Sample records for calculated electronic structure

  1. Wavelets in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Modisette, Jason Perry

    1997-09-01

    Ab initio calculations of the electronic structure of bulk materials and large clusters are not possible on today's computers using current techniques. The storage and diagonalization of the Hamiltonian matrix are the limiting factors in both memory and execution time. The scaling of both quantities with problem size can be reduced by using approximate diagonalization or direct minimization of the total energy with respect to the density matrix in conjunction with a localized basis. Wavelet basis members are much more localized than conventional bases such as Gaussians or numerical atomic orbitals. This localization leads to sparse matrices of the operators that arise in SCF multi-electron calculations. We have investigated the construction of the one-electron Hamiltonian, and also the effective one- electron Hamiltonians that appear in density-functional and Hartree-Fock theories. We develop efficient methods for the generation of the kinetic energy and potential matrices, the Hartree and exchange potentials, and the local exchange-correlation potential of the LDA. Test calculations are performed on one-electron problems with a variety of potentials in one and three dimensions.

  2. Probing Actinide Electronic Structure through Pu Cluster Calculations

    DOE PAGES

    Ryzhkov, Mickhail V.; Mirmelstein, Alexei; Yu, Sung-Woo; ...

    2013-02-26

    The calculations for the electronic structure of clusters of plutonium have been performed, within the framework of the relativistic discrete-variational method. Moreover, these theoretical results and those calculated earlier for related systems have been compared to spectroscopic data produced in the experimental investigations of bulk systems, including photoelectron spectroscopy. Observation of the changes in the Pu electronic structure as a function of size provides powerful insight for aspects of bulk Pu electronic structure.

  3. Electronic Structure Calculation of Permanent Magnets using the KKR Green's Function Method

    NASA Astrophysics Data System (ADS)

    Doi, Shotaro; Akai, Hisazumi

    2014-03-01

    Electronic structure and magnetic properties of permanent magnetic materials, especially Nd2Fe14B, are investigated theoretically using the KKR Green's function method. Important physical quantities in magnetism, such as magnetic moment, Curie temperature, and anisotropy constant, which are obtained from electronics structure calculations in both cases of atomic-sphere-approximation and full-potential treatment, are compared with past band structure calculations and experiments. The site preference of heavy rare-earth impurities are also evaluated through the calculation of formation energy with the use of coherent potential approximations. Further, the development of electronic structure calculation code using the screened KKR for large super-cells, which is aimed at studying the electronic structure of realistic microstructures (e.g. grain boundary phase), is introduced with some test calculations.

  4. The structural, electronic and optical properties of Au-ZnO interface structure from the first-principles calculation

    NASA Astrophysics Data System (ADS)

    Huo, Jin-Rong; Li, Lu; Cheng, Hai-Xia; Wang, Xiao-Xu; Zhang, Guo-Hua; Qian, Ping

    2018-03-01

    The interface structure, electronic and optical properties of Au-ZnO are studied using the first-principles calculation based on density functional theory (DFT). Given the interfacial distance, bonding configurations and terminated surface, we built the optimal interface structure and calculated the electronic and optical properties of the interface. The total density of states, partial electronic density of states, electric charge density and atomic populations (Mulliken) are also displayed. The results show that the electrons converge at O atoms at the interface, leading to a stronger binding of interfaces and thereby affecting the optical properties of interface structures. In addition, we present the binding energies of different interface structures. When the interface structure of Au-ZnO gets changed, furthermore, varying optical properties are exhibited.

  5. Site-specific electronic structure analysis by channeling EELS and first-principles calculations.

    PubMed

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Yamamoto, Yu; Ikeno, Hirokazu; Yoshioka, Satoru; Tanaka, Isao

    2006-01-01

    Site-specific electronic structures were investigated by electron energy loss spectroscopy (EELS) under electron channeling conditions. The Al-K and Mn-L(2,3) electron energy loss near-edge structure (ELNES) of, respectively, NiAl2O4 and Mn3O4 were measured. Deconvolution of the raw spectra with the instrumental resolution function restored the blunt and hidden fine features, which allowed us to interpret the experimental spectral features by comparing with theoretical spectra obtained by first-principles calculations. The present method successfully revealed the electronic structures specific to the differently coordinated cationic sites.

  6. Electronic structure of PPP@ZnO from all-electron quasiarticle calculations

    NASA Astrophysics Data System (ADS)

    Höffling, Benjamin; Nabok, Dimitri; Draxl, Claudia; Condensed Matter Theory Group, Humboldt University Berlin Team

    We investigate the electronic properties of poly(para-phenylene) (PPP) adsorbed on the non-polar (001) surface of rocksalt (rs) ZnO using all-electron density functional theory (DFT) as well as quasiparticle (QP) calculations within the GW approach. A particular focus is put on the electronic band discontinuities at the interface, where we investigate the impact of quantum confinement, molecular polarization, and charge rearrangement. For our prototypical system, PPP@ZnO, we find a type-I heterostructure. Comparison of the band offsets derived from a QP-treatment of the hybrid system with predictions based on mesoscopic methods, like the Shockley-Anderson model or alignment via the electrostatic potential, reveals the inadequacy of these simple approaches for the prediction of the electronic structure of such inorganic/organic heterosystems. Finally, we explore the optical excitations of the interface compared to the features of the pristine components and discuss the methodological implications for the ab-initio treatment of interface electronics.

  7. Electronic structure calculation by nonlinear optimization: Application to metals

    NASA Astrophysics Data System (ADS)

    Benedek, R.; Min, B. I.; Woodward, C.; Garner, J.

    1988-04-01

    There is considerable interest in the development of novel algorithms for the calculation of electronic structure (e.g., at the level of the local-density approximation of density-functional theory). In this paper we consider a first-order equation-of-motion method. Two methods of solution are described, one proposed by Williams and Soler, and the other base on a Born-Dyson series expansion. The extension of the approach to metallic systems is outlined and preliminary numerical calculations for Zintl-phase NaTl are presented.

  8. First-principle calculation of the electronic structure, DOS and effective mass TlInSe2

    NASA Astrophysics Data System (ADS)

    Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.

    2017-05-01

    The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.

  9. Relativistic atomic structure calculations and electron impact excitations of Fe23+

    NASA Astrophysics Data System (ADS)

    El-Maaref, A. A.

    2016-02-01

    Relativistic calculations using the multiconfiguration Dirac-Fock method for energy levels, oscillator strengths, and electronic dipole transition probabilities of Li-like iron (Fe23+) are presented. A configuration state list with the quantum numbers nl, where n = 2 - 7 and l = s , p , d , f , g , h , i has been considered. Excitations up to three electrons and correlation contributions from higher orbitals up to 7 l have been included. Contributions from core levels have been taken into account, EOL (extended optimal level) type calculations have been applied, and doubly excited levels are considered. The calculations have been executed by using the fully relativistic atomic structure package GRASP2K. The present calculations have been compared with the available experimental and theoretical sources, the comparisons show a good agreement between the present results of energy levels and oscillator strengths with the literature. In the second part of the present study, the atomic data (energy levels, and radiative parameters) have been used to calculate the excitation and deexcitation rates of allowed transitions by electron impact, as well as the population densities of some excited levels at different electron temperatures.

  10. Multigrid Methods in Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil

    1996-03-01

    Multigrid techniques have become the method of choice for a broad range of computational problems. Their use in electronic structure calculations introduces a new set of issues when compared to traditional plane wave approaches. We have developed a set of techniques that address these issues and permit multigrid algorithms to be applied to the electronic structure problem in an efficient manner. In our approach the Kohn-Sham equations are discretized on a real-space mesh using a compact representation of the Hamiltonian. The resulting equations are solved directly on the mesh using multigrid iterations. This produces rapid convergence rates even for ill-conditioned systems with large length and/or energy scales. The method has been applied to both periodic and non-periodic systems containing over 400 atoms and the results are in very good agreement with both theory and experiment. Example applications include a vacancy in diamond, an isolated C60 molecule, and a 64-atom cell of GaN with the Ga d-electrons in valence which required a 250 Ry cutoff. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures. The compact representation of the Hamiltonian is especially well suited to such machines. Tests on the Cray-T3D have shown nearly linear scaling of the execution time up to the maximum number of processors (512). The MPP implementation has been used for studies of a large Amyloid Beta Peptide (C_146O_45N_42H_210) found in the brains of Alzheimers disease patients. Further applications of the multigrid method will also be described. (in collaboration D. J. Sullivan and J. Bernholc)

  11. A novel Gaussian-Sinc mixed basis set for electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerke, Jonathan L.; Lee, Young; Tymczak, C. J.

    2015-08-14

    A Gaussian-Sinc basis set methodology is presented for the calculation of the electronic structure of atoms and molecules at the Hartree–Fock level of theory. This methodology has several advantages over previous methods. The all-electron electronic structure in a Gaussian-Sinc mixed basis spans both the “localized” and “delocalized” regions. A basis set for each region is combined to make a new basis methodology—a lattice of orthonormal sinc functions is used to represent the “delocalized” regions and the atom-centered Gaussian functions are used to represent the “localized” regions to any desired accuracy. For this mixed basis, all the Coulomb integrals are definablemore » and can be computed in a dimensional separated methodology. Additionally, the Sinc basis is translationally invariant, which allows for the Coulomb singularity to be placed anywhere including on lattice sites. Finally, boundary conditions are always satisfied with this basis. To demonstrate the utility of this method, we calculated the ground state Hartree–Fock energies for atoms up to neon, the diatomic systems H{sub 2}, O{sub 2}, and N{sub 2}, and the multi-atom system benzene. Together, it is shown that the Gaussian-Sinc mixed basis set is a flexible and accurate method for solving the electronic structure of atomic and molecular species.« less

  12. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined

  13. Simple extrapolation method to predict the electronic structure of conjugated polymers from calculations on oligomers

    DOE PAGES

    Larsen, Ross E.

    2016-04-12

    In this study, we introduce two simple tight-binding models, which we call fragment frontier orbital extrapolations (FFOE), to extrapolate important electronic properties to the polymer limit using electronic structure calculations on only a few small oligomers. In particular, we demonstrate by comparison to explicit density functional theory calculations that for long oligomers the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and of the first electronic excited state are accurately described as a function of number of repeat units by a simple effective Hamiltonian parameterized from electronic structure calculations on monomers, dimers and, optionally,more » tetramers. For the alternating copolymer materials that currently comprise some of the most efficient polymer organic photovoltaic devices one can use these simple but rigorous models to extrapolate computed properties to the polymer limit based on calculations on a small number of low-molecular-weight oligomers.« less

  14. Structural, Electronic and Dynamical Properties of Curium Monopnictides: Density Functional Calculations

    NASA Astrophysics Data System (ADS)

    Roondhe, Basant; Upadhyay, Deepak; Som, Narayan; Pillai, Sharad B.; Shinde, Satyam; Jha, Prafulla K.

    2017-03-01

    The structural, electronic, dynamical and thermodynamical properties of CmX (X = N, P, As, Sb, and Bi) compounds are studied using first principles calculations within density functional theory. The Perdew-Burke-Ernzerhof spin polarized generalized gradient approximation and Perdew-Wang (PW) spin polarized local density approximation as the exchange correlational functionals are used in these calculations. There is a good agreement between the present and previously reported data. The calculated electronic density of states suggests that the curium monopnictides are metallic in nature, which is consistent with earlier studies. The significant values of magnetic moment suggest their magnetic nature. The phonon dispersion curves and phonon density of states are also calculated, which depict the dynamical stability of these compounds. There is a significant separation between the optical and acoustical phonon branches. The temperature dependence of the thermodynamical functions are also calculated and discussed. Internal energy and vibrational contribution to the Helmholtz free energy increases and decreases, respectively, with temperature. The entropy increases with temperature. The specific heat at constant volume and Debye temperature obey Debye theory. The temperature variation of the considered thermodynamical functions is in line with those of other crystalline solids.

  15. Structural and electronic properties of LaPd2As2 superconductor: First-principle calculations

    NASA Astrophysics Data System (ADS)

    Singh, Birender; Kumar, Pradeep

    2017-05-01

    In present work we have studied electronic and structural properties of superconducting LaPd2As2 compound having collapsed tetragonal structure using first-principle calculations. The band structure calculations show that the LaPd2As2 is metallic consistent with the reported experimental observation, and the density of states plots clearly shows that at the Fermi level major contribution to density of states arises from Pd 4d and As 4p states, unlike the Fe-based superconductors where major contribution at the Fermi level comes from Fe 3d states. The estimated value of electron-phonon coupling is found to be 0.37, which gives the upper bound of superconducting transition temperature of 5K, suggesting the conventional nature of this superconductor.

  16. First principles pseudopotential calculation of electron energy loss near edge structures of lattice imperfections.

    PubMed

    Mizoguchi, Teruyasu; Matsunaga, Katsuyuki; Tochigi, Eita; Ikuhara, Yuichi

    2012-01-01

    Theoretical calculations of electron energy loss near edge structures (ELNES) of lattice imperfections, particularly a Ni(111)/ZrO₂(111) heterointerface and an Al₂O₃ stacking fault on the {1100} plane, are performed using a first principles pseudopotential method. The present calculation can qualitatively reproduce spectral features as well as chemical shifts in experiment by employing a special pseudopotential designed for the excited atom with a core-hole. From the calculation, spectral changes observed in O-K ELNES from a Ni/ZrO₂ interface can be attributable to interfacial oxygen-Ni interactions. In the O-K ELNES of Al₂O₃ stacking faults, theoretical calculation suggests that the spectral feature reflects coordination environment and chemical bonding. Powerful combinations of ELNES with a pseudopotential method used to investigate the atomic and electronic structures of lattice imperfections are demonstrated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  18. Origin of the 20-electron structure of Mg3 MnH7 : Density functional calculations

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Singh, D. J.; Gupta, R.

    2005-03-01

    The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2 . The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal-field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t2g bands hold an additional six electrons per formula unit.

  19. Exploring unimolecular dissociation kinetics of ethyl dibromide through electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Gulvi, Nitin R.; Patel, Priyanka; Badani, Purav M.

    2018-04-01

    Pathway for dissociation of multihalogenated alkyls is observed to be competitive between molecular and atomic elimination products. Factors such as molecular structure, temperature and pressure are known to influence the same. Hence present work is focussed to explore mechanism and kinetics of atomic (Br) and molecular (HBr and Br2) elimination upon pyrolysis of 1,1- and 1,2-ethyl dibromide (EDB). For this purpose, electronic structure calculations were performed at DFT and CCSD(T) level of theory. In addition to concerted mechanism, an alternate energetically efficient isomerisation pathway has been exploited for molecular elimination. Energy calculations are further complimented by detailed kinetic investigation, over wide range of temperature and pressure, using suitable models like Canonical Transition State Theory, Statistical Adiabatic Channel Model and Troe's formalism. Our calculations suggest high branching ratio for dehydrohalogentation reaction, from both isomers of EDB. Fall off curve depicts good agreement between theoretically estimated and experimentally reported values.

  20. Electronic structure of stoichiometric and reduced ZnO from periodic relativistic all electron hybrid density functional calculations using numeric atom-centered orbitals.

    PubMed

    Viñes, Francesc; Illas, Francesc

    2017-03-30

    The atomic and electronic structure of stoichiometric and reduced ZnO wurtzite has been studied using a periodic relativistic all electron hybrid density functional (PBE0) approach and numeric atom-centered orbital basis set with quality equivalent to aug-cc-pVDZ. To assess the importance of relativistic effects, calculations were carried out without and with explicit inclusion of relativistic effects through the zero order regular approximation. The calculated band gap is ∼0.2 eV smaller than experiment, close to previous PBE0 results including relativistic calculation through the pseudopotential and ∼0.25 eV smaller than equivalent nonrelativistic all electron PBE0 calculations indicating possible sources of error in nonrelativistic all electron density functional calculations for systems containing elements with relatively high atomic number. The oxygen vacancy formation energy converges rather fast with the supercell size, the predicted value agrees with previously hybrid density functional calculations and analysis of the electronic structure evidences the presence of localized electrons at the vacancy site with a concomitant well localized peak in the density of states ∼0.5 eV above the top of the valence band and a significant relaxation of the Zn atoms near to the oxygen vacancy. Finally, present work shows that accurate results can be obtained in systems involving large supercells containing up to ∼450 atoms using a numeric atomic-centered orbital basis set within a full all electron description including scalar relativistic effects at an affordable cost. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Engel-Vosko GGA calculations of the structural, electronic and optical properties of LiYO2

    NASA Astrophysics Data System (ADS)

    Muhammad, Nisar; Khan, Afzal; Haidar Khan, Shah; Sajjaj Siraj, Muhammad; Shah, Syed Sarmad Ali; Murtaza, Ghulam

    2017-09-01

    Structural, electronic and optical properties of lithium yttrium oxide (LiYO2) are investigated using density functional theory (DFT). These calculations are based on full potential linearized augmented plane wave (FP-LAPW) method implemented by WIEN2k. The generalized gradient approximation (GGA) is used as an exchange correlation potential with Perdew-Burk-Ernzerhof (PBE) and Engel-Vosko (EV) as exchange correlation functional. The structural properties are calculated with PBE-GGA as it gives the equilibrium lattice constants very close to the experimental values. While, the band structure and optical properties are calculated with EV-GGA obtain much closer results to their experimental values. Our calculations confirm LiYO2 as large indirect band gap semiconductor having band gap of 5.23 eV exhibiting the characteristics of ultrawide band gap materials showing the properties like higher critical breakdown field, higher temperature operation and higher radiation tolerance. In this article, we report the density of states (DOS) in terms of contribution from s, p, and d-states of the constituent atoms, the band structure, the electronic structure, and the frequency-dependent optical properties of LiYO2. The optical properties presented in this article reveal LiYO2 a suitable candidate for the field of optoelectronic and optical devices.

  2. Structural, elastic, electronic and dynamical properties of OsB and ReB: Density functional calculations

    NASA Astrophysics Data System (ADS)

    Li, Yanling; Zeng, Zhi; Lin, Haiqing

    2010-06-01

    The structural, elastic, electronic and dynamical properties of ReB and OsB are investigated by first-principles calculations based on density functional theory. It turns out that ReB and OsB are metallic ultra-incompressible solids with small elastic anisotropy and high hardness. The change of c/ a ratio in OsB indicates that there is a structural phase transition at about 31 GPa. Phonon spectra calculations show that both OsB and ReB are stable dynamically and there are abnormal phonon dispersions along special directions in Brillouin zone. OsB and ReB do not show superconductivity due to very weak electron-phonon interactions in them.

  3. Understanding the photoluminescence characteristics of Eu{sup 3+}-doped double-perovskite by electronic structure calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Binita; Halder, Saswata; Sinha, T. P.

    2016-05-23

    Europium-doped luminescent barium samarium tantalum oxide Ba{sub 2}SmTaO{sub 6} (BST) has been investigated by first-principles calculation, and the crystal structure, electronic structure, and optical properties of pure BST and Eu-doped BST have been examined and compared. Based on the calculated results, the luminescence properties and mechanism of Eu-doped BST has been discussed. In the case of Eu-doped BST, there is an impurity energy band at the Fermi level, which is formed by seven spin up energy levels of Eu and act as the luminescent centre, which is evident from the band structure calculations.

  4. Structural phase transition and 5f-electrons localization of PuSe explored by ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui Shouxin, E-mail: shouxincui@yahoo.co; Feng Wenxia; Hu Haiquan

    2010-04-15

    An investigation into the structural phase transformation, electronic and optical properties of PuSe under high pressure was conducted by using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method, in the presence and in the absence of spin-orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from rocksalt (B 1) structure to CsCl-type (B 2) structure at the transition pressure of 36.3 GPa (without SOC) and 51.3 GPa (with SOC). The electronic density of states (DOS) for PuSe show that the f-electrons of Pu are more localized and concentrated in a narrow peakmore » near the Fermi level, which is consistent with the experimental studies. The band structure shows that B 1-PuSe is metallic. A pseudogap appears around the Fermi level of the total density of states of B 1 phase PuSe, which may contribute to its stability. The calculated reflectivity R(omega) shows agreement with the available experimental results. Furthermore, the absorption spectrum, refractive index, extinction coefficient, energy-loss spectrum and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. - Abstract: Graphical Abstract Legend (TOC Figure): 5f-electrons are more localized by the analysis of the density of states (SOC). The origin spectra peaks was interpreted based on electronic structures.« less

  5. FEAST fundamental framework for electronic structure calculations: Reformulation and solution of the muffin-tin problem

    NASA Astrophysics Data System (ADS)

    Levin, Alan R.; Zhang, Deyin; Polizzi, Eric

    2012-11-01

    In a recent article Polizzi (2009) [15], the FEAST algorithm has been presented as a general purpose eigenvalue solver which is ideally suited for addressing the numerical challenges in electronic structure calculations. Here, FEAST is presented beyond the “black-box” solver as a fundamental modeling framework which can naturally address the original numerical complexity of the electronic structure problem as formulated by Slater in 1937 [3]. The non-linear eigenvalue problem arising from the muffin-tin decomposition of the real-space domain is first derived and then reformulated to be solved exactly within the FEAST framework. This new framework is presented as a fundamental and practical solution for performing both accurate and scalable electronic structure calculations, bypassing the various issues of using traditional approaches such as linearization and pseudopotential techniques. A finite element implementation of this FEAST framework along with simulation results for various molecular systems is also presented and discussed.

  6. Refined energetic ordering for sulphate-water (n = 3-6) clusters using high-level electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin

    2012-10-01

    This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.

  7. Efficient evaluation of atom tunneling combined with electronic structure calculations.

    PubMed

    Ásgeirsson, Vilhjálmur; Arnaldsson, Andri; Jónsson, Hannes

    2018-03-14

    Methodology for finding optimal tunneling paths and evaluating tunneling rates for atomic rearrangements is described. First, an optimal JWKB tunneling path for a system with fixed energy is obtained using a line integral extension of the nudged elastic band method. Then, a calculation of the dynamics along the path is used to determine the temperature at which it corresponds to an optimal Feynman path for thermally activated tunneling (instanton) and a harmonic approximation is used to estimate the transition rate. The method is illustrated with calculations for a modified two-dimensional Müller-Brown surface but is efficient enough to be used in combination with electronic structure calculations of the energy and atomic forces in systems containing many atoms. An example is presented where tunneling is the dominant mechanism well above room temperature as an H 3 BNH 3 molecule dissociates to form H 2 . Also, a solid-state example is presented where density functional theory calculations of H atom tunneling in a Ta crystal give close agreement with experimental measurements on hydrogen diffusion over a wide range in temperature.

  8. Structural, electronic, and thermodynamic properties of curium dioxide: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Hou, Ling; Li, Wei-Dong; Wang, Fangwei; Eriksson, Olle; Wang, Bao-Tian

    2017-12-01

    We present a systematic investigation of the structural, magnetic, electronic, mechanical, and thermodynamic properties of CmO2 with the local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U approaches. The strong Coulomb repulsion and the spin-orbit coupling (SOC) effects on the lattice structures, electronic density of states, and band gaps are carefully studied, and compared with other A O2 (A =U , Np, Pu, and Am). The ferromagnetic configuration with half-metallic character is predicted to be energetically stable while a charge-transfer semiconductor is predicted for the antiferromagnetic configuration. The elastic constants and phonon spectra show that the fluorite structure is mechanically and dynamically stable. Based on the first-principles phonon density of states, the lattice vibrational energy is calculated using the quasiharmonic approximation. Then, the Gibbs free energy, thermal expansion coefficient, specific heat, and entropy are obtained and compared with experimental data. The mode Grüneisen parameters are presented to analyze the anharmonic properties. The Slack relation is applied to obtain the lattice thermal conductivity in temperature range of 300-1600 K. The phonon group velocities are also calculated to investigate the heat transfer. For all these properties, if available, we compare the results of CmO2 with other A O2 .

  9. Explicitly-correlated Gaussian geminals in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Szalewicz, Krzysztof; Jeziorski, Bogumił

    2010-11-01

    Explicitly correlated functions have been used since 1929, but initially only for two-electron systems. In 1960, Boys and Singer showed that if the correlating factor is of Gaussian form, many-electron integrals can be computed for general molecules. The capability of explicitly correlated Gaussian (ECG) functions to accurately describe many-electron atoms and molecules was demonstrated only in the early 1980s when Monkhorst, Zabolitzky and the present authors cast the many-body perturbation theory (MBPT) and coupled cluster (CC) equations as a system of integro-differential equations and developed techniques of solving these equations with two-electron ECG functions (Gaussian-type geminals, GTG). This work brought a new accuracy standard to MBPT/CC calculations. In 1985, Kutzelnigg suggested that the linear r 12 correlating factor can also be employed if n-electron integrals, n > 2, are factorised with the resolution of identity. Later, this factor was replaced by more general functions f (r 12), most often by ? , usually represented as linear combinations of Gaussian functions which makes the resulting approach (called F12) a special case of the original GTG expansion. The current state-of-art is that, for few-electron molecules, ECGs provide more accurate results than any other basis available, but for larger systems the F12 approach is the method of choice, giving significant improvements over orbital calculations.

  10. GPU implementation of the linear scaling three dimensional fragment method for large scale electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Jia, Weile; Wang, Jue; Chi, Xuebin; Wang, Lin-Wang

    2017-02-01

    LS3DF, namely linear scaling three-dimensional fragment method, is an efficient linear scaling ab initio total energy electronic structure calculation code based on a divide-and-conquer strategy. In this paper, we present our GPU implementation of the LS3DF code. Our test results show that the GPU code can calculate systems with about ten thousand atoms fully self-consistently in the order of 10 min using thousands of computing nodes. This makes the electronic structure calculations of 10,000-atom nanosystems routine work. This speed is 4.5-6 times faster than the CPU calculations using the same number of nodes on the Titan machine in the Oak Ridge leadership computing facility (OLCF). Such speedup is achieved by (a) carefully re-designing of the computationally heavy kernels; (b) redesign of the communication pattern for heterogeneous supercomputers.

  11. DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution.

    PubMed

    Womack, James C; Anton, Lucian; Dziedzic, Jacek; Hasnip, Phil J; Probert, Matt I J; Skylaris, Chris-Kriton

    2018-03-13

    The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10 9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.

  12. New Equations for Calculating Principal and Fine-Structure Atomic Spectra for Single and Multi-Electron Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis R.

    A set of equations are presented for calculating atomic principal spectral lines and fine-structure energy splits for single and multi-electron atoms. Calculated results are presented and compared to the National Institute of Science and Technology database demonstrating very good accuracy. The equations do not require fitted parameters. The only experimental parameter required is the Ionization energy for the electron of interest. The equations have comparable accuracy and broader applicability than the single electron Dirac equation. Three Appendices discuss the origin of the new equations and present calculated results. New insights into the special relativistic nature of the Dirac equation andmore » its relationship to the new equations are presented.« less

  13. GPAW - massively parallel electronic structure calculations with Python-based software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enkovaara, J.; Romero, N.; Shende, S.

    2011-01-01

    Electronic structure calculations are a widely used tool in materials science and large consumer of supercomputing resources. Traditionally, the software packages for these kind of simulations have been implemented in compiled languages, where Fortran in its different versions has been the most popular choice. While dynamic, interpreted languages, such as Python, can increase the effciency of programmer, they cannot compete directly with the raw performance of compiled languages. However, by using an interpreted language together with a compiled language, it is possible to have most of the productivity enhancing features together with a good numerical performance. We have used thismore » approach in implementing an electronic structure simulation software GPAW using the combination of Python and C programming languages. While the chosen approach works well in standard workstations and Unix environments, massively parallel supercomputing systems can present some challenges in porting, debugging and profiling the software. In this paper we describe some details of the implementation and discuss the advantages and challenges of the combined Python/C approach. We show that despite the challenges it is possible to obtain good numerical performance and good parallel scalability with Python based software.« less

  14. Electronic-structure calculations of praseodymium metal by means of modified density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, A.; Trygg, J.; Johansson, B.

    1997-09-01

    Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energymore » and a term proportional to the total orbital moment, L{sub z}{sup 2}. The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. {copyright} {ital 1997} {ital The American Physical Society}« less

  15. A parallel orbital-updating based plane-wave basis method for electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Pan, Yan; Dai, Xiaoying; de Gironcoli, Stefano; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui

    2017-11-01

    Motivated by the recently proposed parallel orbital-updating approach in real space method [1], we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.

  16. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  17. The Electronic Structure and Formation Energies of Ni-doped CuAlO2 by Density Functional Theory Calculation

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Li, Fei; Sheng, Wei; Nie, Guo-Zheng; Yuan, Ding-Wang

    2014-03-01

    The electronic structure and formation energies of Ni-doped CuAlO2 are calculated by first-principles calculations. Our results show that Ni is good for p-type doping in CuAlO2. When Ni is doped into CuAlO2, it prefers to substitute Al-site. NiAl is a shallow acceptor, while NiCu is a deep acceptor and its formation energy is high. Further electronic structure calculations show that strong hybridization happens between Ni-3d and O-2p states for Ni substituting Al-site, while localized Ni-3d states are found for Ni substituting Cu-site.

  18. First principles calculation of the structural, electronic, and magnetic properties of Au-Pd atomic chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave, Mudra R., E-mail: mdave-phy@yahoo.co.in; Sharma, A. C.

    2015-06-24

    The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.

  19. Adaptations in Electronic Structure Calculations in Heterogeneous Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamudupula, Sai

    Modern quantum chemistry deals with electronic structure calculations of unprecedented complexity and accuracy. They demand full power of high-performance computing and must be in tune with the given architecture for superior e ciency. To make such applications resourceaware, it is desirable to enable their static and dynamic adaptations using some external software (middleware), which may monitor both system availability and application needs, rather than mix science with system-related calls inside the application. The present work investigates scienti c application interlinking with middleware based on the example of the computational chemistry package GAMESS and middleware NICAN. The existing synchronous model ismore » limited by the possible delays due to the middleware processing time under the sustainable runtime system conditions. Proposed asynchronous and hybrid models aim at overcoming this limitation. When linked with NICAN, the fragment molecular orbital (FMO) method is capable of adapting statically and dynamically its fragment scheduling policy based on the computing platform conditions. Signi cant execution time and throughput gains have been obtained due to such static adaptations when the compute nodes have very di erent core counts. Dynamic adaptations are based on the main memory availability at run time. NICAN prompts FMO to postpone scheduling certain fragments, if there is not enough memory for their immediate execution. Hence, FMO may be able to complete the calculations whereas without such adaptations it aborts.« less

  20. Auxiliary basis expansions for large-scale electronic structure calculations

    PubMed Central

    Jung, Yousung; Sodt, Alex; Gill, Peter M. W.; Head-Gordon, Martin

    2005-01-01

    One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems. PMID:15845767

  1. Auxiliary basis expansions for large-scale electronic structure calculations.

    PubMed

    Jung, Yousung; Sodt, Alex; Gill, Peter M W; Head-Gordon, Martin

    2005-05-10

    One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.

  2. Calculation of Electronic Structure and Field Induced Magnetic Collapse in Ferroic Materials

    NASA Astrophysics Data System (ADS)

    Entel, Peter; Arróyave, Raymundo; Singh, Navdeep; Sokolovskiy, Vladimir V.; Buchelnikov, Vasiliy D.

    We have performed ab inito electronic structure calculations and Monte Carlo simulations of FeRh, Mn3GaC and Heusler intermetallics alloys such as Ni-Co-Cr-Mn-(Ga, In, Sn) which are of interest for solid refrigeration and energy systems, an emerging technology involving such solid-solid systems. The calculations reveal that the important magnetic phase diagrams of these alloys which show the magnetic collapse and allow predictions of the related magnetocaloric effect (MCE) which they exhibit at finite temperatures, can be obtained by ab inito and Monte Carlo computations in qualitatively good agreement with experimental data. This is a one-step procedure from theory to alloy design of ferroic functional devices.

  3. Study of structural, electronic and optical properties of tungsten doped bismuth oxychloride by DFT calculations.

    PubMed

    Yang, Wenjuan; Wen, Yanwei; Chen, Rong; Zeng, Dawen; Shan, Bin

    2014-10-21

    First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation.

  4. Monte Carlo Simulations of Electron Energy-Loss Spectra with the Addition of Fine Structure from Density Functional Theory Calculations.

    PubMed

    Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald

    2016-02-01

    A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.

  5. Electronic structure and optical properties of Cs2HgI4: Experimental study and band-structure DFT calculations

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.

    2015-04-01

    High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.

  6. Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havu, V.; Fritz Haber Institute of the Max Planck Society, Berlin; Blum, V.

    2009-12-01

    We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as themore » more rigorous bottom-up approaches.« less

  7. Electronic structure and magnetic properties of Pr-Co intermetallics: ab initio FP-LAPW calculations and correlation with experiments

    NASA Astrophysics Data System (ADS)

    Bakkari, Karim; Fersi, Riadh; Kebir Hlil, El; Bessais, Lotfi; Thabet Mliki, Najeh

    2018-03-01

    First-principle calculations combining density functional theory and the full-potential linearized augmented plane wave (FP-LAPW) method are performed to investigate the electronic and magnetic structure of Pr2Co7 in its two polymorphic forms, (2:7 H) and (2:7 R), for the first time. This type of calculation was also performed for PrCo5 and PrCo2 intermetallics. We have computed the valence density of states separately for spin-up and spin-down states in order to investigate the electronic band structure. This is governed by the strong contribution of the partial DOS of 3d-Co bands compared to the partial DOS of the 4f-Pr bands. Such a high ferromagnetic state is discussed in terms of the strong spin polarization observed in the total DOS. The magnetic moments carried by the Co and Pr atoms located in several sites for all compounds are computed. These results mainly indicate that cobalt atoms make a dominant contribution to the magnetic moments. The notable difference in the atomic moments of Pr and Co atoms between different structural slabs is explained in terms of the magnetic characteristics of the PrCo2 and PrCo5 compounds and the local chemical environments of the Pr and Co atoms in different structural slabs of Pr2Co7. From spin-polarized calculations we have simulated the 3d and 4f band population to estimate the local magnetic moments. These results are in accordance with the magnetic moments calculated using the FP-LAPW method. In addition, the exchange interactions J ij are calculated and used as input for M(T) simulations. Involving the data obtained from the electronic structure calculations, the appropriate Padé Table is applied to simulate the magnetization M(T) and to estimate the mean-field Curie temperature. We report a fairly good agreement between the ab initio calculation of magnetization and Curie temperature with the experimental data.

  8. First-principles calculations of structural, elastic, electronic, and optical properties of perovskite-type KMgH3 crystals: novel hydrogen storage material.

    PubMed

    Reshak, Ali H; Shalaginov, Mikhail Y; Saeed, Yasir; Kityk, I V; Auluck, S

    2011-03-31

    We report a first-principles study of structural and phase stability in three different structures of perovskite-types KMgH(3) according to H position. While electronic and optical properties were measured only for stable perovskite-type KMgH(3), our calculated structural parameters are found in good agreement with experiment and other theoretical results. We also study the electronic charge density space distribution contours in the (200), (101), and (100) crystallographic planes, which gives better insight picture of chemical bonding between K-H, K-Mg-H, and Mg-H. Moreover, we have calculated the electronic band structure dispersion, total, and partial density of electron states to study the band gap origin and the contribution of s-band of H, s and p-band of Mg in the valence band, and d-band of K in the conduction band. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients, optical conductivities, and loss functions of stable KMgH(3) were calculated for photon energies up to 40 eV.

  9. Computational thermochemistry: Automated generation of scale factors for vibrational frequencies calculated by electronic structure model chemistries

    NASA Astrophysics Data System (ADS)

    Yu, Haoyu S.; Fiedler, Lucas J.; Alecu, I. M.; Truhlar, Donald G.

    2017-01-01

    We present a Python program, FREQ, for calculating the optimal scale factors for calculating harmonic vibrational frequencies, fundamental vibrational frequencies, and zero-point vibrational energies from electronic structure calculations. The program utilizes a previously published scale factor optimization model (Alecu et al., 2010) to efficiently obtain all three scale factors from a set of computed vibrational harmonic frequencies. In order to obtain the three scale factors, the user only needs to provide zero-point energies of 15 or 6 selected molecules. If the user has access to the Gaussian 09 or Gaussian 03 program, we provide the option for the user to run the program by entering the keywords for a certain method and basis set in the Gaussian 09 or Gaussian 03 program. Four other Python programs, input.py, input6, pbs.py, and pbs6.py, are also provided for generating Gaussian 09 or Gaussian 03 input and PBS files. The program can also be used with data from any other electronic structure package. A manual of how to use this program is included in the code package.

  10. Electronic Structure, Optical and Transport Properties of Double Perovskite La2NbMnO6: A Theoretical Understanding from DFT Calculations

    NASA Astrophysics Data System (ADS)

    Parrey, Khursheed Ahmad; Khandy, Shakeel Ahmad; Islam, Ishtihadah; Laref, Amel; Gupta, Dinesh C.; Niazi, Asad; Aziz, Anver; Ansari, S. G.; Khenata, R.; Rubab, Seemin

    2018-03-01

    Double perovskite La2NbMnO6 was systematically studied using the first-principles calculations. The structural, electronic, optical and transport properties of this compound were calculated. Spin resolved band structure predicted this material as a half-metal with an energy gap of 3.75 eV in spin down state. The optical coefficients including optical conductivity, reflectivity and electron energy loss are calculated for photon energy up to 30.00 eV to understand the optical response of this perovskite. The strong absorption of all the ultraviolet and infrared frequencies of the spectrum by this material may suggest the potential application of this material for the optoelectronic devices in ultraviolet and infra-red region. Also, the thermoelectric properties with a speculation from the half-metallic electronic structure are reported. Subsequently, the Seebeck coefficient, electrical and thermal conductivity coefficients are calculated to predict the thermoelectric figure of merit (zT), the maximum of which is found out to be 0.14 at 800 K.

  11. Complex wet-environments in electronic-structure calculations

    NASA Astrophysics Data System (ADS)

    Fisicaro, Giuseppe; Genovese, Luigi; Andreussi, Oliviero; Marzari, Nicola; Goedecker, Stefan

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of an applied electrochemical potentials, including complex electrostatic screening coming from the solvent. In the present work we present a solver to handle both the Generalized Poisson and the Poisson-Boltzmann equation. A preconditioned conjugate gradient (PCG) method has been implemented for the Generalized Poisson and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations. On the other hand, a self-consistent procedure enables us to solve the Poisson-Boltzmann problem. The algorithms take advantage of a preconditioning procedure based on the BigDFT Poisson solver for the standard Poisson equation. They exhibit very high accuracy and parallel efficiency, and allow different boundary conditions, including surfaces. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and it will be released as a independent program, suitable for integration in other codes. We present test calculations for large proteins to demonstrate efficiency and performances. This work was done within the PASC and NCCR MARVEL projects. Computer resources were provided by the Swiss National Supercomputing Centre (CSCS) under Project ID s499. LG acknowledges also support from the EXTMOS EU project.

  12. An efficient 3-dim FFT for plane wave electronic structure calculations on massively parallel machines composed of multiprocessor nodes

    NASA Astrophysics Data System (ADS)

    Goedecker, Stefan; Boulet, Mireille; Deutsch, Thierry

    2003-08-01

    Three-dimensional Fast Fourier Transforms (FFTs) are the main computational task in plane wave electronic structure calculations. Obtaining a high performance on a large numbers of processors is non-trivial on the latest generation of parallel computers that consist of nodes made up of a shared memory multiprocessors. A non-dogmatic method for obtaining high performance for such 3-dim FFTs in a combined MPI/OpenMP programming paradigm will be presented. Exploiting the peculiarities of plane wave electronic structure calculations, speedups of up to 160 and speeds of up to 130 Gflops were obtained on 256 processors.

  13. Effect of substitutions and defects in half-Heusler FeVSb studied by electron transport measurements and KKR-CPA electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jodin, L.; Tobola, J.; Pecheur, P.

    2004-11-01

    The structural and electron transport properties of the pure and Co-, Ti-, and Zr-substituted FeVSb half-Heusler phases have been investigated using x-ray diffraction, Moessbauer spectroscopy, and Electron Probe Microscopy Analysis as well as resistivity, thermopower, and Hall effect measurements in the 80-900 K temperature range. In a parallel study, the electronic structures of FeVSb and the aforementioned alloys were calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) in the LDA framework. The electronic densities of states and dispersion curves were obtained. The crystal structure stability and site preference analysis were addressed using total energy computations. Most ofmore » these experimental results correspond to electronic structure computations only if they take into account extra crystal defects such as antisite defects or vacancies present to various extents in the samples. Indeed a remarkable variation of KKR-CPA density of states occurring both in FeVSb and FeV{sub 1-x}Zr{sub x}Sb including defects may explain why FeVSb is not fully semiconducting as well as why there is a change of the thermopower sign in the FeV{sub 1-x}Zr{sub x}Sb versus x content.« less

  14. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    NASA Astrophysics Data System (ADS)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  15. R-matrix calculations for electron-impact excitation of C(+), N(2+), and O(3+) including fine structure

    NASA Technical Reports Server (NTRS)

    Luo, D.; Pradhan, A. K.

    1990-01-01

    The new R-matrix package for comprehensive close-coupling calculations for electron scattering with the first three ions in the boron isoelectronic sequence, the astrophysically significant C(+), N(2+), and O(3+), is presented. The collision strengths are calculated in the LS coupling approximation, as well as in pair-coupling scheme, for the transitions among the fine-structure sublevels. Calculations are carried out at a large number of energies in order to study the detailed effects of autoionizing resonances.

  16. Accuracy and Transferability of Ab Initio Electronic Band Structure Calculations for Doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Gebhardt, Julian; Rappe, Andrew M.

    2017-11-01

    BiFeO3 is a multiferroic material and, therefore, highly interesting with respect to future oxide electronics. In order to realize such devices, pn junctions need to be fabricated, which are currently impeded by the lack of successful p-type doping in this material. In order to guide the numerous research efforts in this field, we recently finished a comprehensive computational study, investigating the influence of many dopants onto the electronic structure of BiFeO3. In order to allow for this large scale ab initio study, the computational setup had to be accurate and efficient. Here we discuss the details of this assessment, showing that standard density-functional theory (DFT) yields good structural properties. The obtained electronic structure, however, suffers from well-known shortcomings. By comparing the conventional DFT results for alkali and alkaline-earth metal doping with more accurate hybrid-DFT calculations, we show that, in this case, the problems of standard DFT go beyond a simple systematic error. Conventional DFT shows bad transferability and the more reliable hybrid-DFT has to be chosen for a qualitatively correct prediction of doping induced changes in the electronic structure of BiFeO3.

  17. The structural, electronic and optical properties of Nd doped ZnO using first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wen, Jun-Qing; Zhang, Jian-Min; Chen, Guo-Xiang; Wu, Hua; Yang, Xu

    2018-04-01

    The density functional theory calculations using general gradient approximation (GGA) applying Perdew-Burke-Ernzerhof (PBE) as correlation functional have been systematically performed to research the formation energy, the electronic structures, band structures, total and partial DOS, and optical properties of Nd doping ZnO with the content from 6.25% to 12.5%. The formation energies are negative for both models, which show that two structures are energetically stable. Nd doping ZnO crystal is found to be a direct band gap semiconductor and Fermi level shifts upward into conduction band, which show the properties of n-type semiconductor. Band structures are more compact after Nd doping ZnO, implying that Nd doping induces the strong interaction between different atoms. Nd doping ZnO crystal presents occupied states at near Fermi level, which mainly comes from the Nd 4f orbital. The calculated optical properties imply that Nd doping causes a red-shift of absorption peaks, and enhances the absorption of the visible light.

  18. Very large scale wavefunction orthogonalization in Density Functional Theory electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Bekas, C.; Curioni, A.

    2010-06-01

    Enforcing the orthogonality of approximate wavefunctions becomes one of the dominant computational kernels in planewave based Density Functional Theory electronic structure calculations that involve thousands of atoms. In this context, algorithms that enjoy both excellent scalability and single processor performance properties are much needed. In this paper we present block versions of the Gram-Schmidt method and we show that they are excellent candidates for our purposes. We compare the new approach with the state of the art practice in planewave based calculations and find that it has much to offer, especially when applied on massively parallel supercomputers such as the IBM Blue Gene/P Supercomputer. The new method achieves excellent sustained performance that surpasses 73 TFLOPS (67% of peak) on 8 Blue Gene/P racks (32 768 compute cores), while it enables more than a two fold decrease in run time when compared with the best competing methodology.

  19. The structural and electronic properties of amorphous HgCdTe from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei

    2014-01-01

    Amorphous mercury cadmium telluride (a-MCT) model structures, with x being 0.125 and 0.25, are obtained from first-principles calculations. We generate initial structures by computation alchemy method. It is found that most atoms in the network of amorphous structures tend to be fourfold and form tetrahedral structures, implying that the chemical ordered continuous random network with some coordination defects is the ideal structure for a-MCT. The electronic structure is also concerned. The gap is found to be 0.30 and 0.26 eV for a-Hg0.875Cd0.125Te and a-Hg0.75Cd0.25Te model structures, independent of the composition. By comparing with the properties of crystalline MCT with the same composition, we observe a blue-shift of energy band gap. The localization of tail states and its atomic origin are also discussed.

  20. Lattice structures and electronic properties of MO/MoSe2 interface from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min

    2015-02-01

    Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.

  1. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tohme, Samir N.; Korek, Mahmoud, E-mail: mahmoud.korek@bau.edu.lb, E-mail: fkorek@yahoo.com; Awad, Ramadan

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, themore » rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.« less

  2. The molecular structure of 4-methylpyridine-N-oxide: Gas-phase electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang

    2018-03-01

    The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.

  3. Functional renormalization group approach to electronic structure calculations for systems without translational symmetry

    NASA Astrophysics Data System (ADS)

    Seiler, Christian; Evers, Ferdinand

    2016-10-01

    A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.

  4. Structural, electronic, magnetic and thermodynamic properties of Ni1-xTixO alloys an ab initio calculation and Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Klaa, K.; Labidi, S.; Masrour, R.; Jabar, A.; Labidi, M.; Amara, A.; Drici, A.; Hlil, E. K.; Ellouze, M.

    2018-06-01

    Structural, electronic, magnetic and thermodynamic main features for Ni1-xTixO ternary alloys in rock-salt structure with Ti content in the range ? were studied using the full potential Linearized augmented plane wave (FP-LAPW) method within density functional theory. The exchange-correlation potential was calculated by the generalized gradient approximation. The analysis of the electronic density of states curves allowed the computation of the magnetic moments which are considered to lie along (010) axes. The thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing ? as well as the phase diagram. In addition, the Monte Carlo simulations have been exploited to calculate the transition temperature and magnetic coercive field in the alloy.

  5. Electronic structure and metallization of cubic GdH{sub 3} under pressure: Ab initio many-body GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Bo, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn; Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018; Zhang, Yachao, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn

    The electronic structures of the cubic GdH{sub 3} are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G{sub 0}W{sub 0} calculations give a fundamental band gap of 1.72 eV, while GGA+ GW{sub 0} or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localizationmore » of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn–Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH{sub 3} can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G{sub 0}W{sub 0} calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW{sub 0} and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G{sub 0}W{sub 0} calculations in the 4f-core case is the closest to the real result. By G{sub 0}W{sub 0} calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH{sub 3} occurs around 40 GPa, which might be a satisfied prediction.« less

  6. Theoretical calculations of structural, electronic, and elastic properties of CdSe1-x Te x : A first principles study

    NASA Astrophysics Data System (ADS)

    M, Shakil; Muhammad, Zafar; Shabbir, Ahmed; Muhammad Raza-ur-rehman, Hashmi; M, A. Choudhary; T, Iqbal

    2016-07-01

    The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of CdSe1-x Te x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA+U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure CdSe and CdTe binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.

  7. Calculation of the electron structure of vacancies and their compensated states in III-VI semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrabova, M. A., E-mail: Mehrabova@mail.ru; Madatov, R. S.

    2011-08-15

    The Green's functions theory and the bond-orbital model are used as a basis for calculations of the electron structure of local defects-specifically, vacancies and their compensated states in III-VI semiconductors. The energy levels in the band gap are established, and the changes induced in the electron densities in the GaS, GaSe, and InSe semiconductors by anion and cation vacancies and their compensated states are calculated. It is established that, if a vacancy is compensated by an atom of an element from the same subgroup with the same tetrahedral coordination and if the ionic radius of the compensating atom is smallermore » than that of the substituted atom, the local levels formed by the vacancy completely disappear. It is shown that this mechanism of compensation of vacancies provides a means not only for recovering the parameters of the crystal, but for improving the characteristics of the crystal as well.« less

  8. Electronic and optical properties of GaN under pressure: DFT calculations

    NASA Astrophysics Data System (ADS)

    Javaheri, Sahar; Boochani, Arash; Babaeipour, Manuchehr; Naderi, Sirvan

    2017-12-01

    Optical and electronic properties of ZB, RS and WZ structures of gallium nitride (GaN) are studied in equilibrium and under pressure using the first-principles calculation in the density functional theory (DFT) framework to obtain quantities like dielectric function, loss function, reflectance and absorption spectra, refractive index and their relation parameters. The electronic properties are studied using EV-GGA and GGA approximations and the results calculated by EV-GGA approximation were found to be much closer to the experimental results. The interband electron transitions are studied using the band structure and electron transition peaks in the imaginary part of the dielectric function; these transitions occur in three structures from N-2p orbital to Ga-4s and Ga-4p orbitals in the conduction band. Different optical properties of WZ structure were calculated in two polarization directions of (100) and (001) and the results were close to each other. Plasmon energy corresponding to the main peak of the energy-loss function in RS with the value of 26 eV was the highest one, which increased under pressure. In general, RS shows more different properties than WZ and ZB.

  9. Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Benlamari, S.; Bendjeddou, H.; Boulechfar, R.; Amara Korba, S.; Meradji, H.; Ahmed, R.; Ghemid, S.; Khenata, R.; Omran, S. Bin

    2018-03-01

    A theoretical study of the structural, elastic, electronic, mechanical, and thermal properties of the perovskite-type hydride CaNiH3 is presented. This study is carried out via first-principles full potential (FP) linearized augmented plane wave plus local orbital (LAPW+lo) method designed within the density functional theory (DFT). To treat the exchange–correlation energy/potential for the total energy calculations, the local density approximation (LDA) of Perdew–Wang (PW) and the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) are used. The three independent elastic constants (C 11, C 12, and C 44) are calculated from the direct computation of the stresses generated by small strains. Besides, we report the variation of the elastic constants as a function of pressure as well. From the calculated elastic constants, the mechanical character of CaNiH3 is predicted. Pertaining to the thermal properties, the Debye temperature is estimated from the average sound velocity. To further comprehend this compound, the quasi-harmonic Debye model is used to analyze the thermal properties. From the calculations, we find that the obtained results of the lattice constant (a 0), bulk modulus (B 0), and its pressure derivative ({B}0^{\\prime }) are in good agreement with the available theoretical as well as experimental results. Similarly, the obtained electronic band structure demonstrates the metallic character of this perovskite-type hydride.

  10. Proposed software system for atomic-structure calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, C.F.

    1981-07-01

    Atomic structure calculations are understood well enough that, at a routine level, an atomic structure software package can be developed. At the Atomic Physics Conference in Riga, 1978 L.V. Chernysheva and M.Y. Amusia of Leningrad University, presented a paper on Software for Atomic Calculations. Their system, called ATOM is based on the Hartree-Fock approximation and correlation is included within the framework of RPAE. Energy level calculations, transition probabilities, photo-ionization cross-sections, electron scattering cross-sections are some of the physical properties that can be evaluated by their system. The MCHF method, together with CI techniques and the Breit-Pauli approximation also provides amore » sound theoretical basis for atomic structure calculations.« less

  11. OsB 2 and RuB 2, ultra-incompressible, hard materials: First-principles electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Chiodo, S.; Gotsis, H. J.; Russo, N.; Sicilia, E.

    2006-07-01

    Recently it has been reported that osmium diboride has an unusually large bulk modulus combined with high hardness, and consequently is a most interesting candidate as an ultra-incompressible and hard material. The electronic and structural properties of the transition metal diborides OsB 2 and RuB 2 have been calculated within the local density approximation (LDA). It is shown that the high hardness is the result of covalent bonding between transition metal d states and boron p states in the orthorhombic structure.

  12. Electronic Structure Calculations and Adaptation Scheme in Multi-core Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshagiri, Lakshminarasimhan; Sosonkina, Masha; Zhang, Zhao

    2009-05-20

    Multi-core processing environments have become the norm in the generic computing environment and are being considered for adding an extra dimension to the execution of any application. The T2 Niagara processor is a very unique environment where it consists of eight cores having a capability of running eight threads simultaneously in each of the cores. Applications like General Atomic and Molecular Electronic Structure (GAMESS), used for ab-initio molecular quantum chemistry calculations, can be good indicators of the performance of such machines and would be a guideline for both hardware designers and application programmers. In this paper we try to benchmarkmore » the GAMESS performance on a T2 Niagara processor for a couple of molecules. We also show the suitability of using a middleware based adaptation algorithm on GAMESS on such a multi-core environment.« less

  13. Rich interfacial chemistry and properties of carbon-doped hexagonal boron nitride nanosheets revealed by electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Tamura, Takahiro; Yanase, Takashi; Nagahama, Taro; Shimada, Toshihiro

    2018-04-01

    The effect of C doping to hexagonal boron nitride (h-BN) to its electronic structure is examined by first principles calculations using the association from π-electron systems of organic molecules embedded in a two-dimensional insulator. In a monolayered carbon-doped structure, odd-number doping with carbon atoms confers metallic properties with different work functions. Various electronic interactions occur between two layers with odd-number carbon substitution. A direct sp3 covalent chemical bond is formed when C replaces adjacent B and N in different layers. A charge transfer complex between layers is found when C replaces B and N in the next-neighboring region, which results in narrower band gaps (e.g., 0.37 eV). Direct bonding between C and B atoms is found when two C atoms in different layers are at a certain distance.

  14. Molecular structure, vibrational, electronic and thermal properties of 4-vinylcyclohexene by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Nagabalasubramanian, P. B.; Periandy, S.; Karabacak, Mehmet; Govindarajan, M.

    2015-06-01

    The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100 cm-1. The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.

  15. First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin

    2017-12-01

    We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.

  16. Structural, electronic, elastic, thermoelectric and thermodynamic properties of the NbMSb half heusler (M=Fe, Ru, Os) compounds with first principle calculations

    NASA Astrophysics Data System (ADS)

    Abid, O. Miloud; Menouer, S.; Yakoubi, A.; Khachai, H.; Omran, S. Bin; Murtaza, G.; Prakash, Deo; Khenata, R.; Verma, K. D.

    2016-05-01

    The structural, electronic, elastic, thermoelectric and thermodynamic properties of NbMSb (M = Fe, Ru, Os) half heusler compounds are reported. The full-potential linearized augmented plane wave (FP-LAPW) plus local orbital (lo) method, based on the density functional theory (DFT) was employed for the present study. The equilibrium lattice parameter results are in good compliance with the available experimental measurements. The electronic band structure and Boltzmann transport calculations indicated a narrow indirect energy band gap for the compound having electronic structure favorable for thermoelectric performance as well as with substantial thermopowers at temperature ranges from 300 K to 800 K. Furthermore, good potential for thermoelectric performance (thermopower S ≥ 500 μeV) was found at higher temperature. In addition, the analysis of the charge density, partial and total densities of states (DOS) of three compounds demonstrate their semiconducting, ionic and covalent characters. Conversely, the calculated values of the Poisson's ratio and the B/G ratio indicate their ductile makeup. The thermal properties of the compounds were calculated by quasi-harmonic Debye model as implemented in the GIBBS code.

  17. Configurational forces in electronic structure calculations using Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Motamarri, Phani; Gavini, Vikram

    2018-04-01

    We derive the expressions for configurational forces in Kohn-Sham density functional theory, which correspond to the generalized variational force computed as the derivative of the Kohn-Sham energy functional with respect to the position of a material point x . These configurational forces that result from the inner variations of the Kohn-Sham energy functional provide a unified framework to compute atomic forces as well as stress tensor for geometry optimization. Importantly, owing to the variational nature of the formulation, these configurational forces inherently account for the Pulay corrections. The formulation presented in this work treats both pseudopotential and all-electron calculations in a single framework, and employs a local variational real-space formulation of Kohn-Sham density functional theory (DFT) expressed in terms of the nonorthogonal wave functions that is amenable to reduced-order scaling techniques. We demonstrate the accuracy and performance of the proposed configurational force approach on benchmark all-electron and pseudopotential calculations conducted using higher-order finite-element discretization. To this end, we examine the rates of convergence of the finite-element discretization in the computed forces and stresses for various materials systems, and, further, verify the accuracy from finite differencing the energy. Wherever applicable, we also compare the forces and stresses with those obtained from Kohn-Sham DFT calculations employing plane-wave basis (pseudopotential calculations) and Gaussian basis (all-electron calculations). Finally, we verify the accuracy of the forces on large materials systems involving a metallic aluminum nanocluster containing 666 atoms and an alkane chain containing 902 atoms, where the Kohn-Sham electronic ground state is computed using a reduced-order scaling subspace projection technique [P. Motamarri and V. Gavini, Phys. Rev. B 90, 115127 (2014), 10.1103/PhysRevB.90.115127].

  18. Structural electronic and mechanical properties of YM2 (M=Mn, Fe, Co) laves phase compounds: First principle calculations analyzed with datamining approach

    NASA Astrophysics Data System (ADS)

    Saidi, F.; Sebaa, N.; Mahmoudi, A.; Aourag, H.; Merad, G.; Dergal, M.

    2018-06-01

    We performed first-principle calculations to investigate structural, phase stability, electronic and mechanical properties for the Laves phases YM2 (M = Mn, Fe, Co) with C15, C14 and C36 structures. We used the density functional theory within the framework of both pseudo-potentials and plane wave basis using VASP (Vienna Ab Initio Software Package). The calculated equilibrium structural parameters are in accordance with available theoretical values. Mechanical properties were calculated, discussed, and analyzed with data mining approach in terms of structure stability. The results reveal that YCo2 is harder than YFe2 and YMn2.

  19. Model for intensity calculation in electron guns

    NASA Astrophysics Data System (ADS)

    Doyen, O.; De Conto, J. M.; Garnier, J. P.; Lefort, M.; Richard, N.

    2007-04-01

    The calculation of the current in an electron gun structure is one of the main investigations involved in the electron gun physics understanding. In particular, various simulation codes exist but often present some important discrepancies with experiments. Moreover, those differences cannot be reduced because of the lack of physical information in these codes. We present a simple physical three-dimensional model, valid for all kinds of gun geometries. This model presents a better precision than all the other simulation codes and models encountered and allows the real understanding of the electron gun physics. It is based only on the calculation of the Laplace electric field at the cathode, the use of the classical Child-Langmuir's current density, and a geometrical correction to this law. Finally, the intensity versus voltage characteristic curve can be precisely described with only a few physical parameters. Indeed, we have showed that only the shape of the electric field at the cathode without beam, and a distance of an equivalent infinite planar diode gap, govern mainly the electron gun current generation.

  20. Synthesis, structure, and electronic structure calculation of a new centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] based on anion-centered OPb{sub 4} tetrahedra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Feng; Wang, Li, E-mail: wangliresearch@163.com; Stoumpos, Constantinos C.

    2016-08-15

    The synthesis, structure, and characterization of a new centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] based on anion-centered OPb{sub 4} tetrahedra are reported. Pb{sub 2}O[BO{sub 2}(OH)] crystallizes in monoclinic space group C2/m with a=12.725(7) Å, b=5.698(3) Å, c=7.344(4) Å, β=116.277(6)°. The electronic band structure and density of states of Pb{sub 2}O[BO{sub 2}(OH)] have been calculated via the density functional theory (DFT). Electron density difference calculation indicates that lone-pair electrons of Pb{sup 2+} cation should be stereoactive. - Graphical abstract: An indirect gap compound of Pb{sub 2}O[BO{sub 2}(OH)] with 2D inorganic layers motif based on OPb{sub 4} tetrahedra has been synthesized and fullmore » characterized by crystallographic, IR, TG, UV–vis-NIR Diffuse Reflectance, and theoretical calculations. Display Omitted - Highlights: • A centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] was synthesized and characterized. • The crystalstructure, electronic band and density states was analyzed. • The lone-pair electrons of Pb{sup 2+} were proved to be stereoactive.« less

  1. First-principle calculations of crystal structures, electronic structures, and optical properties of RETaO4 (RE = Y, La, Sm, Eu, Dy, Er)

    NASA Astrophysics Data System (ADS)

    Ma, Zhuang; Zheng, Jiayi; Wang, Song; Gao, Lihong

    2018-01-01

    It is an effective method to protect components from high power laser damage using high reflective materials. The rare earth tantalates RETaO4 with high dielectric constant suggests that they may have very high reflectivity, according to the relationship between dielectric constant and reflectivity. The crystal structures, electronic structures, and optical properties of RETaO4 (RE=Y, La, Sm, Eu, Dy, Er) have been studied by first-principle calculations. With the increasing atomic number of RE (i.e., the number of 4f electrons), a 4f electron shell moves from the bottom of conduction band to the forbidden gap and then to the valence band. The relationship between the electronic structures and optical properties is explored. The electron transitions among O 2p states, RE 4f states, and Ta 5d states have a key effect on optical properties such as dielectric function, absorption coefficient, and reflectivity. For the series of RETaO4, the appearance of the 4f electronic states will obviously promote the improvement of reflectivity. When the 4f states appear at the middle of the forbidden gap, the reflectivity reaches the maximum. The reflectivity of EuTaO4 at 1064 nm is up to 93.47%, indicating that it has potential applications in the antilaser radiation area.

  2. Study of structural, elastic, electronic and optical properties of seven SrZrO{sub 3} phases: First-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qi-Jun, E-mail: dianerliu@yahoo.com.cn; Liu, Zheng-Tang; Feng, Li-Ping

    2012-12-15

    On the plane-wave ultrasoft pseudopotential technique based on the first-principles density functional theory (DFT), we calculated the structural, elastic, electronic and optical properties of the seven different phases of SrZrO{sub 3}. The obtained ground-state properties are in good agreement with previous experiments and calculations, which indicate that the most stable phase is orthorhombic Pnma structure. Seven phases of SrZrO{sub 3} are mechanically stable with cubic, tetragonal and orthorhombic structures. The mechanical and thermodynamic properties have been obtained by using the Voigt-Reuss-Hill approach and Debye-Grueneisen model. The electronic structures and optical properties are obtained and compared with the available experimental andmore » theoretical data. - Graphical abstract: Energy versus volume of seven phases SrZrO{sub 3} shows the Pnma phase has the minimum ground-state energy. Highlights: Black-Right-Pointing-Pointer We calculated the physical and chemical properties of seven SrZrO{sub 3} polymorphs. Black-Right-Pointing-Pointer The order of stability is Pnma>Imma>Cmcm>I4/mcm>P4/mbm>P4mm>Pm3-bar m. Black-Right-Pointing-Pointer The most stable phase is orthorhombic Pnma structure. Black-Right-Pointing-Pointer Seven phases of SrZrO{sub 3} are mechanically stable. Black-Right-Pointing-Pointer The relationship between n and {rho}{sub m} is n=1+0.18{rho}{sub m}.« less

  3. First-principles calculations on slip system activation in the rock salt structure: electronic origin of ductility in silver chloride

    NASA Astrophysics Data System (ADS)

    Nakamura, Atsutomo; Ukita, Masaya; Shimoda, Naofumi; Furushima, Yuho; Toyoura, Kazuaki; Matsunaga, Katsuyuki

    2017-06-01

    First principles calculations were performed to understand an electronic origin of high ductility in silver chloride (AgCl) with the rock salt structure. From calculations of generalised stacking fault energies for different slip systems, it was found that only the {1 1 0}? slip system is favourably activated in sodium chloride (NaCl) with the same rock salt structure, whereas AgCl shows three kinds of possible slip systems along the ? direction on the {0 0 1}, {1 1 0}, and {1 1 1} planes, which is in excellent agreement with experiment. Detailed analyses of the electronic structures across slip planes showed that the more covalent character of bonding of Ag-Cl than Na-Cl tends to make the slip motion energetically favourable. It was also surprising to find out that strong Ag-Ag covalent bonds across the slip plane are formed in the {0 0 1}〈1 1 0〉 slip system in AgCl, which makes it possible to activate the multiple slip systems in AgCl.

  4. Study of the electronic structure of electron accepting cyano-films: TCNQversusTCNE.

    PubMed

    Capitán, Maria J; Álvarez, Jesús; Navio, Cristina

    2018-04-18

    In this article, we perform systematic research on the electronic structure of two closely related organic electron acceptor molecules (TCNQ and TCNE), which are of technological interest due to their outstanding electronic properties. These studies have been performed from the experimental point of view by the use electron spectroscopies (XPS and UPS) and supported theoretically by the use of ab-initio DFT calculations. The cross-check between both molecules allows us to identify the characteristic electronic features of each part of the molecules and their contribution to the final electronic structure. We can describe the nature of the band gap of these materials, and we relate this with the appearance of the shake-up features in the core level spectra. A band bending and energy gap reduction of the aforementioned electronic structure in contact with a metal surface are seen in the experimental results as well in the theoretical calculations. This behavior implies that the TCNQ thin film accepts electrons from the metal substrate becoming a Schottky n-junction.

  5. Lattice structures and electronic properties of CIGS/CdS interface: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Tang, Fu-Ling; Liu, Ran; Xue, Hong-Tao; Lu, Wen-Jiang; Feng, Yu-Dong; Rui, Zhi-Yuan; Huang, Min

    2014-07-01

    Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+InCu) CuInGaSe2/CdS interfaces theoretically, especially the interface states. We find that the local lattice structure of (2VCu+InCu) interface is somewhat disorganized. By analyzing the local density of states projected on several atomic layers of the two interfaces models, we find that for the (2VCu+InCu) interface the interface states near the Fermi level in CuInGaSe2 and CdS band gap regions are mainly composed of interfacial Se-4p, Cu-3d and S-3p orbitals, while for the perfect interface there are no clear interface states in the CuInGaSe2 region but only some interface states which are mainly composed of S-3p orbitals in the valance band of CdS region.

  6. An economic prediction of the finer resolution level wavelet coefficients in electronic structure calculations.

    PubMed

    Nagy, Szilvia; Pipek, János

    2015-12-21

    In wavelet based electronic structure calculations, introducing a new, finer resolution level is usually an expensive task, this is why often a two-level approximation is used with very fine starting resolution level. This process results in large matrices to calculate with and a large number of coefficients to be stored. In our previous work we have developed an adaptively refined solution scheme that determines the indices, where the refined basis functions are to be included, and later a method for predicting the next, finer resolution coefficients in a very economic way. In the present contribution, we would like to determine whether the method can be applied for predicting not only the first, but also the other, higher resolution level coefficients. Also the energy expectation values of the predicted wave functions are studied, as well as the scaling behaviour of the coefficients in the fine resolution limit.

  7. Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu

    2013-12-15

    The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less

  8. Electronic structure of O-doped SiGe calculated by DFT + U method

    NASA Astrophysics Data System (ADS)

    Zhao, Zong-Yan; Yang, Wen; Yang, Pei-Zhi

    2016-12-01

    To more in depth understand the doping effects of oxygen on SiGe alloys, both the micro-structure and properties of O-doped SiGe (including: bulk, (001) surface, and (110) surface) are calculated by DFT + U method in the present work. The calculated results are as follows. (i) The (110) surface is the main exposing surface of SiGe, in which O impurity prefers to occupy the surface vacancy sites. (ii) For O interstitial doping on SiGe (110) surface, the existences of energy states caused by O doping in the band gap not only enhance the infrared light absorption, but also improve the behaviors of photo-generated carriers. (iii) The finding about decreased surface work function of O-doped SiGe (110) surface can confirm previous experimental observations. (iv) In all cases, O doing mainly induces the electronic structures near the band gap to vary, but is not directly involved in these variations. Therefore, these findings in the present work not only can provide further explanation and analysis for the corresponding underlying mechanism for some of the experimental findings reported in the literature, but also conduce to the development of μc-SiGe-based solar cells in the future. Project supported by the Natural Science Foundation of Yunnan Province, China (Grant No. 2015FB123), the 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project, China (Grant No. 2015HB015), and the National Natural Science Foundation of China (Grant No. U1037604).

  9. Electronic structure and electron-phonon interaction in hexagonal yttrium by density functional calculations

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.

    2007-03-01

    To understand the pressure-induced changes in the electronic structure and the electron-phonon interaction in yttrium, we have studied hexagonal-close-packed (hcp) yttrium, stable at ambient pressure, and double hexagonal-close-packed (dhcp) yttrium, stable up to around 44GPa , using density-functional-based methods. Our results show that as one goes from hcp yttrium to dhcp yttrium, there are (i) a substantial charge transfer from s→d with extensive modifications of the d band and a sizable reduction in the density of states at the Fermi energy, (ii) a substantial stiffening of phonon modes with the electron-phonon coupling covering the entire frequency range, and (iii) an increase in the electron-phonon coupling constant λ from 0.55 to 1.24, leading to a change in the superconducting transition temperature Tc from 0.3to15.3K for μ*=0.2 .

  10. First-principles calculations of the structural, electronic, optical and thermal properties of the BNxAs1-x alloys

    NASA Astrophysics Data System (ADS)

    Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin

    2016-06-01

    The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.

  11. Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Wahnón, P.; Tablero, C.

    2002-04-01

    A metallic isolated band in the middle of the band gap of several III-V semiconductors has been predicted as photovoltaic materials with the possibility of providing substantially enhanced efficiencies. We have investigated the electronic band structures and lattice constants of GanAsmM and GanPmM with M=Sc, Ti, V, and Cr, to identify whether this isolated band is likely to exist by means of accurate calculations. For this task, we use the SIESTA program, an ab initio periodic density-functional method, fully self consistent in the local-density approximation. Norm-conserving, nonlocal pseudopotentials and confined linear combination of atomic orbitals have been used. We have carried out a case study of GanAsmTi and GanPmTi energy-band structure including analyses of the effect of the basis set, fine k-point mesh to ensure numerical convergence, structural parameters, and generalized gradient approximation for exchange and correlation corrections. We find the isolated intermediate band when one Ti atom replaces the position of one As (or P) atom in the crystal structure. For this kind of compound we show that the intermediate band relative position inside the band gap and width are sensitive to the dynamic relaxation of the crystal and the size of the basis set.

  12. Structural, electronic and magnetic properties of Cd1-xTMxS (TM=Co and V) by ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Yahi, Hakima; Meddour, Athmane

    2016-03-01

    The structural, electronic and ferromagnetic properties of Cd1-xTMxS (TM=Co and V) compounds at x=0.25, 0.50 and 0.75 in zinc blende (B3) phase, have been investigated using all-electron full-potential linear muffin tin orbital (FP-LMTO) calculations within the frame work of the density functional theory and the generalized gradient approximation. The electronic properties exhibit half-metallic behavior at x=0.25, 0.50, and 0.75 for Cd1-xVxS and x=0.25 and 0.50 for Cd1-xCoxS, while Cd1-xCoxS with x=0.75 is nearly half-metallic. The calculated magnetic moment per substituted transition metal (TM) atom for half-metallic compounds is found to be 3 μB, whereas that of a nearly half-metallic compound is 2.29 μB. The analysis of band structure and density of states shows that the TM-3d states play a key role in generating spin-polarization and magnetic moment in these compounds. Furthermore, we establish that the p-d hybridization reduces the local magnetic moment of Co and enhances that of V from their free space charge value of 3 μB and creates small local magnetic moments on nonmagnetic Cd and S sites. The exchange constant N0α and N0β have been calculated to validate the effects resulting from exchange splitting process.

  13. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    PubMed

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Impurity-doped Si10 cluster: Understanding the structural and electronic properties from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Majumder, Chiranjib; Kulshreshtha, S. K.

    2004-12-01

    Structural and electronic properties of metal-doped silicon clusters ( MSi10 , M=Li , Be, B, C, Na, Mg, Al, and Si) have been investigated via ab initio molecular dynamics simulation under the formalism of the density functional theory. The exchange-correlation energy has been calculated using the generalized gradient approximation method. Several stable isomers of MSi10 clusters have been identified based on different initial configurations and their relative stabilities have been analyzed. From the results it is revealed that the location of the impurity atom depends on the nature of interaction between the impurity atom and the host cluster and the size of the impurty atom. Whereas Be and B atoms form stable isomers, the impurity atom being placed at the center of the bicapped tetragonal antiprism structure of the Si10 cluster, all other elements diffuse outside the cage of Si10 cluster. Further, to understand the stability and the chemical bonding, the LCAO-MO based all electron calculations have been carried out for the lowest energy isomers using the hybrid B3LYP energy functional. Based on the interaction energy of the M atoms with Si10 clusters it is found that p-p interaction dominates over the s-p interaction and smaller size atoms interact more strongly. Based on the binding energy, the relative stability of MSi10 clusters is found to follow the order of CSi10>BSi10>BeSi10>Si11>AlSi10>LiSi10>NaSi10>MgSi10 , leading one to infer that while the substitution of C, B and Be enhances the stability of the Si11 cluster, others have an opposite effect. The extra stability of the BeSi10 clusters is due to its encapsulated close packed structure and large energy gap between the HOMO and LUMO energy levels.

  15. Three-Dimensional Electron Beam Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Shiu, Almon Sowchee

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional

  16. Graph-based linear scaling electronic structure theory.

    PubMed

    Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  17. Graph-based linear scaling electronic structure theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  18. Bulk and surface electronic structures of MgO

    NASA Astrophysics Data System (ADS)

    Schönberger, U.; Aryasetiawan, F.

    1995-09-01

    The bulk electronic structure of MgO is calculated from first principles including correlation effects within the GW approximation. The band gap, the position of the 2s O band, and the valence band width are in good agreement with experiment. From the quasiparticle band structure, optical transitions corresponding to the main optical absorption peaks are identified. The energy-loss spectrum is also calculated and compared with experiment. The surface electronic structure of MgO(100) is calculated self-consistently within the local-density approximation. It is found that states observed in a recent photoemission experiment outside the bulk allowed states are close to surface states.

  19. Structural and electronic properties of monolayer group III monochalcogenides

    NASA Astrophysics Data System (ADS)

    Demirci, S.; Avazlı, N.; Durgun, E.; Cahangirov, S.

    2017-03-01

    We investigate the structural, mechanical, and electronic properties of the two-dimensional hexagonal structure of group III-VI binary monolayers, M X (M =B , Al, Ga, In and X =O , S, Se, Te) using first-principles calculations based on the density functional theory. The structural optimization calculations and phonon spectrum analysis indicate that all of the 16 possible binary compounds are thermally stable. In-plane stiffness values cover a range depending on the element types and can be as high as that of graphene, while the calculated bending rigidity is found to be an order of magnitude higher than that of graphene. The obtained electronic band structures show that M X monolayers are indirect band-gap semiconductors. The calculated band gaps span a wide optical spectrum from deep ultraviolet to near infrared. The electronic structure of oxides (M O ) is different from the rest because of the high electronegativity of oxygen atoms. The dispersions of the electronic band edges and the nature of bonding between atoms can also be correlated with electronegativities of constituent elements. The unique characteristics of group III-VI binary monolayers can be suitable for high-performance device applications in nanoelectronics and optics.

  20. Chemical sensors based on N-substituted polyaniline derivatives: reactivity and adsorption studies via electronic structure calculations.

    PubMed

    Mandú, Larissa O; Batagin-Neto, Augusto

    2018-06-09

    Conjugated organic polymers represent an important class of materials for varied technological applications including in active layers of chemical sensors. In this context, polyaniline (PANI) derivatives are promising candidates, mainly due to their high chemical stability, good processability, versatility of synthesis, polymerization, and doping, as well as relative low cost. In this study, electronic structure calculations were carried out for varied N-substituted PANI derivatives in order to investigate the potential sensory properties of these materials. The opto-electronic properties of nine distinct compounds were evaluated and discussed in terms of the employed substituents. Preliminary reactivity studies were performed in order to identify adsorption centers on the oligomer structures via condensed-to-atoms Fukui indexes (CAFI). Finally, adsorption studies were carried out for selected derivatives considering five distinct gaseous analytes. The influence of the analytes on the oligomer properties were investigated via the evaluation of average binding energies and changes on the structural features, optical absorption spectra, frontier orbitals distribution, and total density of states in relation to the isolated oligomers. The obtained results indicate the derivatives PANI-NO 2 and PANI-C 6 H 5 as promising materials for the development of improved chemical sensors.

  1. Electronic Structure of GdCuGe Intermetallic Compound

    NASA Astrophysics Data System (ADS)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  2. Full-Potential Calculation of Structural, Electronic, and Thermodynamic Properties of Fluoroperovskite { CsMF}3 (M = Be and Mg)

    NASA Astrophysics Data System (ADS)

    Harmel, M.; Khachai, H.; Ameri, A.; Baki, N.; Haddou, A.; Khalfa, M.; Abbar, B.; Omran, S. Bin; Uğur, G.; Uğur, Ş.; Khenata, R.

    2012-12-01

    The structural and electronic properties of the cubic fluoroperoveskite { CsBeF}3 and { CsMgF}3 have been investigated using the full-potential-linearized augmented plane wave method within the density functional theory. The exchange-correlation potential was treated with the local density approximation and the generalized gradient approximation. The calculations of the electronic band structures show that { CsBeF}_{3 } has an indirect bandgap, whereas { CsMgF}3 has a direct bandgap. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the effect of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and the heat capacity for { CsBeF}3 and { CsMgF}3 compounds are investigated for the first time.

  3. Half-metallicity and electronic structures for carbon-doped group III-nitrides: Calculated with a modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Fan, Shuai-wei; Wang, Ri-gao; Xu, Pemg

    2016-09-01

    The electronic structures and magnetism for carbon-doped group III-nitrides are investigated by utilizing the first principle method with the modified Becke-Johnson potential. Calculations show that carbon substituting cations (anions) would induce the group III-nitrides to be paramagnetic metals (half-metallic ferromagnets). Single carbon substituting nitrogen could produce 1.00μB magnetic moment. Electronic structures indicate that the carriers-mediated double-exchange interaction plays a crucial role in forming the ferromagnetism. Based on the mean-field theory, the Curie temperature for carbon-doped group III-nitrides would be above the room temperature. Negative chemical pair interactions imply that carbon dopants tend to form clustering distribution in group III-nitrides. The nitrogen vacancy would make the carbon-doped group III-nitrides lose the half-metallic ferromagnetism.

  4. The linearly scaling 3D fragment method for large scale electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak

    2009-07-28

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) atmore » OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.« less

  5. The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak

    2009-06-26

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) atmore » OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.« less

  6. Electronic structure of the high-temperature oxide superconductors

    NASA Astrophysics Data System (ADS)

    Pickett, Warren E.

    1989-04-01

    Since the discovery of superconductivity above 30 K by Bednorz and Müller in the La copper oxide system, the critical temperature has been raised to 90 K in YBa2Cu3O7 and to 110 and 125 K in Bi-based and Tl-based copper oxides, respectively. In the two years since this Nobel-prize-winning discovery, a large number of electronic structure calculations have been carried out as a first step in understanding the electronic properties of these materials. In this paper these calculations (mostly of the density-functional type) are gathered and reviewed, and their results are compared with the relevant experimental data. The picture that emerges is one in which the important electronic states are dominated by the copper d and oxygen p orbitals, with strong hybridization between them. Photon, electron, and positron spectroscopies provide important information about the electronic states, and comparison with electronic structure calculations indicates that, while many features can be interpreted in terms of existing calculations, self-energy corrections ("correlations") are important for a more detailed understanding. The antiferromagnetism that occurs in some regions of the phase diagram poses a particularly challenging problem for any detailed theory. The study of structural stability, lattice dynamics, and electron-phonon coupling in the copper oxides is also discussed. Finally, a brief review is given of the attempts so far to identify interaction constants appropriate for a model Hamiltonian treatment of many-body interactions in these materials.

  7. Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library.

    PubMed

    Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi

    2017-10-10

    We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.

  8. The Electronic Structure and Optical Properties of Anatase TiO₂ with Rare Earth Metal Dopants from First-Principles Calculations.

    PubMed

    Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng

    2018-01-24

    The electronic and optical properties of the rare earth metal atom-doped anatase TiO₂ have been investigated systematically via density functional theory calculations. The results show that TiO₂ doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron-hole recombination. This effect of band change originates from the 4 f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO₂ is tuned by the introduction of impurity atoms.

  9. Calculation of the Energy-Band Structure of the Kronig-Penney Model Using the Nearly-Free and Tightly-Bound-Electron Approximations

    ERIC Educational Resources Information Center

    Wetsel, Grover C., Jr.

    1978-01-01

    Calculates the energy-band structure of noninteracting electrons in a one-dimensional crystal using exact and approximate methods for a rectangular-well atomic potential. A comparison of the two solutions as a function of potential-well depth and ratio of lattice spacing to well width is presented. (Author/GA)

  10. Heavy ion track-structure calculations for radial dose in arbitrary materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Dubey, Rajendra R.

    1995-01-01

    The delta-ray theory of track structure is compared with experimental data for the radial dose from heavy ion irradiation. The effects of electron transmission and the angular dependence of secondary electron ejection are included in the calculations. Several empirical formulas for electron range and energy are compared in a wide variety of materials in order to extend the application of the track-structure theory. The model of Rudd for the secondary electron-spectrum in proton collisions, which is based on a modified classical kinematics binary encounter model at high energies and a molecular promotion model at low energies, is employed. For heavier projectiles, the secondary electron spectrum is found by scaling the effective charge. Radial dose calculations for carbon, water, silicon, and gold are discussed. The theoretical data agreed well with the experimental data.

  11. Electronic and thermodynamic properties of layered Hf2Sfrom first-principles calculations

    NASA Astrophysics Data System (ADS)

    Nandadasa, Chandani; Yoon, Mina; Kim, Seong-Gon; Erwin, Steve; Kim, Sungho; Kim, Sung Wng; Lee, Kimoon

    Theoretically we explored two stable phases of inorganic fullerene-like structure of the layered dihafnium sulfide (Hf2 S) . We investigated structural and electronic properties of the two phases of Hf2 S by using first-principles calculations. Our calculation identifies experimentally observed anti-NbS2 structure of Hf2 S . Our electronic calculation results indicate that the density of states of anti- NbS2 structure of Hf2 S at fermi level is less than that of the other phase of Hf2 S . To study the relative stability of different phases at finite temperature Helmholtz free energies of two phases are obtained using density functional theory and density functional perturbation theory. The free energy of the anti-NbS2 structure of Hf2 S always lies below the free energy of the other phase by confirming the most stable structure of Hf2 S . The phonon dispersion, phonon density of states including partial density of states and total density of states are obtained within density functional perturbation theory. Our calculated zero-pressure phonon dispersion curves confirm that the thermodynamic stability of Hf2 S structures. For further investigation of thermodynamic properties, the temperature dependency of thermal expansion, heat capacities at constant pressure and volume are evaluated within the quasiharmonic approximations (QHA).

  12. First-principle calculations of structural, electronic, optical, elastic and thermal properties of MgXAs2 (X=Si, Ge) compounds

    NASA Astrophysics Data System (ADS)

    Cheddadi, S.; Boubendira, K.; Meradji, H.; Ghemid, S.; Hassan, F. El Haj; Lakel, S.; Khenata, R.

    2017-12-01

    First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite MgXAs2 (X=Si, Ge) have been performed within the density functional theory (DFT) using the full-potential linearized augmented plane wave (FP-LAPW) method. The obtained equilibrium structural parameters are in good agreement with the available experimental data and theoretical results. The calculated band structures reveal a direct energy band gap for the interested compounds. The predicted band gaps using the modified Becke-Johnson (mBJ) exchange approximation are in fairly good agreement with the experimental data. The optical constants such as the dielectric function, refractive index, and the extinction coefficient are calculated and analysed. The independent elastic parameters namely, C_{11}, C_{12}, C_{13}, C_{33}, C_{44} and C_{66 } are evaluated. The effects of temperature and pressure on some macroscopic properties of MgSiAs2 and MgGeAs2 are predicted using the quasiharmonic Debye model in which the lattice vibrations are taken into account.

  13. Structural and electronic properties of Cu2Q and CuQ (Q = O, S, Se, and Te) studied by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Ting; Wang, Yu-An; Zhao, Zong-Yan; Liu, Qiang; Liu, Qing-Ju

    2018-01-01

    In order to explore the similarity, difference, and tendency of binary copper-based chalcogenides, the crystal structure, electronic structure, and optical properties of eight compounds of Cu2Q and CuQ (Q = O, S, Se, and Te) have been calculated by density functional theory with HSE06 method. According to the calculated results, the electronic structure and optical properties of Cu2Q and CuQ present certain similarities and tendencies, with the increase of atomic number of Q elements: the interactions between Cu-Q, Cu-Cu, and Q-Q are gradually enhancing; the value of band gap is gradually decreasing, due to the down-shifting of Cu-4p states; the covalent feature of Cu atoms is gradually strengthening, while their ionic feature is gradually weakening; the absorption coefficient in the visible-light region is also increasing. On the other hand, some differences can be found, owing to the different crystal structure and component, for example: CuO presents the characteristics of multi-band gap, which is very favorable to absorb infrared-light; the electron transfer in CuQ is stronger than that in Cu2Q; the absorption peaks and intensity are very strong in the ultraviolet-light region and infrared-light region. The findings in the present work will help to understand the underlying physical mechanism of binary copper-based chalcogenides, and available to design novel copper-based chalcogenides photo-electronics materials and devices.

  14. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    NASA Technical Reports Server (NTRS)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  15. Electronic structure of lead pyrophosphate

    NASA Astrophysics Data System (ADS)

    Suewattana, Malliga; Singh, David

    2007-03-01

    Lead Pyrophosphate Pb2P2O7 is of interest for potential radiation detection applications and use in long term waste storage. It forms in triclinic P1 crystals and can also be grown as glasses. We performed electronic structure calculations using the crystal structure which determined by Mullica et. al (J. Solid State Chem (1986)) using x-ray diffraction and found large forces on atoms suggesting that the refined atomic positions were not fully correct. Here we report first principles structure relaxation and a revised crystal structure for this compound. We analyze the resulting structure using pair distribution functions and discuss the implications for the electronic properties. This work was supported by DOE NA22 and the Office of Naval Research.

  16. Electronics Environmental Benefits Calculator

    EPA Pesticide Factsheets

    The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase, use and disposal of electronics.The EEBC estimates the environmental and economic benefits of: Purchasing Electronic Product Environmental Assessment Tool (EPEAT)-registered products; Enabling power management features on computers and monitors above default percentages; Extending the life of equipment beyond baseline values; Reusing computers, monitors and cell phones; and Recycling computers, monitors, cell phones and loads of mixed electronic products.The EEBC may be downloaded as a Microsoft Excel spreadsheet.See https://www.federalelectronicschallenge.net/resources/bencalc.htm for more details.

  17. Ab Initio Electronic Structure Calculation of [4Fe-3S] Cluster of Hydrogenase as Dihydrogen Dissociation/Production Catalyst

    NASA Astrophysics Data System (ADS)

    Kim, Jaehyun; Kang, Jiyoung; Nishigami, Hiroshi; Kino, Hiori; Tateno, Masaru

    2018-03-01

    Hydrogenases catalyze both the dissociation and production of dihydrogen (H2). Most hydrogenases are inactivated rapidly and reactivated slowly (in vitro), in the presence of dioxygen (O2) and H2, respectively. However, membrane-bound [NiFe] hydrogenases (MBHs) sustain their activity even together with O2, which is termed "O2 tolerance". In previous experimental analyses, an MBH was shown to include a hydroxyl ion (OH-) bound to an Fe of the super-oxidized [4Fe-3S]5+ cluster in the proximity of the [NiFe] catalytic cluster. In this study, the functional role of the OH- in the O2 tolerance was investigated by ab initio electronic structure calculation of the [4Fe-3S] proximal cluster. The analysis revealed that the OH- significantly altered the electronic structure, thereby inducing the delocalization of the lowest unoccupied molecular orbital (LUMO) toward the [NiFe] catalytic cluster, which may intermediate the electron transfer between the catalytic and proximal clusters. This can promote the O2-tolerant catalytic cycle in the hydrogenase reaction.

  18. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus,more » 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.« less

  19. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, Zachary K.; Harshan, Aparna K.; Gerken, James B.

    2017-03-06

    NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast,more » absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fedoped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixedmetal oxidation states in heterogeneous catalysts.« less

  20. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry.

    PubMed

    Goldsmith, Zachary K; Harshan, Aparna K; Gerken, James B; Vörös, Márton; Galli, Giulia; Stahl, Shannon S; Hammes-Schiffer, Sharon

    2017-03-21

    NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni 2+ to Ni 3+ , followed by oxidation to a mixed Ni 3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fe-doped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe 4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixed-metal oxidation states in heterogeneous catalysts.

  1. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry

    PubMed Central

    Goldsmith, Zachary K.; Harshan, Aparna K.; Gerken, James B.; Galli, Giulia; Stahl, Shannon S.

    2017-01-01

    NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fe-doped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixed-metal oxidation states in heterogeneous catalysts. PMID:28265083

  2. Electronic structure of lanthanide scandates

    NASA Astrophysics Data System (ADS)

    Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.

    2018-02-01

    X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.

  3. Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations

    DOE PAGES

    Banerjee, Amartya S.; Lin, Lin; Hu, Wei; ...

    2016-10-21

    The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A central issue for large-scale calculations, however, is the computation of the electron density (and subsequently, ground state properties) from the discretized Hamiltonian in an efficient and scalable manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) canmore » be used to address this issue and push the envelope in large-scale materials simulations in a discontinuous Galerkin framework. We describe how the subspace filtering steps can be performed in an efficient and scalable manner using a two-dimensional parallelization scheme, thanks to the orthogonality of the DG basis set and block-sparse structure of the DG Hamiltonian matrix. The on-the-fly nature of the ALB functions requires additional care in carrying out the subspace iterations. We demonstrate the parallel scalability of the DG-CheFSI approach in calculations of large-scale twodimensional graphene sheets and bulk three-dimensional lithium-ion electrolyte systems. In conclusion, employing 55 296 computational cores, the time per self-consistent field iteration for a sample of the bulk 3D electrolyte containing 8586 atoms is 90 s, and the time for a graphene sheet containing 11 520 atoms is 75 s.« less

  4. Electronic structure and optical properties of Cs2HgCl4: DFT calculations and X-ray photoelectron spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Parasyuk, O. V.; Fedorchuk, A. O.; Khyzhun, O. Y.

    2016-10-01

    A high-quality single crystal of cesium mercury tetrabromide, Cs2HgCl4, was synthesized by using the vertical Bridgman-Stockbarger method and its electronic structure was studied from both experimental and theoretical viewpoints. In particular, X-ray photoelectron spectra were measured for both pristine and Ar+ ion-bombarded Cs2HgCl4 single crystal surfaces. The present XPS measurements indicate that the Cs2HgCl4 single crystal surface is sensitive with respect to Ar+ ion-bombardment: such a treatment changes substantially its elemental stoichiometry. With the aim of exploring total and partial densities of states within the valence band and conduction band regions of the Cs2HgCl4 compound, band-structure calculations based on density functional theory (DFT) using the augmented plane wave + local orbitals (APW + lo) method as incorporated within the WIEN2k package are performed. The calculations indicate that the Cl 3p states are the principal contributors in the upper portion of the valence band, while the Hg 5d and Cs 5p states dominate in its lower portion. In addition, the calculations allow for concluding that the unoccupied Cl p and Hg s states are the main contributors to the bottom of the conduction band. Furthermore, main optical characteristics of Cs2HgCl4, namely dispersion of the absorption coefficient, real and imaginary parts of dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient and optical reflectivity, are elucidated based on the DFT calculations.

  5. Electronic structure of the BaO molecule with dipole moments and ro-vibrational calculations

    NASA Astrophysics Data System (ADS)

    Khatib, Mohamed; Korek, Mahmoud

    2018-03-01

    The twenty-three low-lying electronic states (singlet and triplet) of the BaO molecule have been studied by using an ab initio method. These electronic states have been investigated by using the Complete Active Apace Self-Consistent Field (CASSCF) followed by multi-reference configuration interaction (MRCI + Q) with Davidson correction. The potential energy curves, the internuclear distance Re, the harmonic frequency ωe, the rotational constant Be, the electronic energy with respect to the ground state Te and the static and transition dipole moment have been investigated. The Einstein spontaneous and induced emission coefficients A21 and B21ω as well as the spontaneous radiative lifetime τspon, emission wavelength λ21 and oscillator strength f21 have been calculated by using the transition dipole moment between some doublet electronic states. The calculation of the eigenvalues Ev, the rotational constant Bv, the centrifugal distortion constant Dv, and the abscissas of the turning points Rmin and Rmax have been done by using the canonical functions approach. A very good agreement is shown by comparing the values of our work to those found in the literature for many electronic states. Eighteen new electronic states have been studied here for the first time.

  6. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method

    NASA Astrophysics Data System (ADS)

    Ching, Wai-Yim; Rulis, Paul

    2009-03-01

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B12) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  7. Structural, elastic and electronic properties of typical NdMgT4 (T = Co, Ni, Cu) alloys from ab initio calculation

    NASA Astrophysics Data System (ADS)

    Wang, Na; Zhang, Wei-bing; Tang, Bi-yu; Gao, Hai-Tao; He, En-jie; Wang, Lei

    2018-07-01

    The crystal structure, elastic and magnetic properties of important ternary Mg-based alloys NdMgT4 (T = Co, Ni, Cu) have been studied using reliable ab initio calculations. Both cohesive energy and charge density difference suggest that three alloys have good structural stability with the order: NdMgCo4 > NdMgNi4 > NdMgCu4. It shows that NdMgCo4 alloy has magnetic moments with the Co atoms being the main contribution, which is also in agreement with the calculated electronic structures. We find that NdMgT4 (T = Co, Ni, Cu) alloys are all ductile materials with bulk-to-shear modulus (B/G) values higher than 1.75. The trends of calculated values for the shear moduli Cs and C44 are consistent with that of shear modulus G and young's modulus E, proving that NdMgT4 (T = Co, Ni, Cu) alloys exhibit good plasticity with the trend: NdMgNi4 > NdMgCu4 > NdMgCo4. These calculated results give the basis guidance for the design of rare earth-magnesium-transition metal (R-Mg-T) alloys with improved mechanical properties.

  8. Electronic Structure and Thermoelectric Properties of Transition Metal Monosilicides

    NASA Astrophysics Data System (ADS)

    Pshenay-Severin, D. A.; Ivanov, Yu. V.; Burkov, A. T.; Novikov, S. V.; Zaitsev, V. K.; Reith, H.

    2018-06-01

    We present theoretical and experimental results on electronic structure and thermoelectric properties of cobalt monosilicide (CoSi) and of Co1- x M x Si diluted alloys (M = Fe and Ni) at temperatures from 2 K to 800 K. CoSi crystallizes into a non-centrosymmetric cubic B20 structure, which suggests the possibility of a topologically non-trivial electronic structure. We show that the electronic structure of CoSi exhibits linear band crossings in close vicinity to Fermi energy, confirming the possibility of non-trivial topology. The proximity of the linear-dispersion bands to Fermi energy implies their important contribution to the electronic transport. Calculation of thermopower of CoSi, using ab initio band structure and the constant relaxation time approximation, is carried out. It reveals that many body corrections to the electronic spectrum are important in order to obtain qualitative agreement of theoretical and experimental temperature dependences of thermopower. Phonon dispersion and lattice thermal conductivity are calculated. The phonons give a major contribution to the thermal conductivity of the compound below room temperature.

  9. Effect of ammonia and methane adsorption on the electronic structure of undoped and Fe-doped 2D silica: a first-principles calculation

    NASA Astrophysics Data System (ADS)

    Chibisov, A. N.; Chibisova, M. A.

    2018-05-01

    Two-dimensional silicon oxide (2D SiO2) is a unique surface phase with interesting optical, structural and electronic properties. In this study, important novel results on the effect of Fe on the structural and electronic properties of 2D SiO2 during adsorption of CH4 and NH3 molecules are presented. Density functional theory calculations are used to investigate the interaction of CH4 and NH3 molecules with silica. The electronic structure and molecules adsorption energy are studied in detail for undoped and Fe-doped surfaces. The results show that adsorption of CH4 and NH3 molecules on the surface decreases the spin polarization of Fe/SiO2. The results are relevant to understanding the adsorption physics of 2D SiO2 for practical usage in modern nanoelectronic sensors for nanotechnology and optoelectronics.

  10. Ab initio quantum chemical calculation of electron transfer matrix elements for large molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Linda Yu; Friesner, Richard A.; Murphy, Robert B.

    1997-07-01

    Using a diabatic state formalism and pseudospectral numerical methods, we have developed an efficient ab initio quantum chemical approach to the calculation of electron transfer matrix elements for large molecules. The theory is developed at the Hartree-Fock level and validated by comparison with results in the literature for small systems. As an example of the power of the method, we calculate the electronic coupling between two bacteriochlorophyll molecules in various intermolecular geometries. Only a single self-consistent field (SCF) calculation on each of the monomers is needed to generate coupling matrix elements for all of the molecular pairs. The largest calculations performed, utilizing 1778 basis functions, required ˜14 h on an IBM 390 workstation. This is considerably less cpu time than would be necessitated with a supermolecule adiabatic state calculation and a conventional electronic structure code.

  11. Combining MOSCED with molecular simulation free energy calculations or electronic structure calculations to develop an efficient tool for solvent formulation and selection

    NASA Astrophysics Data System (ADS)

    Cox, Courtney E.; Phifer, Jeremy R.; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T.; O'Loughlin, Elizabeth J.; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T.; Paluch, Andrew S.

    2017-02-01

    Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.

  12. Combining MOSCED with molecular simulation free energy calculations or electronic structure calculations to develop an efficient tool for solvent formulation and selection.

    PubMed

    Cox, Courtney E; Phifer, Jeremy R; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T; O'Loughlin, Elizabeth J; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T; Paluch, Andrew S

    2017-02-01

    Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.

  13. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Lohani, H.; Kundu, A. K.; Patel, R.; Solanki, G. K.; Menon, Krishnakumar S. R.; Sekhar, B. R.

    2015-07-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ-Z, Γ-Y and Γ-T symmetry directions. The valence band maximum occurs nearly midway along the Γ-Z direction, at a binding energy of -0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ-T direction. Detailed electronic structure analysis reveals the significance of the cation-anion 4p orbitals hybridization in the valence band dispersion of IV-VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis.

  14. Electronic structure and properties of lanthanum

    NASA Astrophysics Data System (ADS)

    Nixon, Lane; Papaconstantopoulos, Dimitrios

    2008-03-01

    The total energy and electronic structure of lanthanum have been calculated in the bcc, fcc, hcp and dhcp structures for pressures up to 50 GPa. The full potential linearized-augmented-planewave method was used with both the local-density and general-gradient approximations. The correct phase ordering has been found, with lattice parameters and bulk moduli in good agreement with experimental data. The GGA method shows excellent agreement overall while the LDA results show larger discrepancies. The calculated strain energies for the fcc and bcc structures demonstrate the respective stable and unstable configurations at ambient conditions. The calculated superconductivity properties under pressure for the fcc structure are also found to agree well with measurements. Both LDA and GGA, with minor differences, reproduce well the experimental results for Tc.

  15. Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure

    NASA Astrophysics Data System (ADS)

    Brockt, C.; Jeckelmann, E.

    2017-02-01

    We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.

  16. Efficient isoparametric integration over arbitrary space-filling Voronoi polyhedra for electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Aftab; Khan, S. N.; Wilson, Brian G.

    2011-07-06

    A numerically efficient, accurate, and easily implemented integration scheme over convex Voronoi polyhedra (VP) is presented for use in ab initio electronic-structure calculations. We combine a weighted Voronoi tessellation with isoparametric integration via Gauss-Legendre quadratures to provide rapidly convergent VP integrals for a variety of integrands, including those with a Coulomb singularity. We showcase the capability of our approach by first applying it to an analytic charge-density model achieving machine-precision accuracy with expected convergence properties in milliseconds. For contrast, we compare our results to those using shape-functions and show our approach is greater than 10 5 times faster and 10more » 7 times more accurate. Furthermore, a weighted Voronoi tessellation also allows for a physics-based partitioning of space that guarantees convex, space-filling VP while reflecting accurate atomic size and site charges, as we show within KKR methods applied to Fe-Pd alloys.« less

  17. Electronic structure and electron-phonon coupling in TiH$$_2$$

    DOE PAGES

    Shanavas, Kavungal Veedu; Lindsay, Lucas R.; Parker, David S.

    2016-06-15

    Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiHmore » $$_2$$. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-$$t_{2g}$$ states and leads to a structural instability against tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Furthermore, calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter $$\\lambda$$ and critical temperature of several K. Contribution of the hydrogen sublattice to $$\\lambda$$ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-$s$ DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites.« less

  18. Effects of B site doping on electronic structures of InNbO4 based on hybrid density functional calculations

    NASA Astrophysics Data System (ADS)

    Lu, M. F.; Zhou, C. P.; Li, Q. Q.; Zhang, C. L.; Shi, H. F.

    2018-01-01

    In order to improve the photocatalytic activity under visible-light irradiation, we adopted first principle calculations based on density functional theory (DFT) to calculate the electronic structures of B site transition metal element doped InNbO4. The results indicated that the complete hybridization of Nb 4d states and some Ti 3d states contributed to the new conduction band of Ti doped InNbO4, barely changing the position of band edge. For Cr doping, some localized Cr 3d states were introduced into the band gap. Nonetheless, the potential of localized levels was too positive to cause visible-light reaction. When it came to Cu doping, the band gap was almost same with that of InNbO4 as well as some localized Cu 3d states appeared above the top of VB. The introduction of localized energy levels benefited electrons to migrate from valence band (VB) to conduction band (CB) by absorbing lower energy photons, realizing visible-light response.

  19. Atomic and electronic structure of exfoliated black phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolutionmore » view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.« less

  20. CALCMIN - an EXCEL™ Visual Basic application for calculating mineral structural formulae from electron microprobe analyses

    NASA Astrophysics Data System (ADS)

    Brandelik, Andreas

    2009-07-01

    CALCMIN, an open source Visual Basic program, was implemented in EXCEL™. The program was primarily developed to support geoscientists in their routine task of calculating structural formulae of minerals on the basis of chemical analysis mainly obtained by electron microprobe (EMP) techniques. Calculation programs for various minerals are already included in the form of sub-routines. These routines are arranged in separate modules containing a minimum of code. The architecture of CALCMIN allows the user to easily develop new calculation routines or modify existing routines with little knowledge of programming techniques. By means of a simple mouse-click, the program automatically generates a rudimentary framework of code using the object model of the Visual Basic Editor (VBE). Within this framework simple commands and functions, which are provided by the program, can be used, for example, to perform various normalization procedures or to output the results of the computations. For the clarity of the code, element symbols are used as variables initialized by the program automatically. CALCMIN does not set any boundaries in complexity of the code used, resulting in a wide range of possible applications. Thus, matrix and optimization methods can be included, for instance, to determine end member contents for subsequent thermodynamic calculations. Diverse input procedures are provided, such as the automated read-in of output files created by the EMP. Furthermore, a subsequent filter routine enables the user to extract specific analyses in order to use them for a corresponding calculation routine. An event-driven, interactive operating mode was selected for easy application of the program. CALCMIN leads the user from the beginning to the end of the calculation process.

  1. Thiobenzamide: Structure of a free molecule as studied by gas electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Kolesnikova, Inna N.; Putkov, Andrei E.; Rykov, Anatolii N.; Shishkov, Igor F.

    2018-06-01

    The equilibrium (re) molecular structure of thiobenzamide along with rh1 structure has been determined in gas phase using gas electron-diffraction (GED) at about 127 °C and quantum-chemical calculations (QC). Rovibrational distance corrections to the thermal averaged GED structure have been computed with anharmonic force constants obtained at the MP2/cc-pVTZ level of theory. According to the results of GED and QC thiobenzamide exists as mixture of two non-planar enantiomers of C1 symmetry. The selected equilibrium geometrical parameters of thiobenzamide (re, Å and ∠e, deg) are the following: (Cdbnd S) = 1.641(4), (Csbnd N) = 1.352(2), (Csbnd C) = 1.478(9), (Cdbnd C)av = 1.395(2), CCN = 114.7(5), CCS = 123.4(5), C2C1C7S = 31(4), C6C1C7N = 29(4). The structure of thiobenzamide in the gas phase is markedly different to that in the literature for the single crystal. The differences between the gas and the solid structures are ascribed to the presence of intermolecular hydrogen bonding in the solid phase.

  2. Electronic structure and optical properties of noncentrosymmetric LiGaSe2: Experimental measurements and DFT band structure calculations

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.

    2017-04-01

    We report on measurements of X-ray photoelectron (XP) spectra for pristine and Ar+ ion-irradiated surfaces of LiGaSe2 single crystal grown by Bridgman-Stockbarger method. Electronic structure of the LiGaSe2 compound is studied from a theoretical and experimental viewpoint. In particular, total and partial densities of states of LiGaSe2 are investigated by density functional theory (DFT) calculations employing the augmented plane wave + local orbitals (APW + lo) method and they are verified by data of X-ray spectroscopy measurements. The DFT calculations indicate that the main contributors to the valence band of LiGaSe2 are the Se 4p states, which contribute mainly at the top and in the upper portion of the valence band, with also essential contributions of these states in the lower portion of the band. Other substantial contributions to the valence band of LiGaSe2 emerge from the Ga 4s and Ga 4p states contributing mainly at the lower ant upper portions of the valence band, respectively. With respect to the conduction band, the calculations indicate that its bottom is composed mainly from contributions of the unoccupied Ga s and Se p states. The present calculations are confirmed experimentally when comparing the XP valence-band spectrum of the LiGaS2 single crystal on a common energy scale with the X-ray emission bands representing the energy distribution of the Ga 4p and Se 4p states. Measurements of the fundamental absorption edges at room temperature reveal that bandgap value, Eg, of LiGaSe2 is equal to 3.47 eV and the Eg value increases up to 3.66 eV when decreasing temperature to 80 K. The main optical characteristics of the LiGaSe2 compound are clarified by the DFT calculations.

  3. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    NASA Astrophysics Data System (ADS)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  4. Structure determination of Ba5AlF13 by coupling electron, synchrotron and neutron powder diffraction, solid-state NMR and ab initio calculations.

    PubMed

    Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck

    2016-10-04

    The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.

  5. The electronic structure, elastic and optical properties of Cu2ZnGe(SexS1 - x)4 alloys: density functional calculations

    NASA Astrophysics Data System (ADS)

    Shen, Kesheng; Jia, Guangrui; Zhang, Xianzhou; Jiao, Zhaoyong

    2016-10-01

    The electronic structure, elastic and optical properties of Cu2ZnGe(SexS1 - x)4 alloys are systematically analysed using first-principles calculations. The lattice parameters agree well with the theoretical and experimental values which are searched as complete as possible indicating our calculations are reliable. The elastic properties are investigated first and are compared with the similar compounds CZTS and CZTSe due to the unavailable experimental data currently. The variation of the optical properties caused by the increase of Se/S ratio is discussed. The static optical constants are calculated and the corrected values are also predicted according to the available experimental data.

  6. Calculation of wakefields in 2D rectangular structures

    DOE PAGES

    Zagorodnov, I.; Bane, K. L. F.; Stupakov, G.

    2015-10-19

    We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in themore » computer code echo(2d). The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Finally, we present numerical examples obtained with the new numerical code.« less

  7. Electronic structures of GaAs/AlxGa1-xAs quantum double rings

    PubMed Central

    Xia, Jian-Bai

    2006-01-01

    In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings (QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.

  8. Computational Chemistry Using Modern Electronic Structure Methods

    ERIC Educational Resources Information Center

    Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert

    2007-01-01

    Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.

  9. Spectral Quadrature method for accurate O ( N ) electronic structure calculations of metals and insulators

    DOE PAGES

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2015-12-02

    We present the Clenshaw–Curtis Spectral Quadrature (SQ) method for real-space O(N) Density Functional Theory (DFT) calculations. In this approach, all quantities of interest are expressed as bilinear forms or sums over bilinear forms, which are then approximated by spatially localized Clenshaw–Curtis quadrature rules. This technique is identically applicable to both insulating and metallic systems, and in conjunction with local reformulation of the electrostatics, enables the O(N) evaluation of the electronic density, energy, and atomic forces. The SQ approach also permits infinite-cell calculations without recourse to Brillouin zone integration or large supercells. We employ a finite difference representation in order tomore » exploit the locality of electronic interactions in real space, enable systematic convergence, and facilitate large-scale parallel implementation. In particular, we derive expressions for the electronic density, total energy, and atomic forces that can be evaluated in O(N) operations. We demonstrate the systematic convergence of energies and forces with respect to quadrature order as well as truncation radius to the exact diagonalization result. In addition, we show convergence with respect to mesh size to established O(N 3) planewave results. In conclusion, we establish the efficiency of the proposed approach for high temperature calculations and discuss its particular suitability for large-scale parallel computation.« less

  10. Bridging experiment and theory: A template for unifying NMR data and electronic structure calculations

    DOE PAGES

    Brown, David M. L.; Cho, Herman; de Jong, Wibe A.

    2016-02-09

    Here, the testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashionmore » would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists.« less

  11. Bridging experiment and theory: A template for unifying NMR data and electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, David M. L.; Cho, Herman; de Jong, Wibe A.

    Here, the testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashionmore » would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists.« less

  12. Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia

    NASA Astrophysics Data System (ADS)

    Dash, L. K.; Vast, Nathalie; Baranek, Philippe; Cheynet, Marie-Claude; Reining, Lucia

    2004-12-01

    The atomic and electronic structures of zirconia are calculated within density functional theory, and their evolution is analyzed as the crystal-field symmetry changes from tetrahedral [cubic (c-ZrO2) and tetragonal (t-ZrO2) phases] to octahedral (hypothetical rutile ZrO2 ), to a mixing of these symmetries (monoclinic phase, m-ZrO2 ). We find that the theoretical bulk modulus in c-ZrO2 is 30% larger than the experimental value, showing that the introduction of yttria in zirconia has a significant effect. Electronic structure fingerprints which characterize each phase from their electronic spectra are identified. We have carried out electron energy-loss spectroscopy experiments at low momentum transfer and compared these results to the theoretical spectra calculated within the random phase approximation. We show a dependence of the valence and 4p ( N2,3 edge) plasmons on the crystal structure, the dependence of the latter being brought into the spectra by local-field effects. Last, we attribute low energy excitations observed in EELS of m-ZrO2 to defect states 2eV above the top of the intrinsic valence band, and the EELS fundamental band gap value is reconciled with the 5.2 or 5.8eV gaps determined by vacuum ultraviolet spectroscopy.

  13. Electronic structure of the organic semiconductor copper phthalocyanine: experiment and theory.

    PubMed

    Aristov, V Yu; Molodtsova, O V; Maslyuk, V V; Vyalikh, D V; Zhilin, V M; Ossipyan, Yu A; Bredow, T; Mertig, I; Knupfer, M

    2008-01-21

    The electronic structure of the organic semiconductor copper-phthalocyanine (CuPc) has been determined by a combination of conventional and resonant photoemission, near-edge x-ray absorption, as well as by the first-principles calculations. The experimentally obtained electronic valence band structure of CuPc is in very good agreement with the calculated density of states results, allowing the derivation of detailed site specific information.

  14. Ab-initio calculations of structural, electronic, and optical properties of Zn3(VO4)2

    NASA Astrophysics Data System (ADS)

    Ahmed, Nisar; Mukhtar, S.; Gao, Wei; Zafar Ilyas, Syed

    2018-03-01

    The structural, electronic, and optical properties of Zn3(VO4)2 are investigated using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Various approaches are adopted to treat the exchange and correlation potential energy such as generalized gradient approximation (GGA), GGA+U, and the Tran–Blaha modified Becke–Johnson (TB-mBJ) potential. The calculated band gap of 3.424 eV by TB-mBJ is found to be close to the experimental result (3.3 eV). The optical anisotropy is analyzed through optical constants, such as dielectric function and absorption coefficient along parallel and perpendicular crystal orientations. The absorption coefficient reveals high absorption (1.5× {10}6 {cm}}-1) of photons in the ultraviolet region.

  15. Electronic structure of the benzene dimer cation

    NASA Astrophysics Data System (ADS)

    Pieniazek, Piotr A.; Krylov, Anna I.; Bradforth, Stephen E.

    2007-07-01

    The benzene and benzene dimer cations are studied using the equation-of-motion coupled-cluster model with single and double substitutions for ionized systems. The ten lowest electronic states of the dimer at t-shaped, sandwich, and displaced sandwich configurations are described and cataloged based on the character of the constituent fragment molecular orbitals. The character of the states, bonding patterns, and important features of the electronic spectrum are explained using qualitative dimer molecular orbital linear combination of fragment molecular orbital framework. Relaxed ground state geometries are obtained for all isomers. Calculations reveal that the lowest energy structure of the cation has a displaced sandwich structure and a binding energy of 20kcal/mol, while the t-shaped isomer is 6kcal/mol higher. The calculated electronic spectra agree well with experimental gas phase action spectra and femtosecond transient absorption in liquid benzene. Both sandwich and t-shaped structures feature intense charge resonance bands, whose location is very sensitive to the interfragment distance. Change in the electronic state ordering was observed between σ and πu states, which correlate to the B˜ and C˜ bands of the monomer, suggesting a reassignment of the local excitation peaks in the gas phase experimental spectrum.

  16. Failure of the Hume-Rothery stabilization mechanism in the Ag(5)Li(8) gamma-brass studied by first-principles FLAPW electronic structure calculations.

    PubMed

    Mizutani, U; Asahi, R; Sato, H; Noritake, T; Takeuchi, T

    2008-07-09

    The first-principles FLAPW (full potential linearized augmented plane wave) electronic structure calculations were performed for the Ag(5)Li(8) gamma-brass, which contains 52 atoms in a unit cell and has been known for many years as one of the most structurally complex alloy phases. The calculations were also made for its neighboring phase AgLi B2 compound. The main objective in the present work is to examine if the Ag(5)Li(8) gamma-brass is stabilized at the particular electrons per atom ratio e/a = 21/13 in the same way as some other gamma-brasses like Cu(5)Zn(8) and Cu(9)Al(4), obeying the Hume-Rothery electron concentration rule. For this purpose, the e/a value for the Ag(5)Li(8) gamma-brass as well as the AgLi B2 compound was first determined by means of the FLAPW-Fourier method we have developed. It proved that both the gamma-brass and the B2 compound possess an e/a value equal to unity instead of 21/13. Moreover, we could demonstrate why the Hume-Rothery stabilization mechanism fails for the Ag(5)Li(8) gamma-brass and proposed a new stability mechanism, in which the unique gamma-brass structure can effectively lower the band-structure energy by forming heavily populated bonding states near the bottom of the Ag-4d band.

  17. Electronic structure calculations on multiply charged anions containing M bond S bonds (M = Cr, Mo, W) and their heterobimetallic cluster complexes

    NASA Astrophysics Data System (ADS)

    Gili, Pedro; Tsipis, Athanassios C.

    Molecular and electronic structures of multiply charged mononuclear [CrS4]2-/3-, [MoOxS4-x]2-/3- (x = 0-4) and [WS4]2-/3- anionic species, and their heterobimetallic dinuclear and trinuclear clusters formulated as [MoOS3(CuCl)]2-, [WOS3(CuCl)]2-, [MoS4{Cu(CN)}]2-, [(CN)Cu(?-CrS4)Cu(CN)]2-, [(CN)Cu(?-MoS4)Cu(CN)]2-, [ClCu(?-MoS4)CuCl]2-, [Cl2Fe(?-MoS4)CuCl2]2-, and [(CN)Cu(?-WS4)Cu(CN)]2- have been investigated using electronic structure calculation (HF, MP4SDQ and DFT) methods. For the discrete mononuclear anions HF/lanl2dz(M)?6-31+G*(S,O) method provided the best description of their molecular structures, while for the heterobimetallic dinuclear and trinuclear clusters the B3LYP/lanl2dz(M)?6-31+G* method gave equilibrium geometries closely resembling the experimental ones. Electronic and spectroscopic (IR, UV-Vis) properties of the thiometalates are discussed in relation to their structures, while the bonding mechanism was analyzed in the framework of the natural bond orbital (NBO) approach. The nature of the highest occupied molecular orbitals (HOMOs) of all thiometalates indicated their ability to act as ligands coordinated with metal centers and forming clusters of higher nuclearity. The lowest-lying vertical one-electron detachment processes from the ground state of the [CrS4]2/3-, [MoOxS4-x]2/3- (x = 0-4) and [WS4]2/3- anions have been calculated using the outer valence Green's function (OVGF) method. Interestingly, in the heterobimetallic dinuclear and trinuclear clusters intemetallic M?M? interactions exist corresponding to d10 ? d0 dative bonding. Finally, the complete energetic and geometric profile of the successive acid-catalyzed formation reactions:and the reverse hydrolysis reactions have been delineated and details of the mechanism have been furnished.

  18. Instructional Approach to Molecular Electronic Structure Theory

    ERIC Educational Resources Information Center

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  19. The Electronic Structure and Optical Properties of Anatase TiO2 with Rare Earth Metal Dopants from First-Principles Calculations

    PubMed Central

    Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng

    2018-01-01

    The electronic and optical properties of the rare earth metal atom-doped anatase TiO2 have been investigated systematically via density functional theory calculations. The results show that TiO2 doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron–hole recombination. This effect of band change originates from the 4f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO2 is tuned by the introduction of impurity atoms. PMID:29364161

  20. Electronic and crystal structure of NiTi martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanati, M.; Albers, R.C.; Pinski, F.J.

    1998-11-01

    All of the first-principles electronic-structure calculations for the martensitic structure of NiTi have used the experimental atomic parameters reported by Michal and Sinclair [Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. {bold B37}, 1803 (1981)]. We have used first-principles, full-potential, linear muffin-tin orbital calculations to examine the total energy of all the experimental martensitic structures reported in the literature. We find that another crystal structure, that of Kudoh {ital et al.} [Acta Metall. Mater. {bold 33}, 2049 (1985)], has the lowest total energy at zero temperature. Ground-state and formation energies were calculated for all of the experimental structures. Total andmore » local densities of states were calculated and compared with each other for the structures of both Kudoh {ital et al.} and Michal and Sinclair thinsp {copyright} {ital 1998} {ital The American Physical Society}« less

  1. Electronic structure and magnetic anisotropy of L1{sub 0}-FePt thin film studied by hard x-ray photoemission spectroscopy and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, S.; Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148; Mizuguchi, M.

    2016-07-25

    We have studied the electronic structure of the L1{sub 0} ordered FePt thin film by hard x-ray photoemission spectroscopy (HAXPES), cluster model, and first-principles calculations to investigate the relationship between the electronic structure and perpendicular magneto-crystalline anisotropy (MCA). The Fe 2p core-level HAXPES spectrum of the ordered film revealed the strong electron correlation in the Fe 3d states and the hybridization between the Fe 3d and Pt 5d states. By comparing the experimental valence band structure with the theoretical density of states, the strong electron correlation in the Fe 3d states modifies the valence band electronic structure of the L1{submore » 0} ordered FePt thin film through the Fe 3d-Pt 5d hybridization. These results strongly suggest that the strong electron correlation effect in the Fe 3d states and the Fe 3d-Pt 5d hybridization as well as the spin-orbit interaction in the Pt 5d states play important roles in the perpendicular MCA for L1{sub 0}-FePt.« less

  2. Electronic Structure of ABC-stacked Multilayer Graphene and Trigonal Warping:A First Principles Calculation

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-04-01

    We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.

  3. The Band Structure of Polymers: Its Calculation and Interpretation. Part 3. Interpretation.

    ERIC Educational Resources Information Center

    Duke, B. J.; O'Leary, Brian

    1988-01-01

    In this article, the third part of a series, the results of ab initio polymer calculations presented in part 2 are discussed. The electronic structure of polymers, symmetry properties of band structure, and generalizations are presented. (CW)

  4. Electronic structures of WAlO(y) and WAlO(y)(-) (y = 2-4) determined by anion photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Mann, Jennifer E; Waller, Sarah E; Jarrold, Caroline Chick

    2012-07-28

    The anion photoelectron spectra of WAlO(y)(-) (y = 2-4) are presented and assigned based on results of density functional theory calculations. The WAlO(2)(-) and WAlO(3)(-) spectra are both broad, with partially resolved vibrational structure. In contrast, the WAlO(4)(-) spectrum features well-resolved vibrational structure with contributions from three modes. There is reasonable agreement between experiment and theory for all oxides, and calculations are in particular validated by the near perfect agreement between the WAlO(4)(-) photoelectron spectrum and a Franck-Condon simulation based on computationally determined spectroscopic parameters. The structures determined from this study suggest strong preferential W-O bond formation, and ionic bonding between Al(+) and WO(y)(-2) for all anions. Neutral species are similarly ionic, with WAlO(2) and WAlO(3) having electronic structure that suggests Al(+) ionically bound to WO(y)(-) and WAlO(4) being described as Al(+2) ionically bound to WO(4)(-2). The doubly-occupied 3sp hybrid orbital localized on the Al center is energetically situated between the bonding O-local molecular orbitals and the anti- or non-bonding W-local molecular orbitals. The structures determined in this study are very similar to structures recently determined for the analogous MoAlO(y)(-)/MoAlO(y) cluster series, with subtle differences found in the electronic structures [S. E. Waller, J. E. Mann, E. Hossain, M. Troyer, and C. C. Jarrold, J. Chem. Phys. 137, 024302 (2012)].

  5. First-Principles Calculations of Structural, Electronic and Optical Properties of Ternary Semiconductor Alloys ZAs x Sb1- x ( Z = B, Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Bounab, S.; Bentabet, A.; Bouhadda, Y.; Belgoumri, Gh.; Fenineche, N.

    2017-08-01

    We have investigated the structural and electronic properties of the BAs x Sb 1- x , AlAs x Sb 1- x , GaAs x Sb 1- x and InAs x Sb 1- x semiconductor alloys using first-principles calculations under the virtual crystal approximation within both the density functional perturbation theory and the pseudopotential approach. In addition the optical properties have been calculated by using empirical methods. The ground state properties such as lattice constants, both bulk modulus and derivative of bulk modulus, energy gap, refractive index and optical dielectric constant have been calculated and discussed. The obtained results are in reasonable agreement with numerous experimental and theoretical data. The compositional dependence of the lattice constant, bulk modulus, energy gap and effective mass of electrons for ternary alloys show deviations from Vegard's law where our results are in agreement with the available data in the literature.

  6. Structural stability and electronic structure of transition metal compound: HfN

    NASA Astrophysics Data System (ADS)

    Sarwan, Madhu; Shukoor, V. Abdul; Singh, Sadhna

    2018-05-01

    The structural stability of transition metal nitride (HfN) has been investigated using density functional theory (DFT) with the help of Quantum-espresso codes. Our calculations confirm that the hafnium nitride (HfN) is stable in zinc-blende (B3) and rock-salt (B1) type structure. We have also reported the structural and electronic properties of HfN compound. These structural properties have been compared with experimental and theoretical data available on this compound.

  7. Electronic structure of the Cu + impurity center in sodium chloride

    NASA Astrophysics Data System (ADS)

    Chermette, H.; Pedrini, C.

    1981-08-01

    The multiple-scattering Xα method is used to describe the electronic structure of Cu+ in sodium chloride. Several improvements are brought to the conventional Xα calculation. In particular, the cluster approximation is used by taking into account external lattice potential. The ''transition state'' procedure is applied in order to get the various multiplet levels. The fine electronic structure of the impurity centers is obtained after a calculation of the spin-orbit interactions. These results are compared with those given by a modified charge-consistent extended Hückel method (Fenske-type calculation) and the merit of each method is discussed. The present calculation produces good quantitative agreement with experiment concerning mainly the optical excitations and the emission mechanism of the Cu+ luminescent centers in NaCl.

  8. QED Based Calculation of the Fine Structure Constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestone, John Paul

    2016-10-13

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ 2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. Thismore » exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.« less

  9. The electronic structure of lithium metagallate.

    PubMed

    Johnson, N W; McLeod, J A; Moewes, A

    2011-11-09

    Herein we present a study of the electronic structure of lithium metagallate (LiGaO(2)), a material of interest in the field of optoelectronics. We use soft x-ray spectroscopy to probe the electronic structure of both the valence and conduction bands and compare our measurements to ab initio density functional theory calculations. We use several different exchange-correlation functionals, but find that no single theoretical approach used herein accurately quantifies both the band gap and the Ga 3d(10) states in LiGaO(2). We derive a band gap of 5.6 eV, and characterize electron hybridization in both the valence and conduction bands. Our study of the x-ray spectra may prove useful in analysing spectra from more complicated LiGaO(2) heterostructures. © 2011 IOP Publishing Ltd

  10. Actinide electronic structure and atomic forces

    NASA Astrophysics Data System (ADS)

    Albers, R. C.; Rudin, Sven P.; Trinkle, Dallas R.; Jones, M. D.

    2000-07-01

    We have developed a new method[1] of fitting tight-binding parameterizations based on functional forms developed at the Naval Research Laboratory.[2] We have applied these methods to actinide metals and report our success using them (see below). The fitting procedure uses first-principles local-density-approximation (LDA) linear augmented plane-wave (LAPW) band structure techniques[3] to first calculate an electronic-structure band structure and total energy for fcc, bcc, and simple cubic crystal structures for the actinide of interest. The tight-binding parameterization is then chosen to fit the detailed energy eigenvalues of the bands along symmetry directions, and the symmetry of the parameterization is constrained to agree with the correct symmetry of the LDA band structure at each eigenvalue and k-vector that is fit to. By fitting to a range of different volumes and the three different crystal structures, we find that the resulting parameterization is robust and appears to accurately calculate other crystal structures and properties of interest.

  11. Electronic Structure and Optical Properties of Cu2ZnGeSe4 : First-Principles Calculations and Vacuum-Ultraviolet Spectroscopic Ellipsometric Studies

    NASA Astrophysics Data System (ADS)

    Choi, S. G.; Park, J.-S.; Donohue, A. L.; Christensen, S. T.; To, B.; Beall, C.; Wei, S.-H.; Repins, I. L.

    2015-11-01

    Cu2ZnGeSe4 is of interest for the development of next-generation thin-film photovoltaic technologies. To understand its electronic structure and related fundamental optical properties, we perform first-principles calculations for three structural variations: kesterite, stannite, and primitive-mixed CuAu phases. The calculated data are compared with the room-temperature dielectric function ɛ =ɛ1+i ɛ2 spectrum of polycrystalline Cu2ZnGeSe4 determined by vacuum-ultraviolet spectroscopic ellipsometry in the photon-energy range of 0.7 to 9.0 eV. Ellipsometric data are modeled with the sum of eight Tauc-Lorentz oscillators, and the best-fit model yields the band-gap and Tauc-gap energies of 1.25 and 1.19 eV, respectively. A comparison of overall peak shapes and relative intensities between experimental spectra and the calculated ɛ data for three structural variations suggests that the sample may not have a pure (ordered) kesterite phase. The complex refractive index N =n +i k , normal-incidence reflectivity R , and absorption coefficients α are calculated from the modeled ɛ spectrum, which are also compared with those of Cu2ZnSnSe4 . The spectral features for Cu2ZnGeSe4 appear to be weaker and broader than those for Cu2ZnSnSe4 , which is possibly due to more structural imperfections presented in Cu2ZnGeSe4 than Cu2ZnSnSe4 .

  12. Valence electronic structure of cobalt phthalocyanine from an optimally tuned range-separated hybrid functional.

    PubMed

    Brumboiu, Iulia Emilia; Prokopiou, Georgia; Kronik, Leeor; Brena, Barbara

    2017-07-28

    We analyse the valence electronic structure of cobalt phthalocyanine (CoPc) by means of optimally tuning a range-separated hybrid functional. The tuning is performed by modifying both the amount of short-range exact exchange (α) included in the hybrid functional and the range-separation parameter (γ), with two strategies employed for finding the optimal γ for each α. The influence of these two parameters on the structural, electronic, and magnetic properties of CoPc is thoroughly investigated. The electronic structure is found to be very sensitive to the amount and range in which the exact exchange is included. The electronic structure obtained using the optimal parameters is compared to gas-phase photo-electron data and GW calculations, with the unoccupied states additionally compared with inverse photo-electron spectroscopy measurements. The calculated spectrum with tuned γ, determined for the optimal value of α = 0.1, yields a very good agreement with both experimental results and with GW calculations that well-reproduce the experimental data.

  13. Structural and electronic properties of the alkali metal incommensurate phases

    NASA Astrophysics Data System (ADS)

    Woolman, Gavin; Naden Robinson, Victor; Marqués, Miriam; Loa, Ingo; Ackland, Graeme J.; Hermann, Andreas

    2018-05-01

    Under pressure, the alkali elements sodium, potassium, and rubidium adopt nonperiodic structures based on two incommensurate interpenetrating lattices. While all elements form the same "host" lattice, their "guest" lattices are all distinct. The physical mechanism that stabilizes these phases is not known, and detailed calculations are challenging due to the incommensurability of the lattices. Using a series of commensurate approximant structures, we tackle this issue using density functional theory calculations. In Na and K, the calculations prove accurate enough to reproduce not only the stability of the host-guest phases, but also the complicated pressure dependence of the host-guest ratio and the two guest-lattice transitions. We find Rb-IV to be metastable at all pressures, and suggest it is a high-temperature phase. The electronic structure of these materials is unique: they exhibit two distinct, coexisting types of electride behavior, with both fully localized pseudoanions and electrons localized in 1D wells in the host lattice, leading to low conductivity. While all phases feature pseudogaps in the electronic density of states, the perturbative free-electron picture applies to Na, but not to K and Rb, due to significant d -orbital population in the latter.

  14. Two-Level Chebyshev Filter Based Complementary Subspace Method: Pushing the Envelope of Large-Scale Electronic Structure Calculations.

    PubMed

    Banerjee, Amartya S; Lin, Lin; Suryanarayana, Phanish; Yang, Chao; Pask, John E

    2018-06-12

    We describe a novel iterative strategy for Kohn-Sham density functional theory calculations aimed at large systems (>1,000 electrons), applicable to metals and insulators alike. In lieu of explicit diagonalization of the Kohn-Sham Hamiltonian on every self-consistent field (SCF) iteration, we employ a two-level Chebyshev polynomial filter based complementary subspace strategy to (1) compute a set of vectors that span the occupied subspace of the Hamiltonian; (2) reduce subspace diagonalization to just partially occupied states; and (3) obtain those states in an efficient, scalable manner via an inner Chebyshev filter iteration. By reducing the necessary computation to just partially occupied states and obtaining these through an inner Chebyshev iteration, our approach reduces the cost of large metallic calculations significantly, while eliminating subspace diagonalization for insulating systems altogether. We describe the implementation of the method within the framework of the discontinuous Galerkin (DG) electronic structure method and show that this results in a computational scheme that can effectively tackle bulk and nano systems containing tens of thousands of electrons, with chemical accuracy, within a few minutes or less of wall clock time per SCF iteration on large-scale computing platforms. We anticipate that our method will be instrumental in pushing the envelope of large-scale ab initio molecular dynamics. As a demonstration of this, we simulate a bulk silicon system containing 8,000 atoms at finite temperature, and obtain an average SCF step wall time of 51 s on 34,560 processors; thus allowing us to carry out 1.0 ps of ab initio molecular dynamics in approximately 28 h (of wall time).

  15. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment.

    PubMed

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2017-03-01

    In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.

  16. Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Yong; Lu, Yong; Zheng, Fa-Wei; Zhang, Ping

    2015-11-01

    Mechanical, electronic, and thermodynamic properties of zirconium carbide have been systematically studied using the ab initio calculations. The calculated equilibrium lattice parameter, bulk modulus, and elastic constants are all well consistent with the experimental data. The electronic band structure indicates that the mixture of C 2p and Zr 4d and 4p orbitals around the Fermi level makes a large covalent contribution to the chemical bonds between the C and Zr atoms. The Bader charge analysis suggests that there are about 1.71 electrons transferred from each Zr atom to its nearest C atom. Therefore, the Zr-C bond displays a mixed ionic/covalent character. The calculated phonon dispersions of ZrC are stable, coinciding with the experimental measurement. A drastic expansion in the volume of ZrC is seen with increasing temperature, while the bulk modulus decreases linearly. Based on the calculated phonon dispersion curves and within the quasi-harmonic approximation, the temperature dependence of the heat capacities is obtained, which gives a good description compared with the available experimental data. Project supported by the National Natural Science Foundation of China (Grant No. 51071032).

  17. Electronic structure, magnetism, and exchange integrals in transition-metal oxides: Role of the spin polarization of the functional in DFT+U calculations

    NASA Astrophysics Data System (ADS)

    Keshavarz, Samara; Schött, Johan; Millis, Andrew J.; Kvashnin, Yaroslav O.

    2018-05-01

    Density functional theory augmented with Hubbard-U corrections (DFT+U ) is currently one of the most widely used methods for first-principles electronic structure modeling of insulating transition-metal oxides (TMOs). Since U is relatively large compared to bandwidths, the magnetic excitations in TMOs are expected to be well described by a Heisenberg model. However, in practice the calculated exchange parameters Ji j depend on the magnetic configuration from which they are extracted and on the functional used to compute them. In this work we investigate how the spin polarization dependence of the underlying exchange-correlation functional influences the calculated magnetic exchange constants of TMOs. We perform a systematic study of the predictions of calculations based on the local density approximation plus U (LDA+U ) and the local spin density approximation plus U (LSDA+U ) for the electronic structures, total energies, and magnetic exchange interactions Ji j extracted from ferromagnetic (FM) and antiferromagnetic (AFM) configurations of several transition-metal oxide materials. We report that for realistic choices of Hubbard U and Hund's J parameters, LSDA+U and LDA+U calculations result in different values of the magnetic exchange constants and band gap. The dependence of the band gap on the magnetic configuration is stronger in LDA+U than in LSDA+U and we argue that this is the main reason why the configuration dependence of Ji j is found to be systematically more pronounced in LDA+U than in LSDA+U calculations. We report a very good correspondence between the computed total energies and the parametrized Heisenberg model for LDA+U calculations, but not for LSDA+U , suggesting that LDA+U is a more appropriate method for estimating exchange interactions.

  18. Electronic Structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by First-Principles Calculation

    NASA Astrophysics Data System (ADS)

    Wang, Jin-song; Liu, Hong-xia; Deng, Shuping; Li, De-cong; Shen, Lan-xian; Cheng, Feng; Deng, Shu-kang

    2017-05-01

    Sn-based clathrates possess excellent thermoelectric properties ascribed to their higher Seebeck coefficient and lower thermal conductivity. Guest atoms significantly modulate the thermoelectric properties of Sn-based calculates because of their diverse atomic radius and interactions with framework atoms. Thus, we explored the electronic structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by first-principles calculation. Results revealed significant differences between Yb8Ga16Sn30 and M8Ga16Sn30 (M = Ba, Sr,). In particular, the Yb-filled compound substitution possesses lowest formation energy and the off-center distance of the Yb atom is the largest compared with the other structures. I-M8Ga16Sn30 (M = Ba, Sr, Yb) is an indirect band gap semiconductor, and the enhanced hybridization effect between the guest and framework atoms' orbits exists because the Yb f orbit results in a decrease in band gap. Ba- and Sr-filled clathrates have similar valence bands but slightly different conduction bands; however, Yb8Ga16Sn30 possess the spiculate density of states near the Fermi level that reveals excellent thermoelectric properties.

  19. Lattice and Valence Electronic Structures of Crystalline Octahedral Molybdenum Halide Clusters-Based Compounds, Cs2[Mo6X14] (X = Cl, Br, I), Studied by Density Functional Theory Calculations.

    PubMed

    Saito, Norio; Cordier, Stéphane; Lemoine, Pierric; Ohsawa, Takeo; Wada, Yoshiki; Grasset, Fabien; Cross, Jeffrey S; Ohashi, Naoki

    2017-06-05

    The electronic and crystal structures of Cs 2 [Mo 6 X 14 ] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al K α , suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.

  20. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 4-acetylpyridine

    NASA Astrophysics Data System (ADS)

    Atilgan, A.; Yurdakul, Ş.; Erdogdu, Y.; Güllüoğlu, M. T.

    2018-06-01

    The spectroscopic (UV-Vis and infrared), structural and some electronic property observations of the 4-acetylpyridine (4-AP) were reported, which are investigated by using some spectral methods and DFT calculations. FT-IR spectra were obtained for 4-AP at room temperature in the region 4000 cm-1- 400 cm-1. In the DFT calculations, the B3LYP functional with 6-311G++G(d,p) basis set was applied to carry out the quantum mechanical calculations. The Fourier Transform Infrared (FT-IR) and FT-Raman spectra were interpreted by using of normal coordinate analysis based on scaled quantum mechanical force field. The present work expands our understanding of the both the vibrational and structural properties as well as some electronic properties of the 4-AP by means of the theoretical and experimental methods.

  1. Effects of doping Na and Cl atom on electronic structure of silicene: Density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Pamungkas, Mauludi Ariesto; Sobirin, Kafi; Abdurrouf

    2018-04-01

    Silicene is a material in which silicon atoms are packed in two-dimensional hexagonal lattice, similar to that of graphene. Compared to graphene, silicene has promising potential to be applied in microelectronic technology because of its compatibility with silicon comonly used in semiconducting devices. Natrium and chlorine are easy to extract and can be used as dopants in FET (Field Effect Transistor). In this work, the effects of adsorption energy and electronic structure of silicene to both natrium and chlorine atoms are calculated with Density Functional Theory (DFT). The results show that dopings of Na transform silicene which is initially semimetal into a metal. Then dopings of Cl Top-site transform silicene into a semiconducting material and doping of Na and Cl simultaneously transfoms silicene into a conducting material.

  2. Theoretical calculation of electron-positron momentum density in YBa 2Cu 3O 7-δ

    NASA Astrophysics Data System (ADS)

    Massidda, S.

    1990-07-01

    We present calculations of the electron-positron momentum density for the high- Tc superconductor YBa 2Cu 3O 7-δ for δ=0 and for the insulating parent compound YBa 2Cu 3O 6, based on first-principle electronic structure calculations performed within the local density approximation (LDA) using the full potential linearized augmented plane wave (FLAPW) method. Our results indicate a small overlap of the positron wave function with the CuO 2 plane electrons and, as a consequence, relatively small signals due to the related Fermi surfaces. By contrast, the present calculations show, after the folding of Umklapp terms according to Lock, Crisp and West, clear Fermi surface breaks arising from the Cu-O chain bands. No general agreement with existing experiments allows a clear definition of Fermi surface structures in the latter. A comparison of the calculated momentum with the experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) recently measured in Geneva shows an overall agreement for the insulating compound, despite the spurious LDA metallic state, and possibly suggests the importance of O vacancies in experiments performed on non-stoichiometric YBa 2Cu 3O 7-δ samples.

  3. Electronic structure of LiGaS 2

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Lobanov, S.; Huang, H.; Lin, Z. S.

    2009-04-01

    X-ray photoelectron spectroscopy (XPS) measurement has been performed to determine the valence band structure of LiGaS 2 crystals. The experimental measurement is compared with the electronic structure obtained from the density functional calculations. It is found that the Ga 3d states in the XPS spectrum are much higher than the calculated results. In order to eliminate this discrepancy, the LDA+ U method is employed and reasonable agreement is achieved. Further calculations show that the difference of the linear and nonlinear optical coefficients between LDA and LDA+ U calculations is negligibly small, indicating that the Ga 3d states are actually independent of the excited properties of LiGaS 2 crystals since they are located at a very deep position in the valence bands.

  4. Electronic and thermal properties of germanene and stanene by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Jomehpour Zaveh, S.; Roknabadi, M. R.; Morshedloo, T.; Modarresi, M.

    2016-03-01

    The electronic, vibrational and thermal properties of germanene and stanene have been investigated based on density functional theory (DFT) and density functional perturbation theory (DFPT). The electronic band structure, total and partial density of states and phonon dispersion spectrum and states are analyzed. The phonon spectrum is positive for all modes in the first Brillouin zone and there is a phonon energy band gap between acoustic and optical modes which is around 50 cm-1 for both structure. The constant-volume specific heats of two structures are calculated by using phonon spectrum and density of states. The spin-orbit coupling (SOC) opens a direct energy band gap at the Dirac point, softens phonon spectrum and decreases phonon group velocity of ZA mode.

  5. Electronic and mechanic properties of trigonal boron nitride by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Mei, Hua Yue; Pang, Yong; Liu, Ding Yu; Cheng, Nanpu; Zheng, Shaohui; Song, Qunliang; Wang, Min

    2018-07-01

    A new boron nitride allotrope with 6 atoms in a unit cell termed as trigonal BN (TBN), which belongs to P3121 space group, is theoretically investigated. Electronic structures, mechanic properties, phonon spectra and other properties were calculated by using first-principles based on density functional theory (DFT). The elastic constants reveal that TBN is mechanically stable. Furthermore, phonon dispersion indicates that TBN is dynamically stable. The calculated bulk modulus and shear modulus of TBN are 323 and 342 GPa, respectively. The calculated Young's modulus are Ex = Ey = 760 GPa, Ez = 959 GPa, indicating that TBN is a super-hard and brittle material. The universal anisotropy index, which is only 0.296, shows its weak anisotropy. Band structure states clearly that TBN is an indirect semiconductor with a band gap of 3.87 eV. The valence bands are mainly composed of N 2p states, and the conduction bands are mainly contributed by B 2p states. Simulated X-ray diffraction patterns (XRD) and Raman spectra were also provided for future experimental characterizations. Due to its band gap and super-hard properties, TBN may possess potential in super-hard, optical and electronic applications.

  6. Molecular structure of tris(cyclopropylsilyl)amine as determined by gas electron diffraction and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    Vishnevskiy, Yuri V.; Abaev, Maxim A.; Ivanov, Arkadii A.; Vilkov, Lev V.; Dakkouri, Marwan

    2008-10-01

    The molecular structure and conformation of tris(cyclopropylsilyl)amine (TCPSA) has been studied by means of gas-phase electron diffraction at 338 K and quantum-chemical calculations. A total of 12 relatively stable conformations of TCPSA molecule were considered. According to the experimental results and the DFT calculations the most stable conformer corresponds to a configuration (according to the Prelog-Klyne notation) of the type (-ac)(-ac)(+ac)-(-ac)(-ac)(+ac), where the first three parentheses describe the three different Si-N-Si-C torsional angles and the latter ones depict the rotation of the three cyclopropyl groups about the C ring-Si axes, respectively. The quantum-mechanical calculations were performed using various density functional (B3LYP, X3LYP and O3LYP) and perturbation MP2 methods in combination with double- and triple- ζ basis sets plus polarization and diffuse functions. The most important experimental geometrical parameters of TCPSA ( ra Å, ∠ h1 degrees) are: (Si-N) av = 1.741(3), (Si-C) av = 1.866(4), (C-C) av = 1.510(3), (C-C(Si)) av = 1.535(3), (N-Si-C) av = 115.1(18)°. For the purpose of comparison and searching for reasons leading to the planarity of the Si 3N moiety in trisilylated amines we carried out NBO analysis and optimized the geometries of numerous silylamines. Among these compounds was tris(allylsilyl)amine (TASA), which is isovalent and isoelectronic to TCPSA. Utilizing the structural results we obtained we could show that Si +⋯Si + electrostatic repulsive interaction is predominantly responsible for the planarity of the Si 3N skeleton in TCPSA and in all other trisilylamines we considered. We also found that regardless the size and partial charges of the substituents the Si-N-Si bond angle in various disilylamines amounts to 130 ± 2°.

  7. Second moment scaling and the relationship of geometric and electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoistad, L.M.

    1993-01-01

    Extended Hueckel band calculations were used to show the ditellurides in the CdI[sub 2] structure type with more than 16 valence electrons/MTe[sub 2] unit should have an instability due to their electronic structure. Single crystal X-ray diffraction studies of the electron rich Ta[sub 1[minus]x]Ti[sub x]Te[sub 2] (x = 0.2, 0.3, 0.4 and 0.5) show that a statistical distortion of the CdI[sub 2] structure type has indeed occurred for these compounds confirming the theoretical calculations. Second Moment Scaled Hueckel theory was used to examine the basis of the Hume-Rothery phases are face centered cubic, hexagonal closest packed ([zeta], [epsilon] and [eta]-hcp),more » body centered cubic, [beta]-Mn and [gamma]-brass structures. Good agreement between the experimental and theoretically predicted electron concentration ranges was achieved when an s, p and contracted d orbital model was used. The results presented in this thesis were the first theoretical calculations that corroborate the entire set of Hume-Rothery electron concentration rules. Second Moment Scaled Hueckel energies were used for constructing structure maps for intermetallic compounds with stoichiometry ZA[sub 2], ZA[sub 3] and ZA[sub 6]. Calculations were performed only on the covalent network of the A atoms. The structure types considered were SmSb[sub 2], ZrSi[sub 2], Cu[sub 2]Sb, AuCu[sub 3], TiNi[sub 3], TiCu[sub 3], BiF[sub 3], SnNi[sub 3], NdTe[sub 3], TiS[sub 3], SmAu[sub 6], CeCu[sub 6] and PuGa[sub 6]. The bond distance variation found for closo-borohydrides B[sub 8]H[sub 8][sup 2[minus

  8. Consecutive Fragmentation Mechanisms of Protonated Ferulic Acid Probed by Infrared Multiple Photon Dissociation Spectroscopy and Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Martens, Sabrina M.; Marta, Rick A.; Martens, Jonathan K.; McMahon, Terry B.

    2012-10-01

    Protonated ferulic acid and its principle fragment ion have been characterized using infrared multiple photon dissociation spectroscopy and electronic structure calculations at the B3LYP/6-311 + G(d,p) level of theory. Due to its extensively conjugated structure, protonated ferulic acid is observed to yield three stable fragment ions in IRMPD experiments. It is proposed that two parallel fragmentation pathways of protonated ferulic acid are being observed. The first pathway involves proton transfer, resulting in the loss of water and subsequently carbon monoxide, producing fragment ions m/z 177 and 149, respectively. Optimization of m/z 177 yields a species containing an acylium group, which is supported by a diagnostic peak in the IRMPD spectrum at 2168 cm-1. The second pathway involves an alternate proton transfer leading to loss of methanol and rearrangement to a five-membered ring.

  9. Energetics and electronic structures of chemically decorated C60 chains

    NASA Astrophysics Data System (ADS)

    Furutani, Sho; Okada, Susumu

    2018-06-01

    We studied the energetics and electronic structures of one-dimensional molecular chains of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) using the density functional theory (DFT). Our DFT calculations show that the binding energies of PCBM range from 90 to 300 meV, depending on not only the intermolecular spacing but also the intermolecular arrangements owing to the interaction between functional groups and C60. The electronic structure of PCBM chains are also sensitive to the mutual arrangements of PCBM in their chain structure. The calculated effective masses of the conduction band range from 0.58 to 634.97m e, giving rise to anisotropic transport properties in their condensed phase.

  10. Electronic Structure and Optical Properties of Cu 2ZnGeSe 4. First-Principles Calculations and Vacuum-Ultraviolet Spectroscopic Ellipsometric Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sukgeun; Park, Ji-Sang; Donohue, Andrea

    2015-11-19

    Cu 2ZnGeSe 4 is of interest for the development of next-generation thin-film photovoltaic technologies. To understand its electronic structure and related fundamental optical properties, we perform first-principles calculations for three structural variations: kesterite, stannite, and primitive-mixed CuAu phases. The calculated data are compared with the room-temperature dielectric functionϵ=ϵ1+iϵ2 spectrum of polycrystalline Cu 2ZnGeSe 4 determined by vacuum-ultraviolet spectroscopic ellipsometry in the photon-energy range of 0.7 to 9.0 eV. Ellipsometric data are modeled with the sum of eight Tauc-Lorentz oscillators, and the best-fit model yields the band-gap and Tauc-gap energies of 1.25 and 1.19 eV, respectively. A comparison of overall peakmore » shapes and relative intensities between experimental spectra and the calculated ϵ data for three structural variations suggests that the sample may not have a pure (ordered) kesterite phase. We found that the complex refractive index N=n+ik, normal-incidence reflectivity R, and absorption coefficients α are calculated from the modeled ϵ spectrum, which are also compared with those of Cu 2ZnSnSe 4 . The spectral features for Cu 2ZnGeSe 4 appear to be weaker and broader than those for Cu 2ZnSnSe 4 , which is possibly due to more structural imperfections presented in Cu 2ZnGeSe 4 than Cu 2ZnSnSe 4 .« less

  11. Structural studies of homoisoflavonoids: NMR spectroscopy, X-ray diffraction, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sievänen, Elina; Toušek, Jaromír; Lunerová, Kamila; Marek, Jaromír; Jankovská, Dagmar; Dvorská, Margita; Marek, Radek

    2010-08-01

    In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometries and crystal packing determined by X-ray diffraction are used for characterizing the intermolecular interactions. Electron distribution is crucial for the stability of radicals and hence the antioxidant efficiency of flavonoid structures. The hydrogen bonding governs the formation of complexes of homoisoflavonoids with biological targets.

  12. Three oxime ether derivatives: Synthesis, crystallographic study, electronic structure and molecular electrostatic potential calculation

    NASA Astrophysics Data System (ADS)

    Dey, Tanusri; Praveena, Koduru Sri Shanthi; Pal, Sarbani; Mukherjee, Alok Kumar

    2017-06-01

    Three oxime ether derivatives, (E)-3-methoxy-4-(prop-2-ynyloxy)-benzaldehyde-O-prop-2-ynyl-oxime (C14H13NO3) (2), benzophenone-O-prop-2-ynyl-oxime (C16H13NO) (3) and (E)-2-chloro-6-methylquinoline-3-carbaldehyde-O-prop-2-ynyl-oxime (C14H11ClN2O) (4), have been synthesized and their crystal structures have been determined. The DFT optimized molecular geometries in 2-4 agree closely with those obtained from the crystallographic study. An interplay of intermolecular Csbnd H⋯O, Csbnd H⋯N, Csbnd H⋯Cl and Csbnd H···π(arene) hydrogen bonds and π···π interactions assembles molecules into a 2D columnar architecture in 2, a 1D molecular ribbon in 3 and a 3D framework in 4. Hirshfeld surface analysis showed that the structures of 2 and 3 are mainly characterized by H⋯H, H⋯C and H⋯O contacts but some contribution of H⋯N and H⋯Cl contacts is also observed in 4. Hydrogen-bond based interactions in 2-4 have been complemented by calculating molecular electrostatic potential (MEP) surfaces. The electronic structures of molecules reveal that the estimated band gap in 3, in which both aldehyde hydrogen atoms of formaldehyde-O-prop-2-ynyl-oxime (1) have been substituted by two benzene rings, is higher than that of 2 and 4 with only one aldehyde hydrogen atom replaced.

  13. Excited state electron affinity calculations for aluminum

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  14. Structure and properties of microporous titanosilicate determined by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Ching, W. Y.; Xu, Yong-Nian; Gu, Zong-Quan

    1996-12-01

    The structure of EST-10, a member of synthetic microporous titanosilicates, was recently determined by an ingenious combination of experimental and simulational techniques. However, the locations of the alkali atoms in the framework remain elusive and its electronic structure is totally unknown. Based on first-principles local density calculations, the possible locations of the alkali atoms are identified and its electronic structure and bonding fully elucidated. ETS-10 is a semiconductor with a direct band gap of 2.33 eV. The Na atoms are likely to locate inside the seven-member ring pore adjacent to the one-dimensional Ti-O-Ti-O- chain.

  15. Pseudopotential plane-wave calculation of the structural properties of yttrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Chou, M.Y.

    1991-11-01

    The structural properties of hexagonal-close-packed yttrium are studied by using the plane-wave basis within the pseudopotential method and local-density-functional approximation. By employing a soft'' pseudopotential proposed by Troullier and Martins, satisfactory convergence is achieved with a plane-wave energy cutoff of 30--40 Ry for this early-transition-metal element. The overall results for the structural properties are in good agreement with experiment. It is found that the charge overlap between core and valence electrons has a substantial effect on the accuracy of the calculated structural properties. Two different calculations are performed with and without the outer-core 4{ital p} orbital included as a valencemore » state. In addition, as found in some other local-density calculations, the uncertainty in the results due to different exchange-correlation energy functionals may not be negligible in transition metals.« less

  16. β-armchair antimony nanotube: Structure, stability and electronic properties

    NASA Astrophysics Data System (ADS)

    Singh, Shilpa; Gupta, Sanjeev K.; Sonvane, Yogesh; Gajjar, P. N.

    2018-05-01

    In the present work, we have used density functional theory (DFT) to investigate the structure, stability and electronic properties of β-armchair antimony nanotube (ASbNT). We have calculated formation energy and found that β-armchair antimony nanotube (ASbNT) is energetically less stable than β-antimonene. The result shows that β-ASbNT of higher diameter are more stable than nanotubes of lower diameter while electronic band structure shows semiconducting nature of these nanotubes.

  17. Electronic structure calculations of PbS quantum rods and tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimachev, Artem; Dahnovsky, Yuri, E-mail: yurid@uwyo.edu

    2014-01-28

    We study absorption spectra, optical and HOMO-LUMO gaps, and the density of states for PbS quantum rods (QRs) and tubes (QTs). We find some similarities and also differences in QR and QT properties. For both QRs and QTs, the optical and HOMO-LUMO gaps reach the plateaus for small lengths. We find that tubes are as stable as rods. The optical spectra exhibit a peak that can be due to the electron-hole interaction or be a prototype of an S{sub e}–S{sub h} transition in the effective mass approximation. We also calculate the density of states by the density functional theory (DFT)more » and time-dependent density functional theory (TDDFT) methods. The TDDFT density of states function is shifted towards the red side by 0.5 eV indicating the strong e-h interaction.« less

  18. Structural, electronic and thermal properties of super hard ternary boride, WAlB

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-04-01

    A first principle study of the structural, electronic and thermal properties of Tungsten Aluminum Boride (WAlB) using full-potential linearized augmented plane wave (FP-LAPW) in the frame work of density function theory (DFT) have been calculated. The calculated equilibrium structural parameters are in excellent agreement with available experimental results. The calculated electronic band structure reveals that WAlB is metallic in nature. The quasi-harmonic Debye model is applied to study of the temperature and pressure effect on volume, Debye temperature, thermal expansion coefficient and specific heat at constant volume and constant pressure. To the best of our knowledge theoretical investigation of these properties of WAlB is reported for the first time.

  19. Density functional theory determination of structural and electronic properties of struvite.

    PubMed

    Romanowski, Zbigniew; Kempisty, Paweł; Prywer, Jolanta; Krukowski, Stanisław; Torzewska, Agnieszka

    2010-07-29

    Crystallographic structure, total energy, electronic structure, and the most important elastic properties of struvite, NH(4)MgPO(4).6H(2)O, the main component of infectious urinary stones, are presented. The calculations were performed using ab initio full-electron calculations within the density functional theory-generalized gradient approximation (DFT-GGA) framework. The obtained crystallographic symmetry and the calculated lattice parameters and also the elastic constants are in good agreement with the experimental data. The elastic properties are essential for establishing an optimal response of urinary stones during shock-wave lithotripsy. The calculated electronic charge distribution confirms the layered structure of the struvite crystals. The polar character of the crystal, well-known from crystal growth experiments, was also confirmed by the magnitude of spontaneous polarization which was obtained from direct determination of the electrical dipole density. The calculated value of spontaneous polarization is equal to -8.8 microC cm(-2). This feature may play a key role in struvite crystallization, electrically binding the charged active impurities and other active species, and consequently determining urinary stone formation. We also present the results of our own experiment of the mineralization of struvite induced to growth by Proteus bacteria which are mainly isolated from infectious urinary stones.

  20. Structural and electronic phase transitions of ThS 2 from first-principles calculations

    DOE PAGES

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; ...

    2016-10-07

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS 2, which may play an important role in the next generation nuclear energy fuel technology.

  1. Electronic structure of shandite Co3Sn2S2

    NASA Astrophysics Data System (ADS)

    Dedkov, Y. S.; Holder, M.; Molodtsov, S. L.; Rosner, H.

    2008-03-01

    The electronic structure of shandite Co3Sn2S2 was determined by photoelectron spectroscopy and compared with ab initio band structure calculations. Presented results give evidence that this compound has half-metallic ferromagnetic properties.

  2. Features of the electronic structure of FeTe compounds

    NASA Astrophysics Data System (ADS)

    Grechnev, G. E.; Lyogenkaya, A. A.; Panfilov, A. S.; Logosha, A. V.; Kotlyar, O. V.; Gnezdilov, V. P.; Makarova, I. P.; Chareev, D. A.; Mitrofanova, E. S.

    2015-12-01

    A theoretical and experimental study of the electronic structure and nature of the chemical bonds in FeTe compounds in antiferromagnetic (AFM) and paramagnetic phases was carried out. It is established that the nature of the chemical bonds is mainly metallic, and the presence of covalent bonds Fe-Te and Te-Te helps to stabilize the structural distortions of the tetragonal phase of FeTe in the low-temperature region. It is found that the bicollinear AFM structure corresponds to the ground state of the FeTe compound and the calculated value of the magnetic moment MFe = -2.4μB is in good agreement with the data from neutron diffraction measurements. At the same time, the Fermi surface (FS) of the low-temperature AFM phase is radically different from the FS of the paramagnetic FeTe. Reconstructing the FS can lead to a sign change of the Hall coefficient observed in FeTe. The calculation results serve as evidence of the fact that the electronic structures and magnetic properties of FeTe are well-described by the model of itinerant d-electrons and the density functional theory (DFT-GGA).

  3. Non-equilibrium calculations of atmospheric processes initiated by electron impact.

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.

    2007-05-01

    Electron impact in the atmosphere produces ionisation, dissociation, electronic excitation and vibrational excitation of atoms and molecules. The products can then take part in chemical reactions, recombination with electrons, or radiative or collisional deactivation. While most such processes are fast, some longer--lived species do not reach equilibrium. The electron source (photoelectrons or auroral electrons) also varies over time and longer-lived species can move substantially in altitude by molecular, ambipolar or eddy diffusion. Hence non-equilibrium calculations are required in some circumstances. Such time-step calculations need to have sufficiently short steps so that the fastest processes are still calculated correctly, but this can lead to computation times that are too large. Hence techniques to allow for longer time steps by incorporating equilibrium calculations are described. Examples are given for results of atmospheric non-equilibrium calculations, including the populations of the vibrational levels of ground state N2, the electron density and its dependence on vibrationally excited N2, predictions of nitric oxide density, and detailed processes during short duration auroral events.

  4. Fesbnd X (X = B, N) binary compounds: First-principles calculations of electronic structures, theoretic hardness and magnetic properties

    NASA Astrophysics Data System (ADS)

    Hui, Liangliang; Xie, Zhongjing; Li, Chunmei; Chen, Zhi-Qian

    2018-04-01

    The first-principles calculations are implemented to investigate the electronic structures, theoretic hardness and magnetic properties of iron borides and nitrides with four different crystal systems containing hexagonal (FeB2, ε-Fe3N), tetragonal (Fe2B, α″-Fe16N2), orthorhombic (α-FeB, θ-Fe3B, ζ-Fe2N), and cubic (zb-FeN, rs-FeN, γ‧-Fe4N, γ-Fe23B6) phase. The calculated lattice parameters using RPBE meet well with the experimental results. The cohesive energy and formation enthalpy values indicate the Fesbnd X (X = B, N) binary compounds are thermodynamically stable. Meanwhile, the h-FeB2 is most difficult phase for experimental synthesis among these interstitial compounds. Moreover, magnetic properties are discussed and show that the mean magnetic moments of o-Fe3B and c-Fe23B6 with the values of 2.227 μB and 2.256 μB per iron atom are approaching to that of pure iron (2.32 μB) while the c-Fe4N and t-Fe16N2 with the values of 2.51 and 2.48 μB are beyond that of pure α-Fe. The c-FeN phase shows nonmagnetic in zb-style while rs-type shows antiferromagnetic with a value of 2.52 μB. Furthermore, the average bonding length and Mulliken population combined with electronic structures are also analysed in this paper which provide that strong Fesbnd X and Xsbnd X covalent bonds are responsible for high hardness. Finally, the theoretic hardness of Xsbnd X, Fesbnd X and Fesbnd Fe bonds is predicted by semi empirical hardness theory.

  5. Electronic correlation in magnetic contributions to structural energies

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    For interacting electrons the density of transitions [see http://arxiv.org/abs/1405.2288] replaces the density of states in calculations of structural energies. Extending previous work on paramagnetic metals, this approach is applied to correlation effects on the structural stability of magnetic transition metals. Supported by the H. V. Snyder Gift to the University of Oregon.

  6. Structural and electronic properties of double-walled boron nitride nanocones

    NASA Astrophysics Data System (ADS)

    Brito, E.; Silva, T. S.; Guerra, T.; Leite, L.; Azevedo, S.; Freitas, A.; Kaschny, J. R.

    2018-01-01

    First principles calculations were applied to study the structural and electronic properties of different configurations of double-walled boron nitride nanocones with a disclination angle of 60°. The analysis includes different rotation angles, distance between apexes, as well as distinct types of antiphase boundaries. The calculations indicate that the non-rotated configuration of double-walled nanocone with a defective line composed by C and N atoms, forming C-N bonds, is the most stable configuration. It was found that the yam angle, apexes distance and defective line composition present significant influence on the electronic properties of such structures. Moreover, analyzing the spin charge density, for the electronic states near the Fermi level, it was also found that the configuration with a defective line containing C atoms presents a net magnetic moment.

  7. Comparison of electronic structure between monolayer silicenes on Ag (111)

    NASA Astrophysics Data System (ADS)

    Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi

    2015-08-01

    The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  8. Status in calculating electronic excited states in transition metal oxides from first principles.

    PubMed

    Bendavid, Leah Isseroff; Carter, Emily Ann

    2014-01-01

    Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green's functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe-Salpeter equation (BSE), which introduces an electron-hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.

  9. Structural stability, electronic structure and mechanical properties of alkali gallium hydrides AGaH{sub 4} (A = Li, Na)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Manikandan, M.

    2016-05-06

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of alkali gallium hydrides AGaH{sub 4} (A = Li, Na) for three different crystal structures, namely tetragonal (P42{sub 1}c), tetragonal (P4{sub 2}/nmc) and monoclinic (P2{sub 1}/c). Among the considered structures, tetragonal (P42{sub 1}c) phase is found to be the most stable phase for these hydrides at normal pressure. A pressure induced structural phase transition from tetragonal (P42{sub 1}c) to tetragonal (P4{sub 2}/nmc) is observed. The electronic structure reveals that these hydrides are insulators. The calculated elastic constants indicate that these ternary imides are mechanically stablemore » at normal pressure.« less

  10. Electronic structure and optical properties of GdNi2Mnx compounds

    NASA Astrophysics Data System (ADS)

    Knyazev, Yu. V.; Lukoyanov, A. V.; Kuz'min, Yu. I.; Gaviko, V. S.

    2018-02-01

    The electronic structure and optical properties of GdNi2Mnx compounds (x = 0, 0.4, 0.6) were investigated. Spin-polarized electronic structure calculations were performed in the approximation of local electron spin density corrected for strong electron correlations using the LSDA+U method. The changes in the magnetic moments and exchange interactions in GdNi2Mnx (x = 0, 0.4, 0.6) governing the increase in the Curie temperature with manganese concentration were determined. The optical constants of the compounds were measured by the ellipsometric method in the wide spectral range of 0.22-15 μm. The peculiarities of the evolution of the frequency dependences of optical conductivity with a change in the manganese content were revealed. Based on the calculated densities of electron states, the behavior of these dispersion curves in the region of interband absorption of light was discussed. The concentration dependences of several electronic characteristics were determined.

  11. New determination of the fine structure constant from the electron value and QED.

    PubMed

    Gabrielse, G; Hanneke, D; Kinoshita, T; Nio, M; Odom, B

    2006-07-21

    Quantum electrodynamics (QED) predicts a relationship between the dimensionless magnetic moment of the electron (g) and the fine structure constant (alpha). A new measurement of g using a one-electron quantum cyclotron, together with a QED calculation involving 891 eighth-order Feynman diagrams, determine alpha(-1)=137.035 999 710 (96) [0.70 ppb]. The uncertainties are 10 times smaller than those of nearest rival methods that include atom-recoil measurements. Comparisons of measured and calculated g test QED most stringently, and set a limit on internal electron structure.

  12. Boron difluoride dibenzoylmethane derivatives: Electronic structure and luminescence

    NASA Astrophysics Data System (ADS)

    Tikhonov, Sergey A.; Vovna, Vitaliy I.; Osmushko, Ivan S.; Fedorenko, Elena V.; Mirochnik, Anatoliy G.

    2018-01-01

    Electronic structure and optical properties of boron difluoride dibenzoylmethanate and four of its derivatives have been studied by X-ray photoelectron spectroscopy, absorption and luminescence spectroscopy and quantum chemistry (DFT, TDDFT). The relative quantum luminescence yields have been revealed to correlate with charge transfers of HOMO-LUMO transitions, energy barriers of aromatic substituents rotation and the lifetime of excited states in the investigated complexes. The bathochromic shift of intensive bands in the optical spectra has been observed to occur when the functional groups are introduced into p-positions of phenyl cycles due to destabilizing HOMO levels. Calculated energy intervals between electronic levels correlate well with XPS spectra structure of valence and core electrons.

  13. Structure and properties of microporous titanosilicate determined by first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ching, W.Y.; Xu, Y.; Gu, Z.

    1996-12-01

    The structure of EST-10, a member of synthetic microporous titanosilicates, was recently determined by an ingenious combination of experimental and simulational techniques. However, the locations of the alkali atoms in the framework remain elusive and its electronic structure is totally unknown. Based on first-principles local density calculations, the possible locations of the alkali atoms are identified and its electronic structure and bonding fully elucidated. ETS-10 is a semiconductor with a direct band gap of 2.33 eV. The Na atoms are likely to locate inside the seven-member ring pore adjacent to the one-dimensional Ti-O-Ti-O- chain. {copyright} {ital 1996 The American Physicalmore » Society.}« less

  14. Lithium doping and vacancy effects on the structural, electronic and magnetic properties of hexagonal boron nitride sheet: A first-principles calculation

    NASA Astrophysics Data System (ADS)

    Fartab, Dorsa S.; Kordbacheh, Amirhossein Ahmadkhan

    2018-06-01

    The first-principles calculations based on spin-polarized density functional theory is carried out to investigate the structural, electronic and magnetic properties of a hexagonal boron nitride sheet (h-BNS) doped by one or two lithium atom(s). Moreover, a vacancy in the neighborhood of one Li-substituted atom is introduced into the system. All optimized structures indicate significant local deformations with Li atom(s) protruded to the exterior of the sheet. The defects considered at N site are energetically more favorable than their counterpart structures at B site. The spin-polarized impurity states appear within the bandgap region of the pristine h-BNS, which lead to a spontaneous magnetization with the largest magnetic moments of about 2 μB in where a single or two B atom(s) are replaced by Li atom(s). Furthermore, the Li substitution for a single B atom increases the density of holes compared to that of electrons forming a p-type semiconductor. More interestingly, the structure in which two Li are substituted two neighboring B atoms appears to show desired half-metallic behavior that may be applicable in spintronic. The results provide a way to enhance the conductivity and magnetism of the pristine h-BNS for potential applications in BN-based nanoscale devices.

  15. Ab initio calculation of the electronic absorption spectrum of liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are inmore » good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.« less

  16. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  17. Electronic structure and magneto-optical effects in CeSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liechtenstein, A.I.; Antropov, V.P.; Harmon, B.N.

    1994-04-15

    The electronic structure and magneto-optical spectra of CeSb have been calculated using the self-consistent local-density approximation with explicit on-site Coulomb parameters for the correlated [ital f] state of cerium. The essential electronic structure of cerium antimonide consists of one occupied [ital f] band, predominantly with orbital [ital m]=[minus]3 character and spin [sigma]=1 located 2 eV below the Fermi level and interacting with broad Sb [ital p] bands crossing [ital E][sub [ital F

  18. Ab initio effective core potentials including relativistic effects and their application to the electronic structure calculations of heavy atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.S.

    1977-11-01

    The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed inmore » detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.« less

  19. First-principles calculation of the geometric and electronic structure of the Be(0001) surface

    NASA Astrophysics Data System (ADS)

    Feibelman, Peter J.

    1992-07-01

    Linearized-augmented-plane-wave calculations for a nine-layer Be(0001) slab agree with the unusual experimental finding of a substantial outer-layer expansion relative to the truncated bulk lattice. They imply that the separation between the outer two layers should be 3.9% larger than in the bulk, while the second- to third-layer separation should be 2.2% larger. The surface expansion is accompanied by demotion of pσ to s electrons on outer-layer Be's. The surface Be's loss of three neighbors makes the energy cost of s- to pσ-electron promotion, which is necessary for the formation of strong bonds to the next layer down, less profitable than in the bulk.

  20. A new algorithm to handle finite nuclear mass effects in electronic calculations: the ISOTOPE program.

    PubMed

    Gonçalves, Cristina P; Mohallem, José R

    2004-11-15

    We report the development of a simple algorithm to modify quantum chemistry codes based on the LCAO procedure, to account for the isotope problem in electronic structure calculations. No extra computations are required compared to standard Born-Oppenheimer calculations. An upgrade of the Gamess package called ISOTOPE is presented, and its applicability is demonstrated in some examples.

  1. Possibility of transforming the electronic structure of one species of graphene adatoms into that of another by application of gate voltage: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Chan, Kevin T.; Lee, Hoonkyung; Cohen, Marvin L.

    2011-10-01

    Graphene provides many advantages for controlling the electronic structure of adatoms and other adsorbates via gating. Using the projected density of states and charge density obtained from first-principles density-functional periodic supercell calculations, we investigate the possibility of performing “alchemy” of adatoms on graphene, i.e., transforming the electronic structure of one species of adatom into that of another species by application of a gate voltage. Gating is modeled as a change in the number of electrons in the unit cell, with the inclusion of a compensating uniform background charge. Within this model and the generalized gradient approximation to the exchange-correlation functional, we find that such transformations are possible for K, Ca, and several transition-metal adatoms. Gate control of the occupation of the p states of In on graphene is also investigated. The validity of the supercell approximation with uniform compensating charge and the model for exchange and correlation is also discussed.

  2. Electronic Structure of Small Lanthanide Containing Molecules

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Ray, Manisha; Topolski, Josey E.; Chick Jarrold, Caroline

    2016-06-01

    Lanthanide-based materials have unusual electronic properties because of the high number of electronic degrees of freedom arising from partial occupation of 4f orbitals, which make these materials optimal for their utilization in many applications including electronics and catalysis. Electronic spectroscopy of small lanthanide molecules helps us understand the role of these 4f electrons, which are generally considered core-like because of orbital contraction, but are energetically similar to valence electrons. The spectroscopy of small lanthanide-containing molecules is relatively unexplored and to broaden this understanding we have completed the characterization of small cerium, praseodymium, and europium molecules using photoelectron spectroscopy coupled with DFT calculations. The characterization of PrO, EuH, EuO/EuOH, and CexOy molecules have allowed for the determination of their electron affinity, the assignment of numerous anion to neutral state transitions, modeling of anion/neutral structures and electron orbital occupation.

  3. Monte Carlo based electron treatment planning and cutout output factor calculations

    NASA Astrophysics Data System (ADS)

    Mitrou, Ellis

    Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.

  4. A distorted-wave methodology for electron-ion impact excitation - Calculation for two-electron ions

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.

    1977-01-01

    A distorted-wave program is being developed for calculating the excitation of few-electron ions by electron impact. It uses the exchange approximation to represent the exact initial-state wavefunction in the T-matrix expression for the excitation amplitude. The program has been implemented for excitation of the 2/1,3/(S,P) states of two-electron ions. Some of the astrophysical applications of these cross sections as well as the motivation and requirements of the calculational methodology are discussed.

  5. Electronic Structure Calculations of Ammonia Adsorption on Graphene and Graphene Oxide with Epoxide and Hydroxyl Groups

    NASA Astrophysics Data System (ADS)

    Nancy Anna Anasthasiya, A.; Khaneja, Mamta; Jeyaprakash, B. G.

    2017-10-01

    Ammonia adsorption on graphene (G) and graphene oxide (GO) was investigated through density functional theory calculations. In the GO system, the obtained binding energy, band gap, charge transfer and electronic structure revealed that the epoxide (GO-O) and hydroxyl groups (GO-OH) in GO enhance the NH3 adsorption, which leads to the chemisorption of NH3 on GO. The dissociation of NH3 to NH2 and formation of OH was also observed when the O and H atoms were separated at 0.985 Å, 1.019 Å, 1.035 Å, and 1.044 Å for various GO systems. The maximum charge transfer value was found to be 0.054 |e| with the binding energy of 1.143 eV for GO with a single epoxide (GO-1O) group. The charge transfer from NH3 to G or GO and the bond formation in this study agree with the reported experimental results.

  6. Ab initio calculations of the electronic structure and specific optical features of β-LiNH4SO4 single crystals

    NASA Astrophysics Data System (ADS)

    Rudysh, M. Ya.; Brik, M. G.; Stadnyk, V. Yo.; Brezvin, R. S.; Shchepanskyi, P. A.; Fedorchuk, A.; Khyzhun, O. Y.; Kityk, I. V.; Piasecki, M.

    2018-01-01

    In the present work complex experimental and theoretical studies of electronic and optical properties for β-lithium-ammonium sulfate crystals of good optical quality are performed using the X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). Standard immersion and spectroscopic techniques accompanied by the theoretical quantum-chemical calculations in the density functional theory (DFT) framework were applied. Calculations of band structure and related properties were carried out within a framework of local density and generalized gradient approximations as well as hybrid B3LYP functionals. The energy levels features and their origin are established from the DFT calculations and they were ferified by XPS and XES measurements. Theoretical and experimental refractive indices dispersions along the principal crystallographic directions (nx, ny and nz) as well as birefringence dispersion (Δnx, Δny and Δnz) in the visible spectral range are obtained. It was found a closeness of nx and ny curves for the titled crystals. More precise birefringence examining predicts their intersection at λ ≈ 190 nm.

  7. Electronic structure of nitrides PuN and UN

    NASA Astrophysics Data System (ADS)

    Lukoyanov, A. V.; Anisimov, V. I.

    2016-11-01

    The electronic structure of uranium and plutonium nitrides in ambient conditions and under pressure is investigated using the LDA + U + SO band method taking into account the spin-orbit coupling and the strong correlations of 5 f electrons of actinoid ions. The parameters of these interactions for the equilibrium cubic structure are calculated additionally. The application of pressure reduces the magnetic moment in PuN due to predominance of the f 6 configuration and the jj-type coupling. An increase in the occupancy of the 5 f state in UN leads to a decrease in the magnetic moment, which is also detected in the trigonal structure of the UN x β phase (La2O3-type structure). The theoretical results are in good agreement with the available experimental data.

  8. Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity.

    PubMed

    Häkkinen, Hannu; Moseler, Michael; Kostko, Oleg; Morgner, Nina; Hoffmann, Margarita Astruc; von Issendorff, Bernd

    2004-08-27

    We present high resolution UV-photoelectron spectra of cold mass selected Cun-, Agn-, and Aun- with n=53-58. The observed electron density of states is not the expected simple electron shell structure, but is strongly influenced by electron-lattice interactions. Only Cu55- and Ag55- exhibit highly degenerate states. This is a direct consequence of their icosahedral symmetry, as is confirmed by density functional theory calculations. Neighboring sizes exhibit perturbed electronic structures, as they are formed by removal or addition of atoms to the icosahedron and therefore have lower symmetries. Gold clusters in the same size range show completely different spectra with almost no degeneracy, which indicates that they have structures of much lower symmetry. This behavior is related to strong relativistic bonding effects in gold, as demonstrated by ab initio calculations for Au55-.

  9. 4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides.

    PubMed

    Huang, Bolong

    2016-04-05

    The ground-state 4f fine-structure levels in the intrinsic optical transition gaps between the 2p and 5d orbitals of lanthanide sesquioxides (Ln2 O3 , Ln = La…Lu) were calculated by a two-way crossover search for the U parameters for DFT + U calculations. The original 4f-shell potential perturbation in the linear response method were reformulated within the constraint volume of the given solids. The band structures were also calculated. This method yields nearly constant optical transition gaps between Ln-5d and O-2p orbitals, with magnitudes of 5.3 to 5.5 eV. This result verifies that the error in the band structure calculations for Ln2 O3 is dominated by the inaccuracies in the predicted 4f levels in the 2p-5d transition gaps, which strongly and non-linearly depend on the on-site Hubbard U. The relationship between the 4f occupancies and Hubbard U is non-monotonic and is entirely different from that for materials with 3d or 4d orbitals, such as transition metal oxides. This new linear response DFT + U method can provide a simpler understanding of the electronic structure of Ln2 O3 and enables a quick examination of the electronic structures of lanthanide solids before hybrid functional or GW calculations. © 2015 Wiley Periodicals, Inc.

  10. Theoretical Study of tip apex electronic structure in Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Choi, Heesung; Huang, Min; Randall, John; Cho, Kyeongjae

    2011-03-01

    Scanning Tunneling Microscope (STM) has been widely used to explore diverse surface properties with an atomic resolution, and STM tip has played a critical role in controlling surface structures. However, detailed information of atomic and electronic structure of STM tip and the fundamental understanding of STM images are still incomplete. Therefore, it is important to develop a comprehensive understanding of the electronic structure of STM tip. We have studied the atomic and electronic structures of STM tip with various transition metals (TMs) by DFT method. The d-electrons of TM tip apex atoms show different orbital states near the Fermi level. We will present comprehensive data of STM tips from our DFT calculation. Verified quantification of the tip electronic structures will lead to fundamental understanding of STM tip structure-property relationship. This work is supported by the DARPA TBN Program and the Texas ETF. DARPA Tip Based Nanofabrication Program and the Emerging Technology Fund of the State of Texas.

  11. Band structure and unconventional electronic topology of CoSi

    NASA Astrophysics Data System (ADS)

    Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.

    2018-04-01

    Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \

  12. Calculations of Electron Transport through Radicals

    NASA Astrophysics Data System (ADS)

    Smeu, Manuel; Dilabio, Gino

    2010-03-01

    Organic radicals are of interest in molecular electronics because a singly occupied molecular orbital (SOMO) would have a higher energy than its doubly occupied analog, suggesting they might make better conductors. The unpaired electron present in a radical leads to degeneracy splitting in other energy levels and such molecules may act as spin filters. Our study employs first principles transport calculations that are performed using a combination of density functional theory and a non-equilibrium Green's function technique. The conductance of 1,4-benzenediamine (BDA) molecules bridging two Au electrodes was modeled. These molecules were substituted in the 2-position with: -CH3, -NH2, and -OH; as well as with their radical analogs: -CH2, -NH, and -O, all of which have π-type SOMOs. The conductance of a radical with a σ-type SOMO was also calculated from a BDA molecule with the H atom in the 2-position removed. Comparing the transmission spectra for these species will yield insight into the nature of electron transport through radicals vs. transport through their reduced form as well as the nature of transport through π- and σ-type molecular orbitals.

  13. Numerical band structure calculations of plasma metamaterials

    NASA Astrophysics Data System (ADS)

    Pederson, Dylan; Kourtzanidis, Konstantinos; Raja, Laxminarayan

    2015-09-01

    Metamaterials (MM) are materials engineered to display negative macroscopic permittivity and permeability. These materials allow for designed control over electromagnetic energy flow, especially at frequencies where natural materials do not interact. Plasmas have recently found application in MM as a negative permittivity component. The permittivity of a plasma depends on its electron density, which can be controlled by an applied field. This means that plasmas can be used in MM to actively control the transmission or reflection of incident waves. This work focuses on a plasma MM geometry in which microplasmas are generated in perforations in a metal plate. We characterizethis material by its band structure, which describes its interaction with incident waves. The plasma-EM interactions are obtained by coupling Maxwell's equations to a simplified plasma momentum equation. A plasma density profile is prescribed, and its effect on the band structure is investigated. The band structure calculations are typically done for static structures, whereas our current density responds to the incident waves. The resulting band structures are compared with experimental results.

  14. Spatial structure and electronic spectrum of TiSi{/n -} clusters ( n = 6-18)

    NASA Astrophysics Data System (ADS)

    Borshch, N. A.; Pereslavtseva, N. S.; Kurganskii, S. I.

    2014-10-01

    Results from optimizing the spatial structure and calculated electronic spectra of anion clusters TiSi{/n -} ( n = 6-18) are presented. Calculations are performed within the density functional theory. Spatial structures of clusters detected experimentally are established by comparing the calculated and experimental data. It is shown that prismatic and fullerene-like structures are the ones most energetically favorable for clusters TiSi{/n -}. It is concluded that these structures are basic when building clusters with close numbers of silicon atoms.

  15. Structural and electronic properties for atomic clusters

    NASA Astrophysics Data System (ADS)

    Sun, Yan

    We have studied the structural and electronic properties for different groups of atomic clusters by doing a global search on the potential energy surface using the Taboo Search in Descriptors Space (TSDS) method and calculating the energies with Kohn-Sham Density Functional Theory (KS-DFT). Our goal was to find the structural and electronic principles for predicting the structure and stability of clusters. For Ben (n = 3--20), we have found that the evolution of geometric and electronic properties with size reflects a change in the nature of the bonding from van der Waals to metallic and then bulk-like. The cluster sizes with extra stability agree well with the predictions of the jellium model. In the 4d series of transition metal (TM) clusters, as the d-type bonding becomes more important, the preferred geometric structure changes from icosahedral (Y, Zr), to distorted compact structures (Nb, Mo), and FCC or simple cubic crystal fragments (Tc, Ru, Rh) due to the localized nature of the d-type orbital. Analysis of relative isomer energies and their electronic density of states suggest that these clusters tend to follow a maximum hardness principle (MHP). For A4B12 clusters (A is divalent, B is monovalent), we found unusually large (on average 1.95 eV) HOMO-LUMO gap values. This shows the extra stability at an electronic closed shell (20 electrons) predicted by the jellium model. The importance of symmetry, closed electronic and ionic shells in stability is shown by the relative stability of homotops of Mg4Ag12 which also provides support for the hypothesis that clusters that satisfy more than one stability criterion ("double magic") should be particularly stable.

  16. Chemical modulation of electronic structure at the excited state

    NASA Astrophysics Data System (ADS)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  17. Basic electronic properties of iron selenide under variation of structural parameters

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2017-09-01

    Since the discovery of high-temperature superconductivity in the thin-film FeSe /SrTiO3 system, iron selenide and its derivates have been intensively scrutinized. Using ab initio density functional theory calculations we review the electronic structures that could be realized in iron selenide if the structural parameters could be tuned at liberty. We calculate the momentum dependence of the susceptibility and investigate the symmetry of electron pairing within the random phase approximation. Both the susceptibility and the symmetry of electron pairing depend on the structural parameters in a nontrivial way. These results are consistent with the known experimental behavior of binary iron chalcogenides and, at the same time, reveal two promising ways of tuning superconducting transition temperatures in these materials: on one hand by expanding the iron lattice of FeSe at constant iron-selenium distance and, on the other hand, by increasing the iron-selenium distance with unchanged iron lattice.

  18. Electronic structure of binuclear acetylacetonates of boron difluoride

    NASA Astrophysics Data System (ADS)

    Tikhonov, Sergey A.; Svistunova, Irina V.; Samoilov, Ilya S.; Osmushko, Ivan S.; Borisenko, Aleksandr V.; Vovna, Vitaliy I.

    2018-05-01

    The electronic structure of boron difluoride acetylacetonate and its three derivatives was studied using photoelectron and absorption spectroscopy, as well as the density functional theory. In a series of binuclear acetylacetonate complexes containing bridge-moieties of sulfur and selenium atoms, it was found an appreciable mixing of the π3-orbital of the chelate cycle with atomic orbitals S 3p and Se 4p resulting in destabilization of the HOMO levels by 0.4-0.6 eV, in comparison with the monomer. The positively charged fragment C(CH3)-CX-C(CH3) causes the field effect, which leads to stabilization of the LUMO levels by 0.3-0.4 eV and C 1s-levels by 0.5-1.2 eV. An analysis of the research results on the electronic structure made it possible to determine the effect of substituents in the γ position on the absorption spectra, which is mainly determined by the electron density transfer from the chalcogen atoms to the chelate cycles. It is shown that the calculated energy intervals between electron levels correlate well with the structure of the photoelectron spectra of valence and core electrons.

  19. The structure, energetics, and nature of the chemical bonding of phenylthiol adsorbed on the Au(111) surface: implications for density-functional calculations of molecular-electronic conduction.

    PubMed

    Bilić, Ante; Reimers, Jeffrey R; Hush, Noel S

    2005-03-01

    The adsorption of phenylthiol on the Au(111) surface is modeled using Perdew and Wang density-functional calculations. Both direct molecular physisorption and dissociative chemisorption via S-H bond cleavage are considered as well as dimerization to form disulfides. For the major observed product, the chemisorbed thiol, an extensive potential-energy surface is produced as a function of both the azimuthal orientation of the adsorbate and the linear translation of the adsorbate through the key fcc, hcp, bridge, and top binding sites. Key structures are characterized, the lowest-energy one being a broad minimum of tilted orientation ranging from the bridge structure halfway towards the fcc one. The vertically oriented threefold binding sites, often assumed to dominate molecular electronics measurements, are identified as transition states at low coverage but become favored in dense monolayers. A similar surface is also produced for chemisorption of phenylthiol on Ag(111); this displays significant qualitative differences, consistent with the qualitatively different observed structures for thiol chemisorption on Ag and Au. Full contours of the minimum potential energy as a function of sulfur translation over the crystal face are described, from which the barrier to diffusion is deduced to be 5.8 kcal mol(-1), indicating that the potential-energy surface has low corrugation. The calculated bond lengths, adsorbate charge and spin density, and the density of electronic states all indicate that, at all sulfur locations, the adsorbate can be regarded as a thiyl species that forms a net single covalent bond to the surface of strength 31 kcal mol(-1). No detectable thiolate character is predicted, however, contrary to experimental results for alkyl thiols that indicate up to 20%-30% thiolate involvement. This effect is attributed to the asymptotic-potential error of all modern density functionals that becomes manifest through a 3-4 eV error in the lineup of the adsorbate and

  20. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electricmore » field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.« less

  1. Real-space visualization of conformation-independent oligothiophene electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taber, Benjamen N.; Kislitsyn, Dmitry A.; Gervasi, Christian F.

    2016-05-21

    We present scanning tunneling microscopy and spectroscopy (STM/STS) investigations of the electronic structures of different alkyl-substituted oligothiophenes on the Au(111) surface. STM imaging showed that on Au(111), oligothiophenes adopted distinct straight and bent conformations. By combining STS maps with STM images, we visualize, in real space, particle-in-a-box-like oligothiophene molecular orbitals. We demonstrate that different planar conformers with significant geometrical distortions of oligothiophene backbones surprisingly exhibit very similar electronic structures, indicating a low degree of conformation-induced electronic disorder. The agreement of these results with gas-phase density functional theory calculations implies that the oligothiophene interaction with the Au(111) surface is generally insensitivemore » to molecular conformation.« less

  2. Bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}: New crystal structure type and electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliziario Nunes, Sayonara; Department of Materials Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP; Wang, Chun-Hai

    2015-02-15

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}, known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn{sub 2}VO{sub 6} adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO{sub 4} tetrahedra, ZnO{sub 6} octahedra and VO{sub 4} tetrahedra, and Bi{sub 2}O{sub 12} dimers. It is the only known member of the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu;more » A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn{sub 2}VO{sub 6}, calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn{sub 2}VO{sub 6}, a new structure type in the BiM{sub 2}AO{sub 6} (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation.« less

  3. Ab initio calculation of the electronic structures of the (7)Sigma+ ground and A (7)Pi and a (5)Sigma+ excited states of MnH.

    PubMed

    Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo

    2009-04-21

    Electronic structures and molecular constants of the ground (7)Sigma(+) and low-lying A (7)Pi and a (5)Sigma(+) electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C(infinity v) symmetry using Slater-type basis sets. To correctly describe the (7)Sigma(+) electronic ground state, X (7)Sigma(+), at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B (7)Sigma(+) excited state. The A (7)Pi and a (5)Sigma(+) states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X (7)Sigma(+), A (7)Pi, and a (5)Sigma(+) states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., r(e) and omega(e) of these states and excitation energy from the X (7)Sigma(+) state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.

  4. Ab initio calculation of the electronic structures of the 7∑+ ground and A 7Π and a 5∑+ excited states of MnH

    NASA Astrophysics Data System (ADS)

    Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo

    2009-04-01

    Electronic structures and molecular constants of the ground ∑7+ and low-lying A 7Π and a ∑5+ electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C∞v symmetry using Slater-type basis sets. To correctly describe the ∑7+ electronic ground state, X ∑7+, at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B ∑7+ excited state. The A 7Π and a ∑5+ states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X ∑7+, A 7Π, and a ∑5+ states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., re and ωe of these states and excitation energy from the X ∑7+ state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.

  5. Self-consistent electronic structure of disordered Fe/sub 0. 65/Ni/sub 0. 35/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.D.; Pinski, F.J.; Stocks, G.M.

    1985-04-15

    We present the results of the first ab initio calculation of the electronic structure of the disordered alloy Fe/sub 0.65/Ni/sub 0.35/. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko--Wilk--Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared to the verymore » structured majority spin density of states. This difference is due to a subtle balance between exchange splitting and charge neutrality.« less

  6. Electronic structure of SmO and SmO- via slow photoelectron velocity-map imaging spectroscopy and spin-orbit CASPT2 calculations

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; Vlaisavljevich, Bess; DeVine, Jessalyn A.; Shuman, Nicholas S.; Ard, Shaun G.; Shiozaki, Toru; Neumark, Daniel M.; Viggiano, Albert A.

    2017-12-01

    The chemi-ionization reaction of atomic samarium, Sm + O → SmO+ + e-, has been investigated by the Air Force Research Laboratory as a means to modify local electron density in the ionosphere for reduction of scintillation of high-frequency radio waves. Neutral SmO is a likely unwanted byproduct. The spectroscopy of SmO is of great interest to aid in interpretation of optical emission spectra recorded following atmospheric releases of Sm as part of the Metal Oxide Space Cloud (MOSC) observations. Here, we report a joint experimental and theoretical study of SmO using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled SmO- anions (cryo-SEVI) and high-level spin-orbit complete active space calculations with corrections from second order perturbation theory (CASPT2). With cryo-SEVI, we measure the electron affinity of SmO to be 1.0581(11) eV and report electronic and vibrational structure of low-lying electronic states of SmO in good agreement with theory and prior experimental work. We also obtain spectra of higher-lying excited states of SmO for direct comparison to the MOSC results.

  7. DFT calculations of electronic and optical properties of SrS with LDA, GGA and mGGA functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shatendra, E-mail: shatendra@gmai.com; Sharma, Jyotsna; Sharma, Yogita

    2016-05-06

    The theoretical investigations of electronic and optical properties of SrS are made using the first principle DFT calculations. The calculations are performed for the local-density approximation (LDA), generalized gradient approximation (GGA) and for an alternative form of GGA i.e. metaGGA for both rock salt type (B1, Fm3m) and cesium chloride (B2, Pm3m) structures. The band structure, density of states and optical spectra are calculated under various available functional. The calculations with LDA and GGA functional underestimate the values of band gaps with all functional, however the values with mGGA show reasonably good agreement with experimental and those calculated by usingmore » other methods.« less

  8. Theoretical modeling of the electronic structure and exchange interactions in Cu(II)Pc

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.; Wang, Hai; Wu, Zhenlin; Gardener, Jules; Heutz, Sandrine; Jones, Tim; Aeppli, Gabriel

    2012-12-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine (Cu(II)Pc) crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green's function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α- and β-phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  9. Electronic structure of ruthenium-doped iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Winiarski, M. J.; Samsel-Czekała, M.; Ciechan, A.

    2014-12-01

    The structural and electronic properties of hypothetical RuxFe1-xSe and RuxFe1-xTe systems have been investigated from first principles within the density functional theory (DFT). Reasonable values of lattice parameters and chalcogen atomic positions in the tetragonal unit cell of iron chalcogenides have been obtained with the use of norm-conserving pseudopotentials. The well known discrepancies between experimental data and DFT-calculated results for structural parameters of iron chalcogenides are related to the semicore atomic states which were frozen in the used here approach. Such an approach yields valid results of the electronic structures of the investigated compounds. The Ru-based chalcogenides exhibit the same topology of the Fermi surface (FS) as that of FeSe, differing only in subtle FS nesting features. Our calculations predict that the ground states of RuSe and RuTe are nonmagnetic, whereas those of the solid solutions RuxFe1-xSe and RuxFe1-xTe become the single- and double-stripe antiferromagnetic, respectively. However, the calculated stabilization energy values are comparable for each system. The phase transitions between these magnetic arrangements may be induced by slight changes of the chalcogen atom positions and the lattice parameters a in the unit cell of iron selenides and tellurides. Since the superconductivity in iron chalcogenides is believed to be mediated by the spin fluctuations in single-stripe magnetic phase, the RuxFe1-xSe and RuxFe1-xTe systems are good candidates for new superconducting iron-based materials.

  10. Cyanomethanimine Isomers in Cold Interstellar Clouds: Insights from Electronic Structure and Kinetic Calculations

    NASA Astrophysics Data System (ADS)

    Vazart, Fanny; Latouche, Camille; Skouteris, Dimitrios; Balucani, Nadia; Barone, Vincenzo

    2015-09-01

    New insights into the formation of interstellar cyanomethanimine, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction CN + CH2 = NH. This reaction is a facile formation route of Z,E-C-cyanomethanimine, even under the extreme conditions of density and temperature typical of cold interstellar clouds. E-C-cyanomethanimine has been recently identified in Sgr B2(N) in the Green Bank Telescope (GBT) PRIMOS survey by P. Zaleski et al. and no efficient formation routes have been envisaged so far. The rate coefficient expression for the reaction channel leading to the observed isomer E-C-cyanomethanimine is 3.15 × 10-10 × (T/300)0.152 × e(-0.0948/T). According to the present study, the more stable Z-C-cyanomethanimine isomer is formed with a slightly larger yield (4.59 × 10-10 × (T/300)0.153 × e(-0.0871/T). As the detection of E-isomer is favored due to its larger dipole moment, the missing detection of the Z-isomer can be due to the sensitivity limit of the GBT PRIMOS survey and the detection of the Z-isomer should be attempted with more sensitive instrumentation. The CN + CH2 = NH reaction can also play a role in the chemistry of the upper atmosphere of Titan where the cyanomethanimine products can contribute to the buildup of the observed nitrogen-rich organic aerosols that cover the moon.

  11. Structural phase transition, electronic structure and optical properties of half Heusler alloys LiBeZ (Z = As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amudhavalli, A.; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com

    2016-05-23

    Ab initio calculations are performed to investigate the structural stability, electronic structure, mechanical properties and optical properties of half Heusler alloys (LiBeAs and LiBeSb) for three different phases of zinc blende crystal structure. Among the considered phases, α- phase is found to be the most stable phase for these alloys at normal pressure. A pressure induced structural phase transition from α-phase to β- phase is observed for LiBeAs. The electronic structure reveals that these alloys are semiconductors. The optical properties confirm that these alloys are semiconductor in nature.

  12. Disentangling the surface and bulk electronic structures of LaOFeAs

    DOE PAGES

    Zhang, P.; Ma, J.; Qian, T.; ...

    2016-09-20

    We performed a comprehensive angle-resolved photoemission spectroscopy study of the electronic band structure of LaOFeAs single crystals. We found that samples cleaved at low temperature show an unstable and very complicated band structure, whereas samples cleaved at high temperature exhibit a stable and clearer electronic structure. Using in situ surface doping with K and supported by first-principles calculations, we identify both surface and bulk bands. Our assignments are confirmed by the difference in the temperature dependence of the bulk and surface states.

  13. Calculating electronic correlation effects from densities of transitions

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    Adding a localized electron to a system of interacting electrons induces a density of transitions described by the time-independent Heisenberg equation. Sequences of these transitions generate interacting states whose total energy is the sum of energies of the constituent transitions. A calculation of magnetic moments for itinerant electrons with Ising interactions illustrates this method. supported by the H. V. Snyder Gift to the University of Oregon.

  14. Electronic structure of free and doped actinides: N and Z dependences of energy levels and electronic structure parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulagin, N.

    2005-02-15

    Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f{sup N} and excited 5f{sup N}n'l'{sup N'} configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC{sup +1}-AC{sup +4} show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC{supmore » +n}:[L]{sub k} are compared, too.« less

  15. Strong-potential Born calculations for electron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, J.H.; Sil, N.C.

    1983-12-01

    A closed-form expression for 1s-1s electron capture has been developed in the strong-potential Born (SPB) approximation. Terms of the order (Z/sub p//v)/sup 2/ are ignored in our expression, where Z/sub p/ is the charge of the projectile and v is the collision velocity. Our errors of order (Z/sub p//v)/sup 2/ are within the accuracy of the SPB approximation itself, which is valid to first order in the projectile-electron interaction V/sub p/ (and all orders in the stronger target potential V/sub T/). Calculations using our expression are in better agreement with experimental observations of the shape of the Thomas peak thanmore » are other calculations.« less

  16. A systematic theoretical study of the electronic structures of porphyrin dimers: DFT and TD-DFT calculations on diporphyrins linked by ethane, ethene, ethyne, imine, and azo bridges.

    PubMed

    Rintoul, Llew; Harper, Shannon R; Arnold, Dennis P

    2013-11-21

    Theoretical calculations of the geometries, electronic structures and electronic absorption spectra of a series of covalently-linked porphyrin dimers are reported. The diporphyrins comprise 5,10,15-triphenylporphyrinatozinc(II) (ZnTriPP) units linked through the meso carbons by two-atom bridges, namely 1,2-ethanediyl (1), trans-1,2-ethenediyl (2), ethynediyl (3), 1,2-iminomethenediyl (4), and transdiazenediyl (5). The structures were optimised in toluene solvent by Density Functional Theory (DFT), using the integral equation formalism variant of the polarizable continuum model. The calculations were performed using the B3LYP functional and the 6-31G(d,p) basis set. The complete molecules were modelled, with no substitution of smaller groups on the periphery. In parallel, the compounds 2–5 were prepared by known or novel synthetic routes, to enable comparisons of experimental electronic absorption spectra with those calculated using time dependent-DFT at the same level of theory. As the ethane dimer 1 is not yet synthetically accessible, the model monomer meso-2-phenylethylZnTriPP was used for comparisons with the theoretical predictions. The results form a self-consistent set, enabling for the first time legitimate comparisons of the electronic structures of the series, especially regarding the degree to which the porphyrin p-systems interact by conjugation across the bridges. The theoretical calculations of the electronic transitions match the observed spectra in toluene to a remarkable degree, especially with respect to the peak maximum of the Q band, which represents to a large degree the energy of the HOMO–LUMO transition. The imine 4 is intrinsically polar due to the asymmetric bridge, and the HOMO is located almost exclusively on the ZnTriPP unit attached to the nitrogen of the imine, and the LUMO on the C-attached ring. Thus the Q-band transition is mapped as a comprehensive charge-transfer from the former ring to the latter. This may have consequences

  17. First principles and experimental study of the electronic structure and phase stability of bulk thallium bromide

    NASA Astrophysics Data System (ADS)

    Smith, Holland M.; Zhou, Yuzhi; Ciampi, Guido; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.; Haller, E. E.; Chrzan, D. C.

    2013-08-01

    We apply state-of-art first principle calculations to study the polymorphism and electronic structure of three previously reported phases of TlBr. The calculated band structures of NaCl-structure phase and orthorhombic-structure phase have different features than that of commonly observed CsCl-structure phase. We further interpret photoluminescence spectra based on our calculations. Several peaks close to calculated band gap values of the NaCl-structure phase and the orthorhombic-structure phase are found in unpolished TlBr samples.

  18. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  19. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE PAGES

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris; ...

    2018-04-23

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  20. Structure and conformation of 1,4-difluorobutane as determined by gas-phase electron diffraction, and by molecular mechanics and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Krosley, Kevin; Hagen, Kolbjørn; Hedberg, Kenneth

    1995-06-01

    Gas-phase electron diffraction data at 23°C together with molecular mechanics (MM3) and ab initio (HF/6-31G∗, gaussian 86) calculations have been used to determine the structure and conformations of 1,4-difluorobutane. The object was to ascertain whether effects similar to the gauche effect in 1,2-difluoroethane, which serves to stabilize the gauche form with the fluorine atoms in close proximity, could also operate in 1,4-difluorobutane. It was found both theoretically and experimentally that the proportion of those conformers having close fluorine atoms was small, implying the absence of effects similar to the gauche effect. The conformational composition estimated from the theoretical calculations is in good agreement with the experimental data. The experimental electron diffraction results constrained by assumptions drawn from the theoretical calculations, ED/MM3 [ED/ab initio], for the principal distances ( {r g}/{Å}) and angles ( {∠ α}/{deg}) with estimated 2σ uncertainties are as follows: r(CH) = 1.105(3) [1.106(3)], r(CF) = 1.398(2) [1.398(2)], r(C 1C 2) = 1.513(2) [1.516(2)], r(C 2C 3) = 1.537(2) [1.532(2)], ∠FCC = 110.9(3) [111.1(3)], ∠CCC = 112.9(4) [112.9(4)], and ∠HCH = 100(3) [100(3)].

  1. Electronic structure and optical properties of metal doped tetraphenylporphyrins

    NASA Astrophysics Data System (ADS)

    Shah, Esha V.; Roy, Debesh R.

    2018-05-01

    A density functional scrutiny on the structure, electronic and optical properties of metal doped tetraphenylporphyrins MTPP (M=Fe, Co, Ni) is performed. The structural stability of the molecules is evaluated based on the electronic parameters like HOMO-LUMO gap (HLG), chemical hardness (η) and binding energy of the central metal atom to the molecular frame etc. The computed UltraViolet-Visible (UV-Vis) optical absorption spectra for all the compounds are also compared. The molecular structures reported are the lowest energy configurations. The entire calculations are carried out with a widely reliable functional, viz. B3LYP with a popular basis set which includes a scaler relativistic effect, viz. LANL2DZ.

  2. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE PAGES

    Swatek, Przemys?aw Wojciech

    2018-03-23

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  3. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swatek, Przemys?aw Wojciech

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  4. Determining the Structure of Oxalate Anion Using Infrared and Raman Spectroscopy Coupled with Gaussian Calculations

    ERIC Educational Resources Information Center

    Peterson, Karen I.; Pullman, David P.

    2016-01-01

    A laboratory project for the upper-division physical chemistry laboratory is described, and it combines IR and Raman spectroscopies with Gaussian electronic structure calculations to determine the structure of the oxalate anion in solid alkali oxalates and in aqueous solution. The oxalate anion has two limiting structures whose vibrational spectra…

  5. The electronic spectra and the structures of the individual copper(II) chloride and bromide complexes in acetonitrile according to steady-state absorption spectroscopy and DFT/TD-DFT calculations

    NASA Astrophysics Data System (ADS)

    Olshin, Pavel K.; Myasnikova, Olesya S.; Kashina, Maria V.; Gorbunov, Artem O.; Bogachev, Nikita A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Pulkin, Sergey A.; Kochemirovsky, Vladimir A.; Skripkin, Mikhail Yu.; Mereshchenko, Andrey S.

    2018-03-01

    The results of spectrophotometric study and quantum chemical calculations for copper(II) chloro- and bromocomplexes in acetonitrile are reported. Electronic spectra of the individual copper(II) halide complexes were obtained in a wide spectral range 200-2200 nm. Stability constants of the individual copper(II) halide complexes in acetonitrile were calculated: log β1 = 8.5, log β2 = 15.6, log β3 = 22.5, log β4 = 25.7 for [CuCln]2-n and log β1 = 17.0, log β2 = 24.6, log β3 = 28.1, log β4 = 30.4 for [CuBrn]2-n. Structures of the studied complexes were optimized and electronic spectra were simulated using DFT and TD-DFT methodologies, respectively. According to the calculations, the more is the number of halide ligands the less is coordination number of copper ion.

  6. Electronic structure of BaNi2As2

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Xu, Min; Zhang, Yan; Xu, Gang; He, Cheng; Yang, L. X.; Chen, Fei; Xie, B. P.; Cui, Xiao-Yu; Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Dai, X.; Feng, D. L.

    2011-01-01

    BaNi2As2, with a first-order phase transition around 131 K, is studied by the angle-resolved photoemission spectroscopy. The measured electronic structure is compared to the local-density approximation calculations, revealing similar large electronlike bands around M¯ and differences along Γ¯-X¯. We further show that the electronic structure of BaNi2As2 is distinct from that of the sibling iron pnictides. Particularly, there is no signature of band folding, indicating no collinear spin-density-wave-related magnetic ordering. Moreover, across the strong first-order phase transition, the band shift exhibits a hysteresis, which is directly related to the significant lattice distortion in BaNi2As2.

  7. Paediatric electronic infusion calculator: An intervention to eliminate infusion errors in paediatric critical care.

    PubMed

    Venkataraman, Aishwarya; Siu, Emily; Sadasivam, Kalaimaran

    2016-11-01

    Medication errors, including infusion prescription errors are a major public health concern, especially in paediatric patients. There is some evidence that electronic or web-based calculators could minimise these errors. To evaluate the impact of an electronic infusion calculator on the frequency of infusion errors in the Paediatric Critical Care Unit of The Royal London Hospital, London, United Kingdom. We devised an electronic infusion calculator that calculates the appropriate concentration, rate and dose for the selected medication based on the recorded weight and age of the child and then prints into a valid prescription chart. Electronic infusion calculator was implemented from April 2015 in Paediatric Critical Care Unit. A prospective study, five months before and five months after implementation of electronic infusion calculator, was conducted. Data on the following variables were collected onto a proforma: medication dose, infusion rate, volume, concentration, diluent, legibility, and missing or incorrect patient details. A total of 132 handwritten prescriptions were reviewed prior to electronic infusion calculator implementation and 119 electronic infusion calculator prescriptions were reviewed after electronic infusion calculator implementation. Handwritten prescriptions had higher error rate (32.6%) as compared to electronic infusion calculator prescriptions (<1%) with a p  < 0.001. Electronic infusion calculator prescriptions had no errors on dose, volume and rate calculation as compared to handwritten prescriptions, hence warranting very few pharmacy interventions. Use of electronic infusion calculator for infusion prescription significantly reduced the total number of infusion prescribing errors in Paediatric Critical Care Unit and has enabled more efficient use of medical and pharmacy time resources.

  8. On a fast calculation of structure factors at a subatomic resolution.

    PubMed

    Afonine, P V; Urzhumtsev, A

    2004-01-01

    In the last decade, the progress of protein crystallography allowed several protein structures to be solved at a resolution higher than 0.9 A. Such studies provide researchers with important new information reflecting very fine structural details. The signal from these details is very weak with respect to that corresponding to the whole structure. Its analysis requires high-quality data, which previously were available only for crystals of small molecules, and a high accuracy of calculations. The calculation of structure factors using direct formulae, traditional for 'small-molecule' crystallography, allows a relatively simple accuracy control. For macromolecular crystals, diffraction data sets at a subatomic resolution contain hundreds of thousands of reflections, and the number of parameters used to describe the corresponding models may reach the same order. Therefore, the direct way of calculating structure factors becomes very time expensive when applied to large molecules. These problems of high accuracy and computational efficiency require a re-examination of computer tools and algorithms. The calculation of model structure factors through an intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4, 362-367; Ten Eyck (1977). Acta Cryst. A33, 486-492] may be much more computationally efficient, but contains some parameters (grid step, 'effective' atom radii etc.) whose influence on the accuracy of the calculation is not straightforward. At the same time, the choice of parameters within safety margins that largely ensure a sufficient accuracy may result in a significant loss of the CPU time, making it close to the time for the direct-formulae calculations. The impact of the different parameters on the computer efficiency of structure-factor calculation is studied. It is shown that an appropriate choice of these parameters allows the structure factors to be obtained with a high accuracy and in a significantly shorter time than that required

  9. Electronic Structure of the Organic Semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from Soft X-ray Spectroscopies and Density Functional Theory Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMasi, A.; Piper, L; Zhang, Y

    2008-01-01

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq3) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq3, and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studiesmore » and the present data reveal the presence of clear photon-induced damage in the former.« less

  10. Electronic structure of the organic semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from soft x-ray spectroscopies and density functional theory calculations.

    PubMed

    DeMasi, A; Piper, L F J; Zhang, Y; Reid, I; Wang, S; Smith, K E; Downes, J E; Peltekis, N; McGuinness, C; Matsuura, A

    2008-12-14

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq(3)) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq(3), and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  11. Monte Carlo method for calculating the radiation skyshine produced by electron accelerators

    NASA Astrophysics Data System (ADS)

    Kong, Chaocheng; Li, Quanfeng; Chen, Huaibi; Du, Taibin; Cheng, Cheng; Tang, Chuanxiang; Zhu, Li; Zhang, Hui; Pei, Zhigang; Ming, Shenjin

    2005-06-01

    Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.

  12. Probing Chemical Bonding and Electronic Structures in ThO- by Anion Photoelectron Imaging and Theoretical Calculations.

    PubMed

    Li, Yanli; Zou, Jinghan; Xiong, Xiao-Gen; Su, Jing; Xie, Hua; Fei, Zejie; Tang, Zichao; Liu, Hongtao

    2017-03-16

    Because of renewed research on thorium-based molten salt reactors, there is growing demand and interest in enhancing the knowledge of thorium chemistry both experimentally and theoretically. Compared with uranium, thorium has few chemical studies reported up to the present. Here we report the vibrationally resolved photoelectron imaging of the thorium monoxide anion. The electron affinity of ThO is first reported to be 0.707 ± 0.020 eV. Vibrational frequencies of the ThO molecule and its anion are determined from Franck-Condon simulation. Spectroscopic evidence is obtained for the two-electron transition in ThO - , indicating the strong electron correlation among the (7s σ ) 2 (6d δ ) 1 electrons in ThO - and the (7s σ ) 2 electrons in ThO. These findings are explained by using quantum-chemical calculations including spin-orbit coupling, and the chemical bonding of gaseous ThO molecules is analyzed. The present work will enrich our understanding of bonding capacities with the 6d valence shell.

  13. The structural and electronic properties of metal atoms adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Liu, Wenjiang; Zhang, Cheng; Deng, Mingsen; Cai, Shaohong

    2017-09-01

    Based on density functional theory (DFT), we studied the structural and electronic properties of seven different metal atoms adsorbed on graphene (M + graphene). The geometries, adsorption energies, density of states (DOS), band structures, electronic dipole moment, magnetic moment and work function (WF) of M + graphene were calculated. The adsorption energies ΔE indicated that Li, Na, K, Ca and Fe adsorbed on graphene were tending to form stable structures. However, diffusion would occur on Cu and Ag adsorbed on graphene. In addition, the electronic structure near the Fermi level of graphene was significantly affected by Fe (Cu and Ag), compared with Li (Na, K and Ca). The electronic dipole moment and magnetic moment of M + graphene were sensitive to the adsorbed metal atoms. Moreover, we found electropositive (electronegative) adsorption can decrease (increase) the WF of the surface. Specially, the WF of Ag + graphene and Fe + graphene would increase because surface dipole moment make a contribution to electron.

  14. What can one learn about material structure given a single first-principles calculation?

    NASA Astrophysics Data System (ADS)

    Rajen, Nicholas; Coh, Sinisa

    2018-05-01

    We extract a variable X from electron orbitals Ψn k and energies En k in the parent high-symmetry structure of a wide range of complex oxides: perovskites, rutiles, pyrochlores, and cristobalites. Even though calculation was done only in the parent structure, with no distortions, we show that X dictates material's true ground-state structure. We propose using Wannier functions to extract concealed variables such as X both for material structure prediction and for high-throughput approaches.

  15. Dose calculation for electron therapy using an improved LBR method.

    PubMed

    Gebreamlak, Wondesen T; Tedeschi, David J; Alkhatib, Hassaan A

    2013-07-01

    To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method. Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 × 6, 10 × 10, 14 × 14, and 20 × 20 cm(2). Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 × 14 cm(2) cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [σR(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that σR(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that the lateral spread parameter σR(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of σR(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV).

  16. Cross sections for electron scattering from furan molecules: Measurements and calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szmytkowski, Czeslaw; Mozejko, Pawel; Ptasinska-Denga, Elzbieta

    Electron-scattering cross sections have been determined for the furan (C{sub 4}H{sub 4}O) molecule, both experimentally and theoretically. An absolute total cross section (TCS) has been measured over energies from 0.6 to 400 eV using a linear electron-transmission method. The TCS energy function is dominated with a very broad enhancement, between 1.2 and 9 eV; on the low-energy side, some resonant structures are visible. Integral elastic (ECS) and ionization (ICS) cross sections have been also calculated up to 4 keV in the additivity rule approximation and the binary-encounter-Bethe approach, respectively. Their sum, ECS+ICS, is in a very good agreement with themore » measured TCS above 70 eV.« less

  17. Band gap and electronic structure of MgSiN2

    NASA Astrophysics Data System (ADS)

    Quirk, J. B.; Râsander, M.; McGilvery, C. M.; Palgrave, R.; Moram, M. A.

    2014-09-01

    Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN2 is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN2 (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN2 is 6.2 eV. MgSiN2 has an additional direct gap of 6.3 eV at the Γ point.

  18. Structural and electronic properties of Sr{sub x}Ba{sub 1-x}SnO{sub 3} from first principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, E.; Henriques, J.M.; Azevedo, D.L.

    2012-03-15

    Neutron diffraction data for Sr{sub x}Ba{sub 1-x}SnO{sub 3} (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) solid solutions were used as inputs to obtain optimized geometries and electronic properties using the density functional theory (DFT) formalism considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The crystal structures and SnO{sub 6} octahedra tilting angles found after total energy minimization agree well with experiment, specially for the GGA data. Elastic constants were also obtained and compared with theoretical and experimental results for cubic BaSnO{sub 3}. While the alloys with cubic unit cell have an indirect band gap, tetragonalmore » and orthorhombic alloys exhibit direct band gaps (exception made to x=1.0). The Kohn-Sham minimum electronic band gap oscillates from 1.52 eV (cubic x=0.0, LDA) to 2.61 eV (orthorhombic x=1.0, LDA), and from 0.74 eV (cubic BaSnO{sub 3}, GGA) to 1.97 eV (orthorhombic SrSnO{sub 3}, GGA). Parabolic interpolation of bands has allowed us to estimate the effective masses for charge carriers, which are shown to be anisotropic and larger for holes. - Graphical Abstract: Highlights: Black-Right-Pointing-Pointer DFT calculations were performed on Sr{sub x}Ba{sub 1-x}SnO{sub 3} solid solutions. Black-Right-Pointing-Pointer Calculated crystal structures agree well with experiment. Black-Right-Pointing-Pointer Alloys have direct or indirect gaps depending on the Sr molar fraction. Black-Right-Pointing-Pointer The Kohn-Sham gap variation from x=0.0 to x=1.0 is close to the experimental value. Black-Right-Pointing-Pointer Carrier effective masses are very anisotropic, specially for holes.« less

  19. Structural stability and electronic properties of β-tetragonal boron: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Wataru, E-mail: hayami.wataru@nims.go.jp

    2015-01-15

    It is known that elemental boron has five polymorphs: α- and β-rhombohedral, α- and β-tetragonal, and the high-pressure γ phase. β-tetragonal (β-t) boron was first discovered in 1960, but there have been only a few studies since then. We have thoroughly investigated, using first-principles calculations, the atomic and electronic structures of β-t boron, the details of which were not known previously. The difficulty of calculation arises from the fact that β-t boron has a large unit cell that contains between 184 and 196 atoms, with 12 partially-occupied interstitial sites. This makes the number of configurations of interstitial atoms too greatmore » to calculate them all. By introducing assumptions based on symmetry and preliminary calculations, the number of configurations to calculate can be greatly reduced. It was eventually found that β-t boron has the lowest total energy, with 192 atoms (8 interstitial atoms) in an orthorhombic lattice. The total energy per atom was between those of α- and β-rhombohedral boron. Another tetragonal structure with 192 atoms was found to have a very close energy. The valence bands were fully filled and the gaps were about 1.16 to 1.54 eV, making it comparable to that of β-rhombohedral boron. - Graphical abstract: Electronic density distribution for the lowest-energy configuration (N=192) viewed from the 〈1 0 0〉 direction. Left: isosurface (yellow) at d=0.09 electrons/a.u.{sup 3} Right: isosurface (orange) at d=0.12 electrons/a.u.{sup 3}. - Highlights: • β-tetragonal boron was thoroughly investigated using first-principles calculations. • The lowest energy structure contains 192 atoms in an orthorhombic lattice. • Another tetragonal structure with 192 atoms has a very close energy. • The total energy per atom is between those of α- and β-rhombohedral boron. • The band gap of the lowest energy structure is about 1.16 to 1.54 eV.« less

  20. Quantum Calculations of Electron Tunneling in Respiratory Complex III.

    PubMed

    Hagras, Muhammad A; Hayashi, Tomoyuki; Stuchebrukhov, Alexei A

    2015-11-19

    The most detailed and comprehensive to date study of electron transfer reactions in the respiratory complex III of aerobic cells, also known as bc1 complex, is reported. In the framework of the tunneling current theory, electron tunneling rates and atomistic tunneling pathways between different redox centers were investigated for all electron transfer reactions comprising different stages of the proton-motive Q-cycle. The calculations reveal that complex III is a smart nanomachine, which under certain conditions undergoes conformational changes gating electron transfer, or channeling electrons to specific pathways. One-electron tunneling approximation was adopted in the tunneling calculations, which were performed using hybrid Broken-Symmetry (BS) unrestricted DFT/ZINDO levels of theory. The tunneling orbitals were determined using an exact biorthogonalization scheme that uniquely separates pairs of tunneling orbitals with small overlaps out of the remaining Franck-Condon orbitals with significant overlap. Electron transfer rates in different redox pairs show exponential distance dependence, in agreement with the reported experimental data; some reactions involve coupled proton transfer. Proper treatment of a concerted two-electron bifurcated tunneling reaction at the Q(o) site is given.

  1. A study on the anisole-water complex by molecular beam-electronic spectroscopy and molecular mechanics calculations.

    PubMed

    Becucci, M; Pietraperzia, G; Pasquini, M; Piani, G; Zoppi, A; Chelli, R; Castellucci, E; Demtroeder, W

    2004-03-22

    An experimental and theoretical study is made on the anisole-water complex. It is the first van der Waals complex studied by high resolution electronic spectroscopy in which the water is seen acting as an acid. Vibronically and rotationally resolved electronic spectroscopy experiments and molecular mechanics calculations are used to elucidate the structure of the complex in the ground and first electronic excited state. Some internal dynamics in the system is revealed by high resolution spectroscopy. (c) 2004 American Institute of Physics

  2. Calculation of electrostatic fields in periodic structures of complex shape

    NASA Technical Reports Server (NTRS)

    Kravchenko, V. F.

    1978-01-01

    A universal algorithm is presented for calculating electrostatic fields in an infinite periodic structure consisting of electrodes of arbitrary shape which are located in mirror-symmetrical manner along the axis of electron-beam propagation. The method is based on the theory of R-functions, and the differential operators which are derived on the basis of the functions. Numerical results are presented and the accuracy of the results is examined.

  3. Advanced Electronic Structure Calculations For Nanoelectronics Using Finite Element Bases and Effective Mass Theory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, John King; Nielsen, Erik; Baczewski, Andrew David

    This paper describes our work over the past few years to use tools from quantum chemistry to describe electronic structure of nanoelectronic devices. These devices, dubbed "artificial atoms", comprise a few electrons, con ned by semiconductor heterostructures, impurities, and patterned electrodes, and are of intense interest due to potential applications in quantum information processing, quantum sensing, and extreme-scale classical logic. We detail two approaches we have employed: nite-element and Gaussian basis sets, exploring the interesting complications that arise when techniques that were intended to apply to atomic systems are instead used for artificial, solid-state devices.

  4. Synthesis and first-principle calculations of the structural and electronic properties of Ge-substituted type-VIII Ba8Ga16Sn30 clathrate

    NASA Astrophysics Data System (ADS)

    Shen, Lanxian; Li, Decong; Liu, Hongxia; Liu, Zuming; Deng, Shukang

    2016-12-01

    In this study, the structural and electronic structural properties of Ba8Ga16Sn30-xGex (0≤x≤30) are determined by the first-principle method on the basis of density functional theory. Consistent with experimental findings, calculated results reveal that Ge atoms preferentially occupy the 2a and 24g sites in these compounds. As the content of Ge in Ge-substituted clathrate is increased, the lattice parameter is decreased, and the structural stability is enhanced. The bandgaps of the compound at 1≤x≤10 are smaller than those of Ba8Ga16Sn30. By contrast, the bandgaps of the compound at x>10 are larger than those of Ba8Ga16Sn30. The substitution of Ge for Sn affects p-type conductivity but not n-type conductivity. As Ge content increases, the whole conduction band moves to the direction of high energy, and the density of states of valence-band top decreases. The calculated potential energy versus displacement of Ba indicates that the vibration energy of this atom increases as cage size decreases. Because Ge substitution also affects clathrate structural symmetry, the distance of Ba atom deviation from the center of the cage initially increases and subsequently decreases as the Ge content increases.

  5. Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations

    NASA Astrophysics Data System (ADS)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.

    2015-11-01

    Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G0W0, GW0 to partially self-consistent sc-GW0, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW0-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations.

  6. Local atomic and electronic structures in ferromagnetic topological insulator Cr-doped (BixSb1-x) 2Te3 studied by XAFS and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wei, Xinyuan; Wang, Jiajia; Pan, Hong; Ji, Fuhao; Ye, Mao; Yang, Zhongqin; Qiao, Shan

    2015-09-01

    The local atomic and electronic structures around the dopants in Cr-doped (BixSb1 -x )2Te3 are studied by x-ray absorption fine structure (XAFS) measurements and first-principles calculations. Both Cr and Bi are confirmed substituting Sb sites (CrSb and BiSb). The six nearest Te atoms around Cr move towards Cr and shorten the Cr-Te bond lengths to 2.76 Å and 2.77 Å for x =0.1 and x =0.2 , respectively. Importantly, we reveal the hybridization between the Sb/Te p states and Cr d states by the presence of a pre-edge peak at Cr K -absorption edge, which is also supported by our ab initio calculations. These findings provide important clues to understand the mechanism of ferromagnetic order in this system with quantum anomalous Hall effect.

  7. Electronic structure and linear optical properties of ZnSe and ZnSe:Mn.

    PubMed

    Su, Kang; Wang, Yuhua

    2010-03-01

    As an important wide band-gap II-VI semiconductor, ZnSe has attracted much attention for its various applications in photo-electronic devices such as blue light-emitting diodes and blue-green diode lasers. Mn-doped ZnSe is an excellent quantum dot material. The electronic structures of the sphalerite ZnSe and ZnSe:Mn were calculated using the Vienna ab initio Simulation Package with ultra-soft pseudo potentials and Material Studio. The calculated equilibrium lattice constants agree well with the experimental values. Using the optimized equilibrium lattice constants, the densities of states and energy band structures were further calculated. By analyzing the partial densities of states, the contributions of different electron states in different atoms were estimated. The p states of Zn mostly contribute to the top of the valence band, and the s states of Zn and the s states of Se have major effects on the bottom of the conduction band. The calculated results of ZnSe:Mn show the band gap was changed from 2.48 to 1.1 eV. The calculated linear optical properties, such as refractive index and absorption spectrum, are in good agreement with experimental values.

  8. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    PubMed

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  9. CYANOMETHANIMINE ISOMERS IN COLD INTERSTELLAR CLOUDS: INSIGHTS FROM ELECTRONIC STRUCTURE AND KINETIC CALCULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazart, Fanny; Latouche, Camille; Skouteris, Dimitrios

    2015-09-10

    New insights into the formation of interstellar cyanomethanimine, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction CN + CH{sub 2} = NH. This reaction is a facile formation route of Z,E-C-cyanomethanimine, even under the extreme conditions of density and temperature typical of cold interstellar clouds. E-C-cyanomethanimine has been recently identified in Sgr B2(N) in the Green Bank Telescope (GBT) PRIMOS survey by P. Zaleski et al. and no efficient formation routes have been envisaged so far. The rate coefficient expression for the reaction channel leading to the observed isomermore » E-C-cyanomethanimine is 3.15 × 10-10 × (T/300){sup 0.152} × e{sup (−0.0948/T)}. According to the present study, the more stable Z-C-cyanomethanimine isomer is formed with a slightly larger yield (4.59 × 10{sup −10} × (T/300){sup 0.153} × e{sup (−0.0871/T)}. As the detection of E-isomer is favored due to its larger dipole moment, the missing detection of the Z-isomer can be due to the sensitivity limit of the GBT PRIMOS survey and the detection of the Z-isomer should be attempted with more sensitive instrumentation. The CN + CH{sub 2} = NH reaction can also play a role in the chemistry of the upper atmosphere of Titan where the cyanomethanimine products can contribute to the buildup of the observed nitrogen-rich organic aerosols that cover the moon.« less

  10. Exchange repulsive potential adaptable for electronic structure changes during chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp

    2015-04-28

    Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as themore » main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.« less

  11. Multi-band Electronic Structure of Ferromagnetic CeRuPO

    NASA Astrophysics Data System (ADS)

    Takahashi, Masaya; Ootsuki, Daiki; Horio, Masafumi; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Saini, Naurang L.; Sugawara, Hitoshi; Mizokawa, Takashi

    2018-04-01

    We have studied the multi-band electronic structure of ferromagnetic CeRuPO (TC = 15 K) by means of angle-resolved photoemission spectroscopy (ARPES). The ARPES results show that three hole bands exist around the zone center and two of them cross the Fermi level (EF). Around the zone corner, two electron bands are observed and cross EF. These hole and electron bands, which can be assigned to the Ru 4d bands, are basically consistent with the band-structure calculation including their orbital characters. However, one of the electron bands with Ru 4d 3z2 - r2 character is strongly renormalized indicating correlation effect due to hybridization with the Ce 4f orbitals. The Ru 4d 3z2 - r2 band changes across TC suggesting that the out-of-plane 3z2 - r2 orbital channel plays essential roles in the ferromagnetism.

  12. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set

    NASA Astrophysics Data System (ADS)

    Oberhofer, Harald; Blumberger, Jochen

    2010-12-01

    We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.

  13. Alkali-metal induced band structure deformation investigated by angle-resolved photoemission spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Ito, S.; Feng, B.; Arita, M.; Someya, T.; Chen, W.-C.; Takayama, A.; Iimori, T.; Namatame, H.; Taniguchi, M.; Cheng, C.-M.; Tang, S.-J.; Komori, F.; Matsuda, I.

    2018-04-01

    Alkali-metal adsorption on the surface of materials is widely used for in situ surface electron doping, particularly for observing unoccupied band structures by angle-resolved photoemission spectroscopy (ARPES). However, the effects of alkali-metal atoms on the resulting band structures have yet to be fully investigated, owing to difficulties in both experiments and calculations. Here, we combine ARPES measurements on cesium-adsorbed ultrathin bismuth films with first-principles calculations of the electronic charge densities and demonstrate a simple method to evaluate alkali-metal induced band deformation. We reveal that deformation of bismuth surface bands is directly correlated with vertical charge-density profiles at each electronic state of bismuth. In contrast, a change in the quantized bulk bands is well described by a conventional rigid-band-shift picture. We discuss these two aspects of the band deformation holistically, considering spatial distributions of the electronic states and cesium-bismuth hybridization, and provide a prescription for applying alkali-metal adsorption to a wide range of materials.

  14. Crystal growth and electronic structure of low-temperature phase SrMgF{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atuchin, Victor V.; Functional Electronics Laboratory, Tomsk State University, Tomsk 634050; Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090

    2016-04-15

    Using the vertical Bridgman method, the single crystal of low temperature phase SrMgF{sub 4} is obtained. The crystal is in a very good optical quality with the size of 10×7×5 mm{sup 3}. Detailed photoemission spectra of the element core levels are determined by a monochromatic AlKa (1486.6 eV) X-ray source. Moreover, the first-principles calculations are performed to investigate the electronic structure of SrMgF{sub 4}. A good agreement between experimental and calculated results is achieved. It is demonstrated that almost all the electronic orbitals are strongly localized and the hybridization with the others is very small, but the Mg–F bonds covalencymore » is relatively stronger than that of Sr–F bonds. - Graphical abstract: Large size of low-temperature phase SrMgF{sub 4} crystal was obtained (right) and its electronic structure was investigated by X-ray photoelectron spectroscopy and first-principles calculation (left). - Highlights: • Large size single crystal of low-temperature phase SrMgF{sub 4} is obtained. • Electronic structure of SrMgF{sub 4} is measured by X-ray photoelectron spectroscopy. • Partial densities of states are determined by first-principles calculation. • Good agreement between experimental and calculated results is achieved. • Strong ionic characteristics of chemical bonds are exhibited in SrMgF{sub 4}.« less

  15. First-principles calculations of stability, electronic and elastic properties of the precipitates present in 7055 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Shao, Hongbang; Ma, Yunlong; Huang, Yuanchun; Xiao, Zhengbing

    2018-04-01

    The structural stability, electronic structures and elastic properties of the strengthening precipitates, namely Al3Zr, MgZn2, Al2CuMg and Al2Cu, present in 7055 aluminum alloy were investigated by the first-principles calculations based on density functional theory (DFT). The optimized structural parameters are in good agreement with literature values available. It is found that Al3Zr has the strongest alloying ability and structural stability, while for MgZn2, its structural stability is the worst. The calculated electronic results indicate that covalent bonding is the dominant cohesion of Al3Zr, whereas the fractional ionic interactions coexisting with metallic bonding are found in MgZn2, Al2CuMg and Al2Cu. The elastic constants Cij of these precipitates were calculated, and the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and universal elastic anisotropy were derived. It is suggested that MgZn2 is ductile, whereas Al3Zr, Al2CuMg and Al2Cu are brittle, and the elastic anisotropies of them increase in the following sequence: Al3Zr

  16. Electronic structures of Plutonium compounds with the NaCl-type monochalcogenides structure

    NASA Astrophysics Data System (ADS)

    Maehira, Takahiro; Tatetsu, Yasutomi

    2012-12-01

    We calculate the energy band structure and the Fermi surface of PuS, PuSe and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in a local density approximation. It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between Pu 5/ and monochalcogenide p electrons. The obtained main Fermi surfaces are composed of two hole sheets and one electron sheet, all of which are constructed from the band having the Pu 5/ state and the monochalcogenide p state.

  17. Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro

    2013-09-01

    Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.

  18. Vibrational and structural study of onopordopicrin based on the FTIR spectrum and DFT calculations.

    PubMed

    Chain, Fernando E; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César A N; Fortuna, Mario; Brandán, Silvia Antonia

    2015-01-01

    In the present work, the structural and vibrational properties of the sesquiterpene lactone onopordopicrin (OP) were studied by using infrared spectroscopy and density functional theory (DFT) calculations together with the 6-31G(∗) basis set. The harmonic vibrational wavenumbers for the optimized geometry were calculated at the same level of theory. The complete assignment of the observed bands in the infrared spectrum was performed by combining the DFT calculations with Pulay's scaled quantum mechanical force field (SQMFF) methodology. The comparison between the theoretical and experimental infrared spectrum demonstrated good agreement. Then, the results were used to predict the Raman spectrum. Additionally, the structural properties of OP, such as atomic charges, bond orders, molecular electrostatic potentials, characteristics of electronic delocalization and topological properties of the electronic charge density were evaluated by natural bond orbital (NBO), atoms in molecules (AIM) and frontier orbitals studies. The calculated energy band gap and the chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S) and global electrophilicity index (ω) descriptors predicted for OP low reactivity, higher stability and lower electrophilicity index as compared with the sesquiterpene lactone cnicin containing similar rings. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Atomic partial charges on CH{sub 3}NH{sub 3}PbI{sub 3} from first-principles electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madjet, Mohamed E., E-mail: mmadjet@qf.org.qa; El-Mellouhi, Fedwa; Carignano, Marcelo A.

    We calculated the partial charges in methylammonium (MA) lead-iodide perovskite CH{sub 3}NH{sub 3}PbI{sub 3} in its different crystalline phases using different first-principles electronic charge partitioning approaches, including the Bader, ChelpG, and density-derived electrostatic and chemical (DDEC) schemes. Among the three charge partitioning methods, the DDEC approach provides chemically intuitive and reliable atomic charges for this material, which consists of a mixture of transition metals, halide ions, and organic molecules. The DDEC charges are also found to be robust against the use of hybrid functionals and/or upon inclusion of spin–orbit coupling or dispersive interactions. We calculated explicitly the atomic charges withmore » a special focus on the dipole moment of the MA molecules within the perovskite structure. The value of the dipole moment of the MA is reduced with respect to the isolated molecule due to charge redistribution involving the inorganic cage. DDEC charges and dipole moment of the organic part remain nearly unchanged upon its rotation within the octahedral cavities. Our findings will be of both fundamental and practical importance, as the accurate and consistent determination of the atomic charges is important in order to understand the average equilibrium distribution of the electrons and to help in the development of force fields for larger scale atomistic simulations to describe static, dynamic, and thermodynamic properties of the material.« less

  20. Electronic and crystal structure changes induced by in-plane oxygen vacancies in multiferroic YMnO 3

    DOE PAGES

    Cheng, Shaobo; Meng, Qingping; Li, Mengli; ...

    2016-02-08

    Here, the widely spread oxygen vacancies (V O) in multiferroic materials can strongly affect their physical properties. However, their exact influence has rarely been identified in hexagonal manganites. Here, with the combined use of transmission electron microscopy (TEM) and first-principles calculations, we have systematically studied the electronic and crystal structure modifications induced by V O located at the same Mn atomic plane (in-plane V O). Our TEM experiments reveal that the easily formed in-plane V O not only influence the electronic structure of YMnO 3 but alter the in-plane Wyckoff positions of Mn ions, which may subsequently affect the intraplanemore » and interplane exchange interaction of Mn ions. The ferroelectricity is also impaired due to the introduction of V O. Further calculations confirm these electronic and structural changes and modifications. Our results indicate that the electronic and crystal structure of YMnO 3 can be manipulated by the creation of V O.« less

  1. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  2. A parallel algorithm for Hamiltonian matrix construction in electron-molecule collision calculations: MPI-SCATCI

    NASA Astrophysics Data System (ADS)

    Al-Refaie, Ahmed F.; Tennyson, Jonathan

    2017-12-01

    Construction and diagonalization of the Hamiltonian matrix is the rate-limiting step in most low-energy electron - molecule collision calculations. Tennyson (1996) implemented a novel algorithm for Hamiltonian construction which took advantage of the structure of the wavefunction in such calculations. This algorithm is re-engineered to make use of modern computer architectures and the use of appropriate diagonalizers is considered. Test calculations demonstrate that significant speed-ups can be gained using multiple CPUs. This opens the way to calculations which consider higher collision energies, larger molecules and / or more target states. The methodology, which is implemented as part of the UK molecular R-matrix codes (UKRMol and UKRMol+) can also be used for studies of bound molecular Rydberg states, photoionization and positron-molecule collisions.

  3. Correlating electronic transport to atomic structures in self-assembled quantum wires.

    PubMed

    Qin, Shengyong; Kim, Tae-Hwan; Zhang, Yanning; Ouyang, Wenjie; Weitering, Hanno H; Shih, Chih-Kang; Baddorf, Arthur P; Wu, Ruqian; Li, An-Ping

    2012-02-08

    Quantum wires, as a smallest electronic conductor, are expected to be a fundamental component in all quantum architectures. The electronic conductance in quantum wires, however, is often dictated by structural instabilities and electron localization at the atomic scale. Here we report on the evolutions of electronic transport as a function of temperature and interwire coupling as the quantum wires of GdSi(2) are self-assembled on Si(100) wire-by-wire. The correlation between structure, electronic properties, and electronic transport are examined by combining nanotransport measurements, scanning tunneling microscopy, and density functional theory calculations. A metal-insulator transition is revealed in isolated nanowires, while a robust metallic state is obtained in wire bundles at low temperature. The atomic defects lead to electron localizations in isolated nanowire, and interwire coupling stabilizes the structure and promotes the metallic states in wire bundles. This illustrates how the conductance nature of a one-dimensional system can be dramatically modified by the environmental change on the atomic scale. © 2012 American Chemical Society

  4. Electronic structure of scandium-doped MgB2

    NASA Astrophysics Data System (ADS)

    de La Peña, Omar; Agrestini, Stefano

    2005-03-01

    Recently has been reported the synthesis of a new superconducting alloy based on MgB2, where Mg is partially substituted with Sc. In order to analyze the effect of Sc doping on the structural and superconducting properties of Mg1-xScxB2, we have performed a detailed study of the electronic structure for this new diboride. The calculations have been done using the first-principles LAPW method, within the supercell approach for modeling the doping. In this work we report results for the electronic band structure, Fermi surface, and density of states. The effect of the Sc-d orbitals on the structural and electronic properties of Mg1-xScxB2 is analyzed. Increasing the Sc concentration (x) the σ-band is gradually filled, because Sc have one valence electron more than Mg. Interestingly, the analysis of the band structure shows that even for ScB2 the top of the σ-band remain above the Fermi level, nevertheless the σ-band presents high dispersion and has an important contribution of d states. In this way, in addition to the band filling effect, Sc doping gradually reduces the two-dimensional character of the σ- band in Mg1-xScxB2 as a result of increasing the sp(B)-d(Sc) hybridization. This research was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant. No. 43830-F

  5. The effect of boron concentration on the structure and elastic properties of Ru-Ir alloys: first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhou, Zhaobo; Hu, Riming; Zhou, Xiaolong; Yu, Jie; Liu, Manmen

    2018-04-01

    The Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys with different B concentration were investigated by first principles calculations. The calculated formation enthaplies and cohesive energies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristic and Ru-Ir-B alloys were composed of the Ru-B and Ir-B covalent bond. The elastic properties were calculated, which included bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and hardness. The calculated results reveal that the plastic of Ru-Ir-B alloys increase with the increase of the content of B atoms, but the hardness of Ru-Ir-B alloys have no substantial progress with the increase of the content of B atoms. However, it is interesting that the hardness of the Ru-Ir-B compound was improved obviously as the B content was higher than 18 atoms because of a phase structure transition.

  6. DFT investigation on the electronic structure of Faujasite

    NASA Astrophysics Data System (ADS)

    Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian; Buimaga-Iarinca, Luiza

    2013-11-01

    We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed for describing atomic charge distribution in the chosen systems.

  7. Electronic structure of multi-walled carbon fullerenes

    NASA Astrophysics Data System (ADS)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V.; Kidd, Tim E.; Stollenwerk, Andrew J.

    2017-02-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures.

  8. Positron Annihilation Studies of the Electronic Structure of Selected High-Temperature Cuprate and Organic Superconductors.

    NASA Astrophysics Data System (ADS)

    Chan, Lie Ping

    The understanding of the electronic structure of the high-T_{c} superconductors could be important for a full theoretical description of the mechanism behind superconductivity in these materials. In this thesis, we present our measurements of the positron -electron momentum distributions of the cuprate superconductors Bi_2Sr_2CaCu _2O_8, Tl _2Ba_2Ca _2Cu_3O_ {10}, and the organic superconductor kappa-(BEDT)_2Cu(NCS) _2. We use the positron Two-dimensional Angular Correlation of Annihilation Radiation technique to make the measurements on single crystals and compare our high-statistics data with band structure calculations to determine the existence and nature of the respective Fermi surfaces. The spectra from unannealed Bi _2Sr_2CaCu _2O_8 exhibit effects of the superlattice modulation in the BiO_2 layers, and a theoretical understanding of the modulation effects on the electronic band structure is required to interpret these spectra. Since the present theory does not consider the modulation, we have developed a technique to remove the modulation effects from our spectra, and the resultant data when compared with the positron -electron momentum distribution calculation, yield features consistent with the predicted CuO_2 and BiO_2 Fermi surfaces. In the data from unannealed Tl_2Ba _2Ca_2Cu_3 O_{10}, we only observe indications of the TlO Fermi surfaces, and attribute the absence of the predicted CuO_2 Fermi surfaces to the poor sample quality. In the absence of positron-electron momentum calculations for kappa-(BEDT)_2Cu(NCS) _2, we compare our data to electronic band structure calculations, and observed features suggestive of the predicted Fermi surface contributions from the BEDT cation layers. A complete positron-electron calculation for kappa-(BEDT)_2 Cu(NCS)_2 is required to understand the positron wavefunction effects in this material.

  9. Fully relativistic B-spline R-matrix calculations for electron collisions with xenon

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus; Zatsarinny, Oleg

    2009-05-01

    We have applied our recently developed fully relativistic Dirac B-spline R-matrix (DBSR) code [1] to calculate electron scattering from xenon atoms. Results from a 31-state close-coupling model for the excitation function of the metastable (5p^5 6s) J=0,2 states show excellent agreement with experiment [2], thereby presenting a significant improvement over the most sophisticated previous Breit-Pauli calculations [3,4]. This allows for a detailed and reliable analysis of the resonance structure. The same model is currently being used to calculate electron-impact excitation from the metastable J=2 state. The results will be compared with recent experimental data [5] and predictions from other theoretical models [6,7]. [1] O. Zatsarinny and K. Bartschat, Phys. Rev. A 77 (2008) 062701. [2] S. J. Buckman et al., J. Phys. B 16 (1983) 4219. [3] A. N. Grum-Grzhimailo and K. Bartschat, J. Phys. B 35 (2002) 3479. [4] M. Allan et al., Phys. Rev. A 74 (2006) 030701(R). [5] R. O. Jung et al., Phys. Rev. A 72 (2005) 022723. [6] R. Srivastava et al., Phys. Rev. A 74 (2006) 012715. [7] J. Jiang et al., J. Phys. B 41 (2008) 245204.

  10. Effective mass and Fermi surface complexity factor from ab initio band structure calculations

    NASA Astrophysics Data System (ADS)

    Gibbs, Zachary M.; Ricci, Francesco; Li, Guodong; Zhu, Hong; Persson, Kristin; Ceder, Gerbrand; Hautier, Geoffroy; Jain, Anubhav; Snyder, G. Jeffrey

    2017-02-01

    The effective mass is a convenient descriptor of the electronic band structure used to characterize the density of states and electron transport based on a free electron model. While effective mass is an excellent first-order descriptor in real systems, the exact value can have several definitions, each of which describe a different aspect of electron transport. Here we use Boltzmann transport calculations applied to ab initio band structures to extract a density-of-states effective mass from the Seebeck Coefficient and an inertial mass from the electrical conductivity to characterize the band structure irrespective of the exact scattering mechanism. We identify a Fermi Surface Complexity Factor: Nv*K* from the ratio of these two masses, which in simple cases depends on the number of Fermi surface pockets (Nv* ) and their anisotropy K*, both of which are beneficial to high thermoelectric performance as exemplified by the high values found in PbTe. The Fermi Surface Complexity factor can be used in high-throughput search of promising thermoelectric materials.

  11. Electric field effect on the electronic structure of 2D Y2C electride

    NASA Astrophysics Data System (ADS)

    Oh, Youngtek; Lee, Junsu; Park, Jongho; Kwon, Hyeokshin; Jeon, Insu; Wng Kim, Sung; Kim, Gunn; Park, Seongjun; Hwang, Sung Woo

    2018-07-01

    Electrides are ionic compounds in which electrons confined in the interstitial spaces serve as anions and are attractive owing to their exotic physical and chemical properties in terms of their low work function and efficient charge-transfer characteristics. Depending on the topology of the anionic electrons, the surface electronic structures of electrides can be significantly altered. In particular, the electronic structures of two-dimensional (2D) electride surfaces are of interest because the localized anionic electrons at the interlayer space can be naturally exposed to cleaved surfaces. In this paper, we report the electronic structure of 2D Y2C electride surface using scanning tunneling microscopy (STM) and first-principles calculations, which reveals that anionic electrons at a cleaved surface are absorbed by the surface and subsequently resurged onto the surface due to an applied electric field. We highlight that the estranged anionic electrons caused by the electric field occupy the slightly shifted crystallographic site compared with a bulk Y2C electride. We also measure the work function of the Y2C single crystal, and it shows a slightly lower value than the calculated one, which appears to be due to the electric field from the STM junction.

  12. Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehmood, Faisal; General Dynamics Information Technology, Inc., Dayton, Ohio 45433; Pachter, Ruth, E-mail: ruth.pachter@us.af.mil

    Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green'smore » (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G{sub 0}W{sub 0}, GW{sub 0} to partially self-consistent sc-GW{sub 0}, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW{sub 0}-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations.« less

  13. Gapped electronic structure of epitaxial stanene on InSb(111)

    DOE PAGES

    Xu, Cai-Zhi; Chan, Yang-Hao; Chen, Peng; ...

    2018-01-11

    We report that stanene (single-layer gray tin), with an electronic structure akin to that of graphene but exhibiting a much larger spin-orbit gap, offers a promising platform for room-temperature electronics based on the quantum spin Hall (QSH) effect. This material has received much theoretical attention, but a suitable substrate for stanene growth that results in an overall gapped electronic structure has been elusive; a sizable gap is necessary for room-temperature applications. Here, we report a study of stanene, epitaxially grown on the (111)B-face of indium antimonide (InSb). Angle-resolved photoemission spectroscopy measurements reveal a gap of 0.44 eV, in agreement withmore » our first-principles calculations. Lastly, the results indicate that stanene on InSb(111) is a strong contender for electronic QSH applications.« less

  14. Gapped electronic structure of epitaxial stanene on InSb(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Cai-Zhi; Chan, Yang-Hao; Chen, Peng

    We report that stanene (single-layer gray tin), with an electronic structure akin to that of graphene but exhibiting a much larger spin-orbit gap, offers a promising platform for room-temperature electronics based on the quantum spin Hall (QSH) effect. This material has received much theoretical attention, but a suitable substrate for stanene growth that results in an overall gapped electronic structure has been elusive; a sizable gap is necessary for room-temperature applications. Here, we report a study of stanene, epitaxially grown on the (111)B-face of indium antimonide (InSb). Angle-resolved photoemission spectroscopy measurements reveal a gap of 0.44 eV, in agreement withmore » our first-principles calculations. Lastly, the results indicate that stanene on InSb(111) is a strong contender for electronic QSH applications.« less

  15. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    NASA Astrophysics Data System (ADS)

    Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars

    2013-05-01

    The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.

  16. Analysis of boron carbides' electronic structure

    NASA Technical Reports Server (NTRS)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  17. Electronic Structure of Energetic Molecules and Crystals Under Compression

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey

    Understanding how the electronic structure of energetic materials change under compression is important to elucidating mechanisms of shock-induced reactions and detonation. In this presentation, the electronic structure of prototypical energetic crystals are examined under high degrees of compression using ab initio quantum chemical calculations. The effects of compression on and interactions between the constituent molecules are examined in particular. The insights these results provide into previous experimental observations and theoretical predictions of energetic materials under high pressure are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Effect of strain on the electronic structure of graphene

    NASA Astrophysics Data System (ADS)

    Martinez, Edgar; Cifuentes, Eduardo; de Coss, Romeo

    2008-03-01

    Graphene has been attracting interest due to its remarkable physical properties resulting from an electron spectrum resembling relativistic dynamics (Dirac fermions). Thus, is desirable to know methods for controling the charge carriers in graphene. In this work, we propose that the electronic properties of graphene can be modulated via isotropic and uniaxial strain. We have studied the electronic structure of graphene under mechanical deformation by means of first principles calculations. We present results for the charge distribution, electronic density of states, and band structure. We focus the analysis on the behavior of the Dirac cones and the number of the charge carriers as a function of strain. We find that an isotropic tensile strain increases the effective mass of carriers and an isotropic compression strain decrease it. Uniaxial tensile strain induce a similar behavior, as strain increase effective mass increase. Thus, our results show that strain allows controllable tuning of the graphene electronic properties. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 43830-F.

  19. Density functional theory study of structural and electronic properties of trans and cis structures of thiothixene as a nano-drug.

    PubMed

    Noori Tahneh, Akram; Bagheri Novir, Samaneh; Balali, Ebrahim

    2017-11-25

    The geometrical structure, electronic and optical properties, electronic absorption spectra, vibrational frequencies, natural charge distribution, MEP analysis and thermodynamic properties of the trans and cis structures of the drug thiothixene were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) methods with the B3LYP hybrid functional and 6-311 + G(d,p) basis set. The results of the calculations demonstrate that the cis structure of thiothixene has appropriate quantum properties that can act as an active medicine. The relative energies of trans and cis structures of thiothixene shows that the cis structure is more stable than the trans structure, with a small energy difference. TDDFT calculations show that the cis structure of thiothixene has the best absorption properties. The calculated NLO properties show that the NLO properties of the cis structure of thiothixene are higher than the trans structure, and the fact that the chemical hardness of the cis structure is lower than that of the trans structure that indicates that the reactivity and charge transfer of the cis isomer of thiothixene is higher than that of trans thiothixene. The molecular electrostatic potential (MEP) maps of both structures of thiothixene demonstrate that the oxygen atoms of the molecule are appropriate areas for electrophilic reactions. The vibrational frequencies of the two conformations of thiothixene demonstrate that both structures of thiothixene have almost similar modes of vibrations. The calculated thermodynamic parameters show that these quantities increase with enhancing temperature due to the enhancement of molecular vibrational intensities with temperature. Graphical abstract Trans/Cis isomerization of thiothixene drug.

  20. Orbit-orbit relativistic correction calculated with all-electron molecular explicitly correlated Gaussians.

    PubMed

    Stanke, Monika; Palikot, Ewa; Kȩdziera, Dariusz; Adamowicz, Ludwik

    2016-12-14

    An algorithm for calculating the first-order electronic orbit-orbit magnetic interaction correction for an electronic wave function expanded in terms of all-electron explicitly correlated molecular Gaussian (ECG) functions with shifted centers is derived and implemented. The algorithm is tested in calculations concerning the H 2 molecule. It is also applied in calculations for LiH and H 3 + molecular systems. The implementation completes our work on the leading relativistic correction for ECGs and paves the way for very accurate ECG calculations of ground and excited potential energy surfaces (PESs) of small molecules with two and more nuclei and two and more electrons, such as HeH - , H 3 + , HeH 2 + , and LiH 2 + . The PESs will be used to determine rovibrational spectra of the systems.

  1. The structural, electronic and optical properties of CuGa (SexS1-x)2 compounds from first-principle calculations

    NASA Astrophysics Data System (ADS)

    Shen, Ke-Sheng; Jiao, Zhao-Yong; Zhang, Xian-Zhou; Huang, Xiao-Fen

    2013-11-01

    The structural, electronic and optical properties of the CuGa (Se x S1- x )2 alloy system have been performed systematic within generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) implemented in the Cambridge serial total energy package (CASTEP) code. We calculate the lattice parameters and axial ratio, which agree with the experimental values quite well. The anion position parameters u are also predicted using the model of Abrahams and Bernstein and the results seem to be trustworthy as compared to the experimental and theoretical values. The total and part density of states are discussed which follow the common rule of the conventional semiconductors. The static dielectric tenser and refractive index are summarized compared with available experimental and theoretical values. Also the spectra of the dielectric functions, refractive index, reflectance, absorption coefficient and real parts of photoconductivity are discussed in details.

  2. Structured electronic physiotherapy records.

    PubMed

    Buyl, Ronald; Nyssen, Marc

    2009-07-01

    With the introduction of the electronic health record, physiotherapists too are encouraged to store their patient records in a structured digital format. The typical nature of a physiotherapy treatment requires a specific record structure to be implemented, with special attention to user-friendliness and communication with other healthcare providers. The objective of this study was to establish a framework for the electronic physiotherapy record and to define a model for the interoperability with the other healthcare providers involved in the patients' care. Although we started from the Belgian context, we used a generic approach so that the results can easily be extrapolated to other countries. The framework we establish here defines not only the different building blocks of the electronic physiotherapy record, but also describes the structure and the content of the exchanged data elements. Through a combined effort by all involved parties, we elaborated an eight-level structure for the electronic physiotherapy record. Furthermore we designed a server-based model for the exchange of data between electronic record systems held by physicians and those held by physiotherapists. Two newly defined XML messages enable data interchange: the physiotherapy prescription and the physiotherapy report. We succeeded in defining a solid, structural model for electronic physiotherapist record systems. Recent wide scale implementation of operational elements such as the electronic registry has proven to make the administrative work easier for the physiotherapist. Moreover, within the proposed framework all the necessary building blocks are present for further data exchange and communication with other healthcare parties in the future. Although we completed the design of the structure and already implemented some new aspects of the electronic physiotherapy record, the real challenge lies in persuading the end-users to start using these electronic record systems. Via a quality label

  3. Calculating Strain Relief in Electronic-Component Leads

    NASA Technical Reports Server (NTRS)

    Snytsheuvel, H.

    1985-01-01

    Stress/strain formulas applicable to design of electronic-component leads compiled in report. Such things as factors of safety and whether or not lead is likely to fall in service determined in advance. Set of formulas is simple enough to be solved on programable hand-held calculator.

  4. Electronic Structure and Bonding in Complex Biomolecule

    NASA Astrophysics Data System (ADS)

    Ouyang, Lizhi

    2005-03-01

    For over a century vitamin B12 and its enzyme cofactor derivates have persistently attracted research efforts for their vital biological role, unique Co-C bonding, rich red-ox chemistry, and recently their candidacies as drug delivery vehicles etc. However, our understanding of this complex metalorganic molecule's efficient enzyme activated catalytic power is still controversial. We have for the first time calculated the electronic structure, Mulliken effective charge and bonding of a whole Vitamin B12 molecule without any structural simplification by first- principles approaches based on density functional theory using structures determined by high resolution X-ray diffraction. A partial density of states analysis shows excellent agreement with X-ray absorption data and has been used successfully to interpret measured optical absorption spectra. Mulliken bonding analysis of B12 and its derivatives reveal noticeable correlations between the two axial ligands which could be exploited by the enzyme to control the catalytic process. Our calculated X-ray near edge structure of B12 and its derivates using Slater's transition state theory are also in good agreement with experiments. The same approach has been applied to other B12 derivatives, ferrocene peptides, and recently DNA molecules.

  5. Structural, electronic and vibrational properties of lanthanide monophosphide at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchal, J. M., E-mail: amitjignesh@yahoo.co.in; Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat; Joshi, Mitesh

    2016-05-06

    A first-principles plane wave self-consistent method with the ultra-soft-pseudopotential scheme in the framework of the density functional theory (DFT) is performed to study structural, electronic and vibrational properties of LaP for Rock-salt (NaCl/Bl) and Cesium-chloride (CsCl/B2) phases. The instability of Rock-salt (NaCl/Bl) phases around the transition is discussed. Conclusions based on electronic energy band structure, density of state, phonon dispersion and phonon density of states in both phases are outlined. The calculated results are consistence and confirm the successful applicability of quasi-harmonic phonon theory for structural instability studies for the alloys.

  6. Electronic-structure theory of plutonium chalcogenides

    NASA Astrophysics Data System (ADS)

    Shick, Alexander; Havela, Ladislav; Gouder, Thomas; Rebizant, Jean

    2009-03-01

    The correlated band theory methods, the around-mean-field LDA + U and dynamical LDA + HIA (Hubbard-I), are applied to investigate the electronic structure of Pu chalcogenides. The LDA + U calculations for PuX (X = S, Se, Te) provide non-magnetic ground state in agreement with the experimental data. Non-integer filling of 5 f-manifold (from approx. 5.6 in PuS to 5.7 PuTe). indicates a mixed valence ground state which combines f5 and f6 multiplets. Making use of the dynamical LDA+HIA method the photoelectron spectra are calculated in good agreement with experimental data. The three-peak feature near EF attributed to 5 f-manifold is well reproduced by LDA + HIA, and follows from mixed valence character of the ground state.

  7. Electronic Structure, Mechanical and Dynamical Stability of Hexagonal Subcarbides M2C (M = Tc, Ru, Rh, Pd, Re, Os, Ir, and Pt): Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Suetin, D. V.; Shein, I. R.

    2018-02-01

    Ab initio calculations were used to study the properties of a series of hexagonal (Fe2N-like) subcarbides M2C, where M = Tc, Ru, Rh, Pd, Re, Os, Ir, and Pt, and to calculate their equilibrium structural parameters, electronic properties, phase stability, elastic constants, compression modulus, shear modulus, Young's modulus, compressibility, Pugh's indicator, Poisson ratio, elastic anisotropy indices, and also hardness, Debye temperature, sound velocity, and low-temperature heat capacity. It is found based on these results that all the subcarbides are mechanically stable; however, their formation energies E form are positive with respect to a mixture of d-metal and graphite. In addition, the calculation of the phonon spectra of these subcarbides shows the existence of negative modes, which indicates their dynamical instability. Thus, a successful synthesis of these subcarbides at normal conditions is highly improbable.

  8. Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase.

    PubMed

    De, Amrit; Pryor, Craig E

    2014-01-29

    Crystalline semiconductors may exist in different polytypic phases with significantly different electronic and optical properties. In this paper, we calculate the electronic structure and optical properties of diamond, Si and Ge in the lonsdaleite (hexagonal diamond) phase using a transferable model empirical pseudopotential method with spin–orbit interactions. We calculate their band structures and extract various relevant parameters. Differences between the cubic and hexagonal phases are highlighted by comparing their densities of states. While diamond and Si remain indirect gap semiconductors in the lonsdaleite phase, Ge transforms into a direct gap semiconductor with a much smaller bandgap. We also calculate complex dielectric functions for different optical polarizations and find strong optical anisotropy. We further provide expansion parameters for the dielectric functions in terms of Lorentz oscillators.

  9. The Opacity of TiO from a Coupled Electronic State Calculation Parameterized by ab initio and Experimental Data

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Huo, Winifred (Technical Monitor)

    1998-01-01

    We have carried out ab initio electronic structure calculations of the spin-orbit and rotation-orbit couplings among the 14 lowest electronic states of TiO and used them to predict ro-vibrational energy levels. We report on the qualitative results as well as our progress in optimizing our Hamiltonian parameters in order to improve agreement with experimental line positions,

  10. The Opacity of TiO from a Coupled Electronic State Calculation Parameterized by ab initio and Experimental Data

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Huo, Winifred (Technical Monitor)

    1998-01-01

    We have carried out ab initio electronic structure calculations of the spin-orbit and rotation-orbit couplings among the 14 lowest electronic states of TiO and used them to predict ro-vibrational energy levels. We report on the qualitative results as well as our progress in optimizing our Hamiltonian parameters in order to improve agreement with experimental line positions.

  11. Distance dependence in photoinduced intramolecular electron transfer. Additional remarks and calculations

    NASA Astrophysics Data System (ADS)

    Larsson, Sven; Volosov, Andrey

    1987-12-01

    Rate constants for photoinduced intramolecular electron transfer are calculated for four of the molecules studied by Hush et al. The electronic factor is obtained in quantum chemical calculations using the CNDO/S method. The results agree reasonably well with experiments for the forward reaction. Possible reasons for the disagreement for the charge recombination process are offered.

  12. DFT investigation on the electronic structure of Faujasite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian

    2013-11-13

    We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed formore » describing atomic charge distribution in the chosen systems.« less

  13. Electronic structure and nature of the color centers in MgF2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freidman, S.P.; Golota, A.F.; Galakhov, V.R.

    1986-09-01

    The electronic structure and spectroscopic properties of samples of magnesium fluoride with different numbers of defects have been investigated with the use of the methods of x-ray photoelectron, x-ray emission, ESR, and optical spectroscopy. Nonempirical self-consistent calculations of the electronic structure of clusters which simulate stoichiometric and defective MgF2 have been carried out. The color centers in the approx. 5-eV energy range are attributed to the presence of vacancies in the anionic sublattice.

  14. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm.

    PubMed

    Famulari, Gabriel; Pater, Piotr; Enger, Shirin A

    2017-07-07

    The aim of this study was to calculate microdosimetric distributions for low energy electrons simulated using the Monte Carlo track structure code Geant4-DNA. Tracks for monoenergetic electrons with kinetic energies ranging from 100 eV to 1 MeV were simulated in an infinite spherical water phantom using the Geant4-DNA extension included in Geant4 toolkit version 10.2 (patch 02). The microdosimetric distributions were obtained through random sampling of transfer points and overlaying scoring volumes within the associated volume of the tracks. Relative frequency distributions of energy deposition f(>E)/f(>0) and dose mean lineal energy ([Formula: see text]) values were calculated in nanometer-sized spherical and cylindrical targets. The effects of scoring volume and scoring techniques were examined. The results were compared with published data generated using MOCA8B and KURBUC. Geant4-DNA produces a lower frequency of higher energy deposits than MOCA8B. The [Formula: see text] values calculated with Geant4-DNA are smaller than those calculated using MOCA8B and KURBUC. The differences are mainly due to the lower ionization and excitation cross sections of Geant4-DNA for low energy electrons. To a lesser extent, discrepancies can also be attributed to the implementation in this study of a new and fast scoring technique that differs from that used in previous studies. For the same mean chord length ([Formula: see text]), the [Formula: see text] calculated in cylindrical volumes are larger than those calculated in spherical volumes. The discrepancies due to cross sections and scoring geometries increase with decreasing scoring site dimensions. A new set of [Formula: see text] values has been presented for monoenergetic electrons using a fast track sampling algorithm and the most recent physics models implemented in Geant4-DNA. This dataset can be combined with primary electron spectra to predict the radiation quality of photon and electron beams.

  15. Self-consistent electronic structure of disordered Fe/sub 0/ /sub 65/Ni/sub 0/ /sub 35/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.D.; Pinski, F.J.; Stocks, G.M.

    1984-01-01

    We present the results of the first ab-initio calculation of the electronic structure of a disordered Fe/sub 0/ /sub 65/Ni/sub 0/ /sub 35/ alloy. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin-polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko-Wilk-Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder; whereas, the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared tomore » the very structured majority spin density of states. This difference is due to a subtle balance between exchange-splitting and charge neutrality. 15 references, 2 figures.« less

  16. Inelastic neutron scattering spectrum of cyclotrimethylenetrinitramine: a comparison with solid-state electronic structure calculations.

    PubMed

    Ciezak, Jennifer A; Trevino, S F

    2006-04-20

    Solid-state geometry optimizations and corresponding normal-mode analysis of the widely used energetic material cyclotrimethylenetrinitramine (RDX) were performed using density functional theory with both the generalized gradient approximation (BLYP and BP functionals) and the local density approximation (PWC and VWN functionals). The structural results were found to be in good agreement with experimental neutron diffraction data and previously reported calculations based on the isolated-molecule approximation. The vibrational inelastic neutron scattering (INS) spectrum of polycrystalline RDX was measured and compared with simulated INS constructed from the solid-state calculations. The vibrational frequencies calculated from the solid-state methods had average deviations of 10 cm(-1) or less, whereas previously published frequencies based on an isolated-molecule approximation had deviations of 65 cm(-1) or less, illustrating the importance of including crystalline forces. On the basis of the calculations and analysis, it was possible to assign the normal modes and symmetries, which agree well with previous assignments. Four possible "doorway modes" were found in the energy range defined by the lattice modes, which were all found to contain fundamental contributions from rotation of the nitro groups.

  17. Electronic structure and magnetic anisotropy of Sm2Fe17Nx

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Ogura, Masako

    2014-03-01

    Electronic structure and magnetic properties of Sm2Fe17Nx are studies on the basis of the first-principles electronic structure calculation in the framework of the density functional theory within the local density and coherent potential approximations. The magnetic anisotropy of the system as a function of nitrogen concentration x is discussed by taking account not only of the crystal field effects but also of the effects of the f-electron transfer from Sm to the neighboring sites. Also discussed is the magnetic transition temperature that is estimated by mapping the system into a Heisenberg model. The results show the crystalline magnetic anisotropy changes its direction from in-plane to uniaxial ones as x increases. It takes the maximum value near x ~ 2 . 8 and then decreases slightly towards x = 3 . The mechanism for these behaviors is discussed in the light of the results of detailed calculations on the bonding properties between Sm and its neighboring N. This work was partly supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  18. The COOLER Code: A Novel Analytical Approach to Calculate Subcellular Energy Deposition by Internal Electron Emitters.

    PubMed

    Siragusa, Mattia; Baiocco, Giorgio; Fredericia, Pil M; Friedland, Werner; Groesser, Torsten; Ottolenghi, Andrea; Jensen, Mikael

    2017-08-01

    COmputation Of Local Electron Release (COOLER), a software program has been designed for dosimetry assessment at the cellular/subcellular scale, with a given distribution of administered low-energy electron-emitting radionuclides in cellular compartments, which remains a critical step in risk/benefit analysis for advancements in internal radiotherapy. The software is intended to overcome the main limitations of the medical internal radiation dose (MIRD) formalism for calculations of cellular S-values (i.e., dose to a target region in the cell per decay in a given source region), namely, the use of the continuous slowing down approximation (CSDA) and the assumption of a spherical cell geometry. To this aim, we developed an analytical approach, entrusted to a MATLAB-based program, using as input simulated data for electron spatial energy deposition directly derived from full Monte Carlo track structure calculations with PARTRAC. Results from PARTRAC calculations on electron range, stopping power and residual energy versus traveled distance curves are presented and, when useful for implementation in COOLER, analytical fit functions are given. Example configurations for cells in different culture conditions (V79 cells in suspension or adherent culture) with realistic geometrical parameters are implemented for use in the tool. Finally, cellular S-value predictions by the newly developed code are presented for different cellular geometries and activity distributions (uniform activity in the nucleus, in the entire cell or on the cell surface), validated against full Monte Carlo calculations with PARTRAC, and compared to MIRD standards, as well as results based on different track structure calculations (Geant4-DNA). The largest discrepancies between COOLER and MIRD predictions were generally found for electrons between 25 and 30 keV, where the magnitude of disagreement in S-values can vary from 50 to 100%, depending on the activity distribution. In calculations for

  19. Novel Electronic Structures of Ru-pnictides RuPn (Pn = P, As, Sb)

    NASA Astrophysics Data System (ADS)

    Goto, H.; Toriyama, T.; Konishi, T.; Ohta, Y.

    Density-functional-theory-based electronic structure calculations are made to consider the novel electronic states of Ru-pnictides RuP and RuAs where the intriguing phase transitions and superconductivity under doping of Rh have been reported. We find that there appear nearly degenerate flat bands just at the Fermi level in the high-temperature metallic phase of RuP and RuAs; the flat-band states come mainly from the 4dxy orbitals of Ru ions and the Rh doping shifts the Fermi level just above the flat bands. The splitting of the flat bands caused by their electronic instability may then be responsible for the observed phase transition to the nonmagnetic insulating phase at low temperatures. We also find that the band structure calculated for RuSb resembles that of the doped RuP and RuAs, which is consistent with experiment where superconductivity occurs in RuSb without Rh doping.

  20. The effect of annulation of benzene rings on the photophysics and electronic structure of tetraazachlorin molecules

    NASA Astrophysics Data System (ADS)

    Pershukevich, P. P.; Volkovich, D. I.; Gladkov, L. L.; Dudkin, S. V.; Kuzmitsky, V. A.; Makarova, E. A.; Solovyev, K. N.

    2017-10-01

    The photophysics and electronic structure of tribenzotetraazachlorins (H2, Zn, and Mg), which are novel analogues of phtalocyanines, have been studied experimentally and theoretically. At 293 K, the electronic absorption, fluorescence, and fluorescence excitation spectra are recorded and the fluorescence quantum yield and lifetime, as well as the quantum yield of singlet oxygen generation, are measured; at 77 K, the fluorescence, fluorescence excitation, and fluorescence polarization spectra are recorded and the fluorescence lifetime values are measured. The dependences of the absorption spectra and photophysical parameters on the structure variation are analyzed in detail. Quantum-chemical calculations of the electronic structure and absorption spectra of tribenzotetraazachlorins (H2, Mg) are performed using the INDO/Sm method (modified INDO/S method) based on molecular-geometry optimization by the DFT PBE/TZVP method. The results of quantum-chemical calculations of the electronic absorption spectra are in very good agreement with the experimental data for the transitions to two lower electronic states.

  1. Crystal and electronic structure of copper sulfides

    NASA Astrophysics Data System (ADS)

    Lukashev, Pavel

    Copper sulfides with different copper concentration exist in mineral form ranging from CuS to Cu2S. Among these, chalcosite Cu 2S, and digenite Cu1.8S were the subject of extensive research for decades mainly because of their use as the absorber in photovoltaic cells. Yet; their electronic structure is poorly understood because their crystal structure is complex. Most of the results published so far report the semiconducting nature of these compounds with the energy band gap being in the range of 0.84 to 1.9 eV. The crystal structure consists of a close-packed lattice of S with mobile Cu occupying various types of interstitial sites with a statistical distribution depending on temperature. In this thesis we present the first computational study of their electronic band structure. Initially, we investigated the simpler antifluorite structure. Both local density approximation (LDA) and self-consistent quasiparticle GW calculations with the full-potential linearized muffin-tin orbital method give a semimetallic band structure. Inspection of the nature of the bands shows that the lowest conduction band is mainly Cu-s-like except right near the center of the Brillouin zone where a Cu-s-like state lies about 1 eV below the valence band maximum. Significantly, in GW calculations, this state shifts up by several 0.1 eV but not sufficiently to open a gap. A random distortion of the Cu atoms from the perfect antifluorite positions is found to break the degeneracy of the d state at the Gamma-point and thus opens up a small gap of about 0.1 eV in LDA. As our next step we constructed supercell models for the cubic and hexagonal phases with the Cu positions determined by a weighted random number generator. The low temperature monoclinic phase was also studied. The computed total energies of these structures follow the same order as the reported phases with increasing temperatures. All these models gave similar small band gaps of order 0.1-0.2 eV. However, their conduction band

  2. Computational Search for Strong Topological Insulators: An Exercise in Data Mining and Electronic Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klintenberg, M.; Haraldsen, Jason T.; Balatsky, Alexander V.

    In this paper, we report a data-mining investigation for the search of topological insulators by examining individual electronic structures for over 60,000 materials. Using a data-mining algorithm, we survey changes in band inversion with and without spin-orbit coupling by screening the calculated electronic band structure for a small gap and a change concavity at high-symmetry points. Overall, we were able to identify a number of topological candidates with varying structures and composition. Lastly, our overall goal is expand the realm of predictive theory into the determination of new and exotic complex materials through the data mining of electronic structure.

  3. Computational Search for Strong Topological Insulators: An Exercise in Data Mining and Electronic Structure

    DOE PAGES

    Klintenberg, M.; Haraldsen, Jason T.; Balatsky, Alexander V.

    2014-06-19

    In this paper, we report a data-mining investigation for the search of topological insulators by examining individual electronic structures for over 60,000 materials. Using a data-mining algorithm, we survey changes in band inversion with and without spin-orbit coupling by screening the calculated electronic band structure for a small gap and a change concavity at high-symmetry points. Overall, we were able to identify a number of topological candidates with varying structures and composition. Lastly, our overall goal is expand the realm of predictive theory into the determination of new and exotic complex materials through the data mining of electronic structure.

  4. Structural, electronic and photocatalytic properties of atomic defective BiI3 monolayers

    NASA Astrophysics Data System (ADS)

    Yan, Huang; Ziyu, Hu; Xu, Gong; Xiaohong, Shao

    2018-01-01

    The structural, electronic and photocatalytic properties of five vacancy-containing 2D BiI3 monolayers are investigated by the first-principle calculations. The electronic structures show that the five structures are stable and have comparable binding energies to that of the pristine BiI3 monolayer, and the defects can tune the band gaps. Optical spectra indicate that the five structures retain high absorption capacity for visible light. The spin-orbit coupling (SOC) effect is found to play an important role in the band edge of defective structures, and the VBi and VBi-I3 defective BiI3 monolayers can make absolute band edges straddle water redox potentials more easily.

  5. CERES: An ab initio code dedicated to the calculation of the electronic structure and magnetic properties of lanthanide complexes.

    PubMed

    Calvello, Simone; Piccardo, Matteo; Rao, Shashank Vittal; Soncini, Alessandro

    2018-03-05

    We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin-orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree-Fock (CAHF) algorithm for the determination of 4f quasi-atomic active orbitals common to all multi-electron spin manifolds contributing to the ground spin-orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi-Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem-specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state-of-the-art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time-efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non-perturbative spin-orbit coupling effects. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Electronic structure calculation of single and coupled self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Mlinar, Vladan

    There are two main contributions of this thesis. First, from the theoretical point of view, we find that different treatments of the nanostructure-barrier interface in the framework of multiband effective-mass theory, result in the existence of non-physical solutions for the hole energy levels of a nanostructure. Our proposed improvement is an approach based on the envelope-function theory for nanostructures developed by Burt and Foreman. In structures with a large difference of the structural parameters between the constituent materials, such as InAs/GaAs quantum nanostructures, the conventional multiband models lead to non-physical solutions. Second, we investigate underlying physics of the theoretically less investigated QD systems. Variation of electronic and optical properties of InAs/GaAs QDs and QDM grown on [11k] substrates, where k=1,2,3 were analyzed and we found that: (i) The QD size in the growth direction determines the degree of influence of the substrate orientation: the flatter the dots, the larger the difference from the reference [001] case. (ii) The small variation of inter-dot distance in eight QD molecule qualitatively changes the transition energy dependence on the substrate orientation. (iii) Size of the QD in the growth direction determines the influence of the (In,Ga)As capping layer on the optical properties of [11k] grown InAs QDs, where k=1,2,3. Next, two cases of type II QDs where hole is localized outside the dot, were discussed: InP/InGaP QDs and QDMs in an external magnetic field, and InAs QDs capped with Ga(As,Sb). Competition between confinement, quantum mechanical coupling, and strain influence the exciton diamagnetic shift in single QD and double and triple QDM is investigated in details. Available experimental data were successfully described by one of the optically active exciton states of the lowest lying exciton quartet. Finally, the electronic and optical properties of unstrained GaAs self-assembled QDs with precisely known

  7. A first principle calculation of anisotropic elastic, mechanical and electronic properties of TiB

    NASA Astrophysics Data System (ADS)

    Zhang, Junqin; Zhao, Bin; Ma, Huihui; Wei, Qun; Yang, Yintang

    2018-04-01

    The structural, mechanical and electronic properties of the NaCl-type structure TiB are theoretically calculated based on the first principles. The density of states of TiB shows obvious density peaks at -0.70eV. Furthermore, there exists a pseudogap at 0.71eV to the right of the Fermi level. The calculated structural and mechanical parameters (i.e., bulk modulus, shear modulus, Young's modulus, Poisson's ratio and universal elastic anisotropy index) were in good agreement both with the previously reported experimental values and theoretical results at zero pressure. The mechanical stability criterion proves that TiB at zero pressure is mechanistically stable and exhibits ductility. The universal anisotropic index and the 3D graphics of Young's modulus are also given in this paper, which indicates that TiB is anisotropy under zero pressure. Moreover, the effects of applied pressures on the structural, mechanical and anisotropic elastic of TiB were studied in the range from 0 to 100GPa. It was found that ductility and anisotropy of TiB were enhanced with the increase of pressure.

  8. Interdependence of spin structure, anion height and electronic structure of BaFe{sub 2}As{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Smritijit, E-mail: smritijit.sen@gmail.com; Ghosh, Haranath, E-mail: hng@rrcat.gov.in; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094

    2016-05-06

    Superconducting as well as other electronic properties of Fe-based superconductors are quite sensitive to the structural parameters specially, on anion height which is intimately related to z{sub As}, the fractional z co-ordinate of As atom. Due to presence of strong magnetic fluctuation in these Fe-based superconductors, optimized structural parameters (lattice parameters a, b, c) including z{sub As} using density functional theory (DFT) under generalized gradient approximation (GGA) does not match experimental values accurately. In this work, we show that the optimized value of z{sub As} is strongly influenced by the spin structures in the orthorhombic phase of BaFe{sub 2}As{sub 2}more » system. We take all possible spin structures for the orthorhombic BaFe{sub 2}As{sub 2} system and then optimize z{sub As}. Using these optimized structures we calculate electronic structures like density of states, band structures etc., for each spin configurations. From these studies we show that the electronic structure, orbital order which is responsible for structural as well as related to nematic transition, are significantly influenced by the spin structures.« less

  9. Electronic Structure and Surface Physics of Two-dimensional Material Molybdenum Disulfide

    NASA Astrophysics Data System (ADS)

    Jin, Wencan

    The interest in two-dimensional materials and materials physics has grown dramatically over the past decade. The family of two-dimensional materials, which includes graphene, transition metal dichalcogenides, phosphorene, hexagonal boron nitride, etc., can be fabricated into atomically thin films since the intralayer bonding arises from their strong covalent character, while the interlayer interaction is mediated by weak van der Waals forces. Among them, molybdenum disulfide (MoS2) has attracted much interest for its potential applications in opto-electronic and valleytronics devices. Previously, much of the experimental studies have concentrated on optical and transport measurements while neglecting direct experimental determination of the electronic structure of MoS2, which is crucial to the full understanding of its distinctive properties. In particular, like other atomically thin materials, the interactions with substrate impact the surface structure and morphology of MoS2, and as a result, its structural and physical properties can be affected. In this dissertation, the electronic structure and surface structure of MoS2 are directly investigated using angle-resolved photoemission spectroscopy and cathode lens microscopy. Local-probe angle-resolved photoemission spectroscopy measurements of monolayer, bilayer, trilayer, and bulk MoS 2 directly demonstrate the indirect-to-direct bandgap transition due to quantum confinement as the MoS2 thickness is decreased from multilayer to monolayer. The evolution of the interlayer coupling in this transition is also investigated using density functional theory calculations. Also, the thickness-dependent surface roughness is characterized using selected-area low energy electron diffraction (LEED) and the surface structural relaxation is investigated using LEED I-V measurements combined with dynamical LEED calculations. Finally, bandgap engineering is demonstrated via tuning of the interlayer interactions in van der Waals

  10. Intra- and inter-atomic optical transitions of Fe, Co, and Ni ferrocyanides studied using first-principles many-electron calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Shinta, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp; Sawada, Yuki; Nakaya, Masato

    We have investigated the electronic structures and optical properties of Fe, Co, and Ni ferrocyanide nanoparticles using first-principles relativistic many-electron calculations. The overall features of the theoretical absorption spectra for Fe, Ni, and Co ferrocyanides calculated using a first-principles many-electron method well reproduced the experimental one. The origins of the experimental absorption spectra were clarified by performing a configuration analysis based on the many-electron wave functions. For Fe ferrocyanide, the experimental absorption peaks originated from not only the charge-transfer transitions from Fe{sup 2+} to Fe{sup 3+} but also the 3d-3d intra-transitions of Fe{sup 3+} ions. In addition, the spin crossovermore » transition of Fe{sup 3+} predicted by the many-electron calculations was about 0.24 eV. For Co ferrocyanide, the experimental absorption peaks were mainly attributed to the 3d-3d intra-transitions of Fe{sup 2+} ions. In contrast to the Fe and Co ferrocyanides, Ni ferrocyanide showed that the absorption peaks originated from the 3d-3d intra-transitions of Ni{sup 3+} ions in a low-energy region, while from both the 3d-3d intra-transitions of Fe{sup 2+} ions and the charge-transfer transitions from Fe{sup 2+} to Ni{sup 3+} in a high-energy region. These results were quite different from those of density-functional theory (DFT) calculations. The discrepancy between the results of DFT calculations and those of many-electron calculations suggested that the intra- and inter-atomic transitions of transition metal ions are significantly affected by the many-body effects of strongly correlated 3d electrons.« less

  11. Ab-Initio Calculation of Electronic Structure of Lead Halide Perovskites with Formamidinium Cation as an Active Material for Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Indari, E. D.; Wungu, T. D. K.; Hidayat, R.

    2017-07-01

    Organic lead halide perovskite material based solar cells show impressive power conversion efficiencies, which can reach above 19 percent for perovskite solar cell with methyl-ammonium cations. These efficiencies are originated from efficient photoexcitation and charge carrier transport and not observed in conventional perovskite crystals. In this preliminary research work, we therefore performed Density Functional Theory (DFT) calculation of formamidinium lead iodide (FAPI), an alternative to methyl-ammonium lead iodide (MAPI), to predict their electronic structure and density of state (DOS). The calculation result at the most stable lattice parameters show a good agreement with the experiment results. The obtained band gap energy is 1.307 eV. The valence band is dominantly formed by the 5p orbitals of I- anions, while the conduction band is dominantly formed by the 6p orbitals of Pb2+ cations. The DOS of valence band of this perovskite seems smaller compared to the case of methyl-ammonium lead iodide perovskite, which then may explain the observation of smaller power conversion efficiencies in perovskite solar cells with this formamidinium cations.

  12. An efficient basis set representation for calculating electrons in molecules

    DOE PAGES

    Jones, Jeremiah R.; Rouet, Francois -Henry; Lawler, Keith V.; ...

    2016-04-27

    The method of McCurdy, Baertschy, and Rescigno, is generalised to obtain a straightforward, surprisingly accurate, and scalable numerical representation for calculating the electronic wave functions of molecules. It uses a basis set of product sinc functions arrayed on a Cartesian grid, and yields 1 kcal/mol precision for valence transition energies with a grid resolution of approximately 0.1 bohr. The Coulomb matrix elements are replaced with matrix elements obtained from the kinetic energy operator. A resolution-of-the-identity approximation renders the primitive one- and two-electron matrix elements diagonal; in other words, the Coulomb operator is local with respect to the grid indices. Themore » calculation of contracted two-electron matrix elements among orbitals requires only O( Nlog (N)) multiplication operations, not O( N 4), where N is the number of basis functions; N = n 3 on cubic grids. The representation not only is numerically expedient, but also produces energies and properties superior to those calculated variationally. Absolute energies, absorption cross sections, transition energies, and ionisation potentials are reported for 1- (He +, H + 2), 2- (H 2, He), 10- (CH 4), and 56-electron (C 8H 8) systems.« less

  13. Electronic structure of CuTeO 4 and its relationship to cuprates

    DOE PAGES

    Botana, Antia S.; Norman, Michael R.

    2017-03-13

    Based on first-principles calculations, the electronic structure of CuTeO 4 is discussed in the context of superconducting cuprates. Despite some significant crystallographic differences, we find that CuTeO 4 is similar to these cuprates, exhibiting a quasi-two-dimensional electronic structure that involves hybridized Cu- d and O-p states in the vicinity of the Fermi level, along with an antiferromagnetic insulating ground state. Lastly, hole- doping this material by substituting Te 6+ with Sb 5+ would be of significant interest.

  14. Electron- and positron-impact atomic scattering calculations using propagating exterior complex scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, P. L.; Stelbovics, A. T.; Rescigno, T. N.; McCurdy, C. W.

    2007-11-01

    Calculations are reported for four-body electron-helium collisions and positron-hydrogen collisions, in the S-wave model, using the time-independent propagating exterior complex scaling (PECS) method. The PECS S-wave calculations for three-body processes in electron-helium collisions compare favourably with previous convergent close-coupling (CCC) and time-dependent exterior complex scaling (ECS) calculations, and exhibit smooth cross section profiles. The PECS four-body double-excitation cross sections are significantly different from CCC calculations and highlight the need for an accurate representation of the resonant helium final-state wave functions when undertaking these calculations. Results are also presented for positron-hydrogen collisions in an S-wave model using an electron-positron potential of V12 = - (8 + (r1 - r2)2)-1/2. This model is representative of the full problem, and the results demonstrate that ECS-based methods can accurately calculate scattering, ionization and positronium formation cross sections in this three-body rearrangement collision.

  15. First principles calculations of electronic structure and magnetic properties of Cr-based magnetic semiconductors Al{sub 1-x}Cr{sub x}X (X=N, P, As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeed, Y., E-mail: yasir_saeed54321@yahoo.co; Shaukat, A., E-mail: schaukat@gmail.co; Nazir, S., E-mail: nazirsafdar@gmail.co

    2010-01-15

    First principles calculations based on the density functional theory (DFT) within the local spin density approximation are performed to investigate the electronic structure and magnetic properties of Cr-based zinc blende diluted magnetic semiconductors Al{sub 1-x}Cr{sub x}X (X=N, P, As, Sb) for 0<=x<=0.50.The behaviour of magnetic moment of Al{sub 1-x}Cr{sub x}X at each Cr site as well as the change in the band gap value due to spin down electrons has been studied by increasing the concentration of Cr atom and through changing X from N to Sb. Furthermore, the role of p-d hybridization is analyzed in the electronic band structuremore » and exchange splitting of d-dominated bands. The interaction strength is stronger in Al{sub 1-x}Cr{sub x}N and becomes weaker in Al{sub 1-x}Cr{sub x}Sb. The band gap due to the spin down electrons decreases with the increased concentration of Cr in Al{sub 1-x}Cr{sub x}X, and as one moves down along the isoelectronic series in the group V from N to Sb. Our calculations also verify the half-metallic ferromagnetic character in Cr doped AlX. - Graphical abstract: The prototype structures of Cr doped AlX (X=N, P, As, Sb) compounds: (A) zinc blende AlP for x=0, (B) Cr{sub 1}Al{sub 7}P{sub 8} for x=0.125, (C) Cr{sub 1}Al{sub 3}P{sub 4} for x=0.25, (D) Cr{sub 1}Al{sub 1}P{sub 2} for x=0.5.« less

  16. Electronic and structural ground state of heavy alkali metals at high pressure

    DOE PAGES

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; ...

    2015-02-17

    Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of themore » valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.« less

  17. Electronic and structural ground state of heavy alkali metals at high pressure

    NASA Astrophysics Data System (ADS)

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  18. Structural and electronic properties of GaAs and GaP semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Anita; Kumar, Ranjan

    2015-05-15

    The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.

  19. Exploring phase stability, electronic and mechanical properties of Ce–Pb intermetallic compounds using first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Xiaoma; Computational Alloy Design Group, IMDEA Materials Institute, Getafe, Madrid 28906; Wang, Ziru

    2016-05-15

    The phase stability, electronic and mechanical properties of Ce–Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce–Pb intermetallics were verified. Among them, CePb{sub 2} has been confirmed as HfGa{sub 2}-type structure. For Ce{sub 5}Pb{sub 3}, the high pressure phase transformation from D8{sub m} to D8{sub 8} with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8{sub m} to D8{sub 8} with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement withmore » experimental values. The electronic density of states, charge density and electron localization function of Ce{sub 3}Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce–Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce{sub 3}Pb has the largest Debye temperature of 192.6 K, which means the Ce{sub 3}Pb has a highest melting point and high thermal conductivity than other compounds. - Graphical abstract: The convex hull plots of the enthalpies of formation for Ce–Pb binary systems calculated at 0 K. - Highlights: • The five stable and four metastable phases in the Ce–Pb binary system were predicted. • The crystal structure of CePb{sub 2} has been confirmed as HfGa{sub 2}-type.« less

  20. Structures of Mo2Oy- and Mo2Oy (y=2, 3, and 4) studied by anion photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Yoder, Bruce L; Maze, Joshua T; Raghavachari, Krishnan; Jarrold, Caroline Chick

    2005-03-01

    The competitive structural isomers of the Mo(2)O(y) (-)Mo(2)O(y) (y=2, 3, and 4) clusters are investigated using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. The PE spectrum and calculations for MoO(3) (-)MoO(3) are also presented to show the level of agreement to be expected between the spectra and calculations. For MoO(3) (-) and MoO(3), the calculations predict symmetric C(3v) structures, an adiabatic electron affinity of 3.34 eV, which is above the observed value 3.17(2) eV. However, there is good agreement between observed and calculated vibrational frequencies and band profiles. The PE spectra of Mo(2)O(2) (-) and Mo(2)O(3) (-) are broad and congested, with partially resolved vibrational structure on the lowest energy bands observed in the spectra. The electron affinities (EA(a)s) of the corresponding clusters are 2.24(2) and 2.33(7) eV, respectively. Based on the calculations, the most stable structure of Mo(2)O(2) (-) is Y shaped, with the two Mo atoms directly bonded. Assignment of the Mo(2)O(3) (-) spectrum is less definitive, but a O-Mo-O-Mo-O structure is more consistent with overall electronic structure observed in the spectrum. The PE spectrum of Mo(2)O(4) (-) shows cleanly resolved vibrational structure and electronic bands, and the EA of the corresponding Mo(2)O(4) is determined to be 2.13(4) eV. The structure most consistent with the observed spectrum has two oxygen bridge bonds between the Mo atoms.

  1. First-principles study of structural and electronic properties of Be0.25Zn0.75S mixed compound

    NASA Astrophysics Data System (ADS)

    Paliwal, U.; Joshi, K. B.

    2018-05-01

    In this work the first-principles study of structural and electronic properties of Be0.25Zn0.75S mixed compound is presented. The calculations are performed applying the QUANTUM ESPRESSO code utilizing the Perdew, Becke, Ernzerhof generalized gradient approximation in the framework of density functional theory. Adopting standard optimization strategy, the ground state equilibrium lattice constant and bulk modulus are calculated. After settling the structure the electronic band structure, bandgap and static dielectric constant are evaluated. In absence of any experimental work on this system our findings are compared with the available theoretical calculations which are found to follow well anticipated general trends.

  2. Electronic structure probed with positronium: Theoretical viewpoint

    NASA Astrophysics Data System (ADS)

    Kuriplach, Jan; Barbiellini, Bernardo

    2018-05-01

    We inspect carefully how the positronium can be used to study the electronic structure of materials. Recent combined experimental and computational study [A.C.L. Jones et al., Phys. Rev. Lett. 117, 216402 (2016)] has shown that the positronium affinity can be used to benchmark the exchange-correlation approximations in copper. Here we investigate whether an improvement can be achieved by increasing the numerical precision of calculations and by employing the strongly constrained and appropriately normed (SCAN) scheme, and extend the study to other selected systems like aluminum and high entropy alloys. From the methodological viewpoint, the computations of the positronium affinity are further refined and an alternative way of determining the electron chemical potential using charged supercells is examined.

  3. First-principles analysis of structural and opto-electronic properties of indium tin oxide

    NASA Astrophysics Data System (ADS)

    Tripathi, Madhvendra Nath; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-05-01

    Density functional theory (DFT) and DFT + U (DFT with on-site Coulomb repulsion corrections) calculations have been carried out to study the structural and opto-electronic properties of indium tin oxide (ITO) for both the oxidized and reduced environment conditions. Some of the results obtained by DFT calculations differ from the experimental observations, such as uncertain indication for the site preference of tin atom to replace indium atom at b-site or d-site, underestimation of local inward relaxation in the first oxygen polyhedra around tin atom, and also the improper estimation of electronic density of states and hence resulting in an inappropriate optical spectra of ITO. These discrepancies of theoretical outcomes with experimental observations in ITO arise mainly due to the underestimation of the cationic 4d levels within standard DFT calculations. Henceforth, the inclusion of on-site corrections within DFT + U framework significantly modifies the theoretical results in better agreement to the experimental observations. Within this framework, our calculations show that the indium b-site is preferential site over d-site for tin atom substitution in indium oxide under both the oxidized and reduced conditions. Moreover, the calculated average inward relaxation value of 0.16 Å around tin atom is in good agreement with the experimental value of 0.18 Å. Furthermore, DFT + U significantly modify the electronic structure and consequently induce modifications in the calculated optical spectra of ITO.

  4. The molecular structure and conformation of tetrabromoformaldazine: ab initio and DFT calculations

    NASA Astrophysics Data System (ADS)

    Jeong, Myongho; Kwon, Younghi

    2000-06-01

    Ab initio and density functional theory methods are applied to investigate the molecular structure and conformational nature of tetrabromoformaldazine. The calculations including the effects of the electron correlation at the B3LYP and MP2 levels with the basis set 6-311+G(d) can reproduce the experimental geometrical parameters at the skew conformation. The N-N bond torsional angle φ calculated at the MP2/6-311+G(d) level is found to be closest to the observed angle. The scanning of the potential energy surface suggests that the anti-conformation is at a saddle point corresponding to the transition state.

  5. Low-lying electronic structure of EuH, EuOH, and EuO neutrals and anions determined by anion photoelectron spectroscopy and DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafader, Jared O.; Ray, Manisha; Jarrold, Caroline Chick, E-mail: cjarrold@indiana.edu

    2015-07-21

    The anion photoelectron (PE) spectra of EuH{sup −} and the PE spectrum of overlapping EuOH{sup −} and EuO{sup −} anions are presented and analyzed with supporting results from density functional theory calculations on the various anions and neutrals. Results point to ionically bound, high-spin species. EuH and EuOH anions and neutrals exhibit analogous electronic structures: Transitions from {sup 8}Σ{sup −} anion ground states arising from the 4f{sup 7}σ{sub 6s}{sup 2} superconfiguration to the close-lying neutral {sup 9}Σ{sup −} and {sup 7}Σ{sup −} states arising from the 4f{sup 7}σ{sub 6s} superconfiguration are observed spaced by an energy interval similar to themore » free Eu{sup +} [4f{sup 7}6s] {sup 9}S - {sup 7}S splitting. The electron affinities (EAs) of EuH and EuOH are determined to be 0.771 ± 0.009 eV and 0.700 ± 0.011 eV, respectively. Analysis of spectroscopic features attributed to EuO{sup −} photodetachment is complicated by the likely presence of two energetically competitive electronic states of EuO{sup −} populating the ion beam. However, based on the calculated relative energies of the close-lying anion states arising from the 4f{sup 7}σ{sub 6s} and 4f{sup 6}σ{sub 6s}{sup 2} configurations and the relative energies of the one-electron accessible 4f{sup 7} and 4f{sup 6}σ{sub 6s} neutral states based on ligand-field theory [M. Dulick, E. Murad, and R. F. Barrow, J. Chem. Phys. 85, 385 (1986)], the remaining features are consistent with the 4f{sup 6}σ{sub 6s}{sup 2}  {sup 7}Σ{sup −} and 4f{sup 7}σ{sub 6s}{sup 7}Σ{sup −} anion states lying very close in energy (the former was calculated to be 0.15 eV lower in energy than the latter), though the true anion ground state and neutral EA could not be established unambiguously. Calculations on the various EuO anion and neutral states suggest 4f-orbital overlap with 2p orbitals in species with 4f{sup 6} occupancy.« less

  6. First-principles calculation of electronic and optical properties of graphene like ZnO (G-ZnO)

    NASA Astrophysics Data System (ADS)

    Farooq, Rabia; Mahmood, Tariq; Anwar, Abdul Waheed; Abbasi, Ghadah Niaz

    2016-02-01

    Semiconductor metal oxides are favorable for their exotic properties like wide band gap, transparency, enhanced charge mobility, and strong luminescence at room temperature. These properties have put metal oxides under limelight, especially ZnO has earned a renowned position in emanate industry for transparent electrodes, electronics, super-capacitors, photo-voltaic cells, gas-sensors, and many more. ZnO is not only environmental friendly but also a highly stable and cheap photo catalytic source naturally available in high abundance. First principles calculation is performed to study optoelectronic properties of ZnO. Geometry optimization of graphene like ZnO (G-ZnO) is preformed using generalized gradient approximation along with hybrid functional (GGA-PBE and GGA-PBE + U) to calculate various structural and electronic parameters of G-ZnO. Employing Hubbard (U) parameter improved band gap and c/a ratio calculation as 1.245 eV and 1.613 respectively; also dielectric constant is calculated as 4.58 (U = 15 eV) which is in accordance with the available experimental data.

  7. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    DOE PAGES

    Mardis, Kristy L.; Webb, J.; Holloway, Tarita; ...

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advancedmore » electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.« less

  8. First principle investigation of electronic structure, chemical bonding and optical properties of tetrabarium gallium trinitride oxide single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com; Azam, Sikander

    The electronic band structure, valence electron charge density and optical susceptibilities of tetrabarium gallium trinitride (TGT) were calculated via first principle study. The electronic band structure calculation describes TGT as semiconductor having direct band gap of 1.38 eV. The valence electronic charge density contour verified the non-polar covalent nature of the bond. The absorption edge and first peak of dielectric tensor components showed electrons transition from N-p state to Ba-d state. The calculated uniaxial anisotropy (0.4842) and birefringence (−0.0061) of present paper is prearranged as follow the spectral components of the dielectric tensor. The first peak in energy loss functionmore » (ELOS) shows the energy loss of fast traveling electrons in the material. The first sharp peak produced in ELOS around 10.5 eV show plasmon loss having plasma frequencies 0.1536, 0.004 and 0.066 of dielectric tensor components. This plasmon loss also cause decrease in reflectivity spectra.« less

  9. Combination of large and small basis sets in electronic structure calculations on large systems

    NASA Astrophysics Data System (ADS)

    Røeggen, Inge; Gao, Bin

    2018-04-01

    Two basis sets—a large and a small one—are associated with each nucleus of the system. Each atom has its own separate one-electron basis comprising the large basis set of the atom in question and the small basis sets for the partner atoms in the complex. The perturbed atoms in molecules and solids model is at core of the approach since it allows for the definition of perturbed atoms in a system. It is argued that this basis set approach should be particularly useful for periodic systems. Test calculations are performed on one-dimensional arrays of H and Li atoms. The ground-state energy per atom in the linear H array is determined versus bond length.

  10. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Phifer, Jeremy R.; Cox, Courtney E.; da Silva, Larissa Ferreira; Nogueira, Gabriel Gonçalves; Barbosa, Ana Karolyne Pereira; Ley, Ryan T.; Bozada, Samantha M.; O'Loughlin, Elizabeth J.; Paluch, Andrew S.

    2017-06-01

    Methods to predict the equilibrium solubility of non-electrolyte solids are important for the design of novel separation processes. Here we demonstrate how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here SMD or SM8, can be used to predict parameters for the MOdified Separation of Cohesive Energy Density (MOSCED) method. The method is applied to the solutes naphthalene, anthracene, phenanthrene, pyrene and dibenzothiophene, compounds of interested to the petroleum industry and for environmental remediation. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. Comparing to a total of 422 non-aqueous and 193 aqueous experimental solubilities, we find the proposed method is able to well correlate the data. The use of MOSCED is additionally advantageous as it is a solubility parameter-based method useful for intuitive solvent selection and formulation.

  11. Hyperfine field and electronic structure of magnetite below the Verwey transition

    NASA Astrophysics Data System (ADS)

    Řezníček, R.; Chlan, V.; Štěpánková, H.; Novák, P.

    2015-03-01

    Magnetite represents a prototype compound with a mixed valence of iron cations. Its structure and electron ordering below the Verwey transition have been studied for decades. A recently published precise crystallographic structure [Senn et al., Nature (London) 481, 173 (2012), 10.1038/nature10704] accompanied by a suggestion of a "trimeron" model has given a new impulse to magnetite research. Here we investigate hyperfine field anisotropy in the C c phase of magnetite by quantitative reanalysis of published measurements of the dependences of the 57Fe nuclear magnetic resonance frequencies on the external magnetic field direction. Further, ab initio density-functional-theory-based calculations of hyperfine field depending on the magnetization direction using the recently reported crystal structure are carried out, and analogous hyperfine anisotropy data linked to particular crystallographic sites are determined. These two sets of data are compared, and mutually matching groups of the iron B sites in the 8:5:3 ratio are found. Moreover, information on electronic structure is obtained from the ab initio calculations. Our results are compared with the trimeron model and with an alternative analysis [Patterson, Phys. Rev. B 90, 075134 (2014), 10.1103/PhysRevB.90.075134] as well.

  12. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  13. Structural and elastic properties of La{sub 2}Mg{sub 17} from first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Tao-Peng; Ma, Li; Pan, Rong-Kai

    2013-10-15

    Structural and elastic properties of La{sub 2}Mg{sub 17} with layer structure have been investigated within framework of the density functional theory. Different from the general layer-structured materials, the obtained c/a is less than unity. The calculated elastic constants C{sub 33} is larger than C{sub 11}, being novel in comparison with other alloys with layer structure. The calculated bulk, shear and Young’s modulus of La{sub 2}Mg{sub 17} are higher than other Mg–La alloys with higher La content, implying the stronger covalent bonding. Moreover, the elastic isotropies of La{sub 2}Mg{sub 17} are more excellent. The electronic structure within basal plane is highlymore » symmetric, and the electronic interaction within basal plane is slightly weaker than one between basal planes, which reveal the underlying mechanism for the structural and elastic properties of La{sub 2}Mg{sub 17}. - Graphical abstract: The crystal structure (a) and the atomic positions for (b) (0 0 0 2), (c) (0 0 0 4) and (d) (1 2{sup ¯} 1 0) plane of La{sub 2}Mg{sub 17}. Display Omitted - Highlights: • The c/a of La{sub 2}Mg{sub 17} is anomalously less than unity. • It is novel that for La{sub 2}Mg{sub 17} the elastic constants C{sub 33} is larger than C{sub 11}. • The elastic modulus of La{sub 2}Mg{sub 17} is higher than other Mg–La alloys. • The elastic isotropy of La{sub 2}Mg{sub 17} is excellent. • The electronic structure within basal plane is highly symmetric.« less

  14. Electronic structure of metals and semiconductors: bulk, surface, and interface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, S.G.S.

    1976-09-01

    A theoretical study of the electronic structure of various metals and semiconductors is presented with the emphasis on understanding the properties of these materials when they are subjected to extreme conditions and in various different configurations. Among the bulk systems studied, the properties of cesium under high pressure are discussed in terms of the electronic structure calculated at various cell volumes using the pseudopotential method. Local fields or umklapp processes in semiconductors are studied within the random phase approximation (RPA). Specifically the dielectric response matrix epsilon/sub GG'/ (q = 0,omega) is evaluated numerically to determine the effects of local-field correctionsmore » in the optical spectrum of Si. Also, some comments on the excitonic mechanism of superconductivity are presented and the role of local fields is discussed. The pseudo-potential method is next extended to calculate the electronic structure of a transition metal Nb. The calculation is performed self-consistently with the use of a non-local ionic potential determined from atomic spectra. Finally the theory of the superconducting transition temperature T/sub c/ is discussed in the strong-coupling formulation of the BCS theory. The Eliashberg equations in the Matsubara representation are solved analytically and a general T/sub c/ equation is obtained. A new method is developed using pseudopotentials in a self-consistent manner to describe non-periodic systems. The method is applicable to localized configurations such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces. Specific applications to surfaces, metal-semiconductor interfaces and vacancies are presented.« less

  15. From Two‐ to Three‐Dimensional Structures of a Supertetrahedral Boran Using Density Functional Calculations

    PubMed Central

    Getmanskii, Iliya V.; Steglenko, Dmitrii V.; Koval, Vitaliy V.; Zaitsev, Stanislav A.

    2017-01-01

    Abstract With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two‐ and three‐dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two‐ and three‐layer systems resulted in the construction of a three‐dimensional supertetrahedral borane crystal structure. The two‐dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three‐dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm−3) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials. PMID:28402596

  16. Electronic structure and partial charge distribution of doxorubicin under different molecular environments

    NASA Astrophysics Data System (ADS)

    Poudel, Lokendra

    Doxorubicin (trade name Adriamycin, abbreviated DOX) is a well-known an- thracyclic chemotherapeutic used in treating a variety of cancers including acute leukemia, lymphoma, multiple myeloma, and a range of stomach, lung, bladder, bone, breast, and ovarian cancers. The purpose of the present work is to study electronic structure, partial charge distribution and interaction energy of DOX under different environments. It provides a framework for better understanding of bioactivity of DOX with DNA. While in this work, we focus on DOX -- DNA interactions; the obtained knowledge could be translated to other drug -- target interactions or biomolecular interactions. The electronic structure and partial charge distribution of DOX in three dierent molecular environments: isolated, solvated, and intercalated into a DNA complex,were studied by rst principles density functional methods. It is shown that the addition of solvating water molecules to DOX and the proximity and interaction with DNA has a signicant impact on the electronic structure as well as the partial charge distribution. The calculated total partial charges for DOX in the three models are 0.0, +0.123 and -0.06 electrons for the isolated, solvated, and intercalated state, respectively. Furthermore, by using the more accurate ab initio partial charge values on every atom in the models, signicant improvement in estimating the DOX-DNA interaction energy is obtained in conjunction with the NAnoscale Molecular Dynamics (NAMD) code. The electronic structure of the DOX-DNA is further elucidated by resolving the total density of states (TDOS) into dierent functional groups of DOX, DNA, water, co-crystallized Spermine molecule, and Na ions. The surface partial charge distribution in the DOX-DNA is calculated and displayed graphically. We conclude that the presence of the solvent as well as the details of the interaction geometry matter greatly in the determination of the stability of the DOX complexion. Ab initio

  17. Electronic structure of Ag7GeS5I superionic compound

    NASA Astrophysics Data System (ADS)

    Bletskan, Dmytro; Studenyak, Ihor; Bletskan, Mykhailo; Vakulchak, Vasyl

    2018-05-01

    This paper presents the originally results of ab initio calculations of electronic structure, total and partial densities of electronic states as well as electronic charge density distribution of Ag7GeS5I crystal performed within the density functional theory (DFT) in the local density approximation (LDA) for exchange-correlation potential. According to performed calculations, Ag7GeS5I is the direct-gap semiconductor with the valence band top and the conductivity band bottom in the Γ point of Brillouin zone. The band gap width calculated in the LDA-approximation is Egd = 0.73 eV. The analysis of total and partial densities of electronic states allow us to identify the atomic orbital contributions into the crystal orbitals as well as the formation data of chemical bond in the studied crystal. In the top part of Ag7GeS5I valence band it was revealed the considerable mixing (hybridization) of the occupied d-states of Ag noble metal and the delocalized p-states of sulfur and iodine, which is undoubtedly associated with the covalent character of chemical bond between S, I atoms and noble metal atom.

  18. Magnetic ground state and electronic structure of CeRu(2)Al(10).

    PubMed

    Goraus, Jerzy; Ślebarski, Andrzej

    2012-03-07

    We present a combined theoretical and experimental study of the electronic structure for CeRu(2)Al(10) based on ab initio band structure calculations and x-ray photoemission spectroscopy (XPS) data. Our calculations were performed for the base unit cell and for the hypothetical unit cell which enables antiferromagnetic ordering. The stability of the magnetic phase was investigated within fixed spin moment calculations. When additional 4f correlations are not included in the LSDA C U approach, CeRu(2)Al(10) exhibits an unstable magnetic configuration with the difference in total energy per unit cell between the weakly magnetic state and the non-magnetic one of the order ~0.3 meV. We found that Coulomb correlations among 4f electrons, when they are included in the LSDA C U approach, stabilize the magnetic structure. In the weakly correlated system (small U) an antiferromagnetic (AFM) ground state with the lowest total energy is preferred. The situation is, however, the opposite when the 4f correlations are strong. In this case the ferromagnetic (FM) ground state is preferred. By comparing our calculations with the experimental data we conclude that the 4f correlations in CeRu(2)Al(10) are weak. We also carried out a structural relaxation of atomic positions within the Cmcm unit cell and we found that the Al atoms exhibit noticeable displacement from their positions known from x-ray diffraction (XRD) analysis.

  19. Structural, electronic and magnetic properties of chevron-type graphene, BN and BC2N nanoribbons

    NASA Astrophysics Data System (ADS)

    Guerra, T.; Azevedo, S.; Kaschny, J. R.

    2017-04-01

    Graphene nanoribbons are predicted to be essential components in future nanoelectronics. The size, edge type, arrangement of atoms and width of nanoribbons drastically change their properties. Boronnitrogencarbon nanoribbons properties are not fully understood so far. In the present contribution it was investigated the structural, electronic and magnetic properties of chevron-type carbon, boron nitride and BC2N nanoribbons, using first-principles calculations. The results indicate that the structural stability is closely related to the discrepancies in the bond lengths, which can induce structural deformations and stress. Such nanoribbons present a wide range of electronic behaviors, depending on their composition and particularities of the atomic arrangement. A net magnetic moment is found for structures that present carbon atoms at the nanoribbon borders. Nevertheless, the calculated magnetic moment depends on the peculiarities of the symmetric arrangement of atoms and imbalance of carbon atoms between different sublattices. It was found that all structures which have a significant energy gap do not present magnetic moment, and vice-versa. Such result indicates the strong correlation between the electronic and magnetic properties of the chevron-type nanoribbons.

  20. First principles study of structural, electronic and optical properties of polymorphic forms of Rb 2Te

    NASA Astrophysics Data System (ADS)

    Alay-e-Abbas, S. M.; Shaukat, A.

    2011-05-01

    First-principles density functional theory calculations have been performed for structural, electronic and optical properties of three polymorphic forms of rubidium telluride. Our calculations show that the sequence of pressure induced phase transitions for Rb 2Te is Fm3¯m → Pnma → P6 3/mmc which is governed by the coordination numbers of the anions. From our calculated low transition pressure value for the Fm3¯m phase to the Pnma phase transition of Rb 2Te, the experimentally observed meta-stability of Fm3¯m phase at ambient conditions seems reasonable. The electronic band structure has been calculated for all the three phases and the change in the energy band gap is discussed for the transitioning phases. The energy band gaps obtained for the three phases of Rb 2Te decrease on going from the meta-stable phase to the high-pressure phases. Total and partial density of states for the polymorphs of Rb 2Te has been computed to elucidate the contribution of various atomic states on the electronic band structure. Furthermore, optical properties for all the polymorphic forms have been presented in form of the complex dielectric function.

  1. Angle-resolved PED and AED calculations for different structures of the diamond C(111) surface

    NASA Astrophysics Data System (ADS)

    Niebergall, L.; Rennert, P.; Chassé, A.; Kucherenko, Yu

    1998-05-01

    Angle-resolved (AR) photoelectron diffraction (PED) spectra for electrons excited from the C 1s core state and angle-resolved KVV Auger electron diffraction (AED) spectra are calculated for the Pandey and the Tsai stucture models of diamond C(111) which extend previous investigations of the ideal structure. It is shown how to decide on the structure model by comparing PE spectra for different directions and by comparing PED and AED spectra. Calculations have been performed by evaluating the scattering path operator for a finite cluster in a curved-wave approximation. The different matrix elements for the photoelectron excitation and for the Auger process, respectively, are included. It is shown that the PED intensities are very sensitive to the surface reconstruction for polar angles in the range of 80°. In the AED intensities, polar scans in the plane perpendicular to the chain direction can be considered.

  2. Calculation of smooth potential energy surfaces using local electron correlation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mata, Ricardo A.; Werner, Hans-Joachim

    2006-11-14

    The geometry dependence of excitation domains in local correlation methods can lead to noncontinuous potential energy surfaces. We propose a simple domain merging procedure which eliminates this problem in many situations. The method is applied to heterolytic bond dissociations of ketene and propadienone, to SN2 reactions of Cl{sup -} with alkylchlorides, and in a quantum mechanical/molecular mechanical study of the chorismate mutase enzyme. It is demonstrated that smooth potentials are obtained in all cases. Furthermore, basis set superposition error effects are reduced in local calculations, and it is found that this leads to better basis set convergence when computing barriermore » heights or weak interactions. When the electronic structure strongly changes between reactants or products and the transition state, the domain merging procedure leads to a balanced description of all structures and accurate barrier heights.« less

  3. Synthesis, DFT calculations, electronic structure, electronic absorption spectra, natural bond orbital (NBO) and nonlinear optical (NLO) analysis of the novel 5-methyl-8H-benzo[h]chromeno[2,3-b][1,6] naphthyridine-6(5H),8-dione (MBCND)

    NASA Astrophysics Data System (ADS)

    Halim, Shimaa Abdel; Ibrahim, Magdy A.

    2017-02-01

    New derivative of heteroannulated chromone identified as 5-methyl-8H-benzo[h]chromeno[2,3-b][1,6]naphthyridine-6(5H),8-dione (5, MBCND) was easily and efficiently synthesized from DBU catalyzed condensation reaction of 2-aminochromone-3-carboxaldehyde (1) with 4-hydroxy-1-methylquinolin-2(1H)-one (2). The same product 5 was isolated from condensation reaction of aldeyde 1 with 3-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-3-oxopropanoic acid (3) or ethyl 4-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-2,4-dioxobutanoate (4). Structure of compound (5, MBCND) was deduced based on their elemental analyses and spectral data (IR, 1H NMR and mass spectra). Density Functional Theory (DFT) calculations at the B3LYP/6-311G (d,p) level of theory have been carried out to investigate the equilibrium geometry of the novel compound (5, MBCND). Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, the dipole moment, theoretical study of the electronic structure, nonlinear optical properties (NLO), and natural bonding orbital (NBO) analysis and orientation have been performed and discussed. Also the electronic absorption spectra were measured in polar (methanol) as well as non polar (dioxane) solvents and the assignment of the observed bands has been discussed by TD-DFT calculations. The correspondences between calculated and experimental transitions energies are satisfactory.

  4. Solid state effects on the electronic structure of H2OEP.

    PubMed

    Marsili, M; Umari, P; Di Santo, G; Caputo, M; Panighel, M; Goldoni, A; Kumar, M; Pedio, M

    2014-12-28

    We present the results of a joint experimental and theoretical investigation concerning the effect of crystal packing on the electronic properties of the H2OEP molecule. Thin films, deposited in ultra high vacuum on metal surfaces, are investigated by combining valence band photoemission, inverse photoemission, and X-ray absorption spectroscopy. The spectra of the films are compared, when possible, with those measured in the gas phase. Once many-body effects are included in the calculations through the GW method, the electronic structure of H2OEP in the film and gas phase are accurately reproduced for both valence and conduction states. Upon going from an isolated molecule to the film phase, the electronic gap shrinks significantly and the lowest unoccupied molecular orbital (LUMO) and LUMO + 1 degeneracy is removed. The calculations show that the reduction of the transport gap in the film is entirely addressable to the enhancement of the electronic screening.

  5. Colloidal nanocrystals as LEGO® bricks for building electronic band structure models.

    PubMed

    Tadjine, Athmane; Delerue, Christophe

    2018-03-28

    The synthesis of self-assembled semiconductor nanocrystal (NC) superlattices using oriented attachment recently became a flourishing research topic. This technique already produced remarkable forms of NC superlattices, such as linear chains, mono and multilayer square lattices, and silicene-like honeycomb lattices. In the case of lead chalcogenide semiconductors where NCs are in the form of truncated nanocubes, the attachment mostly occurs via (100) facets. In this work, we show that all these structures can be seen as sub-structures of a simple cubic lattice. From this, we investigate a rich variety of one-dimensional or two-dimensional superlattices that could be built as few lines or few layers taken from the same cubic system following different crystallographic orientations. Each NC can be therefore considered as a LEGO® brick, and any superlattice can be obtained from another one by rearranging the bricks. Moreover, we show that this concept of LEGO® bricks can be extended to the calculation of the electronic band structure of the superlattices. This leads to a simple yet powerful way to build analytical Hamiltonians that present band structures in excellent agreement with more elaborate atomistic tight-binding calculations. This LEGO® concept could guide the synthesis of superlattices and LEGO® Hamiltonians should greatly simplify further studies on the (opto-)electronic properties of such structures.

  6. Electronic Structure and Transport in Solids from First Principles

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal Ibrahim

    The focus of this dissertation is the determination of the electronic structure and trans- port properties of solids. We first review some of the theory and computational methodology used in the calculation of electronic structure and materials properties. Throughout the dissertation, we make extensive use of state-of-the-art software packages that implement density functional theory, density functional perturbation theory, and the GW approximation, in addition to specialized methods for interpolating matrix elements for extremely accurate results. The first application of the computational framework introduced is the determination of band offsets in semiconductor heterojunctions using a theory of quantum dipoles at the interface. This method is applied to the case of heterojunction formed between a new metastable phase of silicon, with a rhombohedral structure, and cubic silicon. Next, we introduce a novel method for the construction of localized Wannier functions, which we have named the optimized projection functions method (OPFM). We illustrate the method on a variety of systems and find that it can reliably construct localized Wannier functions with minimal user intervention. We further develop the OPFM to investigate a class of materials called topological insulators, which are insulating in the bulk but have conductive surface states. These properties are a result of a nontrivial topology in their band structure, which has interesting effects on the character of the Wannier functions. In the last sections of the main text, the noble metals are studied in great detail, including their electronic properties and carrier dynamics. In particular, we investigate, the Fermi surface properties of the noble metals, specifically electron-phonon scattering lifetimes, and subsequently the transport properties determined by carriers on the Fermi surface. To achieve this, a novel sampling technique is developed, with wide applicability to transport calculations

  7. Electronic structure and magnetic properties of dilute U impurities in metals

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Cottenier, S.; Mishra, S. N.

    2016-05-01

    The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.

  8. Examinations of electron temperature calculation methods in Thomson scattering diagnostics.

    PubMed

    Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin

    2012-10-01

    Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. χ-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the χ-square test are examined and scale factor test is proposed as an alternative method.

  9. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle

  10. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    DOE PAGES

    Lanatà, Nicola; Yao, Yongxin; Wang, Cai-Zhuang; ...

    2015-01-29

    We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4f and 5f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierlsmore » effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.« less

  11. Electronic structure and chemical bonding of the electron-poor II-V semiconductors ZnSb and ZnAs

    NASA Astrophysics Data System (ADS)

    Benson, Daryn; Sankey, Otto F.; Häussermann, Ulrich

    2011-09-01

    The binary compounds ZnSb and ZnAs with the CdSb structure are semiconductors (II-V), although the average electron concentration (3.5 per atom) is lower than that of the tetrahedrally bonded III-V and II-VI archetype systems (four per atom). We report a detailed electronic structure and chemical bonding analysis for ZnSb and ZnAs based on first-principles calculations. ZnSb and ZnAs are compared to the zinc blende-type semiconductors GaSb, ZnTe, GaAs, and ZnSe, as well as the more ionic, hypothetical, II-V systems MgSb and MgAs. We establish a clearly covalent bonding scenario for ZnSb and ZnAs where multicenter bonded structural entities (rhomboid rings Zn2Sb2 and Zn2As2) are connected to each other by classical two-center, two-electron bonds. This bonding scenario is only compatible with a weak ionicity in II-V semiconductor systems, and weak ionicity appears as a necessary condition for the stability of the CdSb structure type. It is argued that a chemical bonding scenario with mixed multicenter and two-center bonding resembles that of boron and boron-rich compounds and is typical of electron-poor sp-bonded semiconductors with average valence electron concentrations below four per atom.

  12. A Structural Model of a P450-Ferredoxin Complex from Orientation-Selective Double Electron-Electron Resonance Spectroscopy.

    PubMed

    Bowen, Alice M; Johnson, Eachan O D; Mercuri, Francesco; Hoskins, Nicola J; Qiao, Ruihong; McCullagh, James S O; Lovett, Janet E; Bell, Stephen G; Zhou, Weihong; Timmel, Christiane R; Wong, Luet Lok; Harmer, Jeffrey R

    2018-02-21

    Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe 2 S 2 ] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe 2 S 2 ] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.

  13. Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity

    NASA Astrophysics Data System (ADS)

    Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.

    2016-07-01

    We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.

  14. Calculations of skyshine from an intense portable electron linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, G.P.; Hughes, H.G.; Fry, D.A.

    1994-12-31

    The MCNP Monte carlo code has been used at Los Alamos to calculate skyshine and terrain albedo efects from an intense portable electron linear accelerator that is to be used by the Russian Federation to radiograph nuclear weapons that may have been damaged by accidents. Relative dose rate profiles have been calculated. The design of the accelerator, along with a diagram, is presented.

  15. All-electron density functional calculation on insulin with quasi-canonical localized orbitals.

    PubMed

    Inaba, Toru; Tahara, Saisei; Nisikawa, Nobutaka; Kashiwagi, Hiroshi; Sato, Fumitoshi

    2005-07-30

    An all-electron density functional (DF) calculation on insulin was performed by the Gaussian-based DF program, ProteinDF. Quasi-canonical localized orbitals (QCLOs) were used to improve the initial guess for the self-consistent field (SCF) calculation. All calculations were carried out by parallel computing on eight processors of an Itanium2 cluster (SGI Altix3700) with a theoretical peak performance of 41.6 GFlops. It took 35 h for the whole calculation. Insulin is a protein hormone consisting of two peptide chains linked by three disulfide bonds. The numbers of residues, atoms, electrons, orbitals, and auxiliary functions are 51, 790, 3078, 4439, and 8060, respectively. An all-electron DF calculation on insulin was successfully carried out, starting from connected QCLOs. Regardless of a large molecule with complicated topology, the differences in the total energy and the Mulliken atomic charge between initial and converged wavefunctions were very small. The calculation proceeded smoothly without any trial and error, suggesting that this is a promising method to obtain SCF convergence on large molecules such as proteins.

  16. Investigation of electronic structure and chemical bonding of intermetallic Pd2HfIn: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Bano, Amreen; Gaur, N. K.

    2018-05-01

    Ab-initio calculations are carried out to study the electronic and chemical bonding properties of Intermetallic full Heusler compound Pd2HfIn which crystallizes in F-43m structure. All calculations are performed by using density functional theory (DFT) based code Quantum Espresso. Generalized gradient approximations (GGA) of Perdew- Burke- Ernzerhof (PBE) have been adopted for exchange-correlation potential. Calculated electronic band structure reveals the metallic character of the compound. From partial density of states (PDoS), we found the presence of relatively high intensity electronic states of 4d-Pd atom at Fermi level. We have found a pseudo-gap just abouve the Fermi level and N(E) at Fermi level is observed to be 0.8 states/eV, these finding indicates the existence of superconducting character in Pd2HfIn.

  17. Electronic structure of semiconducting alkali-metal silicides and germanides

    NASA Astrophysics Data System (ADS)

    Tegze, M.; Hafner, J.

    1989-11-01

    We present self-consistent linearized-muffin-tin-orbital calculations of the electronic structure of three alkali-metal germanides and silicides (KGe, NaGe, and NaSi). Like the alkali-metal-lead compounds investigated in our earlier work [M. Tegze and J. Hafner, Phys. Rev. B 39, 8263 (1989)] the Ge and Si compounds of the alkali metals form complex structures based on the packing of tetrahedral Ge4 and Si4 clusters. Our calculations show that all three compounds are narrow-gap semiconductors. The width of the energy gap depends on two main factors: the ratio of the intracluster to the intercluster interactions between the group-IV elements (which increases from Pb to Si) and the strength of the interactions between the alkali-metal atoms (which varies with the size ratio).

  18. Electronic structure of the [MNH2]+ (M = Sc-Cu) complexes.

    PubMed

    Hendrickx, Marc F A; Clima, Sergiu

    2006-11-23

    B3LYP geometry optimizations for the [MNH2]+ complexes of the first-row transition metal cations (Sc+-Cu+) were performed. Without any exception the ground states of these unsaturated amide complexes were calculated to possess planar geometries. CASPT2 binding energies that were corrected for zero-point energies and including relativistic effects show a qualitative trend across the series that closely resembles the experimental observations. The electronic structures for the complexes of the early and middle transition metal cations (Sc+-Co+) differ from the electronic structures derived for the complexes of the late transition metal cations (Ni+ and Cu+). For the former complexes the relative higher position of the 3d orbitals above the singly occupied 2p(pi) HOMO of the uncoordinated NH2 induces an electron transfer from the 3d shell to 2p(pi). The stabilization of the 3d orbitals from the left to the right along the first-row transition metal series causes these orbitals to become situated below the HOMO of the NH2 ligand for Ni+ and Cu+, preventing a transfer from occurring in the [MNH2]+ complexes of these metal cations. Analysis of the low-lying states of the amide complexes revealed a rather unique characteristic of their electronic structures that was found across the entire series. Rather exceptionally for the whole of chemistry, pi-type interactions were calculated to be stronger than the corresponding sigma-type interactions. The origin of this extraordinary behavior can be ascribed to the low-lying sp2 lone pair orbital of the NH2 ligand with respect to the 3d level.

  19. Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design.

    PubMed

    Matta, Chérif F; Arabi, Alya A

    2011-06-01

    The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.

  20. Quantum Mechanical Approach to Understanding Structural, Electronic and Mechanical Properties of Intermetallics

    DTIC Science & Technology

    1989-01-26

    Understanding Structural , Electronic and Mechanical Properties of Tntermetallics by A.J. Freeman, Principal Investigator ABSTRACT The primary goal of...like LI or Mg would lower EF into the minimum in the DOS and hence stabilize the L1 2 . A. Structural Phase Stability of Titanium Aluminides Most...34 Structural Stability Calculations in the Titanium -Aluminium System", Conf. on Titanium Aluminides , Wright-Patterson Air Force Base, Nov. 1986

  1. Electronic properties of two-dimensional zinc oxide in hexagonal, (4,4)-tetragonal, and (4,8)-tetragonal structures by using Hybrid Functional calculation

    NASA Astrophysics Data System (ADS)

    Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.

    2017-09-01

    This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively.

  2. Defects in ion-implanted hcp-titanium: A first-principles study of electronic structures

    NASA Astrophysics Data System (ADS)

    Raji, Abdulrafiu T.; Mazzarello, Riccardo; Scandolo, Sandro; Nsengiyumva, Schadrack; Härting, Margit; Britton, David T.

    2011-12-01

    The electronic structures of hexagonal closed-packed (h.c.p) titanium containing a vacancy and krypton impurity atoms at various insertion sites are calculated by first-principles methods in the framework of the density-functional theory (DFT). The density of states (DOS) for titanium containing a vacancy defect shows resonance-like features. Also, the bulk electron density decreases from ˜0.15/Å 3 to ˜0.05/Å 3 at the vacancy centre. Electronic structure calculations have been performed to investigate what underlies the krypton site preference in titanium. The DOS of the nearest-neighbour (NN) titanium atoms to the octahedral krypton appears to be less distorted (relative to pure titanium) when compared to the NN titanium atoms to the tetrahedral krypton. The electronic density deformation maps show that polarization of the titanium atoms is stronger when the krypton atom is located at the tetrahedral site. Since krypton is a closed-shell atom, thus precluding any bonding with the titanium atoms, we may conclude that the polarization of the electrons in the vicinity of the inserted krypton atoms and the distortion of the DOS of the NN titanium atoms to the krypton serve to indicate which defect site is preferred when a krypton atom is inserted into titanium. Based on these considerations, we conclude that the substitutional site is the most favourable one, and the octahedral is the preferred interstitial site, in agreement with recent DFT calculations of the energetics of krypton impurity sites.

  3. From Two- to Three-Dimensional Structures of a Supertetrahedral Boran Using Density Functional Calculations.

    PubMed

    Getmanskii, Iliya V; Minyaev, Ruslan M; Steglenko, Dmitrii V; Koval, Vitaliy V; Zaitsev, Stanislav A; Minkin, Vladimir I

    2017-08-14

    With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two- and three-dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two- and three-layer systems resulted in the construction of a three-dimensional supertetrahedral borane crystal structure. The two-dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three-dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm -3 ) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Electronic structure engineering in silicene via atom substitution and a new two-dimensional Dirac structure Si3C

    NASA Astrophysics Data System (ADS)

    Yin, Na; Dai, Ying; Wei, Wei; Huang, Baibiao

    2018-04-01

    A lot of efforts have been made towards the band gap opening in two-dimensional silicene, the silicon version of graphene. In the present work, the electronic structures of single atom doped (B, N, Al and P) and codoped (B/N and Al/P) silicene monolayers are systematically examined on the base of density functional electronic calculations. Our results demonstrate that single atom doping can realize electron or hole doping in the silicene; while codoping, due to the syergistic effects, results in finite band gap in silicene at the Dirac point without significantly degrading the electronic properties. In addition, the characteristic of band gap shows dependence on the doping concentration. Importantly, we predict a new two-dimensional Dirac structure, the graphene-like Si3C, which also shows linear band dispersion relation around the Fermi level. Our results demonstrates an important perspective to engineer the electronic and optical properties of silicene.

  5. Theoretical investigation of the structural, elastic, electronic and optical properties of the ternary indium sulfide layered structures AInS2 (A = K, Rb and Cs)

    NASA Astrophysics Data System (ADS)

    Bouchenafa, M.; Sidoumou, M.; Halit, M.; Benmakhlouf, A.; Bouhemadou, A.; Maabed, S.; Bentabet, A.; Bin-Omran, S.

    2018-02-01

    Ab initio calculations were performed to investigate the structural, elastic, electronic and optical properties of the ternary layered systems AInS2 (A = K, Rb and Cs). The calculated structural parameters are in good agreement with the existing experimental data. Analysis of the electronic band structure shows that the three studied materials are direct band-gap semiconductors. Density of states, charge transfers and charge density distribution maps were computed and analyzed. Numerical estimations of the elastic moduli and their related properties for single-crystal and polycrystalline aggregates were predicted. The optical properties were calculated for incident radiation polarized along the [100], [010] and [001] crystallographic directions. The studied materials exhibit a noticeable anisotropic behaviour in the elastic and optical properties, which is expected due to the symmetry and the layered nature of these compounds.

  6. Theoretical investigations on structural, elastic and electronic properties of thallium halides

    NASA Astrophysics Data System (ADS)

    Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham

    2011-04-01

    Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.

  7. Structural, Optical, and Electronic Characterization of Fe-Doped Alumina Nanoparticles

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher; Imam, N. G.

    2018-01-01

    The effects of iron doping on the structural, optical, and electronic properties of doped alumina have been studied. Single-phase iron-doped alumina Al2- x Fe x O3 ( x = 0.00 to 0.30) nanoparticles were synthesized via citrate-precursor method. Formation of single-phase hexagonal corundum structure with no other separate phases was demonstrated by x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy. The effects of iron doping on the α-Al2O3 structural parameters, viz. atomic coordinates, lattice parameters, crystallite size, and microstrain, were estimated from XRD data by applying the Rietveld profile fitting method. Transmission electron microscopy further confirmed the nanosize nature of the prepared samples with size ranging from 12 nm to 83 nm. The electronic band structure was investigated using density functional theory calculations to explain the decrease in the energy gap of Al2- x Fe x O3 as the amount of Fe was increased. The colored emission peaks in the visible region (blue, red, violet) of the electromagnetic spectrum obtained for the Fe-doped α-Al2O3 nanoparticles suggest their potential application as ceramic nanopigments.

  8. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-04-01

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.

  9. Symmetry and equivalence restrictions in electronic structure calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1988-01-01

    A simple method for obtaining MCSCF orbitals and CI natural orbitals adapted to degenerate point groups, with full symmetry and equivalnece restrictions, is described. Among several advantages accruing from this method are the ability to perform atomic SCF calculations on states for which the SCF energy expression cannot be written in terms of Coulomb and exchange integrals over real orbitals, and the generation of symmetry-adapted atomic natural orbitals for use in a recently proposed method for basis set contraction.

  10. Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2- Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations.

    PubMed

    Suturina, Elizaveta A; Nehrkorn, Joscha; Zadrozny, Joseph M; Liu, Junjie; Atanasov, Mihail; Weyhermüller, Thomas; Maganas, Dimitrios; Hill, Stephen; Schnegg, Alexander; Bill, Eckhard; Long, Jeffrey R; Neese, Frank

    2017-03-06

    The magnetic properties of pseudotetrahedral Co(II) complexes spawned intense interest after (PPh 4 ) 2 [Co(SPh) 4 ] was shown to be the first mononuclear transition-metal complex displaying slow relaxation of the magnetization in the absence of a direct current magnetic field. However, there are differing reports on its fundamental magnetic spin Hamiltonian (SH) parameters, which arise from inherent experimental challenges in detecting large zero-field splittings. There are also remarkable changes in the SH parameters of [Co(SPh) 4 ] 2- upon structural variations, depending on the counterion and crystallization conditions. In this work, four complementary experimental techniques are utilized to unambiguously determine the SH parameters for two different salts of [Co(SPh) 4 ] 2- : (PPh 4 ) 2 [Co(SPh) 4 ] (1) and (NEt 4 ) 2 [Co(SPh) 4 ] (2). The characterization methods employed include multifield SQUID magnetometry, high-field/high-frequency electron paramagnetic resonance (HF-EPR), variable-field variable-temperature magnetic circular dichroism (VTVH-MCD), and frequency domain Fourier transform THz-EPR (FD-FT THz-EPR). Notably, the paramagnetic Co(II) complex [Co(SPh) 4 ] 2- shows strong axial magnetic anisotropy in 1, with D = -55(1) cm -1 and E/D = 0.00(3), but rhombic anisotropy is seen for 2, with D = +11(1) cm -1 and E/D = 0.18(3). Multireference ab initio CASSCF/NEVPT2 calculations enable interpretation of the remarkable variation of D and its dependence on the electronic structure and geometry.

  11. Theoretical modeling of the electronic structure and exchange interactions in a Cu(II)Pc one-dimensional chain

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.

    2011-07-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  12. Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn,Fe,Co) from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2011-01-01

    The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni2MnGa have been calculated. The formation energies of the cubic phase of Ni2XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni2MnGa to Ni2CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below EF. There are two bond types existing in Ni2XGa: one is between neighboring Ni atoms in Ni2MnGa; the other is between Ni and X atoms in Ni2FeGa and Ni2CoGa alloys.

  13. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same asmore » that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.« less

  14. First principles study of structural stability, electronic structure and mechanical properties of ReN and TcN

    NASA Astrophysics Data System (ADS)

    Rajeswarapalanichamy, R.; Kavitha, M.; Sudha Priyanga, G.; Iyakutti, K.

    2015-03-01

    The crystal structure, structural stability, electronic and mechanical properties of ReN and TcN are investigated using first principles calculations. We have considered five different crystal structures: NaCl, zinc blende (ZB), NiAs, tungsten carbide (WC) and wurtzite (WZ). Among these ZB phase is found to be the lowest energy phase for ReN and TcN at normal pressure. Pressure induced structural phase transitions from ZB to WZ phase at 214 GPa in ReN and ZB to NiAs phase at 171 GPa in TcN are predicted. The electronic structure reveals that both ReN and TcN are metallic in nature. The computed elastic constants indicate that both the nitrides are mechanically stable. As ReN in NiAs phase has high bulk and shear moduli and low Poisson's ratio, it is found to be a potential ultra incompressible super hard material.

  15. Negative ion photoelectron spectroscopy of P 2N 3 –: Electron affinity and electronic structures of P 2N 3 ˙

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Gao -Lei; Chen, Bo; Transue, Wesley J.

    2016-04-19

    The recent successful synthesis of P 2N 3 –, a planar all-inorganic aromatic molecule, represents a breakthrough in inorganic chemistry, because, like its isolobal counterparts C 5H 5– and cyclo-P 5 –, P 2N 3 – has potential to serve as a new ligand for transition metals and a building block in solid-state molecular architectures. In light of its importance, we report here a negative ion photoelectron spectroscopy (NIPES) and ab initio study of P 2N 3 –, to investigate the electronic structures of P 2N 3 – and its neutral P 2N 3• radical. The adiabatic detachment energy ofmore » P 2N 3 – (electron affinity of P 2N 3•) was determined to be 3.765 ± 0.010 eV, indicating high stability for the P 2N 3 – anion. Ab initio electronic structure calculations reveal five low-lying electronic states in the neutral P 2N 3• radical. Calculation of the Franck-Condon factors (FCFs) for each anion-to-neutral electronic transition and comparison of the resulting simulated NIPE spectrum with the vibrational structure in the observed spectrum allows the first four excited states of P 2N 3• to be determined to lie 6.2, 6.7, 11.5, and 22.8 kcal/mol -1 above the ground state of the radical, which is found to be a 6π-electron, 2A 1, σ state.« less

  16. Transport properties and electronic structure of Na0.28PtSi

    NASA Astrophysics Data System (ADS)

    Itahara, Hiroshi; Suzumura, Akitoshi; Oh, Song-Yul

    2017-07-01

    We have investigated the electronic structure and properties of Na0.28PtSi, which is a Pt-based intermetallic compound with no reported physical properties. Na0.28PtSi powder with an average grain size of 15 µm was demonstrated to be stable in a strongly acidic aqueous solution. The ab initio calculations revealed that there is a band crossing the Fermi level and that the density of states (DOS) under the Fermi level mainly consists of d orbitals of Pt atoms. Here, we used the model of Na0.25PtSi with an approximately ordered structure (space group I4, full Na site occupation), which was set instead of the reported statistically disordered structure of Na0.28PtSi (I4/mcm, Na site occupancy: 0.258). The calculated electronic structure corresponded to the measured metallic properties of the Na0.28PtSi sintered body: i.e., the electrical resistivity of Na0.28PtSi was increased from 1.77 × 10-8 Ω m at 30 K to 2.67 × 10-7 Ω m at 300 K and the Seebeck coefficient was 0.11 µV K-1 at 300 K.

  17. Structures and spectroscopic properties of nonperipherally and peripherally substituted metal-free phthalocyanines: a substitution effect study based on density functional theory calculations.

    PubMed

    Zhong, Aimin; Zhang, Yuexing; Bian, Yongzhong

    2010-11-01

    The molecular structures, molecular orbitals, atomic charges, electronic absorption spectra, and infrared (IR) and Raman spectra of a series of substituted metal-free phthalocyanine compounds with four (1, 3, 5, 7) or eight (2, 4, 6, 8) methoxyl (1, 2, 5, 6) or methylthio groups (3, 4, 7, 8) on the nonperipheral (1-4) or peripheral positions (5-8) of the phthalocyanine ring are studied by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The calculated structural parameters and simulated electronic absorption and IR spectra are compared with the X-ray crystallography structures and the experimentally observed electronic absorption and IR spectra of the similar molecules, and good agreement between the calculated and experimental results is found. The substitution of the methoxyl or methylthio groups at the nonperipheral positions of the phthalocyanine ring has obvious effects on the molecular structure and spectroscopic properties of the metal-free phthalocyanine. Nonperipheral substitution has a more significant influence than peripheral substitution. The substitution effect increases with an increase in the number of substituents. The methylthio group shows more significant influence than the methoxyl group, despite the stronger electron-donating property of the methoxyl group than the methylthio group. The octa-methylthio-substituted metal-free phthalocyanine compounds have nonplanar structures whose low-lying occupied molecular orbitals and electronic absorption spectra are significantly changed by the substituents. The present systematical study will be helpful for understanding the relationship between structures and properties in phthalocyanine compounds and designing phthalocyanines with typical properties. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Cluster molecular orbital description of the electronic structures of mixed-valence iron oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1986-01-01

    A molecular orbital description, based on spin-unrestricted X??-scattered wave calculations, is given for the electronic structures of mixed valence iron oxides and silicates. The cluster calculations show that electron hopping and optical intervalence charge-transger result from weak FeFe bonding across shared edges of FeO6 coordination polyhedra. In agreement with Zener's double exchange model, FeFe bonding is found to stabilize ferromagnetic coupling between Fe2+ and Fe3+ cations. ?? 1986.

  19. First-principles calculations of the electronic, vibrational, and elastic properties of the magnetic laminate Mn₂GaC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thore, A., E-mail: andth@ifm.liu.se; Dahlqvist, M., E-mail: madah@ifm.liu.se, E-mail: bjoal@ifm.liu.se, E-mail: johro@ifm.liu.se; Alling, B., E-mail: madah@ifm.liu.se, E-mail: bjoal@ifm.liu.se, E-mail: johro@ifm.liu.se

    2014-09-14

    In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn₂GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants,more » the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn₂GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M₂AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.« less

  20. Electronic Structures of Strained InAs x P1-x by Density Functional Theory.

    PubMed

    Lee, Seung Mi; Kim, Min-Young; Kim, Young Heon

    2018-09-01

    We investigated the effects of strain on the electronic structures of InAsxP1-x using quantum mechanical density functional theory calculations. The electronic band gap and electron effective mass decreased with the increase of the uniaxial tensile strain along the [0001] direction of wurtzite InAs0.75P0.25. Therefore, faster electron movements are expected. These theoretical results are in good agreement with the experimental measurements of InAs0.75P0.25 nanowire.

  1. An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers

    NASA Astrophysics Data System (ADS)

    Ayadi, T.; Debbichi, L.; Said, M.; Lebègue, S.

    2017-09-01

    Using first principle calculations, we have studied the structural and electronic properties of two dimensional bilayers of indium and gallium chalcogenides. With density functional theory corrected for van der Waals interactions, the different modes of stacking were investigated in a systematic way, and several of them were found to compete in energy. Then, their band structures were obtained with the GW approximation and found to correspond to indirect bandgap semiconductors with a small dependency on the mode of stacking. Finally, by analysing the electron density, it appeared that GaSe-InS is a promising system for electron-hole separation.

  2. Electronic origin of structural transition in 122 Fe based superconductors

    NASA Astrophysics Data System (ADS)

    Ghosh, Haranath; Sen, Smritijit; Ghosh, Abyay

    2017-03-01

    Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determined doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe-Fe distances in the low temperature orthorhombic phase, with the band energies Edxz, Edyz of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate zAs of As which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe2As2) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.

  3. Accurate atomistic first-principles calculations of electronic stopping

    DOE PAGES

    Schleife, André; Kanai, Yosuke; Correa, Alfredo A.

    2015-01-20

    In this paper, we show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative systems of H and He projectiles in crystalline aluminum. This approach to simulate nonadiabatic electron-ion interaction provides an accurate framework that allows for quantitative comparison with experiment without introducing ad hoc parameters such as effective charges, or assumptions about the dielectric function. Finally, our work clearlymore » shows that this atomistic first-principles description of electronic stopping is able to disentangle contributions due to tightly bound semicore electrons and geometric aspects of the stopping geometry (channeling versus off-channeling) in a wide range of projectile velocities.« less

  4. Output calculation of electron therapy at extended SSD using an improved LBR method.

    PubMed

    Alkhatib, Hassaan A; Gebreamlak, Wondesen T; Tedeschi, David J; Mihailidis, Dimitris; Wright, Ben W; Neglia, William J; Sobash, Philip T; Fontenot, Jonas D

    2015-02-01

    To calculate the output factor (OPF) of any irregularly shaped electron beam at extended SSD. Circular cutouts were prepared from 2.0 cm diameter to the maximum possible size for 15 × 15 applicator cone. In addition, two irregular cutouts were prepared. For each cutout, percentage depth dose (PDD) at the standard SSD and doses at different SSD values were measured using 6, 9, 12, and 16 MeV electron beam energies on a Varian 2100C LINAC and the distance at which the central axis electron fluence becomes independent of cutout size was determined. The measurements were repeated with an ELEKTA Synergy LINAC using 14 × 14 applicator cone and electron beam energies of 6, 9, 12, and 15 MeV. The PDD measurements were performed using a scanning system and two diodes-one for the signal and the other a stationary reference outside the tank. The doses of the circular cutouts at different SSDs were measured using PTW 0.125 cm(3) Semiflex ion-chamber and EDR2 films. The electron fluence was measured using EDR2 films. For each circular cutout, the lateral buildup ratio (LBR) was calculated from the measured PDD curve using the open applicator cone as the reference field. The effective SSD (SSDeff) of each circular cutout was calculated from the measured doses at different SSD values. Using the LBR value and the radius of the circular cutout, the corresponding lateral spread parameter [σR(z)] was calculated. Taking the cutout size dependence of σR(z) into account, the PDD curves of the irregularly shaped cutouts at the standard SSD were calculated. Using the calculated PDD curve of the irregularly shaped cutout along with the LBR and SSDeff values of the circular cutouts, the output factor of the irregularly shaped cutout at extended SSD was calculated. Finally, both the calculated PDD curves and output factor values were compared with the measured values. The improved LBR method has been generalized to calculate the output factor of electron therapy at extended SSD. The

  5. The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca)2

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Mu, Sai; Liu, Yang; Luo, Jian; Zhang, Jian; N'Diaye, Alpha T.; Enders, Axel; Dowben, Peter A.

    2018-05-01

    The unoccupied electronic structure of the spin crossover molecule cobalt (II) N-(2-pyrazylcarbonyl)-2-pyrazinecarboxamide, [Co(dpzca)2] was investigated, using X-ray absorption spectroscopy (XAS) and compared with magnetometry (SQUID) measurements. The temperature dependence of the XAS and molecular magnetic susceptibility χmT are in general agreement for [Co(dpzca)2], and consistent with density functional theory (DFT). This agreement of magnetic susceptibility and X-ray absorption spectroscopy provides strong evidence that the changes in magnetic moment can be ascribed to changes in electronic structure. Calculations show the choice of Coulomb correlation energy U has a profound effect on the electronic structure of the low spin state, but has little influence on the electronic structure of the high spin state. In the temperature dependence of the XAS, there is also evidence of an X-ray induced excited state trapping for [Co(dpzca)2] at 15 K.

  6. The angular electronic band structure and free particle model of aromatic molecules: High-frequency photon-induced ring current

    NASA Astrophysics Data System (ADS)

    Öncan, Mehmet; Koç, Fatih; Şahin, Mehmet; Köksal, Koray

    2017-05-01

    This work introduces an analysis of the relationship of first-principles calculations based on DFT method with the results of free particle model for ring-shaped aromatic molecules. However, the main aim of the study is to reveal the angular electronic band structure of the ring-shaped molecules. As in the case of spherical molecules such as fullerene, it is possible to observe a parabolic dispersion of electronic states with the variation of angular quantum number in the planar ring-shaped molecules. This work also discusses the transition probabilities between the occupied and virtual states by analyzing the angular electronic band structure and the possibility of ring currents in the case of spin angular momentum (SAM) or orbital angular momentum (OAM) carrying light. Current study focuses on the benzene molecule to obtain its angular electronic band structure. The obtained electronic band structure can be considered as a useful tool to see the transition probabilities between the electronic states and possible contribution of the states to the ring currents. The photoinduced current due to the transfer of SAM into the benzene molecule has been investigated by using analytical calculations within the frame of time-dependent perturbation theory.

  7. Electronic structure and microscopic model of CoNb2O6

    NASA Astrophysics Data System (ADS)

    Molla, Kaimujjaman; Rahaman, Badiur

    2018-05-01

    We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.

  8. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  9. Electronic structure of ZrX2 (X = Se, Te)

    NASA Astrophysics Data System (ADS)

    Shkvarin, A. S.; Merentsov, A. I.; Shkvarina, E. G.; Yarmoshenko, Yu. M.; Píš, I.; Nappini, S.; Titov, A. N.

    2018-03-01

    The electronic structure of the ZrX2 (X = Se, Te) compounds has been studied using photoelectron, resonant photoelectron and X-ray absorption spectroscopy, theoretical calculations of the X-ray absorption spectra, and density of electronic states. It was found that the absorption spectra and valence band spectra are influenced by the chalcogen type. The results of the multiplet calculation of the Zr4+ atom show that the change in the splitting in the crystal field, which is described by the 10Dq parameter, is due to the change in the ratio of covalent and ionic contributions to the chemical bond. The resonance band near the Fermi level in the valence band spectra is observed for ZrTe2 in the Zr 3p-4d resonant excitation mode. The extent of photon energy indicates the charge localization on the Zr atom. Similar resonance band for ZrSe2 is absent; it indicates the presence of a gap at the Fermi level.

  10. Electronic and structural transitions in dense liquid sodium.

    PubMed

    Raty, Jean-Yves; Schwegler, Eric; Bonev, Stanimir A

    2007-09-27

    At ambient conditions, the light alkali metals are free-electron-like crystals with a highly symmetric structure. However, they were found recently to exhibit unexpected complexity under pressure. It was predicted from theory--and later confirmed by experiment--that lithium and sodium undergo a sequence of symmetry-breaking transitions, driven by a Peierls mechanism, at high pressures. Measurements of the sodium melting curve have subsequently revealed an unprecedented (and still unexplained) pressure-induced drop in melting temperature from 1,000 K at 30 GPa down to room temperature at 120 GPa. Here we report results from ab initio calculations that explain the unusual melting behaviour in dense sodium. We show that molten sodium undergoes a series of pressure-induced structural and electronic transitions, analogous to those observed in solid sodium but commencing at much lower pressure in the presence of liquid disorder. As pressure is increased, liquid sodium initially evolves by assuming a more compact local structure. However, a transition to a lower-coordinated liquid takes place at a pressure of around 65 GPa, accompanied by a threefold drop in electrical conductivity. This transition is driven by the opening of a pseudogap, at the Fermi level, in the electronic density of states--an effect that has not hitherto been observed in a liquid metal. The lower-coordinated liquid emerges at high temperatures and above the stability region of a close-packed free-electron-like metal. We predict that similar exotic behaviour is possible in other materials as well.

  11. A theoretical study of structural and electronic properties of pentacene/Al(100) interface.

    PubMed

    Saranya, G; Nair, Shiny; Natarajan, V; Kolandaivel, P; Senthilkumar, K

    2012-09-01

    The first principle calculations within the framework of density functional theory have been performed for the pentacene molecule deposited on the aluminum Al(100) substrate to study the structural and electronic properties of the pentacene/Al(100) interface. The most stable configuration was found at bridge site with 45° rotation of the pentacene molecule on Al(100) surface with a vertical distance of 3.4 Å within LDA and 3.8 Å within GGA functionals. The calculated adsorption energy reveals that the adsorption of pentacene molecule on Al(100) surface is physisorption. For the stable adsorption geometry the electronic properties such as density of states (DOS), partial density of states (PDOS), Mulliken population analysis and Schottky barrier height are studied. The analysis of atomic charge, DOS and PDOS show that the charge is transferred from the Al(100) surface to pentacene molecule, and the transferred charge is about -0.05 electrons. For the adsorbed system, the calculated Schottky barrier height for hole and electron transport is 0.27 and 1.55 eV, respectively. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, A. K., E-mail: aktrip2001@yahoo.co.in; Singhal, R. P., E-mail: rpsiitbhu@yahoo.com; Khazanov, G. V., E-mail: George.V.Khazanov@nasa.gov

    2016-04-15

    Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusionmore » coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and

  13. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave-Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances

  14. Anomalous electronic structure and magnetoresistance in TaAs2

    NASA Astrophysics Data System (ADS)

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; Scott, B.; Wakeham, N.; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-06-01

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.

  15. Anomalous electronic structure and magnetoresistance in TaAs2

    PubMed Central

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; Scott, B.; Wakeham, N.; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-01-01

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions. PMID:27271852

  16. Theoretical calculations of Electron Paramagnetic Resonance parameters of liquid phase Orotic acid radical

    NASA Astrophysics Data System (ADS)

    Sarikaya, Ebru Karakaş; Dereli, Ömer

    2017-02-01

    To obtain liquid phase molecular structure, conformational analysis of Orotic acid was performed and six conformers were determined. For these conformations, eight possible radicals were modelled by using Density Functional Theory computations with respect to molecular structure. Electron Paramagnetic Resonance parameters of these model radicals were calculated and then they were compared with the experimental ones. Geometry optimizations of the molecule and modeled radicals were performed using Becke's three-parameter hybrid-exchange functional combined with the Lee-Yang-Parr correlation functional of Density Functional Theory and 6-311++G(d,p) basis sets in p-dioxane solution. Because Orotic acid can be mutagenic in mammalian somatic cells and it is also mutagenic for bacteria and yeast, it has been studied.

  17. Band structure of an electron in a kind of periodic potentials with singularities

    NASA Astrophysics Data System (ADS)

    Hai, Kuo; Yu, Ning; Jia, Jiangping

    2018-06-01

    Noninteracting electrons in some crystals may experience periodic potentials with singularities and the governing Schrödinger equation cannot be defined at the singular points. The band structure of a single electron in such a one-dimensional crystal has been calculated by using an equivalent integral form of the Schrödinger equation. Both the perturbed and exact solutions are constructed respectively for the cases of a general singular weak-periodic system and its an exactly solvable version, Kronig-Penney model. Any one of them leads to a special band structure of the energy-dependent parameter, which results in an effective correction to the previous energy-band structure and gives a new explanation for forming the band structure. The used method and obtained results could be a valuable aid in the study of energy bands in solid-state physics, and the new explanation may trigger investigation to different physical mechanism of electron band structures.

  18. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.

    PubMed

    Yuan, Jianmin

    2002-10-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.

  19. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    NASA Astrophysics Data System (ADS)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  20. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO(-).

    PubMed

    Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun

    2016-02-28

    The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  1. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO-

    NASA Astrophysics Data System (ADS)

    Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun

    2016-02-01

    The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  2. Atomic structure and electronic properties of MgO grain boundaries in tunnelling magnetoresistive devices

    PubMed Central

    Bean, Jonathan J.; Saito, Mitsuhiro; Fukami, Shunsuke; Sato, Hideo; Ikeda, Shoji; Ohno, Hideo; Ikuhara, Yuichi; McKenna, Keith P.

    2017-01-01

    Polycrystalline metal oxides find diverse applications in areas such as nanoelectronics, photovoltaics and catalysis. Although grain boundary defects are ubiquitous their structure and electronic properties are very poorly understood since it is extremely challenging to probe the structure of buried interfaces directly. In this paper we combine novel plan-view high-resolution transmission electron microscopy and first principles calculations to provide atomic level understanding of the structure and properties of grain boundaries in the barrier layer of a magnetic tunnel junction. We show that the highly [001] textured MgO films contain numerous tilt grain boundaries. First principles calculations reveal how these grain boundaries are associated with locally reduced band gaps (by up to 3 eV). Using a simple model we show how shunting a proportion of the tunnelling current through grain boundaries imposes limits on the maximum magnetoresistance that can be achieved in devices. PMID:28374755

  3. Electronics for Piezoelectric Smart Structures

    NASA Technical Reports Server (NTRS)

    Warkentin, D. J.; Tani, J.

    1997-01-01

    This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.

  4. Atomic and electronic structure of the CdTe(111)B–(2√3 × 4) orthogonal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekenev, V. L., E-mail: bekenev@ipms.kiev.ua; Zubkova, S. M.

    2017-01-15

    The atomic and electronic structure of four variants of Te-terminated CdTe(111)B–(2√3 × 4) orthogonal polar surface (ideal, relaxed, reconstructed, and reconstructed with subsequent relaxation) are calculated ab initio for the first time. The surface is modeled by a film composed of 12 atomic layers with a vacuum gap of ~16 Å in the layered superlattice approximation. To close Cd dangling bonds on the opposite side of the film, 24 fictitious hydrogen atoms with a charge of 1.5 electrons each are added. Ab initio calculations are performed using the Quantum Espresso program based on density functional theory. It is demonstrated thatmore » relaxation leads to splitting of the four upper layers. The band energy structures and total and layer-by-layer densities of electronic states for the four surface variants are calculated and analyzed.« less

  5. Electronic structure of strongly reduced (1 ‾ 1 1) surface of monoclinic HfO2

    NASA Astrophysics Data System (ADS)

    Cheng, YingXing; Zhu, Linggang; Ying, Yile; Zhou, Jian; Sun, Zhimei

    2018-07-01

    Material surface is playing an increasingly important role in electronic devices as their size down to nanoscale. Here, by first-principles calculations we studied the surface oxygen-vacancies (Vos) induced electronic-structure variation of HfO2 , in order to explore its potential applications in surface-controlled electronic devices. Firstly, it is found that single Vo tends to segregate onto the surface and attracts each other as they form pairs, making the formation of vacancies-contained functional surface possible. Then extensive Vo-chains whose formation/rupture can represent the high/low conductivity state are constructed. The electronic states induced by the Vos remain localized in the band-gap region for most of the Vo-chains studied here. A transition to a metallic conductance is found in metastable Vo-chain with formation energy increased by 0.25 eV per Vo. Moreover, we highlight the significance of the Hubbard U correction for density functional theory when studying the electronic-structure based conductance in the oxides. By comprehensive calculations, we find a conductivity-stability dilemma of the Vo-chains, providing guideline for understanding and designing the electronic devices based on HfO2 surface.

  6. Electronic structures of U X3 (X =Al , Ga, and In) studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2017-09-01

    The electronic structures of U X3 (X =Al , Ga , and In ) were studied by photoelectron spectroscopy to understand the relationship between their electronic structures and magnetic properties. The band structures and Fermi surfaces of UAl3 and UGa3 were revealed experimentally by angle-resolved photoelectron spectroscopy (ARPES), and they were compared with the result of band-structure calculations. The topologies of the Fermi surfaces and the band structures of UAl3 and UGa3 were explained reasonably well by the calculation, although bands near the Fermi level (EF) were renormalized owing to the finite electron correlation effect. The topologies of the Fermi surfaces of UAl3 and UGa3 are very similar to each other, except for some minor differences. Such minor differences in their Fermi surface or electron correlation effect might take an essential role in their different magnetic properties. No significant changes were observed between the ARPES spectra of UGa3 in the paramagnetic and antiferromagnetic phases, suggesting that UGa3 is an itinerant weak antiferromagnet. The effect of chemical pressure on the electronic structures of U X3 compounds was also studied by utilizing the smaller lattice constants of UAl3 and UGa3 than that of UIn3. The valence band spectrum of UIn3 is accompanied by a satellitelike structure on the high-binding-energy side. The core-level spectrum of UIn3 is also qualitatively different from those of UAl3 and UGa3. These findings suggest that the U 5 f states in UIn3 are more localized than those in UAl3 and UGa3.

  7. Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO{sub 3} from DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, E.; Henriques, J.M.; Azevedo, D.L.

    2011-04-15

    Orthorhombic SrSnO{sub 3} was investigated using density functional theory (DFT) considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The electronic band structure, density of states, complex dielectric function, optical absorption, and the infrared and Raman spectra were computed. Calculated lattice parameters are close to the experimental measurements, and an indirect band gap E(S{yields}{Gamma})=1.97eV (2.27 eV) was obtained within the GGA (LDA) level of calculation. Effective masses for holes and electrons were estimated, being very anisotropic in comparison with similar results for orthorhombic CaSnO{sub 3}. The complex dielectric function and the optical absorption of SrSnO{sub 3}more » were shown to be sensitive to the plane of polarization of the incident light. The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum of orthorhombic SrSnO{sub 3} was achieved. -- Graphical abstract: Orthorhombic SrSnO{sub 3}: a view of the unit cell (left) and plots showing the calculated and experimental Raman spectra (right). Display Omitted Research highlights: {yields} We have performed DFT calculations on orthorhombic SrSnO{sub 3} crystals, obtaining their structural, electronical and optical properties. {yields} An indirect band gap was obtained, and anisotropic effective masses were found for both electrons and holes. {yields} The complex dielectric function and the optical absorption of SrSnO{sub 3} were shown to be very sensitive to the plane of polarization of the incident light. {yields} The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum was achieved.« less

  8. Investigating the Surface Structure of γ-Al 2 O 3 Supported WO X Catalysts by High Field 27 Al MAS NMR and Electronic Structure Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Chuan; Hu, Mary Y.; Jaegers, Nicholas R.

    The metal-support interaction in γ-Al2O3 supported WOX catalysts is investigated by a combination of high field quantitative single pulse (SP) 27Al MAS NMR spectroscopy, 2D MQMAS, 1H-27Al CP/MAS, and electronic structure calculations. NMR allows the observation of at least seven different Al sites, including a pentahedral Al site, three different tetrahedral Al sites, and three octahedral Al sites. It is found that the penta-coordinated Al (AlP) site density decreases monotonically with an increased WOX loading while the octahedral Al (AlO) site density increases concurrently. This suggests that the Alp sites are the preferred surface anchoring positions for the WOX species.more » Importantly, the AlP site isotropic chemical shift observed for the unsupported γ-Al2O3 at about 38 ppm migrates into the octahedral region with a new isotropic chemical shift value appearing near 7 ppm when the Alp site is anchored by WOX species. Density functional theory (DFT) computational modeling of the NMR parameters on proposed cluster models is carried out to accurately interpret the dramatic chemical shift changes from which the detailed anchoring mechanisms are obtained. It is found that tungsten dimers and monomers are the preferred supported surface species on γ-Al2O3, wherein one monomeric and several dimeric structures are identified as the most likely surface anchoring structures.« less

  9. Structural, electronic and elastic properties of heavy fermion YbRh2 Laves phase compound

    NASA Astrophysics Data System (ADS)

    Pawar, Harsha; Shugani, Mani; Aynyas, Mahendra; Sanyal, Sankar P.

    2018-05-01

    The structural, electronic and elastic properties of YbRh2 Laves phase intermetallic compound which crystallize in cubic (MgCu2-type) structure have been investigated using ab-initio full potential linearized augmented plane wave (FP- LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for this compound which obeys the stability criteria for cubic system.

  10. Understanding PGM-free Catalysts by Linking Density Functional Theory Calculations and Structural Analysis: Perspectives and Challenges

    DOE PAGES

    Gonzales, Ivana; Artyushkova, Kateryna; Atanassov, Plamen

    2018-03-13

    Here, we discuss perspectives and challenges in applying density functional theory for the calculation of spectroscopic properties of platinum group metal (PGM)-free electrocatalysts for oxygen reduction. More specifically, we discuss recent advances in the density functional theory calculations of core-level shifts in binding energies of N 1s electrons as measured by X-ray photoelectron spectroscopy. The link between the density functional theory calculations, the electrocatalytic performance of the catalysts, and structural analysis using modern spectroscopic techniques is expected to significantly increase our understanding of PGM-free catalysts at the molecular level.

  11. Understanding PGM-free Catalysts by Linking Density Functional Theory Calculations and Structural Analysis: Perspectives and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, Ivana; Artyushkova, Kateryna; Atanassov, Plamen

    Here, we discuss perspectives and challenges in applying density functional theory for the calculation of spectroscopic properties of platinum group metal (PGM)-free electrocatalysts for oxygen reduction. More specifically, we discuss recent advances in the density functional theory calculations of core-level shifts in binding energies of N 1s electrons as measured by X-ray photoelectron spectroscopy. The link between the density functional theory calculations, the electrocatalytic performance of the catalysts, and structural analysis using modern spectroscopic techniques is expected to significantly increase our understanding of PGM-free catalysts at the molecular level.

  12. Towards Efficient and Accurate Description of Many-Electron Problems: Developments of Static and Time-Dependent Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi

    Understanding electronic behavior in molecular and nano-scale systems is fundamental to the development and design of novel technologies and materials for application in a variety of scientific contexts from fundamental research to energy conversion. This dissertation aims to provide insights into this goal by developing novel methods and applications of first-principle electronic structure theory. Specifically, we will present new methods and applications of excited state multi-electron dynamics based on the real-time (RT) time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) formalism, and new development of the multi-configuration self-consist field theory (MCSCF) for modeling ground-state electronic structure. The RT-TDHF/TDDFT based developments and applications can be categorized into three broad and coherently integrated research areas: (1) modeling of the interaction between moleculars and external electromagnetic perturbations. In this part we will first prove both analytically and numerically the gauge invariance of the TDHF/TDDFT formalisms, then we will present a novel, efficient method for calculating molecular nonlinear optical properties, and last we will study quantum coherent plasmon in metal namowires using RT-TDDFT; (2) modeling of excited-state charge transfer in molecules. In this part, we will investigate the mechanisms of bridge-mediated electron transfer, and then we will introduce a newly developed non-equilibrium quantum/continuum embedding method for studying charge transfer dynamics in solution; (3) developments of first-principles spin-dependent many-electron dynamics. In this part, we will present an ab initio non-relativistic spin dynamics method based on the two-component generalized Hartree-Fock approach, and then we will generalized it to the two-component TDDFT framework and combine it with the Ehrenfest molecular dynamics approach for modeling the interaction between electron spins and nuclear

  13. Calculated high-pressure structural properties, lattice dynamics and quasi particle band structures of perovskite fluorides KZnF3, CsCaF3 and BaLiF3

    NASA Astrophysics Data System (ADS)

    Vaitheeswaran, G.; Kanchana, V.; Zhang, Xinxin; Ma, Yanming; Svane, A.; Christensen, N. E.

    2016-08-01

    A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent GW approximation. The GW calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.

  14. Calculated high-pressure structural properties, lattice dynamics and quasi particle band structures of perovskite fluorides KZnF3, CsCaF3 and BaLiF3.

    PubMed

    Vaitheeswaran, G; Kanchana, V; Zhang, Xinxin; Ma, Yanming; Svane, A; Christensen, N E

    2016-08-10

    A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent [Formula: see text] approximation. The [Formula: see text] calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.

  15. Effect of chromium doping on the correlated electronic structure of V2O3

    NASA Astrophysics Data System (ADS)

    Grieger, Daniel; Lechermann, Frank

    2014-09-01

    The archetypical strongly correlated Mott-phenomena compound V2O3 is known to show a paramagnetic metal-insulator transition driven by doping with chromium atoms and/or (negative) pressure. Via charge self-consistent density-functional theory+dynamical mean-field theory calculations we demonstrate that these two routes cannot be understood as equivalent. An explicit description of Cr-doped V2O3 by means of supercell calculations and the virtual crystal approximation is performed. Introducing chromium's additional electron to the system is shown to modify the overall many-body electronic structure substantially. Chromium doping increases electronic correlations which in addition induce charge transfers between Cr and the remaining V ions. Thereby the transition-metal orbital polarization is increased by the electron doping, in close agreement with experimental findings.

  16. Molecular structure of the trans and cis isomers of metal-free phthalocyanine studied by gas-phase electron diffraction and high-level quantum chemical calculations: NH tautomerization and calculated vibrational frequencies.

    PubMed

    Strenalyuk, Tatyana; Samdal, Svein; Volden, Hans Vidar

    2008-05-29

    The molecular structure of the trans isomer of metal-free phthalocyanine (H2Pc) is determined using the gas electron diffraction (GED) method and high-level quantum chemical calculations. B3LYP calculations employing the basis sets 6-31G**, 6-311++G**, and cc-pVTZ give two tautomeric isomers for the inner H atoms, a trans isomer having D2h symmetry and a cis isomer having C2v symmetry. The trans isomer is calculated to be 41.6 (B3LYP/6-311++G**, zero-point corrected) and 37.3 kJ/mol (B3LYP/cc-pVTZ, not zero-point corrected) more stable than the cis isomer. However, Hartree-Fock (HF) calculations using different basis sets predict that cis is preferred and that trans does not exist as a stable form of the molecule. The equilibrium composition in the gas phase at 471 degrees C (the temperature of the GED experiment) calculated at the B3LYP/6-311++G** level is 99.8% trans and 0.2% cis. This is in very good agreement with the GED data, which indicate that the mole fraction of the cis isomer is close to zero. The transition states for two mechanisms of the NH tautomerization have been characterized. A concerted mechanism where the two H atoms move simultaneously yields a transition state of D2h symmetry and an energy barrier of 95.8 kJ/mol. A two-step mechanism where a trans isomer is converted to a cis isomer, which is converted into another trans isomer, proceeds via two transition states of C(s) symmetry and an energy barrier of 64.2 kJ/mol according to the B3LYP/6-311++G** calculation. The molecular geometry determined from GED is in very good agreement with the geometry obtained from the quantum chemical calculations. Vibrational frequencies, IR, and Raman intensities have been calculated using B3LYP/6-311++G**. These calculations indicate that the molecule is rather flexible with six vibrational frequencies in the range of 20-84 cm(-1) for the trans isomer. The cis isomer might be detected by infrared matrix spectroscopy since the N-H stretching frequencies are

  17. Electronic structures of of PuX (X=S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Maehira, Takahiro; Sakai, Eijiro; Tatetsu, Yasutomi

    2013-08-01

    We have calculated the energy band structures and the Fermi surfaces of PuS, PuSe, and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in the local density approximation. In general, the energy bands near the Fermi level are mainly caused by the hybridization between the Pu 5 f and the monochalcogenide p electrons. The obtained main Fermi surfaces consisted of two hole sheets and one electron sheet, which were constructed from the band having both the Pu 5 f state and the monochalcogenide p state.

  18. Fingerprint-Based Structure Retrieval Using Electron Density

    PubMed Central

    Yin, Shuangye; Dokholyan, Nikolay V.

    2010-01-01

    We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. PMID:21287628

  19. Self-consistent calculations for the electronic structure of a vacancy in copper. A solution of the embedding problem

    NASA Astrophysics Data System (ADS)

    Zeller, R.; Braspenning, P. J.

    1982-06-01

    The charge density and the local density of states for a vacancy in Cu and for the first shell of Cu neighbours are calculated by the KKR-Green's function technique. The muffin-tin potentials for the vacancy and the neighbour shell atoms are determined self-consistently in the local density approximation of density functional theory. By the use of the proper host Green's function the embedding of this cluster of 13 perturbed muffin-tins into the infinite array of bulk Cu muffin-tin potentials is described rigorously, thus representing a solution of the embedding problem. The calculations demonstrate a rather large charge transfer of 1.1 electrons from the first neighbour shell to the vacancy.

  20. Structural, electronic and magnetic properties of chevron-type graphene, BN and BC{sub 2}N nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, T.; Azevedo, S.; Kaschny, J.R.

    2017-04-15

    Graphene nanoribbons are predicted to be essential components in future nanoelectronics. The size, edge type, arrangement of atoms and width of nanoribbons drastically change their properties. Boronnitrogencarbon nanoribbons properties are not fully understood so far. In the present contribution it was investigated the structural, electronic and magnetic properties of chevron-type carbon, boron nitride and BC{sub 2}N nanoribbons, using first-principles calculations. The results indicate that the structural stability is closely related to the discrepancies in the bond lengths, which can induce structural deformations and stress. Such nanoribbons present a wide range of electronic behaviors, depending on their composition and particularities ofmore » the atomic arrangement. A net magnetic moment is found for structures that present carbon atoms at the nanoribbon borders. Nevertheless, the calculated magnetic moment depends on the peculiarities of the symmetric arrangement of atoms and imbalance of carbon atoms between different sublattices. It was found that all structures which have a significant energy gap do not present magnetic moment, and vice-versa. Such result indicates the strong correlation between the electronic and magnetic properties of the chevron-type nanoribbons. - Highlights: • Small discrepancies between distinct bond lengths can influence the formation energy of the BC{sub 2}N nanoribbons. • The electronic behavior of the BC{sub 2}N chevron-type nanoribbons depends on the atomic arrangement and structural symmetries. • There is a strong correlation between the electronic and magnetic properties for the BC{sub 2}N structures.« less

  1. Electronic structure of some complex thermoelectrics - role of dimensional confinement and nanostructuring

    NASA Astrophysics Data System (ADS)

    Mahanti, Subhendra D.; Hoang, Khang

    2016-12-01

    Thermoelectric materials are of great current interest for a number of energy-related applications such as waste heat recovery, terrestrial cooling, and thermoelectric power generation. There have been several significant recent advances in improving the thermoelectric figure of merit ZT; in some instances, ZT > 2 at high temperatures. Concepts like electron-crystal phonon-glass, dimensional confinement, nanostructuring, energy filtering, and intrinsic lattice anharmonicity have not only acted as guiding principles in synthesizing new materials but also for electronic structure engineering using theoretical calculations. In this review paper, we discuss these concepts and present a few examples of theoretical studies of electronic structure and transport properties illustrating how some of these ideas work. The four types of systems we discuss are quaternary chalcogenides LAST-m, nanoscale mixtures of half-Heusler and Heusler compounds, ternary chalcogenide compounds of type ABX2 where the electronic structure near the band gap depends sensitively on the ordering of A and B atoms, and naturally occurring bulk superlattices formed out of alternating ionic and semiconducting bilayers as in SrFAgTe.

  2. Structures, phase transitions, and magnetic properties of C o3Si from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Yu, Shu; Wu, Shunqing; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-07-01

    C o3Si was recently reported to exhibit remarkable magnetic properties in the nanoparticle form [B. Balasubramanian et al., Appl. Phys. Lett. 108, 152406 (2016)], 10.1063/1.4945987, yet better understanding of this material should be promoted. Here we report a study on the crystal structures of C o3Si using an adaptive genetic algorithm and discuss its electronic and magnetic properties from first-principles calculations. Several competing phases of C o3Si have been revealed from our calculations. We show that the hexagonal C o3Si structure reported in experiments has lower energy in the nonmagnetic state than in the ferromagnetic state at zero temperature. The ferromagnetic state of the hexagonal structure is dynamically unstable with imaginary phonon modes and transforms into a new orthorhombic structure, which is confirmed by our structure searches to have the lowest energy for both C o3Si and C o3Ge . Magnetic properties of the experimental hexagonal structure and the lowest-energy structures obtained from our structure searches are investigated in detail.

  3. Structural, electronic, mechanical and magnetic properties of rare earth nitrides REN (RE= Pm, Eu and Yb)

    NASA Astrophysics Data System (ADS)

    Murugan, A.; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.

    2015-07-01

    The structural, electronic and mechanical properties of rare earth nitrides REN (RE=Pm, Eu and Yb) are investigated in NaCl and CsCl, and zinc blende structures using first principles calculations based on density functional theory. The calculated lattice parameters are in good agreement with the available results. Among the considered structures, these nitrides are most stable in NaCl structure. A pressure induced structural phase transition from NaCl to CsCl phase is observed in all these nitrides. The electronic structure reveals that these rare earth nitrides are half metallic at normal pressure. These nitrides are found to be covalent and ionic in the stable phase. The computed elastic constants indicate that these nitrides are mechanically stable and elastically anisotropic. Our results confirm that these nitrides are ferromagnetic in nature. A ferromagnetic to non-magnetic phase transition is observed at the pressures of 21.5 GPa and 46.1 GPa in PmN and YbN respectively.

  4. Monte Carlo calculations of energy deposition distributions of electrons below 20 keV in protein.

    PubMed

    Tan, Zhenyu; Liu, Wei

    2014-05-01

    The distributions of energy depositions of electrons in semi-infinite bulk protein and the radial dose distributions of point-isotropic mono-energetic electron sources [i.e., the so-called dose point kernel (DPK)] in protein have been systematically calculated in the energy range below 20 keV, based on Monte Carlo methods. The ranges of electrons have been evaluated by extrapolating two calculated distributions, respectively, and the evaluated ranges of electrons are compared with the electron mean path length in protein which has been calculated by using electron inelastic cross sections described in this work in the continuous-slowing-down approximation. It has been found that for a given energy, the electron mean path length is smaller than the electron range evaluated from DPK, but it is large compared to the electron range obtained from the energy deposition distributions of electrons in semi-infinite bulk protein. The energy dependences of the extrapolated electron ranges based on the two investigated distributions are given, respectively, in a power-law form. In addition, the DPK in protein has also been compared with that in liquid water. An evident difference between the two DPKs is observed. The calculations presented in this work may be useful in studies of radiation effects on proteins.

  5. Calculated gadolinium atomic electron energy levels and Auger electron emission probability as a function of atomic number Z

    NASA Astrophysics Data System (ADS)

    Miloshevsky, G. V.; Tolkach, V. I.; Shani, Gad; Rozin, Semion

    2002-06-01

    Auger electron interaction with matter is gaining importance in particular in medical application of radiation. The production probability and energy spectrum is therefore of great importance. A good source of Auger electrons is the 157Gd(n,γ) 158Gd reaction. The present article describes calculations of electron levels in Gd atoms and provides missing data of outer electron energy levels. The energy of these electron levels missing in published tables, was found to be in the 23-24 and 6-7 eV energy ranges respectively. The probability of Auger emission was calculated as an interaction of wave function of the initial and final electron states. The wave functions were calculated using the Hartree-Fock-Slater approximation with relativistic correction. The equations were solved using a spherical symmetry potential. The error for inner shell level is less than 10%, it is increased to the order of 10-15% for the outer shells. The width of the Auger process changes from 0.1 to 1.2 eV for atomic number Z from 5 to 70. The fluorescence yield width changes five orders of magnitude in this range. Auger electron emission width from the K shell changes from 10 -2 to ˜1 eV with Z changing from 10 to 64, depending on the final state. For the L shell it changes from 0 to 0.25 when it Z changes from 20 to 64.

  6. Polarized atomic orbitals for self-consistent field electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Head-Gordon, Martin

    1997-12-01

    We present a new self-consistent field approach which, given a large "secondary" basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small "primary" basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO's) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO's derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO's are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO's are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.

  7. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations.

    PubMed

    Suhasini, M; Sailatha, E; Gunasekaran, S; Ramkumaar, G R

    2015-04-15

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the (13)C and (1)H NMR chemical shifts of Carbamazepine. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Ab-initio calculation of electronic structure and optical properties of AB-stacked bilayer α-graphyne

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2016-09-01

    Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.

  9. Optical and electronic structure description of metal-doped phthalocyanines.

    PubMed

    Leal, Luciano Almeida; da Cunha, Wiliam Ferreira; Ribeiro Junior, Luiz Antonio; Pereira, Tamires Lima; Blawid, Stefan Michael; de Sousa Junior, Rafael Timóteo; da Silva Filho, Demétrio Antonio

    2017-05-01

    Phthalocyanines represent a crucial class of organic compounds with high technological appeal. By doping the center of these systems with metals, one obtains the so-called metal-phthalocyanines, whose property of being an effective electron donor allows for potentially interesting uses in organic electronics. In this sense, investigating optical and electronic structure changes in the phthalocyanine profiles in the presence of different metals is of fundamental importance for evaluating the appropriateness of the resulting system as far as these uses are concerned. In the present work, we carry out this kind of effort for phthalocyanines doped with different metals, namely, copper, nickel, and magnesium. Density functional theory was applied to obtain the absorption spectra, and electronic and structural properties of the complexes. Our results suggest that depending on the dopant, a different level of change is achieved. Moreover, electrostatic potential energy mapping shows how the charge distribution can be affected by solar radiation. Our contribution is crucial in describing the best possible candidates for use in different organic photovoltaic applications. Graphical Abstract Representation of meta-phthalocyanine systems. All calculations of this work are based on varying metal position along z axis, considering the z-axis has its zero point matching with the center of phthalocyanine cavityconsidering.

  10. Effect of potassium doping on electronic structure and thermoelectric properties of topological crystalline insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roychowdhury, Subhajit; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in; Sandhya Shenoy, U.

    2016-05-09

    Topological crystalline insulator (TCI), Pb{sub 0.6}Sn{sub 0.4}Te, exhibits metallic surface states protected by crystal mirror symmetry with negligibly small band gap. Enhancement of its thermoelectric performances needs tuning of its electronic structure particularly through engineering of its band gap. While physical perturbations tune the electronic structure of TCI by breaking of the crystal mirror symmetry, chemical means such as doping have been more attractive recently as they result in better thermoelectric performance in TCIs. Here, we demonstrate that K doping in TCI, Pb{sub 0.6}Sn{sub 0.4}Te, breaks the crystal mirror symmetry locally and widens electronic band gap, which is confirmed bymore » direct electronic absorption spectroscopy and electronic structure calculations. K doping in Pb{sub 0.6}Sn{sub 0.4}Te increases p-type carrier concentration and suppresses the bipolar conduction via widening a band gap, which collectively boosts the thermoelectric figure of merit (ZT) to 1 at 708 K.« less

  11. Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schober, Christoph; Reuter, Karsten; Oberhofer, Harald, E-mail: harald.oberhofer@ch.tum.de

    2016-02-07

    We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT) scheme for the calculation of electronic coupling values. We discuss the characteristics of different possible formulations or “flavors” of the scheme which differ by the number of electrons in the calculation of the fragments and the construction of the Hamiltonian. In addition to two previously described variants based on neutral fragments, we present a third version taking a different route to the approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer),more » we find that our new scheme gives improved electronic couplings for HAB7 (−6.2% decrease in mean relative signed error) and greatly improved electronic couplings for HAB11 (−15.3% decrease in mean relative signed error). A systematic investigation of the influence of exact exchange on the electronic coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the electronic couplings, giving values close to or even better than more sophisticated constrained DFT calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-fragment calculations performs best, while numerically more efficient at reasonable accuracy is the variant with neutral fragments.« less

  12. Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.

    2010-12-01

    We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.

  13. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes.

    PubMed

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  14. Fingerprint-based structure retrieval using electron density.

    PubMed

    Yin, Shuangye; Dokholyan, Nikolay V

    2011-03-01

    We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.

  15. Electronic structure of R Sb ( R = Y , Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy

    DOE PAGES

    Wu, Yun; Lee, Yongbin; Kong, Tai; ...

    2017-07-15

    Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less

  16. Electronic structure of R Sb ( R = Y , Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Lee, Yongbin; Kong, Tai

    Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less

  17. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken-Hush and block diagonalization methods

    NASA Astrophysics Data System (ADS)

    Cave, Robert J.; Newton, Marshall D.

    1997-06-01

    Two independent methods are presented for the nonperturbative calculation of the electronic coupling matrix element (Hab) for electron transfer reactions using ab initio electronic structure theory. The first is based on the generalized Mulliken-Hush (GMH) model, a multistate generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on the block diagonalization (BD) approach of Cederbaum, Domcke, and co-workers. Detailed quantitative comparisons of the two methods are carried out based on results for (a) several states of the system Zn2OH2+ and (b) the low-lying states of the benzene-Cl atom complex and its contact ion pair. Generally good agreement between the two methods is obtained over a range of geometries. Either method can be applied at an arbitrary nuclear geometry and, as a result, may be used to test the validity of the Condon approximation. Examples of nonmonotonic behavior of the electronic coupling as a function of nuclear coordinates are observed for Zn2OH2+. Both methods also yield a natural definition of the effective distance (rDA) between donor (D) and acceptor (A) sites, in contrast to earlier approaches which required independent estimates of rDA, generally based on molecular structure data.

  18. FP-LAPW calculations of the elastic, electronic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankar, A., E-mail: amitshan2009@gmail.com; Rai, D.P.; Chettri, Sandeep

    2016-08-15

    We have investigated the electronic structure, elastic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12} using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) approach is used to perform the calculations presented here. The electronic structure calculation suggests an indirect band gap semiconducting nature of the material with energy band gap of 0.08 eV. The analysis of the elastic constants at relaxed positions reveals the ductile nature of the sample material with covalent contribution in the inter-atomic bonding. The narrow band gap semiconductingmore » nature with high value of Seebeck coefficient suggests the possibility of the thermoelectric application of the material. The analysis of the thermal transport properties confirms the result obtained from the energy band structure of the material with high thermopower and dimensionless figure of merit 0.19 at room temperature.« less

  19. Synthesis, electronic structure investigation of 3-pentyl-2,6-di(furan-2-yl)piperidin-4-one by FT-IR, FT-Raman and UV-Visible spectral studies and ab initio/DFT calculations.

    PubMed

    Arockia Doss, M; Savithiri, S; Rajarajan, G; Thanikachalam, V; Anbuselvan, C

    2015-12-05

    FT-IR and FT-Raman spectra of 3-pentyl-2,6-di(furan-2-yl) piperidin-4-one (3-PFPO) were recorded in the solid phase. The structural and spectroscopic analyses of 3-PFPO were made by using B3LYP/HF level with 6-311++G(d, p) basis set. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Comparison of the observed fundamental vibrational frequencies of 3-PFPO with calculated results by HF and DFT methods indicates that B3LYP is superior to HF method for molecular vibrational problems. The electronic properties such as excitation energies, oscillator strength, wavelengths and HOMO-LUMO energies were obtained by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E((2))) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen, oxygen and hydrogen were calculated using B3LYP/6-311++G(d, p) level theory. Moreover, thermodynamic properties (heat capacities, entropy and enthalpy) of the title compound at different temperatures were calculated in gas phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Electronic structure and static dipole polarizability of C60@C240

    NASA Astrophysics Data System (ADS)

    Zope, Rajendra R.

    2008-04-01

    The electronic structure of C60@C240 and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C240 shell almost completely shields the inner C60 as inferred from the practically identical values of dipole polarizability of the C60@C240 onion (449 Å3) and that of the isolated C240 fullerene (441 Å3). The C60@C240 is thus a near-perfect Faraday cage.

  1. Anomalous electronic structure and magnetoresistance in TaAs 2

    DOE PAGES

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; ...

    2016-01-01

    We report that the change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs 2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. In conclusion, density functional calculations find that TaAs 2 is a new topological semimetal [Z 2more » invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.« less

  2. Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Zatsepin, D. A.; Boukhvalov, D. W.; Zatsepin, A. F.; Kuznetsova, Yu. A.; Mashkovtsev, M. A.; Rychkov, V. N.; Shur, V. Ya.; Esin, A. A.; Kurmaev, E. Z.

    2018-04-01

    The cubic (c) and monoclinic (m) polymorphs of Gd2O3 were studied using the combined analysis of several materials science techniques - X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. Density functional theory (DFT) based calculations for the samples under study were performed as well. The cubic phase of gadolinium oxide (c-Gd2O3) synthesized using a precipitation method exhibits spheroidal-like nanoclusters with well-defined edges assembled from primary nanoparticles with an average size of 50 nm, whereas the monoclinic phase of gadolinium oxide (m-Gd2O3) deposited using explosive pyrolysis has a denser structure compared with natural gadolinia. This phase also has a structure composed of three-dimensional complex agglomerates without clear-edged boundaries that are ∼21 nm in size plus a cubic phase admixture of only 2 at.% composed of primary edge-boundary nanoparticles ∼15 nm in size. These atomic features appear in the electronic structure as different defects ([Gd…Osbnd OH] and [Gd…Osbnd O]) and have dissimilar contributions to the charge-transfer processes among the appropriate electronic states with ambiguous contributions in the Gd 5р - O 2s core-like levels in the valence band structures. The origin of [Gd…Osbnd OH] defects found by XPS was well-supported by PL analysis. The electronic and atomic structures of the synthesized gadolinias calculated using DFT were compared and discussed on the basis of the well-known joint OKT-van der Laan model, and good agreement was established.

  3. Energies of the X- and L-valleys in In{sub 0.53}Ga{sub 0.47}As from electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene-Diniz, Gabriel; Greer, J. C.; Fischetti, M. V.

    2016-02-07

    Several theoretical electronic structure methods are applied to study the relative energies of the minima of the X- and L-conduction-band satellite valleys of In{sub x}Ga{sub 1−x}As with x = 0.53. This III-V semiconductor is a contender as a replacement for silicon in high-performance n-type metal-oxide-semiconductor transistors. The energy of the low-lying valleys relative to the conduction-band edge governs the population of channel carriers as the transistor is brought into inversion, hence determining current drive and switching properties at gate voltages above threshold. The calculations indicate that the position of the L- and X-valley minima are ∼1 eV and ∼1.2 eV, respectively, higher in energymore » with respect to the conduction-band minimum at the Γ-point.« less

  4. Electron Scattering Studies of Gas Phase Molecular Structure at High Temperature

    NASA Astrophysics Data System (ADS)

    Mawhorter, Richard J., Jr.

    A high precision counting electron diffraction study of the structure of gaseous sulfur dioxide as a function of temperature from 300(DEGREES) to 1000(DEGREES)K is presented. The results agree well with current theory, and yield insight into the effects of anharmonicity on molecular structure. Another aspect of molecular structure is the molecular charge density distribution. The difference (DELTA)(sigma) is between the electron scattering cross sections for the actual molecule and independent atom model (IAM) are a sensitive measure of the change in this distribution due to bond formation. These difference cross sections have been calculated using ab initio methods, and the results for a wide range of simple polyatomic molecules are presented. Such calculations are routinely done for a single, fixed molecular geometry, an approach which neglects the effects of the vibrational motion of real molecules. The effect of vibrational averaging is studied in detail for the three normal vibrational modes of H(,2)O in the ground state. The effects are small, lending credence to the practice of comparing cross sections calculated at a fixed geometry with inherently averaged experimental data. The efficacy of the standard formula used to account for vibrational averaging in the IAM is also examined. Finally, the nature of the ionic bond is probed with an experimental study of the structure of alkali chlorides, NaCl, KCl, RbCl, and CsCl, in the gas phase. Temperatures from 840-960(DEGREES)K were required to achieve the necessary vapor pressures of approximately 0.01 torr. A planar rhombic structure for the dimer molecule is confirmed, with a fairly uniform decrease of the chlorine-alkali-chlorine angle as the alkalis increase in size. The experiment also yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.

  5. Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.

  6. Effect of Hydrostatic Pressure on the Structural, Electronic and Optical Properties of SnS2 with a Cubic Structure: The DFT Approach

    NASA Astrophysics Data System (ADS)

    Bakhshayeshi, A.; Taghavi Mendi, R.; Majidiyan Sarmazdeh, M.

    2018-02-01

    Recently, a cubic structure of polymorphic SnS2 has been synthesized experimentally, which is stable at room temperature. In this paper, we calculated some structural, electronic and optical properties of the cubic SnS2 structure based on the full potential-linearized augmented plane waves method. We also studied the effect of hydrostatic pressure on the physical properties of the cubic SnS2 structure. Structural results show that the compressibility of the cubic SnS2 phase is greater than its trigonal phase and the compressibility decreases with increasing pressure. Investigations of the electronic properties indicate that pressure changes the density of states and the energy band gap increases with increasing pressure. The variation of energy band gap versus pressure is almost linear. We concluded that cubic SnS2 is a semiconductor with an indirect energy band gap, like its trigonal phase. The optical calculations revealed that the dielectric constant decreases with increasing pressure, and the width of the forbidden energy interval increases for electromagnetic wave propagation. Moreover, plasmonic energy and refractive index are changed with increasing pressure.

  7. First-principles calculations on electronic properties of single-walled carbon nanotubes for H{sub 2}S gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muliyati, Dewi, E-mail: dmuliyati@unj.ac.id; Dept. of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta; Wella, Sasfan A.

    2015-09-30

    In this research, we performed first-principles calculations by means of density functional theory (DFT) to investigate the interaction of H{sub 2}S gas on the surface of single-walled carbon nanotubes (SWNTs). In order to understand the effect of chirality to the electronic structure of SWNTs/H{sub 2}S, the pristine SWNTs was varied to become SWNTs (5,0), (6,0), (7,0), (8,0), (9,0), and (10,0). From the calculation we found that after H{sub 2}S adsorbed on surface of SWNTs, the electronic properties of system changes from semiconductor to metal but not vice versa. It was only SWNTs (5,0), (7,0), (8,0), and (10,0) occuring the changingmore » on its electronic properties behavior, others were remain similar with its initial behavior. In the degassing process, metal return to semiconductor behavior, which is an indication that SWNTs is a good gas sensors, responsive and reversible.« less

  8. Ab initio investigation of the structural and electronic properties of amorphous HgTe.

    PubMed

    Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei

    2014-01-29

    We present the structure and electronic properties of amorphous mercury telluride obtained from first-principle calculations. The initial configuration of amorphous mercury telluride is created by computation alchemy. According to different exchange–correlation functions in our calculations, we establish two 256-atom models. The topology of both models is analyzed in terms of radial and bond angle distributions. It is found that both the Te and the Hg atoms tend to be fourfold, but with a wrong bond rate of about 10%. The fraction of threefold and fivefold atoms also shows that there are a significant number of dangling and floating bonds in our models. The electronic properties are also obtained. It is indicated that there is a bandgap in amorphous HgTe, in contrast to the zero bandgap for crystalline HgTe. The structures of the band tail and defect states are also discussed.

  9. Modulation of electronic structures of bases through DNA recognition of protein.

    PubMed

    Hagiwara, Yohsuke; Kino, Hiori; Tateno, Masaru

    2010-04-21

    The effects of environmental structures on the electronic states of functional regions in a fully solvated DNA·protein complex were investigated using combined ab initio quantum mechanics/molecular mechanics calculations. A complex of a transcriptional factor, PU.1, and the target DNA was used for the calculations. The effects of solvent on the energies of molecular orbitals (MOs) of some DNA bases strongly correlate with the magnitude of masking of the DNA bases from the solvent by the protein. In the complex, PU.1 causes a variation in the magnitude among DNA bases by means of directly recognizing the DNA bases through hydrogen bonds and inducing structural changes of the DNA structure from the canonical one. Thus, the strong correlation found in this study is the first evidence showing the close quantitative relationship between recognition modes of DNA bases and the energy levels of the corresponding MOs. Thus, it has been revealed that the electronic state of each base is highly regulated and organized by the DNA recognition of the protein. Other biological macromolecular systems can be expected to also possess similar modulation mechanisms, suggesting that this finding provides a novel basis for the understanding for the regulation functions of biological macromolecular systems.

  10. Quantum Monte Carlo for electronic structure: Recent developments and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriquez, Maria Milagos Soto

    Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined bymore » the accuracy of the trial wave function`s nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C 2H and C 2H 2. The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included.« less

  11. Effect of hydrostatic pressure on the structural and electronic properties of Cd{sub 0.75}Cr{sub 0.25}S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Anita; Kaur, Kulwinder; Kumar, Ranjan

    In this paper we present the results obtained from first principle calculations of the effect of hydrostatic pressure on the structural and electronic properties of Cd{sub 1-x}Cr{sub x}S diluted magnetic semiconductor in Zinc Blende (B3) phase at x=0.25. High pressure behavior of Cd{sub 1-x}Cr{sub x}S has been investigated between 0 GPa to 100 GPa The calculations have been performed using Density functional theory as implemented in the Spanish Initiative for Electronic Simulations with Thousands of Atoms code using local density approximation as exchange-correlation (XC) potential. Calculated electronic band structures of Cd{sub 1-x}Cr{sub x}S are discussed in terms of contribution ofmore » Cr 3d{sup 5} 4s{sup 1}, Cd 4d{sup 10} 5s{sup 2}, S 3s{sup 2} 3p{sup 4} orbital’s. Study of band structures shows half-metallic ferromagnetic nature of Cd{sub 0.75}Cr{sub 0.25}S with 100% spin polarization. Under application of external pressure, the valence band and conduction band are shifted upward which leads to modification of electronic structure.« less

  12. Photoemission study of the electronic structure and charge density waves of Na₂Ti₂Sb₂O

    DOE PAGES

    Tan, S. Y.; Jiang, J.; Ye, Z. R.; ...

    2015-04-30

    The electronic structure of Na₂Ti₂Sb₂O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na₂Ti₂Sb₂O in the non-magnetic state, which indicates that there is no magnetic order in Na₂Ti₂Sb₂O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na₂Ti₂Sb₂O. Photon energy dependent ARPES results suggest that the electronic structure of Na₂Ti₂Sb₂O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV atmore » 7 K, indicating that Na₂Ti₂Sb₂O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime. (author)« less

  13. Stable holey two-dimensional C2N structures with tunable electronic structure

    NASA Astrophysics Data System (ADS)

    Longuinhos, R.; Ribeiro-Soares, J.

    2018-05-01

    C2N holey two-dimensional crystals, or C2N -h2D, a recently synthesized carbon nitride layered material, show promising properties for electronic devices, highly selective molecular filters, and supercapacitors. Few studies have investigated the stacking order in C2N -h2D, which is fundamental to determine its optical activity and plays an important role in its band gap and in the diffusion barrier for ions and molecules through its structure. In this work, we investigate the phonon stability of several bulk C2N -h2D polytypes by using first-principles calculations. Among the polytypes addressed, only one does not display phonon instabilities and is expected to be observed in equilibrium. The electronic structure evolution of dynamically stable C2N -h2D from monolayer to bilayer and to bulk is unveiled. The direct band gap at Γ can be decreased by 34% from monolayer to bulk, offering opportunities for tuning it in optoelectronics. In addition, the effective masses of both carriers become smaller as the number of layers increases, and their anisotropy along in-plane directions displayed in the monolayer is reduced, which suggest that the carrier mobility may be tuned as well. These effects are then explained according to the interaction of the orbitals in neighboring layers. The results presented here shed light on the geometry and electronic structure of an emerging layered material due to its specific stacking and increasing number of layers and suggest new perspectives for applications in optoelectronics.

  14. Vibrational, structural and electronic properties investigation by DFT calculations and molecular docking studies with DNA topoisomerase II of strychnobrasiline type alkaloids: A theoretical approach for potentially bioactive molecules

    NASA Astrophysics Data System (ADS)

    Costa, Renyer A.; Oliveira, Kelson M. T.; Costa, Emmanoel Vilaça; Pinheiro, Maria L. B.

    2017-10-01

    A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline is presented using the Becke three-parameter Lee-Yang-Parr function (B3LYP) and 6-311G(2d,p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing close values. The calculated HOMO-LUMO gap values showed that the presence of substituents in the benzene ring influences the quantum properties which are directly related to the reactive properties. Theoretical UV spectra agreed well with the measured experimental data, with bands assigned. In addition, Natural Bond Orbitals (NBOs), Mapped molecular electrostatic potential surface (MEPS) and NLO calculations were also performed at the same theory level. The theoretical vibrational analysis revealed several characteristic vibrations that may be used as a diagnostic tool for other strychnobrasiline type alkaloids, simplifying their identification and structural characterization. Molecular docking calculations with DNA Topoisomerase II-DNA complex showed binding free energies values of -8.0 and -9.5 kcal/mol for strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline respectively, while for amsacrine, used for the treatment of leukemia, the binding free energy ΔG presented a value of -10.0 kcal/mol, suggesting that strychnobrasiline derivative alkaloids might exhibit an antineoplastic activity.

  15. Algorithm for quantum-mechanical finite-nuclear-mass variational calculations of atoms with two p electrons using all-electron explicitly correlated Gaussian basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy

    2009-12-15

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.

  16. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    PubMed Central

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-01-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415

  17. First-principles study of the structural, electronic and thermal properties of CaLiF3

    NASA Astrophysics Data System (ADS)

    Chouit, N.; Amara Korba, S.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.

    2013-09-01

    Density functional theory calculations have been performed to study the structural, electronic and optical properties of CaLiF3 cubic fluoroperovskite. Our calculations were carried out by means of the full-potential linearized augmented plane-wave method. The exchange-correlation potential is treated by the local density approximation and the generalized gradient approximation (GGA) (Perdew, Burke and Ernzerhof). Moreover, the alternative form of GGA proposed by Engel and Vosko is also used for band structure calculations. The calculated total energy versus volume allows us to obtain structural properties such as the lattice constant (a0), bulk modulus (B0) and pressure derivative of the bulk modulus (B'0 ). Band structure, density of states and band gap pressure coefficients are also given. Our calculations show that CaLiF3 has an indirect band gap (R-Γ). Following the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacities are calculated.

  18. Atomic structures and electronic properties of 2H-NbSe2: The impact of Ti doping

    NASA Astrophysics Data System (ADS)

    Li, Hongping; Chen, Lin; Zhang, Kun; Liang, Jiaqing; Tang, Hua; Li, Changsheng; Liu, Xiaojuan; Meng, Jian; Wang, Zhongchang

    2014-09-01

    Layered transition metal dichalcogenides have aroused renewed interest as electronic materials, yet their electronic performances could be modified by chemical doping. Here, we perform a systematic first-principles calculation to investigate the effect of Ti doping on atomic structure and electronic properties of the 2H-NbSe2. We consider a total of three possible Ti-doping models and find that both the substitution and intercalated models are chemically preferred with the intercalation model being more favorable than the substitution one. Structural analyses reveal a slight lattice distortion triggered by Ti doping, but the original structure of 2H-NbSe2 is maintained. We also observe an expansion of c axis in the substituted model, which is attributed to the reduced van der Waals interaction arising from the increased Se-Se bond length. Our calculations also predict that the electron transport properties can be enhanced by the Ti doping, especially for the Ti-intercalated 2H-NbSe2, which should be beneficial for the realization of superconductivity. Furthermore, the covalence element is found in the Ti-Se bonds, which is ascribed to the hybridization of Ti 3d and Se 4p orbitals. The findings indicate that doping of transition metals can be regarded as a useful way to tailor electronic states so as to improve electron transport properties of 2H-NbSe2.

  19. Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip

    2007-10-01

    The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.

  20. Electronic structure and magneto-optical Kerr effect spectra of ferromagnetic shape-memory Ni-Mn-Ga alloys: Experiment and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Uba, S.; Bonda, A.; Uba, L.; Bekenov, L. V.; Antonov, V. N.; Ernst, A.

    2016-08-01

    In this joint experimental and ab initio study, we focused on the influence of the chemical composition and martensite phase transition on the electronic, magnetic, optical, and magneto-optical properties of the ferromagnetic shape-memory Ni-Mn-Ga alloys. The polar magneto-optical Kerr effect (MOKE) spectra for the polycrystalline sample of the Ni-Mn-Ga alloy of Ni60Mn13Ga27 composition were measured by means of the polarization modulation method over the photon energy range 0.8 ≤h ν ≤5.8 eV in magnetic field up to 1.5 T. The optical properties (refractive index n and extinction coefficient k ) were measured directly by spectroscopic ellipsometry using the rotating analyzer method. To complement experiments, extensive first-principles calculations were made with two different first-principles approaches combining the advantages of a multiple scattering Green function method and a spin-polarized fully relativistic linear-muffin-tin-orbital method. The electronic, magnetic, and MO properties of Ni-Mn-Ga Heusler alloys were investigated for the cubic austenitic and modulated 7M-like incommensurate martensitic phases in the stoichiometric and off-stoichiometric compositions. The optical and MOKE properties of Ni-Mn-Ga systems are very sensitive to the deviation from the stoichiometry. It was shown that the ab initio calculations reproduce well experimental spectra and allow us to explain the microscopic origin of the Ni2MnGa optical and magneto-optical response in terms of interband transitions. The band-by-band decomposition of the Ni2MnGa MOKE spectra is presented and the interband transitions responsible for the prominent structures in the spectra are identified.