human syncytiotrophoblast plasma membranes and their lipid peroxidation and Ca2+-ATPase activity was determined. Syncytiotrophoblast plasma membranes of placental explants cultured under hypoxia increased their lipid peroxidation and Ca2+ content, diminished their Ca2+-ATPase activity, and kept their Mg2+ content unchanged. Membranes preincubated with different concentrations of Ca2+ increased their Ca2+ content without changes in their Mg2+ content. There is a direct relationship between Ca2+ content and lipid peroxidation of the membranes, as well as an inverse relationship between their Ca2+ content and Ca2+-ATPase activity. On the contrary, preincubation of membranes with different concentrations of Mg2+ showed a higher Mg2+ content without changing their lipid peroxidation and Ca2+-ATPase activity. Explants cultured under hypoxia in the presence of 4 mM MgSO4 showed similar values of lipid peroxidation and Ca2+-ATPase activity of their membranes compared to those of explants cultured under normoxia. Increased Ca2+ content of the membranes by interacting with negatively charged phospholipids could result in destabilizing effects of the membrane structure, exposing hydrocarbon chains of fatty acids to the action of free radicals. Mg2+ might exert a stabilizing effect of the membranes, avoiding their exposure to free radicals. PMID:25180187

  11. Dietary intake of calcium and magnesium and the metabolic syndrome in the National Health and Nutrition Examination (NHANES) 2001-2010 data.

    PubMed

    Moore-Schiltz, Laura; Albert, Jeffrey M; Singer, Mendel E; Swain, James; Nock, Nora L

    2015-09-28

    Higher dietary intakes of Mg and Ca, individually, have been associated with a decreased risk for the metabolic syndrome (MetSyn). Experimental studies suggest that a higher intra-cellular ratio of Ca:Mg, which may be induced by a diet high in Ca and low in Mg, may lead to hypertension and insulin resistance. However, no previous epidemiological studies have examined the effects of the combined intake of Mg and Ca on MetSyn. Thus, we evaluated the association between dietary intakes of Ca and Mg (using 24-h recalls), independently and in combination, and MetSyn in the National Health and Nutrition Examination Study 2001-2010 data, which included 9148 adults (4549 men and 4599 women), with complete information on relevant nutrient, demographic, anthropometric and biomarker variables. We found an inverse association between the highest (>355 mg/d) v. the lowest (<197 mg/d) quartile of Mg and MetSyn (OR 0.70; 95% CI 0.57, 0.86). Women who met the RDA for both Mg (310-320 mg/d) and Ca (1000-1200 mg/d) had the greatest reduced odds of MetSyn (OR 0.59; 95% CI 0.45, 0.76). In men, meeting the RDA for Mg (400-420 mg/d) and Ca (1000-1200 mg/d), individually or in combination, was not associated with MetSyn; however, men with intakes in the highest quartile for Mg (≥ 386 mg/d) and Ca (≥ 1224 mg/d) had a lower odds of MetSyn (OR 0.74; 95% CI 0.59, 0.93). Our results suggest that women who meet the RDA for Mg and Ca have a reduced odds of MetSyn but men may require Ca levels higher than the RDA to be protected against MetSyn. PMID:26259506

  12. Calcium and magnesium physiology and nutrition in relation to the prevention of milk fever and tetany (dietary management of macrominerals in preventing disease).

    PubMed

    Martín-Tereso, Javier; Martens, Holger

    2014-11-01

    Dairy cows may suffer events of hypocalcemia and hypomagnesemia, commonly known as milk fever and tetany. Milk fever is characterized by hypocalcemia at parturition as a consequence of a sudden increase in Ca demand and an unavoidable delay in Ca metabolism adaptation. Tetany is due to impaired Mg absorption from the rumen that cannot be compensated by absorptive or excretory adaptation, resulting in a net nutritional shortage of Mg and culminating in hypomagnesemia. Prevention strategies require triggering the activation of Ca gastrointestinal absorption and avoiding factors limiting ruminal Mg absorption. PMID:25245611

  13. Effect of dietary calcium and magnesium on experimental renal tubular deposition of calcium oxalate crystal induced by ethylene glycol administration and its prevention with phytin and citrate.

    PubMed

    Ebisuno, S; Morimoto, S; Yoshida, T; Fukatani, T; Yasukawa, S; Ohkawa, T

    1987-01-01

    Oral administration of ethylene glycol to rats, and the resultant intratubular depositions of microcrystals of calcium oxalate were studied investigating the influences of dietary calcium or magnesium and assessing the protective efficacies against the crystallizations by treatment with phytin and sodium citrate. With increase of calcium intake and consequent increase of urinary calcium excretion there was a marked increase in the amount of tubular deposit of calcium oxalate crystal and in the calcium content of renal tissue. Although magnesium deficiency accelerated renal tubular calcium oxalate deposition, the protection against the crystal formation was not observed with excessive dietary magnesium. When rats were fed a high-calcium diet supplemented with phytin, a significant inhibition of the intratubular crystallization was observed. It appeared obvious that a hypocalciuric action of phytin was attributed to the effect of the prevention. There was vigorous protection of crystal formation by treatment with sodium citrate, which correlated with the level of citrate concentration in the drinking water. PMID:3433579

  14. The Association between the Risk of Premenstrual Syndrome and Vitamin D, Calcium, and Magnesium Status among University Students: A Case Control Study

    PubMed Central

    Saeedian Kia, Afsaneh; Amani, Reza; Cheraghian, Bahman

    2015-01-01

    Background: Premenstrual syndrome (PMS) is one of major health problems in childbearing age women. Herein, we compared the nutritional status of vitamin D, calcium (Ca) and magnesium (Mg) in young students affected by PMS with those of normal participants. Methods: This study was conducted on 62 students aged 20‒25 yr in the city of Abadan (31 PMS cases and 31 controls). All participants completed four or more criteria according to the Utah PMS Calendar 3. Age, height, body mass index (BMI), serum Ca, Mg and vitamin D levels and a 24-hour food recall questionnaire were recorded. Results: Vitamin D serum levels were lower than the normal range in the two groups. The odds ratios (CI 95%) of having PMS based on serum Ca and Mg concentrations were 0.81(0.67 – 0.89) and 0.86 (0.72 – 0.93), respectively. Based on serum levels, 855 of all participants showed vitamin D deficiency and more than one-third of the PMS cases were Mg deficient (P<0.05). In addition, there were signifi­cant differences in dietary intake of Ca and Mg, and potassium but not vitamin D in the two groups. Dietary intakes of Ca and Mg were quite below the recommendation in all participants. Conclusion: Vitamin D, Ca and Mg nutritional status are compromised in PMS subjects. Because PMS is a prevalent health problem among young women, it merits more attention regarding improvement of their health and nutritional status. PMID:26634201

  15. Effects of fructans-containing yacon (Smallanthus sonchifolius Poepp and Endl.) flour on caecum mucosal morphometry, calcium and magnesium balance, and bone calcium retention in growing rats.

    PubMed

    Lobo, Alexandre R; Colli, Célia; Alvares, Eliana P; Filisetti, Tullia M C C

    2007-04-01

    Yacon roots have been considered a functional food due to the high levels of fructans they contains. In the present study, Ca and Mg balance, bone mass and strength, and caecum mucosal morphometry were evaluated. Growing male Wistar rats (n 24) were fed ad libitum control diets or diets supplemented with yacon flour (5 or 7.5 % fructooligosaccharides) for 27 d. Mineral balance was evaluated in three periods of 5 d (starting on the 4th, 10th and 16th days). After the rats were killled, the bones were removed and bone mineral density was measured. Ca analyses were performed on left femurs and tibias and biomechanical testing on right femurs. The caecum was removed and tissue samples were collected for histological analysis. Caecal histology changed noticeably in rats fed yacon flour: there was an increase in the depth and number of total and bifurcated crypts as well. Yacon flour consumption significantly (P < 0.05) resulted in a positive Ca and Mg balance, leading to higher values of bone mineral retention and biomechanical properties (peak load and stiffness) when compared to the control group. The positive effects on mineral intestinal absorption, bone mass and biomechanical properties showed an important role of yacon roots in the maintenance of healthy bones. The increased number of bifurcating crypts might be related to the higher mineral absorption caused by the enlargement of the absorbing surface in the large intestine of the animals. PMID:17349092

  16. Concentration of calcium and magnesium and trace elements (zinc, copper, iron and manganese) in cerebrospinal fluid: a try of a pathophysiological classification.

    PubMed

    Romarís, Elena María González; Cervantes, Isabel Idoate; López, José Manuel González; Marcén, Jesús Fernando Escanero

    2011-01-01

    The aim of this study is to analyze the variation of the elements (Ca, Mg, Cu, Fe, Zn and Mn) in normal and pathological CSF and develop a classification basing on the increases in cells and proteins and taking into account these variations. A total of 173 cerebrospinal fluids were analyzed. Of these, 37 fulfilled the criteria of normality and, after clinical exploration, were considered to be healthy (control group). The remaining 136 CSFs (pathological group) belonged to people for whom some neurological pathology had been observed in the clinical exploration and whose CSF analysis presented some abnormality. CSF was extracted by puncture in the lumbar cistern. The analysis of metals was performed by atomic absorption spectrophotometry. The statistical values (mean±standard deviation) obtained for each element analyzed in control group were as follows: Ca (mg/dL): 4.95±0.70; Mg (mg/dL): 2.74±0.10; Cu (μg/dL): 15.70±13.50; Fe (μg/dL): 13.10±3.60; Zn (μg/dL): 17.40±9.50 and Mn (μg/dL): 2.50±0.70. In the pathological CSFs, significant increases were found (p<0.050) in relation to the control group for Ca, Cu, Fe, Zn and Mn in groups with an increase of both cells and proteins. A significant decrease of Mg (p<0.050) was found in the groups with cell and protein increases. Given the results obtained in the different subgroups of the proposed classification, we conclude that it is necessary to further categorize the patients' diagnostics in the different subgroups. This would help to validate the classification. PMID:21146970

  17. Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury

    PubMed Central

    Eckle, Tobias; Hughes, Kelly; Ehrentraut, Heidi; Brodsky, Kelley S.; Rosenberger, Peter; Choi, Doo-Sup; Ravid, Katya; Weng, Tingting; Xia, Yang; Blackburn, Michael R.; Eltzschig, Holger K.

    2013-01-01

    The signaling molecule adenosine has been implicated in attenuating acute lung injury (ALI). Adenosine signaling is terminated by its uptake through equilibrative nucleoside transporters (ENTs). We hypothesized that ENT-dependent adenosine uptake could be targeted to enhance adenosine-mediated lung protection. To address this hypothesis, we exposed mice to high-pressure mechanical ventilation to induce ALI. Initial studies demonstrated time-dependent repression of ENT1 and ENT2 transcript and protein levels during ALI. To examine the contention that ENT repression represents an endogenous adaptive response, we performed functional studies with the ENT inhibitor dipyridamole. Dipyridamole treatment (1 mg/kg; EC50=10 μM) was associated with significant increases in ALI survival time (277 vs. 395 min; P<0.05). Subsequent studies in gene-targeted mice for Ent1 or Ent2 revealed a selective phenotype in Ent2−/− mice, including attenuated pulmonary edema and improved gas exchange during ALI in conjunction with elevated adenosine levels in the bronchoalveolar fluid. Furthermore, studies in genetic models for adenosine receptors implicated the A2B adenosine receptor (Adora2b) in mediating ENT-dependent lung protection. Notably, dipyridamole-dependent attenuation of lung inflammation was abolished in mice with alveolar epithelial Adora2b gene deletion. Our newly identified crosstalk pathway between ENT2 and alveolar epithelial Adora2b in lung protection during ALI opens possibilities for combined therapies targeted to this protein set.—Eckle, T., Hughes, K., Ehrentraut, H., Brodsky, K. S., Rosenberger, P., Choi, D.-S., Ravid, K., Weng, T., Xia, Y., Blackburn, M. R., Eltzschig, H. K. Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. PMID:23603835

  18. Sleep-Wake Regulation and Its Impact on Working Memory Performance: The Role of Adenosine

    PubMed Central

    Reichert, Carolin Franziska; Maire, Micheline; Schmidt, Christina; Cajochen, Christian

    2016-01-01

    The sleep-wake cycle is regulated by a fine-tuned interplay between sleep-homeostatic and circadian mechanisms. Compelling evidence suggests that adenosine plays an important role in mediating the increase of homeostatic sleep pressure during time spent awake and its decrease during sleep. Here, we summarize evidence that adenosinergic mechanisms regulate not only the dynamic of sleep pressure, but are also implicated in the interaction of homeostatic and circadian processes. We review how this interaction becomes evident at several levels, including electrophysiological data, neuroimaging studies and behavioral observations. Regarding complex human behavior, we particularly focus on sleep-wake regulatory influences on working memory performance and underlying brain activity, with a specific emphasis on the role of adenosine in this interplay. We conclude that a change in adenosinergic mechanisms, whether exogenous or endogenous, does not only impact on sleep-homeostatic processes, but also interferes with the circadian timing system. PMID:26861410

  19. Adenosine A2A Receptors in Psychopharmacology: Modulators of Behavior, Mood and Cognition

    PubMed Central

    Shen, Hai-Ying; Chen, Jiang-Fan

    2009-01-01

    The adenosine A2A receptor (A2AR) is in the center of a neuromodulatory network affecting a wide range of neuropsychiatric functions by interacting with and integrating several neurotransmitter systems, especially dopaminergic and glutamatergic neurotransmission. These interactions and integrations occur at multiple levels, including (1) direct receptor- receptor cross-talk at the cell membrane, (2) intracellular second messenger systems, (3) trans-synaptic actions via striatal collaterals or interneurons in the striatum, (4) and interactions at the network level of the basal ganglia. Consequently, A2ARs constitute a novel target to modulate various psychiatric conditions. In the present review we will first summarize the molecular interaction of adenosine receptors with other neurotransmitter systems and then discuss the potential applications of A2AR agonists and antagonists in physiological and pathophysiological conditions, such as psychostimulant action, drug addiction, anxiety, depression, schizophrenia and learning and memory. PMID:20190961

  20. Synthesis and biological activity of trisubstituted adenines as A 2A adenosine receptor antagonists.

    PubMed

    Lambertucci, Catia; Vittori, Sauro; Mishra, Ram Chandra; Dal Ben, Diego; Klotz, Karl-Norbert; Volpini, Rosaria; Cristalli, Gloria

    2007-01-01

    The discovery of new drugs for the treatment of neurodegenerative disorders, such as Parkinson's disease, has become an attractive field of research. Due to the regulation of D(2) receptor activity by A(2A) adenosine receptor, potent and selective ligands of A(2A) subtype could be useful tools to study neurodegenerative disorders. A series of 2,8-disubstituted-9-ethyladenine derivatives was synthesized and tested in binding affinity assay at human adenosine receptors. New compounds showed good affinity and selectivity at A(2A) receptor versus the other subtypes. The introduction of a bromine atom in 8-position increased the affinity of these compounds, leading to ligands with K(i) in the nanomolar range. PMID:18066802

  1. Sleep-Wake Regulation and Its Impact on Working Memory Performance: The Role of Adenosine.

    PubMed

    Reichert, Carolin Franziska; Maire, Micheline; Schmidt, Christina; Cajochen, Christian

    2016-01-01

    The sleep-wake cycle is regulated by a fine-tuned interplay between sleep-homeostatic and circadian mechanisms. Compelling evidence suggests that adenosine plays an important role in mediating the increase of homeostatic sleep pressure during time spent awake and its decrease during sleep. Here, we summarize evidence that adenosinergic mechanisms regulate not only the dynamic of sleep pressure, but are also implicated in the interaction of homeostatic and circadian processes. We review how this interaction becomes evident at several levels, including electrophysiological data, neuroimaging studies and behavioral observations. Regarding complex human behavior, we particularly focus on sleep-wake regulatory influences on working memory performance and underlying brain activity, with a specific emphasis on the role of adenosine in this interplay. We conclude that a change in adenosinergic mechanisms, whether exogenous or endogenous, does not only impact on sleep-homeostatic processes, but also interferes with the circadian timing system. PMID:26861410

  2. The Many Faces of the A2b Adenosine Receptor in Cardiovascular and Metabolic Diseases

    PubMed Central

    Eisenstein, Anna; Patterson, Shenia; Ravid, Katya

    2016-01-01

    Modulation of the low affinity adenosine receptor subtype, the A2b adenosine receptor (A2bAR), has gained interest as a therapeutic target in various pathologic areas associated with cardiovascular disease. The actions of the A2bAR are diverse and at times conflicting depending on cell and tissue type and the timing of activation or inhibition of the receptor. The A2bAR is a promising and exciting pharmacologic target, however, a thorough understanding of A2bAR action is necessary to reach the therapeutic potential of this receptor. This review will focus on the role of the A2bAR in various cardiovascular and metabolic pathologies in which the receptor is currently being studied. We will illustrate the complexities of A2bAR signaling and highlight areas of research with potential for therapeutic development. PMID:25975415

  3. An enzyme-free strategy for ultrasensitive detection of adenosine using a multipurpose aptamer probe and malachite green.

    PubMed

    Zhao, Hui; Wang, Yong-Sheng; Tang, Xian; Zhou, Bin; Xue, Jin-Hua; Liu, Hui; Liu, Shan-Du; Cao, Jin-Xiu; Li, Ming-Hui; Chen, Si-Han

    2015-08-01

    We report on an enzyme-free and label-free strategy for the ultrasensitive determination of adenosine. A novel multipurpose adenosine aptamer (MAAP) is designed, which serves as an effective target recognition probe and a capture probe for malachite green. In the presence of adenosine, the conformation of the MAAP is converted from a hairpin structure to a G-quadruplex. Upon addition of malachite green into this solution, a noticeable enhancement of resonance light scattering was observed. The signal response is directly proportional to the concentration of adenosine ranging from 75 pM to 2.2 nM with a detection limit of 23 pM, which was 100-10,000 folds lower than those obtained by previous reported methods. Moreover, this strategy has been applied successfully for detecting adenosine in human urine and blood samples, further proving its reliability. The mechanism of adenosine inducing MAAP to form a G-quadruplex was demonstrated by a series of control experiments. Such a MAAP probe can also be used to other strategies such as fluorescence or spectrophotometric ones. We suppose that this strategy can be expanded to develop a universal analytical platform for various target molecules in the biomedical field and clinical diagnosis. PMID:26320800

  4. Impact on monoclonal antibody production in murine hybridoma cell cultures of adenosine receptor antagonists and phosphodiesterase inhibitors.

    PubMed

    Kelso, Geoffrey F; Kazi, Shahid A; Harris, Simon J; Boysen, Reinhard I; Chowdhury, Jamil; Hearn, Milton T W

    2016-01-15

    The effects of different adenosine receptor antagonists and cyclic nucleotide phosphodiesterase (PDE) inhibitors on monoclonal antibody (mAb) titer and cell viability of murine hybridoma cells in culture were measured as part of our investigations to discover additives that enhance mAb production. Specific adenosine receptor antagonists and PDE inhibitors were found to enhance or decrease the titer of immunoglobulin G1 (IgG1) mAbs relative to negative controls, depending on the specific compound and cell line employed. The observed enhancements or decreases in IgG1 mAb titer appeared to be mainly due to an increase or decrease in specific productivity rates (ngmAb/cell), respectively. The different effects of the selective adenosine antagonists suggest that antagonism at the level of the adenosine A2A and A1 or the adenosine A3 receptors result in either enhancement or suppression of IgG1 mAb production by hybridoma cells. Overall, these studies have identified hitherto unknown activities of specific adenosine antagonists and PDE inhibitors which indicate they may have valuable roles as cell culture additives in industrial biomanufacturing processes designed to enhance the yields of mAbs or other recombinant proteins produced by mammalian cell culture procedures. PMID:26646217

  5. Roles of the Adenosine Receptor and CD73 in the Regulatory Effect of γδ T Cells

    PubMed Central

    Liang, Dongchun; Zuo, Aijun; Shao, Hui; Chen, Mingjiazi; Kaplan, Henry J.; Sun, Deming

    2014-01-01

    The adenosine A2A receptor (A2AR), the main functional adenosine receptor on murine T cells, plays a unique role in the attenuation of inflammation and tissue damage in vivo. Here, we showed that, of the immune cell types tested, activated γδ T cells expressed the highest levels of A2AR mRNA and that A2AR ligation inhibited αβ T cell activation, but enhanced γδ T cell activation. We also showed that the inhibitory effect of an adenosine receptor agonist on autoreactive T cells was prevented by addition of a low percentage of activated γδ T cells. Furthermore, compared to resting cells, activated γδ T cells expressed significantly lower levels of CD73, an enzyme involved in the generation of extracellular adenosine. Exogenous AMP had a significant inhibitory effect on autoreactive T cell responses, but only in the presence of CD73+ γδ T cells, and this effect was abolished by a CD73 inhibitor. Our results show that expression of increased amounts of A2AR allows γδ T cells to bind adenosine and thereby attenuate its suppressive effect, while decreased expression of CD73 results in less generation of adenosine in the inflammatory site. Together, these events allow activated γδ T cells to acquire increased proinflammatory activity, leading to augmented autoimmune responses. PMID:25268760

  6. The Cr