Science.gov

Sample records for calculated electronic structure

  1. Towards scalable electronic structure calculations for alloys

    SciTech Connect

    Stocks, G.M.; Nicholson, D.M.C.; Wang, Y.; Shelton, W.A.; Szotek, Z.; Temmermann, W.M.

    1994-06-01

    A new approach to calculating the properties of large systems within the local density approximation (LDA) that offers the promise of scalability on massively parallel supercomputers is outlined. The electronic structure problem is formulated in real space using multiple scattering theory. The standard LDA algorithm is divided into two parts. Firstly, finding the self-consistent field (SCF) electron density, Secondly, calculating the energy corresponding to the SCF density. We show, at least for metals and alloys, that the former problem is easily solved using real space methods. For the second we take advantage of the variational properties of a generalized Harris-Foulkes free energy functional, a new conduction band Fermi function, and a fictitious finite electron temperature that again allow us to use real-space methods. Using a compute-node {R_arrow} atom equivalence the new method is naturally highly parallel and leads to O(N) scaling where N is the number of atoms making up the system. We show scaling data gathered on the Intel XP/S 35 Paragon for systems up to 512-atoms/simulation cell. To demonstrate that we can achieve metallurgical-precision, we apply the new method to the calculation the energies of disordered CuO{sub 0.5}Zn{sub 0.5} alloys using a large random sample.

  2. Multilevel domain decomposition for electronic structure calculations

    SciTech Connect

    Barrault, M. . E-mail: maxime.barrault@edf.fr; Cances, E. . E-mail: cances@cermics.enpc.fr; Hager, W.W. . E-mail: hager@math.ufl.edu; Le Bris, C. . E-mail: lebris@cermics.enpc.fr

    2007-03-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure.

  3. Multigrid Methods in Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil

    1996-03-01

    Multigrid techniques have become the method of choice for a broad range of computational problems. Their use in electronic structure calculations introduces a new set of issues when compared to traditional plane wave approaches. We have developed a set of techniques that address these issues and permit multigrid algorithms to be applied to the electronic structure problem in an efficient manner. In our approach the Kohn-Sham equations are discretized on a real-space mesh using a compact representation of the Hamiltonian. The resulting equations are solved directly on the mesh using multigrid iterations. This produces rapid convergence rates even for ill-conditioned systems with large length and/or energy scales. The method has been applied to both periodic and non-periodic systems containing over 400 atoms and the results are in very good agreement with both theory and experiment. Example applications include a vacancy in diamond, an isolated C60 molecule, and a 64-atom cell of GaN with the Ga d-electrons in valence which required a 250 Ry cutoff. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures. The compact representation of the Hamiltonian is especially well suited to such machines. Tests on the Cray-T3D have shown nearly linear scaling of the execution time up to the maximum number of processors (512). The MPP implementation has been used for studies of a large Amyloid Beta Peptide (C_146O_45N_42H_210) found in the brains of Alzheimers disease patients. Further applications of the multigrid method will also be described. (in collaboration D. J. Sullivan and J. Bernholc)

  4. Electronic structure calculations in arbitrary electrostatic environments

    NASA Astrophysics Data System (ADS)

    Watson, Mark A.; Rappoport, Dmitrij; Lee, Elizabeth M. Y.; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán

    2012-01-01

    Modeling of electronic structure of molecules in electrostatic environments is of considerable relevance for surface-enhanced spectroscopy and molecular electronics. We have developed and implemented a novel approach to the molecular electronic structure in arbitrary electrostatic environments that is compatible with standard quantum chemical methods and can be applied to medium-sized and large molecules. The scheme denoted CheESE (chemistry in electrostatic environments) is based on the description of molecular electronic structure subject to a boundary condition on the system/environment interface. Thus, it is particularly suited to study molecules on metallic surfaces. The proposed model is capable of describing both electrostatic effects near nanostructured metallic surfaces and image-charge effects. We present an implementation of the CheESE model as a library module and show example applications to neutral and negatively charged molecules.

  5. Improving Boundary Conditions for Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Benesh, G. A.; Haydock, Roger

    Boundary conditions imposed on a local system joined to a much larger substrate system routinely introduce unphysical reflections that affect the calculation of electronic properties such as energies, charge densities, and densities of states. These problems persist in atomic cluster, slab, and supercell calculations alike. However, wave functions in real, physical systems do not reflect at artificial boundaries. Instead, they carry current smoothly across the surface separating the local system from the underlying medium. Haydock and Nex have derived a non-reflecting boundary condition that works well for discrete systems [Phys. Rev. B 75, 205121 (2006)]. Solutions satisfying their maximal breaking of time-reversal symmetry (MBTS) boundary condition carry current away from the boundary at a maximal rate--in much the same way as exact wave functions in physical systems. The MBTS approach has now been extended to studies employing continuous basis functions. In model systems, MBTS boundary conditions work well for calculating wave functions, eigenenergies, and densities of states. Results are reported for an Al(001) surface. Comparisons are made with slab calculations, embedding calculations, and experiment.

  6. Electronic Structure Calculations of Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Bromley, Steve; Ziolkowski, Marcin; Marler, Joan

    2016-05-01

    Exotic systems like Highly Charged Ions (HCIs) are attracting more attention based on their properties and possible interactions. Abundance of HCIs in the solar wind and their interaction with the upper atmosphere puts them in the attention of astro- and atmospheric physicists. Also, their unique properties originating in the high charge make them an excellent candidate for precision measurements and the next generation of atomic clocks. For a better understanding of the dynamics of processes involving HCIs a combined theoretical and experimental effort is needed to study their basic properties and interactions. Both theory and experiment need to be combined due to the extreme nature of these systems. We present preliminary insight into electronic structure of light HCIs, their interactions with neutral atoms and dynamics of charge transfer processes.

  7. Probing Actinide Electronic Structure through Pu Cluster Calculations

    DOE PAGESBeta

    Ryzhkov, Mickhail V.; Mirmelstein, Alexei; Yu, Sung-Woo; Chung, Brandon W.; Tobin, James G.

    2013-02-26

    The calculations for the electronic structure of clusters of plutonium have been performed, within the framework of the relativistic discrete-variational method. Moreover, these theoretical results and those calculated earlier for related systems have been compared to spectroscopic data produced in the experimental investigations of bulk systems, including photoelectron spectroscopy. Observation of the changes in the Pu electronic structure as a function of size provides powerful insight for aspects of bulk Pu electronic structure.

  8. Basis functions for electronic structure calculations on spheres.

    PubMed

    Gill, Peter M W; Loos, Pierre-François; Agboola, Davids

    2014-12-28

    We introduce a new basis function (the spherical Gaussian) for electronic structure calculations on spheres of any dimension D. We find general expressions for the one- and two-electron integrals and propose an efficient computational algorithm incorporating the Cauchy-Schwarz bound. Using numerical calculations for the D = 2 case, we show that spherical Gaussians are more efficient than spherical harmonics when the electrons are strongly localized. PMID:25554128

  9. Electronic-structure calculation for metals by local optimization

    SciTech Connect

    Woodward, C.; Min, B.I.; Benedek, R.; Garner, J.

    1989-03-15

    Recent work by Car and Parrinello has generated considerable interest in the calculation of electronic structure by nonlinear optimization. The technique introduced by these authors, dynamical simulated annealing, is designed for problems that involve energy barriers. When local optimization suffices to determine the energy minimum, more direct methods are available. In this paper we apply the algorithm suggested by Williams and Soler to calculate the electronic structure of metals, using a plane-wave expansion for the electronic orbitals and an electron-ion pseudopotential of the Kleinman-Bylander form. Radial pseudopotentials were taken from the compilation of Bachelet, Hamann, and Schlueter. Calculations are performed to optimize the electronic structure (i) with fixed atomic configuration, or (ii) with the atomic volume being optimized simultaneously. It is found that the dual optimization (ii) converges in essentially the same number of steps as the static lattice optimization (i). Numerical results are presented for Li, K, Al, and simple-cubic P.

  10. Spectral differences in real-space electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Jordan, D. K.; Mazziotti, D. A.

    2004-01-01

    Real-space grids for electronic structure calculations are efficient because the potential is diagonal while the second derivative in the kinetic energy may be sparsely evaluated with finite differences or finite elements. In applications to vibrational problems in chemical physics a family of methods known as spectral differences has improved finite differences by several orders of magnitude. In this paper the use of spectral differences for electronic structure is studied. Spectral differences are implemented in two electronic structure programs PARSEC and HARES which currently employ finite differences. Applications to silicon clusters and lattices indicate that spectral differences achieve the same accuracy as finite differences with less computational work.

  11. Parallel adaptive mesh refinement for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1996-12-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradients with multigrid preconditioning. We have parallelized our solver using an object-oriented adaptive mesh refinement framework.

  12. Elongation method for electronic structure calculations of random DNA sequences.

    PubMed

    Orimoto, Yuuichi; Liu, Kai; Aoki, Yuriko

    2015-10-30

    We applied ab initio order-N elongation (ELG) method to calculate electronic structures of various deoxyribonucleic acid (DNA) models. We aim to test potential application of the method for building a database of DNA electronic structures. The ELG method mimics polymerization reactions on a computer and meets the requirements for linear scaling computational efficiency and high accuracy, even for huge systems. As a benchmark test, we applied the method for calculations of various types of random sequenced A- and B-type DNA models with and without counterions. In each case, the ELG method maintained high accuracy with small errors in energy on the order of 10(-8) hartree/atom compared with conventional calculations. We demonstrate that the ELG method can provide valuable information such as stabilization energies and local densities of states for each DNA sequence. In addition, we discuss the "restarting" feature of the ELG method for constructing a database that exhaustively covers DNA species. PMID:26337429

  13. New quinternary selenides: Syntheses, characterizations, and electronic structure calculations

    SciTech Connect

    Chung, Ming-Yan; Lee, Chi-Shen

    2013-06-01

    Five quinternary selenides, Sr₂.₆₃Y₀.₃₇Ge₀.₆₃Sb₂.₃₇Se₈ (I), Sr₂.₆₃La₀.₃₇Ge₀.₆₃Sb₂.₃₇Se₈ (II), Sr₂.₇₁La₀.₂₉Sn₀.₇₇Bi₂.₂₃Se₈ (III), Ba₂.₆₇ La₀.₃₃ Sn₀.₆₇Sb₂.₃₃Se₈ (IV), and Ba₂.₆₇ La₀.₃₃Sn₀.₆₇Bi₂.₃₃Se₈ (V), were synthesized by solid-state reaction in fused silica tubes. These compounds are isostructural and crystallize in the Sr₃GeSb₂Se₈ structural-type, which belongs to the orthorhombic space group Pnma (no. 62). Three structural units, 1[MSe₃], 1[M₄Se₁₀] (M=Tt, Pn) and M´ (M´=groups II and III element), comprise the entire one-dimensional structure, separated by M´. Measurements of electronic resistivity and diffused reflectance suggest that IV and V have semiconducting properties. Electronic structure calculations confirm the site preferences of Sr/La element discovered by crystal structure refinement. - Graphical abstract: Quinternary selenides Ae₂.₆₇M₀.₃₃Tt₀.₆₇Pn₂.₃₃Se₈ (Ae, M, Tt, Pn=Sr/Ba, Y/La, Ge/Sn, Sb/Bi) were synthesized and their site preferences were characterized by single-crystal X-ray diffraction and electronic structure calculation. Highlights: • Five new quinternary selenides were synthesized and characterized. • Structural units, 1[MSe₃] and 1[M₄Se₁₀] (M=Tt, Pn), construct the one-dimensional structure. • Calculations of electronic structure confirm site preference of Sr/La sites.

  14. Exchange coupling in transition metal monoxides: Electronic structure calculations

    SciTech Connect

    Fischer, Guntram; Daene, Markus W; Ernst, Arthur; Bruno, Patrick; Lueders, Martin; Szotek, Zdzislawa; Temmerman, Walter M; Wolfam, Hergert

    2009-01-01

    An ab initio study of magnetic-exchange interactions in antiferromagnetic and strongly correlated 3d transition metal monoxides is presented. Their electronic structure is calculated using the local self-interaction correction approach, implemented within the Korringa-Kohn-Rostoker band-structure method, which is based on multiple scattering theory. The Heisenberg exchange constants are evaluated with the magnetic force theorem. Based on these the corresponding Neel temperatures TN and spin-wave dispersions are calculated. The Neel temperatures are obtained using mean-field approximation, random-phase approximation and Monte Carlo simulations. The pressure dependence of TN is investigated using exchange constants calculated for different lattice constants. All the calculated results are compared to experimental data.

  15. Electronic Structure and Molecular Dynamics Calculations for KBH4

    NASA Astrophysics Data System (ADS)

    Papaconstantopoulos, Dimitrios; Shabaev, Andrew; Hoang, Khang; Mehl, Michael; Kioussis, Nicholas

    2012-02-01

    In the search for hydrogen storage materials, alkali borohydrides MBH4 (M=Li, Na, K) are especially interesting because of their light weight and the high number of hydrogen atoms per metal atom. Electronic structure calculations can give insights into the properties of these complex hydrides and provide understanding of the structural properties and of the bonding of hydrogen. We have performed first-principles density-functional theory (DFT) and tight-binding (TB) calculations for KBH4 in both the high temperature (HT) and low temperature (LT) phases to understand its electronic and structural properties. Our DFT calculations were carried out using the VASP code. The results were then used as a database to develop a tight-binding Hamiltonian using the NRL-TB method. This approach allowed for computationally efficient calculations of phonon frequencies and elastic constants using the static module of the NRL-TB, and also using the molecular dynamics module to calculate mean-square displacements and formation energies of hydrogen vacancies.

  16. Wavelets in self-consistent electronic structure calculations

    SciTech Connect

    Wei, S.; Chou, M.Y.

    1996-04-01

    We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H{sub 2} and O{sub 2}, using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically. {copyright} {ital 1996 The American Physical Society.}

  17. Real-time feedback from iterative electronic structure calculations.

    PubMed

    Vaucher, Alain C; Haag, Moritz P; Reiher, Markus

    2016-04-01

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semiempirical methods as the data source and apply the surrogate-potential mediator to deliver reliable real-time feedback. © 2015 Wiley Periodicals, Inc. PMID:26678030

  18. Statistical learning for alloy design from electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Broderick, Scott R.

    The objective of this thesis is to explore how statistical learning methods can contribute to the interpretation and efficacy of electronic structure calculations. This study develops new applications of statistical learning and data mining methods to both semi-empirical and density functional theory (DFT) calculations. Each of these classes of electronic structure calculations serves as templates for different data driven discovery strategies for materials science applications. In our study of semi-empirical methods, we take advantage of the ability of data mining methods to quantitatively assess high dimensional parameterization schemes. The impact of this work includes the development of accelerated computational schemes for developing reduced order models. Another application is the use of these informatics based techniques to serve as a means for estimating parameters when data for such calculations are not available. Using density of states (DOS) spectra derived from DFT calculations we have demonstrated the classification power of singular value decomposition methods to accurately develop structural and stoichiometric classifications of compounds. Building on this work we have extended this analytical strategy to apply the predictive capacity of informatics methods to develop a new and far more robust modeling approach for DOS spectra, addressing an issue that has gone relatively unchallenged over two decades. By exploring a diverse array of materials systems (metals, ceramics, different crystal structures) this work has laid the foundations for expanding the linkages between statistical learning and statistical thermodynamics. The results of this work provide exciting new opportunities in computational based design of materials that have not been explored before.

  19. Linear Multigrid Techniques in Self-consistent Electronic Structure Calculations

    SciTech Connect

    Fattebert, J-L

    2000-05-23

    Ab initio DFT electronic structure calculations involve an iterative process to solve the Kohn-Sham equations for an Hamiltonian depending on the electronic density. We discretize these equations on a grid by finite differences. Trial eigenfunctions are improved at each step of the algorithm using multigrid techniques to efficiently reduce the error at all length scale, until self-consistency is achieved. In this paper we focus on an iterative eigensolver based on the idea of inexact inverse iteration, using multigrid as a preconditioner. We also discuss how this technique can be used for electrons described by general non-orthogonal wave functions, and how that leads to a linear scaling with the system size for the computational cost of the most expensive parts of the algorithm.

  20. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.

    PubMed

    Monastyrskii, Liubomyr S; Boyko, Yaroslav V; Sokolovskii, Bogdan S; Potashnyk, Vasylyna Ya

    2016-12-01

    An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range. PMID:26768147

  1. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined

  2. Supersampling method for efficient grid-based electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Ryu, Seongok; Choi, Sunghwan; Hong, Kwangwoo; Kim, Woo Youn

    2016-03-01

    The egg-box effect, the spurious variation of energy and force due to the discretization of continuous space, is an inherent vexing problem in grid-based electronic structure calculations. Its effective suppression allowing for large grid spacing is thus crucial for accurate and efficient computations. We here report that the supersampling method drastically alleviates it by eliminating the rapidly varying part of a target function along both radial and angular directions. In particular, the use of the sinc filtering function performs best because as an ideal low pass filter it clearly cuts out the high frequency region beyond allowed by a given grid spacing.

  3. Supersampling method for efficient grid-based electronic structure calculations.

    PubMed

    Ryu, Seongok; Choi, Sunghwan; Hong, Kwangwoo; Kim, Woo Youn

    2016-03-01

    The egg-box effect, the spurious variation of energy and force due to the discretization of continuous space, is an inherent vexing problem in grid-based electronic structure calculations. Its effective suppression allowing for large grid spacing is thus crucial for accurate and efficient computations. We here report that the supersampling method drastically alleviates it by eliminating the rapidly varying part of a target function along both radial and angular directions. In particular, the use of the sinc filtering function performs best because as an ideal low pass filter it clearly cuts out the high frequency region beyond allowed by a given grid spacing. PMID:26957151

  4. Efficient Execution of Electronic Structure Calculations on SMP Clusters

    SciTech Connect

    Nurzhan Ustemirov

    2006-05-01

    Applications augmented with adaptive capabilities are becoming common in parallel computing environments. For large-scale scientific applications, dynamic adjustments to a computationally-intensive part may lead to a large pay-off in facilitating efficient execution of the entire application while aiming at avoiding resource contention. Application-specific knowledge, often best revealed during the run-time, is required to initiate and time these adjustments. In particular, General Atomic and Molecular Electronic Structure System (GAMESS) is a program for ab initio quantum chemistry that places significant demands on the high-performance computing platforms. Certain electronic structure calculations are characterized by high consumption of a particular resource, such as CPU, main memory, or disk I/O. This may lead to resource contention among concurrent GAMESS jobs and other programs in the dynamically changing environment. Thus, it is desirable to improve GAMESS calculations by means of dynamic adaptations. In this thesis, we show how an application- or algorithm-specific knowledge may play a significant role in achieving this goal. The choice of implementation is facilitated by a module-driven middleware easily integrated with GAMESS that assesses resource consumption and invokes GAMESS adaptations to the system environment. We show that the throughput of GAMESS jobs may be improved greatly as a result of such adaptations.

  5. An Extensive Database of Electronic Structure Calculations between Transition Metals

    NASA Astrophysics Data System (ADS)

    Sayed, Shereef; Papaconstantopoulos, Dimitrios

    Density Functional Theory and its derived application methods, such as the Augmented Plane Wave (APW) method, have shown great success in predicting the fundamental properties of materials. In this work, we apply the APW method to explore the properties of diatomic pairs of transition metals in the CsCl structure, for all possible combinations. A total of 435 compounds have been studied. The predicted Density of States, and Band Structures are presented, along with predicted electron-phonon coupling and Stoner Criterion, in order to identify potential new superconducting or ferromagnetic materials. This work is performed to demonstrate the concept of ``high-throughput'' calculations at the crossing-point of ``Big Data'' and materials science. Us Dept of Energy.

  6. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  7. Semiempirical electronic structure calculation on Ca and Pb apatites

    NASA Astrophysics Data System (ADS)

    Matos, Maria; Terra, Joice; Ellis, D. E.

    A systematic study is made on the electronic structure of stoichiometric calcium and lead apatites, using the tight binding extended Hückel method (eHT). The aim is to investigate the applicability of the semiempirical theory to study this family of compounds. A10(BO4)6X2 (A = Ca, Pb) apatites, differing by substitutions in the BO4 tetrahedral unit (B = P, As, and V) and X-channel ion (X = OH, Cl), are considered. The calculations show that eHT is suitable to describe basic properties especially concerning trends with atomic substitution and geometry changes. Band structure, Mulliken charge distribution, and bond orders are in good agreement with results of ab initio density functional theory (DFT) found in the literature. Large variations in the optical gap due to vanadium and lead substitutions are newly found. Changes in the anion X-channel affect the optical gap, which is in close agreement with DFT results. Analysis involving subnets are performed to determine the role of halogenic orbitals in the electronic structure of chloroapatites, showing evidence of covalent Cl bonding. It was also found that Pb=OH bonding in hydroxy-vanadinite Pb10(VO4)6(OH)2, recently synthesized, is weaker than that of Ca=OH in vanadate Ca10(VO4)6(OH)2. Arsenium is found to be more weakely bound to the O-tetrahedron than phosphorous, although Ca=O bond is increased with the substitution. We investigate, in addition, the electronic structure of a model system Ca10(AsO4)6(OH)2, obtained from direct As substitution in the vanadate Ca10(VO4)6(OH)2.

  8. Electronic structure calculations of hexaborides and boron carbide

    SciTech Connect

    Ripplinger, H.; Schwarz, K.; Blaha, P.

    1997-10-01

    The electronic structures of several CaB{sub 6}-type hexaborides and boron carbide, B{sub 4}C, are studied by the full potential linearized-augmented plane-wave (LAPW) method within density functional theory. The hexaborides contain inter- and intra-octahedral boron-boron bonds, which under pressure decrease approximately linearly; however, the former shrinks more than the latter, consistent with Raman spectra and a simple spring constant model. The boron-boron dumbbell is stronger than the intraoctahedral bonds. For boron carbide several substitutions of the three-atom chain are simulated (BBC, BCB, CBC, CCB, and CCC). Trends in the charge distribution are analyzed and electric field gradient calculations compared to nuclear quadrupole coupling constant measurements show that B must be in the center position.

  9. Electronic structure calculations of group III nitride clusters

    NASA Astrophysics Data System (ADS)

    Kandalam, Anil Kumar

    2002-04-01

    Group III nitrides have become materials of choice in the manufacturing of devices used in opto-electronic and high-temperature high-power electronic industries. Hence, these materials received wide attention and have become the focus of several theoretical and experimental studies. Though these materials are studied in bulk and thin film forms, research at the cluster level is still lacking. Hence, a first principles calculation, based on the Generalized Gradient Approximation (GGA) to Density Functional Theory (DFT) was initiated to study the structural and electronic properties of AlnN n, GanNn, and InnNn, (n = 1--6) clusters. The calculated results show that the small polyatomic nitride clusters (monomer, triatomic and dimer) have a strong tendency to form N-N multiple bonds leading to the weakening of any existent metal-N or metal-metal bonds. In the absence of the N-N bonds, the metal-nitrogen bond dominates, forming short bond-lengths and large force constants. However, the strength of these heteronuclear bonds decreases in going from Al to Ga and In, whereas the weak metal-metal bond increases its strength from Al to Ga to In in the nitride clusters. Starting from the trimers M3N3, a distinct structural difference between the lowest energy configurations of AlnNn and that of GanNn, and In nNn, clusters has been observed. For AlnNn, clusters, the metal-nitrogen bond is found to dominate the lowest energy configurations. As the cluster size is increased from Al3N3 to Al 6N6, a transition from planar ring structures towards a bulk-like three dimensional configurations is seen. However, in GanN n, and InnNn clusters, no such trend is observed and the lowest energy configurations are dominated either by N2 or (N3)- sub-units. The segregation of N atoms within the stoichiometric clusters indicates the possibility of N2 and N3 based defects in the thin-film deposition process which may affect the quality of the thin-film devices based on Group III nitrides.

  10. Electronic structure from relativistic quasiparticle self-consistent GW calculations

    NASA Astrophysics Data System (ADS)

    Blügel, Stefan

    Most theoretical studies of topological insulators (TIs) are based on tight-binding descriptions and density functional theory (DFT). But recently, many-body calculations within the GW approximation attract much attention in the study of these materials. We present an implementation of the quasiparticle self-consistent (QS) GW method where the spin-orbit coupling (SOC) is fully taken into account in each iteration rather than added a posteriori. Within the all-electron FLAPW formalism, we show DFT, one-shot GW , and QS GW calculations for several, well-known TIs. We present a comparison of the calculations to photoemission spectroscopy and show that the GW corrected bands agree much better with experiment. For example, we show that Bi2Se3 is a direct gap semiconductor, in contrast to what was believed for many years by interpreting experimental results on the basis of DFT and that small strains in Bi can lead to a semimetal-to-semiconductor or trivial-to-topological transitions. Quasiparticle calculations for low-dimensional systems are still very demanding. In order to study the topological surface states with an approach based on GW , we use Wannier functions to construct a Hamiltonian that reproduces the many-body band structure of the bulk, and that is used to construct a slab Hamiltonian. With this approach, we discuss the effect of quasiparticle corrections on the surface states of TIs and on the interaction between bulk and surface states Work was funded by the Virtual Institute for Topological Insulators of the Helmholtz Association and carried out in collaboration with Irene Aguilera, Gustav Bihlmayer, and Christoph Friedrich.

  11. Adaptations in Electronic Structure Calculations in Heterogeneous Environments

    SciTech Connect

    Talamudupula, Sai

    2011-01-01

    Modern quantum chemistry deals with electronic structure calculations of unprecedented complexity and accuracy. They demand full power of high-performance computing and must be in tune with the given architecture for superior e ciency. To make such applications resourceaware, it is desirable to enable their static and dynamic adaptations using some external software (middleware), which may monitor both system availability and application needs, rather than mix science with system-related calls inside the application. The present work investigates scienti c application interlinking with middleware based on the example of the computational chemistry package GAMESS and middleware NICAN. The existing synchronous model is limited by the possible delays due to the middleware processing time under the sustainable runtime system conditions. Proposed asynchronous and hybrid models aim at overcoming this limitation. When linked with NICAN, the fragment molecular orbital (FMO) method is capable of adapting statically and dynamically its fragment scheduling policy based on the computing platform conditions. Signi cant execution time and throughput gains have been obtained due to such static adaptations when the compute nodes have very di erent core counts. Dynamic adaptations are based on the main memory availability at run time. NICAN prompts FMO to postpone scheduling certain fragments, if there is not enough memory for their immediate execution. Hence, FMO may be able to complete the calculations whereas without such adaptations it aborts.

  12. Auxiliary basis expansions for large-scale electronic structure calculations

    SciTech Connect

    Jung, Yousung; Sodt, Alexander; Gill, Peter W.M.; Head-Gordon, Martin

    2005-04-04

    One way to reduce the computational cost of electronic structure calculations is to employ auxiliary basis expansions to approximate 4 center integrals in terms of 2 and 3-center integrals, usually using the variationally optimum Coulomb metric to determine the expansion coefficients. However the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules, and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. This means it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.

  13. "Lagrange functions" for order(N) electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Varga, Kalman; Zhang, Zhenyu; Pantelides, S. T.

    2004-03-01

    "Plane waves" have several highly desirable properties for electronic structure calculations, but effectively scale as N3, where N is the number of atoms, because they impose a uniform grid on which one must perform fast Fourier transforms (FFTs). To achieve near-order-N methods, it is imperative to adopt "real-space methods and non-uniform grids. The objective is usually pursued either by discretization or by adopting local basis sets, either numerical or analytical, with optimized short range. Here we report on a novel basis set, which we label "Lagrange functions" that are defined to satisfy the Lagrange interpolation condition and on a grid that corresponds to a Gaussian quadrature for integrations with optimized numerical accuracy. Lagrange functions combine the best attributes of plane waves and real-space methods. Just like plane waves, convergence is controlled by a single parameter in a systematic way, are orthonormal and defined analytically everywhere, but have the added flexibility of a weight function that controls the distribution of grid points and can be used to optimize the calculation for each system. They do not require FFTs and integrals are trivial and accurate since each Lagrange function is nonzero on a single grid point. The power of the method will be illustrated with several examples.

  14. Large Scale Electronic Structure Calculations using Quantum Chemistry Methods

    NASA Astrophysics Data System (ADS)

    Scuseria, Gustavo E.

    1998-03-01

    This talk will address our recent efforts in developing fast, linear scaling electronic structure methods for large scale applications. Of special importance is our fast multipole method( M. C. Strain, G. E. Scuseria, and M. J. Frisch, Science 271), 51 (1996). (FMM) for achieving linear scaling for the quantum Coulomb problem (GvFMM), the traditional bottleneck in quantum chemistry calculations based on Gaussian orbitals. Fast quadratures(R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, Chem. Phys. Lett. 257), 213 (1996). combined with methods that avoid the Hamiltonian diagonalization( J. M. Millam and G. E. Scuseria, J. Chem. Phys. 106), 5569 (1997) have resulted in density functional theory (DFT) programs that can be applied to systems containing many hundreds of atoms and ---depending on computational resources or level of theory-- to many thousands of atoms.( A. D. Daniels, J. M. Millam and G. E. Scuseria, J. Chem. Phys. 107), 425 (1997). Three solutions for the diagonalization bottleneck will be analyzed and compared: a conjugate gradient density matrix search (CGDMS), a Hamiltonian polynomial expansion of the density matrix, and a pseudo-diagonalization method. Besides DFT, our near-field exchange method( J. C. Burant, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 105), 8969 (1996). for linear scaling Hartree-Fock calculations will be discussed. Based on these improved capabilities, we have also developed programs to obtain vibrational frequencies (via analytic energy second derivatives) and excitation energies (through time-dependent DFT) of large molecules like porphyn or C_70. Our GvFMM has been extended to periodic systems( K. N. Kudin and G. E. Scuseria, Chem. Phys. Lett., in press.) and progress towards a Gaussian-based DFT and HF program for polymers and solids will be reported. Last, we will discuss our progress on a Laplace-transformed \\cal O(N^2) second-order pertubation theory (MP2) method.

  15. Complex wet-environments in electronic-structure calculations

    NASA Astrophysics Data System (ADS)

    Fisicaro, Giuseppe; Genovese, Luigi; Andreussi, Oliviero; Marzari, Nicola; Goedecker, Stefan

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of an applied electrochemical potentials, including complex electrostatic screening coming from the solvent. In the present work we present a solver to handle both the Generalized Poisson and the Poisson-Boltzmann equation. A preconditioned conjugate gradient (PCG) method has been implemented for the Generalized Poisson and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations. On the other hand, a self-consistent procedure enables us to solve the Poisson-Boltzmann problem. The algorithms take advantage of a preconditioning procedure based on the BigDFT Poisson solver for the standard Poisson equation. They exhibit very high accuracy and parallel efficiency, and allow different boundary conditions, including surfaces. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and it will be released as a independent program, suitable for integration in other codes. We present test calculations for large proteins to demonstrate efficiency and performances. This work was done within the PASC and NCCR MARVEL projects. Computer resources were provided by the Swiss National Supercomputing Centre (CSCS) under Project ID s499. LG acknowledges also support from the EXTMOS EU project.

  16. Electronic band structure calculations of bismuth-antimony nanowires

    NASA Astrophysics Data System (ADS)

    Levin, Andrei; Dresselhaus, Mildred

    2012-02-01

    Alloys of bismuth and antimony received initial interest due to their unmatched low-temperature thermoelectric performance, and have drawn more recent attention as the first 3D topological insulators. One-dimensional bismuth-antimony (BiSb) nanowires display interesting quantum confinement effects, and are expected to exhibit even better thermoelectric properties than bulk BiSb. Due to the small, anisotropic carrier effective masses, the electronic properties of BiSb nanowires show great sensitivity to nanowire diameter, crystalline orientation, and alloy composition. We develop a theoretical model for calculating the band structure of BiSb nanowires. For a given crystalline orientation, BiSb nanowires can be in the semimetallic, direct semiconducting, or indirect semiconducting phase, depending on nanowire diameter and alloy composition. These ``phase diagrams'' turn out to be remarkably similar among the different orientations, which is surprising in light of the anisotropy of the bulk BiSb Fermi surface. We predict a novel direct semiconducting phase for nanowires with diameter less than ˜15 nm, over a narrow composition range. We also find that, in contrast to the bulk and thin film BiSb cases, a gapless state with Dirac dispersion cannot be realized in BiSb nanowires.

  17. Explicitly-correlated Gaussian geminals in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Szalewicz, Krzysztof; Jeziorski, Bogumił

    2010-11-01

    Explicitly correlated functions have been used since 1929, but initially only for two-electron systems. In 1960, Boys and Singer showed that if the correlating factor is of Gaussian form, many-electron integrals can be computed for general molecules. The capability of explicitly correlated Gaussian (ECG) functions to accurately describe many-electron atoms and molecules was demonstrated only in the early 1980s when Monkhorst, Zabolitzky and the present authors cast the many-body perturbation theory (MBPT) and coupled cluster (CC) equations as a system of integro-differential equations and developed techniques of solving these equations with two-electron ECG functions (Gaussian-type geminals, GTG). This work brought a new accuracy standard to MBPT/CC calculations. In 1985, Kutzelnigg suggested that the linear r 12 correlating factor can also be employed if n-electron integrals, n > 2, are factorised with the resolution of identity. Later, this factor was replaced by more general functions f (r 12), most often by ? , usually represented as linear combinations of Gaussian functions which makes the resulting approach (called F12) a special case of the original GTG expansion. The current state-of-art is that, for few-electron molecules, ECGs provide more accurate results than any other basis available, but for larger systems the F12 approach is the method of choice, giving significant improvements over orbital calculations.

  18. Hartree-Fock electronic structure calculations for free atoms and immersed atoms in an electron gas

    NASA Astrophysics Data System (ADS)

    Walsh, Kenneth Charles

    Electronic structure calculations for free and immersed atoms are performed in the context of unrestricted Hartree-Fock Theory. Spherical symmetry is broken, lifting degeneracies in electronic configurations involving the magnetic quantum number mℓ. Basis sets, produced from density functional theory, are then explored for completeness. Comparison to spectroscopic data is done by a configurational interaction of the appropriate L and S symmetry. Finally, a perturbation technique by Lowdin is used to couple the bound atomic states to a neutral, uniform background electronic gas (jellium).

  19. Grid-based electronic structure calculations: The tensor decomposition approach

    NASA Astrophysics Data System (ADS)

    Rakhuba, M. V.; Oseledets, I. V.

    2016-05-01

    We present a fully grid-based approach for solving Hartree-Fock and all-electron Kohn-Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 81923 and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.

  20. Calculation of exchange integrals and electronic structure for manganese ferrite

    NASA Astrophysics Data System (ADS)

    Zuo, Xu; Vittoria, Carmine

    2002-11-01

    The electrical and magnetic properties of manganese ferrite (MnFe2O4) are calculated with the density-functional theory (DFT) method for both normal and inverse spinel structures. The exchange functional is chosen to be a mixture of Becke exchange and Fock exchange with variable weight (w). The exchange integrals JAB (the exchange integral between the nearest-neighbor A and B sites) and JBB (the exchange integral between nearest-neighbor B sites) are calculated by substituting the total energies of different magnetic ground states into the Heisenberg model. The calculated value of JAB is in agreement with the experimental values measured by neutron diffraction and NMR. Also, the parameters U (Coulomb repulsion energy), Δ (charge-transfer energy), and EG (band gap) are extracted from the density of states (DOS) and plotted versus w. Our calculated band gap shows that MnFe2O4 is a complex insulator, in contrast to previous local spin-density approximation and generalized gradient approximation calculations, which showed it to be half metallic.

  1. Cluster calculations of the electronic structure of copper oxide superconductors

    SciTech Connect

    Wang Yujuin.

    1990-01-01

    A semiempirical INDO model suitable for examination of the transition metal complexes is used to study the electronic structure of various clusters representing the La-Sr-Cu-O and Nd-Ce-Cu-O types of the high-{Tc} superconductors. The clusters are stabilized by embedding in an appropriate Madelung field. The results show a convergent picture independent of the cluster sizes. In the undoped clusters, all copper sites have a {approximately} d{sup 9} configuration with one unpaired spin coupled antiferromagnetically to the spin of adjacent Cu sites. Fitting the resulting energies to the Heisenberg spin Hamiltonian, the superexchange J values obtained were in excellent agreement with experiments. The hole carriers are mainly of planar O character, while the electron carriers are of Cu character.

  2. Software abstractions and computational issues in parallel structure adaptive mesh methods for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1997-05-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.

  3. Unfolding method for first-principles LCAO electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Cheng; Yamada-Takamura, Yukiko; Ozaki, Taisuke

    2013-08-01

    Unfolding the band structure of a supercell to a normal cell enables us to investigate how symmetry breakers such as surfaces and impurities perturb the band structure of the normal cell. We generalize the unfolding method, originally developed based on Wannier functions, to the linear combination of atomic orbitals (LCAO) method, and present a general formula to calculate the unfolded spectral weight. The LCAO basis set is ideal for the unfolding method because the basis functions allocated to each atomic species are invariant regardless of the existence of surface and impurity. The unfolded spectral weight is well defined by the property of the LCAO basis functions. In exchange for the property, the non-orthogonality of the LCAO basis functions has to be taken into account. We show how the non-orthogonality can be properly incorporated in the general formula. As an illustration of the method, we calculate the dispersive quantized spectral weight of a ZrB2 slab and show strong spectral broadening in the out-of-plane direction, demonstrating the usefulness of the unfolding method.

  4. Unfolding method for first-principles LCAO electronic structure calculations.

    PubMed

    Lee, Chi-Cheng; Yamada-Takamura, Yukiko; Ozaki, Taisuke

    2013-08-28

    Unfolding the band structure of a supercell to a normal cell enables us to investigate how symmetry breakers such as surfaces and impurities perturb the band structure of the normal cell. We generalize the unfolding method, originally developed based on Wannier functions, to the linear combination of atomic orbitals (LCAO) method, and present a general formula to calculate the unfolded spectral weight. The LCAO basis set is ideal for the unfolding method because the basis functions allocated to each atomic species are invariant regardless of the existence of surface and impurity. The unfolded spectral weight is well defined by the property of the LCAO basis functions. In exchange for the property, the non-orthogonality of the LCAO basis functions has to be taken into account. We show how the non-orthogonality can be properly incorporated in the general formula. As an illustration of the method, we calculate the dispersive quantized spectral weight of a ZrB2 slab and show strong spectral broadening in the out-of-plane direction, demonstrating the usefulness of the unfolding method. PMID:23912816

  5. O(N) methods in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Bowler, D. R.; Miyazaki, T.

    2012-03-01

    Linear-scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, which rely on the short-ranged nature of electronic structure, will allow accurate, ab initio simulations of systems of unprecedented size. The theory behind the locality of electronic structure is described and related to physical properties of systems to be modelled, along with a survey of recent developments in real-space methods which are important for efficient use of high-performance computers. The linear-scaling methods proposed to date can be divided into seven different areas, and the applicability, efficiency and advantages of the methods proposed in these areas are then discussed. The applications of linear-scaling methods, as well as the implementations available as computer programs, are considered. Finally, the prospects for and the challenges facing linear-scaling methods are discussed.

  6. Theoretical calculations of the electronic and vibrational structure of point defects in ionic crystals

    SciTech Connect

    Wood, R.F.; Wilson, T.M.

    1981-01-01

    The structure of the Hartree-Fock one-electron equations for simple point defects in ionic crystals are discussed. The importance of polarization effects due to the diffuse nature of the wavefunctions in the relaxed excited states are emphasized, and the usefulness of an effective mass approximation indicated. Several approaches to the calculation of the electronic structure are discussed and evaluated. The connection between electronic structure calculations and phonon perturbations are pointed out through a brief discussion of localized perturbation theory.

  7. Electronic Structure Calculation of Permanent Magnets using the KKR Green's Function Method

    NASA Astrophysics Data System (ADS)

    Doi, Shotaro; Akai, Hisazumi

    2014-03-01

    Electronic structure and magnetic properties of permanent magnetic materials, especially Nd2Fe14B, are investigated theoretically using the KKR Green's function method. Important physical quantities in magnetism, such as magnetic moment, Curie temperature, and anisotropy constant, which are obtained from electronics structure calculations in both cases of atomic-sphere-approximation and full-potential treatment, are compared with past band structure calculations and experiments. The site preference of heavy rare-earth impurities are also evaluated through the calculation of formation energy with the use of coherent potential approximations. Further, the development of electronic structure calculation code using the screened KKR for large super-cells, which is aimed at studying the electronic structure of realistic microstructures (e.g. grain boundary phase), is introduced with some test calculations.

  8. Electronic Structure Calculations of delta-Pu Based Alloys

    SciTech Connect

    Landa, A; Soderlind, P; Ruban, A

    2003-11-13

    First-principles methods are employed to study the ground-state properties of {delta}-Pu-based alloys. The calculations show that an alloy component larger than {delta}-Pu has a stabilizing effect. Detailed calculations have been performed for the {delta}-Pu{sub 1-c}Am{sub c} system. Calculated density of Pu-Am alloys agrees well with the experimental data. The paramagnetic {yields} antiferromagnetic transition temperature (T{sub c}) of {delta}-Pu{sub 1-c}Am{sub c} alloys is calculated by a Monte-Carlo technique. By introducing Am into the system, one could lower T{sub c} from 548 K (pure Pu) to 372 K (Pu{sub 70}Am{sub 30}). We also found that, contrary to pure Pu where this transition destabilizes {delta}-phase, Pu{sub 3}Am compound remains stable in the antiferromagnetic phase that correlates with the recent discovery of a Curie-Weiss behavior of {delta}-Pu{sub 1-c}Am{sub c} at c {approx} 24 at. %.

  9. Electronic structure calculations on lithium battery electrolyte salts.

    PubMed

    Johansson, Patrik

    2007-03-28

    New lithium salts for non-aqueous liquid, gel and polymeric electrolytes are crucial due to the limiting role of the electrolyte in modern lithium batteries. The solvation of any lithium salt to form an electrolyte solution ultimately depends on the strength of the cation-solvent vs. the cation-anion interaction. Here, the latter is probed via HF, B3LYP and G3 theory gas-phase calculations for the dissociation reaction: LiX <--> Li(+) + X(-). Furthermore, a continuum solvation method (C-PCM) has been applied to mimic solvent effects. Anion volumes were also calculated to facilitate a discussion on ion conductivities and cation transport numbers. Judging from the present results, synthesis efforts should target heterocyclic anions with a size of ca. 150 A(3) molecule(-1) to render new highly dissociative lithium salts that result in electrolytes with high cation transport numbers. PMID:17356757

  10. Symmetry and equivalence restrictions in electronic structure calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1988-01-01

    A simple method for obtaining MCSCF orbitals and CI natural orbitals adapted to degenerate point groups, with full symmetry and equivalnece restrictions, is described. Among several advantages accruing from this method are the ability to perform atomic SCF calculations on states for which the SCF energy expression cannot be written in terms of Coulomb and exchange integrals over real orbitals, and the generation of symmetry-adapted atomic natural orbitals for use in a recently proposed method for basis set contraction.

  11. Two-particle picture and electronic structure calculations

    SciTech Connect

    Gonis, A; Schulthess, T C; Turchi, P E A

    1998-06-24

    We derive exact formal expressions for the self-energy, (capital Sigma (n), describing the in- teraction of n particles with one another and with the rest of the particles in an interacting quantum N-particle system In contrast to traditional treatments, in which the single-particle self-energy is built out of interactions of a particle with the rest of the system, here a general n-particle quantity, (capital sigma)(n), is obtained in a straight- forward fashion by integrating the exact N-particle Green function, G(N), over the coordinates of N _ n particles and inverting An alternative expression, based on the canonical many-body equation of motion for the Green function is also discussed and compared with that derived through the integration process. The methodology is developed with respect to two-particle states, with the two-particle Green function being the central quantity from which the single-particle self-energy and Green function are derived It is suggested that the two-particle Green function be calculated directly in six-dimensional space in a two-particle generalization of density functional theory and the corresponding local density approximation. Methods for the calculation of the single-particle, n = 1, self-energy and effective single-particle t-matrix are discussed, and the methodology is illustrated by means of calculations on a model system.

  12. Lagrange-Function Approach to Real-Space Order-N Electronic-Structure Calculations

    SciTech Connect

    Varga, Kalman; Pantelides, Sokrates T

    2006-01-01

    The Lagrange functions are a family of analytical, complete, and orthonormal basis sets that are suitable for efficient, accurate, real-space, order-N electronic-structure calculations. Convergence is controlled by a single monotonic parameter, the dimension of the basis set, and computational complexity is lower than that of conventional approaches. In this paper we review their construction and applications in linearscaling electronic-structure calculations.

  13. High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene

    NASA Astrophysics Data System (ADS)

    Gruet, Sébastien; Goubet, Manuel; Pirali, Olivier

    2014-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) have long been suspected to be the carriers of so called Unidentified Infrared Bands (UIBs). Most of the results published in the literature report rotationally unresolved spectra of pure carbon as well as heteroatom-containing PAHs species. To date for this class of molecules, the principal source of rotational informations is ruled by microwave (MW) spectroscopy while high resolution measurements reporting rotational structure of the infrared (IR) vibrational bands are very scarce. Recently, some high resolution techniques provided interesting new results to rotationally resolve the IR and far-IR bands of these large carbonated molecules of astrophysical interest. One of them is to use the bright synchrotron radiation as IR continuum source of a high resolution Fourier transform (FTIR) spectrometer. We report the very complementary analysis of the [1,6] naphthyridine (a N-bearing PAH) for which we recorded the microwave spectrum at the PhLAM laboratory (Lille) and the high resolution far-infrared spectrum on the AILES beamline at synchrotron facility SOLEIL. MW spectroscopy provided highly accurate rotational constants in the ground state to perform Ground State Combinations Differences (GSCD) allowing the analysis of the two most intense FT-FIR bands in the 50-900 wn range. Moreover, during this presentation the negative value of the inertial defect in the GS of the molecule will be discussed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013).

  14. Hybrid functional calculation of electronic and phonon structure of BaSnO{sub 3}

    SciTech Connect

    Kim, Bog G.; Jo, J.Y.; Cheong, S.W.

    2013-01-15

    Barium stannate, BaSnO{sub 3} (BSO), with a cubic perovskite structure, has been highlighted as a promising host material for the next generation transparent oxide electrodes. This study examined theoretically the electronic structure and phonon structure of BSO using hybrid density functional theory based on the HSE06 functional. The electronic structure results of BSO were corrected by extending the phonon calculations based on the hybrid density functional. The fundamental thermal properties were also predicted based on a hybrid functional calculation. Overall, a detailed understanding of the electronic structure, phonon modes and phonon dispersion of BSO will provide a theoretical starting-point for engineering applications of this material. - Graphical Abstract: (a) Crystal structure of BaSnO{sub 3}. The center ball is Ba and small (red) ball on edge is oxygen and SnO{sub 6} octahedrons are plotted as polyhedron. (b) Electronic band structure along the high symmetry point in the Brillouin zone using the HSE06 hybrid functional. (c) The phonon dispersion curve calculated using the HSE06 hybrid functional (d) Zone center lowest energy F{sub 1u} phonon mode. Highlights: Black-Right-Pointing-Pointer We report the full hybrid functional calculation of not only the electronic structure but also the phonon structure for BaSnO{sub 3}. Black-Right-Pointing-Pointer The band gap calculation of HSE06 revealed an indirect gap with 2.48 eV. Black-Right-Pointing-Pointer The effective mass at the conduction band minimum and valence band maximum was calculated. Black-Right-Pointing-Pointer In addition, the phonon structure of BSO was calculated using the HSE06 functional. Black-Right-Pointing-Pointer Finally, the heat capacity was calculated and compared with the recent experimental result.

  15. Simple extrapolation method to predict the electronic structure of conjugated polymers from calculations on oligomers

    DOE PAGESBeta

    Larsen, Ross E.

    2016-04-12

    In this study, we introduce two simple tight-binding models, which we call fragment frontier orbital extrapolations (FFOE), to extrapolate important electronic properties to the polymer limit using electronic structure calculations on only a few small oligomers. In particular, we demonstrate by comparison to explicit density functional theory calculations that for long oligomers the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and of the first electronic excited state are accurately described as a function of number of repeat units by a simple effective Hamiltonian parameterized from electronic structure calculations on monomers, dimers and, optionally,more » tetramers. For the alternating copolymer materials that currently comprise some of the most efficient polymer organic photovoltaic devices one can use these simple but rigorous models to extrapolate computed properties to the polymer limit based on calculations on a small number of low-molecular-weight oligomers.« less

  16. Electronic structure calculations of vacancies and their influence on materials properties

    SciTech Connect

    Sterne, P.A.; Van Ek, J.; Howell, R.H.

    1997-08-01

    We provide two examples to illustrate how electronic structure calculations contribute to our understanding of vacancies and their role in determining material properties. Diffusion and elctromigration in aluminium are known to depend strongly on vacancies. Electronic structure calculations show that the vacancy-impurity interaction oscillates with distance, and this leads to an explanation for both the increased elctromigration resistance and the slow impurity diffusion for copper in aluminium. Calculations of vacancies in plutonium have been used in conjunction with positron annihilation lifetime measurements to identify the presence of helium-filled vacanies. Helium stabilization of vacancies can provide the precursors for subsequent vacancy-related changes in materials properties.

  17. Regularizing the molecular potential in electronic structure calculations. II. Many-body methods

    SciTech Connect

    Bischoff, Florian A.

    2014-11-14

    In Paper I of this series [F. A. Bischoff, “Regularizing the molecular potential in electronic structure calculations. I. SCF methods,” J. Chem. Phys. 141, 184105 (2014)] a regularized molecular Hamilton operator for electronic structure calculations was derived and its properties in SCF calculations were studied. The regularization was achieved using a correlation factor that models the electron-nuclear cusp. In the present study we extend the regularization to correlated methods, in particular the exact solution of the two-electron problem, as well as second-order many body perturbation theory. The nuclear and electronic correlation factors lead to computations with a smaller memory footprint because the singularities are removed from the working equations, which allows coarser grid resolution while maintaining the precision. Numerical examples are given.

  18. Understanding the photoluminescence characteristics of Eu3+-doped double-perovskite by electronic structure calculation

    NASA Astrophysics Data System (ADS)

    Ghosh, Binita; Halder, Saswata; Das, Sayantani; Sinha, T. P.

    2016-05-01

    Europium-doped luminescent barium samarium tantalum oxide Ba2SmTaO6 (BST) has been investigated by first-principles calculation, and the crystal structure, electronic structure, and optical properties of pure BST and Eu-doped BST have been examined and compared. Based on the calculated results, the luminescence properties and mechanism of Eu-doped BST has been discussed. In the case of Eu-doped BST, there is an impurity energy band at the Fermi level, which is formed by seven spin up energy levels of Eu and act as the luminescent centre, which is evident from the band structure calculations.

  19. Electronic and structural properties of ultrathin tungsten nanowires and nanotubes by density functional theory calculation

    SciTech Connect

    Sun, Shih-Jye; Lin, Ken-Huang; Li, Jia-Yun; Ju, Shin-Pon

    2014-10-07

    The simulated annealing basin-hopping method incorporating the penalty function was used to predict the lowest-energy structures for ultrathin tungsten nanowires and nanotubes of different sizes. These predicted structures indicate that tungsten one-dimensional structures at this small scale do not possess B.C.C. configuration as in bulk tungsten material. In order to analyze the relationship between multi-shell geometries and electronic transfer, the electronic and structural properties of tungsten wires and tubes including partial density of state and band structures which were determined and analyzed by quantum chemistry calculations. In addition, in order to understand the application feasibility of these nanowires and tubes on nano-devices such as field emitters or chemical catalysts, the electronic stability of these ultrathin tungsten nanowires was also investigated by density functional theory calculations.

  20. Variational quantum Monte Carlo calculation of electronic and structural properties of crystals

    SciTech Connect

    Louie, S.G.

    1989-09-01

    Calculation of the electronic and structural properties of solids using a variational quantum Monte Carlo nonlocal pseudopotential approach is described. Ionization potentials and electron affinities for atoms, and binding energies and structural properties for crystals are found to be in very good agreement with experiment. The approach employs a correlated many-electron wavefunction of the Jastrow-Slater form and the exact Coulomb interaction between valence electrons. One- and two-body terms in the Jastrow factor are used and found necessary for an accurate description of the electron-electron energy for the systems considered. The method has further been applied to compute various single-particle properties for solids including the single-particle orbital occupancy, electron pair correlation functions, and quasiparticle excitation energies. 23 refs., 3 figs., 3 tabs.

  1. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with precise calculations. Thus the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule has become a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), will be presented in this paper. The reactive sites of the inhibitors are determined and explained. The accuracy of structure determination of the inhibitors are tested theoretically.

  2. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  3. First-principles calculation of electronic structure and optical absorption of BN ZnO

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Schleife, Andre

    2015-03-01

    The α-BN structure of ZnO, a nonequilibrium phase with a transition pressure of 25 GPa, has been found in nano structures of ZnO. The structural difference between the BN structure and the equilibrium wurtzite structure can play an important role for applications of nanostructured ZnO. In order to understand the difference, first principles calculations have been performed on both phases. The electronic structure is computed using the GW method based on Density Functional Theory and HSE hybrid functional calculations. The GW method includes the quasiparticle effects due to the screened electron-electron interaction which gives an accurate description of the electronic band structure and density of states. After that, by solving the Bethe-Salpeter Equation for the optical polarization function, which take excitonic effects into account, we have achieved an accurate description of optical absorption spectra for both structures. We find a good agreement with experimental and previous computational results for WZ structure, and predict the absorption for the BN structure. The BN structure shows a larger band gap and we found a very large optical anisotropy: The gap for extraordinary light polarization is almost 0.7eV larger than that for ordinary light polarization.

  4. Structure and properties of electronic and hole centers in CsBr from theoretical calculations

    SciTech Connect

    Halliday, Matthew T.; Hess, Wayne P.; Shluger, Alexander L.

    2015-06-24

    The electronic structure, geometry, diffusion barriers and optical properties of fundamental defects of CsBr are calculated using hybrid functional DFT and TD- DFT methods. The B3LYP functional with a modified exchange contribution has been used in an embedded cluster scheme to model the structure and spectroscopic properties of self-trapped triplet exciton, interstitial Br atoms and ions, self-trapped holes and Br vacancies. The calculated migration barriers and positions of maxima of optical absorption bands are in good agreement with experiment, justifying the obtained defect geometries. The o*-center triplet exciton luminescence energy is also accurately calculated.

  5. Atomic and Electronic Structures of C_60+BN Nanopeapods from ab initio Pseudopotential Calculations

    NASA Astrophysics Data System (ADS)

    Trave, Andrea; Ribeiro, Filipe; Louie, Steven G.; Cohen, Marvin L.

    2004-03-01

    Nanopeapods are structures of nanometric size consisting of an external carbon nanotube encapsulating a chain or complex array of fullerenes. Recent calculations and experiments have proven that nanopeapods can be obtained assembling fullerenes within boron nitride nanotubes, creating novel materials of possible interest for electronic transport applications. To improve the understanding of the properties of these composite systems, as compared to empty nanotubes and carbon nanopeapods, ab-initio total energy calculations have been performed within the pseudopotential Density Functional Theory in local density approximation. Results of these calculations on the energetics and geometrical deformations involved in the encapsulation will be presented, followed by a discussion of the consequences on the electronic structures of these systems, with particular focus on aspects relevant to electronic transport phenomena. This work is supported by NFS (Grant DMR00-87088) and DOE (Contract DE-AC03-76SF00098), using computational resources at NERSC and NPACI.

  6. Dissociative recombination of interstellar ions: electronic structure calculations for HCO/sup +/

    SciTech Connect

    Kraemer, W.P.; Hazi, A.U.

    1985-07-02

    The present study of the interstellar formyl ion HCO/sup +/ is the first attempt to investigate dissociative recombination for a triatomic molecular ion using an entirely theoretical approach. We describe a number of fairly extensive electronic structure calculations that were performed to determine the reaction mechanism of the e-HCO/sup +/ process. Similar calculations for the isoelectronic ions HOC/sup +/ and HN/sub 2//sup +/ are in progress. 60 refs.

  7. First principles calculation of the structural, electronic, and magnetic properties of Au-Pd atomic chains

    SciTech Connect

    Dave, Mudra R.; Sharma, A. C.

    2015-06-24

    The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.

  8. Electronic structure of tin oxides by electron energy loss spectroscopy and real-space multiple scattering calculations

    SciTech Connect

    Moreno, M. S.; Egerton, R.F.; Rehr, J.J.; Midgley, P.A.

    2005-01-15

    The electronic structure of the tin oxides SnO and SnO{sub 2} is studied using the fine structure of the Sn-M{sub 4,5} and oxygen K-edges measured by electron energy loss spectroscopy (EELS). The experimental results are compared with real-space multiple scattering calculations. It is observed that both edges are overlapped. The calculations reveal that the observed fine structure is due largely to the oxygen states, and that it can be used to fingerprint each phase. The calculated densities of states are similar for both compounds and suggest a covalent nature. The structures appearing within the first 10 eV above the threshold arise from a covalent mixing of mainly O 2p and Sn 5s-p. For SnO the oxygen edge is satisfactorily reproduced. Discrepancies in the predicted energy position of the features in the EELS of SnO{sub 2} are briefly discussed.

  9. Ab initio calculations of the electronic structure of silicon nanocrystals doped with shallow donors (Li, P)

    SciTech Connect

    Kurova, N. V. Burdov, V. A.

    2013-12-15

    The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.

  10. Investigating the Electronic Structure of Fluorite Oxides: Comparsion of EELS and First Principles Calculations

    SciTech Connect

    Aguiar, J; Asta, M; Gronbech-Jensen, N; Perlov, A; Milman, V; Gao, S; Pickard, C; Browning, N

    2009-06-05

    Energy loss spectra from a variety of cubic oxides are compared with ab-initio calculations based on the density functional plane wave method (CASTEP). In order to obtain agreement between experimental and theoretical spectra, unique material specific considerations were taken into account. The spectra were calculated using various approximations to describe core-hole effects and electronic correlations. All the calculations are based on the local spin density approximation to show qualitative agreement with the sensitive oxygen K-edge spectra in ceria, zirconia, and urania. Comparison of experimental and theoretical results let us characterize the main electronic interactions responsible for both the electronic structure and the resulting EEL spectra of the compounds in question.

  11. Electronic Structure Calculations for Heavy Elements: Radon (Z=86) and Francium (Z=87)

    NASA Astrophysics Data System (ADS)

    Koufos, Alexander; Papaconstantopoulos, Dimitrios

    2010-03-01

    Electronic structure calculations allow scientists to predict the properties of solids without the use of physical material. Although the ability to manipulate matter has improved dramatically within the past couple decades, some matter is still hard to study. Modern computers not only let us study this matter, but allow us to do it more quickly and just as accurately. The electronic structure of two rare and mostly unstudied elements, Radon (Z=86) and Francium (Z=87), has been calculated. The augmented plane wave (APW) method with local density approximation (LDA) functional as well as the linearized augmented plane wave (LAPW) method with both LDA and generalized gradient approximation (GGA) functionals were used to perform the calculations. Francium total energy calculations gave the fcc structure slightly below the bcc structure with a minimal energy difference of δE=0.33mRy. The difference found is consistent with other alkali metal total energy calculations which do not verify the bcc structure to be the ground state. Radon was predicted to be an insulator with a gap of 0.931 Ry similar to the other noble gases.

  12. Efficient electronic integrals and their generalized derivatives for object oriented implementations of electronic structure calculations.

    PubMed

    Flocke, N; Lotrich, V

    2008-12-01

    For the new parallel implementation of electronic structure methods in ACES III (Lotrich et al., in preparation) the present state-of-the-art algorithms for the evaluation of electronic integrals and their generalized derivatives were implemented in new object oriented codes with attention paid to efficient execution on modern processors with a deep hierarchy of data storage including multiple caches and memory banks. Particular attention has been paid to define proper integral blocks as basic building objects. These objects are stand-alone units and are no longer tied to any specific software. They can hence be used by any quantum chemistry code without modification. The integral blocks can be called at any time and in any sequence during the execution of an electronic structure program. Evaluation efficiency of these integral objects has been carefully tested and it compares well with other fast integral programs in the community. Correctness of the objects has been demonstrated by several application runs on real systems using the ACES III program. PMID:18496792

  13. Structural and electronic properties of solid naphthalene under pressure: density functional calculations

    NASA Astrophysics Data System (ADS)

    Xiao, Ling-Ping; Zeng, Zhi; Chen, Xiao-Jia

    2016-06-01

    The pressure effect on the geometrical and electronic structures of crystalline naphthalene is calculated up to 30 GPa by performing density functional calculations. The lattice parameters a, b, and c, decrease by 1.77 Å (-20.4%), 0.85 Å (-14.1%), and 0.91 Å (-8.2%), respectively, while the monoclinic angle β increases by 3.95° in this pressure region. At the highest pressure of 30 GPa the unit cell volume decreases by 62.7%. The detailed analysis of the molecular arrangement within crystal structure reveals that the molecular motion becomes more and more localized, and hints towards the evolution of intermolecular interaction with pressure. Moreover, the electronic structure of naphthalene under high pressure is also discussed. A pressure induced decrease of the band gap is observed.

  14. Relativistic atomic structure calculations and electron impact excitations of Fe23+

    NASA Astrophysics Data System (ADS)

    El-Maaref, A. A.

    2016-02-01

    Relativistic calculations using the multiconfiguration Dirac-Fock method for energy levels, oscillator strengths, and electronic dipole transition probabilities of Li-like iron (Fe23+) are presented. A configuration state list with the quantum numbers nl, where n = 2 - 7 and l = s , p , d , f , g , h , i has been considered. Excitations up to three electrons and correlation contributions from higher orbitals up to 7 l have been included. Contributions from core levels have been taken into account, EOL (extended optimal level) type calculations have been applied, and doubly excited levels are considered. The calculations have been executed by using the fully relativistic atomic structure package GRASP2K. The present calculations have been compared with the available experimental and theoretical sources, the comparisons show a good agreement between the present results of energy levels and oscillator strengths with the literature. In the second part of the present study, the atomic data (energy levels, and radiative parameters) have been used to calculate the excitation and deexcitation rates of allowed transitions by electron impact, as well as the population densities of some excited levels at different electron temperatures.

  15. HARES: an efficient method for first-principles electronic structure calculations of complex systems

    NASA Astrophysics Data System (ADS)

    Waghmare, U. V.; Kim, Hanchul; Park, I. J.; Modine, Normand; Maragakis, P.; Kaxiras, Efthimios

    2001-07-01

    We discuss our new implementation of the Real-space Electronic Structure method for studying the atomic and electronic structure of infinite periodic as well as finite systems, based on density functional theory. This improved version which we call HARES (for High-performance-Fortran Adaptive grid Real-space Electronic Structure) aims at making the method widely applicable and efficient, using high performance Fortran on parallel architectures. The scaling of various parts of a HARES calculation is analyzed and compared to that of plane-wave based methods. The new developments that lead to enhanced performance, and their parallel implementation, are presented in detail. We illustrate the application of HARES to the study of elemental crystalline solids, molecules and complex crystalline materials, such as blue bronze and zeolites.

  16. Quantum mechanical ab initio calculations of the structural, electronic and optical properties of bulk gold nitrides

    NASA Astrophysics Data System (ADS)

    Suleiman, Mohammed S. H.; Joubert, Daniel P.

    2015-11-01

    In the present work, the atomic and the electronic structures of Au3N, AuN and AuN2 are investigated using first-principles density-functional theory (DFT). We studied cohesive energy vs. volume data for a wide range of possible structures of these nitrides. Obtained data were fitted to a Birch-Murnaghan third-order equation of state (EOS) so as to identify the most likely candidates for the true crystal structure in this subset of the infinite parameter space, and to determine their equilibrium structural parameters. The analysis of the electronic properties was achieved by the calculations of the band structure and the total and partial density of states (DOS). Some possible pressure-induced structural phase transitions have been pointed out. Further, we carried out GW0 calculations within the random-phase approximation (RPA) to the dielectric tensor to investigate the optical spectra of the experimentally suggested modification: Au3N(D09). Obtained results are compared with experiment and with some available previous calculations.

  17. Density functional calculation of the structural and electronic properties of germanium quantum dots

    SciTech Connect

    Anas, M. M.; Gopir, G.

    2015-04-24

    We apply first principles density functional computational methods to study the structures, densities of states (DOS), and higher occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) gaps of selected free-standing Ge semiconductor quantum dots up to 1.8nm. Our calculations are performed using numerical atomic orbital approach where linear combination of atomic orbital was applied. The surfaces of the quantum dots was passivized by hydrogen atoms. We find that surface passivation does affect the electronic properties associated with the changes of surface state, electron localization, and the energy gaps of germanium nanocrystals as well as the confinement of electrons inside the quantum dots (QDs). Our study shows that the energy gaps of germanium quantum dots decreases with the increasing dot diameter. The size-dependent variations of the computed HOMO-LUMO gaps in our quantum dots model were found to be consistent with the effects of quantum confinement reported in others theoretical and experimental calculation.

  18. Layers and tubes of fluorographene C4F: Stability, structural and electronic properties from DFTB calculations

    NASA Astrophysics Data System (ADS)

    Enyashin, A. N.; Ivanovskii, A. L.

    2013-06-01

    By means of the DFTB band structure calculations we have explored the layers' isomerism of fluorographene C4F. The relative stability, structural and electronic properties of the C4F layers and nanotubes have been revealed depending on the possible types of fluorine coverage: single-sided, double-sided or so-called non-uniform variants. Our main finding is that the aforementioned types of fluorine coverage are crucial for the morphology of these materials. At the non-uniform or single-sided coverage types the C4F structures aspire to the spontaneous folding in order to minimize their surface tension.

  19. Structural stabilities, elastic and electronic properties of chromium tetraboride from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xu, C.; Li, Q.; Liu, C. M.; Duan, M. Y.; Wang, H. K.

    2016-05-01

    First-principles calculations are employed to investigate the structural and elastic properties, formation enthalpies and chemical bonding features as well as hardness values of chromium tetraboride (CrB4) with different structures. The lattice parameters, Poisson’s ratio and B/G ratio are also derived. Our calculations indicate that the orthorhombic structure with Pnnm symmetry is the most energetically stable one for CrB4. Except for WB4P63/mmc structure with imaginary frequencies, another six new structures are investigated through the full phonon dispersion calculations. Their mechanical and thermodynamic stabilities are also studied by calculating the elastic constants and formation enthalpies. Our calculations show that the thermodynamic stabilities of all these CrB4 phases can be enhanced under high pressure. The large shear moduli, Young’s moduli and hardness values indicate that these CrB4 phases are potential hard materials. Analyses of the densities of states (DOSs) and electron localization functions (ELFs) provide further understandings of the chemical and physical properties of these CrB4 phases. It is observed that the large occupations and high strengths of the B-B covalent bonds are important for the stabilities, incompressibility and hardnesses of these CrB4 phases.

  20. The structural and electronic properties of amorphous HgCdTe from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei

    2014-01-01

    Amorphous mercury cadmium telluride (a-MCT) model structures, with x being 0.125 and 0.25, are obtained from first-principles calculations. We generate initial structures by computation alchemy method. It is found that most atoms in the network of amorphous structures tend to be fourfold and form tetrahedral structures, implying that the chemical ordered continuous random network with some coordination defects is the ideal structure for a-MCT. The electronic structure is also concerned. The gap is found to be 0.30 and 0.26 eV for a-Hg0.875Cd0.125Te and a-Hg0.75Cd0.25Te model structures, independent of the composition. By comparing with the properties of crystalline MCT with the same composition, we observe a blue-shift of energy band gap. The localization of tail states and its atomic origin are also discussed.

  1. The charge redistribution accompanying slip and cleavage: Electronic structure calculations in alloy design

    SciTech Connect

    Eberhart, M.E.; Woodward, C.; Giamei, A.F.

    1999-08-01

    Extracting full information from electronic structure calculations requires the ability to compare differences in bonding between two molecules or solids. Often these comparisons use qualitative models of the chemical bond in an unsuccessful attempt to account for subtle variations in molecular properties. Correlating electronic structure with properties requires an unambiguous and quantifiable description of the chemical bond. Here, the authors show that such a description is contained within the geometric properties of the charge density, which can be obtained from quantum mechanical calculations. This description is used to rationalize the previously unexplained variation in the mechanical properties of a series of ordered intermetallic alloys. The ease with which this description of chemical bonding can be applied to problems, which have defied simple bonding explanations, suggests that it may be useful in accounting for the properties of any molecular system which arise from the making, breaking, or rearrangement of bonds.

  2. Multi-Center Electronic Structure Calculations for Plasma Equation of State

    SciTech Connect

    Wilson, B G; Johnson, D D; Alam, A

    2010-12-14

    We report on an approach for computing electronic structure utilizing solid-state multi-center scattering techniques, but generalized to finite temperatures to model plasmas. This approach has the advantage of handling mixtures at a fundamental level without the imposition of ad hoc continuum lowering models, and incorporates bonding and charge exchange, as well as multi-center effects in the calculation of the continuum density of states.

  3. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity.

    PubMed

    Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-07-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806

  4. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    PubMed Central

    Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806

  5. A new class of atomic basis functions for accurate electronic structure calculations of molecules

    NASA Astrophysics Data System (ADS)

    Laikov, Dimitri N.

    2005-11-01

    A new general approach is developed for obtaining systematic sequences of atomic single-particle basis sets for use in correlated electronic structure calculations of molecules. All the constituent functions are defined as the solutions of variational problems and are of three types: a minimal Hartree-Fock set, additional functions to represent low-lying excited configurations, and general functions for describing electron correlation. The latter are determined to minimize a functional derived from the closed-shell second-order correlation energy expression. Generally-contracted Gaussian expansions are developed to approximate these general functions in the non-relativistic case and within a scalar-relativistic approximation.

  6. The Dirac equation in electronic structure calculations: Accurate evaluation of DFT predictions for actinides

    SciTech Connect

    Wills, John M; Mattsson, Ann E

    2012-06-06

    Brooks, Johansson, and Skriver, using the LMTO-ASA method and considerable insight, were able to explain many of the ground state properties of the actinides. In the many years since this work was done, electronic structure calculations of increasing sophistication have been applied to actinide elements and compounds, attempting to quantify the applicability of DFT to actinides and actinide compounds and to try to incorporate other methodologies (i.e. DMFT) into DFT calculations. Through these calculations, the limits of both available density functionals and ad hoc methodologies are starting to become clear. However, it has also become clear that approximations used to incorporate relativity are not adequate to provide rigorous tests of the underlying equations of DFT, not to mention ad hoc additions. In this talk, we describe the result of full-potential LMTO calculations for the elemental actinides, comparing results obtained with a full Dirac basis with those obtained from scalar-relativistic bases, with and without variational spin-orbit. This comparison shows that the scalar relativistic treatment of actinides does not have sufficient accuracy to provide a rigorous test of theory and that variational spin-orbit introduces uncontrolled errors in the results of electronic structure calculations on actinide elements.

  7. A novel Gaussian-Sinc mixed basis set for electronic structure calculations.

    PubMed

    Jerke, Jonathan L; Lee, Young; Tymczak, C J

    2015-08-14

    A Gaussian-Sinc basis set methodology is presented for the calculation of the electronic structure of atoms and molecules at the Hartree-Fock level of theory. This methodology has several advantages over previous methods. The all-electron electronic structure in a Gaussian-Sinc mixed basis spans both the "localized" and "delocalized" regions. A basis set for each region is combined to make a new basis methodology-a lattice of orthonormal sinc functions is used to represent the "delocalized" regions and the atom-centered Gaussian functions are used to represent the "localized" regions to any desired accuracy. For this mixed basis, all the Coulomb integrals are definable and can be computed in a dimensional separated methodology. Additionally, the Sinc basis is translationally invariant, which allows for the Coulomb singularity to be placed anywhere including on lattice sites. Finally, boundary conditions are always satisfied with this basis. To demonstrate the utility of this method, we calculated the ground state Hartree-Fock energies for atoms up to neon, the diatomic systems H2, O2, and N2, and the multi-atom system benzene. Together, it is shown that the Gaussian-Sinc mixed basis set is a flexible and accurate method for solving the electronic structure of atomic and molecular species. PMID:26277128

  8. A novel Gaussian-Sinc mixed basis set for electronic structure calculations

    SciTech Connect

    Jerke, Jonathan L.; Lee, Young; Tymczak, C. J.

    2015-08-14

    A Gaussian-Sinc basis set methodology is presented for the calculation of the electronic structure of atoms and molecules at the Hartree–Fock level of theory. This methodology has several advantages over previous methods. The all-electron electronic structure in a Gaussian-Sinc mixed basis spans both the “localized” and “delocalized” regions. A basis set for each region is combined to make a new basis methodology—a lattice of orthonormal sinc functions is used to represent the “delocalized” regions and the atom-centered Gaussian functions are used to represent the “localized” regions to any desired accuracy. For this mixed basis, all the Coulomb integrals are definable and can be computed in a dimensional separated methodology. Additionally, the Sinc basis is translationally invariant, which allows for the Coulomb singularity to be placed anywhere including on lattice sites. Finally, boundary conditions are always satisfied with this basis. To demonstrate the utility of this method, we calculated the ground state Hartree–Fock energies for atoms up to neon, the diatomic systems H{sub 2}, O{sub 2}, and N{sub 2}, and the multi-atom system benzene. Together, it is shown that the Gaussian-Sinc mixed basis set is a flexible and accurate method for solving the electronic structure of atomic and molecular species.

  9. Electronic-structure calculations of praseodymium metal by means of modified density-functional theory

    SciTech Connect

    Svane, A.; Trygg, J.; Johansson, B.; Eriksson, O. |

    1997-09-01

    Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energy and a term proportional to the total orbital moment, L{sub z}{sup 2}. The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. {copyright} {ital 1997} {ital The American Physical Society}

  10. Pressure induced structural phase transition and electronic properties of actinide monophospides: Ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Makode, Chandrabhan; Sanyal, Sankar P.

    2011-09-01

    We have investigated the structural and electronic properties of monophospides of thorium, uranium and neptunium. The total energy as a function of volume is obtained by means of the self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). From the present study with the help of total energy calculations it is found that ThP, UP and NpP are stable in NaCl-type structure at ambient pressure. The structural stability of ThP, UP and NpP changes under the application of pressure. We predict a structural phase transition from NaCl-type (B 1-phase) structure to CsCl-type (B 2-phase) structure for these phospides in the pressure range of 37.0-24.0 GPa (ThP-NpP). We also calculate lattice parameter ( a0), bulk modulus ( B0), band structure and density of states. From energy band diagram it is observed that ThP, UP and NpP exhibit metallic behavior. The calculated equilibrium lattice parameters and bulk modulus are in good agreement with experimental and theoretical work.

  11. Study of structural, electronic and optical properties of tungsten doped bismuth oxychloride by DFT calculations.

    PubMed

    Yang, Wenjuan; Wen, Yanwei; Chen, Rong; Zeng, Dawen; Shan, Bin

    2014-10-21

    First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation. PMID:25179434

  12. Atomic and Molecular Complex Resonances from Real Eigenvalues Using Standard (Hermitian) Electronic Structure Calculations.

    PubMed

    Landau, Arie; Haritan, Idan; Kaprálová-Žd'ánská, Petra Ruth; Moiseyev, Nimrod

    2016-05-19

    Complex eigenvalues, resonances, play an important role in a large variety of fields in physics and chemistry. For example, in cold molecular collision experiments and electron scattering experiments, autoionizing and predissociative metastable resonances are generated. However, the computation of complex resonance requires modifications of standard electronic structure codes and methods, which are not always straightforward, in addition, application of complex codes requires more computational efforts. Here we show how resonance eigenvalues, positions and widths, can be calculated using the standard, widely used, electronic-structure packages. Our method enables the calculations of the complex resonance eigenvalues by using analytical continuation procedures (such as Padé). The key point in our approach is the existence of narrow analytical passages from the real axis to the complex energy plane. In fact, the existence of these analytical passages relies on using finite basis sets. These passages become narrower as the basis set becomes more complete, whereas in the exact limit, these passages to the complex plane are closed. As illustrative numerical examples we calculated the autoionization Feshbach resonances of helium, hydrogen anion, and hydrogen molecule. We show that our results are in an excellent agreement with the results obtained by other theoretical methods and with available experimental results. PMID:26677725

  13. Electronic structure and defect properties of Tl6SeI4: Density functional calculations

    NASA Astrophysics Data System (ADS)

    Biswas, Koushik; Du, Mao-Hua; Singh, David J.

    2012-10-01

    We report density functional calculations of electronic structure, phase diagram, and dielectric, optical, and defect properties of Tl6SeI4. We discuss how electronic structure and defect properties affect resistivity and carrier mobility-lifetime (μτ) products in Tl6SeI4. We find large Born effective charges due to covalency involving Tl-6p states. High Born charges generally enhance the static dielectric constant. This provides a mechanism for effective screening of charged defects and impurities. We find that high resistivity can be obtained under near-stoichiometric growth conditions via Fermi level pinning near the middle of the band gap by shallow donors and acceptors, as opposed to deep traps that can give high resistivity, but at the expense of short carrier drift lengths. Defect calculations also reveal the presence of deep native donors that may cause electron trapping. The experimentally observed good μτ products may be explained by a combination of small effective masses and effective screening of charged defects. High resistivity and good μτ products make Tl6SeI4 a promising room-temperature radiation detector material. We also show the calculated defect diffusion barriers, which affect defect migration under external bias in a detector.

  14. Calculation of the electron structure of vacancies and their compensated states in III-VI semiconductors

    SciTech Connect

    Mehrabova, M. A. Madatov, R. S.

    2011-08-15

    The Green's functions theory and the bond-orbital model are used as a basis for calculations of the electron structure of local defects-specifically, vacancies and their compensated states in III-VI semiconductors. The energy levels in the band gap are established, and the changes induced in the electron densities in the GaS, GaSe, and InSe semiconductors by anion and cation vacancies and their compensated states are calculated. It is established that, if a vacancy is compensated by an atom of an element from the same subgroup with the same tetrahedral coordination and if the ionic radius of the compensating atom is smaller than that of the substituted atom, the local levels formed by the vacancy completely disappear. It is shown that this mechanism of compensation of vacancies provides a means not only for recovering the parameters of the crystal, but for improving the characteristics of the crystal as well.

  15. Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Cisternas, E.

    2016-09-01

    By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.

  16. Electronic structure of silicon nitride according to ab initio quantum-chemical calculations and experimental data

    SciTech Connect

    Nekrashevich, S. S. Gritsenko, V. A.; Klauser, R.; Gwo, S.

    2010-10-15

    Charge transfer {Delta}Q = 0.35e at the Si-N bond in silicon nitride is determined experimentally using photoelectron spectroscopy, and the ionic formula of silicon nitride Si{sub 3}{sup +1.4}N{sub 4}{sup -1.05} is derived. The electronic structure of {alpha}-Si{sub 3}N{sub 4} is studied ab initio using the density functional method. The results of calculations (partial density of states) are compared with experimental data on X-ray emission spectroscopy of amorphous Si{sub 3}N{sub 4}. The electronic structure of the valence band of amorphous Si{sub 3}N{sub 4} is studied using synchrotron radiation at different excitation energies. The electron and hole effective masses m{sub e}{sup *} {approx} m{sub h}{sup *} {approx} 0.5m{sub e} are estimated theoretically. The calculated values correspond to experimental results on injection of electrons and holes into silicon nitride.

  17. Photoisomerization mechanism of 4-methylpyridine explored by electronic structure calculations and nonadiabatic dynamics simulations

    SciTech Connect

    Cao Jun; Fang Weihai; Fang Qiu

    2011-01-28

    In the present paper, different electronic structure methods have been used to determine stationary and intersection structures on the ground (S{sub 0}) and {sup 1}{pi}{pi}* (S{sub 2}) states of 4-methylpyridine, which is followed by adiabatic and nonadiabatic dynamics simulations to explore the mechanistic photoisomerization of 4-methylpyridine. Photoisomerization starts from the S{sub 2}({sup 1}{pi}{pi}*) state and overcomes a small barrier, leading to formation of the prefulvene isomer in the S{sub 0} state via a S{sub 2}/S{sub 0} conical intersection. The ultrafast S{sub 2}{yields} S{sub 0} nonradiative decay and low quantum yield for the photoisomerization reaction were well reproduced by the combined electronic structure calculation and dynamics simulation. The prefulvene isomer was assigned as a long-lived intermediate and suggested to isomerize to 4-methylpyridine directly in the previous study, which is not supported by the present calculation. The nonadiabatic dynamics simulation and electronic structure calculation reveal that the prefulvene isomer is a short-lived intermediate and isomerizes to benzvalene form very easily. The benzvalene form was predicted as the stable isomer in the present study and is probably the long-lived intermediate observed experimentally. A consecutive light and thermal isomerization cycle via Dewar isomer was determined and this cycle mechanism is different from that reported in the previous study. It should be pointed out that formation of Dewar isomer from the S{sub 2}({sup 1}{pi}{pi}*) state is not in competition with the isomerization to the prefulvene form. The Dewar structure observed experimentally may originate from other excited states.

  18. Effect of tensile strain on the electronic structure of Ge: A first-principles calculation

    SciTech Connect

    Liu, Li; Zhang, Miao; Di, Zengfeng E-mail: shijin.zhao@shu.edu.cn; Hu, Lijuan; Zhao, Shi-Jin E-mail: shijin.zhao@shu.edu.cn

    2014-09-21

    Taking the change of L-point conduction band valley degeneracy under strain into consideration, we investigate the effect of biaxially tensile strain (parallel to the (001), (110), and (111) planes) and uniaxially tensile strain (along the [001], [110], and [111] directions) on the electronic structure of Ge using density functional theory calculations. Our calculation shows that biaxial tension parallel to (001) is the most efficient way to transform Ge into a direct bandgap material among all tensile strains considered. [111]-tension is the best choice among all uniaxial approaches for an indirect- to direct-bandgap transition of Ge. The calculation results, which are further elaborated by bond-orbital approximation, provide a useful guidance on the optical applications of Ge through strain engineering.

  19. Massively parallel full configuration interaction. Benchmark electronic structure calculations on the Intel Touchstone Delta

    SciTech Connect

    Harrison, R.J.; Stahlberg, E.A.

    1994-10-01

    We describe an implementation of the benchmark ab initio electronic structure full configuration interaction model on the Intel Touchstone Delta. Its performance is demonstrated with several calculations, the largest of which (95 million configurations, 418 million determinants) is the largest full-CI calculation yet completed. The feasibility of calculations with over one billion configurations is discussed. A sustained computation rate in excess of 4 GFLOP/s on 512 processors is achieved, with an average aggregate communication rate of 155 Mbytes/s. Data-compression techniques and a modified diagonalization method were required to minimize I/O. The object-oriented design has increased portability and provides the distinction between local and non-local data essential for use of a distributed-data model.

  20. Exploring positron characteristics utilizing two new positron-electron correlation schemes based on multiple electronic structure calculation methods

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Shuai; Gu, Bing-Chuan; Han, Xiao-Xi; Liu, Jian-Dang; Ye, Bang-Jiao

    2015-10-01

    We make a gradient correction to a new local density approximation form of positron-electron correlation. The positron lifetimes and affinities are then probed by using these two approximation forms based on three electronic-structure calculation methods, including the full-potential linearized augmented plane wave (FLAPW) plus local orbitals approach, the atomic superposition (ATSUP) approach, and the projector augmented wave (PAW) approach. The differences between calculated lifetimes using the FLAPW and ATSUP methods are clearly interpreted in the view of positron and electron transfers. We further find that a well-implemented PAW method can give near-perfect agreement on both the positron lifetimes and affinities with the FLAPW method, and the competitiveness of the ATSUP method against the FLAPW/PAW method is reduced within the best calculations. By comparing with the experimental data, the new introduced gradient corrected correlation form is proved to be competitive for positron lifetime and affinity calculations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11175171 and 11105139).

  1. Multipole-preserving quadratures for the discretization of functions in real-space electronic structure calculations.

    PubMed

    Genovese, Luigi; Deutsch, Thierry

    2015-12-21

    Discretizing an analytic function on a uniform real-space grid is often done via a straightforward collocation method. This is ubiquitous in all areas of computational physics and quantum chemistry. An example in density functional theory (DFT) is given by the external potential or the pseudo-potential describing the interaction between ions and electrons. The accuracy of the collocation method used is therefore very important for the reliability of subsequent treatments like self-consistent field solutions of the electronic structure problems. By construction, the collocation method introduces numerical artifacts typical of real-space treatments, like the so-called egg-box error, which may spoil the numerical stability of the description when the real-space grid is too coarse. As the external potential is an input of the problem, even a highly precise computational treatment cannot cope this inconvenience. We present in this paper a new quadrature scheme that is able to exactly preserve the moments of a given analytic function even for large grid spacings, while reconciling with the traditional collocation method when the grid spacing is small enough. In the context of real-space electronic structure calculations, we show that this method improves considerably the stability of the results for large grid spacings, opening up the path towards reliable low-accuracy DFT calculations with a reduced number of degrees of freedom. PMID:26372293

  2. A Linear Scaling Three Dimensional Fragment Method for Large ScaleElectronic Structure Calculations

    SciTech Connect

    Wang, Lin-Wang; Zhao, Zhengji; Meza, Juan

    2007-07-26

    We present a novel linear scaling ab initio total energyelectronic structure calculation method, which is simple to implement,easily to parallelize, and produces essentially thesame results as thedirect ab initio method, while it could be thousands of times faster.Using this method, we have studied the dipole moments of CdSe quantumdots, and found both significant bulk and surface contributions. The bulkdipole contribution cannot simply be estimated from the bulk spontaneouspolarization value by a proportional volume factor. Instead it has ageometry dependent screening effect. The dipole moment also produces astrong internal electric field which induces a strong electron holeseparation.

  3. A LDA calculation of the conformation and electronic structure of polyfluoroethylenes

    SciTech Connect

    Miao, M.S.; Van Camp, P.E.; Van Doren, V.E.

    1996-12-31

    Two different local density approximation (X{alpha} and Kohn-Sham exchange and Perdew-Zunger correlation) of the density funcitonal method have been used to calculate structural and electronic properties of six kinds of polyfluoroethylene, including polytetrafluoroethylene (PTFE), poly(1,2-difluorethylene) (PDFE), and others, for several different dihedral angles. For PTFE and PDFE, all the geometric parameters are optimized simultaneously in the stable helical conformation. The position of the minimum and the depth of the potential well are in good agreement with the experimental results. The stable helical conformation are found for PTFE and PDFE. For PDFE a shoulder close to the stable gauche conformation is found in the energy curve. The potential curves of another four kinds of polyfluorethylene are studied in detail close to the planar conformation. The side fluorine atoms strongly affect the conformation and the electronic structure. The band structure of PTFE and PDFE in optimized geometry and the other PFEs in planar zigzag conformation are calculated in good agreement with experimental results.

  4. Elastic stability and electronic structure of tantalum boride investigated via first-principles density functional calculations

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Hua; Bi, Yan; Cheng, Yan; Ji, Guangfu; Cai, Lingcang

    2012-10-01

    The elastic properties, electronic structure and thermodynamic behavior of the TaB have been investigated for the first time in this work. Using first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT), the ground state properties and equation of state of TaB have been obtained. The average zero-pressure bulk modulus of TaB is 302 GPa. By analyzing the elastically anisotropic behavior and the relative structure parameters of TaB, we found that the crystal cell along the b-axis was more compressible than along the a and c axes. The calculated ratio of bulk modulus and shear modulus (B/G) for TaB is 1.58, demonstrating that TaB is rather brittle. From the elastic stiffness constants, we found that TaB in the Cmcm phase is mechanically stable. The calculated hardness of TaB is 28.6 GPa which is close to the previous data. Moreover, using the Gibbs 2 model, the thermodynamic properties such as the thermal expansion and Debye temperature of TaB have been obtained firstly. At the ambient temperature, the Debye temperatures of TaB are 792 K and 845 K from GGA calculation and LDA calculation, respectively.

  5. Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations

    SciTech Connect

    Wang, Lin-Wang; Lee, Byounghak; Shan, Hongzhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David H.

    2008-07-01

    We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39percent of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFTcalculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N3) methods, and the potential for petascale computation using the LS3DF method.

  6. Globally convergent trust-region methods for self-consistent field electronic structure calculations.

    PubMed

    Francisco, Juliano B; Martínez, José Mario; Martínez, Leandro

    2004-12-01

    As far as more complex systems are being accessible for quantum chemical calculations, the reliability of the algorithms used becomes increasingly important. Trust-region strategies comprise a large family of optimization algorithms that incorporates both robustness and applicability for a great variety of problems. The objective of this work is to provide a basic algorithm and an adequate theoretical framework for the application of globally convergent trust-region methods to electronic structure calculations. Closed shell restricted Hartree-Fock calculations are addressed as finite-dimensional nonlinear programming problems with weighted orthogonality constraints. A Levenberg-Marquardt-like modification of a trust-region algorithm for constrained optimization is developed for solving this problem. It is proved that this algorithm is globally convergent. The subproblems that ensure global convergence are easy-to-compute projections and are dependent only on the structure of the constraints, thus being extendable to other problems. Numerical experiments are presented, which confirm the theoretical predictions. The structure of the algorithm is such that accelerations can be easily associated without affecting the convergence properties. PMID:15634038

  7. Excited-state dynamics of oxazole: A combined electronic structure calculations and dynamic simulations study

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Xie, Zhi-Zhong; Yu, Xiaodong

    2016-08-01

    In the present work, the combined electronic structure calculations and surface hopping simulations have been performed to investigate the excited-state decay of the parent oxazole in the gas phase. Our calculations show that the S2 state decay of oxazole is an ultrafast process characterized by the ring-opening and ring-closure of the five-membered oxazole ring, in which the triplet contribution is minor. The ring-opening involves the Osbnd C bond cleavage affording the nitrile ylide and airine intermediates, while the ring-closure gives rise to a bicyclic species through a 2sbnd 5 bond formation. The azirine and bicyclic intermediates in the S0 state are very likely involved in the phototranspositions of oxazoles. This is different from the previous mechanism in which these intermediates in the T1 state have been proposed for these phototranspositions.

  8. Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations

    SciTech Connect

    Cai, Yunfeng; Bai, Zhaojun; Pask, John E.; Sukumar, N.

    2013-12-15

    The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal block preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.

  9. Molecular structure, vibrational, electronic and thermal properties of 4-vinylcyclohexene by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Nagabalasubramanian, P. B.; Periandy, S.; Karabacak, Mehmet; Govindarajan, M.

    2015-06-01

    The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100 cm-1. The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.

  10. Molecular structure, vibrational, electronic and thermal properties of 4-vinylcyclohexene by quantum chemical calculations.

    PubMed

    Nagabalasubramanian, P B; Periandy, S; Karabacak, Mehmet; Govindarajan, M

    2015-06-15

    The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100cm(-1). The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated. PMID:25795608

  11. Tensor decomposition in electronic structure calculations on 3D Cartesian grids

    SciTech Connect

    Khoromskij, B.N. Khoromskaia, V.; Chinnamsetty, S.R.; Flad, H.-J.

    2009-09-01

    In this paper, we investigate a novel approach based on the combination of Tucker-type and canonical tensor decomposition techniques for the efficient numerical approximation of functions and operators in electronic structure calculations. In particular, we study applicability of tensor approximations for the numerical solution of Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids. We show that the orthogonal Tucker-type tensor approximation of electron density and Hartree potential of simple molecules leads to low tensor rank representations. This enables an efficient tensor-product convolution scheme for the computation of the Hartree potential using a collocation-type approximation via piecewise constant basis functions on a uniform nxnxn grid. Combined with the Richardson extrapolation, our approach exhibits O(h{sup 3}) convergence in the grid-size h=O(n{sup -1}). Moreover, this requires O(3rn+r{sup 3}) storage, where r denotes the Tucker rank of the electron density with r=O(logn), almost uniformly in n. For example, calculations of the Coulomb matrix and the Hartree-Fock energy for the CH{sub 4} molecule, with a pseudopotential on the C atom, achieved accuracies of the order of 10{sup -6} hartree with a grid-size n of several hundreds. Since the tensor-product convolution in 3D is performed via 1D convolution transforms, our scheme markedly outperforms the 3D-FFT in both the computing time and storage requirements.

  12. Nitrogen defects in wide band gap oxides: defect equilibria and electronic structure from first principles calculations.

    PubMed

    Polfus, Jonathan M; Bjørheim, Tor S; Norby, Truls; Haugsrud, Reidar

    2012-09-01

    The nitrogen related defect chemistry and electronic structure of wide band gap oxides are investigated by density functional theory defect calculations of N(O)(q), NH(O)(×), and (NH2)(O)(·) as well as V(O)(··) and OH(O)(·) in MgO, CaO, SrO, Al(2)O(3), In(2)O(3), Sc(2)O(3), Y(2)O(3), La(2)O(3), TiO(2), SnO(2), ZrO(2), BaZrO(3), and SrZrO(3). The N(O)(q) acceptor level is found to be deep and the binding energy of NH(O)(×) with respect to N(O)' and (OH(O)(·) is found to be significantly negative, i.e. binding, in all of the investigated oxides. The defect structure of the oxides was found to be remarkably similar under reducing and nitriding conditions (1 bar N(2), 1 bar H(2) and 1 × 10(-7) bar H(2)O): NH(O)(×) predominates at low temperatures and [N(O)'] = 2[V(O)(··) predominates at higher temperatures (>900 K for most of the oxides). Furthermore, we evaluate how the defect structure is affected by non-equilibrium conditions such as doping and quenching. In terms of electronic structure, N(O)' is found to introduce isolated N-2p states within the band gap, while the N-2p states of NH(O)(×) are shifted towards, or overlap with the VBM. Finally, we assess the effect of nitrogen incorporation on the proton conducting properties of oxides and comment on their corrosion resistance in nitriding atmospheres in light of the calculated defect structures. PMID:22828729

  13. Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations.

    PubMed

    Song, Xiaowei; Fagiani, Matias R; Gewinner, Sandy; Schöllkopf, Wieland; Asmis, Knut R; Bischoff, Florian A; Berger, Fabian; Sauer, Joachim

    2016-06-28

    We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D2-tagged AlO1-4 (-) and Al2O3-6 (-) are measured in the region from 400 to 1200 cm(-1). Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al2O3-6 (-) anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO3 (-). Terminal Al-O stretching modes are found between 1140 and 960 cm(-1). Superoxo and peroxo stretching modes are found at higher (1120-1010 cm(-1)) and lower energies (850-570 cm(-1)), respectively. Four modes in-between 910 and 530 cm(-1) represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al-(O)2-Al ring. PMID:27369513

  14. Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Song, Xiaowei; Fagiani, Matias R.; Gewinner, Sandy; Schöllkopf, Wieland; Asmis, Knut R.; Bischoff, Florian A.; Berger, Fabian; Sauer, Joachim

    2016-06-01

    We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D2-tagged AlO1-4- and Al2O3-6- are measured in the region from 400 to 1200 cm-1. Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al2O3-6- anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO3-. Terminal Al-O stretching modes are found between 1140 and 960 cm-1. Superoxo and peroxo stretching modes are found at higher (1120-1010 cm-1) and lower energies (850-570 cm-1), respectively. Four modes in-between 910 and 530 cm-1 represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al-(O)2-Al ring.

  15. Theoretical calculations on structural and electronic properties of BGaAsBi alloys

    NASA Astrophysics Data System (ADS)

    Aslan, Metin; Yalcin, Battal G.; Ustundag, Mehmet; Bagci, Sadik

    2015-11-01

    The structural and electronic properties of cubic B x Ga1- x As1- y Bi y alloys with bismuth (Bi) concentration of 0.0625, 0.125, 0.1875 and 0.25 are studied with various boron (B) compositions by means of density functional theory (DFT) within the Wu-Cohen (WC) exchange correlation potential based on generalized gradient approximation (GGA). For all studied alloy structures, we have implemented geometric optimization before the volume optimization calculations. The obtained equilibrium lattice constants and band gap of studied quaternary alloys are investigated for the first time in literature. While the lattice constant behavior changes linearly with boron concentration, increasing small amount of bismuth concentration alter the lattice constant nonlinearly. The present calculation shows that the band gap decreases with increasing bismuth concentration and direct band gap semiconductor alloy became an indirect band gap with increasing boron concentration. From the band offset calculation we have shown that increasing B and Bi concentration in host GaAs reduced the valance band offset in a heterostructure formed by GaAs and studied alloys.

  16. Combined First Principles Electronic Structure Calculations and Thermodynamic Study of Binary Alloys

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoqing

    In the past decade, density functional theory (DFT), combined with the highly precise computational methods and the increasing computer power, has become a most successful tool to study the physical properties of atoms, molecules, solids, surfaces and disordered systems. In this dissertation, we present a common framework, based on the density functional theory, to study the electronic structure, structural stability and the phase equilibria of both ordered compounds and solid solution of the binary alloys which usually have very small energy differences. As an illustrative example, we have made a systematic study on the Al-Li alloys which have become promising low density, high strength aerospace materials. The Al-Li ordered compounds are calculated by the all electron self-consistent, full potential linearized augmented plane wave (FLAPW) method within the local density approximation. All the stable and metastable phases are correctly predicted due to the high precision of the method. The phase stability in Al-Li alloys can be understood by our assumption that the Li atoms basically transfer their valence electrons in between the Al bonds and the resultant strengthened bonds stabilize the Al-Li compounds. The unusually high elastic modulus of the Al-Li alloys is due to the increased anisotropic Al bonding (decrease of the Poisson's ratio) with increasing Li content. Very good agreement with experiment is obtained. To utilize the existing highly precise band calculation method, we describe the Al-Li solid solution by a supercell method based on the "theory of locality". The relatively small size of a supercell is shown to give a very good description of Al-rich Al-Li solid solution. A thermodynamic model is proposed, as a first step, to calculate the phase diagrams of the binary alloys. The grand partition function, constructed from volume-dependent internal energies obtained from local-density total-energy supercell calculations, permits the determination of the

  17. Origin of resolution enhancement by co-doping of scintillators: Insight from electronic structure calculations

    SciTech Connect

    Åberg, Daniel Sadigh, Babak; Schleife, André; Erhart, Paul

    2014-05-26

    It was recently shown that the energy resolution of Ce-doped LaBr{sub 3} scintillator radiation detectors can be crucially improved by co-doping with Sr, Ca, or Ba. Here, we outline a mechanism for this enhancement on the basis of electronic structure calculations. We show that (i) Br vacancies are the primary electron traps during the initial stage of thermalization of hot carriers, prior to hole capture by Ce dopants; (ii) isolated Br vacancies are associated with deep levels; (iii) Sr doping increases the Br vacancy concentration by several orders of magnitude; (iv) Sr{sub La} binds to V{sub Br} resulting in a stable neutral complex; and (v) association with Sr causes the deep vacancy level to move toward the conduction band edge. The latter is essential for reducing the effective carrier density available for Auger quenching during thermalization of hot carriers. Subsequent de-trapping of electrons from Sr{sub La}–V{sub Br} complexes can activate Ce dopants that have previously captured a hole leading to luminescence. This mechanism implies an overall reduction of Auger quenching of free carriers, which is expected to improve the linearity of the photon light yield with respect to the energy of incident electron or photon.

  18. Quantum Monte Carlo calculations of structural and electronic properties in the correlated oxide NiO

    NASA Astrophysics Data System (ADS)

    Mitra, Chandrima; Krogel, Jaron; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2015-03-01

    Transition metal oxides pose difficulties for condensed matter theories due to the presence of strong electronic correlations. The complex interplay among correlation and exchange in d subshells, crystal field effects, p-d hybridization and charge transfer gives rise to a rich variety of structural and electronic phases. NiO is one such challenging d system, where conventional band theory fails. Compared to the experimental value, the cohesive energy of bulk NiO computed within DFT-LDA differs by almost a factor of 18 %. Band gap computed within standard local or semi-local functionals are off by a factor of 80 %. A quasi-particle correction like the G0W0 approach cannot correct the band gap and is still by far too low. In this work we adopt the Diffusion Quantum Monte (DMC) approach to study the structural and electronic properties of NiO. Trial wave-functions were self consistently generated in a Slater-Jastrow form. To test pseudopotentials used, DMC calculations were done on atomic Ni and O and their computed ionization potentials showed excellent agreement with experiments (within 0.04%). The equilibrium bond length and binding energy of the NiO dimer were also computed that were 0.001% and 0.03%, respectively, from experimental values. DMC calculations of equation of state and band gap of bulk NiO will be presented. We gratefully acknowledge support from U.S Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division.

  19. Ab initio calculation of structural stability, electronic and optical properties of Ag{sub 2}Se

    SciTech Connect

    Rameshkumar, S.; Jayalakshmi, V.; Jaiganesh, G.; Palanivel, B.

    2015-06-24

    The structural stability, electronic and optical properties of Ag{sub 2}Se compound is studied using ab initio packages. Ag{sub 2}Se is found to crystallize in orthorhombic structure with two different space groups i.e. P2{sub 1}2{sub 1}2{sub 1} (No. 19) and P222{sub 1} (No. 17). For this compound in these two space groups, the total energy has been computed as a function of volume. Our calculated results suggest that the P2{sub 1}2{sub 1}2{sub 1}–phase is more stable than that of the P222{sub 1}–phase. The band structure calculation show that Ag{sub 2}Se is semimetallic with an overlap of about 0.014 eV in P2{sub 1}2{sub 1}2{sub 1}–phase whereas is metallic in nature in P222{sub 1}–phase. Moreover, the optical properties including the dielectric function, energy loss spectrum are obtained and analysed.

  20. Atomic-scale calculations of interfacial structures and their properties in electronic materials

    NASA Astrophysics Data System (ADS)

    Liang, Tao

    With the tremendous increase in computational power over the last two decades as well as the continuous shrinkage of Si-based Metal Oxide Semiconductor Field Effect Transistors (MOSFET), quantum mechanically based ab initio methods become indispensable tools in nano-scale device engineering. In this work, atomistic simulations including ab initio, nudged elastic band (NEB) and kinetic Monte Carlo methods have been used to (1) calculate the dopant segregation energy at silicon/gate oxide interfaces; (2) characterize the Si:Ge/SiO2 interfacial structure; (3) study the effects of impurity atoms on the diffusion process at Al and Al(Cu) grain boundaries. Using VASP, an ab initio simulation package, we calculated B segregation energy at different atomic sites in perfect and defected Si/SiO 2 interfaces and arsenic segregation energy in Si/LaAlO3 structures. With the presence of O vacancies and H in B doped systems, the predicted segregation energy is 0.85 eV for neutral systems and 1.12 eV for negatively charged systems, which is consistent with experimental measurements (0.51 to 1.47 eV). Recent ab initio structure calculations have examined the stability of various Si(001)/LaAlO3 interfaces and find that a LaO terminated interface with La deficiency or perfect stoichiometry depending on oxygen partial pressure has the lowest energy. Focussing on the La deficient Si/LaAlO3 interfacial structure, we find that the arsenic prefers energetically not to segregate into LaAlO3 nor does it pile up in front of the interface. In combation of atomic-resolution Z-contrast imaging and electron energy loss spectroscopy (EELS), we theorectically calculated the band structure and EELS of a Ge/SiO2 interface. We actually found a chemically abrupt Ge/SiO2 interface, which has never been reported before and which is quite desirable for applications. Furthermore, we formulated a kinetic Monte Carlo model to simulate the oxidation process of Ge ion-implanted Si. Our modeling suggests the

  1. Linear augmented cylindrical wave method for calculating the electronic structure of double-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    D'Yachkov, P. N.; Makaev, D. V.

    2006-10-01

    Electronic structure of double-wall carbon nanotubes (DWNTs) consisting of two concentric graphene cylinders with extremely strong covalent bonding of atoms within the individual graphitic sheets, but very weak van der Waals type interaction between them is calculated in the terms of the linear augmented cylindrical wave (LACW) method. A one-electron potential is used and the approximations are made in the sense of muffin-tin (MT) potentials and local density functional theory only. The atoms of DWNT are considered to be enclosed between cylinder-shaped potential barriers. In this approach, the electronic spectrum of the DWNTs is governed by the free movement of electron in the interatomic space of two cylindrical layers, by electron scattering on the MT spheres, and by electron tunneling between the layers. We have calculated the complete band structures and densities of states in the Fermi level region of the purely semiconducting zigzag DWNTs (n,0)@(n',0) ( 10⩽n⩽23 and 19⩽n'⩽32 ) with interlayer distance 3.2Å⩽Δd⩽3.7Å . Analogously data are obtained for metallic armchair (n,n)@(n',n') nanotubes ( n=5 or 4 and n'=10 or 9). According to the LACW calculations, the interwall coupling results in a distinctly stronger perturbation of the band structure of inner tube as compared to that of the outer one. In the case of semiconducting DWNTs, the minimum gap E11 between the singularities of the conduction and valence bands of the shell tubules decreases from 0.15to0.22eV or increases from 0.7to0.15eV , if dividing n' by three leaves a remainder of 1 or 2, respectively. In both cases, the ΔE11 shifts of the gap do not decay, but slightly oscillate as one goes to the tubules with larger diameters d . For inner tubules, the ΔE11 shift depends strongly on the d . For nmod3=2 series with 10⩽n⩽16 , the shifts ΔE11 are positive, the maximum values of ΔE11 being equal to 0.39 and 0.32eV , respectively. As one goes to the inner tubules with larger diameters

  2. Electronic structures of halogen-doped Cu2O based on DFT calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Zong-Yan; Yi, Juan; Zhou, Da-Cheng

    2014-01-01

    In order to construct p—n homojunction of Cu2O-based thin film solar cells that may increase its conversion efficiency, to synthesize n-type Cu2O with high conductivity is extremely crucial, and considered as a challenge in the near future. The doping effects of halogen on electronic structure of Cu2O have been investigated by density function theory calculations in the present work. Halogen dopants form donor levels below the bottom of conduction band through gaining or losing electrons, suggesting that halogen doping could make Cu2O have n-type conductivity. The lattice distortion, the impurity formation energy, the position, and the band width of donor level of Cu2O1-xHx (H = F, Cl, Br, I) increase with the halogen atomic number. Based on the calculated results, chlorine doping is an effective n-type dopant for Cu2O, owing to the lower impurity formation energy and suitable donor level.

  3. First Principles Calculations of the Electronic Structure of ZrN Allotropes

    NASA Astrophysics Data System (ADS)

    Yin, Li-Chang; Saito, Riichiro

    2011-11-01

    The atomic structures and electronic properties of different ZrN allotropes, including face-centered cubic ZrN (B1 ZrN), hypothetic wurtzite (w) ZrN, and hypothetic two-dimensional (2D) and three-dimensional (3D) layered hexagonal (h) ZrN, are investigated by systematic first-principles calculations. Although the cohesive energy calculation indicates that the B1 ZrN is more stable than the hypothetic w-ZrN and h-ZrN, we suggest that the monolayer h-ZrN may be stable on some substrates. Charge population analysis shows that the polar, covalent bonding character appears between N atoms and Zr atoms for all ZrN allotropes involved in this paper. A Van Hove singularity (VHS) with a high density of states (DOS) locating at 0.2 eV above the Fermi level appears for monolayer h-ZrN, which results from a saddle point of the partially occupied Zr-dz^{2 energy bands due to lack of interlayer interaction. Such a VHS observed in the monolayer h-ZrN indicates that this hypothetic monolayer material might be a potential candidate for new superconducting material by electron doping.

  4. Model creation and electronic structure calculation of amorphous hydrogenated boron carbide

    NASA Astrophysics Data System (ADS)

    Belhadj Larbi, Mohammed

    Boron-rich solids are of great interest for many applications, particularly, amorphous hydrogenated boron carbide (a-BC:H) thin films are a leading candidate for numerous applications such as: heterostructure materials, neutron detectors, and photovoltaic energy conversion. Despite this importance, the local structural properties of these materials are not well-known, and very few theoretical studies for this family of disordered solids exist in the literature. In order to optimize this material for its potential applications the structure property relationships need to be discovered. We use a hybrid method in this endeavor---which is to the best of our knowledge the first in the literature---to model and calculate the electronic structure of amorphous hydrogenated boron carbide (a-BC:H). A combination of classical molecular dynamics using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and ab initio quantum mechanical simulations using the Vienna ab initio simulation package (VASP) have been conducted to create geometry optimized models that consist of a disordered hydrogenated twelve-vertex boron carbide icosahedra, with hydrogenated carbon cross-linkers. Then, the density functional theory (DFT) based orthogonalized linear combination of atomic orbitals (OLCAO) method was used to calculate the total and partial density of states (TDOS, PDOS), the complex dielectric function epsilon, and the radial pair distribution function (RPDF). The RPDF data stand as predictions that may be compared with future experimental electron or neutron diffraction data. The electronic structure simulations were not able to demonstrate a band gap of the same nature as that seen in prior experimental work, a general trend of the composition-properties relationship was established. The content of hydrogen and boron was found to be directly proportional to the decrease in the number of available states near the fermi energy, and inversely proportional to the

  5. A three-dimensional domain decomposition method for large-scale DFT electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Duy, Truong Vinh Truong; Ozaki, Taisuke

    2014-03-01

    With tens of petaflops supercomputers already in operation and exaflops machines expected to appear within the next 10 years, efficient parallel computational methods are required to take advantage of such extreme-scale machines. In this paper, we present a three-dimensional domain decomposition scheme for enabling large-scale electronic structure calculations based on density functional theory (DFT) on massively parallel computers. It is composed of two methods: (i) the atom decomposition method and (ii) the grid decomposition method. In the former method, we develop a modified recursive bisection method based on the moment of inertia tensor to reorder the atoms along a principal axis so that atoms that are close in real space are also close on the axis to ensure data locality. The atoms are then divided into sub-domains depending on their projections onto the principal axis in a balanced way among the processes. In the latter method, we define four data structures for the partitioning of grid points that are carefully constructed to make data locality consistent with that of the clustered atoms for minimizing data communications between the processes. We also propose a decomposition method for solving the Poisson equation using the three-dimensional FFT in Hartree potential calculation, which is shown to be better in terms of communication efficiency than a previously proposed parallelization method based on a two-dimensional decomposition. For evaluation, we perform benchmark calculations with our open-source DFT code, OpenMX, paying particular attention to the O(N) Krylov subspace method. The results show that our scheme exhibits good strong and weak scaling properties, with the parallel efficiency at 131,072 cores being 67.7% compared to the baseline of 16,384 cores with 131,072 atoms of the diamond structure on the K computer.

  6. Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion

    SciTech Connect

    Lin, Lin; Chen, Mohan; Yang, Chao; He, Lixin

    2012-02-10

    We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham eigenvalues. The advantage of using PEpSI is that it has a much lower computational complexity than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEpSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEpSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEpSI is modest. This makes it even possible to perform Kohn-Sham DFT calculations for 10,000-atom nanotubes on a single processor. We also show that the use of PEpSI does not lead to loss of accuracy required in a practical DFT calculation.

  7. Density functional calculations for structural, electronic, and magnetic properties of gadolinium-oxide clusters

    SciTech Connect

    Yuan, H. K.; Chen, H. Tian, C. L.; Kuang, A. L.; Wang, J. Z.

    2014-04-21

    Gadolinium-oxide clusters in various sizes and stoichiometries have been systematically studied by employing the density functional theory with the generalized gradient approximation. The clusters in bulk stoichiometry are relatively more stable and their binding energies increase with the increasing size. Stoichiometric (Gd{sub 2}O{sub 3}){sub n} clusters of n = 1–3 prefer cage-like structures, whereas the clusters of n = 4–30 prefer compact structures layered by wedge-like units and exhibit a rough feature toward the bulk-like arrangement with small disorders of atomic positions. The polyhedral-cages analogous to carbon-fullerenes are stable isomers yet not the minimum energy configurations. Their stabilities can be improved by embedding one oxygen atom or a suitable cage to form core-shell configurations. The mostly favored antiferromagnetic couplings between adjacent Gd atoms are nearly degenerated in energy with their ferromagnetic couplings, resulting in super-paramagnetic characters of gadolinium-oxide clusters. The Ruderman-Kittel-Kasuya-Yosida (RKKY)-type mechanism together with the superexchange-type mechanism plays cooperation role for the magnetic interactions in clusters. We present, as a function of n, calculated binding energies, ionization potential, electron affinity, and electronic dipole moment.

  8. Density functional calculations for structural, electronic, and magnetic properties of gadolinium-oxide clusters

    NASA Astrophysics Data System (ADS)

    Yuan, H. K.; Chen, H.; Tian, C. L.; Kuang, A. L.; Wang, J. Z.

    2014-04-01

    Gadolinium-oxide clusters in various sizes and stoichiometries have been systematically studied by employing the density functional theory with the generalized gradient approximation. The clusters in bulk stoichiometry are relatively more stable and their binding energies increase with the increasing size. Stoichiometric (Gd2O3)n clusters of n = 1-3 prefer cage-like structures, whereas the clusters of n = 4-30 prefer compact structures layered by wedge-like units and exhibit a rough feature toward the bulk-like arrangement with small disorders of atomic positions. The polyhedral-cages analogous to carbon-fullerenes are stable isomers yet not the minimum energy configurations. Their stabilities can be improved by embedding one oxygen atom or a suitable cage to form core-shell configurations. The mostly favored antiferromagnetic couplings between adjacent Gd atoms are nearly degenerated in energy with their ferromagnetic couplings, resulting in super-paramagnetic characters of gadolinium-oxide clusters. The Ruderman-Kittel-Kasuya-Yosida (RKKY)-type mechanism together with the superexchange-type mechanism plays cooperation role for the magnetic interactions in clusters. We present, as a function of n, calculated binding energies, ionization potential, electron affinity, and electronic dipole moment.

  9. GPAW - massively parallel electronic structure calculations with Python-based software.

    SciTech Connect

    Enkovaara, J.; Romero, N.; Shende, S.; Mortensen, J.

    2011-01-01

    Electronic structure calculations are a widely used tool in materials science and large consumer of supercomputing resources. Traditionally, the software packages for these kind of simulations have been implemented in compiled languages, where Fortran in its different versions has been the most popular choice. While dynamic, interpreted languages, such as Python, can increase the effciency of programmer, they cannot compete directly with the raw performance of compiled languages. However, by using an interpreted language together with a compiled language, it is possible to have most of the productivity enhancing features together with a good numerical performance. We have used this approach in implementing an electronic structure simulation software GPAW using the combination of Python and C programming languages. While the chosen approach works well in standard workstations and Unix environments, massively parallel supercomputing systems can present some challenges in porting, debugging and profiling the software. In this paper we describe some details of the implementation and discuss the advantages and challenges of the combined Python/C approach. We show that despite the challenges it is possible to obtain good numerical performance and good parallel scalability with Python based software.

  10. Electronic Structure of ABC-stacked Multilayer Graphene and Trigonal Warping:A First Principles Calculation

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-04-01

    We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC–stacked N–layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.

  11. Electronic Structure Calculations and Adaptation Scheme in Multi-core Computing Environments

    SciTech Connect

    Seshagiri, Lakshminarasimhan; Sosonkina, Masha; Zhang, Zhao

    2009-05-20

    Multi-core processing environments have become the norm in the generic computing environment and are being considered for adding an extra dimension to the execution of any application. The T2 Niagara processor is a very unique environment where it consists of eight cores having a capability of running eight threads simultaneously in each of the cores. Applications like General Atomic and Molecular Electronic Structure (GAMESS), used for ab-initio molecular quantum chemistry calculations, can be good indicators of the performance of such machines and would be a guideline for both hardware designers and application programmers. In this paper we try to benchmark the GAMESS performance on a T2 Niagara processor for a couple of molecules. We also show the suitability of using a middleware based adaptation algorithm on GAMESS on such a multi-core environment.

  12. Is C50 a superaromat? Evidence from electronic structure and ring current calculations.

    PubMed

    Matías, Ana Sanz; Havenith, Remco W A; Alcamí, Manuel; Ceulemans, Arnout

    2016-04-28

    The fullerene-50 is a 'magic number' cage according to the 2(N + 1)(2) rule. For the three lowest isomers of C50 with trigonal and pentagonal symmetries, we calculate the sphericity index, the spherical parentage of the occupied π-orbitals, and the current density in an applied magnetic field. The minimal energy isomer, with D3 symmetry, comes closest to a spherical aromat or a superaromat. In the D5h bond-stretch isomers the electronic structure shows larger deviations from the ideal spherical shells, with hybridisation or even reversal of spherical parentages. It is shown that relative stabilities of fullerene cages do not correlate well with aromaticity, unlike the magnetic properties which are very sensitive indicators of spherical aromaticity. Superaromatic diamagnetism in the D3 cage is characterized by global diatropic currents, which encircle the whole cage. The breakdown of sphericity in the D5h cages gives rise to local paratropic countercurrents. PMID:26444568

  13. Bridging experiment and theory: A template for unifying NMR data and electronic structure calculations

    DOE PAGESBeta

    Brown, David M. L.; Cho, Herman; de Jong, Wibe A.

    2016-02-09

    Here, the testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashionmore » would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists.« less

  14. Molecular structure and nicotinic activity of arecoline. A gas electron diffraction study combined with theoretical calculations

    NASA Astrophysics Data System (ADS)

    Takeshima, Tsuguhide; Takeuchi, Hiroshi; Egawa, Toru; Konaka, Shigehiro

    2005-01-01

    The molecular structure of arecoline (methyl 1,2,5,6-tetrahydro-1-methylnicotinate, ? has been determined by gas electron diffraction. Diffraction patterns were taken at about 370 K. Structural constraints for the data analysis were obtained from MP2/6-31G** calculations. Vibrational mean amplitudes and shrinkage corrections were calculated from the force constants obtained from the gas-phase vibrational frequencies and the B3LYP/6-31G** calculations. The electron diffraction data were well reproduced by assuming the mixture of four conformers. The determined structural parameters ( rg (Å) and ∠ (°)) for the main conformer with 3 σ in parentheses are as follows: < rg(N-C ring)>=1.456(4); rg(N-C methyl)=1.451 (d.p.); rg(C dbnd6 C)=1.339(9); < rg(C-C)>=1.512(3); rg(O-C methyl)=1.434(5); rg(C(O)-O)=1.355 (d.p.); rg(C dbnd6 O)=1.209(4); the out-of-plane angle of the methyl group=50.3(23); ∠C ringN ringC ring=112.8(30); ∠N ringC ringC ring(H 2)=110.5(16); <∠C ringC ringC ring>=118.4(5); ∠C dbnd6 CC(O)=116.8(7); ∠CC dbnd6 O=127.6(9); ∠CC-O=109.8(8), where the angle brackets denote averaged values and d.p. denotes dependent parameters. Fixing the abundances of the minor conformers, Ax-s- cis and Ax-s- trans, at the theoretical values (13% in total), those of the Eq-s- cis and Eq-s- trans conformers were determined to be 46(16) and 41(16)%, respectively. Here Ax and Eq denote the axial and equatorial directions of the N-CH 3 bond and s- cis and s- trans show the orientation of the methoxycarbonyl group expressed by the configuration of the C dbnd6 O and C dbnd6 C bonds. The N⋯O carbonyl distances of the Eq-s- cis and Ax-s- cis conformers are 4.832(13) and 4.874(16) Å, respectively. They are close to the N⋯N distance of the most abundant conformer of nicotine, 4.885(6) Å, suggesting that the Eq-s- cis and Ax-s- cis conformers have nicotinic activity.

  15. A brief comparison between grid based real space algorithms andspectrum algorithms for electronic structure calculations

    SciTech Connect

    Wang, Lin-Wang

    2006-12-01

    Quantum mechanical ab initio calculation constitutes the biggest portion of the computer time in material science and chemical science simulations. As a computer center like NERSC, to better serve these communities, it will be very useful to have a prediction for the future trends of ab initio calculations in these areas. Such prediction can help us to decide what future computer architecture can be most useful for these communities, and what should be emphasized on in future supercomputer procurement. As the size of the computer and the size of the simulated physical systems increase, there is a renewed interest in using the real space grid method in electronic structure calculations. This is fueled by two factors. First, it is generally assumed that the real space grid method is more suitable for parallel computation for its limited communication requirement, compared with spectrum method where a global FFT is required. Second, as the size N of the calculated system increases together with the computer power, O(N) scaling approaches become more favorable than the traditional direct O(N{sup 3}) scaling methods. These O(N) methods are usually based on localized orbital in real space, which can be described more naturally by the real space basis. In this report, the author compares the real space methods versus the traditional plane wave (PW) spectrum methods, for their technical pros and cons, and the possible of future trends. For the real space method, the author focuses on the regular grid finite different (FD) method and the finite element (FE) method. These are the methods used mostly in material science simulation. As for chemical science, the predominant methods are still Gaussian basis method, and sometime the atomic orbital basis method. These two basis sets are localized in real space, and there is no indication that their roles in quantum chemical simulation will change anytime soon. The author focuses on the density functional theory (DFT), which is the

  16. Electronic Structure Calculations of Inter-Ring Torsional Potentials of Regioregular Poly (3-METHYL Thiophene) Oligomers

    NASA Astrophysics Data System (ADS)

    Bhatta, Ram S.; Perry, David S.

    2010-06-01

    The inter-ring torsional potentials of poly (3-methyl thiophene) (P3MT) oligomers are investigated by means of electronic structure calculations. Single layer and ONIOM calculations were performed at B3LYP level with 6-31++G(d,p) basis on the partially optimized geometries of dimer, tetramer and hexamer of P3MT oligomers. Potential energy surfaces are computed as a function of the multiple inter-ring torsional angles involved. The following conclusions are reached: (i) A mixture of cis and trans geometries can be expected in a disordered polymer. (ii) The cis-trans barrier is low enough to allow cis-trans conversion at room temperature. (iii) In the dimer, the potential energy minima are about 30^0 from the cis and trans planar geometries, but planar geometries are stabilized as the chain length increases. (iv) The extended conjugation causes the torsional potential about one inter-ring bond to be coupled to other torsions along the oligomer chain.

  17. Real Space Multigrid (RMG) Open Source Software Suite for Multi-Petaflops Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil; Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry; Li, Yan

    RMG is a cross platform open source package for ab initio electronic structure calculations that uses real-space grids, multigrid pre-conditioning, and subspace diagonalization to solve the Kohn-Sham equations. The code has been successfully used for a wide range of problems ranging from complex bulk materials to multifunctional electronic devices and biological systems. RMG makes efficient use of GPU accelerators, if present, but does not require them. Recent work has extended GPU support to systems with multiple GPU's per computational node, as well as optimized both CPU and GPU memory usage to enable large problem sizes, which are no longer limited by the memory of the GPU board. Additional enhancements include increased portability, scalability and performance. New versions of the code are regularly released at sourceforge.net/projects/rmgdft/. The releases include binaries for Linux, Windows and MacIntosh systems, automated builds for clusters using cmake, as well as versions adapted to the major supercomputing installations and platforms.

  18. The linearly scaling 3D fragment method for large scale electronic structure calculations

    SciTech Connect

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-07-28

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  19. The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations

    SciTech Connect

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-06-26

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  20. The linearly scaling 3D fragment method for large scale electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-07-01

    The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  1. Electronic structure and optical properties of Cs2HgI4: Experimental study and band-structure DFT calculations

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.

    2015-04-01

    High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.

  2. Unusual structural and electronic properties of porous silicene and germanene: insights from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Wang, Yanli

    2015-01-01

    Using first-principles calculations, we investigate the geometric structures and electronic properties of porous silicene and germanene nanosheets, which are the Si and Ge analogues of α-graphyne (referred to as silicyne and germanyne). It is found that the elemental silicyne and germanyne sheets are energetically unfavourable. However, after the C-substitution, the hybrid graphyne-like sheets (c-silicyne/c-germanyne) possess robust energetic and dynamical stabilities. Different from silicene and germanene, c-silicyne is a flat sheet, and c-germanyne is buckled with a distinct half-hilled conformation. Such asymmetric buckling structure causes the semiconducting behaviour into c-germanyne. While in c-silicyne, the semimetallic Dirac-like property is kept at the nonmagnetic state, but a spontaneous antiferromagnetism produces the massive Dirac fermions and opens a sizeable gap between Dirac cones. A tensile strain can further enhance the antiferromagnetism, which also linearly modulates the gap value without altering the direct-bandgap feature. Through strain engineering, c-silicyne can form a type-II band alignment with the MoS 2 sheet. The combined c-silicyne/MoS 2 nanostructure has a high power conversion efficiency beyond 20% for photovoltaic solar cells, enabling a fascinating utilization in the fields of solar energy and nano-devices.

  3. Unusual structural and electronic properties of porous silicene and germanene: insights from first-principles calculations.

    PubMed

    Ding, Yi; Wang, Yanli

    2015-01-01

    Using first-principles calculations, we investigate the geometric structures and electronic properties of porous silicene and germanene nanosheets, which are the Si and Ge analogues of α-graphyne (referred to as silicyne and germanyne). It is found that the elemental silicyne and germanyne sheets are energetically unfavourable. However, after the C-substitution, the hybrid graphyne-like sheets (c-silicyne/c-germanyne) possess robust energetic and dynamical stabilities. Different from silicene and germanene, c-silicyne is a flat sheet, and c-germanyne is buckled with a distinct half-hilled conformation. Such asymmetric buckling structure causes the semiconducting behaviour into c-germanyne. While in c-silicyne, the semimetallic Dirac-like property is kept at the nonmagnetic state, but a spontaneous antiferromagnetism produces the massive Dirac fermions and opens a sizeable gap between Dirac cones. A tensile strain can further enhance the antiferromagnetism, which also linearly modulates the gap value without altering the direct-bandgap feature. Through strain engineering, c-silicyne can form a type-II band alignment with the MoS 2 sheet. The combined c-silicyne/MoS 2 nanostructure has a high power conversion efficiency beyond 20% for photovoltaic solar cells, enabling a fascinating utilization in the fields of solar energy and nano-devices. PMID:25852311

  4. Investigating the electronic structure of fluorite-structured oxide compounds: comparison of experimental EELS with first principles calculations

    SciTech Connect

    Aguiar, Jeff; Ramasse, Q. M.; Asta, Mark D.; Browning, Nigel D.

    2012-06-27

    Energy loss spectra from fluorite-structured ZrO2, CeO2, and UO2 compounds are compared with theoretical calculations based on density functional theory (DFT) and its extensions, including the use of Hubbard-U corrections (DFT + U) and hybrid functionals. Electron energy loss spectra (EELS) were obtained from each oxide using a scanning transmission electron microscope (STEM). The same spectra were computed within the framework of the full-potential linear augmented plane-wave (FLAPW) method. The theoretical and experimental EEL spectra are compared quantitatively using non-linear least squares peak fitting and a cross-correlation approach, with the best level of agreement between experiment and theory being obtained using the DFT + U and hybrid computational approaches.

  5. Reliable Electronic Structure Calculations for Heavy Element Chemistry: Molecules Containing Actinides, Lanthanides, and Transition Metals

    SciTech Connect

    Marino, Maria, M.; Ermler, Walter C

    2006-01-27

    It is now possible to calculate many properties including the energetics (total bond dissociation energies or heats of formation) of molecules containing light elements to high accuracy by using correlation-consistent basis sets, coupled cluster theory and including additive corrections for core-valence and relativistic effects and careful treatment of the zero point energy. We propose to develop software for ab initio electronic structure calculations based on molecular orbital theory and density functional theory with the proper treatment of relativistic effects to study complexes of heavy elements in order to assist in understanding and predicting the chemistry of the actinides, lanthanides, and heavy transition metals, molecules critical to DOE missions including environmental management. The proposed work will focus on the development of these electronic structure methods and their implementation in software on advanced massively parallel processor (MPP) computer architectures capable of multi-tens of teraflops to petaflops. The core of the software will be developed within the NWChem and Columbus software suites. We propose to make the software broadly available so that other scientists can use these tools to address the complex environmental problems facing the Department of Energy's nuclear production sites as well as other waste sites in the Nation. Our implementation of relativistic quantum chemical methods for massively parallel computers will enable us to simulate the behavior of heavy-element compounds at the same type of level currently available for light-element compounds. In addition, this work will enable us to provide better methods for benchmarks of the additive energetic schemes currently available for light atom compounds. The theoretical and computational methodology so developed will be an invaluable supplement to current, very expensive experimental studies of the actinides, lanthanides, and radioactive heavy transition metal elements

  6. A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations

    SciTech Connect

    Lin, Lin; Yang, Chao; Lu, Jiangfeng; Ying, Lexing; E, Weinan

    2009-09-25

    We present an efficient parallel algorithm and its implementation for computing the diagonal of $H^-1$ where $H$ is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of $H$ through a recently developed pole-expansion technique \\cite{LinLuYingE2009}. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems \\citeHohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of $(H-z_i I)^-1$ for a small number of poles $z_i$ is much faster, especially when the quantum dot contains many electrons.

  7. Application of Electron Structure Calculations to the Migration of Oxygen through a Perovskite Membrane

    NASA Astrophysics Data System (ADS)

    Wood, Douglas A.

    The focus of this thesis is the application of electron structure calculations, particularly density functional theory, to the analysis of the process by which oxygen is able to migrate through a perovskite crystal. This property creates the possibility of using perovskite membranes to separate oxygen from air. This could be applied to the generation of syngas directly from natural gas without the need for a separate air separation unit. A perovskite has the nominal formula ABO3 where A is a rare earth type cation and B is a transition type cation. The structure consists of the B cations arranged in a cube with the A cation in the center. The oxygen ions are located at the midpoint of each B-B cube edge and form an octahedron centered on each B cation. Any real perovskite crystal will contain a certain fraction of vacancies at the oxygen sites. Oxygen migrates through the crystal by jumping from a neighboring site to the vacancy. The permeability of the crystal is thus a function of the concentration of vacancies and the activation energy of the jump from a neighboring site to the vacancy. These properties can be modified by adding dopants for the A and B cations. The literature contains a substantial amount of experimental work on the effect of such dopants. The overall migration process can be divided into components (i) the concentration of oxygen vacancies, (ii) the activation energy for a neighboring on-site oxygen atom to jump to the vacant site, (iii) the concentration of surface vacancies, and (iv) the processes by which oxygen ions transfer back and forth between the perovskite surface and the contiguous vapor space. Using SrTiO3 and LaCoO3 as model compounds, DFT calculations have been used to (i) calculate various properties of the perovskite crystal, (ii) estimate the activation energy of a jump between an occupied oxygen site and an adjacent vacant oxygen site, (iii) predict the effects of various dopants at the A and B site and (iv) analyze the

  8. Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Yang; Huang, Yang; Chen, Qing-Yuan; Cao, Chao; He, Yao

    2016-07-01

    We study the equilibrium geometry and electronic structure of alloyed and doped arsenene sheets based on the density functional theory calculations. AsN, AsP and SbAs alloys possess indirect band gap and BiAs is direct band gap. Although AsP, SbAs and BiAs alloyed arsenene sheets maintain the semiconducting character of pure arsenene, they have indirect-direct and semiconducting-metallic transitions by applying biaxial strain. We find that B- and N-doped arsenene render p-type semiconducting character, while C- and O-doped arsenene are metallic character. Especially, the C-doped arsenene is spin-polarization asymmetric and can be tuned into the bipolar spin-gapless semiconductor by the external electric field. Moreover, the doping concentration can effectively affect the magnetism of the C-doped system. Finally, we briefly study the chemical molecule adsorbed arsenene. Our results may be valuable for alloyed and doped arsenene sheets applications in mechanical sensors and spintronic devices in the future.

  9. Ab Initio Calculations of Structural, Electronic, and Mechanical Stability Properties of Magnesium Sulfide

    NASA Astrophysics Data System (ADS)

    Wu, Hai-Ying; Chen, Ya-Hong; Zhou, Ping; Han, Xiang-Yu; Liu, Zi-Jiang

    2014-09-01

    The structural, electronic, and mechanical stability properties of magnesium sulfide in different phases are presented using the plane wave pseudopotential method within the generalized gradient approximation. Eight different phases such as rocksalt (B1), zincblende (B3), wurtzite (B4), nickel arsenide (B8), cesium chloride (B2), PH4I-type (B11), FeSi-type (B28), and MnP-type (B31) are considered in great detail. The calculated ground-state properties of these phases are consistent with available experimental and theoretical data. It is found that MgS in the B1 and B8 phases are indirect band gap materials, the B3, B4, B11, B28, and B31 phases are all direct gap materials, while the B2 phase displays the metallic character. The B1, B3, B4, B8, B28, and B31 phases are mechanically stable at ambient conditions, but the B2 and B11 phases are mechanically unstable under zero pressure and zero temperature

  10. Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations

    PubMed Central

    Liu, Ming-Yang; Huang, Yang; Chen, Qing-Yuan; Cao, Chao; He, Yao

    2016-01-01

    We study the equilibrium geometry and electronic structure of alloyed and doped arsenene sheets based on the density functional theory calculations. AsN, AsP and SbAs alloys possess indirect band gap and BiAs is direct band gap. Although AsP, SbAs and BiAs alloyed arsenene sheets maintain the semiconducting character of pure arsenene, they have indirect-direct and semiconducting-metallic transitions by applying biaxial strain. We find that B- and N-doped arsenene render p-type semiconducting character, while C- and O-doped arsenene are metallic character. Especially, the C-doped arsenene is spin-polarization asymmetric and can be tuned into the bipolar spin-gapless semiconductor by the external electric field. Moreover, the doping concentration can effectively affect the magnetism of the C-doped system. Finally, we briefly study the chemical molecule adsorbed arsenene. Our results may be valuable for alloyed and doped arsenene sheets applications in mechanical sensors and spintronic devices in the future. PMID:27373712

  11. A Novel Gaussian-Sinc mixed Basis Set for Electronic Structure calculations

    NASA Astrophysics Data System (ADS)

    Jerke, Jonathan; Lee, Young; Tymczak, C. J.

    2015-03-01

    A Gaussian-Sinc mixed basis set for the computation of the electronic structure of atoms and molecules is presented. Excellent bases functions are known for ``core'' and ``valence'' separately, such as Gaussians for the ``core'' wave functions and Plane-waves for ``valance'' wave functions, but as yet no method is known that can accurately deal with both regimes in a single basis. A Gaussian-Sinc mixed basis can do both. This method resolves several issues such as: i) the Sincs basis spans the same space as the plane-waves basis, yet are semi-local enough to define all interaction elements including Exchange; ii) the Gaussians span the spherically symmetric core states and can be mixed with the Sinc functions in a computationally efficient methodology; iii) together, this mixed basis set is a flexible, computationally efficient and a highly accurate method for solving atomic and molecular problems. This methodology has been implemented within the Hartree-Fock level of theory within ultra-strong magnetic fields. To demonstrate the utility of this new method, we calculated the ground state Hartree-Fock energies to five digits accuracy in ultra strong magnetic fields for Helium to Neon, Molecular Hydrogen, Water, Carbon dioxide and Benzene. Welch Foundation (Grant J-1675), the ARO (Grant W911Nf-13-1-0162), the Texas Southern University High Performance Computing Center (http:/hpcc.tsu.edu/; Grant PHY-1126251) and NSF-CREST CRCN project (Grant HRD-1137732).

  12. Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations.

    PubMed

    Liu, Ming-Yang; Huang, Yang; Chen, Qing-Yuan; Cao, Chao; He, Yao

    2016-01-01

    We study the equilibrium geometry and electronic structure of alloyed and doped arsenene sheets based on the density functional theory calculations. AsN, AsP and SbAs alloys possess indirect band gap and BiAs is direct band gap. Although AsP, SbAs and BiAs alloyed arsenene sheets maintain the semiconducting character of pure arsenene, they have indirect-direct and semiconducting-metallic transitions by applying biaxial strain. We find that B- and N-doped arsenene render p-type semiconducting character, while C- and O-doped arsenene are metallic character. Especially, the C-doped arsenene is spin-polarization asymmetric and can be tuned into the bipolar spin-gapless semiconductor by the external electric field. Moreover, the doping concentration can effectively affect the magnetism of the C-doped system. Finally, we briefly study the chemical molecule adsorbed arsenene. Our results may be valuable for alloyed and doped arsenene sheets applications in mechanical sensors and spintronic devices in the future. PMID:27373712

  13. Theoretical study of the electronic structure with dipole moment calculations of barium monofluoride

    NASA Astrophysics Data System (ADS)

    Tohme, Samir N.; Korek, Mahmoud

    2015-12-01

    The potential energy curves have been investigated for the 41 lowest doublet and quartet electronic states in the 2s+1Λ± representation below 55,000 cm-1 of the molecule BaF via CASSCF and MRCI (single and double excitations with Davidson correction) calculations. Twenty-five electronic states have been studied here theoretically for the first time. The crossing and avoided crossing of 20 doublet electronic states have been studied in the region 30,000-50,000 cm-1. The harmonic frequency ωe, the internuclear distance Re, the rotational constant Be, the electronic energy with respect to the ground state Te, and the permanent and transition dipole moments have been calculated in addition to static dipole polarizability of the ground state. By using the canonical functions approach, the eigenvalue Ev, the rotational constant Bv, and the abscissas of the turning points Rmin and Rmax have been calculated for the electronic states up to the vibrational level v=98. The comparison of these values with the theoretical results available in the literature shows a very good agreement.

  14. Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo.

    PubMed

    Bouabça, Thomas; Braïda, Benoît; Caffarel, Michel

    2010-07-28

    A new type of electronic trial wavefunction suitable for quantum Monte Carlo calculations of molecular systems is presented. In contrast with the standard Jastrow-Slater form built with a unique global Jastrow term, it is proposed to introduce individual Jastrow factors attached to molecular orbitals. Such a form is expected to be more physical since it allows to describe differently the local electronic correlations associated with various molecular environments (1s-core orbitals, 3d-magnetic orbitals, localized two-center sigma-orbitals, delocalized pi-orbitals, atomic lone pairs, etc.). In contrast with the standard form, introducing different Jastrow terms allows us to change the nodal structure of the wavefunction, a point which is important in the context of building better nodes for more accurate fixed-node diffusion Monte Carlo (FN-DMC) calculations. Another important aspect resulting from the use of local Jastrow terms is the possibility of defining and preoptimizing local and transferable correlated units for building complex trial wavefunctions from simple parts. The practical aspects associated with the computation of the intricate derivatives of the multi-Jastrow trial function are presented in detail. Some first illustrative applications for atoms of increasing size (O, S, and Cu) and for the potential energy curve and spectroscopic constants of the FH molecule are presented. In the case of the copper atom, the use of the multi-Jastrow form at the variational Monte Carlo level has allowed us to improve significantly the value of the total ground-state energy (about 75% of the correlation energy with only one determinant and three atomic orbital Jastrow factors). In the case of the FH molecule (fluorine hydride), it has been found that the multi-Jastrow nodes lead to an almost exact FN-DMC value of the dissociation energy [D(0)=-140.7(4) kcal/mol instead of the estimated nonrelativistic Born-Oppenheimer exact value of -141.1], which is not the case

  15. Hydrostatic Pressure Effects on Structural and Electronic Properties of ETN and PETN from First-Principles Calculations.

    PubMed

    Fedorov, Igor A; Fedorova, Tatyana P; Zhuravlev, Yuriy N

    2016-05-26

    We studied the structural and electronic properties of pentaerythritol tetranitrate (PETN) and erythritol tetranitrate (ETN) crystals within the framework of density functional theory with van der Waals interactions. The computed lattice parameters have good agreement with experimental data. Electronic and structural properties of the crystals under 0-20 GPa hydrostatic pressure were studied. The parameters of equations of state calculated from the theoretical data show good agreement with experiment within the studied pressure intervals. We have also calculated the detonation velocity and pressure. PMID:27128718

  16. Structural phase transition and 5f-electrons localization of PuSe explored by ab initio calculations

    SciTech Connect

    Cui Shouxin; Feng Wenxia; Hu Haiquan; Gong Zizheng; Liu Hong

    2010-04-15

    An investigation into the structural phase transformation, electronic and optical properties of PuSe under high pressure was conducted by using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method, in the presence and in the absence of spin-orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from rocksalt (B 1) structure to CsCl-type (B 2) structure at the transition pressure of 36.3 GPa (without SOC) and 51.3 GPa (with SOC). The electronic density of states (DOS) for PuSe show that the f-electrons of Pu are more localized and concentrated in a narrow peak near the Fermi level, which is consistent with the experimental studies. The band structure shows that B 1-PuSe is metallic. A pseudogap appears around the Fermi level of the total density of states of B 1 phase PuSe, which may contribute to its stability. The calculated reflectivity R(omega) shows agreement with the available experimental results. Furthermore, the absorption spectrum, refractive index, extinction coefficient, energy-loss spectrum and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. - Abstract: Graphical Abstract Legend (TOC Figure): 5f-electrons are more localized by the analysis of the density of states (SOC). The origin spectra peaks was interpreted based on electronic structures.

  17. Calculation of Electron Trajectories

    Energy Science and Technology Software Center (ESTSC)

    1982-06-01

    EGUN, the SLAC Electron Trajectory Program, computes trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child''s Law conditions on cathodes of various shapes, user-specified initial conditions for each ray, and a combination of Child''s Law conditions and user specifications. Either rectangular or cylindrically symmetric geometry may be used. Magnetic fields may be specified using arbitrary configuration of coils, or the outputmore » of a magnet program, such as Poisson, or by an externally calculated array of the axial fields.« less

  18. The role of electronic structure calculation in mechanistic analysis of electron transfer reactions in the liquid phase

    NASA Astrophysics Data System (ADS)

    Newton, M. D.

    1987-08-01

    Model calculations have been employed to elucidate the mechanism of electron transfer reactions in aqueous solution. The contribution of inner shell OH bonds to activation barriers has been estimated from calculation for metal ion hydrates. Calculated electron transfer matrix elements H sub if for redox processes of the type, ML sub 6 sup 2(+)+ ML sub 6 sup 3(+) in equilibrium ML sub 6 sup 3(+) + ML sub 6 sup 2(+), M = Fe, Co, or Ru, L = H2O or NH3, have been analyzed in terms of various orbital concepts. The matrix elements are based on ab initio wavefunctions for model supermolecule clusters of the type, (ML sub n ...L sub n M) sup 5(+), with n = 1 or 3. The analysis shows that the many-electron H sub if quantities can in fact be expressed to good approximation as effective 1-electron expressions of the type, H sub if proportional to lambda' sup 2 N sub c h sub L1Lr, where lambda' is the metal-ligand covalency parameter, h sub L1Lr is a local 1-electron matrix element for ligand orbitals in contact in the transition state, and N sub c is the number of such contacts. A least-squares fit of the data implies a value of approx. 5000/cm for h sub L1Lr, showing that significant coupling can occur in the absence of formal bonding between reactants.

  19. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    SciTech Connect

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.; Malozovsky, Y.; Zhao, G. L.; Bagayoko, D.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus, 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.

  20. Electronic band structure calculation of GaNAsBi alloys and effective mass study

    NASA Astrophysics Data System (ADS)

    Habchi, M. M.; Ben Nasr, A.; Rebey, A.; El Jani, B.

    2013-11-01

    Electronic band structures of GaNxAs1-x-yBiy dilute nitrides-bismides have been determined theoretically within the framework of the band anticrossing (BAC) model and k ṡ p method. We have developed computer codes based on our extended BAC model, denoted (16 × 16), in which the dimension of the used states basis was equal to 16. We have investigated the band gap and the spin orbit splitting as a function of Bi composition for alloys lattice matched to GaAs. We have found that the substitution of As element by N and Bi impurities leads to a significant reduction of band gap energy by roughly 198 meV/%Bi. Meanwhile, spin orbit splitting increases by 56 meV/%Bi regardless N content. There is an excellent agreement between the model predictions and experiment reported in the literature. In addition, alloys compositions and oscillator strengths of transition energies have been calculated for GaNAsBi alloys which represent active zone of temperature insensitive (1.55 μm and 1.3 μm) wavelength laser diodes intended for optical fiber communications. A crossover at about 0.6 eV has occurred between Eg and Δso of GaN.039As.893Bi.068. When the quaternary is lattice mismatched to GaAs, resonance energy increases with Bi content if N content decreases. On the other hand, effective mass behavior of carriers at Γ point has been discussed with respect to alloy composition, k-directions and lattice mismatch.

  1. Cyanomethanimine Isomers in Cold Interstellar Clouds: Insights from Electronic Structure and Kinetic Calculations

    NASA Astrophysics Data System (ADS)

    Vazart, Fanny; Latouche, Camille; Skouteris, Dimitrios; Balucani, Nadia; Barone, Vincenzo

    2015-09-01

    New insights into the formation of interstellar cyanomethanimine, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction CN + CH2 = NH. This reaction is a facile formation route of Z,E-C-cyanomethanimine, even under the extreme conditions of density and temperature typical of cold interstellar clouds. E-C-cyanomethanimine has been recently identified in Sgr B2(N) in the Green Bank Telescope (GBT) PRIMOS survey by P. Zaleski et al. and no efficient formation routes have been envisaged so far. The rate coefficient expression for the reaction channel leading to the observed isomer E-C-cyanomethanimine is 3.15 × 10-10 × (T/300)0.152 × e(-0.0948/T). According to the present study, the more stable Z-C-cyanomethanimine isomer is formed with a slightly larger yield (4.59 × 10-10 × (T/300)0.153 × e(-0.0871/T). As the detection of E-isomer is favored due to its larger dipole moment, the missing detection of the Z-isomer can be due to the sensitivity limit of the GBT PRIMOS survey and the detection of the Z-isomer should be attempted with more sensitive instrumentation. The CN + CH2 = NH reaction can also play a role in the chemistry of the upper atmosphere of Titan where the cyanomethanimine products can contribute to the buildup of the observed nitrogen-rich organic aerosols that cover the moon.

  2. Voronoi-cell finite difference method for accurate electronic structure calculation of polyatomic molecules on unstructured grids

    SciTech Connect

    Son, Sang-Kil

    2011-03-01

    We introduce a new numerical grid-based method on unstructured grids in the three-dimensional real-space to investigate the electronic structure of polyatomic molecules. The Voronoi-cell finite difference (VFD) method realizes a discrete Laplacian operator based on Voronoi cells and their natural neighbors, featuring high adaptivity and simplicity. To resolve multicenter Coulomb singularity in all-electron calculations of polyatomic molecules, this method utilizes highly adaptive molecular grids which consist of spherical atomic grids. It provides accurate and efficient solutions for the Schroedinger equation and the Poisson equation with the all-electron Coulomb potentials regardless of the coordinate system and the molecular symmetry. For numerical examples, we assess accuracy of the VFD method for electronic structures of one-electron polyatomic systems, and apply the method to the density-functional theory for many-electron polyatomic molecules.

  3. First principle calculations of structural phase transition and electronic properties in AmTe

    SciTech Connect

    Pataiya, Jagdeesh Makode, C.; Aynyas, Mahendra; Singh, A.; Sanyal, S. P.

    2015-06-24

    The tight-binding linear muffin-tin orbital (TB-LMTO) with in the local density approximation is used to calculate total energy, lattice parameters, bulk modulus, density of states and energy band structure of americium telluride at ambient as well as at high pressure. It is found that AmTe is stable in NaCl – type structure under ambient pressure. The phase transition pressure was found to be 15.0 GPa from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure for this compound. From energy band diagram it is observed that AmTe exhibit metallic behaviour. The calculated ground state properties such as lattice parameters and bulk modulus are in general good agreement with the available results.

  4. First principle calculations of structural phase transition and electronic properties in AmTe

    NASA Astrophysics Data System (ADS)

    Pataiya, Jagdeesh; Aynyas, Mahendra; Makode, C.; Singh, A.; Sanyal, S. P.

    2015-06-01

    The tight-binding linear muffin-tin orbital (TB-LMTO) with in the local density approximation is used to calculate total energy, lattice parameters, bulk modulus, density of states and energy band structure of americium telluride at ambient as well as at high pressure. It is found that AmTe is stable in NaCl - type structure under ambient pressure. The phase transition pressure was found to be 15.0 GPa from NaCl-type (B1-phase) structure to CsCl-type (B2-phase) structure for this compound. From energy band diagram it is observed that AmTe exhibit metallic behaviour. The calculated ground state properties such as lattice parameters and bulk modulus are in general good agreement with the available results.

  5. Nonrelativistic structure calculations of two-electron ions in a strongly coupled plasma environment

    SciTech Connect

    Bhattacharyya, S.; Saha, J. K.; Mukherjee, T. K.

    2015-04-01

    In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with the Linac coherent light source (LCLS) x-ray free electron laser (FEL) and the Orion laser has been addressed. In both kinds of experiments, heliumlike and hydrogenlike spectral lines are used for plasma diagnostics. However, there exist no precise theoretical calculations for He-like ions within a dense plasma environment. The strong need for an accurate theoretical estimate for spectral properties of He-like ions in a strongly coupled plasma environment leads us to perform ab initio calculations in the framework of the Rayleigh-Ritz variation principle in Hylleraas coordinates where an ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with an extended basis inside a finite domain is presented here. The present values of electron densities corresponding to the disappearance of different spectral lines obtained within the framework of an ion-sphere potential show excellent agreement with Orion laser experiments in Al plasma and with recent theories. Moreover, this method is extended to predict the critical plasma densities at which the spectral lines of H-like and He-like carbon and argon ions disappear. Incidental degeneracy and level-crossing phenomena are being reported for two-electron ions embedded in strongly coupled plasma. Thermodynamic pressure experienced by the ions in their respective ground states inside the ion spheres is also reported.

  6. A divide-and-conquer linear scaling three dimensional fragment method for large scale electronic structure calculations

    SciTech Connect

    Wang, Lin-Wang; Zhao, Zhengji; Meza, Juan; Wang, Lin-Wang

    2008-07-11

    We present a new linear scaling ab initio total energy electronic structure calculation method based on the divide-and-conquer strategy. This method is simple to implement, easily to parallelize, and produces very accurate results when compared with the direct ab initio method. The method has been tested using up to 8,000 processors, and has been used to calculate nanosystems up to 15,000 atoms.

  7. ESFRAD. FORTRAN code for calculation of QED corrections to polarized ep-scattering by the electron structure function method

    SciTech Connect

    A. Afanasev, I. Akushevich, A. Ilyichev, N. Merenkov

    2003-09-01

    The main features of the electron structure method for calculations of the higher order QED radiative effects to polarized deep-inelastic ep-scattering are presented. A new FORTRAN code ESFRAD based on this method was developed. A detailed quantitative comparison between the results of ESFRAD and other methods implemented in the codes POLRAD and RADGEN for calculation of the higher order radiative corrections is performed.

  8. Self-consistent calculation of the electron structure and x-ray spectra of chromium nitride

    SciTech Connect

    Bekenev, V.L.; Lisenko, A.A.; Zhurakovskii, E.A.

    1986-02-01

    The authors calculate the energy band structure of cubic chromium nitride by the self-consistent method of associated plane waves for a broad energy range. Self-consistency led to overlapping of the p-band of nitrogen and the d-band of chromium and to the appearance of an energy discontinuity in the region of unbounded states. The total and local partial densities of the states are calculated. With allowance for the probability of transition, the KB/sub 5/ and L/sub 111/ -emission bands of chromium, the Ka -band of nitrogen, and the K-edge of absorption of chromium in chromium nitride are calculated in a dipole approximation. The possibility of calculating the absorption edge with allowance for the effect of shell holes is discussed. Satisfactory agreement is obtained with experimental data.

  9. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    NASA Astrophysics Data System (ADS)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  10. Molecular structure of cotinine studied by gas electron diffraction combined with theoretical calculations

    NASA Astrophysics Data System (ADS)

    Takeshima, Tsuguhide; Takeuchi, Hiroshi; Egawa, Toru; Konaka, Shigehiro

    2007-09-01

    The molecular structure of cotinine (( S)-1-methyl-5-(3-pyridinyl)-2-pyrrolidinone), the major metabolite of nicotine, has been determined at about 182 °C by gas electron diffraction combined with MP2 and DFT calculations. The diffraction data are consistent with the existence of the (ax, sc), (ax, ap), (eq, sp) and (eq, ap) conformers, where ax and eq indicate the configuration of the pyrrolidinone ring by means of the position (axial and equatorial) of the pyridine ring, and sc, sp and ap distinguish the isomers arising from the internal rotation around the bond connecting the two rings. The (CH 3)NCCC(N) dihedral angles, ϕ, of the (ax, sc) and (eq, sp) conformers were determined independently to be 158(12)° and 129(13)°, respectively, where the numbers in parentheses are three times the standard errors, 3 σ. According to the MP2 calculations, the corresponding dihedral angles for the (ax, ap) and (eq, ap) conformers were assumed to differ by 180° from their syn counterparts. The ratios x(ax, sc)/ x(ax, ap) and x(eq, sp)/ x(eq, ap) were taken from the theoretically estimated free energy differences, Δ G, where x is the abundance of the conformer. The resultant abundances of (ax, sc), (ax, ap), (eq, sp) and (eq, ap) conformers are 34(6)%, 21% (d.p.), 28% (d.p.), and 17% (d.p.), respectively, where d.p. represents dependent parameters. The determined structural parameters ( rg (Å) and ∠ α (°)) of the most abundant conformer, (ax, sc), are as follows: r(N sbnd C) pyrrol = 1.463(5); r(N sbnd C methyl) = 1.457(←); r(N sbnd C( dbnd O)) = 1.384(12); r(C dbnd O) = 1.219(5); < r(C sbnd C) pyrrol> = 1.541(3); r(C pyrrolsbnd C pyrid) = 1.521(←); < r(C sbnd C) pyrid> = 1.396(2); < r(C sbnd N) pyrid> = 1.343(←); ∠(CNC) pyrrol = 113.9(11); ∠CCC pyrrol(-C pyrid) = 103.6(←); ∠NCO = 124.1(13); ∠NC pyrrolC pyrid = 113.1(12); ∠C pyrrolC pyrrolC pyrid = 113.3(←); ∠(CNC) pyrid = 117.1(2); <∠(NCC) pyrid> = 124.4(←); ∠C methylNC( dbnd O) =

  11. Mössbauer effect and first principle calculations of the electronic structure and hyperfine interaction parameters of Hf2Fe

    NASA Astrophysics Data System (ADS)

    Belosevic-Cavor, Jelena; Koteski, Vasil; Concas, Giorgio; Cekic, Bozidar; Novakovic, Nikola; Spano, Giorgio

    2005-10-01

    A detailed theoretical study of the structure, electronic properties and the electric field gradients of the Hf2Fe intermetallic compound is presented. Using all-electron full-potential linearized augmented plane wave (FP-LAPW) formalism the equilibrium volume, bulk modulus and electric field gradients are calculated. The obtained results are compared with EFG values inferred from measurements performed using Mössbauer spectroscopy and the earlier reported time differential perturbed angular correlation (TDPAC) measurements. The lattice relaxation and the supercell calculations are found to be essential for the correct interpretation of the experimental results.

  12. On the feasibility of ab initio electronic structure calculations for Cu using a single s orbital basis

    SciTech Connect

    Hegde, Ganesh Bowen, R. Chris

    2015-10-15

    The accuracy of a single s-orbital representation of Cu towards enabling multi-thousand atom ab initio calculations of electronic structure is evaluated in this work. If an electrostatic compensation charge of 0.3 electron per atom is used in this basis representation, the electronic transmission in bulk and nanocrystalline Cu can be made to compare accurately to that obtained with a Double Zeta Polarized basis set. The use of this representation is analogous to the use of single band effective mass representation for semiconductor electronic structure. With a basis of just one s-orbital per Cu atom, the representation is extremely computationally efficient and can be used to provide much needed ab initio insight into electronic transport in nanocrystalline Cu interconnects at realistic dimensions of several thousand atoms.

  13. Dielectric-dependent Density Functionals for Accurate Electronic Structure Calculations of Molecules and Solids

    NASA Astrophysics Data System (ADS)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    Dielectric-dependent hybrid [DDH] functionals have recently been shown to yield highly accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than standard GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. In the present talk we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using material dependent, non-empirical parameters. Comparing with state of the art GW calculations and experiment, we show that such RS hybrids yield accurate electronic properties of both molecules and solids, including energy gaps, photoelectron spectra and absolute ionization potentials. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and DOE-BES.

  14. Structural, electronic, thermodynamical and charge transfer properties of Chloramphenicol Palmitate using vibrational spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Mishra, Rashmi; Srivastava, Anubha; Sharma, Anamika; Tandon, Poonam; Baraldi, Cecilia; Gamberini, Maria Christina

    2013-01-01

    The global problem of advancing bacterial resistance to newer drugs has led to renewed interest in the use of Chloramphenicol Palmitate (C27H42Cl2N2O6) [Palmitic acid alpha ester with D-threo-(-),2-dichloro-N-(beta-hydroxy-alpha-(hydroxymethyl)-p-nitrophenethyl)acetamide also known as Detereopal]. The characterization of the three polymorphic forms of Chloramphenicol Palmitate (CPP) was done spectroscopically by employing FT-IR and FT-Raman techniques. The equilibrium geometry, various bonding features, and harmonic wavenumbers have been investigated for most stable form A with the help of DFT calculations and a good correlation was found between experimental data and theoretical values. Electronic properties have been analyzed employing TD-DFT for both gaseous and solvent phase. The theoretical calculation of thermodynamical properties along with NBO analysis has also been performed to have a deep insight into the molecule for further applications.

  15. Indo Mo calculations of the electronic structures of pyrrole, imidazole, and derivatives

    NASA Astrophysics Data System (ADS)

    Pachler, Klaus G. R.; Pachter, Ruth

    INDO MO calculations on a series of N-substituted pyrroles and imidazoles have been analysed for substituent effects. Some of the basic characteristics of the σ I and or parameters are reflected in the calculated electron densities of the compounds studied. For example, good correlations are obtained between Δ qσN(1)/ΣΔ qσ parameters and σ I for the —R substituted compounds, as well as between ΣΔ qπ values and σ Ro for the +R derivatives. The +R substituents lead to an increased localization of the π-bonds, whereas —R substituted derivatives show an increased delocalization, i.e., the π-bond orders across C(2)-C(3) [or C(2)-N(3)] and C(4)-C(5) decrease and those across other bonds in the ring increase.

  16. Photophysics of Auramine-O: electronic structure calculations and nonadiabatic dynamics simulations.

    PubMed

    Xie, Bin-Bin; Xia, Shu-Hua; Chang, Xue-Ping; Cui, Ganglong

    2016-01-01

    Diphenylmethane dyes are very useful photoinduced molecular rotors; however, their photophysical mechanisms are still elusive until now. In this work, we adopted combined static electronic structure calculations (MS-CASPT2//CASSCF) and trajectory-based surface-hopping dynamics simulations (OM2/MRCI) to study the S1 excited-state relaxation mechanism of a representative diphenylmethane dye Auramine-O. On the basis of the optimized S1 minima and the computed emission bands, we have for the first time assigned experimentally proposed three transient states (i.e. S1-LE, S1-I1 or S1-I2, and S1-II). Mechanistically, upon irradiation to the S1 state, the system first relaxes to the locally excited S1 minimum (S1-LE). Starting from this point, there exist two kinds of relaxation paths to S1-II. In the sequential path, the system first evolves into S1-I1 or S1-I2 and then runs into S1-II; in the concerted one, the system, bypassing S1-I1 and S1-I2, directly runs into S1-II. In addition, the system can decay to the S0 state in the vicinity of three S1/S0 conical intersections i.e. S1S0-I1, S1S0-I2, and S1S0-II. In the S1 dynamic simulations, 54% trajectories decay to the S0 state via S1S0-II; the remaining trajectories are de-excited to the S0 state via S1S0-I1 (11%) and S1S0-I2 (35%). Our present theoretical investigation does not support the experimentally proposed S1 excited-state hypothesis that the intramolecular rotation of the two dimethyl groups around the C-N bond is responsible for the rapid decay of the emission band at about 500 nm; instead, it should be heavily interrelated with the rotation of the two dimethylanilino groups. Finally, this work provides important mechanistic insights into similar diphenylmethane dyes. PMID:26615798

  17. An economic prediction of refinement coefficients in wavelet-based adaptive methods for electron structure calculations.

    PubMed

    Pipek, János; Nagy, Szilvia

    2013-03-01

    The wave function of a many electron system contains inhomogeneously distributed spatial details, which allows to reduce the number of fine detail wavelets in multiresolution analysis approximations. Finding a method for decimating the unnecessary basis functions plays an essential role in avoiding an exponential increase of computational demand in wavelet-based calculations. We describe an effective prediction algorithm for the next resolution level wavelet coefficients, based on the approximate wave function expanded up to a given level. The prediction results in a reasonable approximation of the wave function and allows to sort out the unnecessary wavelets with a great reliability. PMID:23115109

  18. State-of-the-art eigensolvers for electronic structure calculations of large scale nano-systems

    NASA Astrophysics Data System (ADS)

    Vömel, Christof; Tomov, Stanimire Z.; Marques, Osni A.; Canning, A.; Wang, Lin-Wang; Dongarra, Jack J.

    2008-07-01

    The band edge states determine optical and electronic properties of semiconductor nano-structures which can be computed from an interior eigenproblem. We study the reliability and performance of state-of-the-art iterative eigensolvers on large quantum dots and wires, focusing on variants of preconditioned CG, Lanczos, and Davidson methods. One Davidson variant, the GD + k (Olsen) method, is identified to be as reliable as the commonly used preconditioned CG while consistently being between two and three times faster.

  19. Atomistic and electronic structure calculation of defects at the surfaces of oxides

    NASA Astrophysics Data System (ADS)

    Watson, G. W.

    We present the results of simulations using both atomistic and density functional theory (DFT) approaches that illustrate the uses of these techniques for investigating the structure and electronic structure of defects at the surfaces of oxides. Atomistic simulation studies of the low index surfaces of spinel (MgAl2O4) will show the role of vacancy configuration and surface rearrangement. Atomistic and DFT studies on Li doped MgO illustrate the importance of both the defect structure and its effect of morphology. We will also illustrate using DFT electronic defects at the surface of CeO2 , which are of great importance in redox reactions and catalytic activity. Finally we will present a novel atomistic approach for predicting the structure of supported oxide nanoclusters giving rise to a wide range of defects including a range of surface terminations, grain formation, mixed screw edge dislocations and misfit dislocations. We will illustrate this using the structure of a BaO supported MgO nanocluster.

  20. First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface

    NASA Astrophysics Data System (ADS)

    Bertoni, Giovanni; Calmels, Lionel; Altibelli, Anne; Serin, Virginie

    2005-02-01

    A spin-polarized first-principles calculation of the atomic and electronic structure of the graphene/Ni(111) interface is presented. Different structural models have been considered, which differ in the positions of the carbon atoms with respect to the nickel topmost layer. The most probable structure, which has the lowest energy, has been determined. The distance between the floating carbon layer and the nickel surface is found smaller than the distance between graphene sheets in bulk graphite, in accordance with experimental measurements. The electronic structure of the graphene layer is strongly modified by interaction with the substrate and the magnetic moment of the surface nickel atoms is lowered in the presence of the graphene layer. Several interface states have been identified in different parts of the interface two-dimensional Brillouin zone. Their influence on the electron energy loss spectra has been evaluated.

  1. Structural determination of vanillin, isovanillin and ethylvanillin by means of gas electron diffraction and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Egawa, Toru; Kameyama, Akiyo; Takeuchi, Hiroshi

    2006-08-01

    The molecular structures of vanillin (4-hydroxy-3-methoxybenzaldehyde), isovanillin (3-hydroxy-4-methoxybenzaldehyde) and ethylvanillin (3-ethoxy-4-hydroxybenzaldehyde) were determined by means of gas electron diffraction. Among them, vanillin and ethylvanillin have a vanilla odor but isovanillin smells differently. The nozzle temperatures were 125, 173 and 146 °C, for vanillin, isovanillin and ethylvanillin, respectively. The results of MP2 and B3LYP calculations with the 6-31G** basis set were used as supporting information. The MP2 calculations predicted that vanillin and isovanillin have two stable conformers and ethylvanillin has four stable conformers. The electron diffraction data were found to be consistent with these conformational compositions. The determined structural parameters ( rg and ∠ α) of vanillin are as follows: < r(C-C) ring>=1.397(4) Å; r(C 1-C aldehyde)=1.471(←) Å; r(C 3-O Me)=1.374(9) Å; r(C 4-O H)=1.361(←) Å; r(O-C Me)=1.428(←) Å; r(C dbnd6 O)=1.214(8) Å; < r(C-H)>=1.110(11) Å; r(O-H)=0.991(←) Å; ∠C 6-C 1-C 2=120.6(2)°; ∠C 1-C 2-C 3=118.8(←)°; ∠C 1-C 6-C 5=120.1(←)°; ∠C 2-C 1-C aldehyde=122.7(18)°; ∠C 1-C dbnd6 O=119.4(16)°; ∠C 4-C 3-O Me=112.2(12)°; ∠C 3-C 4-O H=119.1(←)°; ∠C 3-O-C=121.7(29)°. Those of isovanillin are as follows: < r(C-C) ring>=1.402(4) Å; r(C 1-C aldehyde)=1.479(←) Å; r(C 4-O Me)=1.369(9) Å; r(C 3-O H)=1.357(←) Å; r(O-C Me)=1.422(←) Å; r(C dbnd6 O)=1.221(9) Å; < r(C-H)>=1.114(14) Å; r(O-H)=0.995(←) Å; ∠C 6-C 1-C 2=120.2(3)°; ∠C 1-C 2-C 3=119.0(←)°; ∠C 1-C 6-C 5=119.9(←)°; ∠C 2-C 1-C aldehyde=124.6(25)°; ∠C 1-C dbnd6 O=121.3(24)°; ∠C 3-C 4-O Me=114.4(12)°; ∠C 4-C 3-O H=121.2(←)°; ∠C 4-O-C=123.8(26)°. Those of ethylvanillin are as follows: < r(C-C) ring>=1.397(6) Å; r(C 1-C aldehyde)=1.471(←) Å; r(C 3-O Et)=1.365(13) Å; r(C 4-O H)=1.352(←) Å; r(O-C Et)=1.427(←) Å; r(C-C Et)=1.494(21) Å; r(C dbnd6 O)=1.206(9) Å; < r

  2. Phase stability, electronic structure and equation of state of cubic TcN from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Song, T.; Ma, Q.; Sun, X. W.; Liu, Z. J.; Fu, Z. J.; Wei, X. P.; Wang, T.; Tian, J. H.

    2016-09-01

    The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model.

  3. Electronic structures of Stone-Wales defective chiral (6,2) silicon carbide nanotubes: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Song, Jiuxu; Liu, Hongxia; Guo, Yingna; Zhu, Kairan

    2015-11-01

    By using first-principle calculations based on density functional theory, the geometries and electronic structures of the Stone-Wales defective chiral (6,2) silicon carbide nanotubes (SiCNTs) are investigated. Independent on their orientations, Stone-Wales defects form two asymmetric pentagons and heptagons coupled in pairs (5-7-7-5) and a defect energy level in the band gap of the SiCNT. By applying transverse electric fields, significant differences in the electronic structures of the defective (6,2) SiCNTs are achieved, which may provide the foundation of identifying the orientation of Stone-Wales defects in chiral SiCNTs.

  4. Electronic structures and magnetism for carbon doped CdSe: Modified Becke-Johnson density functional calculations

    NASA Astrophysics Data System (ADS)

    Fan, S. W.; Song, T.; Huang, X. N.; Yang, L.; Ding, L. J.; Pan, L. Q.

    2016-09-01

    Utilizing the full potential linearized augment plane wave method, the electronic structures and magnetism for carbon doped CdSe are investigated. Calculations show carbon substituting selenium could induce CdSe to be a diluted magnetic semiconductor. Single carbon dopant could induce 2.00 μB magnetic moment. Electronic structures show the long-range ferromagnetic coupling mainly originates from the p-d exchange-like p-p coupling interaction. Positive chemical pair interactions indicate carbon dopants would form homogeneous distribution in CdSe host. The formation energy implies the non-equilibrium fabricated technology is necessary during the samples fabricated.

  5. Iterative diagonalization in augmented plane wave based methods in electronic structure calculations

    SciTech Connect

    Blaha, P.; Laskowski, R.; Schwarz, K.

    2010-01-20

    Due to the increased computer power and advanced algorithms, quantum mechanical calculations based on Density Functional Theory are more and more widely used to solve real materials science problems. In this context large nonlinear generalized eigenvalue problems must be solved repeatedly to calculate the electronic ground state of a solid or molecule. Due to the nonlinear nature of this problem, an iterative solution of the eigenvalue problem can be more efficient provided it does not disturb the convergence of the self-consistent-field problem. The blocked Davidson method is one of the widely used and efficient schemes for that purpose, but its performance depends critically on the preconditioning, i.e. the procedure to improve the search space for an accurate solution. For more diagonally dominated problems, which appear typically for plane wave based pseudopotential calculations, the inverse of the diagonal of (H - ES) is used. However, for the more efficient 'augmented plane wave + local-orbitals' basis set this preconditioning is not sufficient due to large off-diagonal terms caused by the local orbitals. We propose a new preconditioner based on the inverse of (H - {lambda}S) and demonstrate its efficiency for real applications using both, a sequential and a parallel implementation of this algorithm into our WIEN2k code.

  6. The use of quadratic forms in the calculation of ground state electronic structures

    SciTech Connect

    Keller, Jaime; Weinberger, Peter

    2006-08-15

    There are many examples in theoretical physics where a fundamental quantity can be considered a quadratic form {rho}={sigma}{sub i}{rho}{sub i}=vertical bar {psi} vertical bar{sup 2} and the corresponding linear form {psi}={sigma}{sub i}{psi}{sub i} is highly relevant for the physical problem under study. This, in particular, is the case of the density and the wave function in quantum mechanics. In the study of N-identical-fermion systems we have the additional feature that {psi} is a function of the 3N configuration space coordinates and {rho} is defined in three-dimensional real space. For many-electron systems in the ground state the wave function and the Hamiltonian are to be expressed in terms of the configuration space (CS), a replica of real space for each electron. Here we present a geometric formulation of the CS, of the wave function, of the density, and of the Hamiltonian to compute the electronic structure of the system. Then, using the new geometric notation and the indistinguishability and equivalence of the electrons, we obtain an alternative computational method for the ground state of the system. We present the method and discuss its usefulness and relation to other approaches.

  7. First-Principles Calculation of the Electronic Structure and Magnetism at the GRAPHENE/Ni(111) Interface

    NASA Astrophysics Data System (ADS)

    Chen, L.; Ouyang, Y.; Pan, H. Z.; Sun, Y. Y.; Wang, Y. L.

    A spin-polarized first-principles calculation of the atomic and electronic structure of the graphene/Ni(111) interface is studied. The electronic structure of the graphene layer is strongly modified by interaction with the substrate and a behavior where magnetic moments are localized at the edges of nanoscale holes of isolated graphene does not happen in the defect-graphene/Ni(111) system. The magnetic moment of the surface nickel atoms is lowered in the presence of the graphene layer and nanoscale holes of graphene, which control the strength of the hybridization between electronic states of graphene and Ni substrate. Our findings show that an electron spin in the graphene/Ni(111) interface can be manipulated in a controlled way and have important implications for graphene-based spintronic devices.

  8. Molecule-optimized basis sets and Hamiltonians for accelerated electronic structure calculations of atoms and molecules.

    PubMed

    Gidofalvi, Gergely; Mazziotti, David A

    2014-01-16

    Molecule-optimized basis sets, based on approximate natural orbitals, are developed for accelerating the convergence of quantum calculations with strongly correlated (multireferenced) electrons. We use a low-cost approximate solution of the anti-Hermitian contracted Schrödinger equation (ACSE) for the one- and two-electron reduced density matrices (RDMs) to generate an approximate set of natural orbitals for strongly correlated quantum systems. The natural-orbital basis set is truncated to generate a molecule-optimized basis set whose rank matches that of a standard correlation-consistent basis set optimized for the atoms. We show that basis-set truncation by approximate natural orbitals can be viewed as a one-electron unitary transformation of the Hamiltonian operator and suggest an extension of approximate natural-orbital truncations through two-electron unitary transformations of the Hamiltonian operator, such as those employed in the solution of the ACSE. The molecule-optimized basis set from the ACSE improves the accuracy of the equivalent standard atom-optimized basis set at little additional computational cost. We illustrate the method with the potential energy curves of hydrogen fluoride and diatomic nitrogen. Relative to the hydrogen fluoride potential energy curve from the ACSE in a polarized triple-ζ basis set, the ACSE curve in a molecule-optimized basis set, equivalent in size to a polarized double-ζ basis, has a nonparallelity error of 0.0154 au, which is significantly better than the nonparallelity error of 0.0252 au from the polarized double-ζ basis set. PMID:24387056

  9. Bonding in elemental boron: a view from electronic structure calculations using maximally localized Wannier functions

    NASA Astrophysics Data System (ADS)

    Ogitsu, Tadashi; Gygi, Francois; Reed, John; Schwegler, Eric; Galli, Giulia

    2007-03-01

    Boron exhibits the most complex structure of all elemental solids, with more than 300 atoms per unit cell arranged in interconnecting icosahedra, and some crystallographic positions occupied with a probability of less than one. The precise determination of the ground state geometry of boron---the so-called β-boron structure--has been elusive and its electronic and bonding properties have been difficult to rationalize. Using lattice model Monte Carlo optimization techniques and ab-initio simulations, we have shown that a defective, quasi-ordered β solid is the most stable structure at zero as well as finite T. In the absence of partially occupied sites (POS), the perfect β-boron crystal is unstable; the presence of POS lower its internal energy below that of an ordered α-phase, not mere an entropic effect. We present a picture of the intricate and unique bonding in boron based on maximally localized Wannier (MLWF) functions, which indicates that the presence of POS provides a subtle, yet essential spatial balance between electron deficient and fully saturated bonds. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/ LLNL under contract no. W-7405-Eng-48.

  10. Electronic structure of quasi-one-dimensional superconductor K2Cr3As3 from first-principles calculations

    PubMed Central

    Jiang, Hao; Cao, Guanghan; Cao, Chao

    2015-01-01

    The electronic structure of quasi-one-dimensional superconductor K2Cr3As3 is studied through systematic first-principles calculations. The ground state of K2Cr3As3 is paramagnetic. Close to the Fermi level, the , dxy, and orbitals dominate the electronic states, and three bands cross EF to form one 3D Fermi surface sheet and two quasi-1D sheets. The electronic DOS at EF is less than 1/3 of the experimental value, indicating a large electron renormalization factor around EF. Despite of the relatively small atomic numbers, the antisymmetric spin-orbit coupling splitting is sizable (≈60 meV) on the 3D Fermi surface sheet as well as on one of the quasi-1D sheets. Finally, the imaginary part of bare electron susceptibility shows large peaks at Γ, suggesting the presence of large ferromagnetic spin fluctuation in the compound. PMID:26525099

  11. Lattice vibrations and instabilities in tungsten phases from electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Grimvall, G.; Einarsdotter, K.; Sadigh, B.; Köpe, B.; Ozolinš, V.

    1998-03-01

    Phonon dispersion curves are calculated for bcc and fcc W, as a function of atomic volume. The range of phonon stability in the fcc phase is mapped out in the Brillouin zone. Incipient instabilities in the bcc phase are studied, and compared with related instabilities in, e.g., bcc Ti and Zr. A molecular-dynamics type analysis is also performed. Implications are discussed for binary phase diagrams AB where elements A and B have different lattice structures, one of them being dynamically unstable.

  12. Synthesis, structure, and electronic structure calculation of a new centrosymmetric borate Pb2O[BO2(OH)] based on anion-centered OPb4 tetrahedra

    NASA Astrophysics Data System (ADS)

    Sun, Feng; Wang, Li; Stoumpos, Constantinos C.

    2016-08-01

    The synthesis, structure, and characterization of a new centrosymmetric borate Pb2O[BO2(OH)] based on anion-centered OPb4 tetrahedra are reported. Pb2O[BO2(OH)] crystallizes in monoclinic space group C2/m with a=12.725(7) Å, b=5.698(3) Å, c=7.344(4) Å, β=116.277(6)°. The electronic band structure and density of states of Pb2O[BO2(OH)] have been calculated via the density functional theory (DFT). Electron density difference calculation indicates that lone-pair electrons of Pb2+ cation should be stereoactive.

  13. Crystal Structures, Stabilities, Electronic Properties, and Hardness of MoB2: First-Principles Calculations.

    PubMed

    Ding, Li-Ping; Shao, Peng; Zhang, Fang-Hui; Lu, Cheng; Ding, Lei; Ning, Shu Ya; Huang, Xiao Fen

    2016-07-18

    On the basis of the first-principles techniques, we perform the structure prediction for MoB2. Accordingly, a new ground-state crystal structure WB2 (P63/mmc, 2 fu/cell) is uncovered. The experimental synthesized rhombohedral R3̅m and hexagonal AlB2, as well as theoretical predicted RuB2 structures, are no longer the most favorite structures. By analyzing the elastic constants, formation enthalpies, and phonon dispersion, we find that the WB2 phase is thermodynamically and mechanically stable. The high bulk modulus B, shear modulus G, low Poisson's ratio ν, and small B/G ratio are benefit to its low compressibility. When the pressure is 10 GPa, a phase transition is observed between the WB2-MoB2 and the rhombohedral R3̅m MoB2 phases. By analyzing the density of states and electron density, we find that the strong covalent is formed in MoB2 compounds, which contributes a great deal to its low compressibility. Furthermore, the low compressibility is also correlated with the local buckled structure. PMID:27387577

  14. Many-body electronic structure calculations of Eu-doped ZnO

    NASA Astrophysics Data System (ADS)

    Lorke, M.; Frauenheim, T.; da Rosa, A. L.

    2016-03-01

    The formation energies and electronic structure of europium-doped zinc oxide has been determined using DFT and many-body G W methods. In the absence of intrisic defects, we find that the europium-f states are located in the ZnO band gap with europium possessing a formal charge of 2+. On the other hand, the presence of intrinsic defects in ZnO allows intraband f -f transitions otherwise forbidden in atomic europium. This result corroborates with recently observed photoluminescence in the visible red region S. Geburt et al. [Nano Lett. 14, 4523 (2014), 10.1021/nl5015553].

  15. Blending Determinism with Evolutionary Computing: Applications to the Calculation of the Molecular Electronic Structure of Polythiophene.

    PubMed

    Sarkar, Kanchan; Sharma, Rahul; Bhattacharyya, S P

    2010-03-01

    A density matrix based soft-computing solution to the quantum mechanical problem of computing the molecular electronic structure of fairly long polythiophene (PT) chains is proposed. The soft-computing solution is based on a "random mutation hill climbing" scheme which is modified by blending it with a deterministic method based on a trial single-particle density matrix [P((0))(R)] for the guessed structural parameters (R), which is allowed to evolve under a unitary transformation generated by the Hamiltonian H(R). The Hamiltonian itself changes as the geometrical parameters (R) defining the polythiophene chain undergo mutation. The scale (λ) of the transformation is optimized by making the energy [E(λ)] stationary with respect to λ. The robustness and the performance levels of variants of the algorithm are analyzed and compared with those of other derivative free methods. The method is further tested successfully with optimization of the geometry of bipolaron-doped long PT chains. PMID:26613302

  16. A Initio Lcao Electronic Structure Calculations of Layered Transition Metal Compounds.

    NASA Astrophysics Data System (ADS)

    Dawson, William G.

    1987-09-01

    Available from UMI in association with The British Library. In this work the electronic structure of three systems of layered transition metal compounds are examined using an ab initio tight binding (LCAO) method using the Xalpha exchange/correlation approximation: group VI ditellurides, group IV trichalcogenides and quaternary copper oxide defect-perovskites. A chemical pseudopotential argument is presented in order to justify the use of a small basis set of atomic orbitals. The group VI transition metal compounds MoTe_2 and WTe _2 show strong metal-metal interactions and MoTe_2 undergoes an unusual phase transition with the lattice parameter perpendicular to the layers decreasing with increasing temperature. The group IV transition metal trichalcogenides provide a useful series for study due to their quasi-1-dimensional character and the occurrence of two closely related structural variants. The atypical compound ZrTe_3 is given special attention because of its apparent semimetallic nature. The final group of compounds studied are the high Tc superconducting ceramics Ba-La-Cu-O and Ba-Y-Cu-O. The technological importance of compounds with zero resistance and showing the Meissner effect (expelling magnetic fields) above liquid nitrogen temperatures and the, as yet, undefined nature of the mechanism of superconductivity stresses the need to carefully examine the electronic structure of these materials. The role of oxygen vacancies, the charge state of the copper ions and the possibility of structural phase transitions are some of the topics considered here. The use of an atomic-orbital basis allows a comparatively straightforward description of the chemical bonding in a crystal--especially useful when the unit cell contains a large number of atoms.

  17. 57Fe Mössbauer spectroscopy, X-ray single-crystal diffractometry, and electronic structure calculations on natural alexandrite

    NASA Astrophysics Data System (ADS)

    Weber, Sven-Ulf; Grodzicki, Michael; Lottermoser, Werner; Redhammer, Günther J.; Tippelt, Gerold; Ponahlo, Johann; Amthauer, Georg

    2007-09-01

    Natural alexandrite Al2BeO4:Cr from Malyshevo near Terem Tschanka, Sverdlovsk, Ural, Russia, has been characterized by 57Fe Mössbauer spectroscopy, electron microprobe, X-ray single-crystal diffractometry and by electronic structure calculations in order to determine oxidation state and location of iron. The sample contains 0.3 wt% of total iron oxide. The 57Fe Mössbauer spectrum can be resolved into three doublets. Two of them with hyperfine parameters typical for octahedrally coordinated high-spin Fe3+ and Fe2+, respectively, are assigned to iron substituting for Al in the octahedral M2-site. The third doublet is attributed to Fe3+ in hematite. Electronic structure calculations in the local spin density approximation are in reasonable agreement with experimental data provided that expansion and/or distortion of the coordination octahedra are presumed upon iron substitution. The calculated hyperfine parameters of Fe3+ are almost identical for the M1 and M2 positions, but the calculated ligand-field splitting is by far too large for high-spin Fe3+ on M1.

  18. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule

    SciTech Connect

    Tohme, Samir N.; Korek, Mahmoud E-mail: fkorek@yahoo.com; Awad, Ramadan

    2015-03-21

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, the rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.

  19. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule.

    PubMed

    Tohme, Samir N; Korek, Mahmoud; Awad, Ramadan

    2015-03-21

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time. PMID:25796254

  20. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule

    NASA Astrophysics Data System (ADS)

    Tohme, Samir N.; Korek, Mahmoud; Awad, Ramadan

    2015-03-01

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.

  1. Prediction of new stable structure, promising electronic and thermodynamic properties of MoS3: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Pan, Yong; Guan, Weiming

    2016-09-01

    MoS3 has attracted considerable attention as potential hydrogen storage material due to the interaction between the hydrogen and unsaturated sulfur atoms. However, its structure and physical properties are unknown. By means of first-principles approach and Inorganic crystal structure Database (ISCD), we systematically investigated the structure, relevant physical and thermodynamic properties of MoS3. Phonon dispersion, electronic structure, band structure and heat capacity are calculated in detail. We predicted the orthorhombic B2ab (SrS3-type) and tetragonal P-421m (BaS3-type) structures of MoS3, which prefers to form the SrS3-type (Space group: B2ab, No.41) structure at the ground state. High pressure results in structural transition from SrS3-type structure to BaS3-type structure. This sulfide exhibits a degree of metallic behavior. The calculated heat capacity of MoS3 with SrS3-type structure is about of 39 J/(mol·K).

  2. Electronic structures and elastic properties of X3Sb (X = Li, K, Cs) from the first-principles calculations

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2014-03-01

    We investigate the electronic structures of {{\\rm{X}}_{3}}{\\rm{Sb}} (X = Li, K, Cs) by using Tran and Blaha's modified Becke and Johnson exchange potential. Calculated energy gaps are substantially better than previous first-principles results with respect to experimental values. The substantial improvement is achieved because the conduction bands are correctly calculated with the new exchange potential. The approach should be applicable to other similar materials. The elastic properties of {{\\rm{X}}_{3}}{\\rm{Sb}} (X = Li, K, Cs) are also studied in detail with the generalized gradient approximation such as bulk modulus, shear modulus, Young's modulus, Poisson's ratio, sound velocities, and Debye temperature.

  3. ELECTRONIC STRUCTURE CALCULATIONS FOR PrFe4P12 FILLED SKUTTERUDITE USING EXTENDED HUCKEL TIGHT-BINDING METHOD

    NASA Astrophysics Data System (ADS)

    GALVAN, DONALD H.

    To gain insight into the electronic properties of PrFe4P12 filled skutterudite, band electronic structure calculations, total and projected density of states, crystal orbital overlap population and Mulliken population analysis were performed. The energy bands yield a semi-metallic behavior with a direct gap (at Γ) of 0.02 eV. Total and Projected Density of States provided information of the contribution from each orbital of each atom to the total Density of States. Moreover, the bonding strength between some atoms within the unit cell was obtained. Mulliken Population Analysis suggests ionic behavior for this filled skutterudite.

  4. Electronic Structure of Organic/Inorganic Interfaces: Insights from First Principles Calculations

    NASA Astrophysics Data System (ADS)

    Segev, Lior

    Electronic devices based on molecules draw a lot of attention in both scientific and industrial activities. Molecules in electronic devices can serve as the heart of the device, featuring versatile physical properties i.e. electronical, optical, magnetic, etc. Molecules can also function as an assist mechanism in which the electronic properties of the underlying material are modified in a predictable fashion according to the molecular monolayer properties. But, the route to applications in both these directions lies in answering fundamental questions related to band offsets between two materials, full electronic structure determination of molecule and substrates, work function modifications, etc. To tackle these questions, we chose to study the interface formed by an alkyl monolayer adsorbed on a Si substrate by utilizing two ab initio methods. First, the density functional theory (DFT) utilizing the local density or the B3LYP approximations for the exchange-correlation potential and, second, the many-body perturbation theory based on the GW approximation. We adapted a "divide and conquer" approach to our system by simulating the infinite counterpart, polyethylene, of our finite alkyl chain to test how the band gap of the two molecules changes when moving from an infinite 1D molecule to a finite length molecule. We find excellent agreement between our GW simulation results for polyethylene and experimental results for the bandstructure, ionization potential and band gap values. From DFT simulations, we analyze the ultra-violet photoelectron spectra (UPS) of odd and even number of carbons alkyl chains and identify the origin of their differences in spectral signature. GW simulations of the full alkyl monolayer/Si(111) system reveal that the projected density of states (DOS) of the upper alkyl chain have an excellent agreement to experimental UPS and inverse-photoemission spectra results. Based on this correspondence, we find the band alignment between the alkyl

  5. Close-coupling calculations of fine-structure excitation of Ne II due to H and electron collisions

    NASA Astrophysics Data System (ADS)

    Stancil, Phillip C.; Cumbee, Renata; Wang, Qianxia; Loch, Stuart; Pindzola, Michael; Schultz, David R.; Buenker, Robert; McLaughlin, Brendan; Ballance, Connor

    2016-06-01

    Fine-structure transitions within the ground term of ions and neutral atoms dominate the cooling in a variety of molecular regions and also provide important density and temperature diagnostics. While fine-structure rates due to electron collisions have been studied for many systems, data are generally sparse for elements larger than oxygen, at low temperatures, and for collisions due to heavy particles. We provide rate coefficients for H collisions for the first time. The calculations were performed using the quantum molecular-orbital close-coupling approach and the elastic approximation. The heavy-particle collisions use new potential energies for the lowest-lying NeH+ states computed with the MRDCI method. The focus of the electron-impact calculations is to provide fine-structure excitation rate coefficients down to 10 K. We compare with previous calculations at higher temperatures (Griffin et al. 2001), and use a range of calculations to provide an estimate of the uncertainty on our recommended rate coefficients. A brief discussion of astrophysical applications is also provided.Griffin, D.C., et al., 2001, J. Phys. B, 34, 4401This work partially supported by NASA grant No. NNX15AE47G.

  6. Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations

    SciTech Connect

    Gall, D.; Sta''dele, M.; Ja''rrendahl, K.; Petrov, I.; Desjardins, P.; Haasch, R. T.; Lee, T.-Y.; Greene, J. E.

    2001-03-15

    Experimental and ab initio computational methods are employed to conclusively show that ScN is a semiconductor rather than a semimetal; i.e., there is a gap between the N 2p and the Sc 3d bands. Previous experimental investigators reported, in agreement with band structure calculations showing a band overlap of 0.2 eV, that ScN is a semimetal while others concluded that it is a semiconductor with a band gap larger than 2 eV. We have grown high quality, single crystalline ScN layers on MgO(001) and on TiN(001) buffer layers on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition. ScN optical properties were determined by transmission, reflection, and spectroscopic ellipsometry while in-situ x-ray and ultraviolet valence band photoelectron spectroscopy were used to determine the density of states (DOS) below the Fermi level. The measured DOS exhibits peaks at 3.8 and 5.2 eV stemming from the N 2p bands and at 15.3 eV due to the N 2s bands. The imaginary part of the measured dielectric function {epsilon}{sub 2} consists of two primary features due to direct X- and {Gamma}-point transitions at photon energies of 2.7 and 3.8 eV, respectively. For comparison, the ScN band structure was calculated using an ab initio Kohn--Sham approach which treats the exchange interactions exactly within density-functional theory. Calculated DOS and the complex dielectric function are in good agreement with our ScN valence-band photoelectron spectra and measured optical properties, respectively. We conclude, combining experimental and computational results, that ScN is a semiconductor with an indirect {Gamma}--X bandgap of 1.3{+-}0.3eV and a direct X-point gap of 2.4{+-}0.3eV.

  7. Real-space electronic structure calculations with full-potential all-electron precision for transition metals

    NASA Astrophysics Data System (ADS)

    Ono, Tomoya; Heide, Marcus; Atodiresei, Nicolae; Baumeister, Paul; Tsukamoto, Shigeru; Blügel, Stefan

    2010-11-01

    We have developed an efficient computational scheme utilizing the real-space finite-difference formalism and the projector augmented-wave (PAW) method to perform precise first-principles electronic-structure simulations based on the density-functional theory for systems containing transition metals with a modest computational effort. By combining the advantages of the time-saving double-grid technique and the Fourier-filtering procedure for the projectors of pseudopotentials, we can overcome the egg box effect in the computations even for first-row elements and transition metals, which is a problem of the real-space finite-difference formalism. In order to demonstrate the potential power in terms of precision and applicability of the present scheme, we have carried out simulations to examine several bulk properties and structural energy differences between different bulk phases of transition metals and have obtained excellent agreement with the results of other precise first-principles methods such as a plane-wave-based PAW method and an all-electron full-potential linearized augmented plane-wave (FLAPW) method.

  8. First-principles calculations of the electronic structure, phase transition and properties of ZrSiO4 polymorphs

    SciTech Connect

    Du, Jincheng; Devanathan, Ramaswami; Corrales, Louis R.; Weber, William J.

    2012-05-01

    First-principles periodic density functional theory (DFT) calculations have been performed to understand the electronic structure, chemical bonding, phase transition, and physical properties of the mineral zircon (in the chemical composition of ZrSiO4) and its high pressure phase reidite. Temperature effect on phase transition and thermal–mechanical properties such as heat capacity and bulk modulus have been studied by combining the equation of states obtained from DFT calculations with the quasi-harmonic Debye model to take into account the entropy contribution to free energy. Local density approximation (LDA) and generalized gradient approximation (GGA) DFT functionals have been systematically compared in predicting the structure and property of this material. It is found that the LDA functional provides a better description of the equilibrium structure and bulk modulus, while GGA predicts a transition pressure closer to experimental values. Both functionals correctly predict the relative stability of the two phases, with GGA giving slightly larger energy differences. The calculated band structures show that both zircon and reidite have indirect bandgaps and the reidite phase has a narrower bandgap than the zircon phase. The electronic density of states and atomic charges analyses show that bonding in the high-pressure reidite phase has a stronger covalent character.

  9. First-Principles Calculations of Structural, Electronic and Optical Properties of CaTiO3 Crystal

    NASA Astrophysics Data System (ADS)

    Medeiros, Subênia; Silva, Jusciane; Albuquerque, Eudenilson; Freire, Valder

    2013-03-01

    The structural, electronic, vibrational, and optical properties of perovskite CaTiO3 in the cubic, orthorhombic, and tetragonal phase are calculated in the framework of density functional theory (DFT) with different exchange-correlation potentials by CASTEP package. The calculated band structure shows an indirect band gap of 1.88 eV at the Γ-R points in the Brillouin zone to the cubic structure, a direct band gap of 2.41 eV at the Γ - Γ points to the orthorhombic structure, and an indirect band gap of 2.31 eV at the M' Γ points to the tetragonal phase. I have concluded that the bonding between Ca and TiO2 is mainly ionic and that the TiO2 entities bond covalently. Unlike some perovskites the CaTiO3 does not exhibit a ferroelectric phase transition down to 4.2 K. It is still known that the CaTiO3 has a static dielectric constant that extrapolates to a value greater than 300 at zero temperature. Our calculated lattice parameters, elastic constants, optical properties, and vibrational frequencies are found to be in good agreement with the available theoretical and experimental values. The results for the effective mass in the electron and hole carriers are also presented in this work.

  10. Electronic structure and metallization of cubic GdH3 under pressure: Ab initio many-body GW calculations

    NASA Astrophysics Data System (ADS)

    Kong, Bo; Zhang, Yachao

    2016-07-01

    The electronic structures of the cubic GdH3 are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G0W0 calculations give a fundamental band gap of 1.72 eV, while GGA+ GW0 or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn-Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH3 can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G0W0 calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW0 and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G0W0 calculations in the 4f-core case is the closest to the real result. By G0W0 calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH3 occurs around 40 GPa, which might be a satisfied prediction.

  11. Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Zunger, Alex

    1985-06-01

    We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.

  12. Electron Affinities and Electronic Structures of o-, m-, and p- Hydroxyphenoxyl Radicals: A Combined Low-Temperature Photoelectron Spectroscopic and Ab initio Calculation Study

    SciTech Connect

    Wang, Xue B.; Fu, Qiang; Yang, Jinlong

    2010-09-02

    Hydroxyl substituted phenoxide, o-, m-, p- HO(C6H4)O– and the corresponding neutral radicals are important species, in particularly, the p- isomer pair is directly involved in the proton-coupled electron transfer in biological photosynthetic centers. Here we report the first spectroscopic study of these species in the gas phase by means of low-temperature photoelectron spectroscopy (PES) and ab initio calculations. Vibrationally resolved PES spectra were obtained at 70 K and several photon energies for each anion, directly yielding electron affinity (EA) and electronic structure information of the corresponding hydroxyphenoxyl radical. The EAs are found to vary with OH positions, from 1.990 ± 0.010 eV (p-) to 2.315 ± 0.010 (o-) and 2.330 ± 0.010 (m-). Theoretical calculations were carried out to identify the optimized molecular structures for both anions and neutral radicals. The electron binding energies and excited state energies were also calculated to compare with experimental data. Excellent agreement is found between calculations and experiments. Molecular orbital analyses indicate strong OH anti-bonding interaction with the phenoxide moiety for o- as well as p- isomers, whereas such interaction is largely missing for the m- anion. The variance of EAs among three isomers is interpreted primarily due to the interplay between two competing factors: the OH anti-bonding interaction and H-bonding stabilization (existed only in the o- anion).

  13. Atomic and electronic structure of hydrogen on ZnO (1bar 100) surface: ab initio hybrid calculations

    NASA Astrophysics Data System (ADS)

    Usseinov, A. B.; Kotomin, E. A.; Zhukovskii, Yu F.; Purans, J.; Sorokin, A. V.; Akilbekov, A. T.

    2013-12-01

    Hydrogen atoms unavoidably incorporated into ZnO during growth of bulk samples and thin films considerably affect their electrical conductivity. The results of first principles hybrid LCAO calculations are discussed for hydrogen atoms in the bulk and on the non-polar ZnO (1bar 100) surface. The incorporation energy, the atomic relaxation, the electronic density redistribution and the electronic structure modifications are compared for the surface adsorption and bulk interstitial H positions. It is shown that hydrogen has a strong binding with the surface O ions (2.7 eV) whereas its incorporation into bulk is energetically unfavorable. Surface hydrogen atoms are very shallow donors, thus, contributing to the electronic conductivity.

  14. The structural and electronic properties of cubic AgMO3 (M=Nb, Ta) by first principles calculations

    NASA Astrophysics Data System (ADS)

    Prasad, K. Ganga; Niranjan, Manish K.; Asthana, Saket

    2016-05-01

    We report the electronic structure of the AgMO3(M=Nb, Ta) within the frame work of density functional theory and calculations are performed within the generalized gradient approximation (GGA) by using ultrasoft pseudopotentials. The calculated equilibrium lattice parameters and volumes are extracted from fitting of Birch third order equation of state and which are reasonable agreement with the available experimental results. The density of states,band structure of Ag(Nb,Ta)O3 reveals that the valance bands mostly occupied with O-2p and O-2s states and whereas conduction band occupied with Nb (Ta) 4d(5d) states including less contribution from Ag 5s states.

  15. Molecular structures of vinylarsine, vinyldichloroarsine and arsine studied by gas-phase electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Noble-Eddy, Robert; Masters, Sarah L.; Rankin, David W. H.; Robertson, Heather E.; Guillemin, Jean-Claude

    2010-08-01

    The molecular structures of vinylarsine (CH 2dbnd CHAsH 2), vinyldichloroarsine (CH 2dbnd CHAsCl 2) and arsine (AsH 3) have been determined from gas-phase electron diffraction data and, in the case of vinylarsine, rotation constants, employing the SARACEN method. The structure of vinylarsine represents the first complete gas-phase structure of a primary arsine. The experimental geometric parameters generally show good agreement with those obtained using ab initio calculations. Key structural parameters ( rh1) for vinylarsine are rAs-H = 150.5(4) pm, rAs-C = 195.1(1) pm and ∠C-C-As = 119.4(2)°. The bonding and conformational trends in both vinylarsine and vinyldichloroarsine are compared to those found in the analogous amines and phosphines.

  16. Electron and proton absorption calculations for a graphite/epoxy composite model. [large space structures

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1979-01-01

    The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.

  17. First-Principles Electronic Structure Calculations of N2H4 Adsorbed on Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, M.; Tian, W. Q.; Jayanthi, C. S.; Wu, S. Y.

    2008-03-01

    Recent experiments conducted by Desai et al. [1] reveal that single-wall carbon nanotube (SWCNT) networks exposed to N2H4 vapor at various pressures exhibit considerable drop in resistance with respect to the pristine sample. Experimental findings reveal: (i) n-type behavior for the adsorption of N2H4/SWCNT, and (ii) the binding of N2H4 on SWCNT as chemisorption. In the present work, we have performed first-principles electronic structure calculations [2] for the N2H4 adsorbed on the (14, 0) SWCNT, where several orientations for the N2H4 molecule were considered. Calculations for the combined system were performed using 3 unit cells with the DFT/GGA and ultra soft pseudo-potentials. Our calculations reveal: (i) the binding of N2H4 on SWCNT as physisorption, and (ii) the electronic structure of SWCNT to be practically unaltered by the adsorption of N2H4, suggesting that there will not be a dramatic drop in resistance for N2H4/SWCNT. This is in disagreement with the experimental findings. To further understand the experimental observations, we will discuss mechanisms that may alter the binding nature of N2H4 on SWCNT. [1] S. Desai, G. Sumanasekera, et al. (APS, March 2008). [2] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

  18. Electronic levels and electrical response of periodic molecular structures from plane-wave orbital-dependent calculations

    NASA Astrophysics Data System (ADS)

    Li, Yanli; Dabo, Ismaila

    2011-10-01

    Plane-wave electronic-structure predictions based upon orbital-dependent density-functional theory (OD-DFT) approximations, such as hybrid density-functional methods and self-interaction density-functional corrections, are severely affected by computational inaccuracies in evaluating electron interactions in the plane-wave representation. These errors arise from divergence singularities in the plane-wave summation of electrostatic and exchange interaction contributions. Auxiliary-function corrections are reciprocal-space countercharge corrections that cancel plane-wave singularities through the addition of an auxiliary function to the point-charge electrostatic kernel that enters into the expression of interaction terms. At variance with real-space countercharge corrections that are employed in the context of density-functional theory (DFT), reciprocal-space corrections are computationally inexpensive, making them suited to more demanding OD-DFT calculations. Nevertheless, there exists much freedom in the choice of auxiliary functions and various definitions result in different levels of performance in eliminating plane-wave inaccuracies. In this work we derive exact point-charge auxiliary functions for the description of molecular structures of arbitrary translational symmetry, including the yet unaddressed one-dimensional case. In addition, we provide a critical assessment of different reciprocal-space countercharge corrections and demonstrate the improved accuracy of point-charge auxiliary functions in predicting the electronic levels and electrical response of conjugated polymers from plane-wave OD-DFT calculations.

  19. First Principle Calculations of the Electronic Structure, Phase Transition and Properties of ZrSiO4 Polymorphs

    SciTech Connect

    Du, Jincheng; Devanathan, Ram; Corrales, L Rene; Weber, William J

    2012-01-01

    First principle periodic density functional theory (DFT) calculations have been performed to understand the electronic structure, chemical bonding, phase transition, and physical properties of the zircon (in the chemical composition of ZrSiO4) and its high pressure phase reidite. Temperature effect on phase transition and thermal-mechanical properties such as heat capacity and bulk modulus have been studied by combining the equation of states obtained from DFT calculations with the quasi-harmonic Debye model to take into account the entropy contribution to free energy. Local density approximation (LDA) and generalized gradient approximation (GGA) DFT functionals have been systematically compared in predicting the structure and property of this material. It is found that the LDA functional provides a better description of the equilibrium structure and bulk modulus, while GGA predicts a transition pressure closer to experimental values. Both functionals correctly predict the relative stability of the two phases, with GGA giving slightly larger energy differences. The calculated band structures show that both zircon and reidite have indirect bandgaps and the reidite phase has a narrower bandgap than the zircon phase. The atomic charges determined using the Bader method show that bonding in reidite has a stronger covalent character.

  20. Gutzwiller electronic structure calculations applied to transition metals: Kinetic energy gain with ferromagnetic order in bcc Fe

    NASA Astrophysics Data System (ADS)

    Borghi, Giovanni; Fabrizio, Michele; Tosatti, Erio

    2014-09-01

    The Gutzwiller projector technique has long been known as a method to include correlations in electronic structure calculations. We describe a model implementation for a Gutzwiller +LDA calculation in a localized-orbital restricted basis framework, emphasizing the protocol step by step and illustrating our specific procedure for this and future applications. We demonstrate the method with a classic problem, the ferromagnetism of bulk bcc Fe, whose nature is attracting fresh interest. In the conventional Stoner-Wohlfarth model, and in spin-polarized LDA calculations, the ferromagnetic ordering of iron sets in so that the electrons can reduce their mutual Coulomb repulsion, at the cost of some increase of electron kinetic energy. This balance may, however, be altered by correlations, which are strong for localized d orbitals. The present localized basis Gutzwiller +LDA calculation demonstrates how the ferromagnetic ordering of Fe may, in fact, entrain a decrease of kinetic energy at the cost of some increase of potential energy. This happens because, as foreshadowed long ago by Goodenough and others and more recently supported by LDA-DMFT calculations, correlations cause eg and t2g d orbitals to behave differently, with the weakly propagating eg states fully spin polarized and almost localized, and only t2g states forming a broad partly filled itinerant band. Owing to an intra-atomic Hund's rule exchange that aligns eg and t2g spins, the propagation of itinerant t2g holes is favored when different atomic spins are ferromagnetically aligned. This suggests a strong analogy with double exchange in iron ferromagnetism.

  1. First-principles calculations of the structural, electronic, optical and thermal properties of the BNxAs1-x alloys

    NASA Astrophysics Data System (ADS)

    Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin

    2016-06-01

    The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.

  2. Electronic structure of UO2.12 calculated in the coherent potential approximation taking into account strong electron correlations and spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Korotin, M. A.; Pchelkina, Z. V.; Skorikov, N. A.; Efremov, A. V.; Anisimov, V. I.

    2016-07-01

    Based on the coherent potential approximation, the method of calculating the electronic structure of nonstoichiometric and hyperstoichiometric compounds with strong electron correlations and spin-orbit coupling has been developed. This method can be used to study both substitutional and interstitial impurities, which is demonstrated based on the example of the hyperstoichiometric UO2.12 compound. The influence of the coherent potential on the electronic structure of compounds has been shown for the nonstoichiometric UO1.87 containing vacancies in the oxygen sublattice as substitutional impurities, for stoichiometric UO2 containing vacancies in the oxygen sublattice and oxygen as an interstitial impurity, and for hyperstoichiometric UO2.12 with excess oxygen also as interstitial impurity. In the model of the uniform distribution of impurities, which forms the basis of the coherent potential approximation, the energy spectrum of UO2.12 has a metal-like character.

  3. Electronic structure of quasi-one-dimensional superconductor K2Cr3As3 from first-principles calculations.

    PubMed

    Jiang, Hao; Cao, Guanghan; Cao, Chao

    2015-01-01

    The electronic structure of quasi-one-dimensional superconductor K2Cr3As3 is studied through systematic first-principles calculations. The ground state of K2Cr3As3 is paramagnetic. Close to the Fermi level, the Cr-3dz(2), dxy, and d(x(2)-y(2)) orbitals dominate the electronic states, and three bands cross EF to form one 3D Fermi surface sheet and two quasi-1D sheets. The electronic DOS at EF is less than 1/3 of the experimental value, indicating a large electron renormalization factor around EF. Despite of the relatively small atomic numbers, the antisymmetric spin-orbit coupling splitting is sizable (≈60 meV) on the 3D Fermi surface sheet as well as on one of the quasi-1D sheets. Finally, the imaginary part of bare electron susceptibility shows large peaks at Γ, suggesting the presence of large ferromagnetic spin fluctuation in the compound. PMID:26525099

  4. Magnetic, electrical, and thermodynamic properties of NpIr: Ambient and high-pressure measurements, and electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Walker, H. C.; McEwen, K. A.; Griveau, J.-C.; Eloirdi, R.; Amador, P.; Maldonado, P.; Oppeneer, P. M.; Colineau, E.

    2015-05-01

    We present bulk property measurements of NpIr, a newly synthesized member of the Np-Ir binary phase diagram, which is isostructural to the noncentrosymmetric pressure-induced ferromagnetic superconductor UIr. Magnetic susceptibility, electronic transport properties at ambient and high pressure, and heat capacity measurements have been performed for temperatures T =0.55 -300 K in a range of magnetic fields up to 14 T and under pressure up to 17.3 GPa. These reveal that NpIr is a moderately heavy fermion Kondo system with strong antiferromagnetic interactions, but there is no evidence of any phase transition down to 0.55 K or at the highest pressure achieved. Experimental results are compared with ab initio calculations of the electronic band structure and lattice heat capacity. An extremely low lattice thermal conductivity is predicted for NpIr at temperatures above 300 K.

  5. A Detailed Derivation of Gaussian Orbital-Based Matrix Elements in Electron Structure Calculations

    ERIC Educational Resources Information Center

    Petersson, T.; Hellsing, B.

    2010-01-01

    A detailed derivation of analytic solutions is presented for overlap, kinetic, nuclear attraction and electron repulsion integrals involving Cartesian Gaussian-type orbitals. It is demonstrated how s-type orbitals can be used to evaluate integrals with higher angular momentum via the properties of Hermite polynomials and differentiation with…

  6. Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals

    NASA Astrophysics Data System (ADS)

    Amadon, B.; Lechermann, F.; Georges, A.; Jollet, F.; Wehling, T. O.; Lichtenstein, A. I.

    2008-05-01

    The description of realistic strongly correlated systems has recently advanced through the combination of density functional theory in the local density approximation (LDA) and dynamical mean field theory (DMFT). This LDA+DMFT method is able to treat both strongly correlated insulators and metals. Several interfaces between LDA and DMFT have been used, such as ( Nth order) linear muffin-tin orbitals or maximally localized Wannier functions. Such schemes are, however, either complex in use or additional simplifications are often performed (i.e., the atomic sphere approximation). We present an alternative implementation of LDA+DMFT , which keeps the precision of the Wannier implementation, but which is lighter. It relies on the projection of localized orbitals onto a restricted set of Kohn-Sham states to define the correlated subspace. The method is implemented within the projector augmented wave and within the mixed-basis pseudopotential frameworks. This opens the way to electronic structure calculations within LDA+DMFT for more complex structures with the precision of an all-electron method. We present an application to two correlated systems, namely, SrVO3 and β -NiS (a charge-transfer material), including ligand states in the basis set. The results are compared to calculations done with maximally localized Wannier functions, and the physical features appearing in the orbitally resolved spectral functions are discussed.

  7. Lattice structures and electronic properties of MO/MoSe2 interface from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min

    2015-02-01

    Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.

  8. Electronic structure and conformation of polymers from cluster molecular orbital and molecular mechanics calculations: Polyimide

    SciTech Connect

    Kafafi, S.A. ); LaFemina, J.P. ); Nauss, J.L. )

    1990-11-21

    Full geometry optimizations using molecular mechanics and the quantum chemical AM1 method have been carried out to determine the minimum energy conformation of pyromellitic dianhydride-oxydianiline polyimide (PMDA-ODA PI). The phenyl-imide twist angle for this compound was determined to be {approximately}30. These computations also provided a quantitative determination of the energy gap (7 eV), electron affinity ({minus}2 eV), and ionization potential (8.97 eV). Computations on the PMDA-ODA PI radical anion provided an estimate of the hopping barrier for an electron to hop from one chain to another (3.2 eV), the mechanism believed responsible for photoconduction. Moreover, the use of qualitative molecular orbital theory (QMOT) arguments provided an interpretation of these results in a simple molecular orbital framework.

  9. Structural stability, electronic, mechanical and thermodynamical properties of CaNi2P2 and CaNi2Sb2 compounds by band structure calculation

    NASA Astrophysics Data System (ADS)

    Harish, R. Sugan; Jayalakshmi, D. S.; Viswanathan, E.; Sundareswari, M.

    2016-05-01

    The mechanical, electronic, thermodynamic properties and structural stability of tetragonal structured CaNi2P2 and CaNi2Sb2 intermetallic compounds has been studied using the FP-LAPW method based on density functional theory. The PBE-GGA exchange correlation has been applied. Using the computed elastic constants, various elastic moduli such as bulk, shear, Young’s modulus, Poisson’s ratio and anisotropy constant are calculated and discussed. Stability of the compounds is confirmed by using their elastic constants. Pugh’s ratio is calculated to analyze the mechanical nature of the compound.

  10. The potential, limitations, and challenges of divide and conquer quantum electronic structure calculations on energetic materials.

    SciTech Connect

    Tucker, Jon R.; Magyar, Rudolph J.

    2012-02-01

    High explosives are an important class of energetic materials used in many weapons applications. Even with modern computers, the simulation of the dynamic chemical reactions and energy release is exceedingly challenging. While the scale of the detonation process may be macroscopic, the dynamic bond breaking responsible for the explosive release of energy is fundamentally quantum mechanical. Thus, any method that does not adequately describe bonding is destined to lack predictive capability on some level. Performing quantum mechanics calculations on systems with more than dozens of atoms is a gargantuan task, and severe approximation schemes must be employed in practical calculations. We have developed and tested a divide and conquer (DnC) scheme to obtain total energies, forces, and harmonic frequencies within semi-empirical quantum mechanics. The method is intended as an approximate but faster solution to the full problem and is possible due to the sparsity of the density matrix in many applications. The resulting total energy calculation scales linearly as the number of subsystems, and the method provides a path-forward to quantum mechanical simulations of millions of atoms.

  11. Structure, stability, depolarized light scattering, and vibrational spectra of fullerenols from all-electron density-functional-theory calculations

    NASA Astrophysics Data System (ADS)

    Rivelino, Roberto; Malaspina, Thaciana; Fileti, Eudes E.

    2009-01-01

    We have investigated the stability, electronic properties, Rayleigh (elastic), and Raman (inelastic) depolarization ratios, infrared and Raman absorption vibrational spectra of fullerenols [C60(OH)n] with different degrees of hydroxylation by using all-electron density-functional-theory (DFT) methods. Stable arrangements of these molecules were found by means of full geometry optimizations using Becke’s three-parameter exchange functional with the Lee, Yang, and Parr correlation functional. This DFT level has been combined with the 6-31G(d,p) Gaussian-type basis set, as a compromise between accuracy and capability to treat highly hydroxylated fullerenes, e.g., C60(OH)36 . Thus, the molecular properties of fullerenols were systematically analyzed for structures with n=1 , 2, 3, 4, 8, 10, 16, 18, 24, 32, and 36. From the electronic structure analysis of these molecules, we have evidenced an important effect related to the weak chemical reactivity of a possible C60(OH)24 isomer. To investigate Raman scattering and the vibrational spectra of the different fullerenols, frequency calculations are carried out within the harmonic approximation. In this case a systematic study is only performed for n=1-4 , 8, 10, 16, 18, and 24. Our results give good agreements with the expected changes in the spectral absorptions due to the hydroxylation of fullerenes.

  12. Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies

    NASA Astrophysics Data System (ADS)

    Kwon, Kideok D.; Vadillo-Rodriguez, Virginia; Logan, Bruce E.; Kubicki, James D.

    2006-08-01

    Pull-off forces were measured between a silica colloid attached to an atomic force microscope (AFM) cantilever and three homopolymer surfaces representing constituents of extracellular polymeric substances (EPS). The pull-off forces were -0.84 (±0.16), -0.68 (±0.15), and -2.37 (±0.31) nN as measured in water for dextran, phosphorylated dextran, and poly- L-lysine, respectively. Molecular orbital and density functional theory methods (DFT) were applied to analyze the measured pull-off forces using dimer clusters representing interactions between the three polymers and silica surfaces. Binding energies for each dimer were calculated with basis set superposition error (BSSE) and interpolated using corrections for silica surface hydroxyl density and silica charge density. The binding energies were compared with the normalized pull-off forces with the effective silica surface area contacting the polymer surfaces. The predicted binding energies at a -0.064 C/m 2 silica surface charge density corresponding to circum-neutral pH were -0.055, -0.029, and -0.338 × 10 -18 J/nm 2 for the dimers corresponding to the silica surface with dextran, phosphorylated dextran, and poly- L-lysine, respectively. Polarizable continuum model (PCM) calculations with different solvents, silanol vibrational frequency calculations, and orbital interaction analysis based on natural bonding orbital (NBO) showed that phosphate groups formed stronger H-bonds with neutral silanols than hydroxyl and amino functional groups of polymers, implying that phosphate containing polymers would play important roles in EPS binding to silica surfaces.

  13. Properties of Cerium Hydroxides from Matrix Infrared Spectra and Electronic Structure Calculations.

    PubMed

    Fang, Zongtang; Thanthiriwatte, K Sahan; Dixon, David A; Andrews, Lester; Wang, Xuefeng

    2016-02-15

    Reactions of laser ablated cerium atoms with hydrogen peroxide or hydrogen and oxygen mixtures diluted in argon and condensed at 4 K produced the Ce(OH)3 and Ce(OH)2 molecules and Ce(OH)2(+) cation as major products. Additional minor products were identified as the Ce(OH)4, HCeO, and OCeOH molecules. These new species were identified from their matrix infrared spectra with D2O2, D2, and (18)O2 isotopic substitution and correlating observed frequencies with values calculated by density functional theory. We find that the amounts of Ce(OH)3 and of the Ce(OH)2(+) cation increase on UV (λ > 220 nm) photolysis, while Ce(OH)2, Ce(OH)4, and HCeO are photosensitive. The observed major species for Ce are in the +III or +II oxidation state, and the minor product, Ce(OH)4, is in the +IV oxidation state. The calculations for the vibrational frequencies with the B3LYP functional agree well with the experiment. The NBO analysis shows significant backbonding to the metal 4f and 5d orbitals for the closed shell species. Most open shell species have the excess spin in the 4f with paired spin in the 5d due to backbonding. The heats of formation of the observed species were derived from the available data from experiment and the calculated reaction energies. The major products in this study are different from similar reactions for Th where the tetrahydroxide was the major species. PMID:26814626

  14. First principles calculations of structural, electronic, thermodynamic and optical properties of BAs1 - xPx alloy

    NASA Astrophysics Data System (ADS)

    Drablia, S.; Meradji, H.; Ghemid, S.; Labidi, S.; Bouhafs, B.

    2009-04-01

    First principles calculations have been used to investigate the structural, electronic, thermodynamic and optical properties of boron ternary alloy BAs1 - x Px, using a hybrid full-potential (linear) augmented plane wave plus the local orbitals (APW + lo) method within the density-functional theory (DFT). The Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) as well as the Engel-Vosko (EV)-GGA are used to calculate the band gap. We investigated the effect of composition on lattice constant, bulk modulus and band gap. Deviations of the lattice constant from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for the alloy. Using the approach of Zunger and co-workers, the microscopic origins of the gap bowing are explained. The thermodynamic stability of the alloy is investigated by calculating the excess enthalpy of mixing ΔHm as well as the phase diagram. The calculated phase diagram showed a broad miscibility gap for the alloy of interest with a high critical temperature. For optical properties, the compositional dependence of the refractive index and the dielectric constant is studied.

  15. A survey of the parallel performance and accuracy of Poisson solvers for electronic structure calculations.

    PubMed

    García-Risueño, Pablo; Alberdi-Rodriguez, Joseba; Oliveira, Micael J T; Andrade, Xavier; Pippig, Michael; Muguerza, Javier; Arruabarrena, Agustin; Rubio, Angel

    2014-03-01

    We present an analysis of different methods to calculate the classical electrostatic Hartree potential created by charge distributions. Our goal is to provide the reader with an estimation on the performance-in terms of both numerical complexity and accuracy-of popular Poisson solvers, and to give an intuitive idea on the way these solvers operate. Highly parallelizable routines have been implemented in a first-principle simulation code (Octopus) to be used in our tests, so that reliable conclusions about the capability of methods to tackle large systems in cluster computing can be obtained from our work. PMID:24249048

  16. Electronic structure and physical properties of the spinel-type phase of BeP{sub 2}N{sub 4} from all-electron density functional calculations

    SciTech Connect

    Ching, W. Y.; Aryal, Sitram; Rulis, Paul; Schnick, Wolfgang

    2011-04-15

    Using density-functional-theory-based ab initio methods, the electronic structure and physical properties of the newly synthesized nitride BeP{sub 2}N{sub 4} with a phenakite-type structure and the predicted high-pressure spinel phase of BeP{sub 2}N{sub 4} are studied in detail. It is shown that both polymorphs are wide band-gap semiconductors with relatively small electron effective masses at the conduction-band minima. The spinel-type phase is more covalently bonded due to the increased number of P-N bonds for P at the octahedral sites. Calculations of mechanical properties indicate that the spinel-type polymorph is a promising superhard material with notably large bulk, shear, and Young's moduli. Also calculated are the Be K, P K, P L{sub 3}, and N K edges of the electron energy-loss near-edge structure for both phases. They show marked differences because of the different local environments of the atoms in the two crystalline polymorphs. These differences will be very useful for the experimental identification of the products of high-pressure syntheses targeting the predicted spinel-type phase of BeP{sub 2}N{sub 4}.

  17. First-principle electronic structure calculations for magnetic moment in iron-based superconductors: An LSDA + negative U study

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Hayashi, N.; Nakai, N.; Okumura, M.; Machida, M.

    2009-10-01

    In order to resolve a discrepancy of the magnetic moment on Fe between the experimental and calculation results, we perform first-principle electronic structure calculations for iron-based superconductors LaFeAsO1-x and LiFeAs also show similar SDW. So far, the first-principle calculations on LaFeAsO actually predicted the SDW state as a ground state. However, the predicted magnetic moment (∼2 μB) per an Fe atom is much larger than the observed one (∼0.35 μB) in experiments [2,4]. The authors suggested that the discrepancy can be resolved by expanding U into a negative U range within LSDA + U framework. In this paper, we revisit the discrepancy and clarify why the negative correction is essential in these compounds. See Ref. [5] for the details of calculation data by LSDA + negative U. In the first-principle calculation on compounds including transition metals, the total energy is frequently corrected by “LSDA + U” approach. The parameter U is theoretically re-expressed as U(≡U-J), where U is the on-site Coulomb repulsion (Hubbard U) and J is the atomic-orbital intra-exchange energy (Hund’s coupling parameter) [6]. The parameter U employed in the electronic structure calculations is usually positive. The positivity promotes the localized character of d-electrons and enhances the magnetic moment in the cases of magnetically ordered compounds. Normally, this positive correction successfully works. In choosing the parameter, one can principally extend the parameter U range to a negative region. The negative case [7] is not popular, but it can occur in the following two cases [8]: (i) the Hubbard U becomes negative and (ii) the intra-exchange J is effectively larger than the Hubbard U. The case (i) has been suggested by many authors based on various theoretical considerations. Here, we note that U should be estimated once screening effects on the long-range Coulomb interaction are taken into account. In fact, small U has been reported [9]. Thus, when the

  18. Electronic structure of interstitial hydrogen in lutetium oxide from DFT+U calculations and comparison study with μ SR spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, E. Lora; Marinopoulos, A. G.; Vieira, R. B. L.; Vilão, R. C.; Alberto, H. V.; Gil, J. M.; Lichti, R. L.; Mengyan, P. W.; Baker, B. B.

    2016-07-01

    The electronic structure of hydrogen impurity in Lu2O3 was studied by first-principles calculations and muonium spectroscopy. The computational scheme was based on two methods which are well suited to treat defect calculations in f -electron systems: first, a semilocal functional of conventional density-functional theory (DFT) and secondly a DFT+U approach which accounts for the on-site correlation of the 4 f electrons via an effective Hubbard-type interaction. Three different types of stable configurations were found for hydrogen depending upon its charge state. In its negatively charged and neutral states, hydrogen favors interstitial configurations residing either at the unoccupied sites of the oxygen sublattice or at the empty cube centers surrounded by the lanthanide ions. In contrast, the positively charged state stabilized only as a bond configuration, where hydrogen binds to oxygen ions. Overall, the results between the two methods agree in the ordering of the formation energies of the different impurity configurations, though within DFT+U the charge-transition (electrical) levels are found at Fermi-level positions with higher energies. Both methods predict that hydrogen is an amphoteric defect in Lu2O3 if the lowest-energy configurations are used to obtain the charge-transition, thermodynamic levels. The calculations of hyperfine constants for the neutral interstitial configurations show a predominantly isotropic hyperfine interaction with two distinct values of 926 MHz and 1061 MHz for the Fermi-contact term originating from the two corresponding interstitial positions of hydrogen in the lattice. These high values are consistent with the muonium spectroscopy measurements which also reveal a strongly isotropic hyperfine signature for the neutral muonium fraction with a magnitude slightly larger (1130 MHz) from the ab initio results (after scaling with the magnetic moments of the respective nuclei).

  19. Electronic structure and thermoelectric properties of n - and p -type SnSe from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kutorasinski, K.; Wiendlocha, B.; Kaprzyk, S.; Tobola, J.

    2015-05-01

    We present results of the electronic band structure, Fermi surface, and electron transport property calculations in the orthorhombic n - and p -type SnSe, applying the Korringa-Kohn-Rostoker method and the Boltzmann transport approach. The analysis accounted for the temperature effect on crystallographic parameters in P n m a structure as well as the phase transition to C m C m structure at Tc˜807 K. Remarkable modifications of the conduction and valence bands were noticed upon varying crystallographic parameters within the structure before Tc, while the phase transition mostly leads to the jump in the band-gap value. The diagonal components of the kinetic parameter tensors (velocity, effective mass) and resulting transport quantity tensors [electrical conductivity σ , thermopower S , and power factor (PF)] were computed for a wide range of temperature (15-900 K) and hole (p -type) and electron (n -type) concentrations (1017-1021cm-3 ). SnSe is shown to have a strong anisotropy of the electron transport properties for both types of charge conductivity, as expected for the layered structure, with the generally heavier p -type effective masses compared to n -type ones. Interestingly, p -type SnSe has strongly nonparabolic dispersion relations, with the "pudding-mold-like" shape of the highest valence band. The analysis of σ ,S , and PF tensors indicates that the interlayer electron transport is beneficial for thermoelectric performance in n -type SnSe, while this direction is blocked in p -type SnSe, where in-plane transport is preferred. Our results predict that n -type SnSe is potentially even better thermoelectric material than p -type SnSe. Theoretical results are compared with the single-crystal p -SnSe measurements, and good agreement is found below 600 K. The discrepancy between the computational and experimental data, appearing at higher temperatures, can be explained assuming an increase of the hole concentration versus T , which is correlated with the

  20. Fermi-orbitals for improved electronic structure calculations on coordination complexes

    NASA Astrophysics Data System (ADS)

    Kao, Der-You; Pederson, Mark R.; Lee, James D.

    An improved density-functional formalism proceeds by adopting the Perdew-Zunger expression for a self-interaction-corrected (SIC) density-functional energy but evaluates the total energy based on Fermi Orbitals (FOs). Each localized electron is represented by an FO, determined from the occupied Kohn-Sham orbitals and a semi-classical FO descriptor. The SIC energy is then minimized through the gradients of the energy with respect to these descriptors. In addition to providing a review of the methodology, work here identifies the need for an algorithm which thoroughly searches over initial configurations. The strategy for sampling and prioritizing initial configurations is described. Applications on coordination complexes are presented. The FO descriptors and FOs for semi-classical and quantum-mechanical understanding of bondingis discussed. Cohesive energies are improved andthe eigenvalues are shifted downward relative to the standard DFT results.Spin-dependent vibrational spectra, as a possible means for spectroscopic determination of the transition-metal moment, are also presented. DK acknowledges her fellowship from The George Washington University Institude of Nanotechnology.

  1. A method for calculating surface electronic structures using semi-infinite boundary conditions

    NASA Astrophysics Data System (ADS)

    Abraham, Yonas

    2005-03-01

    We have developed a new formalism for solving the Kohn-Sham equations in the layer geometry appropriate for studying equilibrium and transport properties of surfaces and interfaces. The formalism assumes that the electron-lattice interactions are modeled by pseudopotentials containing both local contributions and non-local terms represented by separable functions, and works especially well with the projector augmented wave ``PAW'' method. Based on the Numerov algorithm, a two-point recurrence relation is used to integrate the differential equations. The recurrence formalism is used to find the generalized Bloch waves in the bulk regions of the system as well as to find the propagating and surface states in the interface regions of the system. The wavefunction is matched at the boundary between the bulk and interface regions and at intermediate points to ensure stability. The formalism is demonstrated for a simple model of a semi-infinite system and compared with a boundary matching formalism developed by Choi and Ihm.

  2. Atomic partial charges on CH3NH3PbI3 from first-principles electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Madjet, Mohamed E.; El-Mellouhi, Fedwa; Carignano, Marcelo A.; Berdiyorov, Golibjon R.

    2016-04-01

    We calculated the partial charges in methylammonium (MA) lead-iodide perovskite CH3NH3PbI3 in its different crystalline phases using different first-principles electronic charge partitioning approaches, including the Bader, ChelpG, and density-derived electrostatic and chemical (DDEC) schemes. Among the three charge partitioning methods, the DDEC approach provides chemically intuitive and reliable atomic charges for this material, which consists of a mixture of transition metals, halide ions, and organic molecules. The DDEC charges are also found to be robust against the use of hybrid functionals and/or upon inclusion of spin-orbit coupling or dispersive interactions. We calculated explicitly the atomic charges with a special focus on the dipole moment of the MA molecules within the perovskite structure. The value of the dipole moment of the MA is reduced with respect to the isolated molecule due to charge redistribution involving the inorganic cage. DDEC charges and dipole moment of the organic part remain nearly unchanged upon its rotation within the octahedral cavities. Our findings will be of both fundamental and practical importance, as the accurate and consistent determination of the atomic charges is important in order to understand the average equilibrium distribution of the electrons and to help in the development of force fields for larger scale atomistic simulations to describe static, dynamic, and thermodynamic properties of the material.

  3. Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations

    SciTech Connect

    Kostko, Oleg; Bravaya, Ksenia; Krylov, Anna; Ahmed, Musahid

    2009-12-14

    We report a combined theoretical and experimental study of ionization of cytosine monomers and dimers. Gas-phase molecules are generated by thermal vaporization of cytosine followed by expansion of the vapor in a continuous supersonic jet seeded in Ar. The resulting species are investigated by single photon ionization with tunable vacuum-ultraviolet (VUV) synchrotron radiation and mass analyzed using reflectron mass spectrometry. Energy onsets for the measured photoionization efficiency (PIE) spectra are 8.60+-0.05 eV and 7.6+-0.1 eV for the monomer and the dimer, respectively, and provide an estimate for the adiabatic ionization energies (AIE). The first AIE and the ten lowest vertical ionization energies (VIEs) for selected isomers of cytosine dimer computed using equation-of-motion coupled-cluster (EOM-IP-CCSD) method are reported. The comparison of the computed VIEs with the derivative of the PIE spectra, suggests that multiple isomers of the cytosine dimer are present in the molecular beam. The calculations reveal that the large red shift (0.7 eV) of the first IE of the lowest-energy cytosine dimer is due to strong inter-fragment electrostatic interactions, i.e., the hole localized on one of the fragments is stabilized by the dipole moment of the other. A sharp rise in the CH+ signal at 9.20+-0.05 eV is ascribed to the formation of protonated cytosine by dissociation of the ionized dimers. The dominant role of this channel is supported by the computed energy thresholds for the CH+ appearance and the barrierless or nearly barrierless ionization-induced proton transfer observed for five isomers of the dimer.

  4. Revised self-consistent continuum solvation in electronic-structure calculations.

    PubMed

    Andreussi, Oliviero; Dabo, Ismaila; Marzari, Nicola

    2012-02-14

    The solvation model proposed by Fattebert and Gygi [J. Comput. Chem. 23, 662 (2002)] and Scherlis et al. [J. Chem. Phys. 124, 074103 (2006)] is reformulated, overcoming some of the numerical limitations encountered and extending its range of applicability. We first recast the problem in terms of induced polarization charges that act as a direct mapping of the self-consistent continuum dielectric; this allows to define a functional form for the dielectric that is well behaved both in the high-density region of the nuclear charges and in the low-density region where the electronic wavefunctions decay into the solvent. Second, we outline an iterative procedure to solve the Poisson equation for the quantum fragment embedded in the solvent that does not require multigrid algorithms, is trivially parallel, and can be applied to any Bravais crystallographic system. Last, we capture some of the non-electrostatic or cavitation terms via a combined use of the quantum volume and quantum surface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)] of the solute. The resulting self-consistent continuum solvation model provides a very effective and compact fit of computational and experimental data, whereby the static dielectric constant of the solvent and one parameter allow to fit the electrostatic energy provided by the polarizable continuum model with a mean absolute error of 0.3 kcal/mol on a set of 240 neutral solutes. Two parameters allow to fit experimental solvation energies on the same set with a mean absolute error of 1.3 kcal/mol. A detailed analysis of these results, broken down along different classes of chemical compounds, shows that several classes of organic compounds display very high accuracy, with solvation energies in error of 0.3-0.4 kcal/mol, whereby larger discrepancies are mostly limited to self-dissociating species and strong hydrogen-bond-forming compounds. PMID:22360164

  5. Comparative study between LMTO and FPLAPW into the calculation of the electronic structure of carbide Cr 23C 6

    NASA Astrophysics Data System (ADS)

    dos Santos, A. V.

    2007-01-01

    Considering the actual state of the art in Materials Science, it is necessary to do a theoretical analysis of the compounds obtained through experimenting, with the objective of understanding them better, by foreseeing their behaviour and possible new compounds. For this, in this work, we calculate electronic structures of Cr 23C 6 chromium carbide, which are present in fast steels, using two methods of calculating the band structure of first principles, the method of linear muffin-tin orbital (LMTO) with the Andersen's atomic sphere approximation (ASA) and the method of linear plain and expanded waves (LAPW) with generalized gradient approximation (GGA). Through calculations of formation energy in relation to its volume we obtain the equilibrium volume of 379.16 u.a. using the LMTO, and 375.13 u.a, using the LAPW. In the equilibrium volume we calculated some fundamental state properties. We observed an extremely low magnetization in both methods; nevertheless, in LAPW we verified a little magnetic moment in the Crl site that is 0.2512μB. The method LAPW affirms the existence of an interstitial region motivating the charge transference to this region. As the LMTO does not have the interstitial region, we do not see the charge transference to this region; in this case the charges come out of the C and Crl sites to take place in the Crll site. The density of states (DOS) shows that there is an interaction between the “s” states of C with the other sites and in a more intense way with the Crll site. When we compared the DOS, in relation to the methods used, we saw that in case of the LMTO, these are slightly placed in regions where energy is lower as well as its Fermi energy.

  6. SaX: An open source package for electronic-structure and optical-properties calculations in the GW approximation

    NASA Astrophysics Data System (ADS)

    Martin-Samos, Layla; Bussi, Giovanni

    2009-08-01

    We present here SaX (Self-energies and eXcitations), a plane-waves package aimed at electronic-structure and optical-properties calculations in the GW framework, namely using the GW approximation for quasi-particle properties and the Bethe-Salpeter equation for the excitonic effects. The code is mostly written in FORTRAN90 in a modern style, with extensive use of data abstraction (i.e. objects). SaX employs state of the art techniques and can treat large systems. The package is released with an open source license and can be also download from http://www.sax-project.org/. Program summaryProgram title: SaX (Self-energies and eXcitations) Catalogue identifier: AEDF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 779 771 No. of bytes in distributed program, including test data, etc.: 4 894 755 Distribution format: tar.gz Programming language: FORTRAN, plus some C utilities Computer: Linux PC, Linux clusters, IBM-SP5 Operating system: Linux, Aix Has the code been vectorised or parallelized?: Yes RAM: depending on the system complexity Classification: 7.3 External routines: Message-Passing Interface (MPI) to perform parallel computations. ESPRESSO ( http://www.quantum-espresso.org) Nature of problem: SaX is designed to calculate the electronic band-structure of semiconductors, including quasi-particle effects and optical properties including excitonic effects. Solution method: The electronic band-structure is calculated using the GW approximation for the self-energy operator. The optical properties are calculated solving the Bethe-Salpeter equation in the GW approximation. The wavefunctions are expanded on a plane-waves basis set, using norm-conserving pseudopotentials. Restrictions: Many objects are non-local matrix represented in plane wave basis

  7. Internal conversion and intersystem crossing in α,β-enones: a combination of electronic structure calculations and dynamics simulations.

    PubMed

    Cao, Jun; Xie, Zhi-Zhong

    2016-03-01

    The ab initio electronic structure calculations and CASSCF-based nonadiabatic dynamics simulations have been used to investigate the internal conversion and intersystem crossing process of both trans-acrolein and 2-cyclopentenone in the gas phase. Our calculation results show that relaxation from the Franck-Condon region to an S1 minimum is ultrafast and that the S1 state will dominantly undergo intersystem crossing to triplet states due to the existence of significant barriers to access the S1/S0 intersection points and of energetically close-lying triplet states. The S1/T2/T1 three-state intersection is observed in our dynamics simulations to play an important role in the population of the lowest triplet state, which is consistent with previous suggestions. Although the evolution into triplet states involves a similar path and gives rise to a similar triplet quantum yield for these two molecules, the intersystem crossing rate of 2-cyclopentenone is lower owing to the ring constraint that results in a smaller spin-orbital coupling in the singlet-triplet crossing region. The present theoretical study reproduces the experimental results and gives an explanation about the structural factors that govern the excited-state decay of some types of α,β-enones. PMID:26882275

  8. Atomic and Electronic Structure of the P3HT/PCBM Interface From First-Principle Calculations

    NASA Astrophysics Data System (ADS)

    Li, Longhua; Kontsevoi, Oleg; Freeman, Arthur J.

    2013-03-01

    Fundamental research on donor/acceptor (D/A) interfaces of organic photovoltaics (OPV) have drawn immense interest because of their crucial roles in charge separation (CS), charge transfer (CT) and charge recombination (CR). The blend system consisting of regioregular poly(3-hexylthiophene) (rr-P3HT) and fullerene derivative [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is a widely investigated binary system. Despite significant efforts that have been done to optimize the OPV, such as the D/A ratio, detailed information on their structure, interfaces, and morphology are far from complete. Additionally, fewer investigations have focused on the elementary charge transfer processes. In this work, such a hetero-interface was carried out by annealing simulation; and then interfacial electronic structure and charge transfer were studied by DFT calculations. The process of PCBM assembly on the P3HT surface were shown and the carrier mobilities could be tuned by PCBM orientations.Our calculations provide an important understanding on the assembly of PCBM and charge transfer at the binary interface. Supported by ANSER, an Energy Frontier Research Center funded by the U.S. Department of Energy.

  9. Benchmark Calculations of Three-Body Intermolecular Interactions and the Performance of Low-Cost Electronic Structure Methods.

    PubMed

    Řezáč, Jan; Huang, Yuanhang; Hobza, Pavel; Beran, Gregory J O

    2015-07-14

    Many-body noncovalent interactions are increasingly important in large and/or condensed-phase systems, but the current understanding of how well various models predict these interactions is limited. Here, benchmark complete-basis set coupled cluster singles, doubles, and perturbative triples (CCSD(T)) calculations have been performed to generate a new test set for three-body intermolecular interactions. This "3B-69" benchmark set includes three-body interaction energies for 69 total trimer structures, consisting of three structures from each of 23 different molecular crystals. By including structures that exhibit a variety of intermolecular interactions and packing arrangements, this set provides a stringent test for the ability of electronic structure methods to describe the correct physics involved in the interactions. Both MP2.5 (the average of second- and third-order Møller-Plesset perturbation theory) and spin-component-scaled CCSD for noncovalent interactions (SCS-MI-CCSD) perform well. MP2 handles the polarization aspects reasonably well, but it omits three-body dispersion. In contrast, many widely used density functionals corrected with three-body D3 dispersion correction perform comparatively poorly. The primary difficulty stems from the treatment of exchange and polarization in the functionals rather than from the dispersion correction, though the three-body dispersion may also be moderately underestimated by the D3 correction. PMID:26575743

  10. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method

    NASA Astrophysics Data System (ADS)

    Enkovaara, J.; Rostgaard, C.; Mortensen, J. J.; Chen, J.; Dułak, M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H. A.; Kristoffersen, H. H.; Kuisma, M.; Larsen, A. H.; Lehtovaara, L.; Ljungberg, M.; Lopez-Acevedo, O.; Moses, P. G.; Ojanen, J.; Olsen, T.; Petzold, V.; Romero, N. A.; Stausholm-Møller, J.; Strange, M.; Tritsaris, G. A.; Vanin, M.; Walter, M.; Hammer, B.; Häkkinen, H.; Madsen, G. K. H.; Nieminen, R. M.; Nørskov, J. K.; Puska, M.; Rantala, T. T.; Schiøtz, J.; Thygesen, K. S.; Jacobsen, K. W.

    2010-06-01

    Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector augmented-wave (PAW) method as implemented in the GPAW program package (https://wiki.fysik.dtu.dk/gpaw) using a uniform real-space grid representation of the electronic wavefunctions. Compared to more traditional plane wave or localized basis set approaches, real-space grids offer several advantages, most notably good computational scalability and systematic convergence properties. However, as a unique feature GPAW also facilitates a localized atomic-orbital basis set in addition to the grid. The efficient atomic basis set is complementary to the more accurate grid, and the possibility to seamlessly switch between the two representations provides great flexibility. While DFT allows one to study ground state properties, time-dependent density-functional theory (TDDFT) provides access to the excited states. We have implemented the two common formulations of TDDFT, namely the linear-response and the time propagation schemes. Electron transport calculations under finite-bias conditions can be performed with GPAW using non-equilibrium Green functions and the localized basis set. In addition to the basic features of the real-space PAW method, we also describe the implementation of selected exchange-correlation functionals, parallelization schemes, ΔSCF-method, x-ray absorption spectra, and maximally localized Wannier orbitals.

  11. A benchmark study of molecular structure by experimental and theoretical methods: Equilibrium structure of uracil from gas-phase electron diffraction data and coupled-cluster calculations

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Khaikin, Leonid S.; Grikina, Olga E.; Rykov, Anatolii N.

    2013-10-01

    The equilibrium structure of uracil, one of the nucleobases, which build nucleic acids, has been determined for the first time by the gas-phase electron diffraction (GED) method. The necessary rovibrational corrections to the experimental internuclear distances have been calculated with quadratic and cubic force constants in the MP2(all)/cc-pVTZ approximation. For the first time, the equilibrium structure has been optimized by the very time-consuming coupled-cluster method with single and double excitations and perturbative treatment of connected triples using the correlation-consistent polarized weighted core-valence triple-zeta basis set with all electrons being correlated (CCSD(T)(all)/cc-pwCVTZ). The optimized structural parameters have been corrected for the diffuse-function effects and extrapolated to the higher basis set (cc-pwCVQZ) using results of MP2 computations (named as best ab initio structure). The GED equilibrium structure remarkably agrees with the best ab initio one as well as with that one derived from microwave (MW) rotational constants by Puzzarini and Barone. Thus, it has been revealed that the precise experiment and coupled-cluster calculations yield the same results when accurate vibrational corrections (including anharmonic ones) are considered in the experimental structural analysis. Moreover, it has been shown that the equilibrium structure derived from the GED data, being in general of one order less accurate than that determined from the MW rotational constants, is still reliable and accurate.

  12. Structural determination of carvone, a component of spearmint, by means of gas electron diffraction augmented by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Egawa, Toru; Kachi, Yukari; Takeshima, Tsuguhide; Takeuchi, Hiroshi; Konaka, Shigehiro

    2003-10-01

    The molecular structure and conformation of carvone, a compound with a minty odor, were investigated by means of gas electron diffraction supported by theoretical calculations. Electron diffraction patterns were recorded by heating the nozzle up to 128 °C to obtain enough scattering intensity. The infrared spectrum was also measured by using an absorption cell with a path length of 10 m. The obtained molecular scattering intensities were analyzed with the aid of theoretical calculations and infrared spectroscopy. It was revealed that the experimental data are well reproduced by assuming that carvone consists of a mixture of three conformers that have the isopropenyl group in the equatorial position and mutually differ in the torsional angle around the single bond connecting the ring and the isopropenyl group. It was also found that the puckering amplitude of the ring of carvone is close to those of menthol and isomenthol, a minty compound and its nonminty isomer. The determined structural parameters ( rg and ∠ α) of the most abundant conformer of carvone are as follows: < r(C-C)>=1.520(3) Å; < r(CC)>=1.360(5) Å; r(CO)=1.225(5) Å; < r(C-H)>=1.104(4)Å; <∠CC-C>=121.1(5)°; <∠C-C-C>=110.4(5)°; ∠C-CO-C=117.1(14)°; <∠C-C-H>=111.1(13)°. Angle brackets denote average values and parenthesized values are the estimated limits of error (3 σ) referring to the last significant digit.

  13. First-principles calculations for the structural and electronic properties of GaAs1-xPx nanowires

    NASA Astrophysics Data System (ADS)

    Mohammad, Rezek; Katırcıoğlu, Şenay

    2016-09-01

    Structural stability and electronic properties of GaAs1-xPx (0.0≤x≤1.0) nanowires (NWs) in zinc-blende (ZB) (˜5≤ diameter ≤˜21Å) and wurtzite (WZ) (˜5≤diameter≤˜29Å) phases are investigated by first-principles calculations based on density functional theory (DFT). GaAs (x=0.0) and GaP (x=1.0) compound NWs in WZ phase are found energetically more stable than in ZB structural ones. In the case of GaAs1-xPx alloy NWs, the energetically favorable phase is found size and composition dependent. All the presented NWs have semiconductor characteristics. The quantum size effect is clearly demonstrated for all GaAs1-xPx (0.0≤x≤1.0) NWs. The band gaps of ZB and WZ structural GaAs compound NWs with ˜10≤ diameter ≤˜21Å and ˜5≤diameter≤˜29Å, respectively are enlarged by the addition of concentrations of phosphorus for obtaining GaAs1-xPx NWs proportional to the x values around 0.25, 0.50 and 0.75.

  14. Molecular structures of benzoic acid and 2-hydroxybenzoic acid, obtained by gas-phase electron diffraction and theoretical calculations.

    PubMed

    Aarset, Kirsten; Page, Elizabeth M; Rice, David A

    2006-07-20

    The structures of benzoic acid (C6H5COOH) and 2-hydroxybenzoic acid (C6H4OHCOOH) have been determined in the gas phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d,p)) predict two conformers for benzoic acid, one which is 25.0 kJ mol(-1) (MP2) lower in energy than the other. In the low-energy form, the carboxyl group is coplanar with the phenyl ring and the O-H group eclipses the C=O bond. Theoretical calculations (HF and MP2/6-311+G(d,p)) carried out for 2-hydroxybenzoic acid gave evidence for seven stable conformers but one low-energy form (11.7 kJ mol(-1) lower in energy (MP2)) which again has the carboxyl group coplanar with the phenyl ring, the O-H of the carboxyl group eclipsing the C=O bond and the C=O of the carboxyl group oriented toward the O-H group of the phenyl ring. The effects of internal hydrogen bonding in 2-hydroxybenzoic acid can be clearly observed by comparison of pertinent structural parameters between the two compounds. These differences for 2-hydroxybenzoic acid include a shorter exocyclic C-C bond, a lengthening of the ring C-C bond between the substituents, and a shortening of the carboxylic single C-O bond. PMID:16836466

  15. The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions.

    PubMed

    Zhao, Zhengji; Braams, Bastiaan J; Fukuda, Mituhiro; Overton, Michael L; Percus, Jerome K

    2004-02-01

    The variational approach for electronic structure based on the two-body reduced density matrix is studied, incorporating two representability conditions beyond the previously used P, Q, and G conditions. The additional conditions (called T1 and T2 here) are implicit in the work of Erdahl [Int. J. Quantum Chem. 13, 697 (1978)] and extend the well-known three-index diagonal conditions also known as the Weinhold-Wilson inequalities. The resulting optimization problem is a semidefinite program, a convex optimization problem for which computational methods have greatly advanced during the past decade. Formulating the reduced density matrix computation using the standard dual formulation of semidefinite programming, as opposed to the primal one, results in substantial computational savings and makes it possible to study larger systems than was done previously. Calculations of the ground state energy and the dipole moment are reported for 47 different systems, in each case using an STO-6G basis set and comparing with Hartree-Fock, singly and doubly substituted configuration interaction, Brueckner doubles (with triples), coupled cluster singles and doubles with perturbational treatment of triples, and full configuration interaction calculations. It is found that the use of the T1 and T2 conditions gives a significant improvement over just the P, Q, and G conditions, and provides in all cases that we have studied more accurate results than the other mentioned approximations. PMID:15268347

  16. Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro

    2013-09-01

    Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.

  17. Nonlocal Pseudopotentials and Long-Range Interactions in Ab Initio Finite-Element Electronic-Structure Calculations

    NASA Astrophysics Data System (ADS)

    Pask, J. E.; Sterne, P. A.

    2004-03-01

    The finite-element (FE) method is a general approach for the solution of partial differential equations. Like the planewave (PW) method, the FE method is a systematically improvable expansion approach. Unlike the PW method, however, its basis functions are strictly local in real space, which allows for variable resolution in real space and facilitates massively parallel implementation. We discuss the application of the FE method to ab initio electronic-structure calculations.(J.E. Pask, B.M. Klein, C.Y. Fong, and P.A. Sterne, Phys. Rev. B 59), 12352 (1999). In particular, we discuss the use of nonlocal pseudopotentials in bulk calculations, and the handling of long-range interactions in the construction of the Kohn-Sham effective potential and total energy. We show that the total energy converges variationally, and at the optimal theoretical rate consistent with the cubic completeness of the basis. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  18. Electronic structures of a Zn vacancy on the ZnO(10bar 10) surface: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Chae, Kisung; Kim, Hanchul

    2013-02-01

    We perform spin-polarized density functional theory calculations for a Zn vacancy on the ZnO(10bar 10) surface. Two stable configurations of the surface Zn vacancy are found, and the activation energy barrier is estimated to be ˜0.01 eV. The lower energy configuration has a newly formed surface Zn-O bond to restore the bulk-like structure on the surface. Due to the newly formed bond, the vacancy state in the band gap is characterized by a complicated hybridization of neighboring surface and subsurface atoms and by a more extended electron density. Despite such a hybridization, the surface Zn vacancy is found to have a robust magnetic moment of 1 μ B , implying that surface Zn vacancies may be responsible for the ferromagnetism observed in ZnO thin films and nanoparticles. Simulated scanning tunneling microscope images show that the two structures of the surface Zn vacancy can be distinguished in the filled-state images.

  19. First-principles calculation of the electronic structure, chemical bonding, and thermodynamic properties of β-US2

    NASA Astrophysics Data System (ADS)

    Li, Shi-Chang; Zheng, Yuan-Lei; Ma, Sheng-Gui; Gao, Tao; Ao, Bing-Yun

    2015-12-01

    The electronic structure, magnetic states, chemical bonding, and thermodynamic properties of β-US2 are investigated by using first-principles calculation through the density functional theory (DFT) +U approach. The obtained band structure exhibits a direct band gap semiconductor at Γ point with a band gap of 0.9 eV for β-US2, which is in good agreement with the recent experimental data. The charge-density differences, the Bader charge analysis, and the Born effective charges suggest that the U-S bonds of the β-US2 have a mixture of covalent and ionic characters, but the ionic character is stronger than covalent character. The Raman-active, infrared-active, and silent modes at the Γ point are further assigned and discussed. The obtained optical-mode frequencies indicate that the three apparent LO-TO (longitudinal optical-transverse optical) splittings occur in B1u, B2u, and B3u modes, respectively. Furthermore, the Helmholtz free energy ΔF, the specific heat ΔE, vibrational entropy S, and constant volume CV are studied over a range from 0 K˜100 K. We expect that our work can provide some valuable information for further experimental investigation of the dielectric properties and the infrared reflectivity spectrum of uranium chalcogenide. Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160 and 21401173).

  20. First Principles Calculations of Structural, Electronic, Thermodynamic and Thermal Properties of BaxSr1-xTe Ternary Alloys

    NASA Astrophysics Data System (ADS)

    Chelli, S.; Meradji, H.; Amara Korba, S.; Ghemid, S.; El Haj Hassan, F.

    2014-12-01

    The structural, electronic thermodynamic and thermal properties of BaxSr1-xTe ternary mixed crystals have been studied using the ab initio full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, the Perdew-Burke-Ernzerhof-generalized gradient approximation (PBE-GGA) was used for the exchange-correlation potential. Moreover, the recently proposed modified Becke Johnson (mBJ) potential approximation, which successfully corrects the band-gap problem was also used for band structure calculations. The ground-state properties are determined for the cubic bulk materials BaTe, SrTe and their mixed crystals at various concentrations (x = 0.25, 0.5 and 0.75). The effect of composition on lattice constant, bulk modulus and band gap was analyzed. Deviation of the lattice constant from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for the ternary BaxSr1-xTe alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and co-workers. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing, ΔHm as well as the phase diagram. It was shown that these alloys are stable at high temperature. Thermal effects on some macroscopic properties of BaxSr1-xTe alloys were investigated using the quasi-harmonic Debye model, in which the phononic effects are considered.

  1. Ab initio calculations of mechanical, thermodynamic and electronic structure properties of mullite, iota-alumina and boron carbide

    NASA Astrophysics Data System (ADS)

    Aryal, Sita Ram

    The alumino-silicate solid solution series (Al 4+2xSi2-2 xO10-x) is an important class of ceramics. Except for the end member (x=0), Al2 SiO5 the crystal structures of the other phases, called mullite, have partially occupied sites. Stoichiometric supercell models for the four mullite phases 3Al2O 3 · 2SiO2 · 2Al 2O3 · SiO2, 4 Al2O3· SiO 2, 9Al2O3 · SiO2, and iota-Al2 O3 (iota-alumina) are constructed starting from experimentally reported crystal structures. A large number of models were built for each phase and relaxed using the Vienna ab initio simulation package (VASP) program. The model with the lowest total energy for a given x was chosen as the representative structure for that phase. Electronic structure and mechanical properties of mullite phases were studied via first-principles calculations. Of the various phases of transition alumina, iota-Al 2O3 is the least well known. In addition structural details have not, until now, been available. It is the end member of the aluminosilicate solid solution series with x=1. Based on a high alumina content mullite phase, a structural model for iota- Al2O3 is constructed. The simulated x-ray diffraction (XRD) pattern of this model agrees well with a measured XRD pattern. The iota-Al2 O3 is a highly disordered ultra-low-density phase of alumina with a theoretical density of 2854kg/m3. Using this theoretically constructed model, elastic, thermodynamic, electronic, and spectroscopic properties of iota-Al2 O3 have been calculated and compared it with those of alpha- Al2O3 and gamma- Al2O3. Boron carbide (B4C) undergoes an amorphization under high velocity impacts. The mechanism of amorphization is not clear. Ab initio methods are used to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B4C), B 11C-CBC, and B12- CCC where B11C or B12 is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms

  2. Infrared spectra and electronic structure calculations for NN complexes with U, UN, and NUN in solid argon, neon, and nitrogen.

    PubMed

    Andrews, Lester; Wang, Xuefeng; Gong, Yu; Kushto, Gary P; Vlaisavljevich, Bess; Gagliardi, Laura

    2014-07-17

    Reactions of laser-ablated U atoms with N2 molecules upon codeposition in excess argon or neon at 4 K gave intense NUN and weak UN absorptions. Annealing produced progressions of new absorptions for the UN2(N2)1,2,3,4,5 and UN(N2)1,2,3,4,5,6 complexes. The neon-to-argon matrix shift decreases with increasing NN ligation and therefore the number of noble gas atoms left in the primary coordination sphere around the NUN molecule. Small matrix shifts are observed when the secondary coordination layers around the primary UN2(N2)1,2,3,4,5 and UN(N2)1,2,3,4,5,6 complexes are changed from neon-to-argon to nitrogen. Electronic structure, energy, and frequency calculations provide support for the identification of these complexes and the characterization of the N≡U≡N and U≡N core molecules as terminal uranium nitrides. Codeposition of U with pure nitrogen produced the saturated U(NN)7 complex, which UV irradiation converted to the NUN(NN)5 complex with slightly lower frequencies than found in solid argon. PMID:24878246

  3. Theoretical calculations of structural, electronic, and elastic properties of CdSe1‑x Te x : A first principles study

    NASA Astrophysics Data System (ADS)

    M, Shakil; Muhammad, Zafar; Shabbir, Ahmed; Muhammad Raza-ur-rehman, Hashmi; M, A. Choudhary; T, Iqbal

    2016-07-01

    The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of CdSe1‑x Te x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA+U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure CdSe and CdTe binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.

  4. Noncollinear Fe spin structure in (Sm-Co)/Fe exchange-spring bilayers: layer-resolved {sup 57}Fe Mssbauer spectroscopy and electronic structure calculations.

    SciTech Connect

    Uzdin, V. M.; Vega, A.; Khrenov, A.; Keune, W.; Kuncser, V. E.; Jiang, J. S.; Bader, S. D.

    2012-01-01

    Magnetization reversal in nanoscale (Sm-Co)/Fe (hard/soft) bilayer exchange-spring magnets with in-plane uniaxial magnetic anisotropy was investigated by magnetometry, conversion-electron Moessbauer spectroscopy (CEMS) and atomistic Fe spin-structure calculations. Magnetization loops along the easy direction exhibit signatures typical of exchange-spring magnets. In-field CEMS at inclined {gamma}-ray incidence onto thin (2 nm) {sup 57}Fe probe layers embedded at various depths in the 20-nm-thick natural (soft) Fe layer provides depth-dependent information (via the line-intensity ratio R{sub 23} as a function of the applied field H) about the in-plane rotation of Fe spins. A minimum in the R{sub 23}-vs-H dependence at (H{sub min}, R{sub min}) determines the field where Fe magnetic moments roughly adopt an average perpendicular orientation during their reversal from positive to negative easy-axis orientation. A monotonic decrease of H{sub min} with distance from the hard/soft interface is observed. Rotation of Fe spins takes place even in the interface region in applied fields far below the field of irreversible switching, H{sub irr}, of the hard phase. Formation of an Fe-Co alloy is detected in the interface region. For comparison, the noncollinear Fe spin structure during reversal and the resulting R{sub 23} ratio were obtained by electronic-structure calculations based on a quantum-mechanical Hamiltonian for itinerant electrons. The coupling at the hard/soft interface is described by the uniaxial exchange-anisotropy field, hint, as a parameter. Our calculated R{sub 23} ratios as a function of the (reduced) applied field h exhibit similar features as observed in the experiment, in particular a minimum at (h{sub min}, R{sub min}). R{sub min} is found to increase with hint, thus providing a measure of the interface coupling. Evidence is provided for the existence of fluctuations of the interface coupling. The calculations also show that the Fe spin spiral formed

  5. Electron Structure of Francium

    NASA Astrophysics Data System (ADS)

    Koufos, Alexander

    2012-02-01

    This talk presents the first calculations of the electronic structure of francium for the bcc, fcc and hcp structures, using the Augmented Plane Wave (APW) method in its muffin-tin and linearized general potential forms. Both the Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA), were used to calculate the electronic structure and total energy of francium (Fr). The GGA and LDA both found the total energy of the hcp structure slightly below that of the fcc and bcc structure, respectively. This is in agreement with similar results for the other alkali metals using the same methodology. The equilibrium lattice constant, bulk modulus and superconductivity parameters were calculated. We found that under pressures, in the range of 1-5 GPa, Fr could be a superconductor at a critical temperature of about 4K.

  6. Electronic structure and rovibrational calculation of the low-lying states of the RbYb molecule

    NASA Astrophysics Data System (ADS)

    Tohme, S. N.; Korek, M.

    2013-01-01

    Complete Active Space Self Consistent Field (CASSCF) method with Multi Reference Configuration Interaction (MRCI) calculations is used to investigate the potential energy curves of the low-lying 29 electronic states in the representation 2s+1Λ(+/-) of the RbYb molecule (single and double excitations with Davidson corrections). The harmonic frequency ωe, the internuclear distance Re and the electronic energy with respect to the ground state Te have been calculated. The eigenvalues Ev, the rotational constant Bv, and the abscissas of the turning points Rmin and Rmax have been investigated using the canonical functions approach. The comparison between the values of the present work and those available in the literature for several states shows a very good agreement. Twenty-six new states have been studied here for the first time.

  7. Calculation of the Energy-Band Structure of the Kronig-Penney Model Using the Nearly-Free and Tightly-Bound-Electron Approximations

    ERIC Educational Resources Information Center

    Wetsel, Grover C., Jr.

    1978-01-01

    Calculates the energy-band structure of noninteracting electrons in a one-dimensional crystal using exact and approximate methods for a rectangular-well atomic potential. A comparison of the two solutions as a function of potential-well depth and ratio of lattice spacing to well width is presented. (Author/GA)

  8. Study of conformational stability, structural, electronic and charge transfer properties of cladrin using vibrational spectroscopy and DFT calculations.

    PubMed

    Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh

    2014-11-11

    In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule. PMID:24892542

  9. Study of conformational stability, structural, electronic and charge transfer properties of cladrin using vibrational spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh

    2014-11-01

    In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule.

  10. Using a Hand-Held Electronic Calculator

    ERIC Educational Resources Information Center

    North, Roger

    1975-01-01

    The arithmetic needed for complex calculation using an electronic calculator is explained and exemplified. Problems involving square roots, number theory, Fibonacci numbers, and electrical resistances are solved. (SD)

  11. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    NASA Technical Reports Server (NTRS)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  12. Structural, mechanical, electronic, optical properties and effective masses of CuMO2 (M = Sc, Y, La) compounds: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Zhang, Ning-Chao; Sun, Yan-Yun; Liu, Fu-Sheng; Liu, Zheng-Tang

    2014-05-01

    The structural, elastic, mechanical, electronic, optical properties and effective masses of CuMIIIBO2 (MIIIB = Sc, Y, La) compounds have been investigated by the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory under local density approximation. The equilibrium structural parameters are in good agreement with previous experimental and theoretical data. To our knowledge, there are no available data of elastic constants for comparison. The bulk, shear and Young's modulus, ratio of B/G, Poisson's ratio and Lamé's constants of CuMIIIBO2 have been studied. The electronic structures of CuMIIIBO2 are consistent with other calculations. The population analysis, charge densities and effective masses have been shown and analyzed. The imaginary and real parts of the dielectric function, refractive index and extinction coefficient of CuMIIIBO2 are calculated. The interband transitions to absorption of CuMIIIBO2 have been analyzed.

  13. Electronic structures in SiC/SiO2 interface from first-principles calculation -Roles of peculiar electron states floating in internal space-

    NASA Astrophysics Data System (ADS)

    Matsushita, Yu-Ichiro; Boero, Mauro; Oshiyama, Atsushi

    Silicon carbide (SiC) is a promising material for power electronic devices. We have reported that the wavefunction at the conduction-band minimum (CBM) of SiC ``floats'' in internal space with continuum-state character. By considering the floating nature of the CBM, drastic energy-level changes of CBM observed in SiC polytypes can be explained naturally. Moreover, we have clarified that floating nature of CBM varies the effective masses in SiC. In this study, we have investigated how the electronic structure of CBM is modified in SiC/SiO2 interfaces, where the internal space is severely deformed, and how the floating electron state affects the material properties. We have found that we can realize 1 dimensional electron channels in the interface, and that the effective masses of CBM strongly depend on the interface structures.

  14. Ab-initio calculation of electronic structure and optical properties of AB-stacked bilayer α-graphyne

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2016-09-01

    Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.

  15. First-principles calculation of structural and electronic properties of memantine (Alzheimer's disease) and adamantane (anti-flu) drugs

    NASA Astrophysics Data System (ADS)

    Middleton, Kirsten; Zhang, Guoping; George, Thomas F.

    2012-02-01

    Memantine is currently used as a treatment for mild to severe Alzheimer's disease, although its functionality is complicated. Using various density functional theory calculations and basis sets, we first examine memantine alone and then add ions which are present in the human body. This provides clues as to how the compound may react in the calcium ion channel, where it is believed to treat the disease. In order to understand the difference between calcium and magnesium ions interacting with memantine, we compute the electron affinity of each complex. We find that memantine is more strongly attracted to magnesium ions than calcium ions within the channel. By observing the HOMO-LUMO gap within memantine in comparison to adamantane, we find that memantine is more excitable than the anti-flu drug. We believe these factors to affect the efficiency of memantine as a treatment of Alzheimer's disease.

  16. First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO 3 and calcite CaCO 3

    NASA Astrophysics Data System (ADS)

    Brik, M. G.

    2011-02-01

    Detailed ab initio calculations of the structural, electronic, optical and elastic properties of two crystals - magnesite (MgCO 3) and calcite (CaCO 3) - are reported in the present paper. Both compounds are important natural minerals, playing an important role in the carbon dioxide cycling. The optimized crystal structures, band gaps, density of states diagrams, elastic constants, optical absorption spectra and refractive indexes dependence on the wavelength all have been calculated and compared, when available, with literature data. Both crystals are indirect band compounds, with calculated band gaps of 5.08 eV for MgCO 3 and 5.023 eV for CaCO 3. Both values are underestimated by approximately 1.0 eV with respect to the experimental data. Although both crystals have the same structure, substitution of Mg by Ca ions leads to certain differences, which manifest themselves in noticeable change in the electronic bands profiles and widths, shape of the calculated absorption spectra, and values of the elastic constants. Response of both crystals to the applied hydrostatic pressure was analyzed in the pressure range of phase stability, variations of the lattice parameters and characteristic interionic distances were considered. The obtained dependencies of lattice constants and calculated band gap on pressure can be used for prediction of properties of these two hosts at elevated pressures that occur in the Earth's mantle.

  17. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S{sub 1}(π,π{sup *}) electronic state

    SciTech Connect

    Shin, Hee Won; Ocola, Esther J.; Laane, Jaan; Kim, Sunghwan

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.

  18. Fermi surface of MoO2 studied by angle-resolved photoemission spectroscopy, de Haas-van Alphen measurements, and electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Moosburger-Will, Judith; Kündel, Jörg; Klemm, Matthias; Horn, Siegfried; Hofmann, Philip; Schwingenschlögl, Udo; Eyert, Volker

    2009-03-01

    A comprehensive study of the electronic properties of monoclinic MoO2 from both an experimental and a theoretical point of view is presented. We focus on the investigation of the Fermi body and the band structure using angle-resolved photoemission spectroscopy, de Haas-van Alphen measurements, and electronic structure calculations. For the latter, the full-potential augmented spherical wave method has been applied. Very good agreement between the experimental and theoretical results is found. In particular, all Fermi surface sheets are correctly identified by all three approaches. Previous controversies concerning additional holelike surfaces centered around the Z and B points could be resolved; these surfaces were artifacts of the atomic-sphere approximation used in the old calculations. Our results underline the importance of electronic structure calculations for the understanding of MoO2 and the neighboring rutile-type early transition-metal dioxides. This includes the low-temperature insulating phases of VO2 and NbO2 , which have crystal structures very similar to that of molybdenum dioxide and display the well-known prominent metal-insulator transitions.

  19. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules

    SciTech Connect

    Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook; Kim, Woo Youn

    2015-03-07

    We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal to 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.

  20. The First Principles Calculation of Structural, Electronic and Magnetic Properties of MnXY (x = Ru, rh and Y = Ga, Ge, Sb) Alloys

    NASA Astrophysics Data System (ADS)

    Moniri, S. M.; Nourbakhsh, Z.; Mostajabodaavati, M.

    The structural, electronic and magnetic properties of MnXY (X = Ru, Rh and Y = Ga, Ge, Sb) Heusler alloys are studied using density functional theory by the WIEN2k package. These materials are ferromagnetic. Also they have some interesting half-metallic properties. The electron density of states, total and local magnetic moment of these alloys are calculated. We have calculated the effective Coulomb interaction Ueff using the ab initio method. We have compared the magnetic moments of these alloys in GGA and LDA+U with the Slater-Pauling rule. Furthermore the effect of hydrostatic pressure on the magnetic moment of these alloys is studied. The calculated results are fitted with a second order polynomial.

  1. First-principles calculations of structural, elastic, thermodynamic, and electronic properties of anti-perovskites A III CNi3 (A III = Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Saadaoui, Fatiha; Driss Khodja, Fatima Zohra; Kadoun, Abd-Ed-Daïm; Driss Khodja, Mohammed; Elias, Abdelkader; Boudali, Abdelkader

    2015-12-01

    We have performed first-principles calculations of structural, elastic, thermodynamic, and electronic properties of anti-perovskites AIIICNi3 (AIII = Al, Ga, In), by using the full-potential linearized augmented plane wave (FP-LAPW) method combined with the quasi-harmonic Debye model. We carried out our calculations within the local density approximation (LDA) and the generalized gradient approximation (GGA-PBE and GGA-PBEsol functionals). Our results constitute interesting first predictions in the case of many elastic parameters of the anti-perovskites AIIICNi3, among them elastic parameters of AlCNi3 and GaCNi3 and some polycrystalline elastic parameters of InCNi3. We also report for the first time calculated values, at ambient conditions, of Grüneisen parameter, thermal expansion coefficient, specific heat at constant pressure, specific heat at constant volume, isothermal bulk modulus, and adiabatic bulk modulus for AlCNi3, GaCNi3, and InCNi3. Band structure, total and partial densities of states, and charge density have been obtained and analyzed. Electronic structure results show metallic behavior for the three compounds. Ni 3 d states play dominant role near the Fermi level and there is a strong hybridization between Ni 3 d and C 2 p states. In addition, as AIIICNi3 synthesized samples are expected to be carbon-deficient, we calculated structural, elastic, and thermodynamic properties of sub-stoichiometric AlC x Ni3 materials.

  2. Electronic structures and ferromagnetism of SnO{sub 2} (rutile) doped with double-impurities: First-principles calculations

    SciTech Connect

    Fakhim Lamrani, A.; Belaiche, M.; Benyoussef, A.; and others

    2014-01-07

    The electronic and magnetic properties of double-impurities-doped SnO{sub 2} (rutile) are explored using first-principles calculations within the generalized gradient approximation to examine their potential use as spintronic system. Calculations are performed for double impurities (M1 and M2) from M1 = Cr, and M2 = Mn, and Re. The origins of ferromagnetism are shown to be different in the two cases. For Sn{sub 1-2x}Cr{sub x}Mn{sub x}O2, the hybridization between Cr-3d and O-2p results in Cr becoming ferromagnetic with a magnetic moment of about 5.0 μ{sub B} per supercell. The Cr-and Mn-doped SnO{sub 2} system exhibits half-metallic ferromagnetism. The strong ferromagnetic couplings between local magnetic moments can be attributed to p-d hybridization. In contrast, in (Cr, Re) codoped TiO{sub 2}, the local magnetic moments of the impurities and their oxidation states agree with the charge transfer between Cr and Re, which would lead to the ferromagnetic through the double-exchange mechanism in transition metal oxides. Since there are two possible couplings between the impurities, we studied both configurations (ferromagnetic and antiferromagnetic (AF)) for double-impurities-doped SnO{sub 2}. Our calculations show that a ferromagnetic alignment of the spins is energetically always more stable than simple AF arrangements, which makes these materials possible candidates for spin injection in spintronic devices.

  3. Structural, mechanical, and electronic properties of Rh2B and RhB2: first-principles calculations

    PubMed Central

    Chu, Binhua; Li, Da; Tian, Fubo; Duan, Defang; Sha, Xiaojing; Lv, Yunzhou; Zhang, Huadi; Liu, Bingbing; Cui, Tian

    2015-01-01

    The crystal structures of Rh2B and RhB2 at ambient pressure were explored by using the evolutionary methodology. A monoclinic P21/m structure of Rh2B was predicted and donated as Rh2B-I, which is energetically much superior to the previously experimentally proposed Pnma structure. At the pressure of about 39 GPa, the P21/m phase of Rh2B transforms to the C2/m phases. For RhB2, a new monoclinic P21/m phase was predicted, named as RhB2-II, it has the same structure type with Rh2B. Rh2B-I and RhB2-II are both mechanically and dynamically stable. They are potential low compressible materials. The analysis of electronic density of states and chemical bonding indicates that the formation of strong and directional covalent B-B and Rh-B bonds in these compounds contribute greatly to their stabilities and high incompressibility. PMID:26123399

  4. Investigation of the electron structure of ZnO by the GGA and mBJ calculations associated with the characterization techniques AES and EELS

    NASA Astrophysics Data System (ADS)

    Mokadem, A.; Bouslama, M.; Benhelal, O.; Assali, A.; Ghaffour, M.; Chelahi Chikr, Z.; Boulenouar, K.; Boubaia, A.

    2014-03-01

    The semiconductor ZnO of large gap of 3,4 eV is of great interest for the technological applications as chemical sensors, UV light emission, optical memories, laser emission, solar cells, etc. These applications depend on the electron structure of material. We adopt the density functional theory (DFT) calculation by using the program Wien2K, within the Generalized Gradient Approximation (GGA) and modified Becke-Johnson (mBJ) for studying the electron behavior of ZnO. The features of the valence band derived from the hybridization of Zn-3d and O-2p states. The electron charge density calculated by these simulation methods indicates a charge transfer between zinc and oxygen inducing a difference in electronegativity between both species (Zn and O), responsible to ionic character of bonding in ZnO. The predictions based on the GGA and mBJ calculations are confirmed by the results of the experimental spectroscopic analysis Auger Electron Spectroscopy (AES) and Electron Energy Loss Spectroscopy (EELS).

  5. Structural, electronic, elastic, thermoelectric and thermodynamic properties of the NbMSb half heusler (M=Fe, Ru, Os) compounds with first principle calculations

    NASA Astrophysics Data System (ADS)

    Abid, O. Miloud; Menouer, S.; Yakoubi, A.; Khachai, H.; Omran, S. Bin; Murtaza, G.; Prakash, Deo; Khenata, R.; Verma, K. D.

    2016-05-01

    The structural, electronic, elastic, thermoelectric and thermodynamic properties of NbMSb (M = Fe, Ru, Os) half heusler compounds are reported. The full-potential linearized augmented plane wave (FP-LAPW) plus local orbital (lo) method, based on the density functional theory (DFT) was employed for the present study. The equilibrium lattice parameter results are in good compliance with the available experimental measurements. The electronic band structure and Boltzmann transport calculations indicated a narrow indirect energy band gap for the compound having electronic structure favorable for thermoelectric performance as well as with substantial thermopowers at temperature ranges from 300 K to 800 K. Furthermore, good potential for thermoelectric performance (thermopower S ≥ 500 μeV) was found at higher temperature. In addition, the analysis of the charge density, partial and total densities of states (DOS) of three compounds demonstrate their semiconducting, ionic and covalent characters. Conversely, the calculated values of the Poisson's ratio and the B/G ratio indicate their ductile makeup. The thermal properties of the compounds were calculated by quasi-harmonic Debye model as implemented in the GIBBS code.

  6. Possibility of transforming the electronic structure of one species of graphene adatoms into that of another by application of gate voltage: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Chan, Kevin T.; Lee, Hoonkyung; Cohen, Marvin L.

    2011-10-01

    Graphene provides many advantages for controlling the electronic structure of adatoms and other adsorbates via gating. Using the projected density of states and charge density obtained from first-principles density-functional periodic supercell calculations, we investigate the possibility of performing “alchemy” of adatoms on graphene, i.e., transforming the electronic structure of one species of adatom into that of another species by application of a gate voltage. Gating is modeled as a change in the number of electrons in the unit cell, with the inclusion of a compensating uniform background charge. Within this model and the generalized gradient approximation to the exchange-correlation functional, we find that such transformations are possible for K, Ca, and several transition-metal adatoms. Gate control of the occupation of the p states of In on graphene is also investigated. The validity of the supercell approximation with uniform compensating charge and the model for exchange and correlation is also discussed.

  7. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  8. Investigation of intravalence, core-valence and core-core electron correlation effects in polonium atomic structure calculations

    NASA Astrophysics Data System (ADS)

    Quinet, Pascal

    2014-09-01

    A detailed investigation of the atomic structure and radiative parameters involving the lowest states within the 6p4, 6p36d, 6p37s, 6p37p and 6p37d configurations of neutral polonium is reported in the present paper. Using different physical models based on the pseudo-relativistic Hartree-Fock approach, the influence of intravalence, core-valence and core-core electron correlation on the atomic parameters is discussed in detail. This work allowed us to fix the spectroscopic designation of some experimental level energy values and to provide for the first time a set of reliable oscillator strengths corresponding to 31 Po I spectral lines in the wavelength region from 175 to 987 nm.

  9. Thermodynamic properties of arsenic compounds and the heat of formation of the As atom from high level electronic structure calculations.

    PubMed

    Feller, David; Vasiliu, Monica; Grant, Daniel J; Dixon, David A

    2011-12-29

    Structures, vibrational frequencies, atomization energies at 0 K, and heats of formation at 0 and 298 K are predicted for the compounds As(2), AsH, AsH(2), AsH(3), AsF, AsF(2), and AsF(3) from frozen core coupled cluster theory calculations performed with large correlation consistent basis sets, up through augmented sextuple zeta quality. The coupled cluster calculations involved up through quadruple excitations. For As(2) and the hydrides, it was also possible to examine the impact of full configuration interaction on some of the properties. In addition, adjustments were incorporated to account for extrapolation to the frozen core complete basis set limit, core/valence correlation, scalar relativistic effects, the diagonal Born-Oppenheimer correction, and atomic spin orbit corrections. Based on our best theoretical D(0)(As(2)) and the experimental heat of formation of As(2), we propose a revised 0 K arsenic atomic heat of formation of 68.86 ± 0.8 kcal/mol. While generally good agreement was found between theory and experiment, the heat of formation of AsF(3) was an exception. Our best estimate is more than 7 kcal/mol more negative than the single available experimental value, which argues for a re-examination of that measurement. PMID:22091635

  10. Spectroscopic and electronic structure calculation of a potential antibacterial agent incorporating pyrido-dipyrimidine-dione moiety using first principles

    NASA Astrophysics Data System (ADS)

    Fatma, Shaheen; Bishnoi, Abha; Singh, Vineeta; Al-Omary, Fatmah A. M.; El-Emam, Ali A.; Pathak, Shilendra; Srivastava, Ruchi; Prasad, Onkar; Sinha, Leena

    2016-04-01

    Quantum chemical calculations of geometrical structure, energy and vibrational wavenumbers of a novel functionalized pyrido-pyrimidine compound (a prospective antibacterial agent), chemically known as 6-Methyl,13,14,15-Trihydro-14-(4-Nitrophenyl)pyrido[1,2-a:1‧,2‧-a‧] pyrido[2″,3″-d:6″,5″-d‧]dipyrimidine-13,15-dione (C24H16N6O4), were carried out, using B3LYP/6311++G(d,p) method. Comprehensive interpretation of the infrared and Raman spectra of the compound under study is based on potential energy distribution. A good coherence between experimental and theoretical wavenumbers shows the preciseness of the assignments. NLO properties like the dipole moment, polarizability, first static hyperpolarizability and molecular electrostatic potential surface have been calculated to get a better cognizance of the properties of the title compound. Molecular docking results reveal that the title compound exhibit inhibitory activity against Staphylococcus aureus.

  11. Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: Density-functional theory calculations

    SciTech Connect

    Walsh, Aron; Wei, S.-H.; Yan Yanfa; Al-Jassim, M. M.; Turner, John A.; Woodhouse, Michael; Parkinson, B. A.

    2007-10-15

    A systematic study of nine binary and ternary spinel oxides formed from Co, Al, and Fe is presented by means of density functional theory. Analysis of the structural, magnetic, and electronic properties through the series of materials is carried out. Preference for the octahedral spinel sites are found in the order Feelectronic band gaps of Co{sub 3}O{sub 4} and Fe{sub 3}O{sub 4} are shown to remain largely unchanged as Al is substituted into the lattice forming M{sub 2}AlO{sub 4} (M=Fe,Co), but increase greater than 1 eV for MAl{sub 2}O{sub 4} as the octahedral M metal sites are lost. However, for stoichiometric FeAl{sub 2}O{sub 4}, the unsatisfied valence state of Fe results in partial occupation of the conduction band. The results and chemical trends are discussed in terms of atomic site and orbital energies, and in relation to potential photoelectrolysis activity for the splitting of water as a renewable means of hydrogen production.

  12. Electronic structure and mechanical properties of ternary ZrTaN alloys studied by ab initio calculations and thin-film growth experiments

    NASA Astrophysics Data System (ADS)

    Abadias, G.; Kanoun, M. B.; Goumri-Said, S.; Koutsokeras, L.; Dub, S. N.; Djemia, Ph.

    2014-10-01

    The structure, phase stability, and mechanical properties of ternary alloys of the Zr-Ta-N system are investigated by combining thin-film growth and ab initio calculations. Zr1-xTaxN films with 0≤x≤1 were deposited by reactive magnetron cosputtering in Ar +N2 plasma discharge and their structural properties characterized by x-ray diffraction. We considered both ordered and disordered alloys, using supercells and special quasirandom structure approaches, to account for different possible metal atom distributions on the cation sublattice. Density functional theory within the generalized gradient approximation was employed to calculate the electronic structure as well as predict the evolution of the lattice parameter and key mechanical properties, including single-crystal elastic constants and polycrystalline elastic moduli, of ternary Zr1-xTaxN compounds with cubic rocksalt structure. These calculated values are compared with experimental data from thin-film measurements using Brillouin light scattering and nanoindentation tests. We also study the validity of Vegard's empirical rule and the effect of growth-dependent stresses on the lattice parameter. The thermal stability of these Zr1-xTaxN films is also studied, based on their structural and mechanical response upon vacuum annealing at 850 °C for 3 h. Our findings demonstrate that Zr1-xTaxN alloys with Ta fraction 0.51⩽x⩽0.78 exhibit enhanced toughness, while retaining high hardness ˜30 GPa, as a result of increased valence electron concentration and phase stability tuning. Calculations performed for disordered or ordered structures both lead to the same conclusion regarding the mechanical behavior of these nitride alloys, in agreement with recent literature findings [H. Kindlund, D. G. Sangiovanni, L. Martinez-de-Olcoz, J. Lu, J. Jensen, J. Birch, I. Petrov, J. E. Greene, V. Chirita, and L. Hultman, APL Materials 1, 042104 (2013), 10.1063/1.4822440].

  13. Comparative Study Between GGA and LDA Approximation Using First- Principles Calculations of Structural, Electronic, Optical and Vibrational Properties of CaTiO3 Crystal

    NASA Astrophysics Data System (ADS)

    Medeiros, Subenia; Araujo, Maeva

    2015-03-01

    The structural, electronic, vibrational, and optical properties of perovskite CaTiO3 in the cubic, orthorhombic, and tetragonal phase are calculated in the framework of density functional theory (DFT) with different exchange-correlation potentials by CASTEP package. The calculated band structure shows an indirect band gap of 1.88 eV at the Γ-R points in the Brillouin zone to the cubic structure, a direct band gap of 2.41 eV at the Γ- Γ points to the orthorhombic structure, and an indirect band gap of 2.31 eV at theM - Γ points to the tetragonal phase. It is still known that the CaTiO3 has a static dielectric constant that extrapolates to a value greater than 300 at zero temperature, and the dielectric response is dominated by low frequency (ν ~ 90cm-1) polar optical modes in which cation motion opposes oxygen motion. Our calculated lattice parameters, elastic constants, optical properties, and vibrational frequencies are found to be in good agreement with the available theoretical and experimental values. The results for the effective mass in the electron and hole carriers are also presented in this work.

  14. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations

    NASA Astrophysics Data System (ADS)

    Jinliang, Yan; Chong, Qu

    2016-04-01

    The effects of F-doping concentration on geometric structure, electronic structure and optical property of β-Ga2O3 were investigated. All F-doped β-Ga2O3 with different concentrations are easy to be formed under Ga-rich conditions, the stability and lattice parameters increase with the F-doping concentration. F-doped β-Ga2O3 materials display characteristics of the n-type semiconductor, occupied states contributed from Ga 4s, Ga 4p and O 2p states in the conduction band increase with an increase in F-doping concentration. The increase of F concentration leads to the narrowing of the band gap and the broadening of the occupied states. F-doped β-Ga2O3 exhibits the sharp band edge absorption and a broad absorption band. Absorption edges are blue-shifted, and the intensity of broad band absorption has been enhanced with respect to the fluorine content. The broad band absorption is ascribed to the intra-band transitions from occupied states to empty states in the conduction band. Project supported by the Innovation Project of Shandong Graduate Education, China (No. SDYY13093) and the National Natural Science Foundation of China (No. 10974077).

  15. Electronic bands, Fermi surface, and elastic properties of new 4.2 K superconductor SrPtAs with a honeycomb structure from first principles calculations

    NASA Astrophysics Data System (ADS)

    Shein, I. R.; Ivanovskii, A. L.

    2011-10-01

    The hexagonal phase SrPtAs (s.g. P6/ mmm; #194) with a honeycomb lattice structure was recently declared as a new low-temperature ( T C ∼ 4.2 K) superconductor. Here, by means of first-principles calculations the optimized structural parameters, electronic bands, Fermi surface, total and partial densities of states, inter-atomic bonding picture, independent elastic constants, bulk and shear moduli for SrPtAs were obtained for the first time and analyzed in comparison with the related layered superconductor SrPt 2As 2.

  16. Self-healing diffusion quantum Monte Carlo algorithms: Direct reduction of the fermion sign error in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Reboredo, F. A.; Hood, R. Q.; Kent, P. R. C.

    2009-05-01

    We develop a formalism and present an algorithm for optimization of the trial wave function used in fixed-node diffusion quantum Monte Carlo (DMC) methods. The formalism is based on the DMC mixed estimator of the ground-state probability density. We take advantage of a basic property of the walker configuration distribution generated in a DMC calculation, to (i) project out a multideterminant expansion of the fixed-node ground-state wave function and (ii) to define a cost function that relates the fixed-node ground-state and the noninteracting trial wave functions. We show that (a) locally smoothing out the kink of the fixed-node ground-state wave function at the node generates a new trial wave function with better nodal structure and (b) we argue that the noise in the fixed-node wave function resulting from finite sampling plays a beneficial role, allowing the nodes to adjust toward the ones of the exact many-body ground state in a simulated annealing-like process. Based on these principles, we propose a method to improve both single determinant and multideterminant expansions of the trial wave function. The method can be generalized to other wave-function forms such as pfaffians. We test the method in a model system where benchmark configuration-interaction calculations can be performed and most components of the Hamiltonian are evaluated analytically. Comparing the DMC calculations with the exact solutions, we find that the trial wave function is systematically improved. The overlap of the optimized trial wave function and the exact ground state converges to 100% even starting from wave functions orthogonal to the exact ground state. Similarly, the DMC total energy and density converges to the exact solutions for the model. In the optimization process we find an optimal noninteracting nodal potential of density-functional-like form whose existence was predicted in a previous publication [Phys. Rev. B 77, 245110 (2008)]. Tests of the method are extended to a

  17. Thermodynamic, structural and electronic, properties of SnO2: By GGA and GGA + trans-blaha-modified Becke-Johnson (TB-mBJ) calculation

    NASA Astrophysics Data System (ADS)

    Bezzerrouk, M. A.; Hassan, M.; Baghdad, R.; Reguieg, S.; Bousmaha, M.; Kharroubi, B.; Bouhafs, B.

    2015-08-01

    In this paper we have investigated the structural, electronic and thermodynamic properties of tin oxide (SnO2) using the full-potential linearized augmented plane wave method (FP-LAPW) within the framework of density functional theory (DFT) as implemented in the Wien2k package within the generalized gradient approximation (GGA) and GGA plus trans-blaha-modified Becke-Johnson (TB-mBJ) as the exchange correlation. From the electronic properties, SnO2 has a direct band gap in (Γ-Γ) direction with a value of 2.86 eV. The quasi-harmonic Debye model, using a set of total energy versus volume calculations is applied to study the thermal and vibrational effects. Temperature and pressure effects on the structural parameters, such as thermal expansion, heat capacities and Debye temperature are investigated from the non-equilibrium Gibbs function.

  18. Structure, dynamical stability, and electronic properties of phases in TaS2 from a high-level quantum mechanical calculation

    NASA Astrophysics Data System (ADS)

    Lazar, Petr; Martincová, Jana; Otyepka, Michal

    2015-12-01

    TaS2 is a transition-metal dichalcogenide having an exceptionally rich phase diagram, which includes exotic phenomena such as a charge density wave. We analyzed the structure, bonding, ground state, and dynamical stability of 1 T , 2 H , and 3 R phases of TaS2, and a commensurate charge density wave phase from the first principles. Van der Waals interaction among layers and strong electron-electron interactions were included by using the exact exchange plus random phase approximation, a high-level quantum mechanical approach. The calculated structural parameters agree well with the available experimental data. The individual sheets of TaS2 are bound by dispersive forces, which are stronger than dispersive forces in graphite and fluorographite. 1 T -TaS2 is dynamically unstable at low temperature, which leads to the formation of charge density wave and opening of the in-plane band gap. Anharmonic phonon-phonon interactions stabilize the 1 T structure at elevated temperatures. The calculated phase diagram of TaS2 reveals that the 1 T phase is the ground state at temperatures above 1300 K, 2 H below this point, and the charge density wave phase becomes more stable than the perfect 1 T structure below 480 K.

  19. Refined energetic ordering for sulphate–water ( n = 3–6) clusters using high-level electronic structure calculations

    SciTech Connect

    Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin

    2012-09-06

    This work reports refinements of the energetic ordering of the known low-energy structures of sulfate-water clusters SO42- (H2O)n (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second order Møller-Plesset theory. Harmonic zero point energy (ZPE), included at the B3LYP/6-311++G** level, was found to have a significant effect on the energetic ordering. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPE’s, even alters the global minimum for n = 4.

  20. First-principles calculations of the electronic structure and magnetic properties of 3d transition-metal impurities in bcc and amorphous iron

    NASA Astrophysics Data System (ADS)

    Kontsevoi, O. Yu.; Gubanov, V. A.

    1995-06-01

    We present the results of the first-principles calculations of electronic structure, magnetic moments, and effective-exchange-interaction parameters for 3d impurities in ferromagnetic bcc and amorphous iron as obtained by the self-consistent tight-binding linear-muffin-tin-orbital recursion method. Impurities in bcc Fe have been modeled both in the single-site approximation and taking into account up to four shells of the nearest-to-the-impurity neighbors. The results for crystalline iron agree well with the previous more precise Korringa-Kohn-Rostoker Green's function calculations [Phys. Rev. B 40, 8203 (1989)], and confirm the sufficient accuracy of the method developed. The perturbations of electronic states for Fe atoms in different coordinational shells around impurity are considered. Peculiarities of impurity electronic states in amorphous Fe and their influence on magnetic behavior of the system are discussed. The role of impurities in possible stabilization of ferromagnetic ordering in amorphous Fe is investigated in terms of effective-exchange-interaction parameters calculated for the nearest-to-impurity host atoms.

  1. First-principles calculation of the structural, electronic, elastic, and optical properties of sulfur-doping ε-GaSe crystal

    NASA Astrophysics Data System (ADS)

    Huang, Chang-Bao; Wu, Hai-Xin; Ni, You-Bao; Wang, Zhen-You; Qi, Ming; Zhang, Chun-Li

    2016-08-01

    The structural, electronic, mechanical properties, and frequency-dependent refractive indexes of GaSe1–x S x (x = 0, 0.25, and 1) are studied by using the first-principles pseudopotential method within density functional theory. The calculated results demonstrate the relationships between intralayer structure and elastic modulus in GaSe1–x S x (x = 0, 0.25, and 1). Doping of ε-GaSe with S strengthens the Ga–X bonds and increases its elastic moduli of C 11 and C 66. Born effective charge analysis provides an explanation for the modification of cleavage properties about the doping of ε-GaSe with S. The calculated results of band gaps suggest that the distance between intralayer atom and substitution of SSe, rather than interlayer force, is a key factor influencing the electronic exciton energy of the layer semiconductor. The calculated refractive indexes indicate that the doping of ε-GaSe with S reduces its refractive index and increases its birefringence. Project supported by the National Natural Science Foundation of China (Grant No. 51202250).

  2. Structural, electronic and elastic properties of the B2-ScM (M =Au, Hg and Tl) intermetallic compounds: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mousa, Ahmad A.; Khalifeh, Jamil M.

    2015-10-01

    Structural, electronic, elastic and mechanical properties of ScM (M =Au, Hg and Tl) intermetallic compounds are studied using the full potential-linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA) and the local density approximation (LDA) to the exchange-correlation approximation energy as implemented in the Wien2k code. The ground state properties including lattice parameters, bulk modulus and elastic constants were all computed and compared with the available previous theoretical and experimental results. The lattice constant was found to increase in contrast to the bulk modulus which was found to decrease with every substitution of the cation (M) starting from Au till Tl in ScM. Both the electronic band structure and density-of-states (DOS) calculations show that these compounds possess metallic properties. The calculated elastic constants (C11, C12 and C44) confirmed the elastic stability of the ScM compounds in the B2-phase. The mechanical properties and ductile behaviors of these compounds are also predicted based on the calculated elastic constants.

  3. First-principles calculation of the effect of atomic disorder on the electronic structure of the half-metallic ferromagnet NiMnSb

    SciTech Connect

    Orgassa, D.; Fujiwara, H.; Schulthess, T.C.; Butler, W.H.

    1999-11-01

    The electronic structure of the half-metallic ferromagnet NiMnSb with three different types of atomic disorder is calculated using the layer Korringa-Kohn-Rostoker method in conjunction with the coherent potential approximation. Results indicate the presence of minority-spin states at the Fermi energy for degrees of disorder as low as a few percent. The resulting spin polarization below 100{percent} is discussed in the light of experimental difficulties confirming the half-metallic property of NiMnSb thin films directly. {copyright} {ital 1999} {ital The American Physical Society}

  4. The effects of surface bond relaxation on electronic structure of Sb{sub 2}Te{sub 3} nano-films by first-principles calculation

    SciTech Connect

    Li, C. Zhao, Y. F.; Fu, C. X.; Gong, Y. Y.; Chi, B. Q.; Sun, C. Q.

    2014-10-15

    The effects of vertical compressive stress on Sb{sub 2}Te{sub 3} nano-films have been investigated by the first principles calculation, including stability, electronic structure, crystal structure, and bond order. It is found that the band gap of nano-film is sensitive to the stress in Sb{sub 2}Te{sub 3} nano-film and the critical thickness increases under compressive stress. The band gap and band order of Sb{sub 2}Te{sub 3} film has been affected collectively by the surface and internal crystal structures, the contraction ratio between surface bond length of nano-film and the corresponding bond length of bulk decides the band order of Sb{sub 2}Te{sub 3} film.

  5. Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations

    SciTech Connect

    Nabok, Dmitrii; Puschnig, Peter; Ambrosch-Draxl, Claudia; Werzer, Oliver; Resel, Roland; Smilgies, Detlef-M.

    2007-12-15

    Combined experimental and theoretical investigations on thin films of pentacene are performed in order to determine the structure of the pentacene thin film phase. Grazing incidence x-ray diffraction is used for studying a pentacene thin film with a nominal thickness of 180 nm. The crystal structure is found to exhibit the lattice parameters a=0.592 nm, b=0.754 nm, c=1.563 nm, {alpha}=81.5 deg. , {beta}=87.2 deg. , and {gamma}=89.9 deg. . These crystallographic unit cell dimensions are used as the only input parameters for ab initio total-energy calculations within the framework of density functional theory revealing the molecular packing within the crystal structure. Moreover, we calculate the electronic band structure of the thin film phase and compare it to that of the bulk phase. We find the intermolecular bandwidths of the thin film phase to be significantly larger compared to the bulk structure, e.g., the valence bandwidth is twice as large. This remarkable effect is traced back to an enhanced intermolecular {pi}-{pi} overlap due to the upright standing molecules in the thin film phase.

  6. Structural, electronic and magnetic properties of Cd1-xTMxS (TM=Co and V) by ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Yahi, Hakima; Meddour, Athmane

    2016-03-01

    The structural, electronic and ferromagnetic properties of Cd1-xTMxS (TM=Co and V) compounds at x=0.25, 0.50 and 0.75 in zinc blende (B3) phase, have been investigated using all-electron full-potential linear muffin tin orbital (FP-LMTO) calculations within the frame work of the density functional theory and the generalized gradient approximation. The electronic properties exhibit half-metallic behavior at x=0.25, 0.50, and 0.75 for Cd1-xVxS and x=0.25 and 0.50 for Cd1-xCoxS, while Cd1-xCoxS with x=0.75 is nearly half-metallic. The calculated magnetic moment per substituted transition metal (TM) atom for half-metallic compounds is found to be 3 μB, whereas that of a nearly half-metallic compound is 2.29 μB. The analysis of band structure and density of states shows that the TM-3d states play a key role in generating spin-polarization and magnetic moment in these compounds. Furthermore, we establish that the p-d hybridization reduces the local magnetic moment of Co and enhances that of V from their free space charge value of 3 μB and creates small local magnetic moments on nonmagnetic Cd and S sites. The exchange constant N0α and N0β have been calculated to validate the effects resulting from exchange splitting process.

  7. Investigating crystalline-polarity-dependent electronic structures of GaN by hard x-ray photoemission and ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Ohsawa, Takeo; Ueda, Shigenori; Suzuki, Motohiro; Tateyama, Yoshitaka; Williams, Jesse R.; Ohashi, Naoki

    2015-10-01

    Crystalline-polarity-dependent electronic structures of gallium nitride (GaN) were studied by photoemission spectroscopy (PES) using soft and hard x-rays with different linear polarizations. A peak located near the valence band (VB) maximum was enhanced for a (0001) surface compared with that for a ( 000 1 ¯ ) surface regardless of photon energy. Comparison of the VB density of states obtained by ab-initio calculations with the observed VB-PES spectra indicates that the crystalline-polarity dependence is associated with the Ga 4p and N 2p states. The most plausible origin of the crystalline-polarity-dependent VB feature is based on the photoemission phenomena of electrons in the pz-orbitals due to spontaneous electric polarization along the c-axis of GaN.

  8. Electronic structure and optical properties of the nonlinear optical crystal Pb{sub 4}O(BO{sub 3}){sub 2} by first-principles calculations

    SciTech Connect

    Yang, Zhihua; Pan, Shilie; Yu, Hongwei; Lee, Ming-Hsien

    2013-02-15

    Pb{sub 4}O(BO{sub 3}){sub 2} has a layered-type arrangement with optimally aligned BO{sub 3} triangles. The optical band gap is 3.317 eV obtained via the extrapolation method from the UV-vis-IR optical diffuse reflectance spectrum, consequently the absorption edge is about 374 nm. Density functional calculations using a generalized gradient approximation were utilized to investigate the electronic structures and optical properties of Pb{sub 4}O(BO{sub 3}){sub 2}. The calculated band structures show a direct gap of 2.608 eV, which is in agreement with the experimental optical band gap. A delocalized {pi} bonding of BO{sub 3} triangles and the stereo-effect of the lone pair 6s{sup 2} of lead cations are studied in electron densities. The birefringence is about 0.039-0.061 with the wavelength larger than about 375 nm. The calculated second-order susceptibility d{sub 24}=3.5 d{sub 36} (KDP) which is well consistent with the powder SHG intensity. - Graphical abstract: The density of state (DOS) show that the bottom of the valence bands is mainly derived from of the lone pair 6s{sup 2} of Pb{sup 2+}, and the top of the valence band is attributed to the hybridization orbitals from B-O groups. Calculated electronic structures indicate that the BO{sub 3} group with typical delocalization {pi} orbitals and strongly distorted lead oxygen polyhedra with highly asymmetric lobes on lead cations make a large SHG effect in Pb{sub 4}O(BO{sub 3}){sub 2}. Highlights: Black-Right-Pointing-Pointer Lone pair effect on Pb{sup 2+} and delocalization {pi} orbital in BO{sub 3} group is studied. Black-Right-Pointing-Pointer The combination of PbO{sub n} (n=3,4,5) and BO{sub 3} group makes Pb{sub 4}O(BO{sub 3}){sub 2} a large SHG effect. Black-Right-Pointing-Pointer Pb{sub 4}O(BO{sub 3}){sub 2} is a direct gap material with the gap 2.608 eV by the ab initio method. Black-Right-Pointing-Pointer The calculated birefringence is about 0.039-0.061 with the wavelength of about 375 nm. Black

  9. Properties of ThF(x) from infrared spectra in solid argon and neon with supporting electronic structure and thermochemical calculations.

    PubMed

    Thanthiriwatte, K Sahan; Wang, Xuefeng; Andrews, Lester; Dixon, David A; Metzger, Jens; Vent-Schmidt, Thomas; Riedel, Sebastian

    2014-03-20

    Laser-ablated Th atoms react with F2 in condensing noble gases to give ThF4 as the major product. Weaker higher frequency infrared absorptions at 567.2, 564.8 (576.1, 573.8) cm(-1), 575.1 (582.7) cm(-1) and 531.0, (537.4) cm(-1) in solid argon (neon) are assigned to the ThF, ThF2 and ThF3 molecules based on annealing and photolysis behavior and agreement with CCSD(T)/aug-cc-pVTZ vibrational frequency calculations. Bands at 528.4 cm(-1) and 460 cm(-1) with higher fluorine concentrations are assigned to the penta-coordinated species (ThF3)(F2) and ThF5(-). These bands shift to 544.2 and 464 cm(-1) in solid neon. The ThF5 molecule has the (ThF3)(F2) Cs structure and is essentially the unique [ThF3(+)][F2(-)] ion pair based on charge and spin density calculations. Electron capture by (ThF3)(F2) forms the trigonal bipyramidal ThF5(-) anion in a highly exothermic process. Extensive structure and frequency calculations were also done for thorium oxyfluorides and Th2F4,6,8 dimer species. The calculations provide the ionization potentials, electron affinities, fluoride affinities, Th-F bond dissociation energies, and the energies to bind F2 and F2(-) to a cluster as well as dimerization energies. PMID:24559371

  10. Calculation of Electronic Structure of a Spherical Quantum Dot Using a Combination of Quantum Genetic Algorithm and Hartree-Fock Method

    NASA Astrophysics Data System (ADS)

    Çakir, Bekir; Özmen, Ayhan; Atav, Ülfet; Yüksel, Hüseyin; Yakar, Yusuf

    The electronic structure of Quantum Dot (QD), GaAs/AlxGa1-xAs, has been investigated by using a combination of Quantum Genetic Algorithm (QGA) and Hartree-Fock-Roothaan (HFR) method. One-electron system with an on-center impurity is considered by assuming a spherically symmetric confining potential of finite depth. The ground and excited state energies of one-electron QD were calculated depending on the dot radius and stoichiometric ratio. Expectation values of energy were determined by using the HFR method along with Slater-Type Orbitals (STOs) and QGA was used for the wavefunctions optimization. In addition, the effect of the size of the basis set on the energy of QD was investigated. We also calculated the binding energy for a dot with finite confining potential. We found that the impurity binding energy increases for the finite potential well when the dot radius decreases. For the finite potential well, the binding energy reaches a peak value and then diminishes to a limiting value corresponding to the radius for which there are no bound states in the well. Whereas in previous study, in Ref. 40, for the infinite potential well, we found that the impurity binding energy increases as the dot radius decreases.

  11. Electronic Structure and Optical Properties of Cu2ZnGeSe4 : First-Principles Calculations and Vacuum-Ultraviolet Spectroscopic Ellipsometric Studies

    NASA Astrophysics Data System (ADS)

    Choi, S. G.; Park, J.-S.; Donohue, A. L.; Christensen, S. T.; To, B.; Beall, C.; Wei, S.-H.; Repins, I. L.

    2015-11-01

    Cu2ZnGeSe4 is of interest for the development of next-generation thin-film photovoltaic technologies. To understand its electronic structure and related fundamental optical properties, we perform first-principles calculations for three structural variations: kesterite, stannite, and primitive-mixed CuAu phases. The calculated data are compared with the room-temperature dielectric function ɛ =ɛ1+i ɛ2 spectrum of polycrystalline Cu2ZnGeSe4 determined by vacuum-ultraviolet spectroscopic ellipsometry in the photon-energy range of 0.7 to 9.0 eV. Ellipsometric data are modeled with the sum of eight Tauc-Lorentz oscillators, and the best-fit model yields the band-gap and Tauc-gap energies of 1.25 and 1.19 eV, respectively. A comparison of overall peak shapes and relative intensities between experimental spectra and the calculated ɛ data for three structural variations suggests that the sample may not have a pure (ordered) kesterite phase. The complex refractive index N =n +i k , normal-incidence reflectivity R , and absorption coefficients α are calculated from the modeled ɛ spectrum, which are also compared with those of Cu2ZnSnSe4 . The spectral features for Cu2ZnGeSe4 appear to be weaker and broader than those for Cu2ZnSnSe4 , which is possibly due to more structural imperfections presented in Cu2ZnGeSe4 than Cu2ZnSnSe4 .

  12. Insight into structural, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Zhan, Yongzhong; Wu, Junyan; Wei, Xuanchen

    2015-11-01

    The structural, phase stabilities, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system are investigated by using first-principles method. The equilibrium lattice constants, enthalpy of formation (ΔHform) and elastic constants are obtained and compared with available experimental and theoretical data. The configuration of Zr4Sn is measured with reasonable precision. The ΔHform of five hypothetical structures are obtained in order to find possible metastable phase for Zr-Sn system. The mechanical properties, including bulk modulus, shear modulus, Young's modulus and Poisson's ratio, are calculated by Voigt-Reuss-Hill approximation and the Zr5Sn4 and Zr5Sn3 show excellent mechanical properties. The electronic density of states for Zr5Sn4, Zr5Sn3 and cP8-Zr3Sn are calculated to further investigate the stability of intermetallic compounds. Through the quasi-harmonic Debye model, the Debye temperature, heat capacity and thermal expansion coefficient under temperature of 0-300 K and pressure of 0-50 GPa for Zr5Sn3 and Zr5Sn4 are deeply investigated.

  13. The molecular structure, conformation, potential to internal rotation and force field of 2,2,2-trifluoroacetamide as studied by gas electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Gundersen, Snefrid; Samdal, Svein; Seip, Ragnhild; Shorokhov, Dmitry J.; Strand, Tor G.

    1998-04-01

    2,2,2-Trifluoroacetamide (TFA) has been studied by electron diffraction (ED), ab initio Hartree-Fock (HF), density functional theory (DFT), and MP2 calculations. The calculations give one conformation with one of the CF bonds anti to the CO bond and a planar NH 2 group, except for MP2/6-311 + + G∗∗, which predicts a slightly pyramidale NH 2 group. A molecular force field has been determined, and the fundamental frequencies have tentatively been assigned. The refined structural parameters were determined using constrained ED, i.e. ab initio results are included as constraints in the analysis. The structural parameters are: rg(N-H 4) = 1.040(4), rg(CO) = 1.211(2), rg(C-N) = 1.362(4), rg = 1.562(1), rg(C-F 7) = 1.347(1), ∠ αOCN = 126.5(2), ∠ αCCN = 116.3(4), ∠ αCCF 7 = 111.9(1), and ∠ αCNH 4 = 118.5(11). Bond distances are in Å and bond angles in degrees. Uncertainties are one standard deviation from least squares refinement using a diagonal weight matrix and inclusion of the uncertainty in the electron wavelength. The structural parameters have been compared with related amides. The Fourier coefficients V3 and V6 in the potential to internal rotation of the CF 3 group, V(α) = 1/2∗V 3∗(1 - cos(3∗α)) + 1/2∗V 6∗(1 - cos(6∗α)) , are determined to be 2.7(4) and - 0.7(3) kJ/mol, respectively. The syn barrier is experimentally determined to be 2.6(4) kJ/mol, which is in good agreeent with theoretical calculations.

  14. Electronic and magnetic structure of 3d-transition-metal point defects in silicon calculated from first principles

    NASA Astrophysics Data System (ADS)

    Beeler, F.; Andersen, O. K.; Scheffler, M.

    1990-01-01

    We describe spin-unrestricted self-consistent linear muffin-tin-orbital (LMTO) Green-function calculations for Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu transition-metal impurities in crystalline silicon. Both defect sites of tetrahedral symmetry are considered. All possible charge states with their spin multiplicities, magnetization densities, and energy levels are discussed and explained with a simple physical picture. The early transition-metal interstitial and late transition-metal substitutional 3d ions are found to have low spin. This is in conflict with the generally accepted crystal-field model of Ludwig and Woodbury, but not with available experimental data. For the interstitial 3d ions, the calculated deep donor and acceptor levels reproduce all experimentally observed transitions. For substitutional 3d ions, a large number of predictions is offered to be tested by future experimental studies.

  15. Trivalent Ion Hydrolysis Reactions: A Linear Free-Energy Relationship Based on Density Functional Electronic Structure Calculations

    SciTech Connect

    Rustad, James R.; Dixon, David A.; Rosso, Kevin M.; Felmy, Andrew R.

    1999-04-07

    Metal ion hydrolysis is fundamental in aqueous chemistry because of the influence of coordinating hydroxide ions on reaction rates; examples include enhanced labilization of coordinating water molecules in hydrolyzed complexes1 and stabilization of oxidized products in electron-transfer reactions involving hydrolyzed reductants.2 Moreover, the role of metal hydrolysis reactions in defining a baseline for establishing trends in metal ligand binding has motivated efforts toward comprehensive integration of Mz+ xOHy stability constants.3-5

  16. Trivalent ion hydrolysis reactions: A linear free-energy relationship based on density functional electronic structure calculations

    SciTech Connect

    Rustad, J.R.; Dixon, D.A.; Rosso, K.M.; Felmy, A.R.

    1999-04-07

    Metal ion hydrolysis is fundamental in aqueous chemistry because of the influence of coordinating hydroxide ions on reaction rates; examples include enhanced labilization of coordinating water molecules in hydrolyzed complexes and stabilization of oxidized products in electron-transfer reactions involving hydrolyzed reductants. Moreover, the role of metal hydrolysis reactions in defining a baseline for establishing trends in metal-ligand binding has motivated efforts toward comprehensive integration of M{sup z+}{sub x}OH{sub y} stability constants.

  17. Calculations on the electronic structure and nonlinear second-order optical susceptibility of the C{sub 60} aniline charge-transfer complex

    SciTech Connect

    Li, J.; Feng, J.; Sun, C.

    1994-09-01

    Using both INDO/2 and INDO/CI methods, we have calculated the structure and UV-visible spectra of C{sub 60}/ aniline (AN), a model of the experimentally studied C{sub 60}/N,N-diethylaniline (DEA). The aniline fragment is bound directly to a carbon atom of C{sub 60}, and the charge transfer from aniline to C{sub 60} takes place. The calculated UV-visible spectra show new charge-transfer bands at 635-819 nm, which are comparable with experiment. On the basis of correct electronic spectra, calculations of the nonlinear second-order optical susceptibility {beta}{sub ijk} and {beta}{sub mu} have been performed using the INDO/CI method combined with a sum-over-states expression. The calculated {beta}{sub mu}, value is 3.217 x 10{sup -29} esu ({omega} = 1.91 {mu}m), which is in excellent agreement with observation. 27 refs., 3 figs., 3 tabs.

  18. Formation and temperature stability of G-quadruplex structures studied by electronic and vibrational circular dichroism spectroscopy combined with ab initio calculations.

    PubMed

    Nový, Jakub; Böhm, Stanislav; Králová, Jarmila; Král, Vladimír; Urbanová, Marie

    2008-02-01

    Variations in the structure of d(GGGA)(5) oligonucleotide in the presence of Li(+), Na(+), and K(+) ions and its temperature stability were studied using electronic and vibrational circular dichroism, IR absorption, and ab initio calculations with the Becke 3-Lee-Yang-Parr functional at the 6-31G** level. The samples were characterized by nondenaturing gel electrophoresis. Oligonucleotide d(GGGA)(5) in the presence of Li(+) forms a nonplanar single tetramer, with angles of 102 degrees and 171 degrees between neighboring guanine bases. This tetramer changes its geometry at temperatures >50 degrees C, but does not form a quadruplex structure. In the presence of Na(+), the d(GGGA)(5) structure was optimized to almost planar tetramers with an angle of 177 degrees between neighboring guanines. The spectral results suggest that it stacks into a quadruplex helical structure. This quadruplex structure decayed to a single tetramer at temperatures >60 degrees C. The Hartree-Fock energies imply that d(GGGA)(5) prefers to form complexes with Na(+) rather than Li(+). The d(GGGA)(5) structure in the presence of monovalent ions is stabilized against thermal denaturation in the order Li(+) < Na(+) < K(+). PMID:17960602

  19. Adsorption and diffusion of hydrogen on Pd(211) and Pd(111): Results from first-principles electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Hong, Sampyo; Rahman, Talat S.

    2007-04-01

    We have carried out first-principles calculations of H adsorption on Pd(211) using density-functional theory with the generalized gradient approximation in the plane-wave basis to find out that the most preferred is the threefold hollow site on the terrace of Pd(211) with an adsorption energy of 0.52eV : the hcp and fcc sites being almost energetically equally favorable. For subsurface H adsorption on Pd(211), the octahedral site with an adsorption energy of 0.19eV is slightly more favorable than the tetrahedral site (0.18eV) . Our calculated activation energy barrier for H to diffuse from the preferred surface site to the subsurface one on Pd(211) is 0.33eV , as compared with 0.41eV on Pd(111). Thus, there is an enhancement of the probability of finding subsurface hydrogen in Pd(211). Additionally, we find the diffusion barriers for H on the terraces of Pd(211) to be 0.11eV , while that along the step edge to be only 0.05eV and that within the second layer (subsurface) to be 0.15eV .

  20. Intrinsic acidity of aluminum, chromium (III) and iron (III) μ 3-hydroxo functional groups from ab initio electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Rustad, James R.; Dixon, David A.; Felmy, Andrew R.

    2000-05-01

    Density functional calculations are performed on M 3(OH) 7(H 2O) 62+ and M 3O(OH) 6(H 2O) 6+ clusters for MAl, Cr(III), and Fe(III), allowing determination of the relative acidities of the μ 3-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, Fe 3OH and Al 3OH groups have nearly the same intrinsic acidity, while Cr 3OH groups are significantly more acidic. The gas-phase acidity of the Fe 3OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. [ J. R. Rustad et al. (1996)Geochim. Cosmochim. Acta 60, 1563]. Acidities of aquo functional groups were also computed for Al and Cr. The AlOH 2 site is more acidic than the Al 3OH site, whereas the Cr 3OH site is more acidic than the CrOH 2 site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.

  1. Conformational Characteristics of Poly(tetrafluoroethylene) (PTFE) Based Upon Ab Initio Electronic Structure Calculations on Model Molecules

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.

  2. Electronic structure, magnetic properties and electrical resistivity of the Fe2V1-xTixAl Heusler alloys: experiment and calculation

    NASA Astrophysics Data System (ADS)

    Slebarski, A.; Goraus, J.; Deniszczyk, J.; Skoczen, L.

    2006-11-01

    The aim of this work is to investigate electronic structure, magnetic properties and electrical resistivity of Fe2V1-xTixAl Heusler alloys. Numerical calculations give a pseudogap at the Fermi level for the majority-spin band of Fe2TiAl and a magnetic moment larger than 0.9 μB, whereas the ground state of Fe2VAl is calculated as a nonmagnetic semimetal with a very low total density of states at the Fermi level. In our calculations the remaining alloys of the Fe2V1-xTixAl series are nonmagnetic for x<0.1 and weakly magnetic for 0.1electrons and fits well to the Slater-Pauling curve. We also present a study of the electronic transport properties and magnetic susceptibility. The resistivities ρ(T) of Fe2VAl and Fe2V0.9Ti0.1Al are large and exhibit a negative temperature coefficient dρ/dT of the resistivity between 2 and 300 K. Below 20 K, ρ(T) also shows an activated character. The magnetic susceptibility of Fe2VAl and Fe2V0.9Ti0.1Al shows a maximum at ~2 K which could reflect either the disorder effect or the hybridization gap, characteristic of Kondo insulators.

  3. Electronic structure, magnetic properties and electrical resistivity of the Fe(2)V(1-x)Ti(x)Al Heusler alloys: experiment and calculation.

    PubMed

    Slebarski, A; Goraus, J; Deniszczyk, J; Skoczeń, L

    2006-11-22

    The aim of this work is to investigate electronic structure, magnetic properties and electrical resistivity of Fe(2)V(1-x)Ti(x)Al Heusler alloys. Numerical calculations give a pseudogap at the Fermi level for the majority-spin band of Fe(2)TiAl and a magnetic moment larger than 0.9 μ(B), whereas the ground state of Fe(2)VAl is calculated as a nonmagnetic semimetal with a very low total density of states at the Fermi level. In our calculations the remaining alloys of the Fe(2)V(1-x)Ti(x)Al series are nonmagnetic for x<0.1 and weakly magnetic for 0.1electrons and fits well to the Slater-Pauling curve. We also present a study of the electronic transport properties and magnetic susceptibility. The resistivities ρ(T) of Fe(2)VAl and Fe(2)V(0.9)Ti(0.1)Al are large and exhibit a negative temperature coefficient dρ/dT of the resistivity between 2 and 300 K. Below 20 K, ρ(T) also shows an activated character. The magnetic susceptibility of Fe(2)VAl and Fe(2)V(0.9)Ti(0.1)Al shows a maximum at ∼2 K which could reflect either the disorder effect or the hybridization gap, characteristic of Kondo insulators. PMID:21690920

  4. Calculations of structural, elastic, electronic, magnetic and phonon properties of FeNiMnAl by the first principles

    SciTech Connect

    Uğur, Şule; İyigör, Ahmet

    2014-10-06

    The electronic, elastic and dynamical properties of the quaternary alloy FeNiMnAl have been investigated using a pseudopotential plane wave method within the generalized gradient approximation (GGA). We determined the lattice parameters and the bulk modulus B. In addition, the elastic properties such as elastic constans (C{sub 11}, C{sub 12} and C{sub 44}), the shear modulus G, the young modulus E, the poisson's ratio σ and the B/G ratio are also given. The FeNiMnAl Heusler alloy exhibit a ferromagnetic half-metallic behavior with the total magnetic moment of 4.02 μ{sub B}. The phonon dispersion of FeNiMnAl has been performed using the density functional theory and the direct method with 2×2×2 supercell.

  5. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations

    SciTech Connect

    Guan Jiwen; Hu Yongjun; Zou Hao; Cao Lanlan; Liu Fuyi; Shan Xiaobin; Sheng Liusi

    2012-09-28

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH{sub 3}COOH){sub n}{center_dot}H{sup +}, the feature related to the fragment ions (CH{sub 3}COOH)H{sup +}{center_dot}COO (105 amu) via {beta}-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH{sub 3}COOH){center_dot}H{sup +} and (CH{sub 3}COOH)H{sup +}{center_dot}COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH{sub 3}COOH)H{sup +}{center_dot}COO. After surmounting the methyl hydrogen-transfer barrier 10.84 {+-} 0.05 eV, the opening of dissociative channel to produce ions (CH{sub 3}COOH){sup +} becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH{sub 3}COOH){center_dot}CH{sub 3}CO{sup +}. Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.

  6. The n-particle picture and the calculation of the electronic structure of atoms, molecules, and solids

    SciTech Connect

    Gonis, A.; Turchi, P.E.A.; Schulthess, T.C.; Ek, J. van

    1997-08-01

    The works referred to above indicate the usefulness of viewing an N-particle system from a higher-dimensional perspective. In doing so, one should attempt to strike a balance between conceptual clarity and computational efficiency, which mitigates against considering calculations in 3n-dimensional space except for rather small values of n. It appears that such a procedure may be profitably employed if a system of N particles were to be considered as consisting of a collection of units or sets, (I{sub k}), each containing n{sub k} particles so that {Sigma}{sub k} n{sub k} = N. The resulting problem associated with these sets of particles that interact with one another is obviously formally identical to the original one. However, it possesses the formal advantage of allowing, in principle, the systematic approach to an exact solution by treating the entire system as a single unit. The operative words here are in principle, as practical applications do not seem to be possible but for the smallest number of particles in a unit, say n = 2 or n = 3. However, in such an implementation, the interparticle correlation is treated directly and explicitly within a unit, resulting in a more accurate treatment of the system the larger the number of particle in a unit.

  7. Low-lying electronic structure of EuH, EuOH, and EuO neutrals and anions determined by anion photoelectron spectroscopy and DFT calculations

    SciTech Connect

    Kafader, Jared O.; Ray, Manisha; Jarrold, Caroline Chick

    2015-07-21

    The anion photoelectron (PE) spectra of EuH{sup −} and the PE spectrum of overlapping EuOH{sup −} and EuO{sup −} anions are presented and analyzed with supporting results from density functional theory calculations on the various anions and neutrals. Results point to ionically bound, high-spin species. EuH and EuOH anions and neutrals exhibit analogous electronic structures: Transitions from {sup 8}Σ{sup −} anion ground states arising from the 4f{sup 7}σ{sub 6s}{sup 2} superconfiguration to the close-lying neutral {sup 9}Σ{sup −} and {sup 7}Σ{sup −} states arising from the 4f{sup 7}σ{sub 6s} superconfiguration are observed spaced by an energy interval similar to the free Eu{sup +} [4f{sup 7}6s] {sup 9}S - {sup 7}S splitting. The electron affinities (EAs) of EuH and EuOH are determined to be 0.771 ± 0.009 eV and 0.700 ± 0.011 eV, respectively. Analysis of spectroscopic features attributed to EuO{sup −} photodetachment is complicated by the likely presence of two energetically competitive electronic states of EuO{sup −} populating the ion beam. However, based on the calculated relative energies of the close-lying anion states arising from the 4f{sup 7}σ{sub 6s} and 4f{sup 6}σ{sub 6s}{sup 2} configurations and the relative energies of the one-electron accessible 4f{sup 7} and 4f{sup 6}σ{sub 6s} neutral states based on ligand-field theory [M. Dulick, E. Murad, and R. F. Barrow, J. Chem. Phys. 85, 385 (1986)], the remaining features are consistent with the 4f{sup 6}σ{sub 6s}{sup 2}  {sup 7}Σ{sup −} and 4f{sup 7}σ{sub 6s}{sup 7}Σ{sup −} anion states lying very close in energy (the former was calculated to be 0.15 eV lower in energy than the latter), though the true anion ground state and neutral EA could not be established unambiguously. Calculations on the various EuO anion and neutral states suggest 4f-orbital overlap with 2p orbitals in species with 4f{sup 6} occupancy.

  8. First-principles calculations of surface energy and electronic structure of LiF, NaCl and MgO (100) surfaces

    SciTech Connect

    Guo, J.

    1993-06-01

    Surface energy and electronic structure of LiF, NaCl and MgO (100) surfaces were calculated using the self-consistent-field Discrete Variational (DV) embedded cluster method in the local density approximation (LDA). Clusters of 100--164 atoms embedded in the semi-infinite host lattices were used to achieve the desired convergence. The (100) surface energies of 0.75J/m{sup 2}, 0.47J/m{sup 2} and 1.53J/m{sup 2} calculated for LiF, NaCl, and MgO, respectively, were compared with experimental data and other theoretical values. The surface atoms of LiF and NaCl were found to maintain their bulk ionic characters. The effective charges of MgO surface atoms were found to differ from the bulk atoms. The surface charge density contours were plotted and their corrugation amplitudes were compared with the He-atom diffraction results. The surface partial density of states were compared with optical, photoemission, and electron energy loss spectroscopic results.

  9. The impact of +U term on the electronic structure of Mn and Fe ions and of the gallium vacancy in GaN: GGA+U calculations

    NASA Astrophysics Data System (ADS)

    Boguslawski, Piotr; Volnianska, Oksana; Zakrzewski, Tomasz

    2014-03-01

    Band structure of solids is commonly calculated in the Local Density Approximation or the Generalized Gradient Approximation to the Density Functional Theory. Their known failure is the underestimation of the band gap. Within LDA or GGA, the approach of semi-empirical character that leads to correct band gaps consists in adding the +U term for particular atomic orbitals. While the impact of the +U term on bands of an ideal crystal was extensively discussed, its impact on the electronic structure of defects is less understood. Here, we systematically analysed how the +U term affects the properties of the gallium vacancy V:Ga, and of the Mn and Fe transition metal (TM) ions in GaN. The +U term was treated as a free parameter, and it was applied to p(N) and d(TM) orbitals. The results of GGA+U calculations were compared to available experimental data. U(N)=4 eV reproduces well the gap of GaN. We find that the +U terms strongly affect the electronic structure of Mn, Fe, and V:Ga. Surprisingly, however, for U=0, the energies of the gap levels induced by these centers, and of the intra-center optical transitions, agree well with experiment. In contrast, for U(N)=U(TM)=4 eV, these energies are in substantial disagreement with experimental values by about 1-2 eV. Supported by grants POMOST/2012-5/10 and NCN 2012/05/B/ST3/03095.

  10. Specific features of the electronic structure and optical properties of KPb2Br5: DFT calculations and X-ray spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Denysyuk, N. M.; Shkumat, P. N.; Tarasova, A. Y.; Isaenko, L. I.; Khyzhun, O. Y.

    2016-03-01

    Density functional theory (DFT) calculations are made in order to explore the total and partial densities of states of potassium dilead pentabromide, KPb2Br5, by using the augmented plane wave + local orbitals (APW + lo) method as incorporated in the WIEN2k package. The present calculations reveal that the principle contributors to the valence band of KPb2Br5 are the Pb 6s and Br 4p states contributing predominantly at the bottom and at the top of the band, respectively, while the bottom of the conduction band is formed mainly from contributions of the unoccupied Pb 6p states. The curves of total density of states derived by the present DFT calculations of KPb2Br5 are found to be in agreement with the experimental X-ray photoelectron valence-band spectrum of the compound studied. Comparison on a common energy scale of the X-ray emission bands representing the energy distribution of the valence Br p and K s states and the X-ray photoelectron valence-band spectrum of the KPb2Br5 single crystal indicate that the Br 4p and K 4s states contribute mainly at the top and in the upper portion of the valence band, respectively, being in agreement with data of the present DFT band-structure calculations of this compound. Principal optical characteristics of KPb2Br5, namely dispersion of the absorption coefficient, real and imaginary parts of dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient and optical reflectivity are also studied by the DFT calculations.

  11. Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere.

    PubMed

    Da Pieve, Fabiana; Stankowski, Martin; Hogan, Conor

    2014-09-15

    Mercury is a hazardous environmental pollutant mobilized from natural sources, and anthropogenically contaminated and disturbed areas. Current methods to assess mobility and environmental impact are mainly based on field measurements, soil monitoring, and kinetic modelling. In order to understand in detail the extent to which different mineral sources can give rise to mercury release it is necessary to investigate the complexity at the microscopic level and the possible degradation/dissolution processes. In this work, we investigated the potential for mobilization of mercury structurally trapped in three relevant minerals occurring in hot spring environments and mining areas, namely, cinnabar (α-HgS), corderoite (α-Hg3S2Cl2), and mercuric chloride (HgCl2). Quantum chemical methods based on density functional theory as well as more sophisticated approaches are used to assess the possibility of a) direct photoreduction and formation of elemental Hg at the surface of the minerals, providing a path for ready release in the environment; and b) reductive dissolution of the minerals in the presence of solutions containing halogens. Furthermore, we study the use of TiO2 as a potential photocatalyst for decontamination of polluted waters (mainly Hg(2+)-containing species) and air (atmospheric Hg(0)). Our results partially explain the observed pathways of Hg mobilization from relevant minerals and the microscopic mechanisms behind photocatalytic removal of Hg-based pollutants. Possible sources of disagreement with observations are discussed and further improvements to our approach are suggested. PMID:24982025

  12. Studies of the electronic structure and biological activity of chosen 1,4-benzodiazepines by 35Cl NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bronisz, K.; Ostafin, M.; Poleshchuk, O. Kh.; Mielcarek, J.; Nogaj, B.

    2006-11-01

    Selected derivatives of 1,4-benzodiazepine: lorazepam, lormetazepam, oxazepam and temazepam, used as active substances in anxiolytic drugs, have been studied by 35Cl NQR method in order to find the correlation between electronic structure and biological activity. The 35Cl NQR resonance frequencies ( νQ) measured at 77 K have been correlated with the following parameters characterising their biological activity: biological half-life period ( t0.5), affinity to benzodiazepine receptor (IC 50) and mean dose equivalent. The results of experimental study of some benzodiazepine derivatives by nuclear quadrupole resonance of 35Cl nuclei are compared with theoretical results based on DFT calculations which were carried out by means of Gaussian'98 W software.

  13. The structure of formate species on Pd(1 1 1) calculated by density functional theory and determined using low energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Zheng, T.; Stacchiola, D.; Saldin, D. K.; James, J.; Sholl, D. S.; Tysoe, W. T.

    2005-01-01

    The structure of formate species adsorbed on Pd(1 1 1) has been determined using low-energy electron diffraction (LEED). The presence of formate species on the Pd(1 1 1) surface was established using reflection-absorption infrared spectroscopy (RAIRS). The oxygen atoms of the formate species were found to be adsorbed over surface palladium atoms with the OCO plane perpendicular to the surface. The CO bond length was found to be 1.26 ± 0.05 Å, the palladium-oxygen distance was 2.16 ± 0.06 Å, and the OCO angle 130 ± 5°. The experimentally determined values were in excellent agreement with those calculated using density functional theory (DFT).

  14. Energies of the X- and L-valleys in In0.53Ga0.47As from electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Greene-Diniz, Gabriel; Fischetti, M. V.; Greer, J. C.

    2016-02-01

    Several theoretical electronic structure methods are applied to study the relative energies of the minima of the X- and L-conduction-band satellite valleys of InxGa1-xAs with x = 0.53. This III-V semiconductor is a contender as a replacement for silicon in high-performance n-type metal-oxide-semiconductor transistors. The energy of the low-lying valleys relative to the conduction-band edge governs the population of channel carriers as the transistor is brought into inversion, hence determining current drive and switching properties at gate voltages above threshold. The calculations indicate that the position of the L- and X-valley minima are ˜1 eV and ˜1.2 eV, respectively, higher in energy with respect to the conduction-band minimum at the Γ-point.

  15. Structural and electronic properties of Sr{sub x}Ba{sub 1-x}SnO{sub 3} from first principles calculations

    SciTech Connect

    Moreira, E.; Henriques, J.M.; Azevedo, D.L.; Caetano, E.W.S.; Freire, V.N.; Albuquerque, E.L.

    2012-03-15

    Neutron diffraction data for Sr{sub x}Ba{sub 1-x}SnO{sub 3} (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) solid solutions were used as inputs to obtain optimized geometries and electronic properties using the density functional theory (DFT) formalism considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The crystal structures and SnO{sub 6} octahedra tilting angles found after total energy minimization agree well with experiment, specially for the GGA data. Elastic constants were also obtained and compared with theoretical and experimental results for cubic BaSnO{sub 3}. While the alloys with cubic unit cell have an indirect band gap, tetragonal and orthorhombic alloys exhibit direct band gaps (exception made to x=1.0). The Kohn-Sham minimum electronic band gap oscillates from 1.52 eV (cubic x=0.0, LDA) to 2.61 eV (orthorhombic x=1.0, LDA), and from 0.74 eV (cubic BaSnO{sub 3}, GGA) to 1.97 eV (orthorhombic SrSnO{sub 3}, GGA). Parabolic interpolation of bands has allowed us to estimate the effective masses for charge carriers, which are shown to be anisotropic and larger for holes. - Graphical Abstract: Highlights: Black-Right-Pointing-Pointer DFT calculations were performed on Sr{sub x}Ba{sub 1-x}SnO{sub 3} solid solutions. Black-Right-Pointing-Pointer Calculated crystal structures agree well with experiment. Black-Right-Pointing-Pointer Alloys have direct or indirect gaps depending on the Sr molar fraction. Black-Right-Pointing-Pointer The Kohn-Sham gap variation from x=0.0 to x=1.0 is close to the experimental value. Black-Right-Pointing-Pointer Carrier effective masses are very anisotropic, specially for holes.

  16. Electron Correlation in 4-Component Relativistic Calculations

    NASA Technical Reports Server (NTRS)

    Visscher, Luuk; Arnold, James O. (Technical Monitor)

    1994-01-01

    The full 4-component Dirac-Coulomb equation can nowadays be used in molecular calculations, The first step in solving this relativistic many-electron equation usually consists of solving the closed or open-shell Diarc-Fock equations. Like in non-relativistic calculations the outcome does not account for the effects of electron correlation. This can in principle be remedied by developing relativistic variants of electron correlation methods like Configuration Interaction or Coupled Cluster. In this talk the differences and similarities of such relativistic approaches as compared to non-relativistic methods will be reviewed. Results of Configuration Interaction calculations on the PtH molecule and on the MeF(sub 6, sup 2-) (Me= Co, Rh, Ir) complexes will be presented to give an impression of the kind of results that currently can be obtained.

  17. Approximate Bruechner orbitals in electron propagator calculations

    SciTech Connect

    Ortiz, J.V.

    1999-12-01

    Orbitals and ground-state correlation amplitudes from the so-called Brueckner doubles approximation of coupled-cluster theory provide a useful reference state for electron propagator calculations. An operator manifold with hold, particle, two-hole-one-particle and two-particle-one-hole components is chosen. The resulting approximation, third-order algebraic diagrammatic construction [2ph-TDA, ADC (3)] and 3+ methods. The enhanced versatility of this approximation is demonstrated through calculations on valence ionization energies, core ionization energies, electron detachment energies of anions, and on a molecule with partial biradical character, ozone.

  18. Photoinduced reactions of both 2-formyl-2H-azirine and isoxazole: A theoretical study based on electronic structure calculations and nonadiabatic dynamics simulations.

    PubMed

    Cao, Jun

    2015-06-28

    In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π(*) transition induces a cleavage of the C-N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π(*) excitation of the imine chromophore results in a cleavage of the C-C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N-O bond cleavages on both S1((1)ππ(*)) and S2((1)nNπ(*)) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles. PMID:26133423

  19. Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn,Fe,Co) from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2011-01-01

    The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni2MnGa have been calculated. The formation energies of the cubic phase of Ni2XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni2MnGa to Ni2CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below EF. There are two bond types existing in Ni2XGa: one is between neighboring Ni atoms in Ni2MnGa; the other is between Ni and X atoms in Ni2FeGa and Ni2CoGa alloys.

  20. Photoinduced reactions of both 2-formyl-2H-azirine and isoxazole: A theoretical study based on electronic structure calculations and nonadiabatic dynamics simulations

    SciTech Connect

    Cao, Jun

    2015-06-28

    In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π{sup *} transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π{sup *} excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S{sub 1}({sup 1}ππ{sup *}) and S{sub 2}({sup 1}n{sub N}π{sup *}) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.

  1. First-principles calculations of structural stability, electronic, and electrical responses of GeC nanotube under electric field effect for use in nanoelectronic devices

    NASA Astrophysics Data System (ADS)

    Baei, Mohammad T.; Peyghan, Ali Ahmadi; Moghimi, Masoumeh; Hashemian, Saeedeh

    2012-12-01

    Density functional theory (DFT) calculations at the B3LYP/6-31G∗ level were performed to investigate the effect of external electric field on the H-capped (6, 0) zigzag single-walled germanium carbide nanotube (GeCNT). With increase in the applied external electric field strengths, the energy gap, dipole moment, and total energy of the (6, 0) zigzag CNT is increased. The length, tip diameters, and electronic spatial extent of the nanotube do not significantly change with increasing electric field strength. Analysis of the structural parameters indicates that the resistance of nanotube against the applied parallel electric field is less than the resistance of nanotube against the applied transverse electric field. The large variations of energy gap, quantum molecular descriptors, dipole moment, molecular orbital energy, and total energy of the (6, 0) zigzag germanium carbide nanotube with increase of the transverse electric field strengths shows that the transverse electric field has a much stronger interaction with the nanotube with respect to the parallel electric field strengths. Analysis of the parameters indicates that the properties of GeCNTs can be controlled by the proper external electric field for use in nano-electronic circuits.

  2. Structural, mechanical, thermo-physical and electronic properties of η‧-(CuNi)6Sn5 intermetallic compounds: First-principle calculations

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Huang, Jihua; Fan, Dongyu; Chen, Shuhai; Zhao, Xingke

    2016-05-01

    First-principle calculations have been performed to investigate the structural, mechanical, thermo-physical and electronic properties of η‧-(CuNi)6Sn5 intermetallic compounds. The results indicated that, the doped Ni atom can not only enhance the stability of the η‧-Cu6Sn5, but also improve the mechanical and thermo-physical properties, which are more dependent on the Ni atom doping number than the doping position. In all the η‧-(CuNi)6Sn5, Cu3Ni3Sn5 (Cu1+Cu3 site) shows the best stability, the most excellent deformation resistance and the highest hardness. The Cu6Sn5, Cu3Ni3Sn5, Cu4Ni2Sn5, Cu1Ni5Sn5 and Ni6Sn5 are ductile while the Cu5Ni1Sn5 and Cu4Ni2Sn5 are brittle. The anisotropies of η‧-(CuNi)6Sn5 are all mainly due to the uneven distribution of Young's modulus at (001) planes, moreover, the anisotropy of Cu1Ni5Sn5 (Cu1+Cu2+Cu4 site) is the strongest while that of Ni6Sn5 is the weakest. The calculated Debye temperature and heat capacity showed that Cu4Ni2Sn5 (Cu2 site) possesses the best thermal conductivity (ΘD = 356.9 K) and Cu2Ni4Sn5 (Cu1+Cu2 site) possesses the largest heat capacity. From the electronic property analysis results, the Ni s and Ni p states can replace the Cu s and Cu p states to hybridize with Sn s states at -7.98 eV. Moreover, with the increasing number of the doped Ni atom, the hybridization between Cu d states at different positions is receded, while that between Ni d states is enhanced gradually.

  3. Sulfur K-Edge XAS and DFT Calculations on NitrileHydratase: Geometric and Electronic Structure of the Non-heme Iron Active Site

    SciTech Connect

    Dey, Abhishek; Chow, Marina; Taniguchi, Kayoko; Lugo-Mas, Priscilla; Davin, Steven; Maeda, Mizuo; Kovacs, Julie A.; Odaka, Masafumi; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC, SSRL

    2006-09-28

    The geometric and electronic structure of the active site of the non-heme iron enzyme nitrile hydratase (NHase) is studied using sulfur K-edge XAS and DFT calculations. Using thiolate (RS{sup -})-, sulfenate (RSO{sup -})-, and sulfinate (RSO{sub 2}{sup -})-ligated model complexes to provide benchmark spectral parameters, the results show that the S K-edge XAS is sensitive to the oxidation state of S-containing ligands and that the spectrum of the RSO- species changes upon protonation as the S-O bond is elongated (by {approx}0.1 {angstrom}). These signature features are used to identify the three cysteine residues coordinated to the low-spin Fe{sup III} in the active site of NHase as CysS{sup -}, CysSOH, and CysSO{sub 2}{sup -} both in the NO-bound inactive form and in the photolyzed active form. These results are correlated to geometry-optimized DFT calculations. The pre-edge region of the X-ray absorption spectrum is sensitive to the Z{sub eff} of the Fe and reveals that the Fe in [FeNO]{sup 6} NHase species has a Z{sub eff} very similar to that of its photolyzed Fe{sup III} counterpart. DFT calculations reveal that this results from the strong {pi} back-bonding into the {pi}* antibonding orbital of NO, which shifts significant charge from the formally t{sub 2}{sup 6} low-spin metal to the coordinated NO.

  4. Energetics of the all-trans{yields}13-cis isomerization of the retinal chromophore of bacteriorhodopsin: Electronic structure calculations for a simple model system

    SciTech Connect

    Woywod, Clemens; Vallet, Valerie; Li, Jingrui; Goerling, Andreas

    2008-12-08

    Understanding the molecular mechanism for the photoinduced transmembrane proton pump in the bacteriorhodopsin system is of fundamental importance. This study attempts to investigate the energetics of the initial step of the proton transport cycle, the photoisomerization of the retinal chromophore. The exact reaction pathway and the question of how many excited electronic states are involved in the internal conversion process are still unresolved. The problem is approached by constructing a reaction coordinate suggested by crystallographic studies for a simplified chromophore model system. The CASSCF and CASPT2 electronic structure methods are employed to calculate the energies of the four lowest lying singlet states as a function of the reaction coordinate. The effect of negatively charged protein residues on the reaction is simulated by inclusion of a negative point charge in the model. The results indicate that trans{yields}cis isomerization around the C{sub {beta}} = C{sub {gamma}} bond may be accompanied by twisting around the C{sub {alpha}}-C{sub {beta}} bond in order to drive the proton pump. The presence of a counterion does not seem to reduce the barrier for isomerization or the S{sub 0}-S{sub 1} energy difference but clearly stabilizes the cis--product. At first sight the results appear to support the idea of a participation of no other electronic states beyond S{sub 0} and first singly {pi}{pi}* excited state in the photoreaction. However, the relevance of this prediction is rather limited because of the small size of the model system. Other states of retinal, corresponding in particular to the partly doubly {pi}{pi}* excited S{sub 2} state of the model, are likely to have a vertical excitation energy similar to the first singly {pi}{pi}* excited state or even below.

  5. ROI Calculations for Electronic Performance Support Systems.

    ERIC Educational Resources Information Center

    Altalib, Hasan

    2002-01-01

    Discusses the importance of calculating the return on investment (ROI) for electronic performance support systems, beginning with the practical issues of identifying what will be measured and then assigning costs and benefits to each variable in monetary terms. Suggests the challenge is in defining and quantifying the real business benefits.…

  6. Program Calculates Power Demands Of Electronic Designs

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    1995-01-01

    CURRENT computer program calculates power requirements of electronic designs. For given design, CURRENT reads in applicable parts-list file and file containing current required for each part. Program also calculates power required for circuit at supply potentials of 5.5, 5.0, and 4.5 volts. Written by use of AWK utility for Sun4-series computers running SunOS 4.x and IBM PC-series and compatible computers running MS-DOS. Sun version of program (NPO-19590). PC version of program (NPO-19111).

  7. HfO_2and ZrO2 : Comparison of Structures and Thermodynamic and Electronic Properties Based on Ab Initio Calculations and Experiment

    NASA Astrophysics Data System (ADS)

    Demkov, Alexander A.; Navrotsky, Alexandra

    2001-03-01

    The International Technology Roadmap for Semiconductors (ITRS) predicts that the strategy of scaling complementary metal-oxide-semiconductor (CMOS) devices will come to an abrupt end around the year 2012. The main reason for this will be the unacceptably high leakage current through the silicon dioxide gate with a thickness below 20 ÅFinding a gate insulator alternative to SiO2 has proven to be far from trivial. Hafnium and zirconium dioxides and silicates have been recently considered as gate dielectrics with intermediate dielectric constants. Hafnia and ziconia are important ceramic materials as well, and their phase relations are rather well studied. There is also interest in hafnia as a constituent of ceramic waste forms for plutonium, based on its refractory nature and high neutron absorption cross section. We use a combination of the ab-initio calculations and calorimetry to investigate thermodynamic and electronic properties of hafnia and zirconia. We describe the cubic to tetragonal phase transition in the fluorite structure by computing the total energy surface for zone-edge distortions correct to fourth order in the soft-mode displacement with the strain coupling renormalization included. We compare the two materials using some simple chemical concepts.

  8. Structure, electronic and magnetic properties of hexagonal boron nitride sheets doped by 5d transition metal atoms: First-principles calculations and molecular orbital analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaofu; Geng, Zhaohui; Cai, Danyun; Pan, Tongxi; Chen, Yixin; Dong, Liyuan; Zhou, Tiege

    2015-01-01

    A first-principles calculation based on density functional theory is carried out to reveal the geometry, electronic structures and magnetic properties of hexagonal boron nitride sheets (h-BNSs) doped by 5d transitional mental atoms (Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au and Hg) at boron-site (B5d) and nitrogen-site (N5d). Results of pure h-BNS, h-BNS with B vacancy (VB) and N vacancy (VN) are also given for comparison. It is shown that all the h-BNSs doped with 5d atoms possess a C3v local symmetry except for NLu and NHg which have a clear deviation. For the same 5d dopant, the binding energy of B5d is larger than that of N5d, which indicates the substitution of a 5d atom for B is preferred. The total densities of states are presented, where impurity energy levels exist. Besides, the total magnetic moments (TMMs) change regularly with the increment of the 5d atomic number. Theoretical analyses by molecular orbital under C3v symmetry explain the impurity energy levels and TMMs.

  9. A Mathematica package for calculation of planar channeling radiation spectra of relativistic electrons channeled in a diamond-structure single crystal (quantum approach)

    NASA Astrophysics Data System (ADS)

    Azadegan, B.

    2013-03-01

    The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion

  10. New implementation of high-level correlated methods using a general block tensor library for high-performance electronic structure calculations.

    PubMed

    Epifanovsky, Evgeny; Wormit, Michael; Kuś, Tomasz; Landau, Arie; Zuev, Dmitry; Khistyaev, Kirill; Manohar, Prashant; Kaliman, Ilya; Dreuw, Andreas; Krylov, Anna I

    2013-10-01

    This article presents an open-source object-oriented C++ library of classes and routines to perform tensor algebra.The primary purpose of the library is to enable post-Hartree–Fock electronic structure methods; however, the code is general enough to be applicable in other areas of physical and computational sciences. The library supports tensors of arbitrary order (dimensionality), size, and symmetry. Implemented data structures and algorithms operate on large tensors by splitting them into smaller blocks, storing them both in core memory and in files on disk, and applying divide-and-conquer-type parallel algorithms to perform tensor algebra. The library offers a set of general tensor symmetry algorithms and a full implementation of tensor symmetries typically found in electronic structure theory: permutational, spin, and molecular point group symmetry. The Q-Chem electronic structure software uses this library to drive coupled-cluster, equation-of-motion, and algebraic-diagrammatic construction methods. PMID:24159628

  11. Investigation on the electronic structures and optical performances of Si-S codoped anatase TiO2 by first-principles calculation

    NASA Astrophysics Data System (ADS)

    Zhou, S. W.; Peng, P.; Liu, J.; Tang, Y. H.; Meng, B.; Peng, Y. X.

    2016-04-01

    The electronic and optical properties of Si and/or S (co)doped anatase TiO2 are investigated by density function theory plus U calculations. Results show that the synergistic effects of Si and S codoping result in higher visible-light absorption compared with pure and Si or S monodoped TiO2. Moreover, with increasing S doping concentration, the band gap of Si/S-codoping system becomes narrower, and simultaneously the band edge positions may be suitable for water splitting. Additionally, the defect formation energy calculations indicate that Si doping can enhance the thermal stability of TiO2 under O-rich condition.

  12. Electronic structure and thermoelectric properties of (Mg2X)2 / (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices from first-principle calculations

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2016-05-01

    To identify thermoelectric materials containing abundant, low-cost and non-toxic elements, we have studied the electronic structures and thermoelectric properties of (Mg2X)2/ (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices with state-of-the-art first-principles calculations using a modified Becke and Johnson (mBJ) exchange potential. Our results show that (Mg2Ge)2/ (Mg2Sn)2 and (Mg2Si)2/ (Mg2Sn)2 are semi-metals using mBJ plus spin-orbit coupling (mBJ + SOC), while (Mg2Si)2/ (Mg2Ge)2 is predicted to be a direct-gap semiconductor with a mBJ gap value of 0.46 eV and mBJ + SOC gap value of 0.44 eV. Thermoelectric properties are predicted by through solving the Boltzmann transport equations within the constant scattering time approximation. It is found that (Mg2Si)2/ (Mg2Ge)2 has a larger Seebeck coefficient and power factor than (Mg2Ge)2/ (Mg2Sn)2 and (Mg2Si)2/ (Mg2Sn)2 for both p-type and n-type doping. The detrimental influence of SOC on the power factor of p-type (Mg2X)2/ (Mg2Y)2 (X, Y = Si, Ge, Sn) is analyzed as a function of the carrier concentration, but there is a negligible SOC effect for n-type. These results can be explained by the influence of SOC on their valence and conduction bands near the Fermi level.

  13. How sugars pucker: electronic structure calculations map the kinetic landscape of five biologically paramount monosaccharides and their implications for enzymatic catalysis.

    PubMed

    Mayes, Heather B; Broadbelt, Linda J; Beckham, Gregg T

    2014-01-22

    Glycoside hydrolases (GHs) distort carbohydrate ring geometry along particular "catalytic itineraries" during the cleavage of glycosidic bonds, illustrating the relationship between substrate conformation and reactivity. Previous theoretical studies of thermodynamics of isolated monosaccharides offer insights into the catalytic itineraries of particular sugars. However, kinetic accessibility of carbohydrate puckering conformations and the role of exocyclic groups have not yet been thoroughly addressed. Here we present the first complete library of low-energy local minima and puckering interconversion transition states for five biologically relevant pyranose sugars: β-xylose, β-mannose, α-glucose, β-glucose, and β-N-acetylglucosamine. These were obtained by a thorough theoretical investigation each of the 38 IUPAC designated puckering geometries and all possible conformations of the exocyclic groups. These calculations demonstrate that exocyclic groups must be explicitly considered when examining these interconversion pathways. Furthermore, these data enable evaluation of previous hypotheses of why enzymes perturb ring geometries from the low-energy equatorial chair ((4)C1) conformation. They show that the relative thermodynamics alone do not universally correlate with GH catalytic itineraries. For some sugars, particular puckers offer both catalytically favorable electronic structure properties, such as anomeric carbon partial charge, and low kinetic barriers to achieve a given puckering conformation. However, different factors correlate with catalytic itineraries for other sugars; for β-N-acetylglucosamine, the key N-acetyl arm confounds the puckering landscape and appears to be the crucial factor. Overall, this study reveals a more comprehensive understanding of why particular puckering geometries are favored in carbohydrate catalysis concomitant with the complexity of glycobiology. PMID:24368073

  14. Numerical performance and throughput benchmark for electronic structure calculations in PC-Linux systems with new architectures, updated compilers, and libraries.

    PubMed

    Yu, Jen-Shiang K; Hwang, Jenn-Kang; Tang, Chuan Yi; Yu, Chin-Hui

    2004-01-01

    A number of recently released numerical libraries including Automatically Tuned Linear Algebra Subroutines (ATLAS) library, Intel Math Kernel Library (MKL), GOTO numerical library, and AMD Core Math Library (ACML) for AMD Opteron processors, are linked against the executables of the Gaussian 98 electronic structure calculation package, which is compiled by updated versions of Fortran compilers such as Intel Fortran compiler (ifc/efc) 7.1 and PGI Fortran compiler (pgf77/pgf90) 5.0. The ifc 7.1 delivers about 3% of improvement on 32-bit machines compared to the former version 6.0. Performance improved from pgf77 3.3 to 5.0 is also around 3% when utilizing the original unmodified optimization options of the compiler enclosed in the software. Nevertheless, if extensive compiler tuning options are used, the speed can be further accelerated to about 25%. The performances of these fully optimized numerical libraries are similar. The double-precision floating-point (FP) instruction sets (SSE2) are also functional on AMD Opteron processors operated in 32-bit compilation, and Intel Fortran compiler has performed better optimization. Hardware-level tuning is able to improve memory bandwidth by adjusting the DRAM timing, and the efficiency in the CL2 mode is further accelerated by 2.6% compared to that of the CL2.5 mode. The FP throughput is measured by simultaneous execution of two identical copies of each of the test jobs. Resultant performance impact suggests that IA64 and AMD64 architectures are able to fulfill significantly higher throughput than the IA32, which is consistent with the SpecFPrate2000 benchmarks. PMID:15032545

  15. First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher D.; Wasileski, Sally A.; Filhol, Jean-Sebastien; Neurock, Matthew

    2006-04-01

    A method for calculating and subsequently tuning the electrochemical potential of a half cell using periodic plane-wave density functional theory and a homogenous counter-charge is presented and evaluated by comparison to simulations which explicitly model the countercharge by a plane of ions. The method involves the establishment of two reference potentials, one related to the potential of the free electron in vacuo, and the other related to the potential of H2O species far from the electrode. The surface potential can be specifically adjusted by the explicit introduction of excess or deficit surface charges in the simulation cell and the application of periodic boundary conditions. We demonstrate the absence of field emission from the electrode over the range of realistic electrochemical potentials covered and confirm that the method can explicitly determine reaction energies and adsorption geometries as a function of electrochemical potential. This latter point is most useful as it asserts the viability of this method to model electrochemical and electrocatalytical systems of academic as well as applied interest. We present two case studies. The first examines the changes in the structure of water at the metal interface as a function of potential over Cu(111) . At cathodic potential, we observe the repulsion of H2O from the interface and the rotation of the water dipole toward the interface. The second study follows the initial pathways for the electrocatalytical activation of methanol over Pt(111) and the corresponding potential dependent reaction energetics for these paths. The results demonstrate that changes in the electrochemical potential can significantly alter the reaction energetics as well as the overall reaction selectivity. While the case studies presented herein described equilibrium geometries (i.e., the ideal forms at zero kelvin), the method is also suitable for application to ensembles of thermally activated systems.

  16. Molecular structure and conformations of 1,2-dimethoxycyclobutene-3,4-dione. An electron-diffraction investigation augmented by quantum mechanical and normal coordinate calculations.

    PubMed

    Costello, Luke L; Hedberg, Lise; Hedberg, Kenneth

    2015-03-01

    The structure and conformations of 1,2-dimethoxycyclobutene-3,4-dione in the vapor at a temperature of 185 °C have been measured by gas-phase electron diffraction. The molecule exists in two forms, one of symmetry C2v with the methyl groups trans to the double bond, and one of Cs symmetry with a methyl group cis and the other trans to this bond (these forms hereafter designated as trans and cis). The molar ratio trans/cis is 68/32 with a 2σ uncertainty of about 24. Many of the parameter values for the two forms are very nearly alike and could not be measured experimentally. With the adoption of parameter differences calculated at the B3LYP/cc-pVTZ level, the following bond distances (r(g)/Å) and bond angles (∠/deg) with estimated 2σ uncertainties were obtained for trans/cis: C1═C2 = 1.381(9)/1.381, C1-C4 = 1.493(11)/1.495, C3-C4 = 1.543(20)/1.545, C═O = 1.203(4)/⟨1.200⟩, C1-O = 1.316(6)/⟨1.320⟩, O-CH3 = 1.444(9)/⟨1.443⟩, C═C-C3 = 93.1(5)/⟨93.1⟩, C3-C4═O = 136.7(29)/⟨136.9⟩, C═C-O = 131.0(23)/137.5, and 131.8, C-O-C = 117.2(12)/118.2 and 116.9; the individual angle values for the cis form listed as averages differ very little. The bond distances and bond angles are in excellent qualitative agreement with prediction based on conventional ideas about the effects of conjugation and hybridization, and their relative values agree very well with predictions from quantum mechanical calculations. PMID:25158151

  17. Correlation of electronic structure and magnetic moment in Ga1-xMnxN : First-principles, mean field and high temperature series expansions calculations

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Hlil, E. K.

    2016-08-01

    Self-consistent ab initio calculations based on density-functional theory and using both full potential linearized augmented plane wave and Korring-Kohn-Rostoker-coherent potential approximation methods, are performed to investigate both electronic and magnetic properties of the Ga1-xMnxN system. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters such as the magnetic phase diagram and the critical exponent. The increasing of the dilution x in this system has allowed to verify a series of HTSEs predictions on the possibility of ferromagnetism in dilute magnetic insulators and to demonstrate that the interaction changes from antiferromagnetic to ferromagnetic passing through the spins glace phase.

  18. FT-IR, FT-Raman and UV spectral investigation; computed frequency estimation analysis and electronic structure calculations on 4-hydroxypteridine

    NASA Astrophysics Data System (ADS)

    Govindarajan, M.; Karabacak, M.

    2013-04-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 100-4000 cm-1 and 400-4000 cm-1 respectively, for 4-hydroxypteridine (C6H4N4O, 4HDPETN) molecule. The potential energy curve shows that 4HDPETN molecule has two stable structures. The computational results diagnose the most stable conformer of the 4HDPETN as the S1 structure. The molecular structure, fundamental vibrational frequencies and intensities of the vibrational bands were interpreted with the aid of structure optimizations and normal coordinate force field calculations based density functional theory (DFT) and ab initio HF methods and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other method. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) complements with the experimental findings. In addition, molecular electrostatic potential, nonlinear optical and thermodynamic properties of the title compound were performed. Mulliken and natural charges of the title molecule were also calculated and interpreted.

  19. Vibrational spectroscopic studies, NLO, HOMO-LUMO and electronic structure calculations of α,α,α-trichlorotoluene using HF and DFT

    NASA Astrophysics Data System (ADS)

    Govindarajan, M.; Karabacak, M.; Periandy, S.; Xavier, S.

    FT-IR and FT-Raman spectra of α,α,α-trichlorotoluene have been recorded and analyzed. The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311++G(d,p) method and a comparative study between HF level and various basis sets combination. The fundamental vibrational wavenumbers as well as their intensities were calculated and a good agreement between observed and scaled calculated wavenumbers has been achieved. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The effects due to the substitutions of methyl group and halogen were investigated. The absorption energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT). The electric dipole moment, polarizability and the first hyperpolarizability values of the α,α,α-trichlorotoluene have been calculated. 1H NMR chemical shifts were calculated by using the gauge independent atomic orbital (GIAO) method with HF and B3LYP methods with 6-311++G(d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties were performed. Mulliken and natural charges of the title molecule were also calculated and interpreted.

  20. Vibrational spectroscopic studies, NLO, HOMO-LUMO and electronic structure calculations of α,α,α-trichlorotoluene using HF and DFT.

    PubMed

    Govindarajan, M; Karabacak, M; Periandy, S; Xavier, S

    2012-08-01

    FT-IR and FT-Raman spectra of α,α,α-trichlorotoluene have been recorded and analyzed. The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311++G(d,p) method and a comparative study between HF level and various basis sets combination. The fundamental vibrational wavenumbers as well as their intensities were calculated and a good agreement between observed and scaled calculated wavenumbers has been achieved. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The effects due to the substitutions of methyl group and halogen were investigated. The absorption energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT). The electric dipole moment, polarizability and the first hyperpolarizability values of the α,α,α-trichlorotoluene have been calculated. (1)H NMR chemical shifts were calculated by using the gauge independent atomic orbital (GIAO) method with HF and B3LYP methods with 6-311++G(d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties were performed. Mulliken and natural charges of the title molecule were also calculated and interpreted. PMID:22516115

  1. Theoretical electronic structure of structurally modified graphene

    NASA Astrophysics Data System (ADS)

    Dvorak, Marc David

    Graphene has emerged as a promising replacement for silicon in next-generation electronics and optoelectronic devices. If graphene is to be used in semiconductor devices, however, it must acquire an electronic band gap. Numerous approaches have been proposed to control the band gap of graphene, including the periodic patterning of defects. However, the mechanism for band gap opening and the associated physics in graphene patterned with defects remain unclear. Using both analytic theory and first-principles calculations, we show that periodic patterning of defects on graphene can open a large and tunable band gap, induce strong absorption peaks at optical wavelengths, and host a giant band gap quantum spin Hall phase. First, a geometric rule is analytically derived for the arrangements of defects that open a band gap in graphene, with one ninth of all possible patterns opening a band gap. Next, we perform ab-initio density functional calculations to compare the effects of structural vacancies, hexagonal BN dopants, and passivants on the electronic structure of graphene. Qualitatively, these three types of structural defects behave the same, with only slight differences in their resulting band structures. By adjusting the shape of structural defects, we show how to move the Dirac cones in reciprocal space in accordance with the tight-binding model for the anisotropic honeycomb lattice, while the fundamental mechanism for band gap opening remains the same. To quantitatively predict the band gap and optical properties of these materials, we employ many-body perturbation theory with Green's functions (GW/Bethe-Salpeter equation) to directly include electron-electron and electron-hole interactions. Structurally modified graphene shows a strong renormalization of the fundamental band gap over single particle descriptions, and a strong electron-hole interaction as indicated by strong exciton binding energies (> 0.5 eV). Finally, we show that structurally modified graphene

  2. Electronic structure of Calcium hexaborides

    SciTech Connect

    Lee, Byounghak; Wang, Lin-Wang

    2005-06-15

    We present a theoretical study of crystal and electronic structures of CaB6 within a screened-exchange local density approximation (sX-LDA). Our ab initio total energy calculations show that CaB6 is a semiconductor with a gap of >1.2 eV, in agreement with recent experimental observations. We show a very sensitive band gap dependence on the crystal internal parameter, which might partially explain the scatter of previous theoretical results. Our calculation demonstrates that it is essential to study this system simultaneously for both crystal structures and electronic properties, and that the sX-LDA provides an ideal method for this problem.

  3. Global nuclear-structure calculations

    SciTech Connect

    Moeller, P.; Nix, J.R.

    1990-04-20

    The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to {epsilon}{sub 2} and {epsilon}{sub 4} used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and {Beta}-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential.

  4. DFT electronic structure calculations, spectroscopic studies, and normal coordinate analysis of 2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl acetate.

    PubMed

    Muthu, S; Elamuruguporchelvi, E; Varghese, Anitha

    2015-03-01

    The solid phase FTIR and FT-Raman spectra of 2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl acetate (25N2LCPA) have been recorded 450-4000cm(-1) and 100-4000cm(-1) respectively. The normal coordinate analysis was carried out to confirm the precision of the assignments. DFT calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies and IR intensities. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31+G(d,p) basis set. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The Vibrational frequencies are calculated in the above method and are compared with experimental frequencies which yield good agreement between observed and calculated frequencies. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. In addition, Frontiers molecular orbital and molecular electrostatic potential were computed by using Density Functional Theory (DFT) B3LYP/6-31+G(d,p) basis set. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. PMID:25544190

  5. Electronic structure of Ca, Sr, and Ba under pressure.

    NASA Technical Reports Server (NTRS)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  6. Molecular structure, electronic properties, NLO, NBO analysis and spectroscopic characterization of Gabapentin with experimental (FT-IR and FT-Raman) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Sinha, Leena; Karabacak, Mehmet; Narayan, V.; Cinar, Mehmet; Prasad, Onkar

    2013-05-01

    Gabapentin (GP), structurally related to the neurotransmitter GABA (gamma-aminobutyric acid), mimics the activity of GABA and is also widely used in neurology for the treatment of peripheral neuropathic pain. It exists in zwitterionic form in solid state. The present communication deals with the quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of GP using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. In view of the fact that amino acids exist as zwitterions as well as in the neutral form depending on the environment (solvent, pH, etc.), molecular properties of both the zwitterionic and neutral form of GP have been analyzed. The fundamental vibrational wavenumbers as well as their intensities were calculated and compared with experimental FT-IR and FT-Raman spectra. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The electric dipole moment, polarizability and the first hyperpolarizability values of the GP have been calculated at the same level of theory and basis set. The nonlinear optical (NLO) behavior of zwitterionic and neutral form has been compared. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. Ultraviolet-visible (UV-Vis) spectrum of the title molecule has also been calculated using TD-DFT method. The thermodynamic properties of both the zwitterionic and neutral form of GP at different temperatures have been calculated.

  7. A Initio Mr-Rci Calculations of ((n - 1)D + Ns)(n) Atomic Bound States: Application to Hyperfine Structure and Electron Affinity Studies.

    NASA Astrophysics Data System (ADS)

    Datta, Debasis

    Systematic inclusion of many-body effects in open d and f subshell atoms has long been known as a formidable challenge in atomic structure theory. Due to the presence of competing relativistic effects in such systems, an appropriate theoretical approach needs to incorporate electron correlation within the framework of the Special Theory of Relativity. To this aim, the Relativistic Configuration Interaction methodology as developed by Beck and others has been extended and applied to multi-reference situations in ((n - 1)d + ns) ^{rm N} type valence configurations. Specific focus has been on the hyperfine structure and electron affinity studies of the transition metal ions and the rare earths respectively. Energies and magnetic dipole and electric quadrupole hyperfine structure constants of all the fifteen Zr II (4d + 5s)^3 J = 0.5, 1.5 levels and the twenty one Nb II (4d + 5s)^4 J = 2 levels have been determined with unprecedented accuracies. The average errors in energy are 0.087 eV and 0.050 eV for Zr II J = 3/2 & 1/2 respectively while that for the ten bottom levels of Nb II J = 2 is 0.055 eV. For the levels known experimentally, the corresponding errors in magnetic dipole hyperfine structure constants are 9.2%, 31.8% and 3.8%. Quite a few of the many-body hyperfine constant values exhibit striking improvements over the Multi-Configurational Dirac Fock values. A new value of nuclear quadrupole moment has also been predicted for Zr II. In all cases certain previous level assignments have been corrected and five previously unknown levels have been identified in Nb II. The rigorous systematics of the many-body effects important for the energy level and hyperfine structure of these systems has been presented including core-valence and core-core effects. Contrary to the conventional wisdom and theoretical predictions of the last decade, the attachment of an f electron has been discarded as the most likely mechanism for the formation of Lanthanide and Actinide negative

  8. FT-IR, FT-Raman and UV spectral investigation: computed frequency estimation analysis and electronic structure calculations on chlorobenzene using HF and DFT.

    PubMed

    Govindarajan, M; Karabacak, M; Udayakumar, V; Periandy, S

    2012-03-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 100-4000 cm(-1) and 400-4000 cm(-1) respectively, for the title molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The effects due to the substitution of halogen bond were investigated. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP), and thermodynamic properties were performed. The thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between heat capacity (C), entropy (S), and enthalpy changes (H) and temperatures. PMID:22197345

  9. FT-IR, FT-Raman and UV spectral investigation: Computed frequency estimation analysis and electronic structure calculations on chlorobenzene using HF and DFT

    NASA Astrophysics Data System (ADS)

    Govindarajan, M.; Karabacak, M.; Udayakumar, V.; Periandy, S.

    2012-03-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 100-4000 cm-1 and 400-4000 cm-1 respectively, for the title molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The effects due to the substitution of halogen bond were investigated. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP), and thermodynamic properties were performed. The thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between heat capacity (C), entropy (S), and enthalpy changes (H) and temperatures.

  10. A new 3D grid method for accurate electronic structure calculation of polyatomic molecules: The Voronoi-cell finite difference method

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Chu, Shih-I.

    2008-05-01

    We introduce a new computational method on unstructured grids in the three-dimensional (3D) spaces to investigate the electronic structure of polyatomic molecules. The Voronoi-cell finite difference (VFD) method realizes a simple discrete Laplacian operator on unstructured grids based on Voronoi cells and their natural neighbors. The feature of unstructured grids enables us to choose intuitive pictures for an optimal molecular grid system. The new VFD method achieves highly adaptability by the Voronoi-cell diagram and yet simplicity by the finite difference scheme. It has no limitation in local refinement of grids in the vicinity of nuclear positions and provides an explicit expression at each grid without any integration. This method augmented by unstructured molecular grids is suitable for solving the Schr"odinger equation with the realistic 3D Coulomb potentials regardless of symmetry of molecules. For numerical examples, we test accuracies for electronic structures of one-electron polyatomic systems: linear H2^+ and triangular H3^++. We also extend VFD to the density functional theory (DFT) for many-electron polyatomic molecules.

  11. Electronic structure of herbicides: Atrazine and bromoxynil

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Kovač, Branka

    2011-06-01

    The electronic structures of herbicides atrazine and bromoxynil have been investigated by UV photoelectron spectroscopy (UPS), quantum chemical calculations and comparison with X-ray diffraction, molecular docking and molecular dynamics studies. Their electronic and molecular structures are discussed in the context of their biological activity. This is the first report which correlates the molecular mechanism of biological activity of these herbicides with their experimentally determined electronic and molecular structures.

  12. Electronic correlation contributions to structural energies

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    2015-03-01

    The recursion method is used to calculate electronic excitation spectra including electron-electron interactions within the Hubbard model. The effects of correlation on structural energies are then obtained from these spectra and applied to stacking faults. http://arxiv.org/abs/1405.2288 Supported by the Richmond F. Snyder Fund and Gifts.

  13. Effects of the slab thickness on the crystal and electronic structures of In{sub 2}O{sub 3}(ZnO){sub m} revealed by first-principles calculations

    SciTech Connect

    Wen, Jing; Zhang, Xitian; Gao, Hong

    2015-02-15

    Many conflicting electron microscopy data for In{sub 2}O{sub 3}(ZnO){sub m} indicate that it may have the polymorphous and polytypoid structures. We investigate their stabilities based on four controversial models. The calculated results confirm that the models with the zigzag feature are more stable than the others and it is possible to form different zigzag configurations in the samples as observed in the experiments. The dynamic process of eliminating the dangling bonds and the requirements of maximizing the symmetry and the distances between the In atoms in the slabs can be regarded as the dominant rules to stabilize the system, but the statistical equilibrium processes have the chances to transform it from the ground state structures to the other model structures. The study of the electronic structures based on the plane and zigzag models reveals that their band gaps and effective masses increase monotonically with m. The predicted band gaps are consistent with the experimental results. The anisotropic feature of electron effective mass tensor exhibited in the plane model differs from that of the zigzag one, which is so notable that can be employed to determine which model is more close to the actual structure of a given sample. The calculated results confirm the possibilities of the separation of conduction electrons and defects and the existence of the natural optimized transport channels in the layered structures, which demonstrate its advantage over ZnO to transport electrons and benefit its applications in the optoelectronic devices. - Graphical abstract: The conduction electrons are mainly distributed around the boundaries of the plane or zigzag shape. The optimized transport channels can be formed around the boundaries. - Highlights: • The formation mechanisms for the polytypoid structure of In{sub 2}O{sub 3}(ZnO){sub m} are revealed. • The predicted band gaps are consistent with the experimental results. • The natural optimized transport channels

  14. Electronic structure of lithium amide

    NASA Astrophysics Data System (ADS)

    Kamakura, N.; Takeda, Y.; Saitoh, Y.; Yamagami, H.; Tsubota, M.; Paik, B.; Ichikawa, T.; Kojima, Y.; Muro, T.; Kato, Y.; Kinoshita, T.

    2011-01-01

    The electronic structure of the insulator lithium amide (LiNH2), which is a lightweight complex hydride being considered as a high-capacity hydrogen storage material, is investigated by N 1s soft x-ray emission spectroscopy (XES) and absorption spectroscopy (XAS). The XES and XAS spectra show a band gap between the valence and conduction bands. The valence band in the XES spectrum consists of three peaks, which extend up to ~-8 eV from the valence band top. The band calculation within the local-density approximation (LDA) for LiNH2shows energetically separated three peaks in the occupied N 2p partial density of states (pDOS) and the band gap. The energy distribution of three peaks in the XES spectrum agrees with that in the calculated pDOS except for the peak at the highest binding energy, which is attributed to the strongly hybridized state between N 2p and H 1s. The XES experiment has clarified that the strongly hybridized state with H 1s in LiNH2is located at binding energy higher than that of the LDA calculation, while the overall feature of the electronic structure of LiNH2experimentally obtained by XES and XAS is consistent with the calculated result.

  15. FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on 4-chloro-3-nitrotoluene

    NASA Astrophysics Data System (ADS)

    Govindarajan, M.; Karabacak, M.; Suvitha, A.; Periandy, S.

    2012-04-01

    In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm-1 and 50-4000 cm-1, respectively, for 4-chloro-3-nitrotoluene (C7H6NO2Cl) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The effects due to the substitutions of methyl group, nitro group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed.

  16. FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on 4-chloro-3-nitrotoluene.

    PubMed

    Govindarajan, M; Karabacak, M; Suvitha, A; Periandy, S

    2012-04-01

    In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm(-1) and 50-4000 cm(-1), respectively, for 4-chloro-3-nitrotoluene (C7H6NO2Cl) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The effects due to the substitutions of methyl group, nitro group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed. PMID:22261102

  17. Instructional Approach to Molecular Electronic Structure Theory

    ERIC Educational Resources Information Center

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  18. Computational Chemistry Using Modern Electronic Structure Methods

    ERIC Educational Resources Information Center

    Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert

    2007-01-01

    Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.

  19. Account of helical and rotational symmetries in the linear augmented cylindrical wave method for calculating the electronic structure of nanotubes: Towards the ab initio determination of the band structure of a (100, 99) tubule

    NASA Astrophysics Data System (ADS)

    D'Yachkov, P. N.; Makaev, D. V.

    2007-11-01

    Every carbon single-walled nanotube (SWNT) can be generated by first mapping only two nearest-neighbor C atoms onto a surface of a cylinder and then using the rotational and helical symmetry operators to determine the remainder of the tubule [C. T. White , Phys. Rev. B 47, 5485 (1993)]. With account of these symmetries, we developed a symmetry-adapted version of a linear augmented cylindrical wave method. In this case, the cells contain only two carbon atoms, and the ab initio theory becomes applicable to any SWNT independent of the number of atoms in a translational unit cell. The approximations are made in the sense of muffin-tin (MT) potentials and local-density-functional theory only. An electronic potential is suggested to be spherically symmetrical in the regions of atoms and constant in an interspherical region up to the two essentially impenetrable cylinder-shaped potential barriers. To construct the basis wave functions, the solutions of the Schrödinger equation for the interspherical and MT regions of the tubule were sewn together using a theorem of addition for cylindrical functions, the resulting basis functions being continuous and differentiable anywhere in the system. With account of analytical equations for these functions, the overlap and Hamiltonian integrals are calculated, which permits determination of electronic structure of nanotube. We have calculated the total band structures and densities of states of the chiral and achiral, semiconducting, semimetallic, and metallic carbon SWNTs (13, 0), (12, 2), (11, 3), (10, 5), (9, 6), (8, 7), (7, 7), (12, 4), and (100, 99) containing up to the 118 804 atoms per translational unit cell. Even for the (100, 99) system with huge unit cell, the band structure can be easily calculated and the results can be presented in the standard form of four curves for the valence band plus one curve for the low-energy states of conduction band. About 150 functions produce convergence of the band structures better then

  20. Structural peculiarities of configurational isomers of 1-styrylpyrroles according to 1Н, 13С and 15N NMR spectroscopy and density functional theory calculations: electronic and steric hindrance for planar structure.

    PubMed

    Afonin, Andrei V; Ushakov, Igor A; Pavlov, Dmitry V; Schmidt, Elena Yu; Dvorko, Marina Yu

    2013-06-01

    Comparative analysis of the (1)Н and (13)С NMR data for a series of the E and Z-1-styrylpyrroles, E and Z-1-(1-propenyl)pyrroles, 1-vinylpyrroles and styrene suggests that the conjugation between the unsaturated fragments in the former compounds is reduced. This is the result of the mutual influence of the donor p-π and π-π conjugation having opposite directions. According to the NMR data combined with the density functional theory calculations, the Z isomer of 1-styrylpyrrole has essentially a nonplanar structure because of the steric hindrance. However, the E isomer of 1-styrylpyrrole is also an out-of-plane structure despite the absence of a sterical barrier for the planar one. Deviation of the E isomer from the planar structure seems to be caused by an electronic hindrance produced by a mutual influence of the p-π and π-π conjugation. The structure of the E isomer of the 2-substituted 1-styrylpyrroles is similar to that of the 2-substituted 1-vinylpyrroles. The steric effects in the Z isomer of the 2-substituted 1-styrylpyrroles result in the large increase of the dihedral angle between planes of the pyrrole ring and double bond. PMID:23558848

  1. Calculated hybrid and semilocal functionals and G W electronic structure of the metal trifluorides M F3 (M =Sc , Y, Al)

    NASA Astrophysics Data System (ADS)

    Hamed, Hichem Ben; Qteish, A.; Meskini, N.; Alouani, M.

    2015-10-01

    A thorough investigation of the effect of exchange and correlation on the electronic structure of wide-band-gap insulators ScF3,YF3, and AlF3 is carried out using local, semilocal, and hybrid functionals in the density functional theory framework and the G W approximation with four current plasmon-pole models. It is shown that the hybrid functionals, which attribute more weight to electron exchange, lead to a decent agreement with the state of the art G W results, whereas the Tran-Blaha semilocal functional does not improve significantly the local density approximation results of the insulating transition-metal trifluorides, because of the high localization of the conduction band minimum states which are mainly of d character, and underestimate considerably the valence-band width of the studied materials.

  2. Electron-phonon renormalization of the electronic structure of diamond

    NASA Astrophysics Data System (ADS)

    Giustino, Feliciano; Louie, Steven G.; Cohen, Marvin L.

    2011-03-01

    The calculation of band structures from first-principles has reached a high level of accuracy. Calculations combining density-functional theory with many-body perturbation theory often are in good agreement with measurements by photoemission, tunneling, and other spectroscopic probes. While significant efforts have been devoted to improving the description of electron-electron interactions in these calculations, the effect of lattice vibrations has largely been overlooked so far. In this work we study from first principles the electron-phonon renormalization of the band gap of diamond. The calculated temperature dependence of the gap and the broadening of the absorption edge are in excellent agreement with spectroscopic ellipsometry data. Interestingly we find a gap renormalization due to zero-point vibrations as large as 0.6 eV. We discuss the implications of our findings for the electronic structure of other carbon-based bulk materials and nanostructures.

  3. The molecular structures, conformations and force fields of bis(chloroimino)butanedinitrile as studied by gas-phase electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Thomassen, H.; Gundersen, S.; Samdal, S.

    2009-06-01

    Quantum chemical calculations using levels up to MP2(Full)/aug-cc-pVTZ have been applied. B3LYP calculations using the 6-31G* basis set reveal that there are four conformations of bis(chloroimino)butanedinitrile. The planar anti-ZZ conformer with C2h symmetry is the most stable conformer. The non-planar EE conformer with C2 symmetry, the non-planar EZ conformer with C1 symmetry and the non-planar ZZ conformer with C2 symmetry are 16.8, 22.7, 27.2 kJ/mol, respectively, less stable than the planar anti-ZZ conformer according toB3LYP/6-31G* calculations. Calculated frequencies for the planar anti-ZZ conformer have been compared with observed frequencies, and some reassignments have been proposed. Several models have been used in the gas-phase electron diffraction analysis. The most reliable results are expected to be obtained using a dynamic model where the large amplitude motion is simulated by a harmonic angular motion using a Gaussian distribution about the central C sbnd C bond. Only the planar anti-ZZ conformer was used in the final refinements due to the high energy difference to the other conformers. The most important bond distances ( ra, Ångstrom) and bond angles (∠ α, degrees) are [GED/MP2(Full)/aug-cc-pVTZ]: rC 1sbnd C 2 = [1.509(15), 1.460], rC 2 = N 3 = [1.295(6), 1.292], rN 3sbnd Cl 5 = [1.706(5), 1.696], rC 2sbnd C 7 = [1.434(11), 1.421], rC 7tbnd N 9 = [1.165(4), 1.170], ∠C 1sbnd C 2dbnd N 3 = [114.5(11), 115.6], ∠C 2dbnd N 3sbnd Cl 5 = [115.0(4), 115.0], ∠C 1sbnd C 2sbnd C 7 = [118.8(8), 118.5], ∠C 2sbnd C 7tbnd N 9 = [178.2(15), 177.4]. The dihedral angle N 3C 2C 7N 9 is 0°, i.e. the cyano groups are bended towards the Cl atom. Error estimates from electron diffraction are given as: σr = 2.5[σ lsq2 + (0.001r) 2] ½ for bond distances and σ∠ = 2.5σ lsq for bond angles.

  4. A Study of H2O2 with Threshold Photoelectron Spectroscopy (TPES) and Electronic Structure Calculations: Redetermination of the First Adiabatic Ionization Energy (AIE).

    PubMed

    Schio, Luca; Alagia, Michele; Dias, Antonio A; Falcinelli, Stefano; Zhaunerchyk, Vitali; Lee, Edmond P F; Mok, Daniel K W; Dyke, John M; Stranges, Stefano

    2016-07-14

    In this work, hydrogen peroxide has been studied with threshold photoelectron (TPE) spectroscopy and photoelectron (PE) spectroscopy. The TPE spectrum has been recorded in the 10.0-21.0 eV ionization energy region, and the PE spectrum has been recorded at 21.22 eV photon energy. Five bands have been observed which have been assigned on the basis of UCCSD(T)-F12/VQZ-F12 and IP-EOM CCSD calculations. Vibrational structure has only been resolved in the TPE spectrum of the first band, associated with the X̃(2)Bg H2O2(+) ← X̃(1)A H2O2 ionization, on its low energy side. This structure is assigned with the help of harmonic Franck-Condon factor calculations that use the UCCSD(T)-F12a/VQZ-F12 computed adiabatic ionization energy (AIE), and UCCSD(T)-F12a/VQZ-F12 computed equilibrium geometric parameters and harmonic vibrational frequencies for the H2O2 X̃(1)A state and the H2O2(+) X̃(2)Bg state. These calculations show that the main vibrational structure on the leading edge of the first TPE band is in the O-O stretching mode (ω3) and the HOOH deformation mode (ω4), and comparison of the simulated spectrum to the experimental spectrum gives the first AIE of H2O2 as (10.685 ± 0.005) eV and ω4 = (850 ± 30) and ω3 = (1340 ± 30) cm(-1) in the X̃(2)Bg state of H2O2(+). Contributions from ionization of vibrationally excited levels in the torsion mode have been identified in the TPE spectrum of the first band and the need for a vibrationally resolved TPE spectrum from vibrationally cooled molecules, as well as higher level Franck-Condon factors than performed in this work, is emphasized. PMID:27045948

  5. Molecular structure calculations: A unified quantum mechanical description of electrons and nuclei using explicitly correlated Gaussian functions and the global vector representation

    SciTech Connect

    Matyus, Edit; Reiher, Markus

    2012-07-14

    We elaborate on the theory for the variational solution of the Schroedinger equation of small atomic and molecular systems without relying on the Born-Oppenheimer paradigm. The all-particle Schroedinger equation is solved in a numerical procedure using the variational principle, Cartesian coordinates, parameterized explicitly correlated Gaussian functions with polynomial prefactors, and the global vector representation. As a result, non-relativistic energy levels and wave functions of few-particle systems can be obtained for various angular momentum, parity, and spin quantum numbers. A stochastic variational optimization of the basis function parameters facilitates the calculation of accurate energies and wave functions for the ground and some excited rotational-(vibrational-)electronic states of H{sub 2}{sup +} and H{sub 2}, three bound states of the positronium molecule, Ps{sub 2}, and the ground and two excited states of the {sup 7}Li atom.

  6. Molecular structure calculations: a unified quantum mechanical description of electrons and nuclei using explicitly correlated Gaussian functions and the global vector representation.

    PubMed

    Mátyus, Edit; Reiher, Markus

    2012-07-14

    We elaborate on the theory for the variational solution of the Schrödinger equation of small atomic and molecular systems without relying on the Born-Oppenheimer paradigm. The all-particle Schrödinger equation is solved in a numerical procedure using the variational principle, Cartesian coordinates, parameterized explicitly correlated Gaussian functions with polynomial prefactors, and the global vector representation. As a result, non-relativistic energy levels and wave functions of few-particle systems can be obtained for various angular momentum, parity, and spin quantum numbers. A stochastic variational optimization of the basis function parameters facilitates the calculation of accurate energies and wave functions for the ground and some excited rotational-(vibrational-)electronic states of H(2) (+) and H(2), three bound states of the positronium molecule, Ps(2), and the ground and two excited states of the (7)Li atom. PMID:22803525

  7. Electronic structure of black sodalite

    NASA Astrophysics Data System (ADS)

    Sankey, Otto F.; Demkov, Alexander A.; Lenosky, Thomas

    1998-06-01

    The electronic structure of black sodalite, Na8(AlSiO4)6, is determined in the local-spin-density approximation (LSDA). This structure has six Na atoms to compensate the six Al atoms, leaving two excess Na atoms. A band-gap electronic state is induced in the wide oxide gap by the excess sodium, and has ``particle in a box'' behavior. Magnetic orderings of these gap states are studied. Analytic models show that an antiferromagnetic ordering is lowest in energy in the LSDA. A self-consistent LSDA calculation shows the system to change from a metal to an antiferromagnetic insulator when spin orderings are allowed. Hopping and Hubbard-U parameters are estimated, and the many-body correlated Hubbard model is solved using a constrained path Monte Carlo technique, which again predicts the system to be antiferromagnetic with a Tc of order 50 K.

  8. Electronic band structure and optical properties of titanium oxyphosphates Li{sub 0.50}Co{sub 0.25}TiO(PO{sub 4}) single crystals: An ab-initio calculations

    SciTech Connect

    Reshak, Ali Hussain; Khenata, R.; Auluck, S.

    2011-08-15

    From the refined atomic positions obtained by Belmal et al. (2004) using X-ray diffraction for Li{sub 0.50}Co{sub 0.25}TiO(PO{sub 4}), we have performed a structural optimization by minimizing the forces acting on the atoms keeping the lattice parameters fixed at the experimental values. With this relaxed (optimized) geometry we have performed a comprehensive theoretical study of electronic properties and dispersion of the linear optical susceptibilities using the full potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) exchange-correlation potential was applied. In addition, the Engel-Vosko generalized gradient approximation (EVGGA) was used for comparison with GGA because it is known that EVGGA approach yields better band splitting compared to the GGA. We have calculated the band structure, and the total and partial densities of states. The electron charge densities and the bonding properties were analyzed and discussed. The complex dielectric optical susceptibilities were discussed in detail. - Graphical abstract: It is shown that P is tetrahedrally coordinated by four O ions. Highlights: > Comprehensive theoretical study of electronic and optical properties was performed. > Using X-ray diffraction data we have performed a structural optimization. > The electron charge densities and the bonding properties were analyzed and discussed. > Fermi surface was analyzed since it is useful for predicting thermal, magnetic, and optical properties. > The density of states at E{sub F} and the electronic specific heat coefficient were calculated.

  9. New quantitative structure-fragmentation relationship strategy for chemical structure identification using the calculated enthalpy of formation as a descriptor for the fragments produced in electron ionization mass spectrometry: a case study with tetrachlorinated biphenyls.

    PubMed

    Dinca, Nicolae; Dragan, Simona; Dinca, Mihael; Sisu, Eugen; Covaci, Adrian

    2014-05-20

    Differential mass spectrometry correlated with quantum chemical calculations (QCC-ΔMS) has been shown to be an efficient tool for the chemical structure identification (CSI) of isomers with similar mass spectra. For this type of analysis, we report here a new strategy based on ordering (ORD), linear correlation (LCOR) algorithms, and their coupling, to filter the most probable structures corresponding to similar mass spectra belonging to a group with dozens of isomers (e.g., tetrachlorinated biphenyls, TeCBs). This strategy quantifies and compares the values of enthalpies of formation (Δ(f)H) obtained by QCC for some isobaric ions from the electron ionization (EI)-MS mass spectra, to the corresponding relative intensities. The result of CSI is provided in the form of lists of decreasing probabilities calculated for all the position-isomeric structures using the specialized software package CSI-Diff-MS Analysis 3.1.1. The simulation of CSI with ORD, LCOR, and their coupling of six TeCBs (IUPAC no. 44, 46, 52, 66, 74, and 77) has allowed us to find the best semiempirical molecular-orbital methods for several of their common isobaric fragments. The study of algorithms and strategy for the entire group of TeCBs (42 isomers) was made with one of the optimal variants for the computation of Δ(f)H using semiempirical molecular orbital methods of HyperChem: AM1 for M(+•) and [M - 4Cl](+•) ions and RM1 for [M - Cl](+) and [M - 2Cl](+•). The analytical performance of ORD, LCOR, and their coupling resulted from the CSI simulation of an analyte of known structure, using a decreasing number of isomeric standards, s = 5, 4, 3, and 2. Compared with the results obtained by a classical library search for TeCB isomers, the novel strategies of assigning structures of isomers with very similar mass spectra based on ORD, LCOR, and their coupling were much more efficient, because they provide the correct structure at the top of the probability list. Databases used in these CSI

  10. Comparative study of tight-binding and ab initio electronic structure calculations focused on magnetic anisotropy in ordered CoPt alloy

    NASA Astrophysics Data System (ADS)

    Zemen, J.; Mašek, J.; Kučera, J.; Mol, J. A.; Motloch, P.; Jungwirth, T.

    2014-04-01

    An empirical multiorbital (spd) tight binding (TB) model including magnetism and spin-orbit coupling is applied to calculations of magnetic anisotropy energy (MAE) in CoPt L10 structure. A realistic Slater-Koster parametrisation for single-element transition metals is adapted for the ordered binary alloy. Spin magnetic moment and density of states are calculated using a full-potential linearised augmented plane-wave (LAPW) ab initio method and our TB code with different variants of the interatomic parameters. Detailed mutual comparison of this data allows for determination of a subset of the compound TB parameters tuning of which improves the agreement of the TB and LAPW results. MAE calculated as a function of band filling using the refined parameters is in broad agreement with ab initio data for all valence states and in quantitative agreement with ab initio and experimental data for the natural band filling. Our work provides a practical basis for further studies of relativistic magnetotransport anisotropies by means of local Green's function formalism which is directly compatible with our TB approach.

  11. Heats of formation of MHxCly (M = Si, P, As, Sb) compounds and main group fluorides from high level electronic structure calculations.

    PubMed

    Vasiliu, Monica; Grant, Daniel J; Feller, David; Dixon, David A

    2012-04-12

    Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the MH(x)Cl(y) compounds (M = Si, P, As, and Sb) and for a number of trivalent, tetravalent, and pentavalent fluorides (SbF(3), BiF(3), GeF(4), SnF(4), PbF(4), AsF(5), SbF(5)) from coupled cluster theory (CCSD(T)) calculations using correlation consistent basis sets and extrapolation to the complete basis set limit. Small-core, relativistic effective core potentials were used for the heavier elements (Ge, As, Sn, Sb, Pb, and Bi), including correlation of the outer core electrons. Additional scalar relativistic (for the lighter elements) and atomic spin-orbit corrections are included in order to achieve near chemical accuracy of ±1.5 kcal/mol. Vibrational zero point energies were computed from scaled harmonic frequencies at the second order Møller-Plesset perturbation theory (MP2) level where possible. Agreement between theory and the available experimental data is excellent. We present a revised heat of formation of the antimony atom in the gas phase. The calculated values will be of use in predicting the behavior of chemical vapor deposition systems. PMID:22397634

  12. Effects of S/Ce-codoping on electronic structures and optical properties of anatase TiO2 from density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Zhou, Shi Wen; Liu, Jian; Peng, Ping; Chen, Wen Qin

    2015-12-01

    The electronic and optical properties of S- and/or Ce-(co)doped anatase titanium dioxide (TiO2) are investigated using density functional theory plus U (DFT+U) calculations. The optimized total energy suggests that TiO2 codoping by Ce and S favours the configuration of one substitutional Ce atom occupied on a Ti site with one substitutional S atom either on its nearest neighboring O or Ti site. The calculated results show that all doping configurations exhibit remarkable red-shift and excellent photocatalytic properties compared with pure TiO2. These reinforced features can mainly be ascribed to the appearance of S 3p states in the top of valence band (VB) and Ce 4f states in the bottom of conduction band (CB) as well as the contribution from the increasing octahedral dipole moments. The synergetic effects of cationic Ce and anionic S can extend optical absorption edge, which results in higher absorption coefficient in the visible light region than that of the anionic S monodoping and cationic Ce monodoping case; in the same time, decreasing the codoping concentration leads to reduced optical absorption. Additionally, Ce and S as cations incorporating into TiO2 lattices can induce stronger redox potential with a lower defect formation energy under O-rich condition compared with other doping systems.

  13. Electronic structures and formation energies of pentavalent-ion-doped SnO{sub 2}: First-principles hybrid functional calculations

    SciTech Connect

    Behtash, Maziar; Joo, Paul H.; Nazir, Safdar; Yang, Kesong

    2015-05-07

    We studied the electronic properties and relative thermodynamic stability of several pentavalent-ion (Ta, Nb, P, Sb, and I) doped SnO{sub 2} systems using first-principles hybrid density functional theory calculations, in order to evaluate their potential as transparent conducting oxides (TCOs). I-doped SnO{sub 2}, though conductive, shows a narrowed optical band gap with respect to the undoped system due to the formation of gap states above the valence band. Nb-doped SnO{sub 2} forms localized impurity states below the conduction band bottom, suggesting that the Nb dopant exists as an Nb{sup 4+}-like cation, which is consistent with the recent experimental finding of the formation of the impurity level below the conduction band bottom [Appl. Phys. Express 5, 061201 (2012)]. Ta- and Sb-doped SnO{sub 2} display n-type conductivity, high charge carrier density, and widened optical band gap. P-doped SnO{sub 2} shows similar n-type electronic properties with that of Sb- and Ta-doped systems, and thus P-doped SnO{sub 2} is proposed as a promising candidate TCO for further experimental validation.

  14. Structural, mechanical, electronic and thermal properties of KZnF3 and AgZnF3 Perovskites: FP-(L)APW+lo calculations

    NASA Astrophysics Data System (ADS)

    Hiadsi, S.; Bouafia, H.; Sahli, B.; Abidri, B.; Bouaza, A.; Akriche, A.

    2016-08-01

    This study presents a theoretical prediction of the structural, mechanical, electronic and thermal properties of the zinc-based Perovskites (AgZnF3 and KZnF3) within the framework of Density Functional Theory (DFT) using All-electron self consistent Full Potential Augmented Plane Waves plus local orbital FP-(L)APW + lo method. To make our work comparable and reliable, several functional were used for the exchange-correlation potential. Also, this study intends to provide a basis and an improvement for updating either the values already predicted by other previous work (by using obsolete functional) or to predict them for the first time. GGA-PBE and GGA-PBEsol were used to predict the structural properties of AgZnF3 and KZnF3 Perovskites such as lattice parameter, bulk modulus and its pressure derivative and the cohesive energy. For these properties, the found values are in very good agreement; also those found by GGA-PBEsol are closer to other available previous and experimental results. The electronic properties of these materials are investigated and compared to provide a consolidated prediction by using the modified Becke Johnson potential TB-mBJ with other functional; the values found by this potential are closer to the available proven results and show that these materials exhibit an indirect gap from R to Γ point. The charge densities plot for [110] direction and QTAIM (Quantum Theory of Atoms in Molecules) theory indicate that ionic character is predominate for (K, Ag, Zn)sbnd F bonds. Finally, the effect of temperature and pressure on the unit cell volume, the heat capacity CV and entropy were studied using the quasi-harmonic Debye model.

  15. Solid state {sup 1}H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    SciTech Connect

    Wang, Xianlong E-mail: pbeckman@brynmawr.edu; Mallory, Frank B.; Mallory, Clelia W.; Odhner, Hosanna R.; Beckmann, Peter A. E-mail: pbeckman@brynmawr.edu

    2014-05-21

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  16. Solid state 1H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    NASA Astrophysics Data System (ADS)

    Wang, Xianlong; Mallory, Frank B.; Mallory, Clelia W.; Odhner, Hosanna R.; Beckmann, Peter A.

    2014-05-01

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state 1H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the 1H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  17. Three-dimensional rf structure calculations

    SciTech Connect

    Cooper, R.K.; Browman, M.J.; Weiland, T.

    1988-01-01

    The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs.

  18. Three-dimensional RF structure calculations

    NASA Astrophysics Data System (ADS)

    Cooper, R. K.; Browman, M. J.; Weiland, T.

    1989-04-01

    The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described.

  19. Structural application and numerical calculation

    SciTech Connect

    Sih, G.C.; Ditommaso, A.

    1984-01-01

    Since cost effectiveness has always been one of the more important aspects of design, reinforced and/or prestressed concrete is being increasingly used in many other areas, such as in the construction of floating marine structures, storage tanks, and nuclear vessel containments. A subject of major concern is how the localized segregation of the constituents in concrete would affect its global behaviour. The degree of nonhomogenity due to material property and damage by yielding and/or cracking depends on the size scale and loading rate under consideration. Hence, a wider knowledge of concrete behaviour on a large scale is desirable, and it is hoped that this volume, in which the application of Linear Elastic Fracture Mechanics is also fully discussed, will go some way to achieving this.

  20. Unravelling the role of the central metal ion in the electronic structure of tris(8-hydroxyquinoline) metal chelates: photoemission spectroscopy and hybrid functional calculations.

    PubMed

    Bisti, F; Stroppa, A; Donarelli, M; Anemone, G; Perrozzi, F; Picozzi, S; Ottaviano, L

    2012-11-29

    The electronic structures of tris(8-hydroxyquinolinato)-erbium(III) (ErQ(3)) and tris(8-hydroxyquinolinato)-aluminum(III) (AlQ(3)) have been studied by means of core level and valence band photoemission spectroscopy with the theoretical support of hybrid Heyd-Scuseria-Ernzerhof density functional theory, to investigate the role played by the central metal atom. A lower binding energy (0.2 eV and 0.3 eV, respectively) of the O 1s and N 1s core levels has been observed for ErQ(3) with respect to AlQ(3). Differences in the valence band spectra, mainly related to the first two peaks next to the highest occupied molecular orbital (HOMO), have been ascribed to an energetic shift (to 0.4 eV lower energies for ErQ(3)) of the σ molecular orbital between the oxygen atoms and the central metal atom. A lower (by 0.5 eV) ionization energy has been measured for the ErQ(3). The interpretation of these results is based on a reduced interaction between the central metal atom and the ligands in ErQ(3), with increased electronic charge around the ligands, due to the higher ionic radius and the lower electronegativity of Er with respect to Al. PMID:23106099

  1. Final disposal room structural response calculations

    SciTech Connect

    Stone, C.M.

    1997-08-01

    Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations.

  2. Synthesis, electronic structure investigation of 3-pentyl-2,6-di(furan-2-yl)piperidin-4-one by FT-IR, FT-Raman and UV-Visible spectral studies and ab initio/DFT calculations.

    PubMed

    Arockia Doss, M; Savithiri, S; Rajarajan, G; Thanikachalam, V; Anbuselvan, C

    2015-12-01

    FT-IR and FT-Raman spectra of 3-pentyl-2,6-di(furan-2-yl) piperidin-4-one (3-PFPO) were recorded in the solid phase. The structural and spectroscopic analyses of 3-PFPO were made by using B3LYP/HF level with 6-311++G(d, p) basis set. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Comparison of the observed fundamental vibrational frequencies of 3-PFPO with calculated results by HF and DFT methods indicates that B3LYP is superior to HF method for molecular vibrational problems. The electronic properties such as excitation energies, oscillator strength, wavelengths and HOMO-LUMO energies were obtained by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E((2))) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen, oxygen and hydrogen were calculated using B3LYP/6-311++G(d, p) level theory. Moreover, thermodynamic properties (heat capacities, entropy and enthalpy) of the title compound at different temperatures were calculated in gas phase. PMID:26172464

  3. Structural and electronic properties of half-Heusler alloys PtXBi (with X=Mn, Fe, Co and Ni) calculated from first principles

    NASA Astrophysics Data System (ADS)

    Huang, Wenchao; Wang, Xiaofang; Chen, Xiaoshuang; Lu, Wei; Damewood, L.; Fong, C. Y.

    2015-03-01

    First principles calculations with spin polarization based on density functional theory have been performed on half-Heusler alloys PtXBi, with X=Mn, Fe, Co and Ni, in three different atomic configurations (i.e. α, β, and γ phases). For each configuration, their optimized lattice constants are determined. Electronic and magnetic properties are also investigated. The differences reflect the atomic arrangements of the three phases and varied transition metal elements X. Meanwhile, the possibility of having the integer magnetic moment for each phase is explored. PtMnBi in α phase show half-metallic (HM) properties when its lattice constant is reduced from -3.0% to -11.2% with magnetic moment consistent with the values given by the modified Slater-Pauling rule. Additionally, we examined the effects of the spin-orbit (S-O) interaction on half-metal PtMnBi by comparing the relative shifts of the valence bands and the indirect semiconducting gap with respect to the spin polarized results.

  4. Measurements and calculations of electron dose distributions in circular materials

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zhou, Xinzhi; An, Zhu; Zhou, Youyi; Wang, Shiming

    2002-03-01

    In this paper, the absorbed dose distributions of 0.6-2.0 MeV electrons in circular compound materials have been calculated by the calculation method of electron energy deposition in multi-layer media based on bipartition model of electron transport. In addition, the blue cellophane film dosimeters have been used to measure the electron absorbed dose distributions in some circular objects. The calculation results are in agreement with some measurement data. The results indicate the usefulness of the calculation and measurement methods for electron dose monitoring and control in radiation processing of wire and cable.

  5. Structural, electronic, topological and vibrational properties of a series of N-benzylamides derived from Maca (Lepidium meyenii) combining spectroscopic studies with ONION calculations

    NASA Astrophysics Data System (ADS)

    Chain, Fernando E.; Ladetto, María Florencia; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

    2016-02-01

    In the present work, the structural, topological and vibrational properties of four members of the N-benzylamides series derived from Maca (Lepidium meyenii) whose names are, N-benzylpentadecanamide, N-benzylhexadecanamide, N-benzylheptadecanamide and N-benzyloctadecanamide, were studied combining the FTIR, FT-Raman and 1H and 13C-NMR spectroscopies with density functional theory (DFT) and ONION calculations. Furthermore, the N-benzylacetamide, N-benzylpropilamide and N-benzyl hexanamide derivatives were also studied in order to compare their properties with those computed for the four macamides. These seven N-benzylamides series have a common structure, C8H8NO-R, being R the side chain [-(CH2)n-CH3] with a variable n number of CH2 groups. Here, the atomic charges, molecular electrostatic potentials, stabilization energies, topological properties of those macamides were analyzed as a function of the number of C atoms of the side chain while the frontier orbitals were used to compute the gap energies and some descriptors in order to predict their reactivities and behaviors in function of the longitude of the side chain. Here, the force fields, the complete vibrational assignments and the corresponding force constants were only reported for N-benzylacetamide, N-benzyl hexanamide and N-benzylpentadecanamide due to the high number of vibration normal modes that present the remains macamides.

  6. Self-healing diffusion quantum Monte Carlo algorithms: methods for direct reduction of the fermion sign error in electronic structure calculations

    SciTech Connect

    Reboredo, F A; Hood, R Q; Kent, P C

    2009-01-06

    We develop a formalism and present an algorithm for optimization of the trial wave-function used in fixed-node diffusion quantum Monte Carlo (DMC) methods. The formalism is based on the DMC mixed estimator of the ground state probability density. We take advantage of a basic property of the walker configuration distribution generated in a DMC calculation, to (i) project-out a multi-determinant expansion of the fixed node ground state wave function and (ii) to define a cost function that relates the interacting-ground-state-fixed-node and the non-interacting trial wave functions. We show that (a) locally smoothing out the kink of the fixed-node ground-state wave function at the node generates a new trial wave function with better nodal structure and (b) we argue that the noise in the fixed-node wave function resulting from finite sampling plays a beneficial role, allowing the nodes to adjust towards the ones of the exact many-body ground state in a simulated annealing-like process. Based on these principles, we propose a method to improve both single determinant and multi-determinant expansions of the trial wave function. The method can be generalized to other wave function forms such as pfaffians. We test the method in a model system where benchmark configuration interaction calculations can be performed and most components of the Hamiltonian are evaluated analytically. Comparing the DMC calculations with the exact solutions, we find that the trial wave function is systematically improved. The overlap of the optimized trial wave function and the exact ground state converges to 100% even starting from wave functions orthogonal to the exact ground state. Similarly, the DMC total energy and density converges to the exact solutions for the model. In the optimization process we find an optimal non-interacting nodal potential of density-functional-like form whose existence was predicted in a previous publication [Phys. Rev. B 77 245110 (2008)]. Tests of the method are

  7. Electronic structure and conformational properties of the amide linkage Part 9. Geometrical and electronic structures of N-alkenyllactams as determined by PE spectroscopy and semiempirical quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Woydt, Michael; Rademacher, Paul

    1992-01-01

    N-Alkenyllactams with a ring size from five to seven were studied by semiempirical quantum chemical methods (MNDO and AM1) and photoelectron (PE) spectroscopy. While MNDO leads to a minimum-energy conformation with a clinal alkenyl group, AM1 reveals the antiperiplanar conformation as the most stable one. The following sequence of the three highest occupied MOs was found by AM1: antisymmetric combination of π CC and n N (π 3, HOMO), oxygen lone-pair MO (n o, HOMO-1) and symmetric combination of π CC and n N (π 2 HOMO-2). MNDO calculations give the following orbital sequence: π CC (HOMO), n N and n O. In the AM1 calculations, substantial through-bond interactions were found, while in the MNDO calculations through-space interactions are favoured. The PE spectra of the investigated compounds agree better with the AM1 than with the MNDO results.

  8. Calculation of electron wave functions and refractive index of Ne

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Liu, Wei; Zhang, Tao

    2008-10-01

    The radial wave functions of inner electron shell and outer electron shell of a Ne atom were obtained by the approximate analytical method and tested by calculating the ground state energy of the Ne atom. The equivalent volume of electron cloud and the refractive index of Ne were calculated. The calculated refractive index agrees well with the experimental result. Relationship between the refractive index and the wave function of Ne was discovered.

  9. Band crossing in isovalent semiconductor alloys with large size mismatch: First-principles calculations of the electronic structure of Bi and N incorporated GaAs

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Li, Jingbo; Li, Shu-Shen; Peng, Haowei; Xia, Jian-Bai; Wang, Lin-Wang; Wei, Su-Huai

    2010-11-01

    For large size- and chemical-mismatched isovalent semiconductor alloys, such as N and Bi substitution on As sites in GaAs, isovalent defect levels or defect bands are introduced. The evolution of the defect states as a function of the alloy concentration is usually described by the popular phenomenological band anticrossing (BAC) model. Using first-principles band-structure calculations we show that at the impurity limit the N- (Bi)-induced impurity level is above (below) the conduction- (valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.

  10. The Calculation Of Absorbing Thin Film Optical Constants And Electronic Structure From Photometric Measures On Domain IR-VIS-UV Using Neural Networks

    SciTech Connect

    Bourouis, Chahrazed; Meddour, Ahcene; Moussaoui, Abdelkrim

    2008-09-23

    In this paper a new method using the combination of Neural Networks and the Newton-Raphson algorithm is developped. The technique consists of the use of the solution obtained by Newton-Raphson algorithm between 0.5 and 2.1eV for pure manganese (Mn) and for the amorphous metallic alloy Al{sub 88}Mn{sub 12}, to construct two parts of datasets; the first one is used for training the neural network and the second one for the validation tests. The validated neural network model is applied to the determination of optical constants of the two materials Mn and Al{sub 88}Mn{sub 12} in the range of 0.5 and 6.2eV (IR-VIS-UV). The results obtained over all the studied energy range are used to trace back to dielectric function, optical absorption and electronic structure of the same material. By using the partial solution obtained by Newton-Raphson as a database of the neural network prediction model, it is shown that the obtained results are in accordance with those of the literature which consolidate the efficiency of the suggested approach.

  11. The Calculation Of Absorbing Thin Film Optical Constants And Electronic Structure From Photometric Measures On Domain IR-VIS-UV Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Bourouis, Chahrazed; Meddour, Ahcene; Moussaoui, Abdelkrim

    2008-09-01

    In this paper a new method using the combination of Neural Networks and the Newton-Raphson algorithm is developped. The technique consists of the use of the solution obtained by Newton-Raphson algorithm between 0.5 and 2.1eV for pure manganese (Mn) and for the amorphous metallic alloy Al88Mn12, to construct two parts of datasets; the first one is used for training the neural network and the second one for the validation tests. The validated neural network model is applied to the determination of optical constants of the two materials Mn and Al88Mn12 in the range of 0.5 and 6.2eV (IR-VIS-UV). The results obtained over all the studied energy range are used to trace back to dielectric function, optical absorption and electronic structure of the same material. By using the partial solution obtained by Newton-Raphson as a database of the neural network prediction model, it is shown that the obtained results are in accordance with those of the literature which consolidate the efficiency of the suggested approach.

  12. Structures and Electronic Properties of (KI)n(-/0) (n = 1-4) and K(KI)n(-/0) (n = 1-3) Clusters: Photoelectron Spectroscopy, Isomer-Depletion, and ab Initio Calculations.

    PubMed

    Hou, Gao-Lei; Feng, Gang; Zhao, Li-Juan; Xu, Hong-Guang; Zheng, Wei-Jun

    2015-11-12

    The (KI)n(-) (n = 1-4) and K(KI)n(-) (n = 1-3) clusters were studied by negative ion photoelectron spectroscopy and ab initio calculations. Comparison between the theoretical vertical detachment energies and the experimental values revealed that multiple isomers may coexist in the experiments. The existence of two isomers for K(KI)(-) and K(KI)2(-) were confirmed directly by isomer-depletion experiments, in which the low adiabatic detachment energy isomers were depleted by a 1064 nm laser beam before the anions were photodetached by a 532 nm laser beam. Our results show that the most stable structures of the K(KI)(-), (KI)2(-), and K(KI)2(-) anions are chain structures, while those of their neutral counterparts are planar. Three-dimensional structures start to appear at n = 3 for (KI)n(-/0) and K(KI)n(-/0). In the K(KI)n(-) cluster anions, the excess electron is localized on the extra K atom and forms an electron pair with the existing s electron of the K atom; the resulting negatively charged K prefers to interact with the other positively charged K atoms rather than with the I atoms. Both the anionic and neutral (KI)4 clusters have cuboid structures, which may be regarded as the smallest structural motif of KI crystal. PMID:26473992

  13. Combining Basic Business Math and Electronic Calculators.

    ERIC Educational Resources Information Center

    Merchant, Ronald

    As a means of alleviating math anxiety among business students and of improving their business machine skills, Spokane Falls Community College offers a course in which basic business math skills are mastered through the use of desk top calculators. The self-paced course, which accommodates varying student skill levels, requires students to: (1)…

  14. Calculation of Electronic Transitions in S IX

    NASA Astrophysics Data System (ADS)

    Bogdanovich, P.; Karpuškienė, R.; Rudzikas, Z.

    Wavelengths and oscillator strengths of electric dipole transitions from the 2p33l configurations of S IX are calculated. Relativistic and correlation effects are accounted for in Hartree-Fock-Pauli approximation and in the basis of transformed radial orbitals. Fairly high accuracy of results is achieved.

  15. MCSNA: Experimental Benchmarking of Pu Electronic Structure

    SciTech Connect

    Tobin, J G

    2007-01-29

    The objective of this work is to develop and/or apply advanced diagnostics to the understanding of aging of Pu. Advanced characterization techniques such as photoelectron and x-ray absorption spectroscopy will provide fundamental data on the electronic structure of Pu phases. These data are crucial for the validation of the electronic structure methods. The fundamental goal of this project is to narrow the parameter space for the theoretical modeling of Pu aging. The short-term goal is to perform experiments to validate electronic structure calculations of Pu. The long-term goal is to determine the effects of aging upon the electronic structure of Pu. Many of the input parameters for aging models are not directly measurable. These parameters will need to be calculated or estimated. Thus a First Principles-Approach Theory is needed, but it is unclear what terms are important in the Hamiltonian. (H{Psi} = E{Psi}) Therefore, experimental data concerning the 5f electronic structure are needed, to determine which terms in the Hamiltonian are important. The data obtained in this task are crucial for reducing the uncertainty of Task LL-01-developed models and predictions. The data impact the validation of electronic structure methods, the calculation of defect properties, the evaluation of helium diffusion, and the validation of void nucleation models. The importance of these activities increases if difficulties develop with the accelerating aging alloy approach.

  16. Electronic band structure and photoemission: A review and projection

    SciTech Connect

    Falicov, L.M.

    1987-09-01

    A brief review of electronic-structure calculations in solids, as a means of interpreting photoemission spectra, is presented. The calculations are, in general, of three types: ordinary one-electron-like band structures, which apply to bulk solids and are the basis of all other calculations; surface modified calculations, which take into account, self-consistently if at all possible, the presence of a vacuum-solid interface and of the electronic modifications caused thereby; and many-body calculations, which go beyond average-field approximations and consider dynamic rearrangement effects caused by electron-electron correlations during the photoemission process. 44 refs.

  17. First principles calculations of electronic structure and magnetic properties of Cr-based magnetic semiconductors Al{sub 1-x}Cr{sub x}X (X=N, P, As, Sb)

    SciTech Connect

    Saeed, Y.; Shaukat, A.; Nazir, S.; Ikram, N.; Hussain Reshak, Ali

    2010-01-15

    First principles calculations based on the density functional theory (DFT) within the local spin density approximation are performed to investigate the electronic structure and magnetic properties of Cr-based zinc blende diluted magnetic semiconductors Al{sub 1-x}Cr{sub x}X (X=N, P, As, Sb) for 0<=x<=0.50.The behaviour of magnetic moment of Al{sub 1-x}Cr{sub x}X at each Cr site as well as the change in the band gap value due to spin down electrons has been studied by increasing the concentration of Cr atom and through changing X from N to Sb. Furthermore, the role of p-d hybridization is analyzed in the electronic band structure and exchange splitting of d-dominated bands. The interaction strength is stronger in Al{sub 1-x}Cr{sub x}N and becomes weaker in Al{sub 1-x}Cr{sub x}Sb. The band gap due to the spin down electrons decreases with the increased concentration of Cr in Al{sub 1-x}Cr{sub x}X, and as one moves down along the isoelectronic series in the group V from N to Sb. Our calculations also verify the half-metallic ferromagnetic character in Cr doped AlX. - Graphical abstract: The prototype structures of Cr doped AlX (X=N, P, As, Sb) compounds: (A) zinc blende AlP for x=0, (B) Cr{sub 1}Al{sub 7}P{sub 8} for x=0.125, (C) Cr{sub 1}Al{sub 3}P{sub 4} for x=0.25, (D) Cr{sub 1}Al{sub 1}P{sub 2} for x=0.5.

  18. FEL gain calculation for imperfectly matched electron beams

    NASA Astrophysics Data System (ADS)

    Swent, R. L.; Berryman, K. W.

    1995-04-01

    We present here the details of an analytical small-signal gain calculation. The analysis builds on the basic one-dimensional analytical calculation by modeling the effects of finite electron beam size and imperfect matching of the electron beam to the wiggler. The calculation uses TRANSPORT [SLAC-91, Rev. 2 (1977)] parameters to describe the electron beam in order to easily take the output of beam transport calculations and use them as the input for FEL gain calculations. The model accepts an arbitrary TRANSPORT beam and includes the effects of energy spread, beam size, betatron oscillations, and focussing in the wiggle plane. The model has allowed us to calculate the range over which our FEL can be tuned by changing the electron energy alone (i.e., without changing any magnets).

  19. Calculations of crystal-structure stabilities of Ce under pressure

    SciTech Connect

    Eriksson, O.; Wills, J.M.; Boring, A.M. Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 )

    1992-11-15

    The total energies of the observed crystal structures of Ce (face-centered cubic (fcc), orthorhombic, and body-centered tetragonal (bct)) under pressure have been calculated, using the local-density approximation. The linear-muffin-tin-orbital calculations were full potential, all electron, and fully relativistic. The experimental data for the different crystallographic transitions are well reproduced by the calculations and we have extracted two terms that are mainly responsible for the {alpha}{r arrow}{alpha}{prime} transition: a one-electron term and a Madelung term. The {alpha}{r arrow}{alpha}{prime} transition is driven by the increasing importance of the 4{ital f} contribution with decreasing volume. This finding is also supported by a calculation without the 4{ital f} contribution to the cohesion which yields the {alpha}{prime} phase unstable. The {alpha}{prime}{r arrow}bct transition is found to be somewhat more complex in nature since it is quite heavily influenced also by the 5{ital d} electrons. The calculated ground state is (correctly) found to be fcc and the equilibrium volume as well as the bulk modulus are in good agreement with experiment. The present {ital ab} {ital initio} calculation of a crystallographic phase diagram of an {ital f} electron system suggests delocalized 4{ital f} electrons exist in the high-pressure phases, including the {alpha} phase, of Ce.

  20. Examinations of electron temperature calculation methods in Thomson scattering diagnostics

    SciTech Connect

    Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin

    2012-10-15

    Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. {chi}-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the {chi}-square test are examined and scale factor test is proposed as an alternative method.

  1. Calculating Buckling And Vibrations Of Lattice Structures

    NASA Technical Reports Server (NTRS)

    Anderson, M. S.; Durling, B. J.; Herstrom, C. L.; Williams, F. W.; Banerjee, J. R.; Kennedy, D.; Warnaar, D. B.

    1989-01-01

    BUNVIS-RG computer program designed to calculate vibration frequencies or buckling loads of prestressed lattice structures used in outer space. For buckling and vibration problems, BUNVIS-RG calculates deadload axial forces caused in members by any combination of externally-applied static point forces and moments at nodes, axial preload or prestrain in members, and such acceleration loads as those due to gravity. BUNVIS-RG is FORTRAN 77 computer program implemented on CDC CYBER and VAX computer.

  2. Enhancing Scalability of Parallel Structured AMR Calculations

    SciTech Connect

    Wissink, A M; Hysom, D; Hornung, R D

    2003-02-10

    This paper discusses parallel scaling performance of large scale parallel structured adaptive mesh refinement (SAMR) calculations in SAMRAI. Previous work revealed that poor scaling qualities in the adaptive gridding operations in SAMR calculations cause them to become dominant for cases run on up to 512 processors. This work describes algorithms we have developed to enhance the efficiency of the adaptive gridding operations. Performance of the algorithms is evaluated for two adaptive benchmarks run on up 512 processors of an IBM SP system.

  3. Local density functional calculations of the electronic structures of the intermetallic systems U{sub 2}Fe{sub 2}Sn and UFe{sub 2}Ge{sub 2}

    SciTech Connect

    Matar, S.F.; Chevalier, B.; Etourneau, J.; Eyert, V.

    1997-02-05

    The electronic structures of U{sub 2}Fe{sub 2}Sn and UFe{sub 2}Ge{sub 2} are self-consistently calculated within the local density functional theory using the augmented spherical wave (ASW) method. Calculations are scalar relativistic. The experimentally observed Pauli paramagnetic behavior of the two systems is accounted for and the influence of hybridization between the different l-states on the chemical bonding is discussed from the site-projected densities of states (DOS) as well as from the modulation of the DOS by the sign and magnitude of the overlap integral, i.e., with the so-called COOP. From this, we propose a mechanism for the evolution of bonding within the series to which the two compounds belong. 12 refs., 3 figs.

  4. Mixed lithium-sodium (LiNaCO3) and lithium-potassium (LiKCO3) carbonates for low temperature electrochemical applications: Structure, electronic properties and surface reconstruction from ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Ricca, Chiara; Ringuedé, Armelle; Cassir, Michel; Adamo, Carlo; Labat, Frédéric

    2016-05-01

    The structural, electronic and surface properties of the mixed lithium-sodium (LiNaCO3) and lithium-potassium (LiKCO3) carbonates were studied through periodic calculations performed at the density functional theory (DFT) level, using three different exchange-correlation functionals. The hybrid functional PBE0 was found to be the best one to describe both geometric and electronic features of bulk LiNaCO3 and LiKCO3. Polar (001) and non-polar (110) low index surfaces were taken into account, the first one being found the most stable in both cases, after reconstruction. Both introduction of vacancies (R1) and octopolar terminations (R2) of (001), exposing Li ((001)Li) or Na ((001)Na) were described in detail. The computed stability order for the reconstructed surfaces in gas phase is: (001)R1Na > > (001)R1Li > (001)R2Na ≈ (001)R2Li. The obtained information, in particular regarding the electronic and surface properties, could be used in future to help understanding the role of mixed carbonates as component of oxide-carbonate electrolytes for low temperature solid oxide fuel cells (LT-SOFCs) applications, especially as reasonable starting points for dynamics calculations of liquid molten carbonates based systems.

  5. Electronic Structure and Optical Properties of Cu2ZnGeSe4. First-Principles Calculations and Vacuum-Ultraviolet Spectroscopic Ellipsometric Studies

    SciTech Connect

    Choi, Sukgeun; Park, Ji-Sang; Donohue, Andrea; Christensen, Steven T.; To, Bobby; Beall, Carolyn; Wei, Su-Huai; Repins, Ingid L.

    2015-11-19

    Cu2ZnGeSe4 is of interest for the development of next-generation thin-film photovoltaic technologies. To understand its electronic structure and related fundamental optical properties, we perform first-principles calculations for three structural variations: kesterite, stannite, and primitive-mixed CuAu phases. The calculated data are compared with the room-temperature dielectric functionϵ=ϵ1+iϵ2 spectrum of polycrystalline Cu2ZnGeSe4 determined by vacuum-ultraviolet spectroscopic ellipsometry in the photon-energy range of 0.7 to 9.0 eV. Ellipsometric data are modeled with the sum of eight Tauc-Lorentz oscillators, and the best-fit model yields the band-gap and Tauc-gap energies of 1.25 and 1.19 eV, respectively. A comparison of overall peak shapes and relative intensities between experimental spectra and the calculated ϵ data for three structural variations suggests that the sample may not have a pure (ordered) kesterite phase. We found that the complex refractive index N=n+ik, normal-incidence reflectivity R, and absorption coefficients α are calculated from the modeled ϵ spectrum, which are also compared with those of Cu2ZnSnSe4 . The spectral features for Cu2ZnGeSe4 appear to be weaker and broader than those for Cu2ZnSnSe4 , which is possibly due to more structural imperfections presented in Cu2ZnGeSe4 than Cu2ZnSnSe4 .

  6. GGA+U-DFT+U modeling structural, electronic and magnetic properties investigation on the ferromagnetic and anti-ferromagnetic BaFeO3 characteristics: Insights from First-principle calculation

    NASA Astrophysics Data System (ADS)

    Noura, Hamdad

    2014-12-01

    Based on first-principles calculation the change of magnetic configurations and electronic structure of perovskite oxide BaFeO3 is investigated by introducing a new potential energy function which has been determined via the density functional theory basis with U-Hubbard Hamiltonian (DFT+U). The exchange and correlation potential is employed using GGA+U approach by combining available experimental measurements and the data from the current theoretical calculations. The implementation of the U-Hubbard term in this calculation allows more comprehension on the BaFeO3 behavior and has ameliorated the obtained results. The spin effect is given for the considerable oxide by investing the cubic phase. Possible different magnetic configurations (ferromagnetic FM and anti-ferromagnetic AFM) for the BaFeO3 oxide. The implementation of the new approach GGA+U shows the Coulomb interaction inside the d-states exactly which can play an important role in the orbital systems of both elements the ferrite (Fe) and barium (Ba). By the band structure and the densities of states analysis. BaFeO3 is a strong candidate for spintronic applications.

  7. Structural, Electronic, and Optical Properties of BiOX1-xYx (X, Y = F, Cl, Br, and I) Solid Solutions from DFT Calculations.

    PubMed

    Zhao, Zong-Yan; Liu, Qing-Lu; Dai, Wen-Wu

    2016-01-01

    Six BiOX1-xYx (X, Y = F, Cl, Br, and I) solid solutions have been systematically investigated by density functional theory calculations. BiOCl1-xBrx, BiOBr1-xIx, and BiOCl1-xIx solid solutions have very small bowing parameters; as such, some of their properties increase almost linearly with increasing x. For BiOF1-xYx solid solutions, the bowing parameters are very large and it is extremely difficult to fit the related calculated data by a single equation. Consequently, BiOX1-xYx (X, Y = Cl, Br, and I) solid solutions are highly miscible, while BiOF1-xYx (Y = Cl, Br, and I) solid solutions are partially miscible. In other words, BiOF1-xYx solid solutions have miscibility gaps or high miscibility temperature, resulting in phase separation and F/Y inhomogeneity. Comparison and analysis of the calculated results and the related physical-chemical properties with different halogen compositions indicates that the parameters of BiOX1-xYx solid solutions are determined by the differences of the physical-chemical properties of the two halogen compositions. In this way, the large deviation of some BiOX1-xYx solid solutions from Vegard's law observed in experiments can be explained. Moreover, the composition ratio of BiOX1-xYx solid solutions can be measured or monitored using optical measurements. PMID:27549344

  8. Structural, Electronic, and Optical Properties of BiOX1−xYx (X, Y = F, Cl, Br, and I) Solid Solutions from DFT Calculations

    PubMed Central

    Zhao, Zong-Yan; Liu, Qing-Lu; Dai, Wen-Wu

    2016-01-01

    Six BiOX1−xYx (X, Y = F, Cl, Br, and I) solid solutions have been systematically investigated by density functional theory calculations. BiOCl1−xBrx, BiOBr1−xIx, and BiOCl1−xIx solid solutions have very small bowing parameters; as such, some of their properties increase almost linearly with increasing x. For BiOF1−xYx solid solutions, the bowing parameters are very large and it is extremely difficult to fit the related calculated data by a single equation. Consequently, BiOX1−xYx (X, Y = Cl, Br, and I) solid solutions are highly miscible, while BiOF1−xYx (Y = Cl, Br, and I) solid solutions are partially miscible. In other words, BiOF1−xYx solid solutions have miscibility gaps or high miscibility temperature, resulting in phase separation and F/Y inhomogeneity. Comparison and analysis of the calculated results and the related physical–chemical properties with different halogen compositions indicates that the parameters of BiOX1−xYx solid solutions are determined by the differences of the physical–chemical properties of the two halogen compositions. In this way, the large deviation of some BiOX1−xYx solid solutions from Vegard’s law observed in experiments can be explained. Moreover, the composition ratio of BiOX1−xYx solid solutions can be measured or monitored using optical measurements. PMID:27549344

  9. Mediated resonance effect of the vanadium 3d states on phase stability in the Al8V5 γ -brass studied by first-principles FLAPW and LMTO-ASA electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Mizutani, U.; Asahi, R.; Sato, H.; Takeuchi, T.

    2006-12-01

    The mechanism for the stability of the Al8V5γ -brass containing 52 atoms in its cubic unit cell has been investigated by means of first-principles full-potential linearized augmented plane wave (FLAPW) and linearized muffin-tin orbital-atomic sphere approximation (LMTO-ASA) electronic structure calculations. The LMTO-ASA identified a deep valley at 0.5eV above the Fermi level in its density of states (DOS) as arising from orbital hybridizations between V 3d and Al 3p states. On the other hand, the FLAPW revealed the V 3d states mediated resonance of electrons with different sets of lattice planes. The resonance involved is found to be substantial not only at ∣G∣2=18 or {330} and {411} zones but also at those in the range 14⩽∣G∣2⩽30 . A comparison with the electronic structure of the CsCl-type AlV compound proved that the V 3d states mediated resonance occurs only in Al8V5 but not in AlV compound. The V 3d states mediated resonance is proved to result in a significant suppression of the sp -partial DOS over the energy range from the Fermi level up to +2.2eV . A gain in the electronic energy has been attributed to the formation of highly condensed bonding states below the Fermi level, again caused by the V 3d states mediated resonance. It is also proposed that the Al8V5 is stabilized at e/a=1.94 rather than 21/13 as is expected from the Hume-Rothery electron concentration rule.

  10. Intrinsic acidity of aluminum, chromium(III) and iron(III) {mu}{sub 3}-hydroxo functional groups from ab initio electronic structure calculations

    SciTech Connect

    Rustad, J.R.; Dixon, D.A.; Felmy, A.R.

    2000-05-01

    Density functional calculations are performed on M{sub 3}(OH){sub 7}(H{sub 2}O){sub 6}{sup 2+} and M{sub 3}O(OH){sub 6}(H{sub 2}O){sub 6}{sup +} clusters for M {double_bond} Al, Cr(III), and Fe(III), allowing determination of the relative acidities of the {mu}{sub 3}-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, {double_bond}Fe{sub 3}OH and {double_bond}Al{sub 3}OH groups have nearly the same intrinsic acidity, while {double_bond}Cr{sub 3}OH groups are significantly more acidic. The gas-phase acidity of the Fe{sub 3}OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. Acidities of aquo functional groups were also computed for Al and Cr. The {double_bond}AlOH{sub 2} site is more acidic than the {double_bond}Al{sub 3}OH site, whereas the {double_bond}Cr{sub 3}OH site is more acidic than the {double_bond}CrOH{sub 2} site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.

  11. Structural and Electronic Properties of Reduced Transition Metal Oxide Clusters, M 3 O 8 and M 3 O 8 - (M = Cr, W), from Photoelectron Spectroscopy and Quantum Chemical Calculations

    SciTech Connect

    Li, Shenggang; Zhai, Hua-Jin; Wang, Lai-Sheng; Dixon, David A.

    2009-09-28

    We report a comparative study of reduced transition metal oxide clusters, M₃O₈⁻ (M = Cr, W) anions and their neutrals, via anion photoelectron spectroscopy (PES) and density functional theory (DFT) and molecular orbital theory (CCSD(T)) calculations. Well-resolved PES spectra are obtained for M₃O₈⁻ (M = Cr, W) at 193 and 157 nm photon energies. Different PES spectra are observed for M = Cr versus M = W. ExtensiveDFT and CCSD(T) calculations are performed to locate the ground and low-lying excited states for the neutrals and anions. The ground states of Cr₃O₈ and Cr₃O₈⁻ are predicted to be the ³B₂ and ⁴B₂ states of a C₂v structure, respectively, revealing ferromagnetic spin coupling for Cr 3d electrons. In contrast, the ground states of W₃O₈ and W₃O₈⁻ are predicted to be the ¹A' state (Cs symmetry) and the ²A₁ state (C₂v symmetry), respectively, showing metal-metal d-d bonding in the anion. The current cluster geometries are in qualitative agreement with prior DFT studies at the PBE level for M = Cr and the B3LYP level for M = W. The BP86 and PW91 functionals significantly outperform the B3LYP functional for the Cr species, in terms of relative energies, electron detachment energies, and electronic excitation energies, whereas the B3LYP functional is better for the W species. Accurate heats of formation for the ground states of M₃O₈ are calculated from the clustering energies and the heats of formation of MO₂ and MO₃. The energetics have been used to predict redox reaction thermochemistry.

  12. Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti{sub 3}C{sub 2−x}N{sub x}(OH){sub 2} from DFTB calculations

    SciTech Connect

    Enyashin, A.N.; Ivanovskii, A.L.

    2013-11-15

    The structural, electronic properties and stability of the new MXene compounds—two-dimensional pristine carbonitrides Ti{sub 3}C{sub 2−x}N{sub x} and their hydroxylated derivatives Ti{sub 3}C{sub 2−x}N{sub x}(OH){sub 2} are studied by means of DFTB calculations. The genesis of the properties is discussed in the sequence: binary MXenes Ti{sub 3}C{sub 2} (Ti{sub 3}N{sub 2})→hydroxylated forms Ti{sub 3}C{sub 2}(OH){sub 2} (Ti{sub 3}N{sub 2}(OH){sub 2})→pristine MXene Ti{sub 3}C{sub 2−x}N{sub x}→hydroxylated Ti{sub 3}C{sub 2−x}N{sub x}(OH){sub 2}. All examined materials are metallic-like. The most favorable type of OH-covering is presented by the occupation of the hollow sites between three neighboring carbon (nitrogen) atoms. Two-dimensional MXene carbonitrides with random distribution of C and N atoms are found to be thermodynamically more favorable. - Graphical abstract: The side views of the optimized atomic structures of some examined hydroxylated derivatives of MXene Ti{sub 3}CN and their electronic band structures. Display Omitted - Highlights: • Very recently 2D titanium carbonitrides have been synthesized. • Structural, electronic properties and stability for these materials were evaluated. • The hydroxylated derivatives of 2D titanium carbonitrides are examined.

  13. Electronics for Piezoelectric Smart Structures

    NASA Technical Reports Server (NTRS)

    Warkentin, D. J.; Tani, J.

    1997-01-01

    This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.

  14. Benchmark Calculations of Electron-Impact Differential Cross Sections

    SciTech Connect

    Bray, I.; Bostock, C. J.; Fursa, D. V.; Hines, C. W.; Kadyrov, A. S.; Stelbovics, A. T.

    2011-05-11

    The calculation of electron-atom excitation and ionization cross section is considered in both the non-relativistic and relativistic scattering theory. We consider electron collisions with H, He, Cs, and Hg. Differential cross sections for elastic scattering and ionization are presented.

  15. Structural increments in UV spectra of conjugated carbonyl compounds. Part II. CNDO/S-CI calculations of electronic spectra of enamino aldehydes, enamino ketones and enamino amides

    NASA Astrophysics Data System (ADS)

    Kania, L.; Kamieńska-Trela, K.; Witanowski, M.

    1984-06-01

    The semiempirical molecular orbital CNDO/S-CI spectral parameterization is used in order to evaluate structural increments in UV spectra of a series of β-amino-α,β-un- saturated carbonyl compounds. For most of the compounds, theoretical values of con formational and configurational spectral effects are lower than the experimental ones. It is suggested that a substantial part of the discrepancy is associated with the neglect by the CNDO/S-CI approximation of the changes in the nonbonded interaction energies caused by conformational and configurational isomerizaticns. We show that the applica tion of due corrections based on simple electrostatic and van der Waals interactions according to the Lennard-Jones potentials leads to a good agreement in magnitude and sign between the experimental and theoretical increments.

  16. The Electronic Structure of Amorphous Carbon Nanodots.

    PubMed

    Margraf, Johannes T; Strauss, Volker; Guldi, Dirk M; Clark, Timothy

    2015-06-18

    We have studied hydrogen-passivated amorphous carbon nanostructures with semiempirical molecular orbital theory in order to provide an understanding of the factors that affect their electronic properties. Amorphous structures were first constructed using periodic calculations in a melt/quench protocol. Pure periodic amorphous carbon structures and their counterparts doped with nitrogen and/or oxygen feature large electronic band gaps. Surprisingly, descriptors such as the elemental composition and the number of sp(3)-atoms only influence the electronic structure weakly. Instead, the exact topology of the sp(2)-network in terms of effective conjugation defines the band gap. Amorphous carbon nanodots of different structures and sizes were cut out of the periodic structures. Our calculations predict the occurrence of localized electronic surface states, which give rise to interesting effects such as amphoteric reactivity and predicted optical band gaps in the near-UV/visible range. Optical and electronic gaps display a dependence on particle size similar to that of inorganic colloidal quantum dots. PMID:25731776

  17. Spectroscopic and electronic structure calculation of a potential chemotherapeutic agent 5-propyl-6-(p-tolylsulfanyl)pyrimidine-2,4(1H,3H)-dione using first principles

    NASA Astrophysics Data System (ADS)

    Al-Alshaikh, Monirah A.; Al-Deeb, Omar A.; Alzoman, Nourah Z.; El-Emam, Ali A.; Srivastava, Ruchi; Sachan, Alok K.; Prasad, Onkar; Sinha, Leena

    2015-11-01

    Quantum chemical calculations of energy, geometrical structure and vibrational wavenumbers of a potential chemotherapeutic agent namely, 5-propyl-6-(p-tolylsulfanyl)pyrimidine-2,4(1H,3H)-dione were carried out, using DFT method. Comprehensive interpretation of the experimental FT-IR and FT-Raman spectra of the compound under study is based on potential energy distribution. The difference between the observed and scaled wavenumbers of most of the normal modes is very small with B3LYP/6-311 + +G(d,p) method. The UV-Vis spectrum of the compound was recorded and the electronic properties, such as frontier orbitals and band gap energies were calculated by the TD-DFT approach. The values of the electric dipole moment, polarizability and first static hyperpolarizability of the title compound have also been investigated. NBO analysis has been performed to explain the charge transfer within the molecule along with the calculation of different thermo-dynamical properties.

  18. Electronic structure of Co-induced magic clusters grown on Si(111)-(7×7) : Scanning tunneling microscopy and spectroscopy and real-space multiple-scattering calculations

    NASA Astrophysics Data System (ADS)

    Zilani, M. A. K.; Xu, H.; Liu, T.; Sun, Y. Y.; Feng, Y. P.; Wang, X.-S.; Wee, A. T. S.

    2006-05-01

    The electronic structure of cobalt-induced magic clusters grown on Si(111)-(7×7) is investigated by scanning tunneling microscopy, scanning tunneling spectroscopy, and real-space multiple-scattering calculations. Topographical images of a half unit cell of Si(111)-(7×7) with the cluster acquired at low bias voltages of ±0.4V show greatly reduced cluster heights; however, the heights of the corner adatoms are unchanged, indicative of the highly localized nature of the charge distribution. Spectroscopic studies of the clusters indicate a band gap of ˜0.8eV , suggesting localized nonmetallic behavior. The opening of such a band gap is suggested to be a stabilizing factor for the observed magic clusters. A 65-atom Co-Si cluster is constructed to calculate the momentum- and element-projected density of states. The calculated result identifies that the intense state below the Fermi level at -1.75V in the experimental spectroscopic curve is primarily due to localized 3d orbitals of Co atoms in the magic clusters.

  19. Electron photon verification calculations using MCNP4B

    SciTech Connect

    Gierga, D.P.; Adams, K.J.

    1998-07-01

    MCNP4B was released in February 1997 with significant enhancements to electron/photon transport methods. These enhancements have been verified against a wide range of published electron/photon experiments, spanning high energy bremsstrahlung production to electron transmission and reflection. Three sets of bremsstrahlung experiments were simulated. The first verification calculations for bremsstrahlung production used the experimental results in Faddegon for 15 MeV electrons incident on lead, aluminum, and beryllium targets. The calculated integrated bremsstrahlung yields, the bremsstrahlung energy spectra, and the mean energy of the bremsstrahlung beam were compared with experiment. The impact of several MCNP tally options and physics parameters was explored in detail. The second was the experiment of O`Dell which measured the bremsstrahlung spectra from 10 and 20.9 MeV electrons incident on a gold/tungsten target. The final set was a comparison of relative experimental spectra with calculated results for 9.66 MeV electrons incident on tungsten based on the experiment of Starfelt and Koch. The transmission experiments of Ebert were also studied, including comparisons of transmission coefficients for 10.2 MeV electrons incident on carbon, silver, and uranium foils. The agreement between experiment and simulation was usually within two standard deviations of the experimental and calculational errors.

  20. Electronic structures of TiO2-TCNE, -TCNQ, and -2,6-TCNAQ surface complexes studied by ionization potential measurements and DFT calculations: Mechanism of the shift of interfacial charge-transfer bands

    NASA Astrophysics Data System (ADS)

    Fujisawa, Jun-ichi; Hanaya, Minoru

    2016-06-01

    Interfacial charge-transfer (ICT) transitions between inorganic semiconductors and π-conjugated molecules allow direct charge separation without loss of energy. This feature is potentially useful for efficient photovoltaic conversions. Charge-transferred complexes of TiO2 nanoparticles with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its analogues (TCNX) show strong ICT absorption in the visible region. The ICT band was reported to be significantly red-shifted with extension of the π-conjugated system of TCNX. In order to clarify the mechanism of the red-shift, in this work, we systematically study electronic structures of the TiO2-TCNX surface complexes (TCNX; TCNE, TCNQ, 2,6-TCNAQ) by ionization potential measurements and density functional theory (DFT) calculations.

  1. Structural and electronic properties of thallium compounds

    NASA Astrophysics Data System (ADS)

    Paliwal, Neetu; Srivastava, Vipul

    2016-05-01

    The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a0), bulk modulus (B0), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.

  2. Electronic structure of disordered conjugated polymers: Polythiophenes

    SciTech Connect

    Vukmirovic, Nenad; Wang, Lin-Wang

    2008-11-26

    Electronic structure of disordered semiconducting conjugated polymers was studied. Atomic structure was found from a classical molecular dynamics simulation and the charge patching method was used to calculate the electronic structure with the accuracy similar to the one of density functional theory in local density approximation. The total density of states, the local density of states at different points in the system and the wavefunctions of several states around the gap were calculated in the case of poly(3-hexylthiophene) (P3HT) and polythiophene (PT) systems to gain insight into the origin of disorder in the system, the degree of carrier localization and the role of chain interactions. The results indicated that disorder in the electronic structure of alkyl substituted polythiophenes comes from disorder in the conformation of individualchains, while in the case of polythiophene there is an additional contribution due to disorder in the electronic coupling between the chains. Each of the first several wavefunctions in the conduction and valence band of P3HT is localized over several rings of a single chain. It was shown that the localization can be caused in principle both by ring torsions and chain bending, however the effect of ring torsions is much stronger. PT wavefunctions are more complicated due to larger interchain electronic coupling and are not necessarily localized on a single chain.

  3. A new algorithm to handle finite nuclear mass effects in electronic calculations: the ISOTOPE program.

    PubMed

    Gonçalves, Cristina P; Mohallem, José R

    2004-11-15

    We report the development of a simple algorithm to modify quantum chemistry codes based on the LCAO procedure, to account for the isotope problem in electronic structure calculations. No extra computations are required compared to standard Born-Oppenheimer calculations. An upgrade of the Gamess package called ISOTOPE is presented, and its applicability is demonstrated in some examples. PMID:15362130

  4. Two-dimensional calculation of finite-beta modifications of drift and trapped-electron modes

    SciTech Connect

    Rewoldt, G.; Tang, W.M.; Frieman, E.A.

    1980-05-01

    A previous electrostatic calculation for the two-dimensional spatial structure of drift and trapped-electron modes is extended to include finite-..beta.. effects. Specifically, the parallel perturbed vector potential and the parallel Ampere's law are added to the calculation. Illustrative results are presented.

  5. Electronic structure and bonding of the 3d transition metal borides, MB, M =Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu through all electron ab initio calculations

    NASA Astrophysics Data System (ADS)

    Tzeli, Demeter; Mavridis, Aristides

    2008-01-01

    The electronic structure and bonding of the ground and some low-lying states of all first row transition metal borides (MB), ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, and CuB have been studied by multireference configuration interaction (MRCI) methods employing a correlation consistent basis set of quintuple cardinality (5Z). It should be stressed that for all the above nine molecules, experimental results are essentially absent, whereas with the exception of ScB and CuB the remaining seven species are studied theoretically for the first time. We have constructed full potential energy curves at the MRCI/5Z level for a total of 27 low-lying states, subsequently used to extract binding energies, spectroscopic parameters, and bonding schemes. In addition, some 20 or more states for every MB species have been examined at the MRCI/4Z level of theory. The ground state symmetries and corresponding binding energies (in kcal/mol) are Σ-5(ScB), 76; Δ6(TiB), 65; Σ+7(VB), 55; Σ+6(CrB), 31; Π5(MnB), 20; Σ-4(FeB), 54; Δ3(CoB), 66; Σ+2(NiB), 79; and Σ+1(CuB), 49.

  6. Structural, electronic properties and enhancement of electrical polarization in Er2NiMnO6/La2NiMnO6 superlattice by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Lu, Haipeng; Sun, Xun; Hou, Zhihua; Yang, Wen; Wang, Siyuan; Xie, Jianliang; Deng, Longjiang

    2016-03-01

    Employing first-principles calculations, structural, electronic properties of new multiferroic material Er2NiMnO6/La2NiMnO6 perovskite superlattice are investigated. This structure is computed as monoclinic phase with obvious distortion. The average in-plane anti-phase rotation angle, average out-of-plane in-phase rotation angle and other microscopic features are reported in this paper. Ni and Mn are found in this superlattice that stay high spin states. These microscopic properties play important roles in multiferroic properties. Based on these microscopic features, the relationship between the direction of spontaneous polarization and the order of substitution in neighboring A-O layers is explained. Finally, we try to enhance the electrical polarization magnitude by 32% by altering the previous superlattice as LaEr2NiMnO7 structure. Our results show that both repulsion force of A site rare earth ions and the arrangement of B site ions can exert influences on spontaneous polarization.

  7. Monte Carlo Code System for Electron (Positron) Dose Kernel Calculations.

    SciTech Connect

    CHIBANI, OMAR

    1999-05-12

    Version 00 KERNEL performs dose kernel calculations for an electron (positron) isotropic point source in an infinite homogeneous medium. First, the auxiliary code PRELIM is used to prepare cross section data for the considered medium. Then the KERNEL code simulates the transport of electrons and bremsstrahlung photons through the medium until all particles reach their cutoff energies. The deposited energy is scored in concentric spherical shells at a radial distance ranging from zero to twice the source particle range.

  8. Electronic properties of tantalum pentoxide polymorphs from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Lee, J.; Lu, W.; Kioupakis, E.

    2014-11-01

    Tantalum pentoxide (Ta2O5) is extensively studied for its attractive properties in dielectric films, anti-reflection coatings, and resistive switching memory. Although various crystalline structures of tantalum pentoxide have been reported, its structural, electronic, and optical properties still remain a subject of research. We investigate the electronic and optical properties of crystalline and amorphous Ta2O5 structures using first-principles calculations based on density functional theory and the GW method. The calculated band gaps of the crystalline structures are too small to explain the experimental measurements, but the amorphous structure exhibits a strong exciton binding energy and an optical band gap (˜4 eV) in agreement with experiment. We determine the atomic orbitals that constitute the conduction band for each polymorph and analyze the dependence of the band gap on the atomic geometry. Our results establish the connection between the underlying structure and the electronic and optical properties of Ta2O5.

  9. Comparison of electron width models for fast line profile calculations

    NASA Astrophysics Data System (ADS)

    Iglesias, Carlos A.

    2016-03-01

    The first non-vanishing term in the perturbation expansion of the electron contribution to the line width, commonly used in spectral line broadening by plasmas, was previously expressed in terms of the thermally averaged bremsstrahlung Gaunt factor. The approximations in the derivation, however, suggest that the result is uncertain. The electron width formula is tested with the hydrogen Balmer series and found suspect. Calculations for the He II Lyman series also display similar difficulties. The limitation of this electron width formulation is traced to the absence of an explicit strong collision cutoff beyond which the second-order theory is invalid.

  10. Electronic Structure of Iridium Clusters on Graphene

    NASA Astrophysics Data System (ADS)

    Barker, Bradford A.; Bradley, Aaron J.; Ugeda, Miguel M.; Coh, Sinisa; Zettl, Alex; Crommie, Michael F.; Cohen, Marvin L.; Louie, Steven G.

    2015-03-01

    Graphene was predicted to exhibit non-trivial Z2 topology, but its exceedingly weak spin-orbit coupling prevented this from being observed. Previous theoretical work has proposed enhancing the spin-orbit coupling strength by depositing individual adatoms adsorbed onto the surface of graphene. We show experimental evidence that the iridium adatoms cluster, with a cluster size of at least two atoms. We investigate through theoretical calculations the orientation of the iridium dimers on graphene, contrast the electronic structure of iridium dimers with iridium monomers, and compare the theoretical iridium dimer electronic structure calculations with the experimental results determined via scanning tunneling spectroscopy. This work was supported by NSF Grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.

  11. Structural and electronic properties of sodium nanoclusters

    NASA Astrophysics Data System (ADS)

    Perez, Luis A.; Reyes-Nava, Juan A.; Garzon, Ignacio L.

    2006-03-01

    Recent advances on mass selection of sodium nanoclusters and their characterization by photoemission electron spectroscopy [1] have given useful data for a variety of clusters sizes. These data may lead to assignments of the relevant structures by comparing the measured photoelectron spectra (PES) with the electronic density of states (DOS) obtained from DFT calculations. In this work, the lowest energy structures modeled by the many-body Gupta potential, are obtained by using molecular dynamics simulations for Nan (n= 178, 204, 271, 298-300, 309). DFT calculations were then performed for neutral, positively- and negatively-charged Nan clusters. A comparison between the DOS of clusters of the same size but different charge will be presented, as well as between the available experimental PES and the theoretical obtained DOS.[1] H. Haberland, T. Hippler, J. Donges, O. Kostko, M. Schmidt, B. von Issendorff, Phys. Rev. Lett. 94, 035701 (2005).

  12. A highly oxidizing and isolable oxoruthenium(V) complex [Ru(V)(N4O)(O)]2+: electronic structure, redox properties, and oxidation reactions investigated by DFT calculations.

    PubMed

    Guan, Xiangguo; Chan, Sharon Lai-Fung; Che, Chi-Ming

    2013-09-01

    The electronic structure and redox properties of the highly oxidizing, isolable Ru(V)=O complex [Ru(V)(N4O)(O)](2+), its oxidation reactions with saturated alkanes (cyclohexane and methane) and inorganic substrates (hydrochloric acid and water), and its intermolecular coupling reaction have been examined by DFT calculations. The oxidation reactions with cyclohexane and methane proceed through hydrogen atom transfer in a transition state with a calculated free energy barrier of 10.8 and 23.8 kcal mol(-1), respectively. The overall free energy activation barrier (ΔG(≠)=25.5 kcal mol(-1)) of oxidation of hydrochloric acid can be decomposed into two parts: the formation of [Ru(III)(N4O)(HOCl)](2+) (ΔG=15.0 kcal mol(-1)) and the substitution of HOCl by a water molecule (ΔG(≠)=10.5 kcal mol(-1)). For water oxidation, nucleophilic attack on Ru(V)=O by water, leading to O-O bond formation, has a free energy barrier of 24.0 kcal mol(-1), the major component of which comes from the cleavage of the H-OH bond of water. Intermolecular self-coupling of two molecules of [Ru(V)(N4O)(O)](2+) leads to the [(N4O)Ru(IV)-O2-Ru(III)(N4O)](4+) complex with a calculated free energy barrier of 12.0 kcal mol(-1). PMID:23788366

  13. Electronic structure of lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Wooten, David J.

    Due to many of its attributes, Li2B4O7 provides a possible material for incorporation as either a primary or companion material in future solid state neutron detectors. There is however a lack of fundamental characterization information regarding this useful material, particularly its electronic configuration. To address this, an investigation of Li2B4O7(110) and Li2B 4O7(100) was undertaken, utilizing photoemission and inverse photoemission spectroscopic techniques. The measured band gap depended on crystallographic direction with the band gaps ranging from 8.9+/-0.5 eV to 10.1+/-0.5 eV. The measurement yielded a density of states that qualitatively agreed with the theoretical results from model bulk band structure calculations for Li2B4O7; albeit with a larger band gap than predicted, but consistent with the known deficiencies of Local Density Approximation and Density Functional Theory calculations. The occupied states of both surfaces were extremely flat; to the degree that resolving periodic dispersion of the occupied states was inconclusive, within the resolution of the system. However, both surfaces demonstrated clear periodic dispersion within the empty states very close to theoretical Brillouin zone values. These attributes also translated to a lighter charge carrier effective mass in the unoccupied states. Of the two surfaces, Li2B4O 7(110) yielded the more consistent values in orthogonal directions for energy states. The presence of a bulk band gap surface state and image potential state in Li2B4O7(110) was indicative of a defect-free surface. The absence of both in the more polar, more dielectric Li2B4O7(100) was attributed to the presence of defects determined to be O vacancies. The results from Li2B 4O7(110) were indicative of a more stable surface than Li 2B4O7(100). In addition, Li 1s bulk and surface core level components were determined at the binding energies of -56.5+0.4 and -53.7+0.5 eV. Resonance features were observed along the [001

  14. Atomic Structure Calculations from the Los Alamos Atomic Physics Codes

    DOE Data Explorer

    Cowan, R. D.

    The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

  15. Electronic structure of metallic glasses

    SciTech Connect

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (..delta..H) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides.

  16. Electronic structure of bacterial surface protein layers

    SciTech Connect

    Maslyuk, Volodymyr V.; Mertig, Ingrid; Bredow, Thomas; Mertig, Michael; Vyalikh, Denis V.; Molodtsov, Serguei L.

    2008-01-15

    We report an approach for the calculation of the electronic density of states of the dried two-dimensional crystalline surface protein layer (S layer) of the bacterium Bacillus sphaericus NCTC 9602. The proposed model is based on the consideration of individual amino acids in the corresponding conformation of the peptide chain which additively contribute to the electronic structure of the entire protein complex. The derived results agree well with the experimental data obtained by means of photoemission (PE), resonant PE, and near-edge x-ray absorption spectroscopy.

  17. [An empirical model for calculating electron dose distributions].

    PubMed

    Leistner, H; Schüler, W

    1990-01-01

    Dose-distributions in radiation fields are calculated for purpose of irradiation planning from measured depth dose and cross-distributions predominantly. Especially in electron fields the measuring effort is high to this, because these distributions have to be measured for all occurring irradiation parameters and in many different tissue depths. At the very least it can be shown for the 6...10 MeV electron radiation of the linear accelerator Neptun 10p that all required distributions can be calculated from each separately measured depth dose and cross-distribution. For this depth dose distribution and the measured border decrease of cross-distribution are tabulated and the abscissas are submitted to a linear transformation x' = k.x. In case of depth dose distribution the transformation factor k is dependent on electron energy only and in cross-distribution on tissue depth and source-surface-distance additionally. PMID:2356295

  18. Electronic structure and correlation effects in actinides

    SciTech Connect

    Albers, R.C.

    1998-12-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related.

  19. Electron Scattering and Nuclear Structure

    ERIC Educational Resources Information Center

    Trower, W. P.; Ficenec, J. R.

    1971-01-01

    Presents information about the nucleus gained by studies of electron scattering. Discusses what can be implied about the shape of the charge distribution, the nucleus positions, the vibrational modes of the nucleus, the momentum of the nucleus, and the granularity and core structures of the nucleus. (DS)

  20. Electronic Structure Principles and Aromaticity

    ERIC Educational Resources Information Center

    Chattaraj, P. K.; Sarkar, U.; Roy, D. R.

    2007-01-01

    The relationship between aromaticity and stability in molecules on the basis of quantities such as hardness and electrophilicity is explored. The findings reveal that aromatic molecules are less energetic, harder, less polarizable, and less electrophilic as compared to antiaromatic molecules, as expected from the electronic structure principles.

  1. Graph-based linear scaling electronic structure theory

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.; Mniszewski, Susan M.; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Mohd-Yusof, Jamal; Germann, Timothy C.; Wall, Michael E.; Bock, Nicolas; Rubensson, Emanuel H.; Djidjev, Hristo

    2016-06-01

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  2. Graph-based linear scaling electronic structure theory.

    PubMed

    Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations. PMID:27334148

  3. Metallic impurities induced electronic transport in WSe2: First-principle calculations

    NASA Astrophysics Data System (ADS)

    Li, Hongping; Liu, Shuai; Huang, Songlei; Zhang, Quan; Li, Changsheng; Liu, Xiaojuan; Meng, Jian; Tian, Yi

    2016-08-01

    Using density functional theory calculations, we have systematically explored the effect of V, Nb and Ta impurities on the electronic transport properties of 2H-WSe2. The formation energies elucidate dopants are preferred to substitute W atoms, and the incorporation of Nb into WSe2 is most thermodynamically favorable. The crystal structures almost hold the pristine WSe2 structure-type in spite of with slightly bond relaxation. More importantly, a pronounced electronic transport behavior has realized in all doped systems, which is mainly triggered by metal impurities. Our calculation suggests chemical doping is an effective way to precisely modulate WSe2 performance for target technological applications.

  4. First-principles calculations of the electronic structure and optical properties of LiB3O5, CsB3O5, and BaB2O4 crystals

    NASA Astrophysics Data System (ADS)

    Li, Jun; Duan, Chun-Gang; Gu, Zong-Quan; Wang, Ding-Sheng

    1998-03-01

    This paper reports the calculation of electronic structure and linear optical properties of LiB3O5 (LBO), CsB3O5 (CBO), and BaB2O4 (BBO) crystals using the linearized augmented plane-wave band method. It is found that the top of their valence bands consists of O orbitals, while the boron has almost no contribution. The linkage between (B3O7)5- anionic groups in the crystalline state is the main cause of making the gap of LBO and CBO larger than BBO's. The near-edge interband transition contains the contribution of the trigonal coordinated B-O bands in the final state for LBO. For CBO and BBO, the final state consists mainly of cation states at the bottom of the conduction bands. In this case, however, the transition from the O derived valence states to these cation states is quite weak; strong transition only appears till about 1 eV above the absorption edge when B-O orbitals are also involved in the final states.

  5. Monte Carlo Code System for Electron (Positron) Dose Kernel Calculations.

    Energy Science and Technology Software Center (ESTSC)

    1999-05-12

    Version 00 KERNEL performs dose kernel calculations for an electron (positron) isotropic point source in an infinite homogeneous medium. First, the auxiliary code PRELIM is used to prepare cross section data for the considered medium. Then the KERNEL code simulates the transport of electrons and bremsstrahlung photons through the medium until all particles reach their cutoff energies. The deposited energy is scored in concentric spherical shells at a radial distance ranging from zero to twicemore » the source particle range.« less

  6. Structure refinement from precession electron diffraction data.

    PubMed

    Palatinus, Lukáš; Jacob, Damien; Cuvillier, Priscille; Klementová, Mariana; Sinkler, Wharton; Marks, Laurence D

    2013-03-01

    Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for the calculation of diffracted intensities. The method is demonstrated on data from three materials - silicon, orthopyroxene (Mg,Fe)(2)Si(2)O(6) and gallium-indium tin oxide (Ga,In)(4)Sn(2)O(10). In particular, it is shown that atomic occupancies of mixed crystallographic sites can be refined to an accuracy approaching X-ray or neutron diffraction methods. In comparison with conventional electron diffraction data, the refinement against precession diffraction data yields significantly lower figures of merit, higher accuracy of refined parameters, much broader radii of convergence, especially for the thickness and orientation of the sample, and significantly reduced correlations between the structure parameters. The full dynamical refinement is compared with refinement using kinematical and two-beam approximations, and is shown to be superior to the latter two. PMID:23403968

  7. Linear Scaling Electronic Structure Methods with Periodic Boundary Conditions

    SciTech Connect

    Gustavo E. Scuseria

    2008-02-08

    The methodological development and computational implementation of linear scaling quantum chemistry methods for the accurate calculation of electronic structure and properties of periodic systems (solids, surfaces, and polymers) and their application to chemical problems of DOE relevance.

  8. Electronic Structure of B12 coenzymes

    NASA Astrophysics Data System (ADS)

    Ouyang, Lizhi; Ching, W. Y.; Randaccio, Lucio

    2001-06-01

    We have carried out an ab-initio local density functional calculations of the two most important B12 coenzymes, adoensyl-cobalamin (Ado-Cbl) and methyl-cobalamin (Me-Cbl). The crystal structures were determined by accurate X-ray synchrotron radiation measurements. Both crystals have space group P2121 with four molecules, or about 800 atoms, per unit cell. Our electronic structure calculation is based on one full molecule including the side chains. Results are analyzed in terms of atom and orbital resolved partial density of states (PDOS), Mulliken effective charges and bond orders. The PDOS analysis shows that the Co complexes of both B12 coenzymes had a HOMO/LUMO gap of about 1.5 eV. The Co-C bond order in Me-Cbl is smaller than that in Ado-Cbl. This appears to be in contradiction with the measured bond dissociated energies. However, this could also indicate the importance of the effects of solvents, which were not included in the calculation. We are investigating whether the effect of the solvents could dramatically modify the electronic structures of Ado-Cbl and Me-Cbl.

  9. Ab initio calculation of the electronic and optical properties of solid pentacene

    SciTech Connect

    Tiago, Murilo L.; Northrup, John E.; Louie, Steve G.

    2002-11-01

    The optical and electronic properties of crystalline pentacene are studied, using a first-principles Green's-function approach. The quasiparticle energies are calculated within the GW approximation and the electron-hole excitations are computed by solving the Bethe-Salpeter equation. We investigate the role of polymorphism on the electronic energy gap and linear optical spectrum by studying two different crystalline phases: the solution-phase structure and the vapor-phase structure. charge-transfer excitons are found to dominate the optical spectrum. Excitons with sizable binding energies are predicted for both phases.

  10. Electronic structure theory: Applications and geometrical aspects

    NASA Astrophysics Data System (ADS)

    Coh, Sinisa

    This thesis contains several applications of the first-principles electronic-structure theory with special emphasis in parts of the thesis on the geometrical aspects of the theory. We start by reviewing the basics of the first-principles electronic-structure methods which are then used throughout the thesis. The first application of these methods is on the analysis of the stability and lattice dynamics of alpha- and beta-cristobalite phases of SiO2. We also map the complete low-energy landscape connecting these two structures and give implications on the phase transition in this compound. Next we study a family of Pbnm perovskites that are promising candidates for silicon-compatible high-K dielectrics. We calculate their structure and dielectric response, and compare with experimental results where available. The third application of these methods is to the large isosymmetric reorientation of oxygen octahedra rotation axes in epitaxially strained perovskites. We explain the origin of the peculiar energy landscape topology as a function of epitaxial strain. In the part of the thesis devoted to the geometrical aspects of electronic structure theory, we begin by extending the concept of electronic polarization to a Chern insulators. These insulators are characterized by a non-zero off-diagonal sigma_xy conductivity tensor component, quantized in units of e 2/h. Finally we discuss another geometrical quantity, the Chern-Simons orbital magnetoelectric coupling. We present a first-principles based calculation of this quantity in several compounds, and motivated by recent developments in the theory of topological insulators, we speculate about the existence of "large-theta materials," in which this kind of coupling could be unusually large.

  11. Electron transport calculations with Wannier functions in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Dong, Wushi; Lopez-Bezanilla, Alejandro; Littlewood, Peter; Andreas Roelofs'group at Argonne National Lab Collaboration

    The vertical stacking of 2D materials forming van der Waals heterostructures (vdWHs) exhibits a wide range of interesting properties. A combined approach based on the Green's function formalism and a mean-field description of the electronic structure is used to calculate vertical electron transport in vdWHs. Tight-binding parameters obtained from Maximally Localized Wannier Functions enable us to model quantum electron transport at low computational costs. Our analysis of electron transport efficiencies provides the foundation and motivation for experimental works.

  12. Energetics, bonding mechanism and electronic structure of metal/ceramic interfaces

    SciTech Connect

    Freeman, A.J.

    1993-01-01

    Progress are reported on: electronic structure of PdO, PtO, and AgO (band structure calculations); ab initio calculations of electronic structure of TiO{sub 2}(110) surface; and electronic structure of VO{sub 2} and TiO{sub 2} thin films and multilayers. (DLC)

  13. Electronic structure theory of the superheavy elements

    NASA Astrophysics Data System (ADS)

    Eliav, Ephraim; Fritzsche, Stephan; Kaldor, Uzi

    2015-12-01

    High-accuracy calculations of atomic properties of the superheavy elements (SHE) up to element 122 are reviewed. The properties discussed include ionization potentials, electron affinities and excitation energies, which are associated with the spectroscopic and chemical behavior of these elements, and are therefore of considerable interest. Accurate predictions of these quantities require high-order inclusion of relativity and electron correlation, as well as large, converged basis sets. The Dirac-Coulomb-Breit Hamiltonian, which includes all terms up to second order in the fine-structure constant α, serves as the framework for the treatment; higher-order Lamb shift terms are considered in some selected cases. Electron correlation is treated by either the multiconfiguration self-consistent-field approach or by Fock-space coupled cluster theory. The latter is enhanced by the intermediate Hamiltonian scheme, allowing the use of larger model (P) spaces. The quality of the calculations is assessed by applying the same methods to lighter homologs of the SHEs and comparing with available experimental information. Very good agreement is obtained, within a few hundredths of an eV, and similar accuracy is expected for the SHEs. Many of the properties predicted for the SHEs differ significantly from what may be expected by straightforward extrapolation of lighter homologs, demonstrating that the structure and chemistry of SHEs are strongly affected by relativity. The major scientific challenge of the calculations is to find the electronic structure and basic atomic properties of the SHE and assign its proper place in the periodic table. Significant recent developments include joint experimental-computational studies of the excitation spectrum of Fm and the ionization energy of Lr, with excellent agreement of experiment and theory, auguring well for the future of research in the field.

  14. Composite electron propagator methods for calculating ionization energies

    NASA Astrophysics Data System (ADS)

    Díaz-Tinoco, Manuel; Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.

    2016-06-01

    Accurate ionization energies of molecules may be determined efficiently with composite electron-propagator (CEP) techniques. These methods estimate the results of a calculation with an advanced correlation method and a large basis set by performing a series of more tractable calculations in which large basis sets are used with simpler approximations and small basis sets are paired with more demanding correlation techniques. The performance of several CEP methods, in which diagonal, second-order electron propagator results with large basis sets are combined with higher-order results obtained with smaller basis sets, has been tested for the ionization energies of closed-shell molecules from the G2 set. Useful compromises of accuracy and computational efficiency employ complete-basis-set extrapolation for second-order results and small basis sets in third-order, partial third-order, renormalized partial-third order, or outer valence Green's function calculations. Analysis of results for vertical as well as adiabatic ionization energies leads to specific recommendations on the best use of regular and composite methods. Results for 22 organic molecules of interest in the design of photovoltaic devices, benzo[a]pyrene, Mg-octaethylporphyrin, and C60 illustrate the capabilities of CEP methods for calculations on large molecules.

  15. Composite electron propagator methods for calculating ionization energies.

    PubMed

    Díaz-Tinoco, Manuel; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V

    2016-06-14

    Accurate ionization energies of molecules may be determined efficiently with composite electron-propagator (CEP) techniques. These methods estimate the results of a calculation with an advanced correlation method and a large basis set by performing a series of more tractable calculations in which large basis sets are used with simpler approximations and small basis sets are paired with more demanding correlation techniques. The performance of several CEP methods, in which diagonal, second-order electron propagator results with large basis sets are combined with higher-order results obtained with smaller basis sets, has been tested for the ionization energies of closed-shell molecules from the G2 set. Useful compromises of accuracy and computational efficiency employ complete-basis-set extrapolation for second-order results and small basis sets in third-order, partial third-order, renormalized partial-third order, or outer valence Green's function calculations. Analysis of results for vertical as well as adiabatic ionization energies leads to specific recommendations on the best use of regular and composite methods. Results for 22 organic molecules of interest in the design of photovoltaic devices, benzo[a]pyrene, Mg-octaethylporphyrin, and C60 illustrate the capabilities of CEP methods for calculations on large molecules. PMID:27305999

  16. Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip

    2007-10-01

    The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.

  17. Structural phase transition and electronic properties of NdBi

    SciTech Connect

    Sahu, Ashvini K.; Patiya, Jagdish; Sanyal, Sankar P.

    2015-06-24

    The structural and electronic properties of NdBi from an electronic structure calculation have been presented. The calculation is performed using self-consistent tight binding linear muffin tin orbital (TB-LMTO) method within the local density approximation (LDA). The calculated equilibrium structural parameters are in good agreement with the available experimental results. It is found that this compound shows metallic behavior under ambient condition and undergoes a structural phase transition from the NaCl structure to the CsCl structure at the pressure 20.1 GPa. The electronic structures of NdBi under pressure are investigated. It is found that NdBi have metallization and the hybridizations of atoms in NdBi under pressure become stronger.

  18. First-Principles Mobility Calculations and Atomic-Scale Interface Roughness in Nanoscale Structures

    SciTech Connect

    Evans, Matthew H; Zhang, Xiaoguang; Joannopoulos, J. D.; Pantelides, Sokrates T

    2005-01-01

    Calculations of mobilities have so far been carried out using approximate methods that suppress atomic-scale detail. Such approaches break down in nanoscale structures. Here we report the development of a method to calculate mobilities using atomic-scale models of the structures and density functional theory at various levels of sophistication and accuracy. The method is used to calculate the effect of atomic-scale roughness on electron mobilities in ultrathin double-gate silicon-on-insulator structures. The results elucidate the origin of the significant reduction in mobility observed in ultrathin structures at low electron densities.

  19. Electronic structure calculations of delafossite Cu-based transparent conducting oxides CuMO2 (M =B,Al,Ga,In) by quasiparticle self-consistent GW approximation and Tran-Blaha's modified Becke-Johnson exchange potential

    NASA Astrophysics Data System (ADS)

    Thatribud, Abdulmutta; Pengpan, Teparksorn

    2014-09-01

    In this work, band gaps of the delafossite Cu-based transparent conducting oxides CuMO2 (M =B,Al,Ga,In) are calculated by density functional theory (DFT) implemented with many-body perturbation theory (MBPT) based on quasiparticle self-consistent GW approximation (QPscGW) and with Tran-Blaha's modified Becke-Johnson functional (DFT-TB09). Their band gaps are explicitly improved from DFT within local density approximation (LDA). Their optical absorption spectra are also calculated by solving Bethe-Salpeter equation (BSE) that includes the electron-hole correlation effect; they show strong excitonic peaks.

  20. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  1. Monte Carlo calculation of monitor unit for electron arc therapy

    SciTech Connect

    Chow, James C. L.; Jiang Runqing

    2010-04-15

    Purpose: Monitor unit (MU) calculations for electron arc therapy were carried out using Monte Carlo simulations and verified by measurements. Variations in the dwell factor (DF), source-to-surface distance (SSD), and treatment arc angle ({alpha}) were studied. Moreover, the possibility of measuring the DF, which requires gantry rotation, using a solid water rectangular, instead of cylindrical, phantom was investigated. Methods: A phase space file based on the 9 MeV electron beam with rectangular cutout (physical size=2.6x21 cm{sup 2}) attached to the block tray holder of a Varian 21 EX linear accelerator (linac) was generated using the EGSnrc-based Monte Carlo code and verified by measurement. The relative output factor (ROF), SSD offset, and DF, needed in the MU calculation, were determined using measurements and Monte Carlo simulations. An ionization chamber, a radiographic film, a solid water rectangular phantom, and a cylindrical phantom made of polystyrene were used in dosimetry measurements. Results: Percentage deviations of ROF, SSD offset, and DF between measured and Monte Carlo results were 1.2%, 0.18%, and 1.5%, respectively. It was found that the DF decreased with an increase in {alpha}, and such a decrease in DF was more significant in the {alpha} range of 0 deg. - 60 deg. than 60 deg. - 120 deg. Moreover, for a fixed {alpha}, the DF increased with an increase in SSD. Comparing the DF determined using the rectangular and cylindrical phantom through measurements and Monte Carlo simulations, it was found that the DF determined by the rectangular phantom agreed well with that by the cylindrical one within {+-}1.2%. It shows that a simple setup of a solid water rectangular phantom was sufficient to replace the cylindrical phantom using our specific cutout to determine the DF associated with the electron arc. Conclusions: By verifying using dosimetry measurements, Monte Carlo simulations proved to be an alternative way to perform MU calculations effectively

  2. Radial Moment Calculations of Coupled Electron-Photon Beams

    SciTech Connect

    FRANKE,BRIAN C.; LARSEN,EDWARD W.

    2000-07-19

    The authors consider the steady-state transport of normally incident pencil beams of radiation in slabs of material. A method has been developed for determining the exact radial moments of 3-D beams of radiation as a function of depth into the slab, by solving systems of 1-D transport equations. They implement these radial moment equations in the ONEBFP discrete ordinates code and simulate energy-dependent, coupled electron-photon beams using CEPXS-generated cross sections. Modified P{sub N} synthetic acceleration is employed to speed up the iterative convergence of the 1-D charged particle calculations. For high-energy photon beams, a hybrid Monte Carlo/discrete ordinates method is examined. They demonstrate the efficiency of the calculations and make comparisons with 3-D Monte Carlo calculations. Thus, by solving 1-D transport equations, they obtain realistic multidimensional information concerning the broadening of electron-photon beams. This information is relevant to fields such as industrial radiography, medical imaging, radiation oncology, particle accelerators, and lasers.

  3. Molecular and electron-spin structures of a ring-shaped mixed-valence polyoxovanadate (IV, V) studied by (11)B and (23)Na solid-state NMR spectroscopy and DFT calculations.

    PubMed

    Iijima, Takahiro; Yamase, Toshihiro; Nishimura, Katsuyuki

    2016-01-01

    (11)B and (23)Na solid-state nuclear magnetic resonance (NMR) spectra of ring-shaped paramagnetic crystals of H15[V7(IV)V5(V)B32O84Na4]·13H2O containing seven d(1) electrons from V(IV) were studied. Magic-angle-spinning (MAS) and multiple-quantum MAS NMR experiments were performed at moderate (9.4T) and ultrahigh magnetic fields (21.6T). The NMR parameters for quadrupole and isotropic chemical shift interactions were estimated by simulation of the NMR spectra and from relativistic density functional theory (DFT) calculations. Four Na ions incorporated into the framework were found to occupy four distinct sites with different populations. The DFT calculation showed that d(1) electrons with effectively one up-spin caused by strong antiferromagnetic interactions were delocalized over the 12V ions. PMID:27018827

  4. Electronic structure of graphite oxide

    NASA Astrophysics Data System (ADS)

    Jeong, Hae Kyung; Yang, Cheolsoo; Kim, Bong Soo; Kim, Ki-Jeong

    2011-03-01

    We have investigated the electronic structure of graphite oxide by photoelectron spectroscopy at the Pohang Accelerator Laboratory, Korea. The typical sp 2 hybridization states found in graphite were also seen in graphite oxide. However, the π state disappeared near the Fermi level because of bonding between the π and oxygen-related states originating from graphite oxide, indicating electron transfer from graphite to oxygen and resulting in a downward shift of the highest occupied molecular orbital (HOMO) state to higher binding energies. The band gap opening increased to about 1.8 eV, and additional oxygen-related peaks were observed at 8.5 and 27 eV. This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2010-0004592), and partly by the MEST (2009-0087138). Experiments at the PLS were supported in part by POSTECH and MEST.

  5. Electronic instrumentation for smart structures

    NASA Astrophysics Data System (ADS)

    Blanar, George J.

    1995-04-01

    The requirements of electronic instrumentation for smart structures are similar to those of data acquisition systems at our national particle physics laboratories. Modern high energy and heavy ion physics experiments may have tens of thousands of channels of data sources producing data that must be converted to digital form, compacted, stored and interpreted. In parallel, multiple sensors distributed in and around smart structures generate either binary or analog signals that are voltage, charge, or time like in their information content. In all cases, they must be transmitted, converted and preserved into a unified digital format for real-time processing. This paper will review the current status of practical large scale electronic measurement systems with special attention to architectures and physical organization. Brief surveys of the current state of the art will include preamplifiers and amplifiers, comparators and discriminators, voltage or charge analog-to-digital converters, time internal meters or time-to-digital converters, and finally, counting or scalar systems. The paper will conclude by integrating all of these ideas in a concept for an all-digital readout of a smart structure using the latest techniques used in physics research today.

  6. Electronic and magnetic structures of chain structured iron selenide compounds

    NASA Astrophysics Data System (ADS)

    Li, Wei; Setty, Chandan; Chen, X. H.; Hu, Jiangping

    2014-08-01

    Electronic and magnetic structures of iron selenide compounds Ce2O2FeSe2 (2212*) and BaFe2Se3 (123*) are studied by the first-principles calculations. We find that while all these compounds are composed of one-dimensional (1D) Fe chain (or ladder) structures, their electronic structures are not close to be quasi-1D. The magnetic exchange couplings between two nearest-neighbor (NN) chains in 2212* and between two NN two-leg-ladders in 123* are both antiferromagnetic (AFM), which is consistent with the presence of significant third NN AFM coupling, a common feature shared in other iron-chalcogenides, FeTe (11*) and K y Fe2- x Se2 (122*). In magnetic ground states, each Fe chain of 2212* is ferromagnetic and each two-leg ladder of 123* form a block-AFM structure. We suggest that all magnetic structures in iron-selenide compounds can be unified into an extended J 1- J 2- J 3 model. Spin-wave excitations of the model are calculated and can be tested by future experiments on these two systems.

  7. An investigation of the electronic structure of Cu{sub 2}FeSn{sub 3-x}Ti{sub x}S{sub 8} (0{<=}x{<=}3) thiospinel spin-crossover materials by X-ray absorption spectroscopy and electronic structure calculations

    SciTech Connect

    Hayes, John R.; Grosvenor, Andrew P.

    2013-01-15

    The spin-crossover (SCO) transition is an interesting phenomenon in which a metal center transitions from a low-spin state to a high-spin state (or vice versa) upon some external perturbation. Only a few studies have investigated the SCO transition in crystalline compounds and the Cu{sub 2}FeSn{sub 3-x}Ti{sub x}S{sub 8} thiospinels present an opportunity for such a study. Fe K-XANES has been used to investigate the changes in the electronic structure of these materials as Ti is substituted for Sn. The room-temperature Fe K-edge XANES spectra showed that the pre-edge intensity increased with increasing Ti content as a result of the Fe-S bond becoming more covalent. Ti K- and S K-edge XANES spectra confirmed this analysis. Electronic structure calculations were also performed to aid in the interpretation of the XANES spectra. Temperature-dependent Fe K-edge XANES spectra were further collected to study the SCO transition and showed that the main-edge features decreased in intensity with decreasing temperature, corresponding to variations in the average Fe{sup 2+} spin-state. - Graphical abstract: The Cu{sub 2}FeSn{sub 3-x}Ti{sub x}S{sub 8} spin-crossover materials have been investigated by XANES. The pre-edge region of the Fe K-edge spectra increases with greater Ti incorporation because of the Fe-S bonds becoming more covalent. Highlights: Black-Right-Pointing-Pointer Cu{sub 2}FeSn{sub 3-x}Ti{sub x}S{sub 8} thiospinels were investigated by XANES. Black-Right-Pointing-Pointer The covalency of the Fe-S and Ti-S bonds increases with greater Ti incorporation. Black-Right-Pointing-Pointer T-dependent Fe K-edge XANES spectra were collected to investigate SCO transitions. Black-Right-Pointing-Pointer Covalent bonding makes study of the SCO transition difficult by Fe K-edge XANES. Black-Right-Pointing-Pointer The bonding interactions were investigated through examination of S K-edge spectra.

  8. Calculation of runaway electrons stopping power in ITER

    NASA Astrophysics Data System (ADS)

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.

    2011-08-01

    The energy loss rate of runaway electrons (RE) was analysed for ITER plasma facing components materials (Be and W). The stopping power, the energy deposition profiles, and the material erosion are estimated by using the codes MEMOS and ENDEP. The latter has been updated by including the effect of the target's polarizability. Our calculations show that this effect is significant for high RE energies and low Z materials such as Be. We also find that the conversion of the RE's magnetic energy into heat can explain the temperature rise on dump plate in JET. In the case of ITER, the calculated heat deposition due to RE is almost two times the melting threshold energy of Be but well below that of W.

  9. Calculation of electron scattering from the ground state of ytterbium

    SciTech Connect

    Bostock, Christopher J.; Fursa, Dmitry V.; Bray, Igor

    2011-05-15

    We report on the application of the convergent close-coupling method, in both relativistic and nonrelativistic formulations, to electron scattering from ytterbium. Angle-differential and integrated cross sections are presented for elastic scattering and excitation of the states (6s6p){sup 3}P{sub 0,1,2}, (6s6p){sup 1}P{sub 1}{sup o}, (6s7p){sup 1}P{sub 1}{sup o}, and (6s5d){sup 1}D{sub 2}{sup e} for a range of incident electron energies. We also present calculations of the total cross section, and angle-differential Stokes parameters for excitation of the (6s6p){sup 3}P{sub 1}{sup o} state from the ground state. A comparison is made with the relativistic distorted-wave method and experiments.

  10. Electronic structure and optical properties of resin

    NASA Astrophysics Data System (ADS)

    Rao, Zhi-Fan; Zhou, Rong-Feng

    2013-03-01

    We used the density of functional theory (DFT) to study the electronic structure and density of states of resin by ab initio calculation. The results show the band gap of resin is 1.7 eV. The covalent bond is combined C/O atoms with H atoms. The O 2p orbital is the biggest effect near the Fermi level. The results of optical properties show the reflectivity is low, and the refractive index is 1.7 in visible light range. The highest absorption coefficient peak is in 490 nm and the value is 75,000.

  11. Lattice Boltzmann Model for Electronic Structure Simulations

    NASA Astrophysics Data System (ADS)

    Mendoza, M.; Herrmann, H. J.; Succi, S.

    2015-09-01

    Recently, a new connection between density functional theory and kinetic theory has been proposed. In particular, it was shown that the Kohn-Sham (KS) equations can be reformulated as a macroscopic limit of the steady-state solution of a suitable single-particle kinetic equation. By using a discrete version of this new formalism, the exchange and correlation energies of simple atoms and the geometrical configuration of the methane molecule were calculated accurately. Here, we discuss the main ideas behind the lattice kinetic approach to electronic structure computations, offer some considerations for prospective extensions, and also show additional numerical results, namely the geometrical configuration of the water molecule.

  12. Real-space method for highly parallelizable electronic transport calculations

    NASA Astrophysics Data System (ADS)

    Feldman, Baruch; Seideman, Tamar; Hod, Oded; Kronik, Leeor

    2014-07-01

    We present a real-space method for first-principles nanoscale electronic transport calculations. We use the nonequilibrium Green's function method with density functional theory and implement absorbing boundary conditions (ABCs, also known as complex absorbing potentials, or CAPs) to represent the effects of the semi-infinite leads. In real space, the Kohn-Sham Hamiltonian matrix is highly sparse. As a result, the transport problem parallelizes naturally and can scale favorably with system size, enabling the computation of conductance in relatively large molecular junction models. Our use of ABCs circumvents the demanding task of explicitly calculating the leads' self-energies from surface Green's functions, and is expected to be more accurate than the use of the jellium approximation. In addition, we take advantage of the sparsity in real space to solve efficiently for the Green's function over the entire energy range relevant to low-bias transport. We illustrate the advantages of our method with calculations on several challenging test systems and find good agreement with reference calculation results.

  13. Multiple scattering calculations of relativistic electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Rehr, J. J.; Verbeeck, J.

    2010-04-01

    A generalization of the real-space Green’s-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite CK edge, for which we present an accurate magic angle measurement consistent with the predicted value.

  14. Relativistic collision rate calculations for electron-air interactions

    SciTech Connect

    Graham, G.; Roussel-Dupre, R.

    1993-12-01

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 keV. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data are available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two dimensional grid as a function of mean kinetic energy and thermal energy.

  15. Relativistic collision rate calculations for electron-air interactions

    SciTech Connect

    Graham, G.; Roussel-Dupre, R.

    1992-12-16

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 kev. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data is available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two-dimensional grid as a function of mean kinetic energy and thermal energy.

  16. Spatial and electron structure of substituted gold clusters

    NASA Astrophysics Data System (ADS)

    Yarzhemsky, V. G.; Kazaryan, M. A.; Bulychev, N. A.; Dyakov, Y. A.; Kosheleva, O. K.; Chen, C. H.

    2015-12-01

    The structure of intermetallic clusters Au12M (M=Hf, Ta, W, Re, Os) and features of their interaction with electron donors and acceptor atoms, i.e. H and F, were investigated making use computer calculation based of density functional theory. In was found that metal clusters with effective electron number equal to 18 have more symmetrical shape then that with a number of electrons differing from 18. The interaction of gold nanoparticles with silica was modeled by attachment of SiO4H groups and the connection of the electronic structure with electronic transitions in spaser is discussed.

  17. Incidence of the muffin-tin approximation on the electronic structure of large clusters calculated by the MS-LSD method: The typical case of C{sub 60}

    SciTech Connect

    Razafinjanahary, H.; Rogemond, F.; Chermette, H.

    1994-08-15

    The MS-LSD method remains a method of interest when rapidity and small computer resources are required; its main drawback is some lack of accuracy, mainly due to the muffin-tin distribution of the potential. In the case of large clusters or molecules, the use of an empty sphere to fill, in part, the large intersphere region can improve greatly the results. Calculations bearing on C{sub 60} has been undertaken to underline this trend, because, on the one hand, the fullerenes exhibit a remarkable possibility to fit a large empty sphere in the center of the cluster and, on the other hand, numerous accurate calculations have already been published, allowing quantitative comparison with results. The author`s calculations suggest that in case of added empty sphere the results compare well with the results of more accurate calculations. The calculated electron affinity for C{sub 60} and C{sub 60}{sup {minus}} are in reasonable agreement with experimental values, but the stability of C{sub 60}{sup 2-} in gas phase is not found. 35 refs., 3 figs., 5 tabs.

  18. Calculations of Electron Transport in Fast Ignition Targets.

    NASA Astrophysics Data System (ADS)

    Town, R. P. J.; Kruer, W. L.; Langdon, A. B.; Lasinski, B. F.; Tabak, M.; Welch, D. R.

    2002-11-01

    A crucial issue for the viability of the fast ignition approach [1] to inertial fusion energy is the transport of the ignition pulse energy from the critical surface to the high-density compressed fuel. For example, the ignition beam energy depends on the cross section area of the electron beam. Experiments of the interaction of short-pulse high intensity lasers with surrogate solid-density thin targets with buried K-α diagnostic layers have shown a fairly well collimated beam although with a larger radius than the laser beam spot [2]. We report on LSP calculations of these experiments. These calculations include the effects of non-normal electron beam injection, an effect previously not included in simulations. The LSP code [3] uses a direct implicit particle-in-cell algorithm in 3 dimensions to solve for the beam particles. The background particles are treated as a fluid. The implications for fast ignition will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract W-7405-ENG-48. [1] M. Tabak, et al, Phys. Plasmas 1, 1626 (1994). [2] J. A. Koch, et al, Phys. Rev. E 65, 016410-1 (2001). [3] D. R. Welch, D. V. Rose, B. V. Oliver, and R. E. Clark, Nucl. Inst. Meth. Phys. Res. A 242, 134 (2001).

  19. Pu electronic structure and photoelectron spectroscopy

    SciTech Connect

    Joyce, John J; Durakiewicz, Tomasz; Graham, Kevin S; Bauer, Eric D; Moore, David P; Mitchell, Jeremy N; Kennison, John A; Martin, Richard L; Roy, Lindsay E; Scuseria, G. E.

    2010-01-01

    The electronic structure of PuCoGa{sub 5}, Pu metal, and PuO{sub 2} is explored using photoelectron spectroscopy. Ground state electronic properties are inferred from temperature dependent photoemission near the Fermi energy for Pu metal. Angle-resolved photoemission details the energy vs. crystaJ momentum landscape near the Fermi energy for PuCoGa{sub 5} which shows significant dispersion in the quasiparticle peak near the Fermi energy. For the Mott insulators AnO{sub 2}(An = U, Pu) the photoemission results are compared against hybrid functional calculations and the model prediction of a cross over from ionic to covalent bonding is found to be reasonable.

  20. Assessing the effect of electron density in photon dose calculations

    SciTech Connect

    Seco, J.; Evans, P. M.

    2006-02-15

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown