Hanson-Heine, Magnus W. D.
2015-10-28
Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach is found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.
Improving harmonic vibrational frequencies calculations in density functional theory
NASA Astrophysics Data System (ADS)
Stratmann, R. Eric; Burant, John C.; Scuseria, Gustavo E.; Frisch, Michael J.
1997-06-01
Using a previously introduced weight scheme, microbatching, and grid compression [R. E. Stratmann, G. E. Scuseria and M. J. Frisch, Chem. Phys. Lett. 257, 213 (1996)], we significantly speed up the numerical integration of the exchange-correlation contribution to the Coupled-Perturbed Kohn-Sham equations. In addition, we find that the nature of the integrand is such that it is possible to employ substantially fewer grid points in the quadrature and to use the Gaussian very Fast Multipole Method (GvFMM) with very short multipole expansions for the Coulomb contribution, with negligible loss in accuracy. As a representative example, the computational demand for the exchange-correlation portion of a coronene (C24H12) frequency calculation with a 3-21G basis is reduced by more than one order of magnitude. The overall speed up achieved in this calculation is between a factor of 4 to 6, depending on the specific functional. We also present sample calculations using polarized bases, gradient-corrected functionals, and on even larger systems (C54H18 and C96H24), to illustrate the various effects and improvements that we have accomplished.
Miliordos, Evangelos; Xantheas, Sotiris S.
2013-08-15
We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson’s GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C_{1} symmetry the computational savings in the energy calculations amount to 36N – 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. Finally, in all cases the frequencies based on internal coordinates differ on average by <1 cm^{–1} from those obtained from Cartesian coordinates.
NASA Astrophysics Data System (ADS)
Cammi, R.; Cappelli, C.; Mennucci, B.; Tomasi, J.
2012-10-01
We present a new quantum chemical method for the calculation of the equilibrium geometry and the harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the order of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The PCM-XP has been applied at the density functional theory level to diborane as a molecular system under high pressure. The computed harmonic vibrational frequencies as a function of the pressure have shown a satisfactory agreement with the corresponding experimental results, and the parallel application of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry can be interpreted in terms of direct effects on the electronic charge distribution of the molecular solutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the motion of the nuclei.
NASA Astrophysics Data System (ADS)
Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.
2013-01-01
In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.
Application of higher harmonic blade feathering for helicopter vibration reduction
NASA Technical Reports Server (NTRS)
Powers, R. W.
1978-01-01
Higher harmonic blade feathering for helicopter vibration reduction is considered. Recent wind tunnel tests confirmed the effectiveness of higher harmonic control in reducing articulated rotor vibratory hub loads. Several predictive analyses developed in support of the NASA program were shown to be capable of calculating single harmonic control inputs required to minimize a single 4P hub response. In addition, a multiple-input, multiple-output harmonic control predictive analysis was developed. All techniques developed thus far obtain a solution by extracting empirical transfer functions from sampled data. Algorithm data sampling and processing requirements are minimal to encourage adaptive control system application of such techniques in a flight environment.
An investigation into the vibration of harmonic drive systems
NASA Astrophysics Data System (ADS)
Masoumi, M.; Alimohammadi, H.
2013-12-01
Harmonic drive systems are precise and specific transmission gear systems which are beneficial in terms of the high transmission ratio and almost zero backlash. These inherent and spectacular properties result in using this mechanism in robotic and space sciences where the precision and lightwieght play an important role. This paper presents a vibration analysis of harmonic drive systems using the shell theory. Equations of vibration for the flexspline and the circular spline of the system are derived and used to find the natural frequencies for both parts and, moreover, vibration response of the system under the operating condition is calculated. Also, obtained vibration equations are utilized to study the effects of different involved parameters such as the geometry of the flexspline and its gear tooth, eccentricity, and unbalancing on the vibrational behavior of the system.
NASA Astrophysics Data System (ADS)
Hussein, M. F. M.; Hunt, H. E. M.
2009-03-01
This paper presents a new method for modelling floating-slab tracks with discontinuous slabs in underground railway tunnels. The track is subjected to a harmonic load moving with a constant velocity. The model consists of two sub-models. The first is an infinite track with periodic double-beam unit formulated as a periodic infinite structure. The second is modelled with a new version of the Pipe-in-Pipe (PiP) model that accounts for a tunnel wall embedded in a half-space. The two sub-models are coupled by writing the force transmitted from the track to the tunnel as a continuous function using Fourier series representation and satisfying the compatibility condition. The displacements at the free surface are calculated for a track with discontinuous slab and compared with those of a track with continuous slab. The results show that the far-field vibration can be significantly increased due to resonance frequencies of slabs for tracks with discontinuous slabs.
Attosecond Probing of Vibrational Dynamics with High-Harmonic Generation
NASA Astrophysics Data System (ADS)
Lein, Manfred
2005-02-01
The numerical solution of the time-dependent Schrödinger equation for vibrating hydrogen molecules in few-cycle laser pulses shows that high-harmonic generation is sensitive to the laser-induced vibrational motion. More intense harmonics are generated in heavier isotopes, the difference increasing with the harmonic frequency. Analytical theory reveals a dependence of the harmonics on the vibrational autocorrelation function. With the help of a genetic algorithm, the nuclear motion can be reconstructed from the harmonic spectra with sub-fs time resolution.
Higher Harmonic Control for Tiltrotor Vibration Reduction
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Kvaternik, Raymond G.; Settle, T. Ben
1997-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5- scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing 1P and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasion-al on-line recalculations of the system transfer matrix.
Tiltrotor Vibration Reduction Through Higher Harmonic Control
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Kvaternik, Raymond G.; Settle, T. Ben
1997-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing IP and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasional on-line recalculations of the system transfer matrix. HHC had only a small (usually beneficial) effect on blade loads but increased pitch link loads by 25%. No degradation in aeroelastic stability was noted for any of the conditions tested.
NASA Technical Reports Server (NTRS)
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.
Vibrational Quantum Beats and High Harmonic Generation in SF6
NASA Astrophysics Data System (ADS)
Walters, Zachary B.; Tonzani, Stefano; Greene, Chris H.
2007-06-01
Although HHG is commonly understood as an electronic process, vibrational degrees of freedom in molecules allow for phenomena which have no analogue in atomic systems. This was recently demonstrated in experiments performed with SF6 (Wagner et al, PNAS 103 13279, 2006). If a HHG laser pulse is preceded by a weaker pulse which stimulates Raman-active vibrations, the harmonic intensity oscillates with the interpulse delay time at the frequencies of the stimulated modes. We explain this modulation as quantum interference between adjacent vibrational states of the molecule, which are mixed during the high harmonic process. We present an improved version of the three-step model, which uses nonperturbative electron-ion scattering wavefunctions to find the recombination dipole, and which tracks the vibrational wavefunction of the molecule throughout the high harmonic process.
Harmonic balance calculations by using matrices
NASA Astrophysics Data System (ADS)
Fergusson, N. J.; Leung, A. Y. T.
1995-05-01
The computation of the total and tangential stiffness matrices associated with the harmonic balance method for non-linear ordinary differential equations requires some complicated calculations involving double sums. Some matrix results are presented here that ease the associated book-keeping and allow the matrices to be programmed easily.
Index calculation by means of harmonic expansion
NASA Astrophysics Data System (ADS)
Imamura, Yosuke
2015-11-01
We review derivation of superconformal indices by means of supersymmetric localization and spherical harmonic expansion for 3d mathcal {N}=2, 4d mathcal {N}=1, and 6d mathcal {N}=(1,0) supersymmetric gauge theories. We demonstrate calculation of indices for vector multiplets in each dimension by analyzing energy eigenmodes in {boldsymbol S}^p × mathbb {R}. For the 6d index we consider the perturbative contribution only. We focus on the technical details of harmonic expansion rather than physical applications.
Analysis of Vibrational Harmonic Response for Printing Double-Sheet Detecting System via ANSYS
NASA Astrophysics Data System (ADS)
Guo, Qiang; Cai, Ji-Fei; Wang, Yan; Zhang, Yang
In order to explore the influence of the harmonic response of system vibration upon the stability of the double-sheet detector system, the mathematical model of vibrational system is established via the mechanical dynamic theory. Vibrational system of double-sheet detector is studied by theoretical modeling, and the dynamic simulation to obtain the amplitude/phase frequency response curve of the system based on ANSYS is completed to make a comparison with the theoretical results. It is shown that the theoretical value is basically consistent with that calculated through ANSYS. Conclusion vibrational characteristics of double-sheet detection system is obtained quickly and accurately, and propound solving measures by some crucial factors, such as the harmonic load, mass and stiffness, which will affect the vibration of the system, contribute to the finite element method is applied to the complex multiple-degree-of-freedom system.
Higher Harmonic Forces in Purely Crossflow Vortex-Induced Vibrations
NASA Astrophysics Data System (ADS)
Modarres-Sadeghi, Yahya; Seyed-Aghazadeh, Banafsheh; Bourguet, Remi; Karniadakis, George; Triantafyllou, Michael
2013-11-01
In vortex-induced vibrations (VIV) of flexibly-mounted rigid cylinders free to oscillate both in the inline and crossflow directions, higher (3rd) harmonic forces have already been observed in the crossflow direction. In the present work, we report higher harmonic force components for a flexibly-mounted rigid cylinder with only one degree of freedom in the crossflow direction. We show that the inline displacement is not necessary to observe higher harmonic components in the crossflow force spectrum. Due to the relative velocity of the cylinder with respect to the oncoming flow, the lift and drag forces make an angle with respect to the crossflow and inline directions, and the contribution of the components of each of these forces in the crossflow direction results in a 3rd harmonic force component. These higher harmonic components have been observed in self-excited VIV experiments, performed in a water tunnel for a Reynolds number range of Re = 400-1000, as well as in numerical simulation results at Re = 100. We also find that the maximum ratio of the 3rd harmonic to the 1st harmonic occurs when the phase between the crossflow force and displacement changes from 0 to 180 degrees, resulting in a small first harmonic component.
ERIC Educational Resources Information Center
Parnis, J. Mark; Thompson, Matthew G. K.
2004-01-01
An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.
Harmonic Motion Detection in a Vibrating Scattering Medium
Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.
2008-01-01
Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10° or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously. PMID:18986892
Calculating Buckling And Vibrations Of Lattice Structures
NASA Technical Reports Server (NTRS)
Anderson, M. S.; Durling, B. J.; Herstrom, C. L.; Williams, F. W.; Banerjee, J. R.; Kennedy, D.; Warnaar, D. B.
1989-01-01
BUNVIS-RG computer program designed to calculate vibration frequencies or buckling loads of prestressed lattice structures used in outer space. For buckling and vibration problems, BUNVIS-RG calculates deadload axial forces caused in members by any combination of externally-applied static point forces and moments at nodes, axial preload or prestrain in members, and such acceleration loads as those due to gravity. BUNVIS-RG is FORTRAN 77 computer program implemented on CDC CYBER and VAX computer.
NASA Technical Reports Server (NTRS)
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.
Effect of acoustic coupling on random and harmonic plate vibrations
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Robinson, Jay
1993-01-01
The effect of acoustic coupling on random and harmonic plate vibrations is studied using two numerical models. In the coupled model, the plate response is obtained by integration of the nonlinear plate equation coupled with the nonlinear Euler equations for the surrounding acoustic fluid. In the uncoupled model, the nonlinear plate equation with an equivalent linear viscous damping term is integrated to obtain the response of the plate subject to the same excitation field. For a low-level, narrow-band excitation, the two models predict the same plate response spectra. As the excitation level is increased, the response power spectrum predicted by the uncoupled model becomes broader and more shifted towards the high frequencies than that obtained by the coupled model. In addition, the difference in response between the coupled and uncoupled models at high frequencies becomes larger. When a high intensity harmonic excitation is used, causing a nonlinear plate response, both models predict the same frequency content of the response. However, the level of the harmonics and subharmonics are higher for the uncoupled model. Comparisons to earlier experimental and numerical results show that acoustic coupling has a significant effect on the plate response at high excitation levels. Its absence in previous models may explain the discrepancy between predicted and measured responses.
First principles semiclassical calculations of vibrational eigenfunctions.
Ceotto, Michele; Valleau, Stéphanie; Tantardini, Gian Franco; Aspuru-Guzik, Alán
2011-06-21
Vibrational eigenfunctions are calculated on-the-fly using semiclassical methods in conjunction with ab initio density functional theory classical trajectories. Various semiclassical approximations based on the time-dependent representation of the eigenfunctions are tested on an analytical potential describing the chemisorption of CO on Cu(100). Then, first principles semiclassical vibrational eigenfunctions are calculated for the CO(2) molecule and its accuracy evaluated. The multiple coherent states initial value representations semiclassical method recently developed by us has shown with only six ab initio trajectories to evaluate eigenvalues and eigenfunctions at the accuracy level of thousands trajectory semiclassical initial value representation simulations. PMID:21837839
Xu, Xiangbo; Chen, Shao
2015-01-01
Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281
Xu, Xiangbo; Chen, Shao
2015-01-01
Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281
Intermediate vibrational coordinate localization with harmonic coupling constraints
NASA Astrophysics Data System (ADS)
Hanson-Heine, Magnus W. D.
2016-05-01
Optimized normal coordinates can significantly improve the speed and accuracy of vibrational frequency calculations. However, over-localization can occur when using unconstrained spatial localization techniques. The unintuitive mixtures of stretching and bending coordinates that result can make interpreting spectra more difficult and also cause artificial increases in mode-coupling during anharmonic calculations. Combining spatial localization with a constraint on the coupling between modes can be used to generate coordinates with properties in-between the normal and fully localized schemes. These modes preserve the diagonal nature of the mass-weighted Hessian matrix to within a specified tolerance and are found to prevent contamination between the stretching and bending vibrations of the molecules studied without a priori classification of the different types of vibration present. Relaxing the constraint can also be used to identify which normal modes form specific groups of localized modes. The new coordinates are found to center on more spatially delocalized functional groups than their fully localized counterparts and can be used to tune the degree of vibrational correlation energy during anharmonic calculations.
Intermediate vibrational coordinate localization with harmonic coupling constraints.
Hanson-Heine, Magnus W D
2016-05-28
Optimized normal coordinates can significantly improve the speed and accuracy of vibrational frequency calculations. However, over-localization can occur when using unconstrained spatial localization techniques. The unintuitive mixtures of stretching and bending coordinates that result can make interpreting spectra more difficult and also cause artificial increases in mode-coupling during anharmonic calculations. Combining spatial localization with a constraint on the coupling between modes can be used to generate coordinates with properties in-between the normal and fully localized schemes. These modes preserve the diagonal nature of the mass-weighted Hessian matrix to within a specified tolerance and are found to prevent contamination between the stretching and bending vibrations of the molecules studied without a priori classification of the different types of vibration present. Relaxing the constraint can also be used to identify which normal modes form specific groups of localized modes. The new coordinates are found to center on more spatially delocalized functional groups than their fully localized counterparts and can be used to tune the degree of vibrational correlation energy during anharmonic calculations. PMID:27250288
Vibrational spectroscopic studies and DFT calculations of 4-aminoantipyrine
NASA Astrophysics Data System (ADS)
Swaminathan, J.; Ramalingam, M.; Sethuraman, V.; Sundaraganesan, N.; Sebastian, S.
2009-08-01
The pyrazole derivative, 4-aminoantipyrine (4AAP), used as an intermediate for the synthesis of pharmaceuticals especially antipyretic and analgesic drugs has been analyzed experimentally and theoretically for its vibrational frequencies. The FTIR and FT Raman spectra of the title compound have been compared with the theoretically computed frequencies invoking the standard 6-311g(d,p) and cc-pVDZ basis sets at DFT level of theory (B3LYP). The harmonic vibrational frequencies at B3LYP/cc-pVDZ after appropriate scaling method seem to coincide satisfactorily with the experimental observations rather than B3LYP/6-311g(d,p) results. The theoretical spectrograms for FT-IR and FT-Raman spectra of 4AAP have been also constructed and compared with the experimental spectra. Additionally, thermodynamic data have also been calculated and discussed.
Ab initio DFT calculations of vibrational properties
NASA Astrophysics Data System (ADS)
Story, S. M.; Vila, F. D.; Kas, J. J.; Rehr, J. J.
2014-03-01
Vibrational properties such as EXAFS and crystallographic Debye-Waller factors, vibrational free energies, phonon self-energies, and phonon contributions to the electron spectral function, are key to understanding many aspects of materials beyond ground state electronic structure. Thus, their simulation using first principles methods is of particular importance. Many of these vibrational properties can be calculated from the dynamical matrix and electron-phonon coupling coefficients obtained from DFT calculations. Here we present a code DMVP that calculates these properties from the output of electronic structure codes such as ABINIT, Gaussian, Quantum Espresso and VASP. Our modular interfacing tool AI2PS allows us to translate the different outputs into a DMVP compatible format and generate vibrational properties in an automated way. Finally, we present some current applications that take advantage of the modular form of AI2PS to extend its capabilities to the calculation of coefficients of thermal expansion and other properties of interest such as infrared spectra. This work was supported by DOE Grant DE-FG02-97ER45623.
Vibrational spectroscopy and relaxation of an anharmonic oscillator coupled to harmonic bath.
Joutsuka, Tatsuya; Ando, Koji
2011-05-28
The vibrational spectroscopy and relaxation of an anharmonic oscillator coupled to a harmonic bath are examined to assess the applicability of the time correlation function (TCF), the response function, and the semiclassical frequency modulation (SFM) model to the calculation of infrared (IR) spectra. These three approaches are often used in connection with the molecular dynamics simulations but have not been compared in detail. We also analyze the vibrational energy relaxation (VER), which determines the line shape and is itself a pivotal process in energy transport. The IR spectra and VER are calculated using the generalized Langevin equation (GLE), the Gaussian wavepacket (GWP) method, and the quantum master equation (QME). By calculating the vibrational frequency TCF, a detailed analysis of the frequency fluctuation and correlation time of the model is provided. The peak amplitude and width in the IR spectra calculated by the GLE with the harmonic quantum correction are shown to agree well with those by the QME though the vibrational frequency is generally overestimated. The GWP method improves the peak position by considering the zero-point energy and the anharmonicity although the red-shift slightly overshoots the QME reference. The GWP also yields an extra peak in the higher-frequency region than the fundamental transition arising from the difference frequency of the center and width oscillations of a wavepacket. The SFM approach underestimates the peak amplitude of the IR spectra but well reproduces the peak width. Further, the dependence of the VER rate on the strength of an excitation pulse is discussed. PMID:21639460
Optimized coordinates in vibrational coupled cluster calculations
Thomsen, Bo; Christiansen, Ove; Yagi, Kiyoshi
2014-04-21
The use of variationally optimized coordinates, which minimize the vibrational self-consistent field (VSCF) ground state energy with respect to orthogonal transformations of the coordinates, has recently been shown to improve the convergence of vibrational configuration interaction (VCI) towards the exact full VCI [K. Yagi, M. Keçeli, and S. Hirata, J. Chem. Phys. 137, 204118 (2012)]. The present paper proposes an incorporation of optimized coordinates into the vibrational coupled cluster (VCC), which has in the past been shown to outperform VCI in approximate calculations where similar restricted state spaces are employed in VCI and VCC. An embarrassingly parallel algorithm for variational optimization of coordinates for VSCF is implemented and the resulting coordinates and potentials are introduced into a VCC program. The performance of VCC in optimized coordinates (denoted oc-VCC) is examined through pilot applications to water, formaldehyde, and a series of water clusters (dimer, trimer, and hexamer) by comparing the calculated vibrational energy levels with those of the conventional VCC in normal coordinates and VCI in optimized coordinates. For water clusters, in particular, oc-VCC is found to gain orders of magnitude improvement in the accuracy, exemplifying that the combination of optimized coordinates localized to each monomer with the size-extensive VCC wave function provides a supreme description of systems consisting of weakly interacting sub-systems.
Modeling, calculating, and analyzing multidimensional vibrational spectroscopies.
Tanimura, Yoshitaka; Ishizaki, Akihito
2009-09-15
Spectral line shapes in a condensed phase contain information from various dynamic processes that modulate the transition energy, such as microscopic dynamics, inter- and intramolecular couplings, and solvent dynamics. Because nonlinear response functions are sensitive to the complex dynamics of chemical processes, multidimensional vibrational spectroscopies can separate these processes. In multidimensional vibrational spectroscopy, the nonlinear response functions of a molecular dipole or polarizability are measured using ultrashort pulses to monitor inter- and intramolecular vibrational motions. Because a complex profile of such signals depends on the many dynamic and structural aspects of a molecular system, researchers would like to have a theoretical understanding of these phenomena. In this Account, we explore and describe the roles of different physical phenomena that arise from the peculiarities of the system-bath coupling in multidimensional spectra. We also present simple analytical expressions for a weakly coupled multimode Brownian system, which we use to analyze the results obtained by the experiments and simulations. To calculate the nonlinear optical response, researchers commonly use a particular form of a system Hamiltonian fit to the experimental results. The optical responses of molecular vibrational motions have been studied in either an oscillator model or a vibration energy state model. In principle, both models should give the same results as long as the energy states are chosen to be the eigenstates of the oscillator model. The energy state model can provide a simple description of nonlinear optical processes because the diagrammatic Liouville space theory that developed in the electronically resonant spectroscopies can easily handle three or four energy states involved in high-frequency vibrations. However, the energy state model breaks down if we include the thermal excitation and relaxation processes in the dynamics to put the system in a
Quantum Monte Carlo Algorithms for Diagrammatic Vibrational Structure Calculations
NASA Astrophysics Data System (ADS)
Hermes, Matthew; Hirata, So
2015-06-01
Convergent hierarchies of theories for calculating many-body vibrational ground and excited-state wave functions, such as Møller-Plesset perturbation theory or coupled cluster theory, tend to rely on matrix-algebraic manipulations of large, high-dimensional arrays of anharmonic force constants, tasks which require large amounts of computer storage space and which are very difficult to implement in a parallel-scalable fashion. On the other hand, existing quantum Monte Carlo (QMC) methods for vibrational wave functions tend to lack robust techniques for obtaining excited-state energies, especially for large systems. By exploiting analytical identities for matrix elements of position operators in a harmonic oscillator basis, we have developed stochastic implementations of the size-extensive vibrational self-consistent field (MC-XVSCF) and size-extensive vibrational Møller-Plesset second-order perturbation (MC-XVMP2) theories which do not require storing the potential energy surface (PES). The programmable equations of MC-XVSCF and MC-XVMP2 take the form of a small number of high-dimensional integrals evaluated using Metropolis Monte Carlo techniques. The associated integrands require independent evaluations of only the value, not the derivatives, of the PES at many points, a task which is trivial to parallelize. However, unlike existing vibrational QMC methods, MC-XVSCF and MC-XVMP2 can calculate anharmonic frequencies directly, rather than as a small difference between two noisy total energies, and do not require user-selected coordinates or nodal surfaces. MC-XVSCF and MC-XVMP2 can also directly sample the PES in a given approximation without analytical or grid-based approximations, enabling us to quantify the errors induced by such approximations.
NASA Astrophysics Data System (ADS)
Heo, YongHwa; Kim, Kwang-joon
2015-02-01
While the vibration power for a set of harmonic force and velocity signals is well defined and known, it is not as popular yet for a set of stationary random force and velocity processes, although it can be found in some literatures. In this paper, the definition of the vibration power for a set of non-stationary random force and velocity signals will be derived for the purpose of a time-frequency analysis based on the definitions of the vibration power for the harmonic and stationary random signals. The non-stationary vibration power, defined as the short-time average of the product of the force and velocity over a given frequency range of interest, can be calculated by three methods: the Wigner-Ville distribution, the short-time Fourier transform, and the harmonic wavelet transform. The latter method is selected in this paper because band-pass filtering can be done without phase distortions, and the frequency ranges can be chosen very flexibly for the time-frequency analysis. Three algorithms for the time-frequency analysis of the non-stationary vibration power using the harmonic wavelet transform are discussed. The first is an algorithm for computation according to the full definition, while the others are approximate. Noting that the force and velocity decomposed into frequency ranges of interest by the harmonic wavelet transform are constructed with coefficients and basis functions, for the second algorithm, it is suggested to prepare a table of time integrals of the product of the basis functions in advance, which are independent of the signals under analysis. How to prepare and utilize the integral table are presented. The third algorithm is based on an evolutionary spectrum. Applications of the algorithms to the time-frequency analysis of the vibration power transmitted from an excitation source to a receiver structure in a simple mechanical system consisting of a cantilever beam and a reaction wheel are presented for illustration.
NASA Astrophysics Data System (ADS)
Guo, Jing; Ge, Xin-Lei; Zhong, Huiying; Zhao, Xi; Zhang, Meixia; Jiang, Yuanfei; Liu, Xue-Shen
2014-11-01
The high-order-harmonic generation (HHG) from the N2 molecule in an intense laser field is investigated by applying the Lewenstein method. The initial state is constructed as a linear combination of the highest occupied molecular orbital (HOMO) and the lower-lying orbital below the HOMO, which is well described by a Gaussian wave packet generated by using the gamess-uk package. The HHG with different vibrational states of N2 are calculated and our results show that the harmonic intensity can be enhanced by higher vibrational states, which can be explained by the ionization probability. We also compared the cases with a different full width at half maximum of laser fields together, which can be well understood by the time-frequency analysis and the three-step model. Finally, the attosecond pulse generation is studied with different vibrational states, where a series of attosecond pulses can be produced with the shortest being 91 as.
Schneider, W.; Thiel, W. ); Komornicki, A. )
1990-04-05
Ab initio self-consistent-field calculations using effective core potentials and polarized double-zeta basis sets are reported for the arsenic compounds H{sub 3}As, H{sub 3}AsO, H{sub 3}AsS, F{sub 3}As, F{sub 3}AsO, F{sub 3}AsS, cis- and trans-H{sub 2}AsOH, and HAsO. The calculated geometries, rotational constants, vibrational frequencies, Coriolis coupling constants, centrifugal distortion constants, infrared band intensities, and force fields are compared with the available experimental data. Good agreement is found in the case of the known molecules, especially H{sub 3}As and F{sub 3}As, so that the predictions for the unknown molecules are expected to be realistic. The theoretical results confirm a recent spectroscopic identification of H{sub 3}AsO, H{sub 2}AsOH, and HAsO and suggest reassignment of several observed frequencies.
Calculation of four-particle harmonic-oscillator transformation brackets
NASA Astrophysics Data System (ADS)
Germanas, D.; Kalinauskas, R. K.; Mickevičius, S.
2010-02-01
A procedure for precise calculation of the three- and four-particle harmonic-oscillator (HO) transformation brackets is presented. The analytical expressions of the four-particle HO transformation brackets are given. The computer code for the calculations of HO transformation brackets proves to be quick, efficient and produces results with small numerical uncertainties. Program summaryProgram title: HOTB Catalogue identifier: AEFQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1247 No. of bytes in distributed program, including test data, etc.: 6659 Distribution format: tar.gz Programming language: FORTRAN 90 Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix RAM: 8 MB Classification: 17.17 Nature of problem: Calculation of the three-particle and four-particle harmonic-oscillator transformation brackets. Solution method: The method is based on compact expressions of the three-particle harmonics oscillator brackets, presented in [1] and expressions of the four-particle harmonics oscillator brackets, presented in this paper. Restrictions: The three- and four-particle harmonic-oscillator transformation brackets up to the e=28. Unusual features: Possibility of calculating the four-particle harmonic-oscillator transformation brackets. Running time: Less than one second for the single harmonic-oscillator transformation bracket. References:G.P. Kamuntavičius, R.K. Kalinauskas, B.R. Barret, S. Mickevičius, D. Germanas, Nuclear Physics A 695 (2001) 191.
Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R
1982-09-01
Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.
Coupled rotor-flexible fuselage vibration reduction using open loop higher harmonic control
NASA Technical Reports Server (NTRS)
Papavassiliou, I.; Friedmann, P. P.; Venkatesan, C.
1991-01-01
A fundamental study of vibration prediction and vibration reduction in helicopters using active controls was performed. The nonlinear equations of motion for a coupled rotor/flexible fuselage system have been derived using computer algebra on a special purpose symbolic computer facility. The trim state and vibratory response of the helicopter are obtained in a single pass by applying the harmonic balance technique and simultaneously satisfying the trim and the vibratory response of the helicopter for all rotor and fuselage degrees of freedom. The influence of the fuselage flexibility on the vibratory response is studied. It is shown that the conventional single frequency higher harmonic control is capable of reducing either the hub loads or only the fuselage vibrations but not both simultaneously. It is demonstrated that for simultaneous reduction of hub shears and fuselae vibrations a new scheme called multiple higher harmonic control is required.
Chakraborty, Arindam; Truhlar, Donald G; Bowman, Joel M; Carter, Stuart
2004-08-01
The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J = 0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. PMID:15260761
Application of higher harmonic blade feathering on the OH-6A helicopter for vibration reduction
NASA Technical Reports Server (NTRS)
Straub, F. K.; Byrns, E. V., Jr.
1986-01-01
The design, implementation, and flight test results of higher harmonic blade feathering for vibration reduction on the OH-6A helicopter are described. The higher harmonic control (HHC) system superimposes fourth harmonic inputs upon the stationary swashplate. These inputs are transformed into 3P, 4P and 5P blade feathering angles. This results in modified blade loads and reduced fuselage vibrations. The primary elements of this adaptive vibration suppression system are: (1) acceleration transducers sensing the vibratory response of the fuselage; (2) a higher harmonic blade pitch actuator system; (3) a flightworthy microcomputer, incorporating the algorithm for reducing vibrations, and (4) a signal conditioning system, interfacing between the sensors, the microcomputer and the HHC actuators. The program consisted of three distinct phases. First, the HHC system was designed and implemented on the MDHC OH-6A helicopter. Then, the open loop, or manual controlled, flight tests were performed, and finally, the closed loop adaptive control system was tested. In 1983, one portion of the closed loop testing was performed, and in 1984, additional closed loop tests were conducted with improved software. With the HHC system engaged, the 4P pilot seat vibration levels were significantly lower than the baseline ON-6A levels. Moreover, the system did not adversely affect blade loads or helicopter performance. In conclusion, this successful proof of concept project demonstrated HHC to be a viable vibration suppression mechanism.
NASA Astrophysics Data System (ADS)
Kato, Tsuyoshi; Tanimura, Yoshitaka
2004-01-01
Multidimensional vibrational response functions of a harmonic oscillator are reconsidered by assuming nonlinear system-bath couplings. In addition to a standard linear-linear (LL) system-bath interaction, we consider a square-linear (SL) interaction. The LL interaction causes the vibrational energy relaxation, while the SL interaction is mainly responsible for the vibrational phase relaxation. The dynamics of the relevant system are investigated by the numerical integration of the Gaussian-Markovian Fokker-Planck equation under the condition of strong couplings with a colored noise bath, where the conventional perturbative approach cannot be applied. The response functions for the fifth-order nonresonant Raman and the third-order infrared (or equivalently the second-order infrared and the seventh-order nonresonant Raman) spectra are calculated under the various combinations of the LL and the SL coupling strengths. Calculated two-dimensional response functions demonstrate that those spectroscopic techniques are very sensitive to the mechanism of the system-bath couplings and the correlation time of the bath fluctuation. We discuss the primary optical transition pathways involved to elucidate the corresponding spectroscopic features and to relate them to the microscopic sources of the vibrational nonlinearity induced by the system-bath interactions. Optical pathways for the fifth-order Raman spectroscopies from an "anisotropic" medium were newly found in this study, which were not predicted by the weak system-bath coupling theory or the standard Brownian harmonic oscillator model.
Kato, Tsuyoshi; Tanimura, Yoshitaka
2004-01-01
Multidimensional vibrational response functions of a harmonic oscillator are reconsidered by assuming nonlinear system-bath couplings. In addition to a standard linear-linear (LL) system-bath interaction, we consider a square-linear (SL) interaction. The LL interaction causes the vibrational energy relaxation, while the SL interaction is mainly responsible for the vibrational phase relaxation. The dynamics of the relevant system are investigated by the numerical integration of the Gaussian-Markovian Fokker-Planck equation under the condition of strong couplings with a colored noise bath, where the conventional perturbative approach cannot be applied. The response functions for the fifth-order nonresonant Raman and the third-order infrared (or equivalently the second-order infrared and the seventh-order nonresonant Raman) spectra are calculated under the various combinations of the LL and the SL coupling strengths. Calculated two-dimensional response functions demonstrate that those spectroscopic techniques are very sensitive to the mechanism of the system-bath couplings and the correlation time of the bath fluctuation. We discuss the primary optical transition pathways involved to elucidate the corresponding spectroscopic features and to relate them to the microscopic sources of the vibrational nonlinearity induced by the system-bath interactions. Optical pathways for the fifth-order Raman spectroscopies from an "anisotropic" medium were newly found in this study, which were not predicted by the weak system-bath coupling theory or the standard Brownian harmonic oscillator model. PMID:15267286
Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih
2013-04-01
In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.
Non-symmetric and chaotic vibrations of Euler-Bernoulli beams under harmonic and noisy excitations
NASA Astrophysics Data System (ADS)
Awrejcewicz, J.; Erofeev, N. P.; Krysko, V. A.
2016-05-01
In this paper we study non-linear dynamics of flexible Euler-Bernoulli beams subjected to harmonic load and white noise. We report that in the case of continuous mechanical systems like the studied Euler-Bernoulli beams the action of white noise yieldes novel and unexpected phenomena, i.e. symmetric transversal loads and symmetric boundary conditions imply non-symmetric beam vibration. In addition, regions of non-symmetric beam vibrations for two values of white noise intensity are given and the charts of regular and chaotic vibrations of the studied beams are presented.
Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei
2015-01-01
The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments. PMID:26473858
Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.
2013-07-01
Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing
Ferré, A.; Boguslavskiy, A. E.; Dagan, M.; Blanchet, V.; Bruner, B. D.; Burgy, F.; Camper, A.; Descamps, D.; Fabre, B.; Fedorov, N.; Gaudin, J.; Geoffroy, G.; Mikosch, J.; Patchkovskii, S.; Petit, S.; Ruchon, T.; Soifer, H.; Staedter, D.; Wilkinson, I.; Stolow, A.; Dudovich, N.; Mairesse, Y.
2015-01-01
High-order harmonic generation in polyatomic molecules generally involves multiple channels of ionization. Their relative contribution can be strongly influenced by the presence of resonances, whose assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach for the investigation of unaligned polyatomic molecules, using SF6 as an example. We combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Fragment-resolved above-threshold ionization measurements reveal that strong-field ionization opens at least three channels. A shape resonance in one of them is found to dominate the signal in the 20–26 eV range. This resonance induces a phase jump in the harmonic emission, a switch in the polarization state and different dynamical responses to molecular vibrations. This study demonstrates a method for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected. PMID:25608712
Ferré, A; Boguslavskiy, A E; Dagan, M; Blanchet, V; Bruner, B D; Burgy, F; Camper, A; Descamps, D; Fabre, B; Fedorov, N; Gaudin, J; Geoffroy, G; Mikosch, J; Patchkovskii, S; Petit, S; Ruchon, T; Soifer, H; Staedter, D; Wilkinson, I; Stolow, A; Dudovich, N; Mairesse, Y
2015-01-01
High-order harmonic generation in polyatomic molecules generally involves multiple channels of ionization. Their relative contribution can be strongly influenced by the presence of resonances, whose assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach for the investigation of unaligned polyatomic molecules, using SF6 as an example. We combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Fragment-resolved above-threshold ionization measurements reveal that strong-field ionization opens at least three channels. A shape resonance in one of them is found to dominate the signal in the 20-26 eV range. This resonance induces a phase jump in the harmonic emission, a switch in the polarization state and different dynamical responses to molecular vibrations. This study demonstrates a method for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected. PMID:25608712
Higher harmonic control analysis for vibration reduction of helicopter rotor systems
NASA Technical Reports Server (NTRS)
Nguyen, Khanh Q.
1994-01-01
An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor
The effects of molecular vibration on the yield of high-order harmonic generation.
NASA Astrophysics Data System (ADS)
Xia, Jiangfan
2005-05-01
It is well-accepted that the high-order harmonic spectrum is the results of interference between many attosecond pulses. Each of the attosecond pulse is produced by a three-step process taking place within one laser cycle. For light molecules such as H2, the first step is the ionization of one electron. When the freed electron returns to the H2^+, the internuclear distance is changed. This may cause the electron to miss the ion during its revisit, thus reducing its probability to recombine with the parent ion. As a result, the high harmonic generation yield is lower for H2 than D2, since D2 has a longer vibration period (˜21 fs) than that of H2 (˜15 fs). Here we report, to the best of our knowledge, the first experimental observation of the effects of vibration on the yield of HHG in molecules. We compared the high-order harmonic spectra of H2, HD and D2. The shortest pulses were ˜8 fs, which is almost the same as one half of the vibration period of H2. Using such short pulses assures that the internuclear distances of all three types of molecules are in the increasing phase of a cycle when the harmonics are generated. From the HHG spectra it is evident that the yield of D2 is a factor of two higher than that of H2, while that of HD is in between. This is consistent with the theoretical predictions.
An active control system for helicopter vibration reduction by higher harmonic pitch
NASA Technical Reports Server (NTRS)
Taylor, R. B.; Farrar, F. A.; Miao, W.
1980-01-01
An analytical study defining the basic configuration of an active control system to reduce helicopter vibrations is presented. Theoretical results for a nonlinear four-bladed single rotor helicopter simulation are discussed, showing that vibration reductions on the order of 80-90% for airspeeds up to 150 kn can be expected when using a higher harmonic pitch in an active feedback control system. The rotor performance penalty associated with this level of vibration reduction is about 1-3% and the increase in rotor blade stresses is considered to be low. The location of sensor accelerometers proved to be significant for vibration reductions, and it is noted that the RTSA controller is tolerant of sensor signal noise.
NASA Astrophysics Data System (ADS)
Bock, Charles W.; Trachtman, Mendel; George, Philip
1980-11-01
The structure, in-plane force field, and fundamental vibration frequencies of trans- and cis-1,3-butadiene are calculated ab initio using the 4-31G basis set. Using a scaling procedure based on computational results from smaller molecules, the vibration frequencies for the trans-conformer calculated from the ab initio force constant matrix are found on average to be within 2.2% of the experimental values "harmonized" according to Dennison's rule. The values predicted for the cis-conformer, for which experimental spectroscopic data are only now becoming available, should facilitate the complete in-plane assignment of fundamentals in the near future.
Calculation of Vibrational Spectra of p-Ethylbenzenesulfonic Acid Hydrates
NASA Astrophysics Data System (ADS)
Zelenkovskii, V. M.; Bezyazychnaya, T. V.; Soldatov, V. S.
2013-09-01
Quantum-chemical calculations of vibrational spectra of the sulfonated ion-exchanger model p-ethylbenzenesulfonic acid hydrated by 1-10 water molecules and its dimer were calculated by the non-empirical SCF MO LCAO method with the 6-31G(d) basis set. The calculated results were compared with experimental IR and Raman spectra of sulfonated ion exchangers. The infl uence of hydration on the vibrational frequencies of functional groups in the ion exchangers was analyzed. It was shown that the sulfonic acid was completely dissociated if three and more water molecules per functional group were present. Bands near 1130 cm-1 were due to S-O-H bending vibrations in the absence of water molecules and C-S-O-H3O combination vibrations with 3-6 water molecules per sulfonic acid.
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Guo, X. H.; Li, Y. G.; Li, J.
2010-03-01
This is a study of nonlinear traveling wave response of a cantilever circular cylindrical shell subjected to a concentrated harmonic force moving in a concentric circular path at a constant velocity. Donnell's shallow-shell theory is used, so that moderately large vibrations are analyzed. The problem is reduced to a system of ordinary differential equations by means of the Galerkin method. Frequency-responses for six different mode expansions are studied and compared with that for single mode to find the more contracted and accurate mode expansion investigating traveling wave vibration. The method of harmonic balance is applied to study the nonlinear dynamic response in forced oscillations of this system. Results obtained with analytical method are compared with numerical simulation, and the agreement between them bespeaks the validity of the method developed in this paper. The stability of the period solutions is also examined in detail.
NASA Astrophysics Data System (ADS)
Ayyappan, S.; Sundaraganesan, N.; Aroulmoji, V.; Murano, E.; Sebastian, S.
2010-09-01
The FT-IR and FT-Raman spectral studies of the Methotrexate (MTX) were carried out. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of MTX have been investigated with the help of B3LYP density functional theory (DFT) using 6-31G(d) as basis set. Detailed analysis of the vibrational spectra has been made with the aid of theoretically predicted vibrational frequencies. The vibrational analysis confirms the differently acting ring modes, steric repulsion, conjugation and back-donation. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement with the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Good correlations between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated GIAO shielding tensors were found.
A vibrational spectroscopy study on 3-aminophenylacetic acid by DFT calculations
NASA Astrophysics Data System (ADS)
Akkaya, Yasemin; Balci, Kubilay; Goren, Yeliz; Akyuz, Sevim
2015-08-01
In this study, in which the group vibrations of 3-aminophenylacetic acid were investigated by electronic structure calculations based on Density Functional Theory (DFT), the possible stable conformers of the molecule were searched through a relaxed "potential energy surface scan" carried out at B3LYP/6-31G(d) level of theory. The corresponding equilibrium geometrical and vibrational spectral data for each of the determined stable conformers and for their possible dimer structures were obtained through "geometry optimisation" and "frequency" calculations carried out at B3LYP/6-31G(d) and B3LYP/6-311G++(d,p) levels of theory. The obtained results confirmed that anharmonic wavenumbers calculated at B3LYP/6-311G++(d,p) level generally quite well agree with the experimental wavenumbers, however, harmonic wavenumbers calculated at both levels of theory need an efficient refinement for a satisfactory agreement with experiment. In particular, the harmonic wavenumbers, IR and Raman intensities refined within Scaled Quantum Mechanical Force Field (SQM FF) methodology constituted the primary data set in the interpretation of the experimental FT-IR, FT-Raman and dispersive Raman spectra of 3-aminophenylacetic acid. By the help of these refined spectral data, the effects of conformation and intermolecular hydrogen bonding on the fundamental bands observed in the experimental spectra could be correctly predicted.
A vibrational spectroscopy study on 3-aminophenylacetic acid by DFT calculations.
Akkaya, Yasemin; Balci, Kubilay; Goren, Yeliz; Akyuz, Sevim
2015-08-01
In this study, in which the group vibrations of 3-aminophenylacetic acid were investigated by electronic structure calculations based on Density Functional Theory (DFT), the possible stable conformers of the molecule were searched through a relaxed "potential energy surface scan" carried out at B3LYP/6-31G(d) level of theory. The corresponding equilibrium geometrical and vibrational spectral data for each of the determined stable conformers and for their possible dimer structures were obtained through "geometry optimisation" and "frequency" calculations carried out at B3LYP/6-31G(d) and B3LYP/6-311G++(d,p) levels of theory. The obtained results confirmed that anharmonic wavenumbers calculated at B3LYP/6-311G++(d,p) level generally quite well agree with the experimental wavenumbers, however, harmonic wavenumbers calculated at both levels of theory need an efficient refinement for a satisfactory agreement with experiment. In particular, the harmonic wavenumbers, IR and Raman intensities refined within Scaled Quantum Mechanical Force Field (SQM FF) methodology constituted the primary data set in the interpretation of the experimental FT-IR, FT-Raman and dispersive Raman spectra of 3-aminophenylacetic acid. By the help of these refined spectral data, the effects of conformation and intermolecular hydrogen bonding on the fundamental bands observed in the experimental spectra could be correctly predicted. PMID:25854610
Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations
Barton, Dennis; König, Carolin; Neugebauer, Johannes
2014-10-28
The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called “independent mode, displaced harmonic oscillator” (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.
Calculation of second-harmonic wave pattern generated by focused cylindrical vector beams
NASA Astrophysics Data System (ADS)
Ohtsu, A.; Kozawa, Y.; Sato, S.
2010-03-01
We calculated the second-harmonic wave pattern induced by focused cylindrically symmetric, polarized vector beams. The second-order nonlinear polarization was expressed for fundamental electric field components passed through a dielectric interface based on vector diffraction theory. Furthermore, the second-harmonic wave pattern was represented on the basis of the far-field approximate expression derived from the formulation of higher-order harmonic generation including a Green's function. For a (110) zinc selenide crystal, the calculated forward emission patterns of the second-harmonic wave were eight-figure shaped as observed in experiment.
Analytic calculations of anharmonic infrared and Raman vibrational spectra.
Cornaton, Yann; Ringholm, Magnus; Louant, Orian; Ruud, Kenneth
2016-02-01
Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives-that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree-Fock and Kohn-Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673
A piezoelectric pulse generator for low frequency non-harmonic vibration
NASA Astrophysics Data System (ADS)
Jiang, Hao; Yeatman, Eric M.
2013-12-01
This paper reports a new piezoelectric prototype for pulse generation by energy harvesting from low frequency non-harmonic vibration. The pulse generator presented here consists of two parts: the electromechanical part and the load circuit. A metal rolling rod is used as the proof mass, moving along the substrate to achieve both actuating of the piezoelectric cantilever by magnetic coupling and self-synchronous switching of the circuit. By using this new approach, the energy from the piezoelectric transduction mechanism is regulated simultaneously when it is extracted. This allows a series of tuneable pulses to be generated, which can be applied to self-powered RF wireless sensor network (WSN) nodes.
NASA Astrophysics Data System (ADS)
Chong, C.; Kim, E.; Charalampidis, E. G.; Kim, H.; Li, F.; Kevrekidis, P. G.; Lydon, J.; Daraio, C.; Yang, J.
2016-05-01
This article explores the excitation of different vibrational states in a spatially extended dynamical system through theory and experiment. As a prototypical example, we consider a one-dimensional packing of spherical particles (a so-called granular chain) that is subject to harmonic boundary excitation. The combination of the multimodal nature of the system and the strong coupling between the particles due to the nonlinear Hertzian contact force leads to broad regions in frequency where different vibrational states are possible. In certain parametric regions, we demonstrate that the nonlinear Schrödinger equation predicts the corresponding modes fairly well. The electromechanical model we apply predicts accurately the conversion from the obtained mechanical energy to the electrical energy observed in experiments.
Chong, C; Kim, E; Charalampidis, E G; Kim, H; Li, F; Kevrekidis, P G; Lydon, J; Daraio, C; Yang, J
2016-05-01
This article explores the excitation of different vibrational states in a spatially extended dynamical system through theory and experiment. As a prototypical example, we consider a one-dimensional packing of spherical particles (a so-called granular chain) that is subject to harmonic boundary excitation. The combination of the multimodal nature of the system and the strong coupling between the particles due to the nonlinear Hertzian contact force leads to broad regions in frequency where different vibrational states are possible. In certain parametric regions, we demonstrate that the nonlinear Schrödinger equation predicts the corresponding modes fairly well. The electromechanical model we apply predicts accurately the conversion from the obtained mechanical energy to the electrical energy observed in experiments. PMID:27300876
Vibrational spectra and quantum mechanical calculations of antiretroviral drugs: Nevirapine
NASA Astrophysics Data System (ADS)
Ayala, A. P.; Siesler, H. W.; Wardell, S. M. S. V.; Boechat, N.; Dabbene, V.; Cuffini, S. L.
2007-02-01
Nevirapine (11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'e][1,4]diazepin-6-one) is an antiretroviral drug belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. As most of this kind of antiretroviral drugs, nevirapine displays a butterfly-like conformation which is preserved in complexes with the HIV-1 reverse transcriptase. In this work, we present a detailed vibrational spectroscopy investigation of nevirapine by using mid-infrared, near-infrared, and Raman spectroscopies. These data are supported by quantum mechanical calculations, which allow us to characterize completely the vibrational spectra of this compound. Based on these results, we discuss the correlation between the vibrational modes and the crystalline structure of the most stable form of nevirapine.
Calculation of mechanical vibration frequencies of stiffened superconducting cavities
Black, S.J.; Spalek, G.
1992-09-01
We calculated the frequencies of transverse and longitudinal mechanical-vibration modes of the HEPL- modified, CERN/DESY four-cell superconducting cavity, using finite-element techniques. We compared the results of these calculations, including the stiffening of the cavity with rods, with mode frequencies measured at HEPL. The correlation between data was significant. The same techniques were also used to design and optimize the stiffening scheme for the seven-cell 805-MHz superconducting cavity being developed at Los Alamos. In this report, we describe the final stiffening scheme and the results of our calculations.
Calculation of mechanical vibration frequencies of stiffened superconducting cavities
Black, S.J.; Spalek, G.
1992-01-01
We calculated the frequencies of transverse and longitudinal mechanical-vibration modes of the HEPL- modified, CERN/DESY four-cell superconducting cavity, using finite-element techniques. We compared the results of these calculations, including the stiffening of the cavity with rods, with mode frequencies measured at HEPL. The correlation between data was significant. The same techniques were also used to design and optimize the stiffening scheme for the seven-cell 805-MHz superconducting cavity being developed at Los Alamos. In this report, we describe the final stiffening scheme and the results of our calculations.
On the effect of acoustic coupling on random and harmonic plate vibrations
NASA Technical Reports Server (NTRS)
Frendi, A.; Robinson, J. H.
1993-01-01
The effect of acoustic coupling on random and harmonic plate vibrations is studied using two numerical models. In the coupled model, the plate response is obtained by integration of the nonlinear plate equation coupled with the nonlinear Euler equations for the surrounding acoustic fluid. In the uncoupled model, the nonlinear plate equation with an equivalent linear viscous damping term is integrated to obtain the response of the plate subject to the same excitation field. For a low-level, narrow-band excitation, the two models predict the same plate response spectra. As the excitation level is increased, the response power spectrum predicted by the uncoupled model becomes broader and more shifted towards the high frequencies than that obtained by the coupled model. In addition, the difference in response between the coupled and uncoupled models at high frequencies becomes larger. When a high intensity harmonic excitation is used, causing a nonlinear plate response, both models predict the same frequency content of the response. However, the level of the harmonics and subharmonics are higher for the uncoupled model. Comparisons to earlier experimental and numerical results show that acoustic coupling has a significant effect on the plate response at high excitation levels. Its absence in previous models may explain the discrepancy between predicted and measured responses.
Vibrational spectra and DFT calculations of sonderianin diterpene
NASA Astrophysics Data System (ADS)
Oliveira, I. M. M.; Santos, H. S.; Sena, D. M.; Cruz, B. G.; Teixeira, A. M. R.; Freire, P. T. C.; Braz-Filho, R.; Sousa, J. W.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Bernardino, A. C. S. S.; Gusmão, G. O. M.; Bento, R. R. F.
2015-11-01
In the present study, the natural product sonderianin diterpene (C21H26O4), a diterpenoid isolated from Croton blanchetianus, with potential application in the drug industry, was characterized by nuclear magnetic resonance, infrared and Raman spectroscopy. Vibrational spectra were supported by Density Functional Theory calculations. Infrared and Raman spectra of sonderianin were recorded at ambient temperature in the regions from 400 cm-1 to 3600 cm-1 and from 40 cm-1 to 3500 cm-1, respectively. DFT calculations with the hybrid functional B3LYP and the basis set 6-31 G(d,p) were performed with the purpose of obtaining information on the structural and vibrational properties of this organic compound. A comparison with experimental spectra allowed us to assign all of the normal modes of the crystal. The assignment of the normal modes was carried out by means of potential energy distribution.
Mapping quadrupole collectivity in the Cd isotopes: The breakdown of harmonic vibrational motion
Garrett, P. E.; Green, K. L.; Bangay, J.; Varela, A. Diaz; Sumithrarachchi, C. S.; Bandyopadhyay, D. S.; Bianco, L.; Demand, G. A.; Finlay, P.; Grinyer, G. F.; Leach, K. G.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Austin, R. A. E.; Colosimo, S.; Ball, G. C.; Garnsworthy, A. B.; Hackman, G.
2011-10-28
The stable Cd isotopes have long been used as paradigms for spherical vibrational motion. Extensive investigations with in-beam {gamma} spectroscopy have resulted in very-well-established level schemes, including many lifetimes or lifetime limits. A programme has been initiated to complement these studies with very-high-statistics {beta} decay using the 8{pi} spectrometer at the TRIUMF radioactive beam facility. The decays of {sup 112}In and {sup 112}Ag have been studied with an emphasis on the observation of, or the placement of stringent limits on, low-energy branches between potential multi-phonon levels. A lack of suitable 0{sup +} or 2{sup +} three-phonon candidates has been revealed. Further, the sum of the B(E2) strength from spin 0{sup +} and 2{sup +} states up to 3 MeV in excitation energy to the assigned two-phonon levels falls far short of the harmonic-vibrational expectations. This lack of strength points to the failing of collective models based on vibrational phonon structures.
Vibrational and structural study of onopordopicrin based on the FTIR spectrum and DFT calculations.
Chain, Fernando E; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César A N; Fortuna, Mario; Brandán, Silvia Antonia
2015-11-01
In the present work, the structural and vibrational properties of the sesquiterpene lactone onopordopicrin (OP) were studied by using infrared spectroscopy and density functional theory (DFT) calculations together with the 6-31G(∗) basis set. The harmonic vibrational wavenumbers for the optimized geometry were calculated at the same level of theory. The complete assignment of the observed bands in the infrared spectrum was performed by combining the DFT calculations with Pulay's scaled quantum mechanical force field (SQMFF) methodology. The comparison between the theoretical and experimental infrared spectrum demonstrated good agreement. Then, the results were used to predict the Raman spectrum. Additionally, the structural properties of OP, such as atomic charges, bond orders, molecular electrostatic potentials, characteristics of electronic delocalization and topological properties of the electronic charge density were evaluated by natural bond orbital (NBO), atoms in molecules (AIM) and frontier orbitals studies. The calculated energy band gap and the chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S) and global electrophilicity index (ω) descriptors predicted for OP low reactivity, higher stability and lower electrophilicity index as compared with the sesquiterpene lactone cnicin containing similar rings. PMID:26057092
Calculation of ground vibration spectra from heavy military vehicles
NASA Astrophysics Data System (ADS)
Krylov, V. V.; Pickup, S.; McNuff, J.
2010-07-01
The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.
An improved filtered spherical harmonic method for transport calculations
Ahrens, C.; Merton, S.
2013-07-01
Motivated by the work of R. G. McClarren, C. D. Hauck, and R. B. Lowrie on a filtered spherical harmonic method, we present a new filter for such numerical approximations to the multi-dimensional transport equation. In several test problems, we demonstrate that the new filter produces results with significantly less Gibbs phenomena than the filter used by McClarren, Hauck and Lowrie. This reduction in Gibbs phenomena translates into propagation speeds that more closely match the correct propagation speed and solutions that have fewer regions where the scalar flux is negative. (authors)
Designs and numerical calculations for echo-enabled harmonic generation at very high harmonics
NASA Astrophysics Data System (ADS)
Penn, G.; Reinsch, M.
2011-09-01
The echo-enabled harmonic generation (EEHG) scheme for driving an FEL using two seeded energy modulations at much longer wavelengths than the output wavelength is a promising concept for future seeded FELs. There are many competing requirements in the design of an EEHG beamline which need careful optimization. Furthermore, revised simulation tools and methods are necessary because of both the high harmonic numbers simulated and the complicated nature of the phase space manipulations which are intrinsic to the scheme. This paper explores the constraints on performance and the required tolerances for reaching wavelengths well below 1/100th of that of the seed lasers, and describes some of the methodology for designing such a beamline. Numerical tools, developed both for the GENESIS and GINGER FEL codes, are presented and used here for more accurate study of the scheme beyond a time-averaged model. In particular, the impact of the local structure in peak current and bunching, which is an inherent part of the EEHG scheme, is evaluated.
Vibrational spectroscopy of a harmonic oscillator system nonlinearly coupled to a heat bath
NASA Astrophysics Data System (ADS)
Kato, Tsuyoshi; Tanimura, Yoshitaka
2002-10-01
Vibrational relaxation of a harmonic oscillator nonlinearly coupled to a heat bath is investigated by the Gaussian-Markovian quantum Fokker-Planck equation approach. The system-bath interaction is assumed to be linear in the bath coordinate, but linear plus square in the system coordinate modeling the elastic and inelastic relaxation mechanisms. Interplay of the two relaxation processes induced by the linear-linear and square-linear interactions in Raman or infrared spectra is discussed for various system-bath couplings, temperatures, and correlation times for the bath fluctuations. The one-quantum coherence state created through the interaction with the pump laser pulse relaxes through different pathways in accordance with the mechanisms of the system-bath interactions. Relations between the present theory, Redfield theory, and stochastic theory are also discussed.
On the calculation of classical vibrational energy exchange
NASA Astrophysics Data System (ADS)
Gibbons, John P.; Stettler, John D.
1982-07-01
A three-dimensional, Monte Carlo classical model for the calculation of vibrational energy relaxation and transfer rates for both diatomic—monatomic and diatomic—diatomic systems was developed, analyzed and implemented. Mediation by internal angular momentum changes was demonstrated to be important in these energy transfer processes. This mechanism was incorporated into the model in order to achieve statistically significant results within reasonable computer running times. This made possible the extension of the model calculations to much lower temperatures than had been previously investigated. This calculational procedure was applied to Ar—O 2, to He—O 2 and to the near resonant CO—N 2 process at several temperatures between room temperature and 4000 K with the use of exponential repulsive intermolecular potential. Three different sets of potential parameters obtained from three independent sources were used. The results were compared to experiment.
NASA Technical Reports Server (NTRS)
Papavassiliou, I.; Venkatesan, C.; Friedmann, P. P.
1990-01-01
A fundamental study of vibration prediction and vibration reduction in helicopters using active controls was performed. The nonlinear equations of motion for a coupled rotor/flexible fuselage system have been derived using computer algebra on a special purpose symbolic computing facility. The details of the derivation using the MACSYMA program are described. The trim state and vibratory response of the helicopter are obtained in a single pass by applying the harmonic balance technique and simultaneously satisfying the trim and the vibratory response of the helicopter for all rotor and fuselage degrees of freedom. The influence of the fuselage flexibility on the vibratory response is studied. It is shown that the conventional single frequency higher harmonic control (HHC) capable of reducing either the hub loads or only the fuselage vibrations but not both simultaneously. It is demonstrated that for simultaneous reduction of hub shears and fuselage vibrations a new scheme called multiple higher harmonic control (MHHC) is required. The fundamental aspects of this scheme and its uniqueness are described in detail, providing new insight on vibration reduction in helicopters using HHC.
NASA Astrophysics Data System (ADS)
Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.
2014-11-01
This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more
NASA Astrophysics Data System (ADS)
Browne, Michael; Palazzolo, Alan
2009-06-01
Typical industrial vibration problem solving includes utilization of linear vibration measurement and analysis techniques. These techniques have appeared to be sufficient with most vibration problem solving requirements. This is partially due to the lack of proper identification of the nonlinear dynamic response in measured data of actual engineering systems. Therefore, as an example, a vehicle driveshaft exhibits a nonlinear super harmonic jump due to universal joint excitations. This phenomenon is partially responsible for objectionable audible noise in the vehicle. Previously documented measurements or analytical predictions of vehicle driveshaft systems do not indicate nonlinear jump as a typical vibration mode. Physical measurements of the phenomena will be provided with subsequent analysis. Second, the secondary moment exciting the driveshaft system is derived with subsequent analysis showing the harmonic and super harmonic excitations. Third, a derivation of a model incorporating the linear and nonlinear modeling of a large degree of freedom system is introduced. Finally, simulations with the derived model with the universal joint excitations will be presented showing the correlation to physical test results. Therefore, a typical automotive driveshaft system is capable of producing nonlinear response, and thus the assumption of linearity is not sufficient for design validation or problem resolution in this case.
NASA Astrophysics Data System (ADS)
Soobbarayen, K.; Besset, S.; Sinou, J.-. J.
2015-01-01
The acoustic response associated with squeal noise radiations is a hard issue due to the need to consider non-linearities of contact and friction, to solve the associated nonlinear dynamic problem and to calculate the noise emissions due to self-excited vibrations. In this work, the focus is on the calculation of the sound pressure in free space generated during squeal events. The calculation of the sound pressure can be performed by the Boundary Element Method (BEM). The inputs of this method are a boundary element model, a field of normal velocity characterized by a unique frequency. However, the field of velocity associated with friction-induced vibrations is composed of several harmonic components. So, the BEM equation has to be solved for each frequency and in most cases, the number of harmonic components is significant. Therefore, the computation time can be prohibitive. The reduction of the number of harmonic component is a key point for the quick estimation of the squeal noise. The proposed approach is based on the detection and the selection of the predominant harmonic components in the mean square velocity. It is applied on two cases of squeal and allows us to consider only few frequencies. In this study, a new method will be proposed in order to quickly well estimate the noise emission in free space. This approach will be based on an approximated acoustic power of brake system which is assumed to be a punctual source, an interpolated directivity and the decrease of the acoustic power levels. This method is applied on two classical cases of squeal with one and two unstable modes. It allows us to well reconstruct the acoustic power levels map. Several error estimators are introduced and show that the reconstructed field is close to the reference calculated with a complete BEM.
NASA Astrophysics Data System (ADS)
Hansen, Mikkel Bo; Christiansen, Ove; Hättig, Christof
2009-10-01
Quadratic response functions are derived and implemented for a vibrational configuration interaction state. Combined electronic and vibrational quadratic response functions are derived using Born-Oppenheimer vibronic product wave functions. Computational tractable expressions are derived for determining the total quadratic response contribution as a sum of contributions involving both electronic and vibrational linear and quadratic response functions. In the general frequency-dependent case this includes a new and more troublesome type of electronic linear response function. Pilot calculations for the FH, H2O, CH2O, and pyrrole molecules demonstrate the importance of vibrational contributions for accurate comparison to experiment and that the vibrational contributions in some cases can be very large. The calculation of transition properties between vibrational states is combined with sum-over-states expressions for analysis purposes. On the basis of this some simple analysis methods are suggested. Also, a preliminary study of the effect of finite lifetimes on quadratic response functions is presented.
Vibrational spectra of α-glucose, β-glucose, and sucrose: anharmonic calculations and experiment.
Brauer, Brina; Pincu, Madeleine; Buch, Victoria; Bar, Ilana; Simons, John P; Gerber, R Benny
2011-06-16
The anharmonic vibrational spectra of α-D-glucose, β-D-glucose, and sucrose are computed by the vibrational self-consistent field (VSCF) method, using potential energy surfaces from electronic structure theory, for the lowest energy conformers that correspond to the gas phase and to the crystalline phase, respectively. The results are compared with ultraviolet-infrared (UV-IR) spectra of phenyl β-D-glucopyranoside in a molecular beam, with literature results for sugars in matrices and with new experimental data for the crystalline state. Car-Parrinello dynamics simulations are also used to study temperature effects on the spectra of α-D-glucose and β-D-glucose and to predict their vibrational spectra at 50, 150, and 300 K. The effects of temperature on the spectral features are analyzed and compared with results of the VSCF calculations conducted at 0 K. The main results include: (i) new potential surfaces, constructed from Hartree-Fock, adjusted to fit harmonic frequencies from Møller-Plesset (MP2) calculations, that give very good agreement with gas phase, matrix, and solid state spectra; (ii) computed infrared spectra of the crystalline solid of α-glucose, which are substantially improved by including mimic groups that represent the effect of the solid environment on the sugar; and (iii) identification of a small number of combination-mode transitions, which are predicted to be strong enough for experimental observation. The results are used to assess the role of anharmonic effects in the spectra of the sugars in isolation and in the solid state and to discuss the spectroscopic accuracy of potentials from different electronic structure methods. PMID:21391638
Spectral Analysis of Vibrational Harmonic Motion by use of a Continuous-Wave CO2 Doppler Lidar
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1999-01-01
Vibrational motion of a harmonic oscillator was investigated using a focused continuous wave CO2 Doppler lidar at 9.1 microns wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. The spectra revealed departures from linear motion for vigorous vibrations of the oscillator. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation.
NASA Astrophysics Data System (ADS)
Polome, J.
2012-07-01
This paper presents the performance methodology and the achieved results of a vibration test campaign. The test performed by shaker simulates an unusual acoustic excitation containing a harmonic serial superimposed on random noise seen by electronic flight equipment. The paper is focused on main experimental aspects resulting of “helicopter simulation” capability applied on (representative) dummy electronic equipment. Wide internal instrumentation shows that the equipment is effectively answering to the stimuli by resonances excitation.
NASA Astrophysics Data System (ADS)
Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.
2014-11-01
This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more
NASA Astrophysics Data System (ADS)
Guennoun, L.; Zaydoun, S.; El jastimi, J.; Marakchi, K.; Komiha, N.; Kabbaj, O. K.; El Hajji, A.; Guédira, F.
2012-11-01
The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400 cm-1 and 3600-50 cm-1 respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G∗ level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G∗ basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program.
Papasavva, S.; Tai, S.; Esslinger, A.; Illinger, K.H.; Kenny, J.E.
1995-03-16
We have investigated the feasibility of using ab initio molecular orbital methods for predicting the global warming potential of the proposed chlorofluorocarbon (CFC) substitute CF{sub 3}CH{sub 2}F, HFC-134a. Various levels of theory and basis sets were used to optimize geometry and calculate harmonic vibrational frequencies and infrared intensities for the molecule using the GAUSSIAN 92 software package. In attempting to assess the quality of the computations, we found it necessary to reconsider the vibrational assignments available in the literature. On the basis of the current assignment, we find that for the highest level calculation, MP2/6-31G{sup **}, the calculated harmonic frequencies agree extremely well with the experimentally observed ones at frequencies below 800 cm{sup {minus}1}, with a systematic error toward higher calculated frequencies becoming apparent above 800 cm{sup {minus}1}. At lower levels of theory, the systematic error is apparent at all frequencies. The regularity of the deviation between calculated and observed frequencies makes ab initio calculations of vibrational frequencies much more useful than semiempirical calculations, which tend to show random deviations, as demonstrated with a PM3-UHF calculation in this work. The calculated absolute intensities are in good agreement with the limited experimental measurements previously reported. 23 refs., 3 figs., 5 tabs.
NASA Astrophysics Data System (ADS)
Seyed-Aghazadeh, Banafsheh; Budz, Collin; Modarres-Sadeghi, Yahya
2015-09-01
Vortex-induced vibration (VIV) of a curved circular cylinder (a quarter of a ring, with no extension added to either end) free to oscillate in the crossflow direction was studied experimentally. Both the concave and the convex orientations (with respect to the oncoming flow direction) were considered. As expected, the amplitude of oscillations in both configurations was decreased compared to a vertical cylinder with the same mass ratio. Flow visualizations showed that the vortices were shed in parallel to the curved cylinder, when the cylinder was free to oscillate. The sudden jump in the phase difference between the flow forces and the cylinder displacement observed in the VIV of vertical cylinders was not observed in the curved cylinders. Higher harmonic force components at frequencies twice and three times the frequency of oscillations were observed in flow forces acting on the vertical cylinder, as well as the curved cylinder. Asymmetry in the wake was responsible for the 2nd harmonic force component and the relative velocity of the structure with respect to the oncoming flow was responsible for the 3rd harmonic force component. The lock-in occurred over the same range of reduced velocities for the curved cylinder in the convex orientation as for a vertical cylinder, but it was extended to higher reduced velocities for a curved cylinder in the concave orientation. Higher harmonic force components were found to be responsible for the extended lock-in range in the concave orientation. Within this range, the higher harmonic forces were even larger than the first harmonic force and the structure was being excited mainly by these higher harmonic forces.
NASA Astrophysics Data System (ADS)
Bačić, Z.
1991-09-01
We show that the triatomic adiabatic vibrational eigenstates (AVES) provide a convenient basis for accurate discrete variable representation (DVR) calculation and automatic assignment of highly excited, large amplitude motion vibrational states of floppy triatomic molecules. The DVR-AVES states are eigenvectors of the diagonal (in the stretch states) blocks of the adiabatically rearranged triatomic DVR-ray eigenvector (DVR-REV) Hamiltonian [J. C. Light and Z. Bačić, J. Chem. Phys. 87, 4008 (1987)]. The transformation of the full triatomic vibrational Hamiltonian from the DVR-REV basis to the new DVR-AVES basis is simple, and does not involve calculation of any new matrix elements. No dynamical approximation is made in the energy level calculation by the DVR-AVES approach; its accuracy and efficiency are identical to those of the DVR-REV method. The DVR-AVES states, as the adiabatic approximation to the vibrational states of a triatomic molecule, are labeled by three vibrational quantum numbers. Consequently, accurate large amplitude motion vibrational levels obtained by diagonalizing the full vibrational Hamiltonian transformed to the DVR-AVES basis, can be assigned automatically by the code, with the three quantum numbers of the dominant DVR-AVES state associated with the largest (by modulus) eigenvector element in the DVR-AVES basis. The DVR-AVES approach is used to calculate accurate highly excited localized and delocalized vibrational levels of HCN/HNC and LiCN/LiNC. A significant fraction of localized states of both systems, below and above the isomerization barrier, is assigned automatically, without inspection of wave function plots or separate approximate calculations.
Calculation of vibration mode and its experimental study in solid rocket motors
NASA Astrophysics Data System (ADS)
Zou, Junwei; Sun, Weishen; Xing, Chunjing
1992-05-01
A method for the calculation of vibration mode in rocket motors is presented, and a corresponding program is worked out. Values calculated with this program are consistent with theoretical and experimental results, indicating that the program is soundly based. A new type of vibration excitation apparatus-turbo vibration exciter is also introduced and used for determination of natural frequency of acoustic cavities and of acoustic damping coefficients of motor.
Rapid calculations of time-harmonic nearfield pressures produced by rectangular pistons.
McGough, Robert J
2004-05-01
A rapid method for calculating the nearfield pressure distribution generated by a rectangular piston is derived for time-harmonic excitations. This rapid approach improves the numerical performance relative to the impulse response with an equivalent integral expression that removes the numerical singularities caused by inverse trigonometric functions. The resulting errors are demonstrated in pressure field calculations using the time-harmonic impulse response solution for a rectangular source 5 wavelengths wide by 7.5 wavelengths high. Simulations using this source geometry show that the rapid method eliminates the singularities introduced by the impulse response. The results of pressure field computations are then evaluated in terms of relative errors and computational speeds. The results show that, when the same number of Gauss abscissas are applied to both approaches for time-harmonic pressure field calculations, the rapid method is consistently faster than the impulse response, and the rapid method consistently produces smaller maximum errors than the impulse response. For specified maximum error values of 10% and 1%, the rapid method is 2.6 times faster than the impulse response for pressure field calculations performed on a 61 by 101 point grid. The rapid approach achieves even greater reductions in the computation time for smaller errors and larger grids. PMID:15139602
Rapid calculations of time-harmonic nearfield pressures produced by rectangular pistons
McGough, Robert J.
2007-01-01
A rapid method for calculating the nearfield pressure distribution generated by a rectangular piston is derived for time-harmonic excitations. This rapid approach improves the numerical performance relative to the impulse response with an equivalent integral expression that removes the numerical singularities caused by inverse trigonometric functions. The resulting errors are demonstrated in pressure field calculations using the time-harmonic impulse response solution for a rectangular source 5 wavelengths wide by 7.5 wavelengths high. Simulations using this source geometry show that the rapid method eliminates the singularities introduced by the impulse response. The results of pressure field computations are then evaluated in terms of relative errors and computational speeds. The results show that, when the same number of Gauss abscissas are applied to both approaches for time-harmonic pressure field calculations, the rapid method is consistently faster than the impulse response, and the rapid method consistently produces smaller maximum errors than the impulse response. For specified maximum error values of 10% and 1%, the rapid method is 2.6 times faster than the impulse response for pressure field calculations performed on a 61 by 101 point grid. The rapid approach achieves even greater reductions in the computation time for smaller errors and larger grids. PMID:15139602
Time-independent eigenstate-free calculation of vibronic spectra beyond the harmonic approximation
NASA Astrophysics Data System (ADS)
Petrenko, Taras; Rauhut, Guntram
2015-12-01
The calculation of vibronic spectra and resonance Raman intensities can be performed on the basis of the Raman wavefunction (RWF) formalism. In general, the well-known sum-over-states (SOS) and time-dependent methods can be applied for calculating the RWF. We present an alternative route in which the RWF is determined pointwise in a spectral range on the basis of the inhomogeneous Schrödinger equation using an iterative subspace method, in which explicit state-by-state calculations of vibrational eigenstates are bypassed. We study this approach within the framework of vibrational configuration interaction theory in conjunction with high-level electronic structure calculations for the multidimensional Born-Oppenheimer potential energy surface. The method benefits from an implicit account of interference effects between vibrational states, so that its computational cost correlates with the required resolution in the spectra. The accuracy and efficiency of the method with respect to comparable SOS calculations are tested for the simulation of the photoelectron spectra of ClO2, HS2 - , ZnOH-, and Zn(H2O)+.
Calculation of optical second-harmonic susceptibilities and optical activity for crystals
Levine, Z.H.
1994-12-31
A new generation of nearly first-principles calculations predicts both the linear and second-harmonic susceptibilities for a variety of insulating crystals, including GaAs, GaP, AlAs, AlP, Se, {alpha}-quartz, and c-urea. The results are typically in agreement with experimental measurements. The calculations have been extended to optical activity, with somewhat less success to date. The theory, based on a simple self-energy correction to the local density approximation, and results are reviewed herein.
NASA Astrophysics Data System (ADS)
Pakos, Wojciech
2015-09-01
The paper presents numerical analysis of harmonically excited vibration of a cable-stayed footbridge caused by a load function simulating crouching (squats) while changing the static tension in chosen cables. The intentional synchronized motion (e.g., squats) of a single person or group of persons on the footbridge with a frequency close to the natural frequency of the structure may lead to the resonant vibrations with large amplitudes. The appropriate tension changes in some cables cause detuning of resonance on account of stiffness changes of structures and hence detuning in the natural frequency that is close to the excitation frequency. The research was carried out on a 3D computer model of a real structure - a cable-stayed steel footbridge in Leśnica, a quarter of Wrocław, Poland, with the help of standard computer software based on FEM COSMOS/M System.
Rotational and vibrational spectra of ethynol from quantum-mechanical calculations
NASA Technical Reports Server (NTRS)
Defrees, D. J.; Mclean, A. D.
1982-01-01
It is noted that ethynol (HCCOH), despite the theoretical prediction of its stability to tautomerization to ketene, has thus far not been observed. It is shown here that the identification of this unknown molecule, both in space and in the laboratory, can be aided by an ab initio calculation of spectroscopic parameters. At the HF/3-21G level, harmonic vibrational frequencies are computed by way of analytic second differentiation of the Hartee-Fock (HF) energy with respect to the nuclear coordinates. After applying an empirical scale factor, the resultant frequencies are (per cm) 473, 517, 773, 841, 1003, 1217, 2206, 3285, and 3418. The computed dipole moment at the CISD/DZ+P level is 1.79 D. At the CISD+Q/DZ+P level, the molecule's rotational constants are determined. After scaling by empirical correction factors, they are used in deriving the 4(04) - 3(03) frequency of 76.81 + or - 0.3 GHz with a triplet splitting of 0.30 + or - 0.01 GHz. The triplet splitting involves 4(14) - 3(13) and 4(13) - 3(12) relative to the 4(04) - 3(03) transition as the central line.
Revised calculation of four-particle harmonic-oscillator transformation brackets matrix
NASA Astrophysics Data System (ADS)
Mickevičius, S.; Germanas, D.; Kalinauskas, R. K.
2013-02-01
In this article we present a new, considerably enhanced and more rapid method for calculation of the matrix of four-particle harmonic-oscillator transformation brackets (4HOB). The new method is an improved version of 4HOB matrix calculations which facilitates the matrix calculation by finding the eigenvectors of the 4HOB matrix explicitly. Using this idea the new Fortran code for fast and 4HOB matrix calculation is presented. The calculation time decreases more than a few hundred times for large matrices. As many problems of nuclear and hadron physics structure are modeled on the harmonic oscillator (HO) basis our presented method can be useful for large-scale nuclear structure and many-particle identical fermion systems calculations. Program summaryTitle of program: HOTB_M Catalogue identifier: AEFQ_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFQ_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 2149 No. of bytes in distributed program, including test data, etc.: 17576 Distribution format: tar.gz Programming language: Fortran 90. Computer: Any computer with Fortran 90 compiler. Operating system: Windows, Linux, FreeBSD, True64 Unix. RAM: Up to a few Gigabytes (see Tables 1 and 2 included in the distribution package) Classification: 17.16, 17.17. Catalogue identifier of previous version: AEFQ_v2_0 Journal reference of previous version: Comput. Phys. Comm. 182(2011)1377 Does the new version supersede the previous version?: Yes Nature of problem: Calculation of the matrix of the 4HOB in a more effective way, which allows us to calculate the matrix of the brackets up to a few hundred times more rapidly than in a previous version. Solution method: The method is based on compact expressions of 4HOB, presented in [1] and its simplifications presented in this paper. Reasons for new version
NASA Astrophysics Data System (ADS)
Höppe, Henning Alfred; Kazmierczak, Karolina; Romano, Elida; Brandán, Silvia Antonia
2013-04-01
The first borosulfate, K5[B(SO4)4] (recently synthesized by Henning A. Höppe, Karolina Kazmierczak, Michael Daub, Katharina Förg, Franziska Fuchs, Harald Hillebrecht, 2012) was characterized by infrared and Raman spectroscopies. Density functional theory (DFT) calculations were used to study the structure and vibrational properties of the compound. Employing the B3P86 and B3LYP levels of theory, the molecular structures of the compound were theoretically determined in gas phase and the harmonic vibrational frequencies were evaluated at the same levels. The calculated harmonic vibrational frequencies for the borosulfate compound are consistent with the experimental IR and Raman spectra. These calculations gave us a precise knowledge of the normal modes of vibration taking into account the type of coordination adopted by sulfate groups of this compound as ligands with C3v and C2v symmetries. A complete assignment of all the observed bands in the IR and Raman spectra for K5[B(SO4)4] was performed. Here, the infrared and Raman spectra of K5[B(SO4)4] were interpreted, discussed and completely assigned. The nature of the Ksbnd O, Ksbnd S, Bsbnd O, and Ssbnd O bonds and the topological properties of the compound were investigated and analyzed by means of Natural Bond Order (NBO) and Bader's Atoms in Molecules theory (AIM), respectively.
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; Nelson, R. G.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.
2016-05-01
We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled harmonic frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). Calculation of approximate global harmonic frequency scaling factors for specific DFT functionals is also in progress. A full statistical analysis and reliability assessment of computational results is currently underway. Work supported by the ARL, DoD-HPCMP, and USMA.
NASA Technical Reports Server (NTRS)
Wood, E. R.; Powers, R. W.; Hammond, C. E.
1978-01-01
The paper presents data which confirm the effectiveness of higher harmonic blade pitch control in substantially reducing helicopter rotor vibratory hub loads. The data are the result of recent tests on a 2.7-m model conducted in the Langley Research Center's transonic dynamics wind tunnel. Several predictive analyses developed in support of the NASA program are shown capable of accurately predicting both amplitude and phase of the higher harmonic control input required to nullify a single 4/rev force or moment input. The use of multiple blade feathering inputs in the design of a flightworthy higher harmonic control system is discussed.
NASA Astrophysics Data System (ADS)
Balachandran, V.; Parimala, K.
This study is a comparative analysis of FT-IR and FT-Raman spectra of vanillin (3-methoxy-4-hydroxybenzaldehyde) and isovanillin (3-hydroxy-4-methoxybenzaldehyde). The molecular structure, vibrational wavenumbers, infrared intensities, Raman scattering activities were calculated for both molecules using the B3LYP density functional theory (DFT) with the standard 6-311++G∗∗ basis set. The computed values of frequencies are scaled using multiple scaling factors to yield good coherence with the observed values. The calculated harmonic vibrational frequencies are compared with experimental FT-IR and FT-Raman spectra. The geometrical parameters and total energies of vanillin and isovanillin were obtained for all the eight conformers (a-h) from DFT/B3LYP method with 6-311++G∗∗ basis set. The computational results identified the most stable conformer of vanillin and isovanillin as in the "a" form. Non-linear properties such as electric dipole moment (μ), polarizability (α), and hyperpolarizability (β) values of the investigated molecules have been computed using B3LYP quantum chemical calculation. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules.
Efficient calculation of potential energy surfaces for the generation of vibrational wave functions
NASA Astrophysics Data System (ADS)
Rauhut, Guntram
2004-11-01
An automatic procedure for the generation of potential energy surfaces based on high level ab initio calculations is described. It allows us to determine the vibrational wave functions for molecules of up to ten atoms. Speedups in computer time of about four orders of magnitude in comparison to standard implementations were achieved. Effects due to introduced approximations—within the computation of the potential—on fundamental modes obtained from vibrational self-consistent field and vibrational configuration interaction calculations are discussed. Benchmark calculations are provided for formaldehyde and 1,2,5-oxadiazole (furazan).
Efficient calculation of potential energy surfaces for the generation of vibrational wave functions.
Rauhut, Guntram
2004-11-15
An automatic procedure for the generation of potential energy surfaces based on high level ab initio calculations is described. It allows us to determine the vibrational wave functions for molecules of up to ten atoms. Speedups in computer time of about four orders of magnitude in comparison to standard implementations were achieved. Effects due to introduced approximations--within the computation of the potential--on fundamental modes obtained from vibrational self-consistent field and vibrational configuration interaction calculations are discussed. Benchmark calculations are provided for formaldehyde and 1,2,5-oxadiazole (furazan). PMID:15538851
Thompson, Lee M; Lasoroski, Aurélie; Champion, Paul M; Sage, J Timothy; Frisch, Michael J; van Thor, Jasper J; Bearpark, Michael J
2014-02-11
A systematic comparison of different environmental effects on the vibrational modes of the 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) chromophore using the ONIOM method allows us to model how the molecule's spectroscopic transitions are modified in the Green Fluorescent Protein (GFP). ONIOM(QM:MM) reduces the expense of normal mode calculations when computing the majority of second derivatives only at the MM level. New developments described here for the efficient solution of the CPHF equations, including contributions from electrostatic interactions with environment charges, mean that QM model systems of ∼100 atoms can be embedded within a much larger MM environment of ∼5000 atoms. The resulting vibrational normal modes, their associated frequencies, and dipole derivative vectors have been used to interpret experimental difference spectra (GFPI2-GFPA), chromophore vibrational Stark shifts, and changes in the difference between electronic and vibrational transition dipoles (mode angles) in the protein environment. PMID:26580050
Gupta, R.C.; Cottingham, J.G.; Kahn, S.A.; Morgan, G.H.; Wanderer, P.
1991-01-01
A large number of short and long superconducting dipole magnets for the Superconducting Super Collider (SSC) have been constructed and measured for their magnetic field properties at Brookhaven National Laboratory (BNL). In this paper we compare the calculations and measurements for the variation of field harmonics as a function of current in 40 mm aperture and 50 mm aperture dipole magnets. The primary purpose of this paper is to examine the iron saturation effects on the field harmonics. The field harmonics also change due to the persistent current in the superconducting wires and due to the deformation of the coil shape because of Lorentz forces. We discuss the variation in the sextupole harmonics (b{sub 2}) with current and explain the differences between the calculations and measurements. We also discuss the skew quadrupole harmonic at high field in the long dipole magnets. 3 refs., 3 figs., 1 tab.
Accurate calculation of vibrational frequencies using explicitly correlated coupled-cluster theory.
Rauhut, Guntram; Knizia, Gerald; Werner, Hans-Joachim
2009-02-01
The recently proposed explicitly correlated CCSD(T)-F12x (x = a,b) approximations [T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007)] are applied to compute equilibrium structures and harmonic as well as anharmonic vibrational frequencies for H(2)O, HCN, CO(2), CH(2)O, H(2)O(2), C(2)H(2), CH(2)NH, C(2)H(2)O, and the trans-isomer of 1,2-C(2)H(2)F(2). Using aug-cc-pVTZ basis sets, the CCSD(T)-F12a equilibrium geometries and harmonic vibrational frequencies are in very close agreement with CCSD(T)/aug-cc-pV5Z values. The anharmonic frequencies are evaluated using vibrational self-consistent field and vibrational configuration interaction methods based on automatically generated potential energy surfaces. The mean absolute deviation of the CCSD(T)-F12a/aug-cc-pVTZ anharmonic frequencies from experimental values amounts to only 4.0 cm(-1). PMID:19206956
Parimal, Siddharth; Cramer, Steven M; Garde, Shekhar
2014-11-20
Protein-ligand interactions are central to many biological applications, including molecular recognition, protein formulations, and bioseparations. Complex, multisite ligands can have affinities for different locations on a protein's surface, depending on the chemical and topographical complementarity. We employ an approach based on the spherical harmonic expansion to calculate spatially resolved three-dimensional atomic density profiles of water and ligands in the vicinity of macromolecules. To illustrate the approach, we first study the hydration of model C180 buckyball solutes, with nonspherical patterns of hydrophobicity/-philicity on their surface. We extend the approach to calculate density profiles of increasingly complex ligands and their constituent groups around a protein (ubiquitin) in aqueous solution. Analysis of density profiles provides information about the binding face of the protein and the preferred orientations of ligands on the binding surface. Our results highlight that the spherical harmonic expansion based approach is easy to implement and efficient for calculation and visualization of three-dimensional density profiles around spherically nonsymmetric and topographically and chemically complex solutes. PMID:25198149
NASA Astrophysics Data System (ADS)
Shiga, Takuma; Aketo, Daisuke; Feng, Lei; Shiomi, Junichiro
2016-05-01
In recent years, nanostructuring of dielectric and semiconducting crystals has enhanced controllability of their thermal conductivity. To carry out computational materials search for nanostructured materials with desirable thermal conductivity, a key property is the thermal conductivity spectrum of the original single crystal, which determines the appropriate length scale of nanostructures and mutual adaptability of different kinds of nanostructures. Although the first-principles phonon transport calculations have become accessible, the anharmonic lattice dynamics calculations are still expensive to scan many materials. To this end, we have developed an empirical model that describes the thermal conductivity spectrum in terms only of harmonic phonon properties and bulk thermal conductivity. The model was tested for several crystals with different structures and thermal conductivities, and was confirmed to reproduce the overall profiles of thermal conductivity spectra and their accumulation functions obtained by the first-principles anharmonic calculations.
Loss Calculation of Induction Motors Considering Harmonic Electromagnetic Fields in Stator and Rotor
NASA Astrophysics Data System (ADS)
Yamazaki, Katsumi
A method of loss calculation for induction motors is proposed. The combined 3D-2D time stepping finite element analysis is carried out to obtain the copper loss and the time-variation of the magnetic field in the motor. The iron loss is calculated approximately considering the time-variation of the magnetic field direction and the minor hysteresis loops caused by the time-harmonic fields using practical computer resources. The proposed method is applied to 4 types of induction motors, which are the solid rotor induction motors with/without slot and the cage induction motors with/without skew. The measured and the calculated total losses and the iron losses agree well in all cases. The differences of the loss distributions of each motor are also compared and investigated.
NASA Astrophysics Data System (ADS)
Pan, Chunhua; Guirgis, Gamil A.; Durig, James R.
2005-05-01
The infrared (3100-40 cm -1) spectra of gaseous and solid and Raman (3200-20 cm -1) spectra of liquid 2-chloroethylsilyl chloride, ClCH 2CH 2SiH 2Cl, have been recorded. There are five possible stable conformers, Gg, Tg, Gt, Tt and Gg' for this molecule where the capital letter G ( gauche) or T ( trans) refer to rotation around the C-C bond and the lower case letters to rotation around the Si-C bond. Most ab initio calculations at the MP2(full) level predicted the order of the stability as Tg>Gg>Gt>Tt>Gg' whereas all density function theory calculations with the B3LYP method predicted the stability as Tg>Tt>Gg>Gt>Gg'. The four more stable conformers have been identified in the fluid phases with the Tg rotamer the only form remaining in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of the samples dissolved in liquid krypton have been recorded and the enthalpy differences determined to be: 50±20 (0.59±0.24 kJ/mol), 172±17 (2.06±0.20 kJ/mol) and 290±40 cm -1 (3.45±0.48 kJ/mol) for the Tg/Gg, Tg/Gt and Tg/Tt conformer pairs with the Tg conformer the most stable form. It is estimated that there is 42±2% of the Tg form, 33±1% of the Gg form, 20±2% of the Gt form, and 5±1% of the Tt form present at ambient temperature. A relatively complete vibrational assignment is proposed for the Tg conformer and many of the fundamentals have been identified for the other three (Gg, Gt and Tt) conformers based on the ab initio MP2(full)/6-31G(d) predicted frequencies, the relative infrared and Raman spectral intensities, and infrared band contours which are supported by normal coordinate calculations. Since the predicted energies between Tg and Gg' conformers from all calculations are very large, it is not surprising that no evidence in either the infrared or Raman spectra could be found for the Gg' conformer. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities
Wang, Liang; Liu, Weimin; Fang, Chong
2015-07-14
Low-frequency vibrations are foundational for material properties including thermal conductivity and chemical reactivity. To resolve the intrinsic molecular conformational dynamics in condensed phase, we implement time-resolved third-harmonic generation (TRTHG) spectroscopy to unravel collective skeletal motions in calcite, water, and aqueous salt solution in situ. The lifetime of three Raman-active modes in polycrystalline calcite at 155, 282 and 703 cm(-1) is found to be ca. 1.6 ps, 1.3 ps and 250 fs, respectively. The lifetime difference is due to crystallographic defects and anharmonic effects. By incorporating a home-built wire-guided liquid jet, we apply TRTHG to investigate pure water and ZnCl2 aqueous solution, revealing ultrafast dynamics of water intermolecular stretching and librational bands below 500 cm(-1) and a characteristic 280 cm(-1) vibrational mode in the ZnCl4(H2O)2(2-) complex. TRTHG proves to be a compact and versatile technique that directly uses the 800 nm fundamental laser pulse output to capture ultrafast low-frequency vibrational motion snapshots in condensed-phase materials including the omnipresent water, which provides the important time dimension to spectral characterization of molecular structure-function relationships. PMID:26062639
NASA Astrophysics Data System (ADS)
Hiremath, C. S.; Kalkoti, G. B.; Aralakkanavar, M. K.
2009-09-01
In the present study, a systematic vibrational spectroscopic investigation for the experimental IR and Raman spectra of 2,3,4-trifluorobenzonitrile (TFB), aided by electronic structure calculations has been carried out. The electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) - have been performed with 6-31G* basis set. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. The results of the calculations have been used to simulate IR and Raman spectra for TFB that showed excellent agreement with the observed spectra. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed. A complete assignment of the observed spectra has been proposed.
NASA Astrophysics Data System (ADS)
Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V. G.; Milton Franklin Benial, A.
2014-08-01
The molecular structure of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) was optimized by the DFT/B3LYP method with 6-311G (d,p), 6-311++G (d,p) and cc-pVTZ basis sets using the Gaussian 09 program. The most stable optimized structure of the molecule was predicted by the DFT/B3LYP method with cc-pVTZ basis set. The vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals and thermodynamical parameters were calculated. These calculations were done at the ground state energy level of BABP without applying any constraint on the potential energy surface. The vibrational spectra were experimentally recorded using Fourier Transform-Infrared (FT-IR) and micro-Raman spectrometer. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The complete theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of Potential Energy Distribution (PED) calculation using the VEDA 4.0 program. The vibrational modes assignments were performed by using the animation option of GaussView 05 graphical interface for Gaussian program. The Mulliken atomic charge distribution was calculated for BABP molecule. The molecular reactivity and stability of BABP were also studied by frontier molecular orbitals (FMOs) analysis.
NASA Technical Reports Server (NTRS)
Sopher, R.; Twomey, W. J.
1990-01-01
NASA-Langley is sponsoring a rotorcraft structural dynamics program with the objective to establish in the U.S. a superior capability to utilize finite element analysis models for calculations to support industrial design of helicopter airframe structures. In the initial phase of the program, teams from the major U.S. manufacturers of helicopter airframes will apply extant finite element analysis methods to calculate loads and vibrations of helicopter airframes, and perform correlations between analysis and measurements. The aforementioned rotorcraft structural dynamics program was given the acronym DAMVIBS (Design Analysis Method for Vibrations). Sikorsky's RDYNE Rotorcraft Dynamics Analysis used for the correlation study, the specifics of the application of RDYNE to the AH-1G, and comparisons of the predictions of the method with flight data for loads and vibrations on the AH-1G are described. RDYNE was able to predict trends of variations of loads and vibrations with airspeed, but in some instances magnitudes differed from measured results by factors of two or three to one. Sensitivities were studied of predictions to rotor inflow modeling, effects of torsional modes, number of blade bending modes, fuselage structural damping, and hub modal content.
NASA Astrophysics Data System (ADS)
Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Sümmchen, L.; Salzer, R.
2007-10-01
The IR, Raman and NMR spectra of 3-aminomethylene-2,4-pentanedione (AMP) H 2N sbnd CH dbnd C(COCH 3) 2 were measured. According to the NMR spectra in chloroform and more polar DMSO at room temperature, the sample exists as single entity. On the other hand vibrational spectra revealed that in less polar solutions AMP exists as two conformers with EZ or ZZ orientation of acetyl groups whereas in more polar solvent only one EZ conformer is observed. Such interpretation was confirmed also by the temperature-dependent measurements of IR spectra in chloroform. The observed IR and Raman bands were compared with harmonic vibrational frequencies, calculated using ab initio MP2 and B3LYP density functional methods in 6-31G ∗∗ basis set, and assigned on the basis of potential energy distribution. In addition, the geometries and relative energies of possible conformers of AMP were also evaluated at the same levels of theory and compared with the data from X-ray analysis which revealed that AMP exists in solid state as EZ conformer. The influence of environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using PCM, IPCM and ONSAGER models.
NASA Astrophysics Data System (ADS)
Bock, Charles W.; Trachtman, Mendel; George, Philip
1980-11-01
The harmonic and anharmonic force fields and fundamental vibrational frequencies of cis-cis and cis-trans performic acid are studied ab initio in the 4-31G basis set using geometries fully optimized at this level. The frequencies predicted for the cis-cis conformer are compared with those derived from spectroscopic observations on the most stable form. An extensive comparison is made between the changes in diagonal and off-diagonal quadratic and cubic force constants, and diagonal stretching quartic constants, in going from the chain to the ring structure in performic and formic acid, and features which these changes have in common are seen to support the view that there is a hydrogen bonding type of interaction in trans-formic acid despite its unfavorable geometry.
Vibration-rotation variational calculations - Precise results on HCN up to 25,000/cm
NASA Astrophysics Data System (ADS)
Carter, Stuart; Mills, Ian M.; Handy, Nicholas C.
1993-09-01
Variation calculations of the vibration-rotation energy levels of many isotopomers of HCN are reported, for J = 0, 1, and 2, extending up to approximately 8 quanta of each of the stretching vibrations and 14 quanta of the bending mode. The force field, which is represented as a polynomial expansion in Morse coordinates for the bond stretches and even powers of the angle bend, has been refined by least squares to fit simultaneously all observed data on the Sigma and Pi state vibrational energies, and the Sigma state rotational constants, for both HCN and DCN. The observed vibrational energies are fitted to roughly +/- 0.5/cm, and the rotational constants to roughly +/- 0.0001/cm. The force field has been used to predict the vibration rotation spectra of many isotopomers of HCN up to 25,000/cm.
Nonlinear vibrational excitations in molecular crystals molecular mechanics calculations
NASA Astrophysics Data System (ADS)
Pumilia, P.; Abbate, S.; Baldini, G.; Ferro, D. R.; Tubino, R.
1992-03-01
The coupling constant for vibrational solitons χ has been examined in a molecular mechanics model for acetanilide (ACN) molecular crystal. According to A.C. Scott, solitons can form and propagate in solid acetanilide over a threshold energy value. This can be regarded as a structural model for the spines of hydrogen bond chains stabilizing the α helical structure of proteins. A one dimensional hydrogen bond chain of ACN has been built, for which we have found that, even though experimental parameters are correctly predicted, the excessive rigidity of the isolated chain prevents the formation of a localized distortion around the excitation. Yet, C=O coupling value with softer lattice modes could be rather high, allowing self-trapping to take place.
NASA Astrophysics Data System (ADS)
Pavlyuchko, A. I.; Yurchenko, S. N.; Tennyson, Jonathan
2015-07-01
A procedure for calculation of rotational-vibrational states of medium-sized molecules is presented. It combines the advantages of variational calculations and perturbation theory. The vibrational problem is solved by diagonalising a Hamiltonian matrix, which is partitioned into two sub-blocks. The first, smaller sub-block includes matrix elements with the largest contribution to the energy levels targeted in the calculations. The second, larger sub-block comprises those basis states which have little effect on these energy levels. Numerical perturbation theory, implemented as a Jacobi rotation, is used to compute the contributions from the matrix elements of the second sub-block. Only the first sub-block needs to be stored in memory and diagonalised. Calculations of the vibrational-rotational energy levels also employ a partitioning of the Hamiltonian matrix into sub-blocks, each of which corresponds either to a single vibrational state or a set of resonating vibrational states, with all associated rotational levels. Physically, this partitioning is efficient when the Coriolis coupling between different vibrational states is small. Numerical perturbation theory is used to include the cross-contributions from different vibrational states. Separate individual sub-blocks are then diagonalised, replacing the diagonalisation of a large Hamiltonian matrix with a number of small matrix diagonalisations. Numerical examples show that the proposed hybrid variational-perturbation method greatly speeds up the variational procedure without significant loss of precision for both vibrational-rotational energy levels and transition intensities. The hybrid scheme can be used for accurate nuclear motion calculations on molecules with up to 15 atoms on currently available computers.
Tuning natural modes of vibration by prestress in the design of a harmonic gong.
McLachlan, Neil; Adams, Ryan; Burvill, Colin
2012-01-01
Prestresses are purposefully added to an object to improve its performance, such as tuning a guitar string by adding tension. This paper reports how the normal modes of a sheet metal component can be tuned through the prestresses generated by cold-forging small dimples. Finite element analysis showed that the frequencies of specific mode shapes were differentially affected by the location of residual stress fields due to dimple formation in relation to modal stress fields. The frequencies of overtones were most sensitive to the depth of the dimples located near the maxima of modal stresses. Using this approach a series of musical gongs were designed with up to the first five overtones tuned to within 5% of the harmonic series. The balance of harmonic and inharmonic overtones in these gongs that are well resolved by the human cochlea may constitute a set of recognizable musical timbres with sufficient harmonicity to produce an unambiguous pitch for most listeners. Since many other mechanical properties of sheet metal components are affected by residual stresses this manufacturing technique may have broader application in design engineering. PMID:22280715
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Weatherill, W. H.; Yip, E. L.
1984-01-01
A finite difference method to solve the unsteady transonic flow about harmonically oscillating wings was investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. An alternating direction implicit procedure was investigated, and a pilot program was developed for both two and three dimensional wings. This program provides a relatively efficient relaxation solution without previously encountered solution instability problems. Pressure distributions for two rectangular wings are calculated. Conjugate gradient techniques were developed for the asymmetric, indefinite problem. The conjugate gradient procedure is evaluated for applications to the unsteady transonic problem. Different equations for the alternating direction procedure are derived using a coordinate transformation for swept and tapered wing planforms. Pressure distributions for swept, untaped wings of vanishing thickness are correlated with linear results for sweep angles up to 45 degrees.
NASA Astrophysics Data System (ADS)
Ticknor, Christopher; Kendrick, Brian
2016-05-01
We report progress towards including excited vibrational states in quantum scattering calculations of NaK-NaK at ultracold temperatures. We systematically use all pair potentials to build a complete 4 body potential energy surface. We study this 4-body potential and the asymptotic ro-vibrational 2-body basis. This allows for a more complete interaction as two molecules approach each other. We study where and how vibrationally excited states influence the asymptotic 2-body ro-vibrational scattering potentials. This work is an intermediate step in performing the complete scattering calculations as we develop tools to bring together the long range, ultracold 2-body scattering problem and the short range 4-body quantum chemistry problem.
NASA Astrophysics Data System (ADS)
Arapiraca, A. F. C.; Jonsson, Dan; Mohallem, J. R.
2011-12-01
We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10-4 debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values.
Arapiraca, A F C; Jonsson, Dan; Mohallem, J R
2011-12-28
We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10(-4) debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values. PMID:22225162
Calculation of vibrational spectra for dioxouranium monochloride monomer and dimers
NASA Astrophysics Data System (ADS)
Umreiko, D. S.; Shundalau, M. B.; Zazhogin, A. P.; Komyak, A. I.
2010-09-01
Structural models were built and spectral characteristics were calculated based on ab initio calculations for the monomer and dimers of dioxouranium monochoride UO2Cl. The calculations were carried out in the effective core potential LANL2DZ approximation for the uranium atom and all-electron basis sets using DFT methods for oxygen and chlorine atoms (B3LYP/cc-pVDZ). The monomer UO2Cl was found to possess an equilibrium planar (close to T-shaped) configuration with C2v symmetry. The obtained spectral characteristics were analyzed and compared with experimental data. The adequacy of the proposed models and the qualitative agreement between calculation and experiment were demonstrated.
Reactive scattering calculations for D + H2 in vibrationally excited states at ultralow temperature
NASA Astrophysics Data System (ADS)
Simbotin, Ion; Coté, Robin
2006-05-01
We calculate total cross sections for the D + H2(v,j ) collision, and investigate their dependence on the vibrational quantum number v of the initial state of H2. The cross sections increase quasi-exponentially with the excitation energy of the initial vibrational state. This is similar to the exponential dependence observed in the vibrational predissociation of van der Waals complexes. We attempt to explain this simple relationship in terms of the short range details of the single channel atom--molecule wavefunctions and the couplings between the initial and final channels.
Improved calculations of the lowest vibrational transitions in HeH{sup +}
Bubin, Sergiy; Stanke, Monika; Kedziera, Dariusz; Adamowicz, Ludwik
2007-08-15
More accurate variational calculations of the lowest three pure vibrational states (v=0,1,2) of the {sup 4}HeH{sup +} molecular ion have been carried out without assuming the Born-Oppenheimer approximation. In the calculations we included the complete set of {alpha}{sup 2} relativistic corrections, i.e., mass-velocity, Darwin, spin-spin, and orbit-orbit. This allowed us to improve the agreement between the theory and the experiment for the vibrational frequencies of the 1{yields}0 and 2{yields}1 transitions as compared to our previous calculations [Stanke et al., Phys. Rev. Lett. 96, 233002 (2006)].
PERTURB: A program for calculating vibrational energies by generalized algebraic quantization
NASA Astrophysics Data System (ADS)
Fried, Laurence E.; Ezra, Gregory S.
1988-09-01
We describe PERTURB, a special purpose algebraic manipulation program which calculates vibrational eigenvalues in coupled oscillator systems. PERTURB implements the method of generalized algebraic quantization (AQ), in which Van Vleck perturbation theory is formulated in a mock phase space. The phase space formulation enables quantum and classical perturbation theory to be treated on the same footing, and allows the systematic calculation of corrections to classical perturbation results in powers of h̷. Generalized AQ is a powerful and efficient technique for calculating semiclassical vibrational energy levels. In many cases, including just the first correction to classical perturbation theory yields highly accurate energies.
A computationally efficient software application for calculating vibration from underground railways
NASA Astrophysics Data System (ADS)
Hussein, M. F. M.; Hunt, H. E. M.
2009-08-01
The PiP model is a software application with a user-friendly interface for calculating vibration from underground railways. This paper reports about the software with a focus on its latest version and the plans for future developments. The software calculates the Power Spectral Density of vibration due to a moving train on floating-slab track with track irregularity described by typical values of spectra for tracks with good, average and bad conditions. The latest version accounts for a tunnel embedded in a half space by employing a toolbox developed at K.U. Leuven which calculates Green's functions for a multi-layered half-space.
NASA Astrophysics Data System (ADS)
Li, Xiao-Hong; Liu, Xiang-Ru; Zhang, Xian-Zhou
2011-01-01
The vibrational frequencies of three substituted 4-thioflavones in the ground state have been calculated using the Hartree-Fock and density functional method (B3LYP) with 6-31G* and 6-31+G** basis sets. The structural analysis shows that there exists H-bonding in the selected compounds and the hydrogen bond lengths increase with the augment of the conjugate parameters of the substituent group on the benzene ring. A complete vibrational assignment aided by the theoretical harmonic wavenumber analysis was proposed. The theoretical spectrograms for FT-IR spectra of the title compounds have been constructed. In addition, it is noted that the selected compounds show significant activity against Shigella flexniri. Several electronic properties and thermodynamic parameters were also calculated.
NASA Astrophysics Data System (ADS)
Nosov, G. V.; Kuleshova, E. O.; Vassilyeva, Yu Z.; Elizarov, A. I.
2016-04-01
The authors of the paper have obtained formulas for analytical calculation of the constants with the harmonic electromagnetic field, which characterize the surface layer (a skin layer) of the ferromagnetic conductors in case of heating and nonlinear magnetic properties, which can be used for practical calculation of the electromagnetic screens, rotors of the electrical machines and inductive heating installations. A nonlinear dependence of the magnetic induction on the magnetic tension of the ferromagnetic conductor is replaced by one or two linear sections. It is considered that the skin layer of the conductor has constant quantities of the specific conductivity and averaged temperature. Linear electrodynamics equations are solved for the conductive half-space. Parameters of the ferromagnetic conductor's surface layer are calculated: magnetic permeability, the thickness of the skin layer and its averaged temperature, exposure time of the electromagnetic field on the conductor with the established maximum temperature on the conductor's surface, pressure of the field on the conductor and its resistance, inductivity of the internal magnetic field in the conductor, the thermal energy capacity. The methods credibility is confirmed with the concurrence of the resistance and inductiviry of the ferromagnetic conductor with analogous quantities from other methods.
NASA Astrophysics Data System (ADS)
Guennoun, L.; El jastimi, J.; Guédira, F.; Marakchi, K.; Kabbaj, O. K.; El Hajji, A.; Zaydoun, S.
2011-01-01
The 3,5-diamino-1,2,4-triazole (guanazole) was investigated by vibrational spectroscopy and quantum methods. The solid phase FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm -1 and 3600-50 cm -1 respectively, and the band assignments were supported by deuteration effects. The results of energy calculations have shown that the most stable form is 1H-3,5-diamino-1,2,4-triazole under C 1 symmetry. For this form, the molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated by the ab initio/HF and DFT/B3LYP methods using 6-31G* basis set. The calculated geometrical parameters of the guanazole molecule using B3LYP methodology are in good agreement with the previously reported X-ray data, and the scaled vibrational wave number values are in good agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PEDs) using VEDA 4 program.
NASA Astrophysics Data System (ADS)
Rivelino, Roberto; Malaspina, Thaciana; Fileti, Eudes E.
2009-01-01
We have investigated the stability, electronic properties, Rayleigh (elastic), and Raman (inelastic) depolarization ratios, infrared and Raman absorption vibrational spectra of fullerenols [C60(OH)n] with different degrees of hydroxylation by using all-electron density-functional-theory (DFT) methods. Stable arrangements of these molecules were found by means of full geometry optimizations using Becke’s three-parameter exchange functional with the Lee, Yang, and Parr correlation functional. This DFT level has been combined with the 6-31G(d,p) Gaussian-type basis set, as a compromise between accuracy and capability to treat highly hydroxylated fullerenes, e.g., C60(OH)36 . Thus, the molecular properties of fullerenols were systematically analyzed for structures with n=1 , 2, 3, 4, 8, 10, 16, 18, 24, 32, and 36. From the electronic structure analysis of these molecules, we have evidenced an important effect related to the weak chemical reactivity of a possible C60(OH)24 isomer. To investigate Raman scattering and the vibrational spectra of the different fullerenols, frequency calculations are carried out within the harmonic approximation. In this case a systematic study is only performed for n=1-4 , 8, 10, 16, 18, and 24. Our results give good agreements with the expected changes in the spectral absorptions due to the hydroxylation of fullerenes.
NASA Astrophysics Data System (ADS)
Moorthy, N.; Jobe Prabakar, P. C.; Ramalingam, S.; Periandy, S.; Parasuraman, K.
2016-04-01
In order to explore the unbelievable NLO property of prepared Benzophenone thiosemicarbazone (BPTSC), the experimental and theoretical investigation has been made. The theoretical calculations were made using RHF and CAM-B3LYP methods at 6-311++G(d,p) basis set. The title compound contains Cdbnd S ligand which helps to improve the second harmonic generation (SHG) efficiency. The molecule has been examined in terms of the vibrational, electronic and optical properties. The entire molecular behavior was studied by their fundamental IR and Raman wavenumbers and was compared with the theoretical aspect. The molecular chirality has been studied by performing vibrational circular dichroism (circularly polarized infrared radiation). The Mulliken charge levels of the compound ensure the perturbation of atomic charges according to the ligand. The molecular interaction of frontier orbitals emphasizes the modification of chemical properties of the compound through the reaction path. The enormous amount of NLO activity was induced by the Benzophenone in thiosemicarbazone. The Gibbs free energy was evaluated at different temperature and from which the enhancement of chemical stability was stressed. The VCD spectrum was simulated and the optical dichroism of the compound has been analyzed.
van Neer, Paul L M J; Blaak, Sandra; Bosch, Johan G; Lancée, Charles T; Prins, Christian; van der Steen, Anton F W; de Jong, Nico
2012-10-01
Transesophageal echocardiography (TEE) uses the esophagus as an imaging window to the heart. This enables cardiac imaging without interference from the ribs or lungs and allows for higher frequency ultrasound to be used compared with transthoracic echocardiography (TTE). TEE facilitates the successful imaging of obese or elderly patients, where TTE may be unable to produce images of satisfactory quality. Recently, three-dimensional (3-D) TEE has been introduced, which greatly improves the image quality and diagnostic value of TEE by adding an extra dimension. Further improvement could be achieved by optimizing 3-D TEE for harmonic imaging. This article describes the optimal geometry and element configuration for a matrix probe for 3-D second harmonic TEE. The array concept features separated transmit and receive subarrays. The element geometry was studied using finite element modeling and a transmit subarray prototype was examined both acoustically and with laser interferometry. The transmit subarray is suitable for its role, with a 3 MHz resonance frequency, a 40%-50% -3 dB bandwidth and crosstalk levels <-27 dB. The proposed concept for the receive subarray has a 5.6 MHz center frequency and a 50% -3 dB bandwidth. PMID:22958515
Calculation of bulkhead vibrations in a supported shell simulating a plane fuselage
NASA Astrophysics Data System (ADS)
Efimtsov, B. M.; Lazarev, L. A.
2014-09-01
Noise from external sources penetrates a plane cabin through the board construction in several ways. They include direct penetration through loose-fiber layers and indirect penetration through the attachment points of interior panels to transverse ribs (bulkheads). The analytical method of calculating vibrations of an orthogonally supported shell (developed by us earlier) makes it possible to correctly calculate bulkhead vibrations. As a result, noise penetration into the cabin through the attachment points of interior panels can be determined analytically. The first part of the solution to this problem is presented (i.e., the relations and examples of calculating bulkhead vibrations upon point excitation of the shell and excitation by pressure fluctuations of the turbulent boundary layer are given).
A numerical model for calculating vibration from a railway tunnel embedded in a full-space
NASA Astrophysics Data System (ADS)
Hussein, M. F. M.; Hunt, H. E. M.
2007-08-01
Vibration generated by underground railways transmits to nearby buildings causing annoyance to inhabitants and malfunctioning to sensitive equipment. Vibration can be isolated through countermeasures by reducing the stiffness of railpads, using floating-slab tracks and/or supporting buildings on springs. Modelling of vibration from underground railways has recently gained more importance on account of the need to evaluate accurately the performance of vibration countermeasures before these are implemented. This paper develops an existing model, reported by Forrest and Hunt, for calculating vibration from underground railways. The model, known as the Pipe-in-Pipe model, has been developed in this paper to account for anti-symmetrical inputs and therefore to model tangential forces at the tunnel wall. Moreover, three different arrangements of supports are considered for floating-slab tracks, one which can be used to model directly-fixed slabs. The paper also investigates the wave-guided solution of the track, the tunnel, the surrounding soil and the coupled system. It is shown that the dynamics of the track have significant effect on the results calculated in the wavenumber-frequency domain and therefore an important role on controlling vibration from underground railways.
Vibrational Spectrum of (CO)2 on Cu(100): Quantum Calculations with 18 Coupled Mode
NASA Technical Reports Server (NTRS)
Dzegilenko, Fedor; Bowman, Joel M.; Carter, Stuart; Saini, Subhash (Technical Monitor)
1998-01-01
We report calculations of the vibrational frequencies of CO dimer on Cu(100) using recently developed vibrational self-consistent field code. Eighteen modes are treated explicitly within three modes coupling representation. Nine symmetry distinct doublets are observed and the corresponding frequencies are computed. The thermally broadened spectrum of the CO-stretch fundamental is calculated at various temperatures. Both the temperature and coverage dependence of both the average CO-stretch frequency and the corresponding line-width are consistent with experimentally observed trends. The document contains no classified information International clearance is needed.
A simplified spherical harmonic method for coupled electron-photon transport calculations
Josef, J.A.
1997-12-01
In this thesis the author has developed a simplified spherical harmonic method (SP{sub N} method) and associated efficient solution techniques for 2-D multigroup electron-photon transport calculations. The SP{sub N} method has never before been applied to charged-particle transport. He has performed a first time Fourier analysis of the source iteration scheme and the P{sub 1} diffusion synthetic acceleration (DSA) scheme applied to the 2-D SP{sub N} equations. The theoretical analyses indicate that the source iteration and P{sub 1} DSA schemes are as effective for the 2-D SP{sub N} equations as for the 1-D S{sub N} equations. In addition, he has applied an angular multigrid acceleration scheme, and computationally demonstrated that it performs as well as for the 2-D SP{sub N} equations as for the 1-D S{sub N} equations. It has previously been shown for 1-D S{sub N} calculations that this scheme is much more effective than the DSA scheme when scattering is highly forward-peaked. The author has investigated the applicability of the SP{sub N} approximation to two different physical classes of problems: satellite electronics shielding from geomagnetically trapped electrons, and electron beam problems.
First-principles calculation of the second-harmonic-generation coefficients of borate crystals
NASA Astrophysics Data System (ADS)
Duan, Chun-Gang; Li, Jun; Gu, Zong-Quan; Wang, Ding-Sheng
1999-10-01
We report the calculation of the second-harmonic-generation (SHG) coefficients of LiB3O5 (LBO), CsB3O5 (CBO), and BaB2O4 (BBO) using the linearized augmented plane-wave band method in the local-density approximation with a scissors operator that includes the renormalization of the momentum operator. The analysis that is based on the spectral and spatial decomposition of the calculated results reveals that, for the large component of SHG coefficients, the dominant source of the optical nonlinearities for these borate crystals is the nonlinear response of the high-lying 2p electrons of oxygen atoms, while the cations play a minor role even in the heavier Cs and Ba cases, though they dominate the conduction-band minimum. But for the small SHG component, the role of the cation became important, particularly when the isolated anionic group has little contribution due to the restriction of the symmetry. In the case of LBO and CBO, due to the linkage of anionic groups, the contributions of off-ring O atoms are almost the same as those of in-ring O atoms. Yet for BBO where there is no such linkage, the off-ring O atom plays a much more important role than the in-ring O atom does. We also find that the contribution of the virtual-hole process cannot be ignored as is usually done in the semiconductors case.
NASA Astrophysics Data System (ADS)
Yoon, Jong-Yun; Singh, Rajendra
2014-10-01
A multi-degree of freedom vibration isolation experiment consisting of a powertrain, three powertrain mounts including a dynamic load sensing hydraulic mount, a sub-frame, and 4 bushings is examined in both time and frequency domains. Since the hydraulic mount exhibits nonlinear phenomena, super-harmonics are observed in motion, pressure and interfacial force measurements when the system is sinusoidally excited. Refined indirect force estimation methods are proposed with a focus on the super-harmonics. This includes the development of a quasi-linear fluid system model with embedded spectrally varying and amplitude-sensitive parameters. The reverse path spectral method is employed using the measured relative motion and upper chamber pressure in the nonlinear hydraulic mount. The relevant transfer functions (with effective parameters for both rubber and hydraulic paths) are used to estimate the interfacial forces. Up to six harmonics of the fundamental excitation frequency are examined, and the contribution of each path is clarified. The proposed quasi-linear fluid system model including super-harmonics extends prior work on indirect force estimation methods and successfully predicts the interfacial forces in the multi-degree of freedom vibration isolation system. The quasi-linear fluid system model, however, seems to be inadequate in estimating the sub-harmonic responses.
NASA Technical Reports Server (NTRS)
Ditaranto, R. A.; Sankewitsch, V.
1989-01-01
Boeing Helicopters, together with other U.S. Helicopter manufacturers, participated in a finite element applications program to give the United States a superior capability to utilize finite element analysis models in support of helicopter airframe design. The program was sponsored by the NASA Langley Research Center. Under this program, an activity was sponsored to evaluate existing analysis methods applicable to calculate coupled rotor-airframe vibrations. The helicopter used in this evaluation was the AH-1G helicopter. The results of the Boeing Helicopters efforts are summarized. The planned analytical procedure is reviewed. Changes to the planned procedure are discussed, and results of the correlation study are presented.
Al-Abawi, H.; Moore, G.T.; Scully, M.O.
1982-01-01
Harmonic generation in the free-electron laser offers a possible means to extend the wavelength range of the device towards high frequency. Numerical solutions to the basic equations describing this process are shown for cw operation using a linearly polarized wiggler. Higher harmonic emission becomes enhanced as the magnetic field is increased and as the energy spread in the electron beam is reduced.
ERIC Educational Resources Information Center
Cutchins, M. A.
1982-01-01
Presents programmable calculator solutions to selected problems, including area moments of inertia and principal values, the 2-D principal stress problem, C.G. and pitch inertia computations, 3-D eigenvalue problems, 3 DOF vibrations, and a complex flutter determinant. (SK)
NASA Astrophysics Data System (ADS)
Saleem, H.; Subashchandrabose, S.; Ramesh Babu, N.; Syed Ali Padusha, M.
2015-05-01
The FT-IR, FT-Raman and UV-Vis spectra of the Schiff base compound (E)-N‧-(4-methoxybenzylidene) benzohydrazide (MBBH) have been recorded and analyzed. The optimized geometrical parameters were calculated. The complete vibrational assignments were performed on the basis of TED of the vibrational modes, calculated with the help of SQM method. NBO analysis has been carried out to explore the hyperconjugative interactions and their second order stabilization energy within the molecule. The molecular orbitals (MO's) and its energy gap were studied. The first order hyperpolarizability (β0) and related properties (β, α0, Δα) of MBBH are also calculated. All theoretical calculations were performed on the basis of B3LYP/6-311++G(d,p) level of theory.
Calculations of lattice vibrational mode lifetimes using Jazz: a Python wrapper for LAMMPS
NASA Astrophysics Data System (ADS)
Gao, Y.; Wang, H.; Daw, M. S.
2015-06-01
Jazz is a new python wrapper for LAMMPS [1], implemented to calculate the lifetimes of vibrational normal modes based on forces as calculated for any interatomic potential available in that package. The anharmonic character of the normal modes is analyzed via the Monte Carlo-based moments approximation as is described in Gao and Daw [2]. It is distributed as open-source software and can be downloaded from the website http://jazz.sourceforge.net/.
Holderna-Natkaniec, K.; Natkaniec, I.; Khavryutchenko, V. D.
1999-06-15
The observed and calculated INS vibrational densities of states for globular molecules of norbornane, norborneole and borneole are compared in the frequency range up to 600 cm{sup -1}. Inelastic incoherent neutron scattering (IINS) spectra were measured at ca. 20 K on the high resolution NERA spectrometer at the IBR-2 pulsed reactor. The IINS intensities were calculated by semi-empirical quantum chemistry method and the assignments of the low-frequency internal modes were proposed.
NASA Astrophysics Data System (ADS)
Mareishi, Soraya; Kalhori, Hamed; Rafiee, Mohammad; Hosseini, Seyedeh Marzieh
2015-01-01
This paper presents an analytical solution for nonlinear free and forced vibration response of smart laminated nano-composite beams resting on nonlinear elastic foundation and under external harmonic excitation. The structure is under a temperature change and an electric excitation through the piezoelectric layers. Different distribution patterns of the single walled aligned and straight carbon nanotubes (SWCNTs) through the thickness of the beam are considered. The beam complies with Euler-Bernoulli beam theory and von Kármán geometric nonlinearity. The nonlinearity is due to the mid-plane stretching of the beam and the nonlinear stiffness of the elastic foundation. The Multiple Time Scales perturbation scheme is used to perform the nonlinear dynamical analysis of functionally graded carbon nanotube-reinforced beams. Analytical expressions of the nonlinear natural frequencies, nonlinear dynamic response and frequency response of the system in the case of primary resonance have been presented. The effects of different parameters including applied voltage, temperature change, beam geometry, the volume fraction and distribution pattern of the carbon nanotubes on the nonlinear natural frequencies and frequency-response curves are presented. It is found that the volume fractions of SWCNTs as well as their distribution pattern significantly change the behavior of the system.
Convexity considerations and spatial behavior for the harmonic vibrations in thermoelastic plates
NASA Astrophysics Data System (ADS)
D'Apice, Ciro
2005-12-01
In this paper we study the spatial behavior of the steady-state solutions for the approach of thin thermoelastic plates developed by Lagnese and Lions [J.E. Lagnese, J.-L. Lions, Modelling, Analysis and Control of Thin Plates, Collection RMA, vol. 6, Masson, Paris, 1988]. The model leads to a coupled complex system of partial differential equations, one of fourth order in terms of the amplitude of the vertical deflection and the other of second-order in terms of the amplitude of temperature field. Coupling in an appropriate way the two equations in an integral identity we are able to identify some cross-sectional line integral measures associated with the amplitudes of the vertical deflection and temperature vibrations, provided that the exciting frequency is less than a certain critical frequency. Furthermore, we are able to establish a second-order differential inequality whose integration furnishes a Saint-Venant type decay estimate for a bounded strip and an alternative of Phragmén-Lindelöf type for a semi-infinite strip. The critical frequency is individuated by means of the use of some Wirtinger and Knowles inequalities.
On the benefits of localized modes in anharmonic vibrational calculations for small molecules.
Panek, Paweł T; Jacob, Christoph R
2016-04-28
Anharmonic vibrational calculations can already be computationally demanding for relatively small molecules. The main bottlenecks lie in the construction of the potential energy surface and in the size of the excitation space in the vibrational configuration interaction (VCI) calculations. To address these challenges, we use localized-mode coordinates to construct potential energy surfaces and perform vibrational self-consistent field and L-VCI calculations [P. T. Panek and C. R. Jacob, ChemPhysChem 15, 3365 (2014)] for all vibrational modes of two prototypical test cases, the ethene and furan molecules. We find that the mutual coupling between modes is reduced when switching from normal-mode coordinates to localized-mode coordinates. When using such localized-mode coordinates, we observe a faster convergence of the n-mode expansion of the potential energy surface. This makes it possible to neglect higher-order contributions in the n-mode expansion of the potential energy surface or to approximate higher-order contributions in hybrid potential energy surfaces, which reduced the computational effort for the construction of the anharmonic potential energy surface significantly. Moreover, we find that when using localized-mode coordinates, the convergence with respect to the VCI excitation space proceeds more smoothly and that the error at low orders is reduced significantly. This makes it possible to devise low-cost models for obtaining a first approximation of anharmonic corrections. This demonstrates that the use of localized-mode coordinates can be beneficial already in anharmonic vibrational calculations of small molecules and provides a possible avenue for enabling such accurate calculations also for larger molecules. PMID:27131535
On the benefits of localized modes in anharmonic vibrational calculations for small molecules
NASA Astrophysics Data System (ADS)
Panek, Paweł T.; Jacob, Christoph R.
2016-04-01
Anharmonic vibrational calculations can already be computationally demanding for relatively small molecules. The main bottlenecks lie in the construction of the potential energy surface and in the size of the excitation space in the vibrational configuration interaction (VCI) calculations. To address these challenges, we use localized-mode coordinates to construct potential energy surfaces and perform vibrational self-consistent field and L-VCI calculations [P. T. Panek and C. R. Jacob, ChemPhysChem 15, 3365 (2014)] for all vibrational modes of two prototypical test cases, the ethene and furan molecules. We find that the mutual coupling between modes is reduced when switching from normal-mode coordinates to localized-mode coordinates. When using such localized-mode coordinates, we observe a faster convergence of the n-mode expansion of the potential energy surface. This makes it possible to neglect higher-order contributions in the n-mode expansion of the potential energy surface or to approximate higher-order contributions in hybrid potential energy surfaces, which reduced the computational effort for the construction of the anharmonic potential energy surface significantly. Moreover, we find that when using localized-mode coordinates, the convergence with respect to the VCI excitation space proceeds more smoothly and that the error at low orders is reduced significantly. This makes it possible to devise low-cost models for obtaining a first approximation of anharmonic corrections. This demonstrates that the use of localized-mode coordinates can be beneficial already in anharmonic vibrational calculations of small molecules and provides a possible avenue for enabling such accurate calculations also for larger molecules.
NASA Astrophysics Data System (ADS)
Song, L.; Balakrishnan, N.; Walker, K. M.; Stancil, P. C.; Thi, W. F.; Kamp, I.; van der Avoird, A.; Groenenboom, G. C.
2015-11-01
We present calculated rate coefficients for ro-vibrational transitions of CO in collisions with H atoms for a gas temperature range of 10 K ≤ T ≤ 3000 K, based on the recent three-dimensional ab initio H-CO interaction potential of Song et al. Rate coefficients for ro-vibrational v=1,j=0-30\\to v\\prime =0,j\\prime transitions were obtained from scattering cross sections previously computed with the close-coupling (CC) method by Song et al. Combining these with the rate coefficients for vibrational v=1-5\\to v\\prime \\lt v quenching obtained with the infinite-order sudden approximation, we propose a new extrapolation scheme that yields the rate coefficients for ro-vibrational v=2-5,j=0-30\\to v\\prime ,j\\prime de-excitation. Cross sections and rate coefficients for ro-vibrational v=2,j=0-30\\to v\\prime =1,j\\prime transitions calculated with the CC method confirm the effectiveness of this extrapolation scheme. Our calculated and extrapolated rates are very different from those that have been adopted in the modeling of many astrophysical environments. The current work provides the most comprehensive and accurate set of ro-vibrational de-excitation rate coefficients for the astrophysical modeling of the H-CO collision system. The application of the previously available and new data sets in astrophysical slab models shows that the line fluxes typically change by 20%-70% in high temperature environments (800 K) with an H/H2 ratio of 1; larger changes occur for lower temperatures.
Molecular structure and vibrational spectra of dithionite ion by ab initio calculations
NASA Astrophysics Data System (ADS)
Leszczynski, Jerzy; Zerner, Michael C.
1989-07-01
The structure of the dithionite ion, S 2O 42-, is examined using quantum chemical calculations. These studies strongly suggest that only the C 2h (trans) isomer is stable in solution. The C 2v (cis) form reported in Na 2S 2O 4·2H 2O is stabilized by crystal forces. The calculated vibrational spectrum of the C 2h form is in excellent agreement with that observed in aqueous solution. Taking into account the negative frequency calculated for the C 2v structure yields a calculated spectrum in good agreement with that observed for the crystal.
Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian; Rauhut, Guntram
2015-12-28
Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.
NASA Astrophysics Data System (ADS)
Ishida, Kazuhiro
1999-09-01
A rigorous general formula for calculating the electron repulsion integral (ERI) over the uncontracted solid harmonic (SH) Gaussian-type orbitals (GTOs) can be derived by the use of the "reducing mixed solid harmonics" defined in this paper. A general algorithm can be obtained inductively from this formula with the use of the "mixed solid harmonics" also defined in this paper. This algorithm is named as accompanying coordinate expansion (ACE) b1k1. This ACE-b1k1 is capable of computing very fast SH-ERIs. The floating-point operation (FLOP) count assessment is shown for the (LL|LL) class of SH-ERIs (L=2-5). It is found that the present ACE-b1k1 algorithm is the fastest among all algorithms in the literature for the ERI over the uncontracted SH-GTOs.
Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms
Song, Lei; Avoird, Ad van der; Karman, Tijs; Groenenboom, Gerrit C.; Balakrishnan, N.
2015-05-28
We present quantum-mechanical scattering calculations for ro-vibrational relaxation of carbon monoxide (CO) in collision with hydrogen atoms. Collisional cross sections of CO ro-vibrational transitions from v = 1, j = 0 − 30 to v′ = 0, j′ are calculated using the close coupling method for collision energies between 0.1 and 15 000 cm{sup −1} based on the three-dimensional potential energy surface of Song et al. [J. Phys. Chem. A 117, 7571 (2013)]. Cross sections of transitions from v = 1, j ≥ 3 to v′ = 0, j′ are reported for the first time at this level of theory. Also calculations by the more approximate coupled states and infinite order sudden (IOS) methods are performed in order to test the applicability of these methods to H–CO ro-vibrational inelastic scattering. Vibrational de-excitation rate coefficients of CO (v = 1) are presented for the temperature range from 100 K to 3000 K and are compared with the available experimental and theoretical data. All of these results and additional rate coefficients reported in a forthcoming paper are important for including the effects of H–CO collisions in astrophysical models.
Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms
NASA Astrophysics Data System (ADS)
Song, Lei; Balakrishnan, N.; van der Avoird, Ad; Karman, Tijs; Groenenboom, Gerrit C.
2015-05-01
We present quantum-mechanical scattering calculations for ro-vibrational relaxation of carbon monoxide (CO) in collision with hydrogen atoms. Collisional cross sections of CO ro-vibrational transitions from v = 1, j = 0 - 30 to v' = 0, j' are calculated using the close coupling method for collision energies between 0.1 and 15 000 cm-1 based on the three-dimensional potential energy surface of Song et al. [J. Phys. Chem. A 117, 7571 (2013)]. Cross sections of transitions from v = 1, j ≥ 3 to v' = 0, j' are reported for the first time at this level of theory. Also calculations by the more approximate coupled states and infinite order sudden (IOS) methods are performed in order to test the applicability of these methods to H-CO ro-vibrational inelastic scattering. Vibrational de-excitation rate coefficients of CO (v = 1) are presented for the temperature range from 100 K to 3000 K and are compared with the available experimental and theoretical data. All of these results and additional rate coefficients reported in a forthcoming paper are important for including the effects of H-CO collisions in astrophysical models.
NASA Astrophysics Data System (ADS)
Suresh, S.; Gunasekaran, S.; Srinivasan, S.
The solid phase FT-IR and FT-Raman spectra of 2-[2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetyl] oxyacetic acid (Aceclofenac) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies were scaled and have been compared with experimental by obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method employed to study its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) were also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.
DFT Calculation of Vibrational Frequencies of FeCoB m-RAM
NASA Astrophysics Data System (ADS)
Ling, Lee Li; Jesudason, Christopher; Shrivastava, Keshav N.
2010-07-01
The present available random access memory materials are semiconductors. It is proposed to develop magnetoresistance based random access memory (m-RAM) materials. Hence, we consider an alloy of Fe, Co and B which will be strongly magnetic and work well as a memory device. We calculate the vibrational frequencies of clusters of atoms of Fe, Co and B. The larger vibrational frequencies indicate larger force constants. The result show that CoB3Fe to have the largest vibrational frequency of 1293.03 cm-1 whereas BFeCo2 has 509.59 cm-1. We identify the ratio of constituents and the structures which have large force constant. Hence, CoB3Fe is better than BFeCo2. The cluster formation depends on the method of quenching. Hence, method of preparation can be modified to achieve large force constants.
Pascale, F; Zicovich-Wilson, C M; López Gejo, F; Civalleri, B; Orlando, R; Dovesi, R
2004-04-30
The problem of numerical accuracy in the calculation of vibrational frequencies of crystalline compounds from the hessian matrix is discussed with reference to alpha-quartz (SiO(2)) as a case study and to the specific implementation in the CRYSTAL code. The Hessian matrix is obtained by numerical differentiation of the analytical gradient of the energy with respect to the atomic positions. The process of calculating vibrational frequencies involves two steps: the determination of the equilibrium geometry, and the calculation of the frequencies themselves. The parameters controlling the truncation of the Coulomb and exchange series in Hartree-Fock, the quality of the grid used for the numerical integration of the Exchange-correlation potential in Density Functional Theory, the SCF convergence criteria, the parameters controlling the convergence of the optimization process as well as those controlling the accuracy of the numerical calculation of the Hessian matrix can influence the obtained vibrational frequencies to some extent. The effect of all these parameters is discussed and documented. It is concluded that with relatively economical computational conditions the uncertainty related to these parameters is smaller than 2-4 cm(-1). In the case of the Local Density Approximation scheme, comparison is possible with recent calculations performed with a Density Functional Perturbation Theory method and a plane-wave basis set. PMID:15011261
Vibrational spectra and DFT calculations of the vibrational modes of Schiff base C18H17N3O2
NASA Astrophysics Data System (ADS)
Antunes, J. A.; Silva, L. E.; Bento, R. R. F.; Teixeira, A. M. R.; Freire, P. T. C.; Faria, J. L. B.; Ramos, R. J.; Silva, C. B.; Lima, J. A.
2012-04-01
The Schiff base 4-{[(1E)-(2-Hydroxyphenyl)methylidene]amino}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (C18H17N3O2) is a synthetic compound with a variety of scientific and technological applications, such as clinic, analytic and pharmacologic. In this work FT-Raman spectrum and FT-infrared spectrum of C18H17N3O2 were investigated at 300 K. Vibrational wavenumber and wave vector have been predicted using Density Functional Theory (B3LYP) calculations with the 6-31 G(d,p) basis set. The description of the normal modes was performed by means of the potential energy distribution. A comparison with experiment allowed us to assign most of the normal modes of the crystal.
NASA Astrophysics Data System (ADS)
James, C.; Pettit, G. R.; Nielsen, O. F.; Jayakumar, V. S.; Joe, I. Hubert
2008-10-01
The NIR-FT Raman and FT-IR spectral studies of the novel antineoplastic and antiangiogenesis substance comprestatin A-4 prodrug (CA4P) were carried out. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of CA4P have been investigated with the help of B3LYP density functional theory (DFT) method. The most preferred cis-configuration for its bioactivity has been demonstrated on the basis of torsional potential energy surface (PES) scan studies. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization and mesomeric effects have been analyzed using natural bond orbital (NBO) analysis. Detailed assignments of the vibrational spectra have been made with the aid of theoretically predicted vibrational frequencies. The optimized geometry shows near-planarity of phenyl rings and perpendicular conformation of meta substituted methoxy group. The vibrational analysis confirms the differently acting ring modes, steric repulsion, π conjugation and back-donation.
A simplified spherical harmonic method for coupled electron-photon transport calculations
Josef, J.A.
1996-12-01
In this thesis we have developed a simplified spherical harmonic method (SP{sub N} method) and associated efficient solution techniques for 2-D multigroup electron-photon transport calculations. The SP{sub N} method has never before been applied to charged-particle transport. We have performed a first time Fourier analysis of the source iteration scheme and the P{sub 1} diffusion synthetic acceleration (DSA) scheme applied to the 2-D SP{sub N} equations. Our theoretical analyses indicate that the source iteration and P{sub 1} DSA schemes are as effective for the 2-D SP{sub N} equations as for the 1-D S{sub N} equations. Previous analyses have indicated that the P{sub 1} DSA scheme is unstable (with sufficiently forward-peaked scattering and sufficiently small absorption) for the 2-D S{sub N} equations, yet is very effective for the 1-D S{sub N} equations. In addition, we have applied an angular multigrid acceleration scheme, and computationally demonstrated that it performs as well for the 2-D SP{sub N} equations as for the 1-D S{sub N} equations. It has previously been shown for 1-D S{sub N} calculations that this scheme is much more effective than the DSA scheme when scattering is highly forward-peaked. We have investigated the applicability of the SP{sub N} approximation to two different physical classes of problems: satellite electronics shielding from geomagnetically trapped electrons, and electron beam problems. In the space shielding study, the SP{sub N} method produced solutions that are accurate within 10% of the benchmark Monte Carlo solutions, and often orders of magnitude faster than Monte Carlo. We have successfully modeled quasi-void problems and have obtained excellent agreement with Monte Carlo. We have observed that the SP{sub N} method appears to be too diffusive an approximation for beam problems. This result, however, is in agreement with theoretical expectations.
An Efficient Computational Approach for the Calculation of the Vibrational Density of States.
Aieta, Chiara; Gabas, Fabio; Ceotto, Michele
2016-07-14
We present an optimized approach for the calculation of the density of fully coupled vibrational states in high-dimensional systems. This task is of paramount importance, because partition functions and several thermodynamic properties can be accurately estimated once the density of states is known. A new code, called paradensum, based on the implementation of the Wang-Landau Monte Carlo algorithm for parallel architectures is described and applied to real complex systems. We test the accuracy of paradensum on several molecular systems, including some benchmarks for which an exact evaluation of the vibrational density of states is doable by direct counting. In addition, we find a significant computational speedup with respect to standard approaches when applying our code to molecules up to 66 degrees of freedom. The new code can easily handle 150 degrees of freedom. These features make paradensum a very promising tool for future calculations of thermodynamic properties and thermal rate constants of complex systems. PMID:26840098
Shin, Hee Won; Ocola, Esther J.; Laane, Jaan; Kim, Sunghwan
2014-01-21
The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.
NASA Astrophysics Data System (ADS)
Nagabalasubramanian, P. B.; Periandy, S.; Karabacak, Mehmet; Govindarajan, M.
2015-06-01
The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100 cm-1. The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.
Nagabalasubramanian, P B; Periandy, S; Karabacak, Mehmet; Govindarajan, M
2015-06-15
The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100cm(-1). The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated. PMID:25795608
NASA Astrophysics Data System (ADS)
Balachandran, V.; Murugan, M.; Nataraj, A.; Karnan, M.; Ilango, G.
2014-11-01
In the present study structural properties of p-cresol, and 2-methoxy-p-cresol have been studied by using B3LYP/cc-pvdz and B3PW91/cc-pvdz of Density Functional Theory (DFT) utilizing Becke three exchange functional and Lee Yang Paar correlation functional. The Fourier transform infrared and Fourier transform Raman spectra of title molecules were recorded (solid phase). Optimized geometry, harmonic vibrational frequencies and various thermodynamic parameters of the title compounds were calculated with B3LYP/cc-pvdz, and B3PW91/cc-pvdz basis sets. Non-linear optical (NLO) behavior of the p-cresol and 2-methoxy-p-cresol were investigated by determining of electric dipole moment, polarizability α, and hyperpolarizability β using the above mentioned basis sets. The molecular properties such as ionization potential, electronegativity, chemical potential, electrophilicity have been deduced from HOMO-LUMO analysis employing the same basis sets. A detailed interpretation of the infrared and Raman spectra of title molecules were reported. UV spectrum was measured in different solvent. The energy and oscillator strength are calculated by Time Dependant Density Functional Theory (TD-DFT) results. The calculated HOMO and LUMO energies also confirm that charge transfer occurs within the molecule. The complete assignments were performed on the basis of the potential energy distribution (PED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method. Finally the theoretical FT-IR, FT-Raman, and UV spectra of the title molecules have also been constructed.
NASA Astrophysics Data System (ADS)
Vila, F. D.; Rehr, J. J.
Effects of thermal vibrations are essential to obtain a more complete understanding of the properties of complex materials. For example, they are important in the analysis and simulation of x-ray absorption spectra (XAS). In previous work we introduced an ab initio approach for a variety of vibrational effects, such as crystallographic and XAS Debye-Waller factors, Debye and Einstein temperatures, and thermal expansion coefficients. This approach uses theoretical dynamical matrices from which the locally-projected vibrational densities of states are obtained using a Lanczos recursion algorithm. In this talk I present recent improvements to our implementation, which permit simulations of more complex materials with up to two orders of magnitude larger simulation cells. The method takes advantage of parallelization in calculations of the dynamical matrix with VASP. To illustrate these capabilities we discuss two problems of considerable interest: negative thermal expansion in ZrW2O8; and local inhomogeneities in the elastic properties of supported metal nanoparticles. Both cases highlight the importance of a local treatment of vibrational properties. Supported by DOE Grant DE-FG02-03ER15476, with computer support from DOE-NERSC.
Vibrational spectra, structure, and theoretical calculations of 2-fluoro- and 3-fluoropyridine.
Boopalachandran, Praveenkumar; Laane, Jaan
2011-09-01
The infrared and Raman spectra of liquid and vapor-phase 2-fluoropyridine and 3-fluoropyridine have been recorded and assigned. Ab initio and DFT calculations were carried out to compute the molecular structures and to verify the vibrational assignments. The observed and calculated spectra agree extremely well. The ring bond distances of the fluoropyridines are very similar to those of pyridine except for a shortening of the C-N(F) bond in 2-fluoropyridine. The C-F bond stretching frequencies are similar to that in fluorobenzene reflecting the influence of the ring π bonding. PMID:21570895
Rashev, Svetoslav; Moule, David C
2015-04-01
In this work we present a full 6D quartic potential energy surface (PES) for S0 thiophosgene in curvilinear symmetrized bond-angle coordinates. The PES was refined starting from an ab initio field derived from acc-pVTZ basis set with CCSD(T) corrections for electron correlation. In the present calculations we used our variational method that was recently tested on formaldehyde and some of its isotopomers, along with additional improvements. The lower experimentally known vibrational levels for 35Cl2CS were reproduced quite well in the calculations, which can be regarded as a test for the feasibility of the obtained quartic PES. PMID:25615683
Improved ab initio calculation of surface second-harmonic generation from Si(111)(1 ×1 ):H
NASA Astrophysics Data System (ADS)
Anderson, Sean M.; Tancogne-Dejean, Nicolas; Mendoza, Bernardo S.; Véniard, Valérie
2016-06-01
We carry out an improved ab initio calculation of surface second-harmonic generation (SSHG) from the Si(111)(1 ×1 ):H surface. This calculation includes three new features in one formulation: (i) the scissors correction, (ii) the contribution of the nonlocal part of the pseudopotentials, and (iii) the inclusion of a cut function to extract the surface response, all within the independent particle approximation. We apply these improvements on the Si(111)(1 ×1 ):H surface and compare with various experimental spectra from several different sources. We also revisit the three-layer model for the SSHG yield and demonstrate that it provides more accurate results over several, more common, two-layer models. We demonstrate the importance of using properly relaxed coordinates for the theoretical calculations. We conclude that this approach to the calculation of the second-harmonic spectra is versatile and accurate within this level of approximation. This well-characterized surface offers an excellent platform for comparison with theory and allows us to offer this study as an efficient benchmark for this type of calculation.
Comparison of DFT methods for molecular structure and vibration spectra of ofloxacin calculations
NASA Astrophysics Data System (ADS)
Yang, Yue; Gao, Hongwei
2012-01-01
Comparison of the performance of different density functional theory (DFT) methods at various basis sets in predicting molecular and vibration spectra of ofloxacin was reported. The methods employed in this study comprise six functionals, namely, mPW1PW91, HCTH, LSDA, PBEPBE, B3PW91 and B3LYP. Different basis sets including LANL2DZ, SDD, LANL2MB, 6-31g, 6-311g and 3-21g were also examined. Comparison between the calculated and experimental data indicates that the mPW1PW91/6-311g level afford the best quality to predict the structure of ofloxacin. The results also indicate that B3LYP/LANL2DZ level show better performance in the vibration spectra prediction of ofloxacin than other DFT methods.
NASA Astrophysics Data System (ADS)
Lamichhane, Hari; Hastings, Gary
2009-11-01
Density functional theory (DFT) based vibrational frequency calculations of Fe4S4(SR)4^n- clusters show that the intense iron-sulfur stretching modes lie in the frequency region between 300-400 cm-1. Among them the iron-sulfur ligand (Fe-S^t) stretching modes are more intense and ˜ 30 cm-1 lower in frequency than the iron-sulfur body (Fe-S^b) stretching modes. Calculations in tetrahydrofuran (THF) show that all these iron-sulfur stretching modes of vibration downshift by ˜ 20 cm-1 upon reduction of the molecule. On the other hand, we have not observed any intense bands from chlorophyll a in the frequency region 400 to 320 cm-1 from the calculations. In an attempt to detect modes associated with iron sulfur clusters in PS I we have obtained light induced (P700^+ - P700) FTIR difference spectra for PSI particles from S. 6803 in the far infrared region. We observe difference bands at many frequencies in the 600-300 cm-1 region. Based on our calculations and literature values we claim that the negative bands at 388 cm-1 and 353 cm-1 in the (P700^+ - P700) FTIR difference spectra be assigned to Fe-S^b and Fe-S^t stretching modes of the ground state of the iron-sulfur cluster FB.
Sparta, Manuel; Hansen, Mikkel B; Matito, Eduard; Toffoli, Daniele; Christiansen, Ove
2010-10-12
The availability of an accurate representation of the potential energy surface (PES) is an essential prerequisite in an anharmonic vibrational calculation. At the same time, the high dimensionality of the fully coupled PES and the adverse scaling properties with respect to the molecular size make the construction of an accurate PES a computationally demanding task. In the past few years, our group tested and developed a series of tools and techniques aimed at defining computationally efficient, black-box protocols for the construction of PESs for use in vibrational calculations. This includes the definition of an adaptive density-guided approach (ADGA) for the construction of PESs from an automatically generated set of evaluation points. Another separate aspect has been the exploration of the use of derivative information through modified Shepard (MS) interpolation/extrapolation procedures. With this article, we present an assembled machinery where these methods are embedded in an efficient way to provide both a general machinery as well as concrete computational protocols. In this framework we introduce and discuss the accuracy and computational efficiency of two methods, called ADGA[2gx3M] and ADGA[2hx3M], where the ADGA recipe is used (with MS interpolation) to automatically define modest sized grids for up to two-mode couplings, while MS extrapolation based on, respectively, gradients only and gradients and Hessians from the ADGA determined points provides access to sufficiently accurate three-mode couplings. The performance of the resulting potentials is investigated in vibrational coupled cluster (VCC) calculations. Three molecular systems serve as benchmarks: a trisubstituted methane (CHFClBr), methanimine (CH2NH), and oxazole (C3H3NO). Furthermore, methanimine and oxazole are addressed in accurate calculations aiming to reproduce experimental results. PMID:26616778
NASA Astrophysics Data System (ADS)
Moghanian, Hassan; Mobinikhaledi, Akbar; Monjezi, Roya
2013-11-01
In this work, 8-formyl-7-hydroxy-4-methylcoumarin has been synthesized and characterized by elemental analysis, FT-IR, FT Raman, 1H NMR, 13C NMR and UV-vis spectra. The molecular geometry, harmonic vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C chemical shift values of the title compound in the ground state have been calculated by using Hartree-Fock (HF) and density functional methods (B3LYP) with 6-311++G(d,p) as basis set. The vibrational assignments of wave numbers were interpreted in terms of potential energy distribution (PED) analysis and the scaled B3LYP/6-311++G(d,p) results show the good agreement with the experimental values. The UV spectra of investigated compound were recorded in the region of 230-500 nm in chloroform solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) in gas and CHCl3 theoretically and results were compared with experimental observations. The molecular stability arising from hyperconjugative interactions and charge delocalization have been analyzed using natural bond orbital (NBO) analysis. In addition, Frontier Molecular Orbitals (FMO), Molecular Electrostatic Potential (MEP) and thermodynamic properties of the studied compound such as heat capacity (C), entropy (S) and enthalpy changes (H) at different temperatures have been calculated.
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)
2001-01-01
Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n with n=3,4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n=1,2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the MP2 potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Gerber, R. Benny
2002-01-01
Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n, with n = 3, 4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n = 1, 2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the Moller-Plesset (MP2) potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.
NASA Technical Reports Server (NTRS)
Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)
2001-01-01
The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have
NASA Astrophysics Data System (ADS)
Mishra, Rashmi; Srivastava, Anubha; Sharma, Anamika; Tandon, Poonam; Baraldi, Cecilia; Gamberini, Maria Christina
2013-01-01
The global problem of advancing bacterial resistance to newer drugs has led to renewed interest in the use of Chloramphenicol Palmitate (C27H42Cl2N2O6) [Palmitic acid alpha ester with D-threo-(-),2-dichloro-N-(beta-hydroxy-alpha-(hydroxymethyl)-p-nitrophenethyl)acetamide also known as Detereopal]. The characterization of the three polymorphic forms of Chloramphenicol Palmitate (CPP) was done spectroscopically by employing FT-IR and FT-Raman techniques. The equilibrium geometry, various bonding features, and harmonic wavenumbers have been investigated for most stable form A with the help of DFT calculations and a good correlation was found between experimental data and theoretical values. Electronic properties have been analyzed employing TD-DFT for both gaseous and solvent phase. The theoretical calculation of thermodynamical properties along with NBO analysis has also been performed to have a deep insight into the molecule for further applications.
NASA Astrophysics Data System (ADS)
Stanke, Monika; Adamowicz, Ludwik
2014-10-01
We report very accurate calculations of the complete pure vibrational spectrum of the T2 molecule with an approach where the Born-Oppenheimer (BO) approximation is not assumed. As the considered states correspond to the zero total angular momentum, their non-BO wave functions are spherically symmetric and are expanded in terms of all-particle, one-center, spherically symmetric explicitly correlated Gaussian functions multiplied by even nonnegative powers of the internuclear distance. The nonrelativistic energies of the states obtained in the non-BO calculations are corrected for the relativistic effects of the order of α2 (where α is the fine structure constant) calculated as expectation values of the operators representing these effects.
NASA Astrophysics Data System (ADS)
Panikar, Savitha S.; Guirgis, Gamil A.; Sheehan, Tracie G.; Durig, Douglas T.; Durig, James R.
2012-05-01
The infrared spectra of gaseous and solid N-bromo-hexafluoro-2-propanimine, (CF3)2Cdbnd NBr, have been obtained from 2000 to 50 cm-1. The vibrational assignment for the normal modes is proposed based on infrared band contours, group frequencies and normal coordinate calculations utilizing Cs symmetry. The structural parameters have been obtained from ab initio MP2(full)/6-311 + G(d,p) calculations employing the Gaussian-03 program. Additionally, the frequencies and potential energy distributions for the normal modes have been calculated with the MP2(full)/6-31G(d). All of these results are compared to the corresponding data for some similar molecules.
Panikar, Savitha S; Guirgis, Gamil A; Sheehan, Tracie G; Durig, Douglas T; Durig, James R
2012-05-01
The infrared spectra of gaseous and solid N-bromo-hexafluoro-2-propanimine, (CF(3))(2)CNBr, have been obtained from 2000 to 50 cm(-1). The vibrational assignment for the normal modes is proposed based on infrared band contours, group frequencies and normal coordinate calculations utilizing C(s) symmetry. The structural parameters have been obtained from ab initio MP2(full)/6-311+G(d,p) calculations employing the Gaussian-03 program. Additionally, the frequencies and potential energy distributions for the normal modes have been calculated with the MP2(full)/6-31G(d). All of these results are compared to the corresponding data for some similar molecules. PMID:22336042
Stanke, Monika; Adamowicz, Ludwik
2014-10-21
We report very accurate calculations of the complete pure vibrational spectrum of the T2 molecule with an approach where the Born-Oppenheimer (BO) approximation is not assumed. As the considered states correspond to the zero total angular momentum, their non-BO wave functions are spherically symmetric and are expanded in terms of all-particle, one-center, spherically symmetric explicitly correlated Gaussian functions multiplied by even nonnegative powers of the internuclear distance. The nonrelativistic energies of the states obtained in the non-BO calculations are corrected for the relativistic effects of the order of α(2) (where α is the fine structure constant) calculated as expectation values of the operators representing these effects. PMID:25338891
NASA Astrophysics Data System (ADS)
Benoit, David M.
2008-12-01
We introduce a new reduced-coupling technique to accelerate direct calculations of a selected number of vibrational frequencies in large molecular systems. Our method combines the advantages of the single-to-all correlation-corrected vibrational self-consistent field (STA-CC-VSCF) approach [D. M. Benoit, J. Chem. Phys. 125, 244110 (2006)] with those of the fast-CC-VSCF technique [D. M. Benoit, J. Chem. Phys. 120, 562 (2004)] and allows the ab initio calculation of only the relevant parts of the required potential energy surface (PES). We demonstrate, using a set of five aliphatic alcohol molecules, that the new fast-STA-CC-VSCF method is accurate and leads to very substantial time gains for the computations of the PES. We then use the fast-STA-CC-VSCF method to accelerate the computation of the OH-stretch and NH-stretch frequencies of the two lowest-energy conformers of noradrenaline, namely, AG1a and GG1a. Our new approach enables us to run the calculation 89 times faster than the standard CC-VSCF technique and makes it possible to use a high-level MP2/TZP description of the PES. We demonstrate that the influence of the strong mode-mode couplings is crucial for a realistic description of the particular OH-stretch vibrational signature of each conformer. Finally, of the two possible low-energy conformers, we identify AG1a as the one most likely to have been observed in the experiments of Snoek et al. [Mol. Phys. 101, 1239 (2003)].
NASA Astrophysics Data System (ADS)
Kirillov, Andrey S.
The calculated quenching rate constants of the c1, A'3, A3 states of O2 by molecules in [Kirillov, 2014, Chem. Phys. Lett., v.592, p.103] are applied in the simulation of vibrational populations of the Herzberg states in the nightglow of upper atmosphere of Venus and Mars where carbon dioxide is the main gas and in the mixture of molecular oxygen with CO2, CO, N2 gases for laboratory conditions. The results of the simulation show very important role of electronic-vibrational (EV) energy transfer processes in the redistribution of electronic excitation energy on vibrational levels of the states. The main aim of the simulation is an attempt to explain the high intensities of the Herzberg II band system observed in laboratory experiments with high CO2 concentrations [Lawrence et al., 1977, Science, v.195, p.573; Slanger, 1978, J. Chem. Phys., v.69, p.4779] and registered with spacecraft spectrometers in the nightglow of the Venus atmosphere [Krasnopolsky et al., 1977, Cosmic Res., v.14, p.687; Gerard et al., 2013, Icarus, v.223, p.602].
NASA Astrophysics Data System (ADS)
Carney, G. D.; Adler-Golden, S. M.; Lesseski, D. C.
1986-04-01
This paper reports (1) improved values for low-lying vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) calculated using the variational method and Simons-Parr-Finlan (1973) representations of the Carney-Porter (1976) and Dykstra-Swope (1979) ab initio H3(+) potential energy surfaces, (2) quartic normal coordinate force fields for isotopic H3(+) molecules, (3) comparisons of variational and second-order perturbation theory, and (4) convergence properties of the Lai-Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) for these potential surfaces are 6.9 (Carney-Porter) and 1.2/cm (Dykstra-Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10/cm for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed 't' coordinate Hamiltonian for these molecules, except in the case of H2D(+).
A three-dimensional tunnel model for calculation of train-induced ground vibration
NASA Astrophysics Data System (ADS)
Forrest, J. A.; Hunt, H. E. M.
2006-07-01
The frequency range of interest for ground vibration from underground urban railways is approximately 20 to 100 Hz. For typical soils, the wavelengths of ground vibration in this frequency range are of the order of the spacing of train axles, the tunnel diameter and the distance from the tunnel to nearby building foundations. For accurate modelling, the interactions between these entities therefore have to be taken into account. This paper describes an analytical three-dimensional model for the dynamics of a deep underground railway tunnel of circular cross-section. The tunnel is conceptualised as an infinitely long, thin cylindrical shell surrounded by soil of infinite radial extent. The soil is modelled by means of the wave equations for an elastic continuum. The coupled problem is solved in the frequency domain by Fourier decomposition into ring modes circumferentially and a Fourier transform into the wavenumber domain longitudinally. Numerical results for the tunnel and soil responses due to a normal point load applied to the tunnel invert are presented. The tunnel model is suitable for use in combination with track models to calculate the ground vibration due to excitation by running trains and to evaluate different track configurations.
Accurate variational calculations and analysis of the HOCl vibrational energy spectrum
Skokov, S.; Qi, J.; Bowman, J.M.; Yang, C.; Gray, S.K.; Peterson, K.A. |; Mandelshtam, V.A.
1998-12-01
Large scale variational calculations for the vibrational states of HOCl are performed using a recently developed, accurate {ital ab initio} potential energy surface. Three different approaches for obtaining vibrational states are employed and contrasted; a truncation/recoupling scheme with direct diagonalization, the Lanczos method, and Chebyshev iteration with filter diagonalization. The complete spectrum of bound states for nonrotating HOCl is computed and analyzed within a random matrix theory framework. This analysis indicates almost entirely regular dynamics with only a small degree of chaos. The nearly regular spectral structure allows us to make assignments for the most significant part of the spectrum, based on analysis of coordinate expectation values and eigenfunctions. Ground state dipole moments and dipole transition probabilities are also calculated using accurate {ital ab initio} data. Computed values are in good agreement with available experimental data. Some exact rovibrational calculations for J=1, including Coriolis coupling, are performed. The exact results are nearly identical with those obtained from the adiabatic rotation approximation and very close to those from the centrifugal sudden approximation, thus indicating a very small degree of asymmetry and Coriolis coupling for the HOCl molecule. {copyright} {ital 1998 American Institute of Physics.}
Calculation of low-frequency vibrational modes of biologically important isomers
NASA Astrophysics Data System (ADS)
Jones, Inke; Rainsford, Tamath J.; Fischer, Bernd M.; Abbott, Derek
2007-12-01
In this paper we compare the value of different molecular modeling techniques for the prediction of vibrational modes, especially in the mid- and far-infrared region. There is a wide range of different levels of theory available for molecular modelling - the choice depending on the kind of system to be investigated. For our calculations we use different theoretical approaches such as Hartree-Fock and Density functional theory. We also compare the performances of two available electronic structure programs-Gamess-US and Gaussian03. As examples, we use two different retinoids - all-trans retinal and all-trans retinoic acid - derivatives of Vitamin A.
Using symmetry-adapted optimized sum-of-products basis functions to calculate vibrational spectra
NASA Astrophysics Data System (ADS)
Leclerc, Arnaud; Carrington, Tucker
2016-01-01
Vibrational spectra can be computed without storing full-dimensional vectors by using low-rank sum-of-products (SOP) basis functions. We introduce symmetry constraints in the SOP basis functions to make it possible to separately calculate states in different symmetry subgroups. This is done using a power method to compute eigenvalues and an alternating least squares method to optimize basis functions. Owing to the fact that the power method favours the convergence of the lowest states, one must be careful not to exclude basis functions of some symmetries. Exploiting symmetry facilitates making assignments and improves the accuracy. The method is applied to the acetonitrile molecule.
Lowest vibrational states of {sup 4}He{sup 3}He{sup +}: Non-Born-Oppenheimer calculations
Stanke, Monika; Bubin, Sergiy; Kedziera, Dariusz; Molski, Marcin; Adamowicz, Ludwik
2007-11-15
Very accurate quantum mechanical calculations of the first five vibrational states of the {sup 4}He{sup 3}He{sup +} molecular ion are reported. The calculations have been performed explicitly including the coupling of the electronic and nuclear motions [i.e., without assuming the Born-Oppenheimer (BO) approximation]. The nonrelativistic non-BO wave functions were used to calculate the {alpha}{sup 2} relativistic mass velocity, Darwin, and spin-spin interaction corrections. For the lowest vibrational transition, whose experimental energy is established with high precision, the calculated and the experimental results differ by only 0.16 cm{sup -1}.
NASA Astrophysics Data System (ADS)
Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.
2009-12-01
The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-acetyl propenenitrile (DMHAP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN)(COCH 3)] were measured. X-ray analysis revealed that DMHAP exists in solid state as ZZa conformer. Vibrational and NMR spectra confirmed the existence of only one ZZa conformer with an intramolecular hydrogen bond in less polar solvents and next two EZa and EZs conformers of E-isomer with Z-orientation of acetyl group and anti and syn orientation of dimethylhydrazino group in more polar environments. The observed IR and Raman bands were compared with harmonic vibrational frequencies, calculated using ab initio MP2 and DFT/B3LYP methods in 6-31G∗∗ basis set, and assigned on the basis of potential energy distribution. In addition, the geometries and relative energies of the possible isomers and conformers of DMHAP were also evaluated on the same levels and compared with the X-ray data. The influence of environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using IEFPCM model.
Arivazhagan, M; Manivel, S; Jeyavijayan, S; Meenakshi, R
2015-01-01
The FTIR and FT-Raman spectra of 2-ethylimidazole (2EIDZ) have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. Utilizing the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. The optimized molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, were calculated by ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods with 6-311++G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of 2EIDZ is also reported based on total energy distribution (TED). The values of the total dipole moment (μ) and the first-order hyperpolarizability (β) of the compound were computed. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. Besides, HOMO and LUMO analysis, Mulliken's charge analysis and several thermodynamic properties have been calculated. PMID:25048284
Corrections to vibrational transition probabilities calculated from a three-dimensional model.
NASA Technical Reports Server (NTRS)
Stallcop, J. R.
1972-01-01
Corrections to the collision-induced vibration transition probability calculated by Hansen and Pearson from a three-dimensional semiclassical model are examined. These corrections come from the retention of higher order terms in the expansion of the interaction potential and the use of the actual value of the deflection angle in the calculation of the transition probability. It is found that the contribution to the transition cross section from previously neglected potential terms can be significant for short range potentials and for the large relative collision velocities encountered at high temperatures. The correction to the transition cross section obtained from the use of actual deflection angles will not be appreciable unless the change in the rotational quantum number is large.
Vibrational spectra of light and heavy water with application to neutron cross section calculations
Damian, J. I. Marquez; Granada, J. R.; Malaspina, D. C.
2013-07-14
The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.
Castillo, María V; Pergomet, Jorgelina L; Carnavale, Gustavo A; Davies, Lilian; Zinczuk, Juan; Brandán, Silvia A
2015-01-01
In this study 3,3',4,4'-tetrachloroazobenzene (TCAB) was prepared and then characterized by infrared, Raman, multidimensional nuclear magnetic resonance (NMR) and ultraviolet-visible spectroscopies. The density functional theory (DFT) together with the 6-31G(*) and 6-311++G(**) basis sets were used to study the structures and vibrational properties of the two cis and trans isomers of TCAB. The harmonic vibrational wavenumbers for the optimized geometries were calculated at the same theory levels. A complete assignment of all the observed bands in the vibrational spectra of TCAB was performed combining the DFT calculations with the scaled quantum mechanical force field (SQMFF) methodology. The molecular electrostatic potentials, atomic charges, bond orders and frontier orbitals for the two isomers of TCAB were compared and analyzed. The comparison of the theoretical ultraviolet-visible spectrum with the corresponding experimental demonstrates a good concordance while the calculated (1)H and (13)C chemicals shifts are in good conformity with the corresponding experimental NMR spectra of TCAB in solution. The npp(*) transitions for both forms were studied by natural bond orbital (NBO) while the topological properties were calculated by employing Bader's Atoms in the Molecules (AIM) theory. This study shows that the cis and trans isomers exhibit different structural and vibrational properties and absorption bands. PMID:25106816
Heger, Matthias; Suhm, Martin A.; Mata, Ricardo A.
2014-09-14
The discrepancy between experimental and harmonically predicted shifts of the OH stretching fundamental of methanol upon hydrogen bonding to a second methanol unit is too large to be blamed mostly on diagonal and off-diagonal anharmonicity corrections. It is shown that a decisive contribution comes from post-MP2 electron correlation effects, which appear not to be captured by any of the popular density functionals. We also identify that the major deficiency is in the description of the donor OH bond. Together with estimates for the electronic and harmonically zero-point corrected dimer binding energies, this work provides essential constraints for a quantitative description of this simple hydrogen bond. The spectroscopic dissociation energy is predicted to be larger than 18 kJ/mol and the harmonic OH-stretching fundamental shifts by about −121 cm{sup −1} upon dimerization, somewhat more than in the anharmonic experiment (−111 cm{sup −1})
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Chen, Jianchao; Li, Linwei; Zhou, Zhixu; Geng, Yiding; Sun, Tiemin
2015-10-01
In this study, the experimental and theoretical studies on the structure of β-artemether are presented. The optimized molecular structure, Mulliken atomic charges, vibrational spectra (IR, Raman and vibrational circular dichroism), and molecular electrostatic potential have been calculated by density functional theory (DFT) using B3LYP method with the 6-311++G (2d, p) basis set. Reliable vibrational assignments for Artemether have been made on the basis of potential energy distribution (PED). The vibrational circular dichroism (VCD) has been explored by ab initio calculations, and then was used to compare with the experimental VCD. The consistence between them confirmed the absolute configuration of Artemether. In addition, HOMO-LUMO of the title compound as well as thermo-dynamical parameters has illustrated the stability of β-artemether.
Calculations of N 2 triplet states vibrational populations and band emissions in venusian dayglow
NASA Astrophysics Data System (ADS)
Bhardwaj, Anil; Jain, Sonal Kumar
2012-02-01
A model for N 2 triplet states band emissions in the venusian dayglow has been developed for low and high solar activity conditions. Steady state photoelectron fluxes and volume excitation rates for N 2 triplet states have been calculated using the Analytical Yield Spectra (AYS) technique. Model calculated photoelectron flux is in good agreement with Pioneer Venus Orbiter-observed electron flux. Since inter-state cascading is important for the triplet states of N 2, populations of different levels of N 2 triplet states are calculated under statistical equilibrium considering direct electron impact excitation, and cascading and quenching effects. Densities of all vibrational levels of each triplet state are calculated in the model. Height-integrated overhead intensities of N 2 triplet band emissions are calculated, the values for Vegard-Kaplan (A3Σu+-X1Σg+), First Positive (B3Πg-A3Σu+), Second Positive ( C3Π u - B3Π g), and Wu-Benesch ( W3Δ u - B3Π g) bands of N 2, are 1.9 (3.2), 3 (6), 0.4 (0.8), and 0.5 (1.1) kR, respectively, for solar minimum (maximum) conditions. The intensities of the three strong Vegard-Kaplan bands (0, 5), (0, 6), and (0, 7) are 94 (160), 120 (204), and 114 (194) R, respectively, for solar minimum (maximum) conditions. Limb profiles are calculated for VK (0, 4), (0, 5), (0, 6) and (0, 7) bands. The calculated intensities on Venus are about a factor 10 higher than those on Mars. The present study provides a motivation for a search of N 2 triplet band emissions in the dayglow of Venus.
Vibrations of a floating beam on marine waves
Sabaneev, Valentin S.; Tovstik, Petr E.; Tovstik, Tatiana M.; Shekhovtsov, Alexei S.
2015-03-10
Vertical vibrations of a floating pipe-concrete beam caused by a harmonic waves excitation are studied. The apparent additional mass of water, resisting force and the velocity of towing are considered. The vibration amplitude and the maximum deformations of concrete, caused by these fluctuations, are calculated.
Ottonello, G; Zuccolini, M Vetuschi; Belmonte, D
2010-09-14
We present the results of a computational investigation with ab initio procedures of the structure-energy and vibrational properties of silica clusters in a dielectric continuum with dielectric constant ε=3.8, through density functional theory/B3LYP gas phase calculations coupled with a polarized continuum model approach [integral equation formalism applied to a polarized continuum (IEFPCM)] and those of the periodical structure D(6h) which leads to the α-cristobalite polymorph of silica when subjected to symmetry operations with the same functional within the linear combination of atomic orbitals (LCAO) approximation and in the framework of Bloch's theorem. Based on the computed energies and vibrational features, an aggregate of the D(6h) network and the monomer locally ordered in the short-medium range and both present in the glass in a mutual arrangement lacking of spatial continuity reproduces satisfactorily the experimentally observed low T heat capacity and the deviation from the Debye T(3) law. Above T(g), the experimental heat capacity of the liquid is perfectly reproduced summing to the internal modes the translational and rotational contributions to the bulk heat capacity and subtracting the (acoustic) terms arising from coherent motion (no longer existent). PMID:20849179
NASA Astrophysics Data System (ADS)
Pawlukojć, A.; Sobczyk, L.; Prager, M.; Bator, G.; Grech, E.; Nowicka-Scheibe, J.
2008-12-01
The inelastic neutron scattering (INS), infrared and Raman spectra of crystalline 2,6-dimethylpyrazine (26DMP) and its complex with chloranilic acid (26DMP·CLA) were measured. Simultaneously the DFT calculations of the molecular structures and frequencies of the normal vibrations were performed by using various functionals. The INS spectra were simulated in the energy range up to 1200 cm -1, on the basis of the calculated frequencies. A very good conformity was obtained between experimental and calculated data with respect to the structure as well as to frequencies, with exception, however, of the CH 3 torsional modes. The structural analysis based on the deviation from the sum of the van der Waals radii showed that the packing of the methyl groups in the 26DMP·CLA complex was markedly stronger than that in the neat 26DMP. However, the DFT calculations overestimated the role of this effect that may be due to a limitation of the applied methods. In addition the anharmonicity of the rotational potential led to the librational energies different from those obtained using a harmonic potential.
H{sub 2}-He vibrational line-shape parameters: Measurement and semiclassical calculation
Forsman, J.W.; Bonamy, J.; Robert, D.; Berger, J.P.; Saint-Loup, R.; Berger, H.
1995-10-01
High-resolution inverse Raman spectroscopy has been used to obtain the line shifting and line broadening coefficients of H{sub 2} perturbed by He. Measurements have been made for the {ital Q}-branch transitions ({ital J}=0{r_arrow}5) in a density range of 10 to 20 amagat and from 296 to 995 K. Up to 795 K we have directly deduced from the experimental broadening coefficients the inelastic rotational state-to-state and vibrational dephasing rates. At higher temperatures, owing to the larger number of channels of relaxation which occur, the results have been analyzed using a scaling law. The line shift and broadening coefficients exhibit a square root and a linear dependence on temperature, respectively, and a significant {ital J} dependence. Semiclassical calculations based on an accurate {ital ab} {ital initio} potential lead to line-shape parameters consistent with experiment. They allow a clear understanding of their observed temperature dependence.
NASA Astrophysics Data System (ADS)
Vansteenkiste, P.; Van Neck, D.; Van Speybroeck, V.; Waroquier, M.
2006-01-01
Large-amplitude motions, particularly internal rotations, are known to affect substantially thermodynamic functions and rate constants of reactions in which flexible molecules are involved. Up to now all methods for computing the partition functions of these motions rely on the Pitzer approximation of more than 50 years ago, in which the large-amplitude motion is treated in complete independence of the other (vibrational) degrees of freedom. In this paper an extended hindered-rotor model (EHR) is developed in which the vibrational modes, treated harmonically, are correctly separated from the large-amplitude motion and in which relaxation effects (the changes in the kinetic-energy matrix and potential curvature) are taken into account as one moves along the large-amplitude path. The model also relies on a specific coordinate system in which the Coriolis terms vanish at all times in the Hamiltonian. In this way an increased level of consistency between the various internal modes is achieved, as compared with the more usual hindered-rotor (HR) description. The method is illustrated by calculating the entropies and heat capacities on 1,3-butadiene and 1-butene (with, respectively, one and two internal rotors) and the rate constant for the addition reaction of a vinyl radical to ethene. We also discuss various variants of the one-dimensional hindered-rotor scheme existing in the literature and its relation with the EHR model. It is argued why in most cases the HR approach is already quite successful.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)
1996-01-01
The vibrational frequencies and infrared intensities of naphthalene neutral and cation are studied at the self-consistent-field (SCF), second-order Moller-Plesset (MP2), and density functional theory (DFT) levels using a variety of one-particle basis sets. Very accurate frequencies can be obtained at the DFT level in conjunction with large basis sets if they are scaled with two factors, one for the C-H stretches and a second for all other modes. We also find remarkably good agreement at the B3LYP/4-31G level using only one scale factor. Unlike the neutral PAHs where all methods do reasonably well for the intensities, only the DFT results are accurate for the PAH cations. The failure of the SCF and MP2 methods is caused by symmetry breaking and an inability to describe charge delocalization. We present several interesting cases of symmetry breaking in this study. An assessment is made as to whether an ensemble of PAH neutrals or cations could account for the unidentified infrared bands observed in many astronomical sources.
Calculation of the Vibrational Stark Effect Using a First-Principles QM/MM Approach
Ringer, Ashley L.; MacKerell, Alexander D.
2011-01-01
The proper description of the electric environment of condensed phases is a critical challenge for force field methods. To test and validate the ability of the CHARMM additive force field to describe the electric environment in aqueous solution combined QM/MM calculations have been used to calculate the vibrational Stark effect (VSE). We utilized a first principles methodology using correlated electronic structure techniques to compute the Stark shift between the gas phase and solvent environments and between two different solvent environments of three VSE probes containing acetonitrile or fluorine functionalities which have been well-characterized experimentally. Reasonable agreement with the experimentally determined Stark shifts is obtained when the MM atoms are described by the CHARMM additive force field, though it is essential to employ an anharmonic correction in the frequency calculation. In addition, the electric field created by the solvent is computed along the CN bond and a theoretical Stark tuning rate is determined for acetonitrile and shown to be in satisfactory agreement with experiment. PMID:21423871
DFT Ab initio Calculation of Vibrational Frequencies in AsSe glass
NASA Astrophysics Data System (ADS)
Shrivastava, Keshav; Kassim, Hasan; Nazrul Rosli, Ahmad
2008-03-01
By using DFT double zeta wave functions, we calculated the structure, bond length (picometer, pm), frequencies(intensities)[degeneracy] for various clusters of arsenic selenide. Our results are as follows. (i) AsSe(diatomic) bond length 216pm, 244.0(1/cm). (ii) As2Se(linear) bond length 228.5 pm, frequencies 27.6(1.9) and 387.6(4.3). (iii) As2Se(triangular) As-Se 243.4 pm, As-As 223.3 pm, frequencies 237.3(2.4) and 332.4(0.05)(1/cm). (iv) As3Se (triangular) bond length 238.4 pm, frequencies 107.5 and 296(weak)(1/cm). (v) As4Se (square) bond length 250.2 pm, 58.5(0.04), 241.3(5.9)(1/cm). (vi) AsSe3 (triangular), bond length 231.2 pm, 75.9(0.003), 103.5(1.26)[2], 350.9(33.2)[2]. From this study we identify that linear As-Se-As for which the calculated frequency is 27.6(1/cm) is in agreement with the data of Nemanich, Phys. Rev. B 16, 1655(1977), J. C. Phillips et al Phys. Rev B 21, 5724(1980). We have successfully calculated several vibrational frequencies accurately which agree with the Raman data. *V. R. Devi et al J. Non-Cryst. Solids 351, 489(2005);353,111(2007)
NASA Astrophysics Data System (ADS)
Ishida, Kazuhiro
1998-07-01
A rigorous general formula for calculating the electron repulsion integral (ERI) over the solid harmonic (SH) Gaussian-type orbitals (GTOs) can be derived. A general algorithm can be obtained from this formula named as accompanying coordinate expansion (ACE) b3k3. This algorithm is capable of computing very fast SH-ERIs, especially for SH contracted GTOs. Numerical assessment is shown for the (LL|LL) class of SH-ERIs (L=2-5). It is found that the present ACE-b3k3 algorithm is the fastest among all algorithms in the literature in the floating-point-opration (FLOP) count assessment when the degree of contraction is large.
NASA Astrophysics Data System (ADS)
Falcetta, Michael F.; Fair, Mark C.; Tharnish, Emily M.; Williams, Lorna M.; Hayes, Nathan J.; Jordan, Kenneth D.
2016-03-01
The stabilization method is used to calculate the complex potential energy curve of the 2Π state of CO- as a function of bond length, with the refinement that separate potentials are determined for p-wave and d-wave attachment and detachment of the excess electron. Using the resulting complex potentials, absolute vibrational excitation cross sections are calculated as a function of electron energy and scattering angle. The calculated cross sections agree well with experiment.
Park, G. Barratt
2014-10-07
Franck-Condon vibrational overlap integrals for the A{sup ~1}A{sub u}—X{sup ~1}Σ{sup +}{sub g} transition in acetylene have been calculated in full dimension in the harmonic normal mode basis. The calculation uses the method of generating functions first developed for polyatomic Franck-Condon factors by Sharp and Rosenstock [J. Chem. Phys. 41(11), 3453–3463 (1964)], and previously applied to acetylene by Watson [J. Mol. Spectrosc. 207(2), 276–284 (2001)] in a reduced-dimension calculation. Because the transition involves a large change in the equilibrium geometry of the electronic states, two different types of corrections to the coordinate transformation are considered to first order: corrections for axis-switching between the Cartesian molecular frames and corrections for the curvilinear nature of the normal modes at large amplitude. The angular factor in the wave function for the out-of-plane component of the trans bending mode, ν{sub 4}{sup ″}, is treated as a rotation, which results in an Eckart constraint on the polar coordinates of the bending modes. To simplify the calculation, the other degenerate bending mode, ν{sub 5}{sup ″}, is integrated in the Cartesian basis and later transformed to the constrained polar coordinate basis, restoring the conventional v and l quantum numbers. An updated A{sup ~}-state harmonic force field obtained recently in the R. W. Field research group is evaluated. The results for transitions involving the gerade vibrational modes are in qualitative agreement with experiment. Calculated results for transitions involving ungerade modes are presented in Paper II of this series [G. B. Park, J. H. Baraban, and R. W. Field, “Full dimensional Franck–Condon factors for the acetylene A{sup ~1}A{sub u}—X{sup ~1}Σ{sup +}{sub g} transition. II. Vibrational overlap factors for levels involving excitation in ungerade modes,” J. Chem. Phys. 141, 134305 (2014)].
NASA Astrophysics Data System (ADS)
Tanimura, Yoshitaka; Steffen, Thomas
2000-12-01
The relaxation processes in a quantum system nonlinearly coupled to a harmonic Gaussian-Markovian heat bath are investigated by the quantum Fokker-Planck equation in the hierarchy form. This model describes frequency fluctuations in the quantum system with an arbitrary correlation time and thus bridges the gap between the Brownian oscillator model and the stochastic model by Anderson and Kubo. The effects of the finite correlation time and the system-bath coupling strength are studied for a harmonic model system by numerically integrating the equation of motion. The one-time correlation function of the system coordinate, which is measured in conventional Raman and infrared absorption experiments, already reflects the inhomogeneous character of the relaxation process. The finite correlation time of the frequency fluctuations, however, is directly evident only in the two- and three-time correlation function as probed by multidimensional spectroscopic techniques such as the Raman echo and the fifth-order 2D Raman experiment.
NASA Astrophysics Data System (ADS)
Leadenham, S.; Erturk, A.
2014-11-01
Over the past few years, nonlinear oscillators have been given growing attention due to their ability to enhance the performance of energy harvesting devices by increasing the frequency bandwidth. Duffing oscillators are a type of nonlinear oscillator characterized by a symmetric hardening or softening cubic restoring force. In order to realize the cubic nonlinearity in a cantilever at reasonable excitation levels, often an external magnetic field or mechanical load is imposed, since the inherent geometric nonlinearity would otherwise require impractically high excitation levels to be pronounced. As an alternative to magnetoelastic structures and other complex forms of symmetric Duffing oscillators, an M-shaped nonlinear bent beam with clamped end conditions is presented and investigated for bandwidth enhancement under base excitation. The proposed M-shaped oscillator made of spring steel is very easy to fabricate as it does not require extra discrete components to assemble, and furthermore, its asymmetric nonlinear behavior can be pronounced yielding broadband behavior under low excitation levels. For a prototype configuration, linear and nonlinear system parameters extracted from experiments are used to develop a lumped-parameter mathematical model. Quadratic damping is included in the model to account for nonlinear dissipative effects. A multi-term harmonic balance solution is obtained to study the effects of higher harmonics and a constant term. A single-term closed-form frequency response equation is also extracted and compared with the multi-term harmonic balance solution. It is observed that the single-term solution overestimates the frequency of upper saddle-node bifurcation point and underestimates the response magnitude in the large response branch. Multi-term solutions can be as accurate as time-domain solutions, with the advantage of significantly reduced computation time. Overall, substantial bandwidth enhancement with increasing base excitation is
NASA Astrophysics Data System (ADS)
Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa
2013-03-01
A weak hydrogen bond (WHB) such as CH-O is very important for the structure, function, and dynamics in a chemical and biological system WHB stretching vibration is in a terahertz (THz) frequency region Very recently, the reasonable performance of dispersion-corrected first-principles to WHB has been proven. In this lecture, we report dispersion-corrected first-principles calculation of the vibrational absorption of some organic crystals, and low-temperature THz spectral measurement, in order to clarify WHB stretching vibration. The THz frequency calculation of a WHB crystal has extremely improved by dispersion correction. Moreover, the discrepancy in frequency between an experiment and calculation and is 10 1/cm or less. Dispersion correction is especially effective for intermolecular mode. The very sharp peak appearing at 4 K is assigned to the intermolecular translational mode that corresponds to WHB stretching vibration. It is difficult to detect and control the WHB formation in a crystal because the binding energy is very small. With the help of the latest intense development of experimental and theoretical technique and its careful use, we reveal solid-state WHB stretching vibration as evidence for the WHB formation that differs in respective WHB networks The research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 22550003).
Iung, Christophe; Ribeiro, Fabienne
2005-11-01
We present the efficiency of a new modified Davidson scheme which yields selectively one high-energy vibrationally excited eigenstate or a series of eigenstates. The calculation of a highly vibrationally excited state psi located in a dense part of the spectrum requires a specific prediagonalization step before the Davidson scheme. It consists in building a small active space P containing the zero-order states which are coupled with the zero-order description of the eigenstate of interest. We propose a general way to define this active space P which plays a crucial role in the method. The efficiency of the method is illustrated by computing and analyzing the high-energy excited overtones of the out-of-plane mode [formula: see text] in HFCO. These overtone energies correspond to the 234th, 713th, and 1774th energy levels in our reference basis set which contains roughly 140,000 states. One of the main advantages of this Davidson scheme comes from the fact that the eigenstate and eigenvalue convergence can be assessed during the iterations by looking at the residual [formula: see text]. The maximum value epsilon allowed for this residual constitutes a very sensitive and efficient parameter which sets the accuracy of the eigenvalues and eigenstates, even when the studied states are highly excited and are localized in a dense part of the spectrum. The physical analysis of the eigenstates associated with the 5th, 7th, and 9th out-of-plane overtones in HFCO provides some interesting information on the energy localization in this mode and on the role played by the in-plane modes. Also, it provides some ideas on the numerical methods which should be developed in the future to tackle higher-energy excited states in polyatomics. PMID:16375515
NASA Astrophysics Data System (ADS)
Tossell, J. A.; Zimmermann, M. D.
2008-11-01
Structures, stabilities and vibrational spectra have been calculated using molecular quantum mechanical methods for As(OH) 3, AsO(OH) 3, As(SH) 3, AsS(SH) 3 and their conjugate bases and for several species with partial substitution of S for O. Properties for the neutral gas-phase molecules are calculated with state-of-the-art methods which yield As sbnd L distances within 0. 01 Å and As sbnd L stretching frequencies within 10 cm -1 of experiment. Similar accuracy is obtained for neutral molecules in solution using a polarizable continuum model (PCM). For monoanions such as AsO(OH)2- and AsS(SH)2-1 frequencies can be calculated to within 20 cm -1 of experiment using the polarizable continuum model. Multiply charged anions remain a challenge for accurate frequency calculations, but we have obtained results within the PCM model which at least semiquantitatively reproduce the available data. This allows us to assign the controversial features D, E and F in the Raman data of (Wood S. A., Tait C. D. and Janecky D. R. (2002) A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25 °C. Geochem. Trans. 3, 31-39). To help in the assignment of the arsenic sulfide spectra we have also calculated energetics for the oxidation of As(III) to As(V) compounds by polysulfides, disproportionation of As(III) compounds and for the dissociation of the oxo- and thio-acids. We have determined that As(III) oxyacids can be transformed to thioacids which can in turn be oxidized to As(V) sulfides by polysulfides and that the p Ka1s of the acids involved can be ordered as follows: AsS(SH) 3 < As(SH) 3 < AsO(OH) 3 < As(OH) 3 in order of increasing p Ka1. We have also established from the calculated energies that the most stable form of the As(III) oxyacid in acidic aqueous solution is indeed As(OH) 3, consistent with previous assignments.
XP-PCM Calculations of High Pressure Structural and Vibrational Properties of P4S3.
Pagliai, Marco; Cammi, Roberto; Cardini, Gianni; Schettino, Vincenzo
2016-07-14
The structure and the vibrational properties of the P4S3 crystal at high pressures are discussed by application of the XP-PCM method. The vibrational assignment has been clarified. The structure and the electron distribution changes as a function of pressure are analyzed. The pressure effect on the vibrational frequencies is satisfactorily reproduced and discussed in terms of confinement and structure relaxation contributions. PMID:26943701
NASA Astrophysics Data System (ADS)
Durig, J. R.; Durig, D. T.; Jalilian, M. R.; Zhen, Mengzhang; Little, T. S.
1989-03-01
The asymmetric torsion of 3-chloropropene, CH 2CHCH 2Cl, has been investigated by far-infrared and Raman spectra of the gas and the low-frequency Raman spectrum of the liquid at various temperatures. Both the gauche and cis (halogen to double bond) conformers are present in the fluid phases at ambient temperature and the gauche isomer is the predominant form in the liquid. The asymmetric torsion of the cis rotamer is observed in the far-infrared spectrum of the gas at 147.28 cm -1 with four accompanying "hot bands" and the corresponding fundamental of the gauche conformer is observed at 101.97 cm -1 also with four "hot bands". From these data, a potential function governing the internal rotation of the asymmetric top has been determined with potential constants of: V1 = -47±19, V2 = 145±17, V3 = 862±8, V4 = 14±6, V6 = -50±4 cm -1. This potential function is consistent with the cis form being thermodynamically preferred by 81 cm -1 (0.23 kcal mol -1), and a torsional dihedral angle of 122° for the gauche conformer away from the cis form. The calculated cis to gauche, gauche to gauche, and gauche to cis barriers are 969 cm -1 (2.77 kcal mol -1), 734 cm -1 (2.10 kcal mol -1) and 888 cm -1 (2.54 kcal mol -1), respectively. From relative intensities of the Raman lines of the liquid at 245 ( cis) and 289 ( gauche) cm -1 as a function of temperature, the enthalpy difference was found to be 178±11 cm -1 (509±31 cal mol -1) with the gauche form being more stable. The normal vibrations for both the cis and gauche rotamers have been calculated by ab initio Hartree-Fock gradient calculations employing the 3-21G* basis set. The calculated frequencies and force constants are compared to those previously reported. Potential surface calculations and structural determinations have been carried out employing both the 3-21G* and 6-31G* basis sets and compared to those obtained experimentally. These results are compared to similar quantities in some related molecules.
Ab initio calculations of the vibrational and dielectric properties of PbSnTe alloys
NASA Astrophysics Data System (ADS)
Scolfaro, Luisa; Rezende Neto, A. R.; Leite Alves, H. W.; Petersen, J. E.; Myers, T. H.; Borges, P. D.
Thermoelectric devices have promise in dealing with the challenges of the growing demand for alternative clean energy and Te-based materials well-known candidates for them. Recently, we have shown that the high values for the dielectric constant, together with anharmonic LA-TO coupling, reduces the lattice thermal conductivity and enhances the electronic conductivity in PbTe. Also, it was shown that by alloying this material with Se, the electronic conductivity of the alloys is also enhanced. But, it is not clear if the same occurs when alloying with Sn. We show, in this work, our ab initio results for the vibrational and dielectric properties of Pb1-xSnxTe alloys. The calculations were carried out by using the Density Functional Theory, and the alloys were described by both the Virtual Crystal Approximation and Cluster Expansion Method. Our results show that the anharmonic LA-TO coupling enhances and reach its maximum for Sn concentration values of 0.75, corresponding to the maximum value for the dielectric constant, which is higher than that obtained for PbTe
Howard, J Coleman; Tschumper, Gregory S
2015-05-12
A series of (H2O)n clusters ranging from the dimer to the hexamer have been characterized with the CCSD(T) and the 2-body:Many-body CCSD(T):MP2 methods near the complete basis set (CBS) limit to generate benchmark-quality optimized structures and harmonic vibrational frequencies for these important systems. Quadruple-ζ correlation-consistent basis sets that augment the O atoms with diffuse functions have been employed in the analytic computation of harmonic vibrational frequencies for the global minima of the dimer, trimer, tetramer, and pentamer as well as the ring, book, cage, and prism isomers of the hexamer. Prior calibration [J. Chem. Phys. 2013, 139, 184113 and J. Chem. Theory Comput. 2014, 10, 5426] suggests that harmonic frequencies computed with this approach will lie within a few cm(-1) of the canonical CCSD(T) CBS limit. These data are used as reference values to gauge the performance of harmonic frequencies obtained with other ab initio methods (e.g., LCCSD(T) and MP2) and water potentials (e.g., TTM3-F and WHBB). This comparison reveals that it is far more challenging to converge harmonic vibrational frequencies for the bound OH stretching modes in these (H2O)n clusters to the CCSD(T) CBS limit than the free OH stretches, the n intramonomer HOH bending modes and even the 6n - 6 intermonomer modes. Deviations associated with the bound OH stretching harmonic frequencies increase rapidly with the size of the cluster for all methods and potentials examined, as do the corresponding frequency shifts relative to the monomer OH stretches. PMID:26574415
Calculated vibrational populations of O2 Herzberg states in the mixture of CO2, CO, N2, O2 gases
NASA Astrophysics Data System (ADS)
Kirillov, A. S.
2014-05-01
Calculated in (Kirillov, 2014) constants are applied for simulations of vibrational populations of Herzberg states in mixtures of O2 with CO2, CO, N2 gases for laboratory conditions. Results show very important role of electronic-vibrational processes in redistribution of electronic excitation energy among vibrational levels. It is shown that the interaction between O2(A‧3Δu) and O2 causes effective production O2(c1Σu-,v = 0) observed in laboratory conditions. The inclusion of the interaction between O2(A‧3Δu) and CO2 molecules may explain high intensities of Herzberg II system observed in laboratory experiments with high CO2 concentrations and registered in the nightglow of Venusian atmosphere.
NASA Astrophysics Data System (ADS)
Dabbagh, Hossein A.; Teimouri, Abbas; Chermahini, Alireza Najafi; Shiasi, Rezvan
2007-06-01
We present a detailed analysis of the structural, infrared spectra and visible spectra of the 4-substituted aminoazo-benzenesulfonyl azides. The preparation of 4-sulfonyl azide benzenediazonium chloride with cyclic amines of various ring sizes (pyrrolidine, piperidine, 4-methylpiperidine, N-methylpiperazine, morpholine and hexamethyleneimine) have been investigated theoretically by performing HF and DFT levels of theory using the standard 6-31G* basis set. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from solid phase FT-IR spectra are assigned modes based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with the calculations.
Reine, Simen; Tellgren, Erik; Helgaker, Trygve
2007-09-14
Utilizing the fact that solid-harmonic combinations of Cartesian and Hermite Gaussian atomic orbitals are identical, a new scheme for the evaluation of molecular integrals over solid-harmonic atomic orbitals is presented, where the integration is carried out over Hermite rather than Cartesian atomic orbitals. Since Hermite Gaussians are defined as derivatives of spherical Gaussians, the corresponding molecular integrals become the derivatives of integrals over spherical Gaussians, whose transformation to the solid-harmonic basis is performed in the same manner as for integrals over Cartesian Gaussians, using the same expansion coefficients. The presented solid-harmonic Hermite scheme simplifies the evaluation of derivative molecular integrals, since differentiation by nuclear coordinates merely increments the Hermite quantum numbers, thereby providing a unified scheme for undifferentiated and differentiated four-center molecular integrals. For two- and three-center two-electron integrals, the solid-harmonic Hermite scheme is particularly efficient, significantly reducing the cost relative to the Cartesian scheme. PMID:17712455
Kodama, Tomoaki; Honda, Yasuhiro; Wakabayashi, Katsuhiko; Iwamoto, Shoichi
1996-09-01
The cheap and compact rubber dampers of shear-type have been widely employed as the torsional vibration control of the crankshaft system of high-speed, automobile diesel engines. The conventional rubber dampers have various rubber forms owing to the thorough investigation of optimum dampers in the design stage. Their rubber forms can be generally grouped into three classes such as the disk type, the bush type and the composite type. The disk type and the bush type rubber dampers are called the basic-pattern rubber dampers hereafter. The composite type rubber part is supposed to consist of the disk type and the bush type parts, regarded respectively as the basic patterns of the rubber part, at large. The dynamic characteristics of the vibration isolator rubber depend generally on temperature, frequency, strain amplitude, shape and size effect,s so it is difficult to estimate accurately their characteristics. With the present technical level, it is also difficult to determine the suitable rubber geometry which optimizes the vibration control effect. The study refers to the calculation method of the torsional vibration of a crankshaft system with a shear-type rubber damper having various rubber forms in order to offer the useful method for optimum design. In this method, the rheological formula of the three-element Maxwell model, from which the torsional stiffness and the damping coefficient of the damper rubber part in the equivalent vibration system are obtained, are adopted in order to decide the dynamic characteristics of the damper rubber part.
Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S
2015-02-01
In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated. PMID:25440584
NASA Astrophysics Data System (ADS)
Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei
2014-06-01
New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
On quadrupole vibrations in nearly spherical nuclei
NASA Astrophysics Data System (ADS)
Yates, S. W.
2012-09-01
A new understanding of low-lying quadrupole vibrations in nuclei is emerging through lifetime measurements performed with fast neutrons at the accelerator laboratory of the University of Kentucky in combination with high-sensitivity measurements with other probes. In the stable cadmium nuclei, which have long been considered to be the best examples of vibrational behavior, we find that many E2 transition probabilities are well below harmonic vibrator expectations, and the B(E2)s cannot be explained with calculations incorporating configuration mixing between vibrational phonon states and intruder excitations. These data place severe limits on the collective models, and it is suggested that the low-lying levels of the Cd isotopes may not be of vibrational origin. An additional example of an apparent quadrupole vibrational nucleus, 62Ni, is considered.
Vibrational spectrum of p-fluoroanisole in the first excited state (S 1) and ab initio calculations
NASA Astrophysics Data System (ADS)
Xiao, Daoqing; Yu, Dan; Xu, Xiling; Yu, Zijun; Du, Yikui; Gao, Zhen; Zhu, Qihe; Zhang, Cunhao
2008-06-01
The vibronic structure of p-fluoroanisole in the first excited state (S 1) has been investigated with mass selected resonance-enhanced two photon ionization spectroscopy. The band origin of S 1 ← S 0 transition of p-fluoroanisole is measured to be 35149 cm -1, which is red-shifted by 1234 cm -1 with respect to that of anisole. Combining with the ab initio calculations, the measured frequencies 397, 487, 559, 840 and 1150 cm -1 in the S 1 state are assigned as the in-plane ring vibrational mode 9 b, 6 a, 6 b, 1 and 9 a, respectively. The optimized molecular geometries and vibrational frequencies of p-fluoroanisole in the ground state (S 0) and cation ground state (D 0) are also achieved from DFT calculations.
NASA Astrophysics Data System (ADS)
Ding, Hong; Ray, Keith G.; Ozolins, Vidvuds; Asta, Mark
2012-01-01
Structural and vibrational properties of α-MoO3 are studied employing two recently proposed methodologies for incorporating van der Waals (vdW) contributions in density functional theory (DFT) based calculations. The DFT-D2 [S. Grimme, J. Comput. Chem.JCCHDD0192-865110.1002/jcc.20495 27, 1787 (2006)] and optB88 vdW-DFT [J. Klimeš , J. Phys.: Condens. MatterPRBMDO0953-898410.1088/0953-8984/22/2/022201 22, 022201 (2010)] methods are shown to give rise to increased accuracy in predicted lattice parameters, relative to conventional DFT methods. Calculated vibrational frequencies agree with measurements to within 5% and 10% for modes involving bonded and nonbonded interactions in this compound, respectively.
DFT studies on the vibrational and electronic spectra of acetylsalicylic acid
NASA Astrophysics Data System (ADS)
Ye, Yunfeng; Tang, Guodong; Han, Yonghong; Culnane, Lance F.; Zhao, Jianyin; Zhang, Yu
2016-05-01
The following is a theoretical and experimental study on the vibrational and electronic properties of acetylsalicylic acid (ASA). Vibrational information was obtained by FT-IR and Raman spectroscopy which agree well with harmonic vibrational frequency calculations. The calculations were carried out using density functional theory B3LYP methods with 6-311G** and LANL2DZ basis sets. The vibrational assignments were calculated by Gaussview. Absorption UV-Vis experiments of ASA reveal three maximum peaks at 203, 224 and 277 nm, which are in agreement with calculated electronic transitions using TD-B3LYP/6-311G**.
Erba, Alessandro; Maul, Jefferson; Civalleri, Bartolomeo
2016-01-31
An ab initio quantum-mechanical theoretical framework is presented to compute the thermal properties of molecular crystals. The present strategy combines dispersion-corrected density-functional-theory (DFT-D), harmonic phonon dispersion, quasi-harmonic approximation to the lattice dynamics for thermal expansion and thermodynamic functions, and quasi-static approximation for anisotropic thermo-elasticity. The proposed scheme is shown to reliably describe thermal properties of the urea molecular crystal by a thorough comparison with experimental data. PMID:26670006
NASA Astrophysics Data System (ADS)
Page, Alexander; Uher, Ctirad; Poudeu, Pierre Ferdinand; Van der Ven, Anton
2015-11-01
Previous studies have indicated that the figure of merit (ZT ) of half-Heusler (HH) alloys with composition M NiSn (M =Ti , Zr, or Hf) is greatly enhanced when the alloys contain a nano-scale full-Heusler (FH) MN i2Sn second phase. However, the formation mechanism of the FHnanostructures in the HH matrix and their vibrational properties are still not well understood. We report on first-principles studies of thermodynamic phase equilibria in the MNiSn-MN i2Sn pseudobinary system as well as HH and FH vibrational properties. Thermodynamic phase diagrams as functions of temperature and Ni concentration were developed using density functional theory (DFT) combined with a cluster expansion and Monte Carlo simulations. The phase diagrams show very low excess Ni solubility in HH alloys even at high temperatures, which indicates that any Ni excess will decompose into a two-phase mixture of HH and FH compounds. Vibrational properties of HH and FH alloys are compared. Imaginary vibrational modes in the calculated phonon dispersion diagram of TiN i2Sn indicate a dynamical instability with respect to cubic [001] transverse acoustic modulations. Displacing atoms along unstable vibrational modes in cubic TiN i2Sn reveals lower-energy structures with monoclinic symmetry. The energy of the monoclinic structures is found to depend strongly on the lattice parameter. The origin of the instability in cubic TiN i2Sn and its absence in cubic ZrN i2Sn and HfN i2Sn is attributed to the small size of the Ti 3 d shells compared to those of Zr and Hf atoms. Lattice constants and heat capacities calculated by DFT agree well with experiment.
NASA Astrophysics Data System (ADS)
Kannan, V.; Thirupugalmani, K.; Brahadeeswaran, S.
2013-10-01
Single crystals of N-Succinopyridine (NSP) have been grown from water using solution growth method by isothermal solvent evaporation technique. The solid state Fourier Transform Infrared (FTIR) spectrum of the grown crystal shows a broad absorption extending from 3450 down to 400 cm-1, due to H-bond vibrations and other characteristic vibrations. Fourier Transform Raman (FT-Raman) spectrum of NSP single crystal shows Raman intensities ranging from 3100 to 100 cm-1 due the characteristics vibrations of functional groups present in NSP. The proton and carbon positions of NSP have been described by 1H and 13C NMR spectrum respectively. Ab initio quantum chemical calculations on NSP have been performed by density functional theory (DFT) calculations using B3LYP method with 6-311++G(d,p) basis set. The predicted first hyperpolarizability is found to be 1.29 times greater than that of urea and suggests that the title compound could be an attractive material for nonlinear optical applications. The calculated HOMO-LUMO energies show that charge transfers occur within the molecule and other related molecular properties. Molecular properties such as Mulliken population analysis, thermodynamic functions and perturbation theory energy analysis have also been reported. Electrostatic potential map (ESP) of NSP obtained by electron density isosurface provided the information about the size, shape, charge density distribution and site of chemical reactivity of the title molecule. The molecular stability and bond strength have been investigated through the Natural Bond Orbital (NBO) analysis.
Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.
2014-01-07
The effects of pressure on the structural and vibrational properties of the layered molecular crystal 1,1-diamino-2,2-dinitroethelene (FOX-7) are explored by first principles calculations. We observe significant changes in the calculated structural properties with different corrections for treating van der Waals interactions to Density Functional Theory (DFT), as compared with standard DFT functionals. In particular, the calculated ground state lattice parameters, volume and bulk modulus obtained with Grimme's scheme, are found to agree well with experiments. The calculated vibrational frequencies demonstrate the dependence of the intra and inter-molecular interactions on FOX-7 under pressure. In addition, we also found a significant increment in the N–H...O hydrogen bond strength under compression. This is explained by the change in bond lengths between nitrogen, hydrogen, and oxygen atoms, as well as calculated IR spectra under pressure. Finally, the computed band gap is about 2.3 eV with generalized gradient approximation, and is enhanced to 5.1 eV with the GW approximation, which reveals the importance of performing quasiparticle calculations in high energy density materials.
NASA Astrophysics Data System (ADS)
Jensen, Per; Buenker, Robert J.; Hirsch, Gerhard; Rai, Sachchida N.
We have calculated ab initio the three-dimensional potential-energy surface of the NH2 molecule at 145 nuclear geometries spanning energy ranges of about 18 000 cm-1 for the NH stretch and 12 000 cm-1 for the bend. The ab initio configuration-interaction calculations were done using the multireference MRD-CI method. The calculated equilibrium configuration has NH bond length re = 1·0207 Å and bond angle α = 103·1°. The rotational-vibrational energies for 14NH2, 14NHD and 14ND2 were calculated variationally using the Morse-oscillator rigid-bender internal-dynamics Hamiltonian. For 14NH2 we calculate that υ1 = 3267 (3219) cm-1, υ2 = 1462 (1497) cm-1 and υ3 = 3283 (3301) cm-1, where experimental values are given in parentheses.
NASA Astrophysics Data System (ADS)
Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.
2008-11-01
The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile (DMHSP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN) (SO 2CH 3)] as a solid and in different solvents were measured. The spectra and X-ray analysis revealed that DMHSP was prepared as a pure E-isomer and E- syn conformer with the syn orientation of N, N-dimethylhydrazino group towards the C dbnd C double bond in the solid state. Due to the low barrier practically free isomerization process occurred in solutions at room temperature. DMHSP exists in more polar solvents as pure E-isomer in conformational equilibrium between E- syn and E- anti but in a less polar solvent the presence of Z-isomer was observed as well. From the IR and NMR temperature dependence spectra in polar solvents the energy difference between E- anti and E- syn of Δ H = 2.3 ± 0.9 kJ/mol and Δ H = 3.2 ± 0.4 kJ/mol, respectively, was estimated with the syn one being more stable. The geometries and relative energies of possible conformers of DMHSP were evaluated using ab initio MP2 and B3LYP density functional methods in 6-31G ∗∗ basis set and compared with the X-ray data. The interpretation of NMR spectra was supported by ab initio MP2 calculations. The influence of solvent polarity on the conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using PCM model. In addition, the observed IR and Raman bands were compared also with harmonic vibrational frequencies, calculated on the same levels of theory, and assigned on the base of potential energy distribution.
NASA Astrophysics Data System (ADS)
Legler, C. R.; Brown, N. R.; Dunbar, R. A.; Harness, M. D.; Nguyen, K.; Oyewole, O.; Collier, W. B.
2015-06-01
The Scaled Quantum Mechanical (SQM) method of scaling calculated force constants to predict theoretically calculated vibrational frequencies is expanded to include a broad array of polarized and augmented basis sets based on the split valence 6-31G and 6-311G basis sets with the B3LYP density functional. Pulay's original choice of a single polarized 6-31G(d) basis coupled with a B3LYP functional remains the most computationally economical choice for scaled frequency calculations. But it can be improved upon with additional polarization functions and added diffuse functions for complex molecular systems. The new scale factors for the B3LYP density functional and the 6-31G, 6-31G(d), 6-31G(d,p), 6-31G+(d,p), 6-31G++(d,p), 6-311G, 6-311G(d), 6-311G(d,p), 6-311G+(d,p), 6-311G++(d,p), 6-311G(2d,p), 6-311G++(2d,p), 6-311G++(df,p) basis sets are shown. The double d polarized models did not perform as well and the source of the decreased accuracy was investigated. An alternate system of generating internal coordinates that uses the out-of plane wagging coordinate whenever it is possible; makes vibrational assignments via potential energy distributions more meaningful. Automated software to produce SQM scaled vibrational calculations from different molecular orbital packages is presented.
Zhang, Feng; Tominaga, Keisuke E-mail: tominaga@kobe-u.ca.jp; Hayashi, Michitoshi E-mail: tominaga@kobe-u.ca.jp Wang, Houng-Wei; Kambara, Ohki; Sasaki, Tetsuo; Nishizawa, Jun-ichi E-mail: tominaga@kobe-u.ca.jp
2014-05-07
The phonon modes of molecular crystals in the terahertz frequency region often feature delicately coupled inter- and intra-molecular vibrations. Recent advances in density functional theory such as DFT-D{sup *} have enabled accurate frequency calculation. However, the nature of normal modes has not been quantitatively discussed against experimental criteria such as isotope shift (IS) and correlation field splitting (CFS). Here, we report an analytical mode-decoupling method that allows for the decomposition of a normal mode of interest into intermolecular translation, libration, and intramolecular vibrational motions. We show an application of this method using the crystalline anthracene system as an example. The relationship between the experimentally obtained IS and the IS obtained by PBE-D{sup *} simulation indicates that two distinctive regions exist. Region I is associated with a pure intermolecular translation, whereas region II features coupled intramolecular vibrations that are further coupled by a weak intermolecular translation. We find that the PBE-D{sup *} data show excellent agreement with the experimental data in terms of IS and CFS in region II; however, PBE-D{sup *} produces significant deviations in IS in region I where strong coupling between inter- and intra-molecular vibrations contributes to normal modes. The result of this analysis is expected to facilitate future improvement of DFT-D{sup *}.
NASA Astrophysics Data System (ADS)
Durig, J. R.; Zhao, Wenyun; Lewis, Durig; Little, T. S.
1988-08-01
The far infrared spectrum of gaseous chloroacetyl fluoride, CH2ClC(O)F, has been recorded at a resolution of 0.10 cm-1 in the 350 to 35 cm-1 region. The fundamental asymmetric torsional frequencies of the more stable trans (two halogen atoms oriented trans to one another) and high energy gauche (Cl-C-C=O torsional dihedral angle of 122°) have been observed at 86.5 and 48.8 cm-1, respectively, each with excited states falling to lower frequency. From these data the asymmetric torsional potential function governing internal rotation about the C-C bond has been determined. This potential function is consistent with torsional potential coefficients of: V1=350±12, V2=306±6, V3=420±1, V4=44±1, and V6=2±1 cm-1. The trans to gauche, gauche to gauche, and gauche to trans barriers have been determined to be 796, 245, and 271 cm-1, respectively, with an energy difference between the conformations of 525±24 cm-1 (1.50±0.07 kcal/mol). From studies of the Raman spectrum at variable temperatures the conformational energy difference has been determined to be 445±80 (1.27±0.2 kcal/mol) and 534±68 cm-1 (1.53±0.2 kcal/mol) for the gaseous and liquid phases, respectively. A complete assignment of the vibrational fundamentals observed from the infrared (3500 to 50 cm-1) spectra of the gaseous and solid states and Raman (3200 to 10 cm-1) spectra of the gaseous, liquid, and solid states is proposed. All of these data are compared to the corresponding quantities obtained from ab initio Hartree-Fock gradient calculations employing both the 3-21G* and 6-31G* basis sets. Additionally, complete equilibrium geometries have been determined for both rotamers. The results are discussed and compared with the corresponding quantities obtained for some similar molecules.
Wang, Xianwei; Zhang, John Z H; He, Xiao
2015-11-14
Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties. PMID:26567650
NASA Astrophysics Data System (ADS)
Wang, Xianwei; Zhang, John Z. H.; He, Xiao
2015-11-01
Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.
Wang, Xianwei; Zhang, John Z. H.; He, Xiao
2015-11-14
Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.
Thore, A. Dahlqvist, M. E-mail: bjoal@ifm.liu.se Alling, B. E-mail: bjoal@ifm.liu.se Rosén, J. E-mail: bjoal@ifm.liu.se
2014-09-14
In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn₂GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants, the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn₂GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M₂AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.
Full-dimensional vibrational calculations for H5O2+ using an ab initio potential energy surface
NASA Astrophysics Data System (ADS)
McCoy, Anne B.; Huang, Xinchuan; Carter, Stuart; Landeweer, Marc Y.; Bowman, Joel M.
2005-02-01
We report quantum diffusion Monte Carlo (DMC) and variational calculations in full dimensionality for selected vibrational states of H5O2+ using a new ab initio potential energy surface [X. Huang, B. Braams, and J. M. Bowman, J. Chem. Phys. 122, 044308 (2005)]. The energy and properties of the zero-point state are focused on in the rigorous DMC calculations. OH-stretch fundamentals are also calculated using "fixed-node" DMC calculations and variationally using two versions of the code MULTIMODE. These results are compared with infrared multiphoton dissociation measurements of Yeh et al. [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989)]. Some preliminary results for the energies of several modes of the shared hydrogen are also reported.
NASA Astrophysics Data System (ADS)
Mielke, Steven L.; Truhlar, Donald G.
2015-01-01
We present an improved version of our "path-by-path" enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P-6) to O(P-12), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational-rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan-Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ˜1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300-3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities.
Toy, Mehmet; Tanak, Hasan
2016-01-01
In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3'-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400cm(-1) for solid state. The (1)H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory. PMID:25468435
NASA Astrophysics Data System (ADS)
Tarchouna, S.; Chaabane, I.; Rahaiem, A. Ben
2016-09-01
4-acetylanilinium was used as a ligand for the synthesis of the organic/inorganic compound bis (4-acetylanilinium) hexachlorostannate. Vibrational study in the solid state was performed by FT-Raman of the free 4-acetylanilinium ligand C8H9ON+ and by FT-IR and FT-Raman spectroscopies of the [C8H10NO]2 SnCl6 compound. The comparative analysis of the Raman spectra of the title compound with that of the free ligand was discussed. The structure of the [C8H10NO]2SnCl6 was optimized by density functional theory (DFT) using B3LYP method and shows that the calculated values obtained by B3LYP/LanL2DZ basis are in a better agreement with the experimental data reported by Song et al. (2011) [1] than those obtained by B3LYP/LanL2MB basis. The vibrational frequencies are calculated using density functional theory (DFT) with the B3LYP/LanL2DZ basis, and scaled by various factors. Root mean square (RMS) value was calculated and the small difference between experimental and calculated modes has been interpreted by intermolecular interactions in the crystal.
NASA Astrophysics Data System (ADS)
Toy, Mehmet; Tanak, Hasan
2016-01-01
In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3‧-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400 cm-1 for solid state. The 1H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.
Tabulation of hybrid theory calculated e-N2 vibrational and rotational cross sections
NASA Technical Reports Server (NTRS)
Chandra, N.; Temkin, A.
1976-01-01
Vibrational excitation cross sections of N2 by electron impact are tabulated. Integrated cross sections are given for transitions v yields v prime where o=or v=or 8 in the energy range 0.1 eV=or E=or 10 eV. The energy grid is chosen to be most dense in the resonance region (2 to 4 eV) so that the substructure is present in the numerical results. Coefficients in the angular distribution formula (differential scattering cross section) for transitions v=0 yields v prime = or 8 are also numerically given over the same grid of energies. Simultaneous rotation-vibration coefficients are also given for transitions v=o,j=o; 1 yields v prime=o, j=o,2,4; 1,3,5. All results are obtained from the hybrid theory.
Ab initio calculation of the ro-vibrational spectrum of H2F+
NASA Astrophysics Data System (ADS)
Kyuberis, Aleksandra A.; Lodi, Lorenzo; Zobov, Nikolai F.; Polyansky, Oleg L.
2015-10-01
An ab initio study of the rotation-vibrational spectrum of the electronic ground state of the (gas-phase) fluoronium ion H2F+ is presented. A new potential energy surface (PES) and a new dipole moment surface (DMS) were produced and used to compute rotation-vibrational energy levels, line positions and line intensities. Our computations achieve an accuracy of 0.15 cm-1 for the fundamental vibrational frequencies, which is about 50 times more accurate than previous ab initio results. The computed room-temperature line list should facilitate the experimental observations of new H2F+ lines, in particular of yet unobserved overtone transitions. The H2F+ molecular ion, which is isoelectronic to water, has a non-linear equilibrium geometry but a low-energy barrier to linearity at about 6000 cm-1. As a result the effects of so-called quantum monodromy become apparent already at low bending excitations. An analysis of excited bends in terms of quantum monodromy is presented.
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Stanke, Monika; Adamowicz, Ludwik
2011-04-01
All 18 bound pure vibrational levels of the HD molecule have been calculated within the framework that does not assume the Born-Oppenheimer (BO) approximation. The nonrelativistic energies of the states have been corrected for the relativistic effects of the order of α2 (where α is the fine structure constant), calculated using the perturbation theory with the nonrelativistic non-BO wave functions being the zero-order approximation. The calculations were performed by expanding the non-BO wave functions in terms of one-center explicitly correlated Gaussian functions multiplied by even powers of the internuclear distance and by performing extensive optimization of the Gaussian nonlinear parameters. Up to 10 000 basis functions were used for each state.
Bubin, Sergiy; Stanke, Monika; Adamowicz, Ludwik
2011-04-15
All 18 bound pure vibrational levels of the HD molecule have been calculated within the framework that does not assume the Born-Oppenheimer (BO) approximation. The nonrelativistic energies of the states have been corrected for the relativistic effects of the order of {alpha}{sup 2} (where {alpha} is the fine structure constant), calculated using the perturbation theory with the nonrelativistic non-BO wave functions being the zero-order approximation. The calculations were performed by expanding the non-BO wave functions in terms of one-center explicitly correlated Gaussian functions multiplied by even powers of the internuclear distance and by performing extensive optimization of the Gaussian nonlinear parameters. Up to 10 000 basis functions were used for each state.
Bubin, Sergiy; Stanke, Monika; Adamowicz, Ludwik
2011-08-21
In this work we report very accurate variational calculations of the complete pure vibrational spectrum of the D(2) molecule performed within the framework where the Born-Oppenheimer (BO) approximation is not assumed. After the elimination of the center-of-mass motion, D(2) becomes a three-particle problem in this framework. As the considered states correspond to the zero total angular momentum, their wave functions are expanded in terms of all-particle, one-center, spherically symmetric explicitly correlated Gaussian functions multiplied by even non-negative powers of the internuclear distance. The nonrelativistic energies of the states obtained in the non-BO calculations are corrected for the relativistic effects of the order of α(2) (where α = 1/c is the fine structure constant) calculated as expectation values of the operators representing these effects. PMID:21861559
Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh
2014-11-11
In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule. PMID:24892542
NASA Astrophysics Data System (ADS)
Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh
2014-11-01
In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule.
Yu, Hua-Gen
2015-01-28
We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An application is illustrated by calculating the infrared vibrational dipole transition spectrum of CH₄ based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra.
Yu, Hua-Gen
2015-01-28
We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An application is illustrated by calculating the infrared vibrational dipole transition spectrum of CH{sub 4} based on the ab initio T8 potential energy surface of Schwenke and Partridge [Spectrochimica Acta, Part A 57, 887 (2001)] and the low-order truncated ab initio dipole moment surfaces of Yurchenko et al. [J. Mol. Spectrosc. 291, 69 (2013)]. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra.
Yu, Hua-Gen
2015-01-28
We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An applicationmore » is illustrated by calculating the infrared vibrational dipole transition spectrum of CH₄ based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra.« less
Skokov, S.; Peterson, K.A.; Bowman, J.M.
1998-08-01
Accurate {ital ab initio} multireference configuration interaction (CI) calculations with large correlation-consistent basis sets are performed for HOCl. After extrapolation to the complete basis set limit, the {ital ab initio} data are precisely fit to give a semiglobal three-dimensional potential energy surface to describe HOCl{r_arrow}Cl+OH from high overtone excitation of the OH-stretch. The average absolute deviation between the {ital ab initio} and fitted energies is 4.2thinspcm{sup {minus}1} for energies up to 60 kcal/mol relative to the HOCl minimum. Vibrational energies of HOCl including the six overtones of the OH-stretch are computed using a vibrational-Cl method on the fitted potential and also on a slightly adjusted potential. Near-spectroscopic accuracy is obtained using the adjusted potential; the average absolute deviation between theory and experiment for 19 experimentally reported states is 4.8thinspcm{sup {minus}1}. Very good agreement with experiment is also obtained for numerous rotational energies for the ground vibrational state, the ClO-stretch fundamental, and the fifth overtone of the OH-stretch. {copyright} {ital 1998 American Institute of Physics.}
Layfield, Joshua P.
2012-01-01
The vibrational Stark effect provides insight into the roles of hydrogen bonding, electrostatics, and conformational motions in enzyme catalysis. In a recent application of this approach to the enzyme ketosteroid isomerase (KSI), thiocyanate probes were introduced in site-specific positions throughout the active site. This paper implements a quantum mechanical/molecular mechanical (QM/MM) approach for calculating the vibrational shifts of nitrile (CN) probes in proteins. This methodology is shown to reproduce the experimentally measured vibrational shifts upon binding of the intermediate analog equilinen to KSI for two different nitrile probe positions. Analysis of the molecular dynamics simulations provides atomistic insight into the roles that key residues play in determining the electrostatic environment and hydrogen-bonding interactions experienced by the nitrile probe. For the M116C-CN probe, equilinen binding reorients an active site water molecule that is directly hydrogen bonded to the nitrile probe, resulting in a more linear CNH angle and increasing the CN frequency upon binding. For the F86C-CN probe, equilinen binding orients the Asp103 residue, decreasing the hydrogen-bonding distance between the Asp103 backbone and the nitrile probe and slightly increasing the CN frequency. This QM/MM methodology is applicable to a wide range of biological systems and has the potential to assist in the elucidation of the fundamental principles underlying enzyme catalysis. PMID:23210919
Baklouti, Yosra; chaari, Najla; Feki, Habib; Chniba-Boudjada, Nassira; Zouari, Fatma
2015-02-01
Single crystals of a new organic-inorganic compound (C9H24N2) CdCl4 were grown by the slow evaporation technique and characterized by X-ray diffraction, infrared absorption Raman spectroscopy scattering, optical absorption, differential scanning calorimetry (DSC) analysis and dielectric measurements. The title compound belongs to the orthorhombic space group Pbca with the following unit cell parameters: a=11.397(7), b=13.843(4), c=22.678(5)Å and Z=8. In crystal structure, the tetrachlorocadmate anion is connected to organic cations through N-H⋯Cl hydrogen bonds. Theoretical calculations were performed using density functional theory (DFT) with the B3LYP/LanL2DZ level of theory for studying the molecular structure and vibrational spectra of the title compound. Good consistency is found between the calculated results and the experimental structure, IR, and Raman spectra. The detailed interpretation of the vibrational modes was carried out on the basis on our DFT calculations as primary source of assignment and by comparison with spectroscopic studies of similar compounds. The optical properties were investigated by optical absorption and show three bands at 300, 329 and 513 nm. PMID:25311521
2015-01-01
New sets of parameters (maps) for calculating amide I vibrational spectra for proteins through a vibrational exciton model are proposed. The maps are calculated as a function of electric field and van der Waals forces on the atoms of peptide bonds, taking into account the full interaction between peptide bonds and the surrounding environment. The maps are designed to be employed using data obtained from standard all-atom molecular simulations without any additional constraints on the system. Six proteins representing a wide range of sizes and secondary structure complexity were chosen as a test set. Spectra calculated for these proteins reproduce experimental data both qualitatively and quantitatively. The proposed maps lead to spectra that capture the weak second peak observed in proteins containing β-sheets, allowing for clear distinction between α-helical and β-sheet proteins. While the parametrization is specific to the CHARMM force field, the methodology presented can be readily applied to any empirical force field. PMID:24654732
Małolepsza, Edyta; Straub, John E
2014-07-17
New sets of parameters (maps) for calculating amide I vibrational spectra for proteins through a vibrational exciton model are proposed. The maps are calculated as a function of electric field and van der Waals forces on the atoms of peptide bonds, taking into account the full interaction between peptide bonds and the surrounding environment. The maps are designed to be employed using data obtained from standard all-atom molecular simulations without any additional constraints on the system. Six proteins representing a wide range of sizes and secondary structure complexity were chosen as a test set. Spectra calculated for these proteins reproduce experimental data both qualitatively and quantitatively. The proposed maps lead to spectra that capture the weak second peak observed in proteins containing β-sheets, allowing for clear distinction between α-helical and β-sheet proteins. While the parametrization is specific to the CHARMM force field, the methodology presented can be readily applied to any empirical force field. PMID:24654732
NASA Astrophysics Data System (ADS)
Xavier, S.; Periandy, S.; Carthigayan, K.; Sebastian, S.
2016-12-01
Vibrational spectral analysis of Diphenyl Carbonate (DPC) is carried out by using FT-IR and FT-Raman spectroscopic techniques. It is found that all vibrational modes are in the expected region. Gaussian computational calculations were performed using B3LYP method with 6-311++G (d, p) basis set. The computed geometric parameters are in good agreement with XRD data. The observation shows that the structure of the carbonate group is unsymmetrical by ∼5° due to the attachment of the two phenyl rings. The stability of the molecule arising from hyperconjugative interaction and charge delocalization are analyzed by Natural Bond Orbital (NBO) study and the results show the lone pair transition has higher stabilization energy compared to all other. The 1H and 13C NMR chemical shifts are calculated using the Gauge-Including Atomic Orbital (GIAO) method with B3LYP/6-311++G (d, p) method. The chemical shifts computed theoretically go very closer to the experimental results. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies and Molecular electrostatic potential (MEP) exhibit the high reactivity nature of the molecule. The non-linear optical property of the DPC molecule predicted theoretically found to be good candidate for NLO material. TG/DTA analysis was made and decomposition of the molecule with respect to the temperature was studied. DPC having the anthelmintic activity is docked in the Hemoglobin of Fasciola hepatica protein. The DPC has been screened to antimicrobial activity and found to exhibit antibacterial effects.
NASA Astrophysics Data System (ADS)
Lebedieva, Tetiana; Gubanov, Victor; Dovbeshko, Galyna; Pidhirnyi, Denys
2015-07-01
Different notations of graphene irreducible representations and optical modes could be found in the literature. The goals of this paper are to identify the correspondence between available notations, to calculate the optical modes of graphene in different points of the Brillouin zone, and to compare them with experimental data obtained by Raman and coherent anti-Stokes Raman scattering (CARS) spectroscopy. The mechanism of the resonance enhancement of vibration modes of the molecules adsorbed on graphene in CARS experiments is proposed. The possibility of appearance of the discrete breathing modes is discussed.
Jungen, C.; Dill, D.
1980-10-01
Multichannel quantum defect theory is adapted to treat simultaneous rotational and vibrational preionization in H/sub 2/. The strongly preionized spectrum between the N/sup +/=0 and N/sup +/=2 rotational thresholds of photoionization of H/sub 2/X/sup 1/..sigma../sub g//sup +/(J''=0, v''=0) to produce H/sub 2//sup +/X/sup 2/..sigma../sub g//sup +/(N/sup +/, v/sup +/=0) is computed as example and good agreement is obtained with the photoionization data of Dehmer and Chupka.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)
1997-01-01
The vibrational frequencies of MO2 are computed at many levels of theory, including HF, B3LYP, BP86, CASSCF, MP2, and CCSD(T). The computed results are compared with the available experimental results. Most of the methods fail for at least one state of the systems considered. The accuracy of the results and the origin of the observed failures are discussed. The B3LYP bond energies are compared with traditional methods for a variety of systems, ranging from FeCOn+ to SiCln and its positive ions. The cases where B3LYP differs from the traditional methods are discussed.
NASA Astrophysics Data System (ADS)
Saja, D.; Joe, I. Hubert; Jayakumar, V. S.
2006-01-01
The NIR-FT Raman, FT-IR spectral analysis of potential NLO material P-Amino Acetanilide is carried out by density functional computations. The optimized geometry shows that NH2 and NHCOCH3 groups substituted in para position of phenyl ring are non-planar which predicts maximum conjugation of molecule with donor and acceptor groups. Vibrational analysis reveals that simultaneous IR and Raman activation of the phenyl ring modes also provide evidence for the charge transfer interaction between the donors and the acceptor can make the molecule highly polarized and the intra molecular charge transfer interaction must be responsible for the NLO properties of PAA.
Kostadinova, O.; Chrissanthopoulos, A.; Petkova, T.; Petkov, P.; Yannopoulos, S.N.
2011-02-15
We report an investigation of the structure and vibrational modes of (AgI){sub x} (AsSe){sub 100-x}, bulk glasses using Raman spectroscopy and first principles calculations. The short- and medium-range structural order of the glasses was elucidated by analyzing the reduced Raman spectra, recorded at off-resonance conditions. Three distinct local environments were revealed for the AsSe glass including stoichiometric-like and As-rich network sub-structures, and cage-like molecules (As{sub 4}Se{sub n}, n=3, 4) decoupled from the network. To facilitate the interpretation of the Raman spectra ab initio calculations are employed to study the geometric and vibrational properties of As{sub 4}Se{sub n} molecular units that are parts of the glass structure. The incorporation of AgI causes appreciable structural changes into the glass structure. AgI is responsible for the population reduction of molecular units and for the degradation of the As-rich network-like sub-structure via the introduction of As-I terminal bonds. Ab initio calculations of mixed chalcohalide pyramids AsSe{sub m}I{sub 3-m} provided useful information augmenting the interpretation of the Raman spectra. -- Graphical abstract: Raman scattering and ab initio calculations are employed to study the structure of AgI-AsSe superionic glasses. The role of mixed chalcohalide pyramidal units as illustrated in the figure is elucidated. Display Omitted Research highlights: {yields} Doping binary As-Se glasses with AgI cause dramatic changes in glass structure. {yields} Raman scattering and ab initio calculations determine changes in short- and medium-range order. {yields} Three local environments exist in AsSe glass including a network sub-structure and cage-like molecules. {yields} Mixed chalcohalide pyramids AsSe{sub m}I{sub 3-m} dominate the AgI-doped glass structure.
Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.
Voids at the tunnel-soil interface for calculation of ground vibration from underground railways
NASA Astrophysics Data System (ADS)
Jones, Simon; Hunt, Hugh
2011-01-01
Voids at the tunnel-soil interface are not normally considered when predicting ground vibration from underground railways. The soil is generally assumed to be continuously bonded to the outer surface of the tunnel to simplify the modelling process. Evidence of voids around underground railways motivated the study presented herein to quantify the level of uncertainty in ground vibration predictions associated with neglecting to include such voids at the tunnel-soil interface. A semi-analytical method is developed which derives discrete transfers for the coupled tunnel-soil model based on the continuous Pipe-in-Pipe method. The void is simulated by uncoupling the appropriate nodes at the interface to prevent force transfer between the systems. The results from this investigation show that relatively small voids ( 4 m×90∘) can significantly affect the rms velocity predictions in the near-field and moderately affect predictions in the far-field. Sensitivity of the predictions to void length and void sector angle are both deemed to be significant. The findings from this study suggest that the uncertainty associated with assuming a perfect bond at the tunnel-soil interface in an area with known voidage can reasonably reach ±5 dB and thus should be considered in the design process.
NASA Astrophysics Data System (ADS)
Chao, Jun-Mei; Tham, Keng Seng; Zhang, Guiqiu; Merer, Anthony J.; Hsu, Yen-Chu; Hu, Wei-Ping
2011-02-01
Fluorescence excitation spectra and wavelength-resolved emission spectra of the C3-Kr and C3-Xe van der Waals (vdW) complexes have been recorded near the 22 -0, 22 +0, 24 -0, and 110 bands of the {tilde A} ^1Π _u - {tilde X} ^1Σ _g^ + system of the C3 molecule. In the excitation spectra, the spectral features of the two complexes are red-shifted relative to those of free C3 by 21.9-38.2 and 34.3-36.1 cm-1, respectively. The emission spectra from the {tilde A} state of the Kr complex consist of progressions in the two C3-bending vibrations (ν2, ν4), the vdW stretching (ν3), and bending vibrations (ν6), suggesting that the equilibrium geometry in the {tilde X} state is nonlinear. As in the Ar complex [Zhang et al., J. Chem. Phys. 120, 3189 (2004)], the C3-bending vibrational levels of the Kr complex shift progressively to lower energy with respect to those of free C3 as the bending quantum number increases. Their vibrational structures could be modeled as perturbed harmonic oscillators, with the dipole-induced dipole terms of the Ar and Kr complexes scaled roughly by the polarizabilities of the Ar and Kr atoms. Emission spectra of the Xe complex, excited near the {tilde A}, 22- level of free C3, consist only of progressions in even quanta of the C3-bending and vdW modes, implying that the geometry in the higher vibrational levels (υbend ≥ 4, Evib ≥ 328 cm-1) of the {tilde X} state is (vibrationally averaged) linear. In this structure the Xe atom bonds to one of the terminal carbons nearly along the inertial a-axis of bent C3. Our ab initio calculations of the Xe complex at the level of CCSD(T)/aug-cc-pVTZ (C) and aug-cc-pVTZ-PP (Xe) predict that its equilibrium geometry is T-shaped (as in the Ar and Kr complexes), and also support the assignment of a stable linear isomer when the amplitude of the C3 bending vibration is large (υ4 ≥ 4).
NASA Astrophysics Data System (ADS)
Luo, Ye; Sorella, Sandro
2014-03-01
We introduce a general and efficient method for the calculation of vibrational frequencies of electronic systems, ranging from molecules to solids. By performing damped molecular dynamics with ab initio forces, we show that quantum vibrational frequencies can be evaluated by diagonalizing the time averaged position-position or force-force correlation matrices, although the ionic motion is treated on the classical level within the Born-Oppenheimer approximation. The novelty of our approach is to evaluate atomic forces with QMC by means of a highly accurate and correlated variational wave function which is optimized simultaneously during the dynamics. QMC is an accurate and promising many-body technique for electronic structure calculation thanks to massively parallel computers. However, since infinite statistics is not feasible, property evaluation may be affected by large noise that is difficult to harness. Our approach controls the QMC stochastic bias systematically and gives very accurate results with moderate computational effort, namely even with noisy forces. We prove the accuracy and efficiency of our method on the water monomer[A. Zen et al., JCTC 9 (2013) 4332] and dimer. We are currently working on the challenging problem of simulating liquid water at ambient conditions.
NASA Astrophysics Data System (ADS)
Sanson, Andrea; Giarola, Marco; Rossi, Barbara; Mariotto, Gino; Cazzanelli, Enzo; Speghini, Adolfo
2012-12-01
The vibrational properties of yttrium orthovanadate (YVO4) single crystals, with tetragonal zircon structure, have been investigated by means of polarized micro-Raman spectroscopy and ab initio calculations. Raman spectra were taken at different polarizations and orientations carefully set by the use of a micromanipulator, so that all of the twelve Raman-active modes, expected on the basis of the group theory, were selected in turn and definitively assigned in wave number and symmetry. In particular the Eg(4) mode, assigned incorrectly in previous literature, has been observed at 387 cm-1. Moreover, the very weak Eg(1) mode, peaked at about 137 cm-1, was clearly observed only under some excitation wavelengths, and its peculiar Raman excitation profile was measured within a wide region of the visible. Finally, ab initio calculations based on density-functional theory have been performed in order to determine both Raman and infrared vibrational modes and to corroborate the experimental results. The rather good agreement between computational and experimental frequencies is slightly better than in previous computational works and supports our experimental symmetry assignments.
NASA Astrophysics Data System (ADS)
Morzyk-Ociepa, Barbara; Szmigiel, Ksenia; Dysz, Karolina; Turowska-Tyrk, Ilona; Michalska, Danuta
2016-11-01
Two new complexes of Cd(II) with an O-deprotonated anion of 5-methoxyindole-2-carboxylic acid (5-MeOI2CA), of the formulas [Cd(5-MeOI2CA)2(H2O)2]n (1) and [Cd3(5-MeOI2CA)6(H2O)4(DMSO)4]ṡ2DMSO (2) were synthesized. In the polymeric complex 1, the 5-MeOI2CA anion acts as a bidentate bridging ligand and the coordination environment around the Cd(II) ion can be described as a distorted octahedron. Single crystal X-ray diffraction analysis of 2 has revealed that this complex is a trimer and it crystallizes in the monoclinic system (space group P21/c with a = 20.3403(4), b = 14.3079(2), c = 15.0603(3) Å, β = 92.4341(17)°, V = 4379.00(14) Å3 and Z = 2). In 2, the 5-MeOI2CA anions act as bidentate bridging and bidentate chelating ligands. The asymmetric unit of 2 contains two crystallographically independent Cd(II) cations. One of the cations is coordinated to six oxygen atoms and shows an octahedral geometry with a rhombic deformation. The other Cd(II) cation adopts a distorted seven-coordinate pentagonal-bipyramidal geometry involving seven oxygen atoms. In 2, the DMSO solvent molecules play a key role in the formation of metal-organic frameworks by filling voids, which are created by the bridging and chelating 5-MeOI2CA anions, the cadmium cations and the other DMSO molecules coordinated to cadmium. Comprehensive theoretical calculations (including the optimized structural parameters, harmonic frequencies and vibrational intensities) were performed for 2 using the B3LYP method with the 6-311++G(d,p)/LanL2DZ basis sets. The infrared and Ramana spectra were measured and a detailed assignment of the experimental spectra of 2 was performed. All cadmium-oxygen stretching vibrations occur in the range below 400 cm-1.
NASA Astrophysics Data System (ADS)
Tuyterev, Vladimir
2010-06-01
It has become increasingly common to use accurate potential energy surfaces and dipole moment surfaces for predictions and assignment of high-resolution vibration-rotation molecular spectra. These surfaces are obtained either from high-level ab initio electronic structure calculations or from a direct fit to experimental spectroscopic data. The talk will continue a discussion of some recent advances in the domain of the "potentiology". The role of basis extrapolations, of the Born-Oppenheimer breakdown corrections , in particular for very highly excited vibration states will be considered. As effective polyad Hamiltonians and band transition moment operators are still widely used for data reductions in high-resolutions molecular spectroscopy, experimental spectra analyses invoke a need for accurate methods of building physically meaningful effective models from ab initio surfaces. This involves predictions for various spectroscopic constants, including vibration dependence of rotational and centrifugal distortion and resonance coupling parameters. Topics planned for discussion include: high-order Contact Transformations of rovibrational Hamiltonians and of the dipole moment for small polyatomic molecules; convergence issues; the role of the anharmonicity in a potential energy function and of resonance couplings on the normal mode mixing and on vib-rot assignments with application to high energy vibration levels of SO_2 and to ozone near the dissociation limit; intensity anomalies in H_2S / HDS / D_2S spectra, relation of the shape of ab initio dipole moment surfaces with a "mystery" of nearly vanishing symmetry allowed bands. A full account for symmetry properties requires efficient theoretical tools for transformations of molecular Hamiltonians such as irreducible tensor formalism, applications using phosphine and methane potentials will be discussed. Both potential functions and effective polyad Hamiltonians allow studying changes in quasi-classical vibration
NASA Astrophysics Data System (ADS)
Carvalho, A.; Jones, R.; Coutinho, J.; Briddon, P. R.
2005-05-01
The first stage in the anneal of interstitial boron below room temperature in Czochralski-grown Si (Cz-Si) is the formation of the interstitial boron-oxygen (BiOi) defect. First principles modelling show that this defect has a structure similar to the interstitial carbon-oxygen complex. However, whereas the latter defect has been characterized by local vibrational mode infra-red spectroscopy, there is no information on the local vibrational modes of BiOi even though the defect is known to be a dominant interstitial boron defect in irradiated Cz-Si. Here, we carry out density functional calculations to determine its vibrational modes and respective isotope shifts, concluding that it possesses six local vibrational modes. As in the case of CiOi, we find an oxygen-related vibrational mode with frequency far below the 1136 cm-1 of the oxygen interstitial, characteristic of the three-fold coordinated oxygen.
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
A description is given of an algorithm for computing ro-vibrational energy levels for tetratomic molecules. The expressions required for evaluating transition intensities are also given. The variational principle is used to determine the energy levels and the kinetic energy operator is simple and evaluated exactly. The computational procedure is split up into the determination of one dimensional radial basis functions, the computation of a contracted rotational-bending basis, followed by a final variational step coupling all degrees of freedom. An angular basis is proposed whereby the rotational-bending contraction takes place in three steps. Angular matrix elements of the potential are evaluated by expansion in terms of a suitable basis and the angular integrals are given in a factorized form which simplifies their evaluation. The basis functions in the final variational step have the full permutation symmetries of the identical particles. Sample results are given for HCCH and BH3.
Two-photon vibrational excitation of air by long-wave infrared laser pulses
NASA Astrophysics Data System (ADS)
Palastro, J. P.; Peñano, J.; Johnson, L. A.; Hafizi, B.; Wahlstrand, J. K.; Milchberg, H. M.
2016-08-01
Ultrashort long-wave infrared (LWIR) laser pulses can resonantly excite vibrations in N2 and O2 through a two-photon transition. The absorptive vibrational component of the ultrafast optical nonlinearity grows in time, starting smaller than but quickly surpassing the electronic, rotational, and vibrational refractive components. The growth of the vibrational component results in a novel mechanism of third-harmonic generation, providing an additional two-photon excitation channel, fundamental + third harmonic. The original and emergent two-photon excitations drive the resonance exactly out of phase, causing spatial decay of the absorptive vibrational nonlinearity. This nearly eliminates two-photon vibrational absorption. Here we present simulations and analytical calculations demonstrating how these processes modify the ultrafast optical nonlinearity in air. The results reveal nonlinear optical phenomena unique to the LWIR regime of ultrashort pulse propagation in the atmosphere.
Sun, Shou-Tian; Jiang, Ling; Liu, J W; Heine, Nadja; Yacovitch, Tara I; Wende, Torsten; Asmis, Knut R; Neumark, Daniel M; Liu, Zhi-Feng
2015-10-21
We report infrared multiple photon dissociation (IRMPD) spectra of cryogenically-cooled H2PO4(-)(H2O)n anions (n = 2-12) in the spectral range of the stretching and bending modes of the solute anion (600-1800 cm(-1)). The spectra cannot be fully understood using the standard technique of comparison to harmonic spectra of minimum-energy structures; a satisfactory assignment requires considering anharmonic effects as well as entropy-driven hydrogen bond network fluctuations. Aided by finite temperature ab initio molecular dynamics simulations, the observed changes in the position, width and intensity of the IRMPD bands with cluster size are related to the sequence of microsolvation. Due to stronger hydrogen bonding to the two terminal P[double bond, length as m-dash]O groups, these are hydrated before the two P-OH groups. By n = 6, all four end groups are involved in the hydrogen bond network and by n = 12, the cluster spectra show similarities to the condensed phase spectrum of H2PO4(-)(aq). Our results reveal some of the microscopic details concerning the formation of the aqueous solvation environment around H2PO4(-), provide ample testing grounds for the design of model solvation potentials for this biologically relevant anion, and support a new paradigm for the interpretation of IRMPD spectra of microhydrated ions. PMID:26105043
Sun, Shou -Tian; Jiang, Ling; Liu, J. W.; Heine, Nadja; Yacovitch, Tara I.; Wende, Torsten; Asmis, Knut R.; Neumark, Daniel M.; Liu, Zhi -Feng
2015-06-05
We report infrared multiple photon dissociation (IRMPD) spectra of cryogenically-cooled H2PO4-(H2O)n anions (n = 2–12) in the spectral range of the stretching and bending modes of the solute anion (600–1800 cm-1). The spectra cannot be fully understood using the standard technique of comparison to harmonic spectra of minimum-energy structures; a satisfactory assignment requires considering anharmonic effects as well as entropy-driven hydrogen bond network fluctuations. Aided by finite temperature ab initio molecular dynamics simulations, the observed changes in the position, width and intensity of the IRMPD bands with cluster size are related to the sequence of microsolvation. Due to stronger hydrogenmore » bonding to the two terminal P=O groups, these are hydrated before the two P–OH groups. By n = 6, all four end groups are involved in the hydrogen bond network and by n = 12, the cluster spectra show similarities to the condensed phase spectrum of H2PO4-(aq). Our results reveal some of the microscopic details concerning the formation of the aqueous solvation environment around H2PO4-, provide ample testing grounds for the design of model solvation potentials for this biologically relevant anion, and support a new paradigm for the interpretation of IRMPD spectra of microhydrated ions.« less
Hua -Gen Yu; Han, Huixian; Guo, Hua
2016-03-29
Vibrational energy levels of the ammonium cation (NH4+) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4+ and ND4+ exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm–1.
NASA Astrophysics Data System (ADS)
Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.
2016-05-01
Fourier transform - Infra red (FT-IR) and Fourier transform - Raman (FT-Raman) spectroscopic techniques have been carried out to analyze O-methoxy benzaldehyde (OMB) molecule. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT). The vibrational analysis of stable isomer of OMB has been carried out by FT-IR and FT-Raman in combination with theoretical method simultaneously. The first-order hyperpolarizability and the anisotropy polarizability invariant were computed by DFT method. The atomic charges, hardness, softness, ionization potential, electronegativity, HOMO-LUMO energies, and electrophilicity index have been calculated. The 13C and 1H Nuclear magnetic resonance (NMR) have also been obtained by GIAO method. Molecular electronic potential (MEP) has been calculated by the DFT calculation method. Electronic excitation energies, oscillator strength and excited states characteristics were computed by the closed-shell singlet calculation method.
Wood, R.F.; Wilson, T.M.
1981-01-01
The structure of the Hartree-Fock one-electron equations for simple point defects in ionic crystals are discussed. The importance of polarization effects due to the diffuse nature of the wavefunctions in the relaxed excited states are emphasized, and the usefulness of an effective mass approximation indicated. Several approaches to the calculation of the electronic structure are discussed and evaluated. The connection between electronic structure calculations and phonon perturbations are pointed out through a brief discussion of localized perturbation theory.
An efficient method for calculating RMS von Mises stress in a random vibration environment
Segalman, D.J.; Fulcher, C.W.G.; Reese, G.M.; Field, R.V. Jr.
1998-02-01
An efficient method is presented for calculation of RMS von Mises stresses from stress component transfer functions and the Fourier representation of random input forces. An efficient implementation of the method calculates the RMS stresses directly from the linear stress and displacement modes. The key relation presented is one suggested in past literature, but does not appear to have been previously exploited in this manner.
An efficient method for calculating RMS von Mises stress in a random vibration environment
Segalman, D.J.; Fulcher, C.W.G.; Reese, G.M.; Field, R.V. Jr.
1997-12-01
An efficient method is presented for calculation of RMS von Mises stresses from stress component transfer functions and the Fourier representation of random input forces. An efficient implementation of the method calculates the RMS stresses directly from the linear stress and displacement modes. The key relation presented is one suggested in past literature, but does not appear to have been previously exploited in this manner.
Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: First-principles calculations
NASA Astrophysics Data System (ADS)
Li, Zhiping; Gao, Faming; Xu, Ziming
2012-04-01
The strength, hardness, and lattice vibrations of two superhard carbon allotropies, Z-carbon and W-carbon are investigated by first-principles calculations. Phonon dispersion calculations indicate that Z-carbon and W-carbon are dynamically stable at least up to 300 GPa. The strength calculations reveal that the failure mode in Z-carbon is dominated by the tensile type, and the [010] direction is the weakest one. In W-carbon, the failure mode is dominated by the shear type, and the (101)[111¯] direction is the weakest one. Although the ideal strength of diamond is distinctly greater than that of Z-carbon and W-carbon, the tensile strength and shear strength for Z-carbon and W-carbon show much lower anisotropies than that of diamond. The hardness calculations indicate that the average hardness of Z-carbon is less than that of diamond but greater than that of the W-carbon, M-carbon, and body-centered-tetragonal-C4 carbon. The simulated Raman spectra show that the Ag modes at 1094 cm-1 for Z-carbon and 1109.7 cm-1 for W-carbon are in agreement with that of 1082 cm-1 observed in the experiment of cold-compressed graphite at 9.8 GPa.
Sun, Shou -Tian; Jiang, Ling; Liu, J. W.; Heine, Nadja; Yacovitch, Tara I.; Wende, Torsten; Asmis, Knut R.; Neumark, Daniel M.; Liu, Zhi -Feng
2015-06-05
We report infrared multiple photon dissociation (IRMPD) spectra of cryogenically-cooled H_{2}PO_{4}^{-}(H_{2}O)_{n} anions (n = 2–12) in the spectral range of the stretching and bending modes of the solute anion (600–1800 cm-1). The spectra cannot be fully understood using the standard technique of comparison to harmonic spectra of minimum-energy structures; a satisfactory assignment requires considering anharmonic effects as well as entropy-driven hydrogen bond network fluctuations. Aided by finite temperature ab initio molecular dynamics simulations, the observed changes in the position, width and intensity of the IRMPD bands with cluster size are related to the sequence of microsolvation. Due to stronger hydrogen bonding to the two terminal P=O groups, these are hydrated before the two P–OH groups. By n = 6, all four end groups are involved in the hydrogen bond network and by n = 12, the cluster spectra show similarities to the condensed phase spectrum of H_{2}PO_{4}^{-}(aq). Our results reveal some of the microscopic details concerning the formation of the aqueous solvation environment around H_{2}PO_{4}^{-}, provide ample testing grounds for the design of model solvation potentials for this biologically relevant anion, and support a new paradigm for the interpretation of IRMPD spectra of microhydrated ions.
NASA Astrophysics Data System (ADS)
Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.
2016-04-01
In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.
Li, Bin; Bian, Wensheng
2008-07-14
Full-dimensional quantum calculations of vibrational states of C(2)H(2) and C(2)D(2) are performed in the high-energy region (above 20,400 cm(-1) relative to the acetylene minimum). The theoretical scheme is a combination of several methods. To exploit the full parity and permutation symmetry, the CC-HH diatom-diatom Jacobi coordinates are chosen; phase space optimization in combination with physical considerations is used to obtain an efficient radial discrete variable representation, whereas a basis contraction scheme is applied for angular coordinates. The preconditioned inexact spectral transform method combined with an efficient preconditioner is employed to compute eigenstates within a desired spectral window. The computation is efficient. More definite assignments on vinylidene states than previous studies are acquired using the normal mode projection; in particular, a consistent analysis of the nu(1) (symmetric CH stretch) state is provided. The computed vinylidene vibrational energy levels are in general good agreement with experiment, and several vinylidene states are reported for the first time. PMID:18624520
Calculation of exact vibration modes for plane grillages by the dynamic stiffness method
NASA Technical Reports Server (NTRS)
Hallauer, W. L., Jr.; Liu, R. Y. L.
1982-01-01
A dynamic stiffness method is developed for the calculation of the exact modal parameters for plane grillages which consist of straight and uniform beams with coincident elastic and inertial axes. Elementary bending-torsion beam theory is utilized, and bending translation is restricted to one direction. The exact bending-torsion dynamic stiffness matrix is obtained for a straight and uniform beam element with coincident elastic and inertial axes. The element stiffness matrices are assembled using the standard procedure of the static stiffness method to form the dynamic stiffness matrix of the complete grillage. The exact natural frequencies, mode shapes, and generalized masses of the grillage are then calculated by solving a nonlinear eigenvalue problem based on the dynamic stiffness matrix. The exact modal solutions for an example grillage are calculated and compared with the approximate solutions obtained by using the finite element method.
Martin-Drumel, M A; Pirali, O; Falvo, C; Parneix, P; Gamboa, A; Calvo, F; Bréchignac, Ph
2014-10-28
Gas phase absorption far-infrared (FIR) spectra of six flexible hydrocarbon molecules containing two phenyl groups -biphenyl, diphenylmethane, bibenzyl and 2-, 3-, 4-phenyltoluene- are reported for the first time, allowing an accurate determination of most of their active low-frequency vibrational modes. DFT calculations have been carried out at the harmonic and perturbative anharmonic levels to predict the vibrational spectra of these molecules and unambiguously assign observed vibrational modes. PMID:25208925
NASA Astrophysics Data System (ADS)
Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.
2013-05-01
B3LYP, MP2, CCSD(T), and MP4/MP2 in the 6-311G( d, p), 6-311++G( d, p), cc-pVTZ, aug-cc-pVTZ bases used to calculate the transition frequencies of torsional vibration of trans- and cis-isomers of acrolein in the ground electronic state ( S 0) are analyzed. It is found that for trans-isomers, all methods of calculation except for B3LYP in the cc-pVTZ basis yield good agreement between the calculated and experimental values. It is noted that for the cis-isomer of acrolein, no method of calculation confirms the experimental value of the frequency of torsional vibration (138 cm-1). It is shown that the calculated and experimental values for obertones at 273.0 cm-1 and other transitions of torsional vibration are different for this isomer in particular. However, it is established that in some calculation methods (B3LYP, MP2), the frequency of the torsional vibration of the cis-isomer coincides with another experimental value of this frequency (166.5 cm-1). It is concluded that in analyzing the vibrational structure of the UV spectrum, the calculated and experimental values of its obertone (331.3 cm-1) coincide, along with its frequency. It is also noted that the frequency of torsional vibration for the cis-isomer (166.5 cm-1) can also be found in other experimental works if we change the allocation of torsional transition 18{1/1}.
NASA Astrophysics Data System (ADS)
Mark, William D.
2015-10-01
The transmission-error frequency spectrum of meshing gear pairs, operating at constant speed and constant loading, is decomposed into harmonics arising from the fundamental period of the gear pair, rotational harmonics of the individual gears of the pair, and tooth-meshing harmonics. In the case of hunting-tooth gear pairs, no rotational harmonics from the individual gears, other than the tooth-meshing harmonics, are shown to occur at the same frequencies. Time-synchronous averages utilizing a number of contiguous revolutions of the gear of interest equal to an integer multiple of the number of teeth on the mating gear is shown to eliminate non-tooth-meshing transmission-error rotational-harmonic contributions from the mating gear, and those from the gear pair, in the case of hunting-tooth gear pairs, and to minimize these contributions in the case of non-hunting-tooth gear pairs. An example computation is shown to illustrate the effectiveness of the suggested time-synchronous-averaging procedure.
NASA Astrophysics Data System (ADS)
Kaminsky, W.; Fitzmaurice, A. J.; Glazer, A. M.
1998-04-01
The measurement of d coefficients from second-harmonic efficiencies in crystal spheres is studied. 0022-3727/31/7/003/img2 is used as a reference for measurements in spheres and with the Maker-fringes technique. As an example, unknown d coefficients in an orthorhombic mannitol, 0022-3727/31/7/003/img3, in which large coefficients of optical rotation have recently been measured, are determined as 0022-3727/31/7/003/img4 and compared with a calculation performed with a dipole-dipole interaction model in which the effect of the electric field of a light wave on the crystal structure is applied. Modelling of the basic parameters in the calculation gives good agreement with the experimentally derived values. The accuracy in determining the d coefficients, achievable with spheres is limited to 20%.
NASA Astrophysics Data System (ADS)
Ben hassen, C.; Boujelbene, M.; Bahri, M.; Zouari, N.; Mhiri, T.
2014-09-01
The present paper undertakes the study of a new hybrid compound [2-CH3C6H4NH3]2SeO4 characterized by the X-ray diffraction, IR, DFT calculation, TG-DTA, DSC and electrical conductivity. This new organic-inorganic hybrid compound crystallizes in the monoclinic system with P21/c space group and the following parameters a = 14.821 (5) Å; b = 16.245 (5) Å; c = 6.713 (5) Å; ß = 102.844 (5)°, Z = 4 and V = 1575.8 (14) Å3. The atomic arrangement can be described as isolated tetrahedral SeO42- connected with the organic groups by means of Nsbnd H⋯O hydrogen bonds to form infinite sinusoidal chains in the c-direction. BHHLYP/6-311g** method was used to determine the harmonic frequencies for two optimized cluster structures. The calculated modes were animated using the Molden graphical package to give tentative assignments of the observed IR spectra. Thermal analysis of the title compound does not indicate the occurrence of a phase transition in the temperature range of 300-650 K. Dielectric study of this compound has been measured, in order to determine the conductivity. The conductivity relaxation parameters associated with some H+ conduction have been determined from an analysis of the M″/M″max spectrum measured in a wide temperature range.
NASA Astrophysics Data System (ADS)
Pigošová, J.; Gatial, A.; Milata, V.; Černuchová, P.; Prónayová, N.; Liptaj, T.; Matějka, P.
2005-06-01
The isomers and conformers of six push-pull enamines: 3-dimethylamino-, 3-methylamino- and 3-amino-2-acetyl propenenitrile [(H 3C) 2N-CH dbnd6 C(CN)(COCH 3), H 3C-NH-CH dbnd6 C(CN)(COCH 3) and H 2N-CH dbnd6 C(CN)(COCH 3)] and 3-dimethylamino-, 3-methylamino- and 3-amino-2-methylsulfonyl propenenitrile [(H 3C) 2N-CH dbnd6 C(CN)(SO 2CH 3), H 3C-NH-CH dbnd6 C(CN)(SO 2CH 3) and H 2N-CH dbnd6 C(CN)(SO 2CH 3)] have been studied experimentally by vibrational and NMR spectroscopy and theoretically by the ab initio calculations at MP2 level in 6-31G** basis set. The IR and Raman spectra of all compounds as a solid and solute in various solvents have been recorded in the region 4000-50 cm -1. The NMR spectra were obtained in chloroform and DMSO at room temperature. All six compounds have been prepared by the same way. NMR spectra revealed that both dimethylamino compounds were prepared as a pure E isomers whereas in the case of methylamino compounds the 3-methylamino-2-methylsulfonyl propenenitrile was prepared also as a pure E isomer but 3-methylamino-2-acetyl propenenitrile as a pure Z isomer. Also 3-amino-2-methylsulfonyl propenenitrile was obtained as a pure the E isomer, but 3-amino-2-acetyl propenenitrile as a mixture of both E and Z isomers. Confomational possibilities of studied compounds are given only by the rotation of the acetyl and methylamino groups. Vibrational spectra revealed existence of two conformers with Z and E orientation of acetyl group for 3-dimethylamino-2-acetyl propenenitrile. Two conformers with anti or syn orientation of methylamino group for 3-methylamino-2-methylsulfonyl propenenitrile have been confirmed by vibrational and NMR spectra, but only one conformer with anti orientation of methylamino group for 3-methylamino-2-acetyl propenenitrile in chloroform solution and in solid phase was found. For latter compound the additional isomer/conformer was detected in more polar solvents (acetonitrile/DMSO). These experimental findings have been
Identification of hydrogen defects in SrTiO3 by first principles local vibrational mode calculations
T-Thienprasert, J; Fongkaew, Ittipon; Singh, David J; Du, Mao-Hua; Limpijumnong, Sukit
2012-01-01
For over three decades, the infrared spectroscopy peaks of around 3500 cm{sup -1} observed in hydrogen-doped SrTiO{sub 3} samples have been assigned to an interstitial hydrogen (H{sub i}) attached to a lattice oxygen with two possible configuration models: the octahedral edge (OE) and the cubic face (CF) models. Based on our first-principles calculations of H{sub i} around O, both OE and CF configurations are not energetically stable. Starting from either configuration, the H{sub i} would spontaneously relax into an off axis (OA) site; lowering the energy by 0.25 eV or more. The calculated vibrational frequency of 2745 cm{sup -1} for OA invalidates the assignment of H{sub i} to the observed 3500 cm{sup -1} peak. In addition, the calculated diffusion barrier is low, suggesting that H{sub i} can be easily annealed out. We propose that the observed peaks around 3500 cm{sup -1} are associated with defect complexes. A Sr vacancy (V{sub Sr}) can trap H{sub i} and form a H-V{sub Sr} complex which is both stable and has the frequency in agreement with the observed main peak. The complex can also trap another H{sub i} and form 2H-V{sub Sr}; consistent with the observed additional peaks at slightly higher frequencies (3510-3530 cm{sup -1}).
NASA Astrophysics Data System (ADS)
Searle, G. F. C.
2014-05-01
1. Elementary theory of harmonic motion; 2. Experimental work in harmonic motion; Experiment 1. Determination of g by a simple pendulum; Experiment 2. Harmonic motion of a body suspended by a spring; Experiment 3. Harmonic motion of a rigid body suspended by a torsion wire; Experiment 4. Study of a system with variable moment of inertia; Experiment 5. Dynamical determination of ratio of couple to twist for a torsion wire; Experiment 6. Comparison of the moments of inertia of two bodies; Experiment 7. Experiment with a pair of inertia bars; Experiment 8. Determination of the moment of inertia of a rigid pendulum; Experiment 9. Experiment on a pendulum with variable moment of inertia; Experiment 10. Determination of g by a rigid pendulum; Experiment 11. Pendulum on a yielding support; Experiment 12. Determination of the radius of curvature of a concave mirror by the oscillations of a sphere rolling in it; Experiment 13. Determination of g by the oscillations of a rod rolling on a cylinder; Experiment 14. Study of a vibrating system with two degrees of freedom; Note 1. On the vibration of a body suspended from a light spring; Note 2. Periodic time of a pendulum vibrating through a finite arc; Note 3. Periodic time for finite motion; Note 4. Periodic times of a pendulum with two degrees of freedom.
Calculation of Dynamic Loads Due to Random Vibration Environments in Rocket Engine Systems
NASA Technical Reports Server (NTRS)
Christensen, Eric R.; Brown, Andrew M.; Frady, Greg P.
2007-01-01
An important part of rocket engine design is the calculation of random dynamic loads resulting from internal engine "self-induced" sources. These loads are random in nature and can greatly influence the weight of many engine components. Several methodologies for calculating random loads are discussed and then compared to test results using a dynamic testbed consisting of a 60K thrust engine. The engine was tested in a free-free condition with known random force inputs from shakers attached to three locations near the main noise sources on the engine. Accelerations and strains were measured at several critical locations on the engines and then compared to the analytical results using two different random response methodologies.
Theoretical calculations and vibrational potential energy surface of 4-silaspiro(3,3)heptane
Ocola, Esther J.; Medders, Cross; Laane, Jaan; Meinander, Niklas
2014-04-28
Theoretical computations have been carried out on 4-silaspiro(3,3)heptane (SSH) in order to calculate its molecular structure and conformational energies. The molecule has two puckered four-membered rings with dihedral angles of 34.2° and a tilt angle of 9.4° between the two rings. Energy calculations were carried out for different conformations of SSH. These results allowed the generation of a two-dimensional ring-puckering potential energy surface (PES) of the form V = a(x{sub 1}{sup 4} + x{sub 2}{sup 4}) – b(x{sub 1}{sup 2} + x{sub 2}{sup 2}) + cx{sub 1}{sup 2}x{sub 2}{sup 2}, where x{sub 1} and x{sub 2} are the ring-puckering coordinates for the two rings. The presence of sufficiently high potential energy barriers prevents the molecule from undergoing pseudorotation. The quantum states, wave functions, and predicted spectra resulting from the PESs were calculated.
Vibrational spectroscopic study of fluticasone propionate
NASA Astrophysics Data System (ADS)
Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.
2009-03-01
Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.
NASA Astrophysics Data System (ADS)
Tarcan, Erdoğan; Altındağ, Özgü; Avcı, Davut; Atalay, Yusuf
2008-11-01
The molecular geometry, the normal mode frequencies and corresponding vibrational assignment of melaminium phthalate (C 3H 7N 6+·C 8H 5O 4-) in the ground state were performed by HF and B3LYP levels of theory using the 6-31G(d) basis set. The optimized bond length numbers with bond angles are in good agreement with the X-ray data. The vibrational spectra of melaminium phthalate which is calculated by HF and B3LYP methods, reproduces vibrational wave numbers with an accuracy which allows reliable vibrational assignments. The title compound has been studied in the 4000-100 cm -1 region where the theoretical evaluation and assignment of all observed bands were made.
Lattice vibrations and instabilities in tungsten phases from electronic structure calculations
NASA Astrophysics Data System (ADS)
Grimvall, G.; Einarsdotter, K.; Sadigh, B.; Köpe, B.; Ozolinš, V.
1998-03-01
Phonon dispersion curves are calculated for bcc and fcc W, as a function of atomic volume. The range of phonon stability in the fcc phase is mapped out in the Brillouin zone. Incipient instabilities in the bcc phase are studied, and compared with related instabilities in, e.g., bcc Ti and Zr. A molecular-dynamics type analysis is also performed. Implications are discussed for binary phase diagrams AB where elements A and B have different lattice structures, one of them being dynamically unstable.
Albernaz, Alessandra F; Aquilanti, Vincenzo; Barreto, Patricia R P; Caglioti, Concetta; Cruz, Ana Claudia P S; Grossi, Gaia; Lombardi, Andrea; Palazzetti, Federico
2016-07-14
For the prototypical diatomic-molecule-diatomic-molecule interactions H2-HX and H2-X2, where X = F, Cl, Br, quantum-chemical ab initio calculations are carried out on grids of the configuration space, which permit a spherical-harmonics representation of the potential energy surfaces (PESs). Dimer geometries are considered for sets of representative leading configurations, and the PESs are analyzed in terms of isotropic and anisotropic contributions. The leading configurations are individuated by selecting a minimal set of mutual orientations of molecules needed to build the spherical-harmonic expansion on geometrical and symmetry grounds. The terms of the PESs corresponding to repulsive and bonding dimer geometries and the averaged isotropic term, for each pair of interacting molecules, are compared with representations in terms of a potential function proposed by Pirani et al. (see Chem. Phys. Lett. 2004, 394, 37-44 and references therein). Connections of the involved parameters with molecular properties provide insight into the nature of the interactions. PMID:27043842
NASA Astrophysics Data System (ADS)
Ben Hassen, C.; Boujelbene, M.; Marweni, S.; Bahri, M.; Mhiri, T.
2015-10-01
The present paper undertakes the study of a new organic/inorganic hybrid compound [2-CH3C6H4NH3]HSO4.H2O characterized by the X-ray diffraction, TG-DTA, IR and Raman spectroscopy accomplished with DFT calculation. It is crystallized in the monoclinic system with the centrosymmetric space group P 21/c, with a = 9.445 (5) Å, b = 10.499 Å, c = 10.073 Å, β = 90.627 (5)° and Z = 4. The atomic arrangement can be described as inorganic layers built by infinite chains, parallel to the (a c) planes between which the organic cations are inserted. In this atomic arrangement, hydrogen bonds and π-π interactions between the different species have an important role in the tri-dimensional network cohesion. Besides, the X-ray powder diffraction of the title compound confirms the existence of only one phase at room temperature. The thermal decomposition of precursors studied by thermo gravimetric analysis (TGA), the differential thermal analysis (DTA) and the temperature-dependent X-ray diffraction, show crystalline anhydrous compounds upon dehydration. DFT/BHHLYP calculations were performed, using the DZV (d,p) basis set, to determine the harmonic frequencies of the vibrational modes of an optimized cluster structure. The calculated modes were animated using the Molden graphical package to give tentative assignments of the observed IR and Raman spectra.
Moon, Jeong Hee; Sun, Meiling; Kim, Myung Soo
2007-06-01
The Beyer-Swinehart (BS) algorithm, which calculates vibrational state density and sum, was modified for simultaneous treatment of degenerate vibrations. The modified algorithm was used in the grouped-frequency mode of the Rice-Ramsperger-Kassel-Marcus (RRKM) unimolecular reaction rate constant calculation for proteins with relative molecular mass as large as 100,000. Compared to the original BS method, reduction in computation time by a factor of around 3000 was achieved. Even though large systematic errors arising from frequency grouping were observed for state densities and sums, they more or less canceled each other, thus enabling reliable rate constant calculation. The present method is thought to be adequate for efficient and reliable RRKM calculations for any macromolecule in the gas phase such as the molecular ions of proteins, nucleic acids, and carbohydrates generated inside a mass spectrometer. The algorithm can also be used to calculate the internal energy distribution of a macromolecule at thermal equilibrium. PMID:17448674
NASA Astrophysics Data System (ADS)
Durig, J. R.; Shen, S.; Guirgis, G. A.
2001-01-01
The far infrared spectrum from 370 to 50 cm -1 of gaseous 2-bromoethanol, BrCH 2CH 2OH, was recorded at a resolution of 0.10 cm -1. The fundamental O-H torsion of the more stable gauche ( Gg') conformer, where the capital G refers to internal rotation around the C-C bond and the lower case g to the internal rotation around the C-O bond, was observed as a series of Q-branch transitions beginning at 340 cm -1. The corresponding O-H torsional modes were observed for two of the other high energy conformers, Tg (285 cm -1) and Tt (234 cm -1). The heavy atom asymmetric torsion (rotation around C-C bond) for the Gg' conformer has been observed at 140 cm -1. Variable temperature (-63 to -100°C) studies of the infrared spectra (4000-400 cm -1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm -1 (4.92±0.48 kJ/mol) for the Gg'/ Tt and 315±40 cm -1 (3.76±0.48 kJ/mol) for the Gg'/ Tg, with the Gg' conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree-Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg' conformers.
Cao, Xiaoxiao; Su, Yan; Liu, Yuan; Zhao, Jijun; Liu, Changling
2014-01-01
Using first-principle calculations at B97-D/6-311++G(2d,2p) level, we systematically explore the gas capacity of five standard water cavities (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) in clathrate hydrate and study the inclusion complexes to infer general trends in vibrational frequencies of guest molecules as a function of cage size and number of guest molecules. In addition, the Raman spectra of hydrates from CO2/CH4 gases are simulated. From our calculations, the maximum cage occupancy of the five considered cages (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) is one, one, two, three, and seven for both CH4 and CO2 guest molecules, respectively. Meanwhile, the optimum cage occupancy are one, one, one, two, and four for CO2 molecules and one, one, two, three, and five for CH4 molecules, respectively. Both the C-H stretching frequency of CH4 and the C-O stretching frequency of CO2 gradually decrease as size of the water cages increases. Meanwhile, the C-H stretching frequency gradually increases as the amount of CH4 molecules in the water cavity (e.g., 5(12)6(8)) increases. PMID:24320601
NASA Astrophysics Data System (ADS)
Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro
2013-09-01
Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.
NASA Astrophysics Data System (ADS)
Atalay, Y.; Ucun, F.; Avcı, D.; Başoğlu, A.
2006-06-01
The vibrational frequencies and molecular geometry of (R)- and (rac)-4-phenly-1,3-oxazolidin-2-one (4-POO) in the ground state have been calculated using the Hartree-Fock and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths are described better by HF while bond angles are reproduced more accurately by DFT (B3LYP). Comparison of the observed fundamental vibrational frequencies of (R)-POO and (rac)-4-POO and calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems.
Drolshagen, G.; Mayne, H.R.; Toennies, J.P.
1981-07-01
We extend the theory of inelastic rainbows to include vibrationally inelastic scattering, showing how the existence of vibrational rainbows can be deduced from collinear classical scattering theory. Exact close-coupling calculations are carried out for a breathing sphere potential, and rainbow structures are, in fact, observed. The location of the rainbows generally agrees well with the classical prediction. In addition, the sensitivity of the location of the rainbow to changes in the vibrational coupling has been investigated. It is shown that vibrational rainbows persist in the presence of anisotropy. Experimental results (R. David, M. Faubel, and J. P. Toennies, Chem. Phys. Lett. 18, 87 (1973)) are examined for evidence of vibrational rainbow structure, and it is shown that vibrational rainbow theory is not inconsistent with these results.
NASA Astrophysics Data System (ADS)
Ferrer, Carlos; González, Eduardo; Hernández-Díaz, María E.; Torres, Diana; del Toro, Anesto
2009-12-01
Harmonics-to-noise ratios (HNRs) are affected by general aperiodicity in voiced speech signals. To specifically reflect a signal-to-additive-noise ratio, the measurement should be insensitive to other periodicity perturbations, like jitter, shimmer, and waveform variability. The ensemble averaging technique is a time-domain method which has been gradually refined in terms of its sensitivity to jitter and waveform variability and required number of pulses. In this paper, shimmer is introduced in the model of the ensemble average, and a formula is derived which allows the reduction of shimmer effects in HNR calculation. The validity of the technique is evaluated using synthetically shimmered signals, and the prerequisites (glottal pulse positions and amplitudes) are obtained by means of fully automated methods. The results demonstrate the feasibility and usefulness of the correction.
NASA Technical Reports Server (NTRS)
Wanser, K. H.
1981-01-01
Silicon has interesting harmonic and anharmonic properties such as the low lying transverse acoustic modes at the X and L points of the Brillouin zone, negative Gruneisen parameters, negative thermal expansion and anomalous acoustic attenuation. In an attempt to understand these properties, a lattice dynamical model employing long range, nonlocal, dipole-dipole interactions was developed. Analytic expression for the Gruneisen parameters of several modes are presented. These expressions explain how the negative Gruneisen parameters arise. This model is applied to the calculation of the thermal expansion of silicon from 5K to 1700K. The thermoelastic contribution to the acoustic attenuation of silicon is computed from 1 to 300 K. Strong attenuation anomalies associated with negative thermal expansion are found in the vicinity of 17K and 125K.
Anharmonic contributions to the inversion vibration in 2-aminopyrimidine
NASA Astrophysics Data System (ADS)
McCarthy, W. J.; Lapinski, L.; Nowak, M. J.; Adamowicz, L.
1995-07-01
The out-of-plane vibrations of the amino group in 2-aminopyrimidine have large amplitudes, and cannot be properly described within the harmonic approximation. The normal mode analysis carried out at this level of approximation at the restricted Hartree-Fock level and at the second-order Møller-Plesset perturbation theory level failed to match the experimental transition frequency of ν≊200 cm-1 of the inversion vibration in this compound. In an effort to better understand this vibration motion, we went beyond the harmonic approximation. The inversion vibration was treated as being uncoupled from all other nuclear degrees of freedom. An internal coordinate (ω) was chosen whose displacement mimicked the out-of-plane distortion of the amino group during the inversion vibration. Electronic energy was calculated at the second-order Møller-Plesset perturbation theory level at selected values of ω to form a double-well curve describing a model potential within which the nuclei move during the vibration. This potential was incorporated into a one-dimensional Hamiltonian, and vibrational energy expectation values were variationally determined by utilizing the harmonic wavefunctions as the basis set. Two sets of calculations were performed: one in which the mirror plane of symmetry was preserved throughout the vibrational deformation limiting the internal coordinates to 17, and another in which the symmetry was unconstrained permitting description by 3N-6=30 internal coordinates. These calculations resulted in prediction of the v=0→v=1 transition energy of ν=130.1 cm-1 and ν=206.7 cm-1, respectively, reasonably matching the experimental value of ≊200 cm-1.
NASA Astrophysics Data System (ADS)
Govindarajan, M.; Karabacak, M.; Periandy, S.; Xavier, S.
FT-IR and FT-Raman spectra of α,α,α-trichlorotoluene have been recorded and analyzed. The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311++G(d,p) method and a comparative study between HF level and various basis sets combination. The fundamental vibrational wavenumbers as well as their intensities were calculated and a good agreement between observed and scaled calculated wavenumbers has been achieved. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The effects due to the substitutions of methyl group and halogen were investigated. The absorption energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT). The electric dipole moment, polarizability and the first hyperpolarizability values of the α,α,α-trichlorotoluene have been calculated. 1H NMR chemical shifts were calculated by using the gauge independent atomic orbital (GIAO) method with HF and B3LYP methods with 6-311++G(d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties were performed. Mulliken and natural charges of the title molecule were also calculated and interpreted.
Govindarajan, M; Karabacak, M; Periandy, S; Xavier, S
2012-08-01
FT-IR and FT-Raman spectra of α,α,α-trichlorotoluene have been recorded and analyzed. The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311++G(d,p) method and a comparative study between HF level and various basis sets combination. The fundamental vibrational wavenumbers as well as their intensities were calculated and a good agreement between observed and scaled calculated wavenumbers has been achieved. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The effects due to the substitutions of methyl group and halogen were investigated. The absorption energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT). The electric dipole moment, polarizability and the first hyperpolarizability values of the α,α,α-trichlorotoluene have been calculated. (1)H NMR chemical shifts were calculated by using the gauge independent atomic orbital (GIAO) method with HF and B3LYP methods with 6-311++G(d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties were performed. Mulliken and natural charges of the title molecule were also calculated and interpreted. PMID:22516115
NASA Astrophysics Data System (ADS)
Gróf, M.; Polovková, J.; Gatial, A.; Milata, V.; Černuchová, P.; Prónayová, N.; Matějka, P.
2007-05-01
The isomers and conformers of two push-pull hydrazines: 3- N, N-dimethylhydrazino-2-acetyl propenenitrile [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN)(COCH 3)] (DMHAP) and 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN)(SO 2CH 3)] (DMHSP) have been studied experimentally by NMR and vibrational spectroscopy and theoretically by the ab initio calculations at MP2 level in 6-31G** basis set. The IR and Raman spectra of both compounds as a solid and solute in various solvents have been recorded. The NMR spectra were obtained in chloroform and DMSO at room temperature. Both compounds have been prepared by the same way. NMR spectra revealed that DMHAP was prepared as a pure Z-isomer whereas in the case of DMHSP a pure E-isomer was obtained. Due to the low barrier for both compounds practically free isomerisation process occurred in the solutions but in opposite directions. Whereas DMHAP exists in the solid state and in the less polar solvent as Z-isomer, in more polar solvents the appearance of next two conformers of E-isomer was observed. On the contrary DMHSP exists in the solid state and in the more polar solvent as E-isomer only but in less polar solvent the presence of Z-isomer was observed as well. Conformational possibilities of both studied compounds are given by the rotation of dimethylhydrazino group with its anti- or syn-orientation towards the olefinic double bond. Moreover, by the rotation of the acetyl group with Z- and E-orientation of carbonyl bond towards olefinic double bond can occur in DMHAP. Vibrational and NMR spectra revealed the existence of single conformer with intramolecular hydrogen bond for Z-isomer in less polar solvent and next two conformers for E-isomer of DMHAP with Z-orientation of acetyl group and anti and syn orientation of dimethylhydrazine group in more polar solvents. For E-isomer of DMHSP two conformers with anti or syn orientations of dimethylhydrazino group have been also confirmed by NMR
NASA Astrophysics Data System (ADS)
Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H.; Lauvergnat, David; Gatti, Fabien
2016-05-01
Full quantum mechanical calculations of vibrational energies of methane and fluoromethane are carried out using a polyspherical description combining Radau and Jacobi coordinates. The Hamiltonian is built in a potential-optimized discrete variable representation, and vibrational energies are solved using an iterative eigensolver. This new approach can be applied to a large variety of molecules. In particular, we show that it is able to accurately and efficiently compute eigenstates for four different molecules : CH4, CHD3, CH2D2, and CH3F. Very good agreement is obtained with the results reported previously in the literature with different approaches and with experimental data.
NASA Astrophysics Data System (ADS)
Torii, Hajime
2012-12-01
A time-domain computational method for calculating 1D and 2D spectra of resonantly-coupled vibrations in condensed-phase systems is presented. This method simultaneously takes into account the diagonal frequency modulations, the off-diagonal vibrational couplings, and the dynamics of the system, and is applicable to systems of wide interest, e.g., the O-H stretching modes of water and alcohols, and the amide I modes of proteins. The case of the amide I mode of (Ala-d)4 in D2O solution is shown as an example.
Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H; Lauvergnat, David; Gatti, Fabien
2016-05-28
Full quantum mechanical calculations of vibrational energies of methane and fluoromethane are carried out using a polyspherical description combining Radau and Jacobi coordinates. The Hamiltonian is built in a potential-optimized discrete variable representation, and vibrational energies are solved using an iterative eigensolver. This new approach can be applied to a large variety of molecules. In particular, we show that it is able to accurately and efficiently compute eigenstates for four different molecules : CH4, CHD3, CH2D2, and CH3F. Very good agreement is obtained with the results reported previously in the literature with different approaches and with experimental data. PMID:27250301
Coupled rotor-body vibrations with inplane degrees of freedom
NASA Technical Reports Server (NTRS)
Ming-Sheng, H.; Peters, D. A.
1985-01-01
In an effort to understand the vibration mechanisms of helicopters, the following basic studies are considered. A coupled rotor-fuselage vibration analysis including inplane degrees of freedom of both rotor and airframe is performed by matching of rotor and fuselage impedances at the hub. A rigid blade model including hub motion is used to set up the rotor flaplag equations. For the airframe, 9 degrees of freedom and hub offsets are used. The equations are solved by harmonic balance. For a 4-bladed rotor, the coupled responses and hub loads are calculated for various parameters in forward flight. The results show that the addition of inplane degrees of freedom does not significantly affect the vertical vibrations for the cases considered, and that inplane vibrations have similar resonance trends as do flapping vibrations.
Petrenko, Taras; Neese, Frank
2012-12-21
In this work, an improved method for the efficient automatic simulation of optical band shapes and resonance Raman (rR) intensities within the "independent mode displaced harmonic oscillator" is described. Despite the relative simplicity of this model, it is able to account for the intensity distribution in absorption (ABS), fluorescence, and rR spectra corresponding to strongly dipole allowed electronic transitions with high accuracy. In order to include temperature-induced effects, we propose a simple extension of the time dependent wavepacket formalism developed by Heller which enables one to derive analytical expressions for the intensities of hot bands in ABS and rR spectra from the dependence of the wavepacket evolution on its initial coordinate. We have also greatly optimized the computational procedures for numerical integration of complicated oscillating integrals. This is important for efficient simulations of higher-order rR spectra and excitation profiles, as well as for the fitting of experimental spectra of large molecules. In particular, the multimode damping mechanism is taken into account for efficient reduction of the upper time limit in the numerical integration. Excited state energy gradient as well as excited state geometry optimization calculations are employed in order to determine excited state dimensionless normal coordinate displacements. The gradient techniques are highly cost-effective provided that analytical excited state derivatives with respect to nuclear displacements are available. Through comparison with experimental spectra of some representative molecules, we illustrate that the gradient techniques can even outperform the geometry optimization method if the harmonic approximation becomes inadequate. PMID:23267471
Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S
2013-09-21
We report the first optimum geometries and harmonic vibrational frequencies for the ring pentamer and several water hexamer (prism, cage, cyclic and two book) at the coupled-cluster including single, double, and full perturbative triple excitations (CCSD(T))/aug-cc-pVDZ level of theory. All five examined hexamer isomer minima previously reported by Møller-Plesset perturbation theory (MP2) are also minima on the CCSD(T) potential energy surface (PES). In addition, all CCSD(T) minimum energy structures for the n = 2-6 cluster isomers are quite close to the ones previously obtained by MP2 on the respective PESs, as confirmed by a modified Procrustes analysis that quantifies the difference between any two cluster geometries. The CCSD(T) results confirm the cooperative effect of the homodromic ring networks (systematic contraction of the nearest-neighbor (nn) intermolecular separations with cluster size) previously reported by MP2, albeit with O-O distances shorter by ~0.02 Å, indicating that MP2 overcorrects this effect. The harmonic frequencies at the minimum geometries were obtained by the double differentiation of the CCSD(T) energy using an efficient scheme based on internal coordinates that reduces the number of required single point energy evaluations by ~15% when compared to the corresponding double differentiation using Cartesian coordinates. Negligible differences between MP2 and CCSD(T) frequencies are found for the librational modes, while uniform increases of ~15 and ~25 cm(-1) are observed for the bending and "free" OH harmonic frequencies. The largest differences between CCSD(T) and MP2 are observed for the harmonic hydrogen bonded frequencies, for which the former produces larger absolute values than the latter. Their CCSD(T) redshifts from the monomer values (Δω) are smaller than the MP2 ones, due to the fact that CCSD(T) produces shorter elongations (ΔR) of the respective hydrogen bonded OH lengths from the monomer value with respect to MP2. Both
NASA Astrophysics Data System (ADS)
Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.
2013-09-01
We report the first optimum geometries and harmonic vibrational frequencies for the ring pentamer and several water hexamer (prism, cage, cyclic and two book) at the coupled-cluster including single, double, and full perturbative triple excitations (CCSD(T))/aug-cc-pVDZ level of theory. All five examined hexamer isomer minima previously reported by Møller-Plesset perturbation theory (MP2) are also minima on the CCSD(T) potential energy surface (PES). In addition, all CCSD(T) minimum energy structures for the n = 2-6 cluster isomers are quite close to the ones previously obtained by MP2 on the respective PESs, as confirmed by a modified Procrustes analysis that quantifies the difference between any two cluster geometries. The CCSD(T) results confirm the cooperative effect of the homodromic ring networks (systematic contraction of the nearest-neighbor (nn) intermolecular separations with cluster size) previously reported by MP2, albeit with O-O distances shorter by ˜0.02 Å, indicating that MP2 overcorrects this effect. The harmonic frequencies at the minimum geometries were obtained by the double differentiation of the CCSD(T) energy using an efficient scheme based on internal coordinates that reduces the number of required single point energy evaluations by ˜15% when compared to the corresponding double differentiation using Cartesian coordinates. Negligible differences between MP2 and CCSD(T) frequencies are found for the librational modes, while uniform increases of ˜15 and ˜25 cm-1 are observed for the bending and "free" OH harmonic frequencies. The largest differences between CCSD(T) and MP2 are observed for the harmonic hydrogen bonded frequencies, for which the former produces larger absolute values than the latter. Their CCSD(T) redshifts from the monomer values (Δω) are smaller than the MP2 ones, due to the fact that CCSD(T) produces shorter elongations (ΔR) of the respective hydrogen bonded OH lengths from the monomer value with respect to MP2
NASA Astrophysics Data System (ADS)
Pasin, Gauthier; Iung, Christophe; Gatti, Fabien; Meyer, Hans-Dieter
2007-01-01
A previously developed modified Davidson scheme [C. Iung and F. Ribeiro, J. Chem. Phys. 121, 174105 (2005)] is applied to compute and analyze highly excited (ν2,ν6) eigenstates in DFCO. The present paper is also devoted to the simulations of the intramolecular vibrational energy redistribution (IVR) initiated by an excitation of the out-of-plane bending vibration (nν6, n =2,4,6,…,18, and 20). The multiconfiguration time-dependent Hartree method is exploited to propagate the corresponding six-dimensional wave packets. A comprehensive comparison with experimental data as well as with previous simulations of IVR in HFCO [G. Pasin et al. J. Chem. Phys. 124, 194304 (2006)] is presented.
Yu, Hua-Gen E-mail: dawesr@mst.edu; Ndengue, Steve; Dawes, Richard E-mail: dawesr@mst.edu; Li, Jun; Guo, Hua E-mail: dawesr@mst.edu
2015-08-28
Accurate vibrational energy levels of the simplest Criegee intermediate (CH{sub 2}OO) were determined on a recently developed ab initio based nine-dimensional potential energy surface using three quantum mechanical methods. The first is the iterative Lanczos method using a conventional basis expansion with an exact Hamiltonian. The second and more efficient method is the multi-configurational time-dependent Hartree (MCTDH) method in which the potential energy surface is refit to conform to the sums-of-products requirement of MCTDH. Finally, the energy levels were computed with a vibrational self-consistent field/virtual configuration interaction method in MULTIMODE. The low-lying levels obtained from the three methods are found to be within a few wave numbers of each other, although some larger discrepancies exist at higher levels. The calculated vibrational levels are very well represented by an anharmonic effective Hamiltonian.
Halverson, Thomas Poirier, Bill
2014-05-28
‘‘Exact” quantum dynamics calculations of vibrational spectra are performed for two molecular systems of widely varying dimensionality (P{sub 2}O and CH{sub 2}NH), using a momentum-symmetrized Gaussian basis. This basis has been previously shown to defeat exponential scaling of computational cost with system dimensionality. The calculations were performed using the new “SWITCHBLADE” black-box code, which utilizes both dimensionally independent algorithms and massive parallelization to compute very large numbers of eigenstates for any fourth-order force field potential, in a single calculation. For both molecules considered here, many thousands of vibrationally excited states were computed, to at least an “intermediate” level of accuracy (tens of wavenumbers). Future modifications to increase the accuracy to “spectroscopic” levels, along with other potential future improvements of the new code, are also discussed.
NASA Astrophysics Data System (ADS)
Constantinou, Chrysovalantis; Caprio, Mark A.; Vary, James P.; Maris, Pieter
2014-03-01
It has recently been found that when no-core configuration interaction (NCCI) calculations of low-mass nuclei are plotted against an infrared momentum cutoff λsc (scaling cutoff), a universal curve is obtained for the energy and the RMS radius. The plotted results must have an ultraviolet (UV) cutoff ΛUV greater than or equal to the intrinsic cutoff ΛNN of the interaction. This assures that UV convergence is reached. The scaling property then allows for the performance of extrapolations in the IR limit. Here we conduct NCCI calculations in the harmonic oscillator basis with the JISP16 potential. In the IR limit we obtain universal curves for N = Z nuclei up to and including 8Be . An extrapolation in the IR limit for the ground state energy and the RMS radius is performed, and extrapolated results are obtained. Supported by US DOE (DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, DE-FG02-87ER40371), US NSF (0904782), and Research Corporation for Science Advancement (Cottrell Scholar Award). Computational resources provided by NERSC (US DOE DE-AC02-05CH11231).
NASA Technical Reports Server (NTRS)
Zhang, Y. C.; Zhang, J. Z. H.; Kouri, D. J.; Haug, K.; Schwenke, D. W.
1988-01-01
Numerically exact, fully three-dimensional quantum mechanicl reactive scattering calculations are reported for the H2Br system. Both the exchange (H + H-prime Br to H-prime + HBr) and abstraction (H + HBR to H2 + Br) reaction channels are included in the calculations. The present results are the first completely converged three-dimensional quantum calculations for a system involving a highly exoergic reaction channel (the abstraction process). It is found that the production of vibrationally hot H2 in the abstraction reaction, and hence the extent of population inversion in the products, is a sensitive function of initial HBr rotational state and collision energy.
Espinosa-Garcia, Joaquin; Corchado, Jose C
2016-03-01
For the OH + CH4/CD4 hydrogen abstraction reactions, the methyl radical (CH3 and CD3) product translational distributions and the water (H2O and HOD) product vibrational distributions experimentally reported by Liu's group are reproduced by quasi-classical trajectory (QCT) calculations on an analytical full-dimensional potential energy surface when a quantum spirit is included in the analysis. Our simulations correctly predict: (i) the vibrational excitation of the water product, (ii) the inversion of the water vibrational population, and (iii) the propensity of transfer from reactant kinetic energy to product translational energy. These reactions therefore present a marked isotopic effect. In addition, the water product vibrational distributions for the OH/OD + CH4 reactions agree reasonably well with Butkovskaya and Setser's experiments for a similar alkane reaction. The theory/experiment agreement is better for the HOD than for the H2O product due to the mode coupling in the H2O molecule, which is absent in the HOD stretching modes, which show a more "local" character. In summary, for polyatomic systems with many degrees of freedom (15 in the present reaction), QCT calculations analyzed with a quantum spirit represent a useful alternative to quantum scattering methods. PMID:26061483
NASA Astrophysics Data System (ADS)
Teimouri, Abbas; Chermahini, Alireza Najafi; Taban, Keivan; Dabbagh, Hossein A.
2009-03-01
The detailed experimental and computational analysis [Hartree-Fock (HF), Time-Dependent Density-Functional Theory (TD-DFT) and Second-Order Møller-Plesset Perturbation Theory (PM2) levels of theory at standard 6-31G* basis set] of structure, infrared spectra and visible spectra of azo dyes are investigated. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from solid phase FT-IR spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with the calculated values. The geometry optimization yields a planar conformation for phenyl rings with azo moiety. The energy and oscillator strength calculated by Configuration Interaction Singles (CIS) complements the Time-Dependent Density-Functional Theory (TD-DFT) results and the experimental findings. Unfortunately, PM2 method could not predict vibrational frequencies and visible spectra of the azo dyes under conditions of this investigation.
Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.
2013-01-01
We report the first optimum geometries and harmonic vibrational frequencies for the ring pentamer and several water hexamer (prism, cage, cyclic and two book) at the CCSD(T)/aug-cc-pVDZ level of theory. All five hexamer isomer minima previously reported by MP2 are also minima on the CCSD(T) potential energy surface (PES). In addition, all CCSD(T) minimum energy structures for the n=2-6 cluster isomers are quite close to the ones previously obtained by MP2 on the respective PESs, as confirmed by a modified Procrustes analysis that quantifies the difference between any two cluster geometries. The CCSD(T) results confirm the cooperative effect of the homodromic ring networks (systematic contraction of the nearest-neighbor (nn) intermolecular separations with cluster size) previously reported by MP2, albeit with O-O distances shorter by ~0.02 Å, indicating that MP2 overcorrects this effect. The harmonic frequencies at the minimum geometries were obtained by the double differentiation of the CCSD(T) energy using an efficient scheme based on internal coordinates that reduces the number of required single point energy evaluations by ~15% when compared to the corresponding double differentiation using Cartesian coordinates. Negligible differences between MP2 and CCSD(T) are found for the librational modes, while uniform increases of ~15 and ~25 cm^{-1} are observed for the bending and “free” OH harmonic frequencies. The largest differences between MP2 and CCSD(T) are observed for the harmonic hydrogen bonded frequencies. The CCSD(T) red shifts from the monomer frequencies (Δω) are smaller than the MP2 ones, due to the fact that the former produces shorter elongations (ΔR) of the respective hydrogen bonded OH lengths from the monomer value with respect to the latter. Both the MP2 and CCSD(T) results for the hydrogen bonded frequencies were found to closely follow the relation - Δω = s · ΔR, with a rate of s = 20.3 cm^{-1} / 0.001 Å. The CCSD
Anharmonic Vibrational Spectroscopy on Metal Transition Complexes
NASA Astrophysics Data System (ADS)
Latouche, Camille; Bloino, Julien; Barone, Vincenzo
2014-06-01
Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.
NASA Astrophysics Data System (ADS)
Joshi, Bhawani Datt; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha
2011-11-01
Yohimbine hydrochloride (YHCl) is an aphrodisiac and promoted for erectile dysfunction, weight loss and depression. The optimized geometry, total energy, potential energy surface and vibrational wavenumbers of yohimbine hydrochloride have been determined using ab initio, Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set. A complete vibrational assignment is provided for the observed Raman and IR spectra of YHCl. The UV absorption spectrum was examined in ethanol solvent and compared with the calculated one in gas phase as well as in solvent environment (polarizable continuum model, PCM) using TD-DFT/6-31G basis set. These methods are proposed as a tool to be applied in the structural characterization of YHCl. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap are presented.
Knaanie, Roie; Šebek, Jiří; Kalinowski, Jaroslaw; Benny Gerber, R
2014-02-01
This study introduces an improved hybrid MP2/MP4 ab initio potential for vibrational spectroscopy calculations which is very accurate, yet without high computational demands. The method uses harmonic vibrational calculations with the MP4(SDQ) potential to construct an improved MP2 potential by coordinate scaling. This improved MP2 potential is used for the anharmonic VSCF calculation. The method was tested spectroscopically for four molecules: butane, acetone, ethylene and glycine. Very good agreement with experiment was found. For most of the systems, the more accurate harmonic treatment considerably improved the MP2 anharmonic results. PMID:23838574
NASA Technical Reports Server (NTRS)
Hedgepeth, John M.; Warner, Paul G., Jr.
1959-01-01
Generalized influence coefficients are calculated by the method of NACA TN 3640 for a large-scale, built-up, 450 delta-wing specimen. These are used together with appropriate generalized masses to obtain the natural modes and frequencies in symmetric and antisymmetric free-free vibration. The resulting frequencies are compared with those obtained experimentally and are found to be consistently high. Possible sources of the disparities are discussed.
Rusakova, Irina L; Rusakov, Yury Yu; Krivdin, Leonid B
2016-06-01
This work reports on the comprehensive calculation of the NMR one-bond spin-spin coupling constants (SSCCs) involving carbon and tellurium, (1) J((125) Te,(13) C), in four representative compounds: Te(CH3 )2 , Te(CF3 )2 , Te(CCH)2 , and tellurophene. A high-level computational treatment of (1) J((125) Te,(13) C) included calculations at the SOPPA level taking into account relativistic effects evaluated at the 4-component RPA and DFT levels of theory, vibrational corrections, and solvent effects. The consistency of different computational approaches including the level of theory of the geometry optimization of tellurium-containing compounds, basis sets, and methods used for obtainig spin-spin coupling values have also been discussed in view of reproducing the experimental values of the tellurium-carbon SSCCs. Relativistic corrections were found to play a major role in the calculation of (1) J((125) Te,(13) C) reaching as much as almost 50% of the total value of (1) J((125) Te,(13) C) while relativistic geometrical effects are of minor importance. The vibrational and solvent corrections account for accordingly about 3-6% and 0-4% of the total value. It is shown that taking into account relativistic corrections, vibrational corrections and solvent effects at the DFT level essentially improves the agreement of the non-relativistic theoretical SOPPA results with experiment. © 2016 Wiley Periodicals, Inc. PMID:26931355
NASA Astrophysics Data System (ADS)
Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Milton Franklin Benial, A.
2015-03-01
The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908 × 10-30 issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π → π∗ transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature.
Premkumar, S; Jawahar, A; Mathavan, T; Kumara Dhas, M; Milton Franklin Benial, A
2015-03-01
The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908×10(-30) issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π→π(∗) transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature. PMID:25498822
NASA Astrophysics Data System (ADS)
Manzoor Ali, M.; George, Gene; Ramalingam, S.; Periandy, S.; Gokulakrishnan, V.
2015-11-01
In this research work, in order to the vibrational, physical and chemical properties, a thorough investigation has been made by recording FT-IR, FT-Raman, Mass and 13C and 1H NMR spectra of pharmaceutically important compound; 3,6-Dimethylphenanthrene. The altered geometrical parameters of Phenanthrene due to the addition of methyl groups have been calculated using HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the discussion are made on their corresponding results. The alternation of the vibrational pattern of the molecule due to the injection of the substitutions; CH3 is investigated. The keen observation is made over the excitations between the electronic energy levels of the molecule which lead to the study of electronic properties. The alternation of distribution of Mulliken charges after the formation of present molecule has been correlated with the vibrational pattern of the molecular bonds. The charge transformation over the frontier molecular orbitals between the ligand and rings has been studied. The cause of the linear and non linear optical activity of the molecule is interpreted in detail from the average Polarizability first order diagonal hyperpolarizability calculations. The variation of thermodynamic properties; heat capacity, entropy, and enthalpy of the present compound at different temperatures are calculated using NIST thermodynamical function program and interpreted.
Kossmann, Jörg; Rossmüller, Guido; Hättig, Christof
2012-01-21
We used ab initio density functional theory in combination with an embedded cluster approach to calculate vibrational spectra and formation enthalpies of possible intermediates and side products (spectator species) in the synthesis of methanol out of syngas on the ZnO(0001) surface. Our investigations are based upon our previous work on possible reaction pathways and activation barriers for this reaction at oxygen vacancies on ZnO(0001). We present and discuss calculated vibrational frequencies of short-living formyl, hydroxymethylene, formaldehyde, acetale, and hydroxymethyl intermediates and compare the calculated frequencies of formate and methoxy species as well as CO and CO(2) species, at the defect free surface and at oxygen vacancies, with recent experimental findings. All investigated species show characteristic features in their spectra. Therefore, the analysis of their vibrational frequencies is a suitable mean to distinguish them and gain new insights in this reaction which is of recent experimental interest. We are able to identify the structure and characteristics of different surface species, such as monodentate and polydentate carbonate and formate species, in agreement with experimental results. PMID:22280776
A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.; Walton, W. C., Jr.
1982-01-01
A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.
Zhang, Lijuan; Liu, Sheng; Cheng, Min; Du, Yikui; Zhu, Qihe
2016-01-14
The mass-analyzed threshold ionization spectra of jet-cooled cis- and trans-3-fluoro-N-methylaniline (3FNMA) were recorded by ionizing via the vibrationless 0(0) and various vibrational levels of the S1 state. The adiabatic ionization energies of cis- and trans-3FNMA are determined to be 61,742 ± 5 and 61,602 ± 5 cm(-1), respectively. In the 0-1800 cm(-1) region, most of the observed vibrations in the D0 state result from the in-plane ring deformation and substituent-sensitive modes. For the high-frequency vibration region, the infrared-ultraviolet double-resonance and autoionization-detected infrared spectroscopies were applied to investigate the N-H and C-H stretching vibrations of bare 3FNMA in the S0 and D0 states. The C-H stretching vibrational information, which we failed to obtain for the bare 3FNMA cation, is complemented by recording the infrared-photodissociation spectra of its Ar cluster cation. It is revealed that a red-shifted frequency and an enhanced intensity are observed for the N-H stretch, while blue-shifted frequencies and greatly decreased intensities are found for both aromatic and the methyl C-H stretches. The blue shift of the C-H stretches is first explained by the balance of two factors, namely, the hyperconjugative interaction and the rehybridization effect. Analysis of the vibrational frequencies reveals a correlation between the relative stability of two rotamers in different electronic states and the relative rigidity of aromatic ring, indicating a mechanism of the long-range interactions "through bond" between the substituents. The density functional theory calculations can well reproduce the vibrational spectra in both S0 and D0 states. With the experimental and theoretical data, the substitution and conformation effects on the properties of 3FNMA in the S0 and D0 states, including the molecular structures, the reactive sites of electrophilic attack, and the vibrational behaviors, were discussed in detail. PMID:26669268
Applications of higher harmonic control to hingeless rotor systems
NASA Technical Reports Server (NTRS)
Nguyen, Khanh; Chopra, Inderjit
1991-01-01
A comprehensive analytical formulation was developed to predict the vibratory hub loads of a helicopter rotor system in forward flight. This analysis is used to calculate the optimal higher harmonic control inputs and associated actuator power required to minimize these hub loads. The present formulation is based on a finite element method in space and time. A nonlinear time domain, unsteady aerodynamic model is used to obtain the airloads, and the rotor induced inflow is calculated using a nonuniform inflow model. Predicted vibratory hub loads are correlated with experimental data from a scale model rotor. Results of a parametric study on a hindgeless rotor show that blade flap, lag and torsion vibration characteristics, offset of blade center of mass from elastic axis, offset of elastic axis from quarter-chord axis, and blade thrust greatly affect the higher harmonic control actuator power requirement.
NASA Astrophysics Data System (ADS)
Cassam-Chenaï, P.; Rousseau, G.; Ilmane, A.; Bouret, Y.; Rey, M.
2015-07-01
In previous works, we have introduced an alternative perturbation scheme to find approximate solutions of the spectral problem for the rotation-vibration molecular Hamiltonian. An important feature of our approach is that the zero order Hamiltonian is the direct product of a purely vibrational Hamiltonian with the identity on the rotational degrees of freedom. The convergence of our method for the methane vibrational ground state was very satisfactory and our predictions were quantitative. In the present article, we provide further details on the implementation of the method in the degenerate and quasi-degenerate cases. The quasi-degenerate version of the method is tested on excited polyads of methane, and the results are assessed with respect to a variational treatment. The optimal choice of the size of quasi-degenerate spaces is determined by a trade-off between speed of convergence of the perturbation series and the computational effort to obtain the effective super-Hamiltonian.
Cassam-Chenaï, P; Rousseau, G; Ilmane, A; Bouret, Y; Rey, M
2015-07-21
In previous works, we have introduced an alternative perturbation scheme to find approximate solutions of the spectral problem for the rotation-vibration molecular Hamiltonian. An important feature of our approach is that the zero order Hamiltonian is the direct product of a purely vibrational Hamiltonian with the identity on the rotational degrees of freedom. The convergence of our method for the methane vibrational ground state was very satisfactory and our predictions were quantitative. In the present article, we provide further details on the implementation of the method in the degenerate and quasi-degenerate cases. The quasi-degenerate version of the method is tested on excited polyads of methane, and the results are assessed with respect to a variational treatment. The optimal choice of the size of quasi-degenerate spaces is determined by a trade-off between speed of convergence of the perturbation series and the computational effort to obtain the effective super-Hamiltonian. PMID:26203014
Cassam-Chenaï, P. Rousseau, G.; Ilmane, A.; Bouret, Y.; Rey, M.
2015-07-21
In previous works, we have introduced an alternative perturbation scheme to find approximate solutions of the spectral problem for the rotation-vibration molecular Hamiltonian. An important feature of our approach is that the zero order Hamiltonian is the direct product of a purely vibrational Hamiltonian with the identity on the rotational degrees of freedom. The convergence of our method for the methane vibrational ground state was very satisfactory and our predictions were quantitative. In the present article, we provide further details on the implementation of the method in the degenerate and quasi-degenerate cases. The quasi-degenerate version of the method is tested on excited polyads of methane, and the results are assessed with respect to a variational treatment. The optimal choice of the size of quasi-degenerate spaces is determined by a trade-off between speed of convergence of the perturbation series and the computational effort to obtain the effective super-Hamiltonian.
NASA Astrophysics Data System (ADS)
Shakila, G.; Periandy, S.; Ramalingam, S.
2012-02-01
The FT-IR and FT-Raman spectra of the compound 1,2-dibromobenzene have been recorded in the region 4000-100 cm -1. The vibrational analysis has been made using HF and DFT (B3LYP and LSDA) level of theory by employing 6-31 +G (d, p) and 6-311 ++G (d, p) basis sets. Optimized geometrical parameters have been calculated, interpreted and compared with the reported experimental values of some halogen-substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction of HF and DFT. The geometrical structure of the compound is fractured by the substitutions of couple of Br in the ring. From the vibrational assignments it is observed that, the vibrational pattern of the fundamental modes is realigned slightly with respect to the substitutions. The simulated FT-IR and FT-Raman spectra of the compound for different methods are compared with the experimental spectra. The impact of Br in the vibrational assignments of the molecule is also investigated.
Shakila, G; Periandy, S; Ramalingam, S
2012-02-01
The FT-IR and FT-Raman spectra of the compound 1,2-dibromobenzene have been recorded in the region 4000-100cm(-1). The vibrational analysis has been made using HF and DFT (B3LYP and LSDA) level of theory by employing 6-31 +G (d, p) and 6-311 ++G (d, p) basis sets. Optimized geometrical parameters have been calculated, interpreted and compared with the reported experimental values of some halogen-substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction of HF and DFT. The geometrical structure of the compound is fractured by the substitutions of couple of Br in the ring. From the vibrational assignments it is observed that, the vibrational pattern of the fundamental modes is realigned slightly with respect to the substitutions. The simulated FT-IR and FT-Raman spectra of the compound for different methods are compared with the experimental spectra. The impact of Br in the vibrational assignments of the molecule is also investigated. PMID:22112581
McGuire, John Andrew
2004-11-24
The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm{sup -1} occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.
Homayoon, Zahra
2014-09-28
A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.
NASA Astrophysics Data System (ADS)
Kumar, J. Sharmi; Devi, T. S. Renuga; Ramkumaar, G. R.; Bright, A.
2016-01-01
The FTIR and FT-Raman spectra of 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid were recorded and the structural and spectroscopic data of the molecule in the ground state were calculated using Hartree-Fock and Density Functional Method (B3LYP). The most stable conformer was optimized and the structural and vibrational parameters were determined. With the observed FTIR and FT-Raman data, a complete vibrational band assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties, Mulliken and natural atomic charge distribution were calculated using both Hartree-Fock and Density Functional Method and compared. UV-Visible and HOMO-LUMO analysis were carried out. 1H and 13C NMR chemical shifts of the molecule were calculated using gauge including atomic orbital method and were compared with experimental results. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. The first order hyperpolarizability (β) and molecular electrostatic potential of the molecule was computed using DFT calculations. The electron density based local reactivity descriptor such as Fukui functions were calculated to explain the chemically reactive site in the molecule.
NASA Astrophysics Data System (ADS)
Kozin, Igor N.; Jensen, Per; Li, Yan; Buenker, Robert J.; Hirsch, Gerhard; Klee, Stefan
1997-01-01
The present work reports an ab initioMRD-CI calculation of the dipole moment surfaces for the electronic ground state of the H 2Te molecule. Using the ab initioresults, we calculate the vibrational transition moments, and we simulate the far-infrared spectrum of H 2Te by means of the MORBID program system. We obtain the equilibrium value of the dipole moment from the ab initiocalculation as 0.377 Debye based on our initial theoretical treatment which was employed over a wide range of molecular geometries. However, the use of an improved AO basis at the equilibrium geometry of H 2Te lowers this result to 0.298 Debye. The comparison of our simulated far-infrared spectrum with the experimental spectrum suggests that this value is too large, and that the correct value is certainly larger than 0.19 Debye and very probably smaller than 0.26 Debye. From the ab initiodata, we predict many vibrational transition moments for H 2Te, D 2Te, and HDTe. We hope that these results will be of assistance in the interpretation of the rotation-vibration spectrum of these molecules.
NASA Astrophysics Data System (ADS)
Kaindl, Reinhard; Sohr, Gerhard; Huppertz, Hubert
2013-12-01
The two oxoborates β-ZnB4O7 and β-CaB4O7 were synthesized and investigated by FTIR- and Raman spectroscopy and ab initio quantum chemical calculations. Maximum and mean deviations between experimentally determined bands and calculated modes ranged between 15-36 cm-1 and 5-7 cm-1, respectively, allowing band assignments to vibrational modes in most cases. The complex network structures with tetrahedral BO4 and planar OB3 groups are mirrored by the spectra and numerous vibrational modes, not assignable by standard borates classification schemes. It was confirmed that OB3 units, despite similar force constants and geometry, do not absorb in the same range as BO3 units. Bands in the high wavenumber range are rather caused by B-O-(Zn/Ca), O-B-O, B-O-B, and B-O stretching and bending vibrations. The experimental observation of inactive or Raman-active modes in the absorption spectra indicates defects or structural distortions in both compounds.
NASA Astrophysics Data System (ADS)
Bock, Charles W.; Trachtman, Mendel; George, Philip
1980-03-01
The geometry, harmonic and anharmonic force fields, and fundamental vibration frequencies of cis- and trans-formic acid are studied ab initio in the 4-31G and (9,5) basis sets. For the more stable trans-conformer (i.e., trans with respect to CH and OH) comparisons are made between the predicted and observed anharmonic frequencies, and between the calculated harmonic force constants and those Redington derived from an analysis of experimental data. In the case of the less stable cis-conformer, for which there is as yet little experimental data, the calculations serve to predict values for the fundamental vibrational frequencies.
NASA Astrophysics Data System (ADS)
Yang, Yue; Gao, Hongwei
2012-04-01
Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.
NASA Technical Reports Server (NTRS)
Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.
1993-01-01
A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.
A molecular dynamics method for obtaining the vibrational spectra of macromolecules
NASA Astrophysics Data System (ADS)
Wozny, C. E.; Sumpter, B. G.; Noid, D. W.
1994-03-01
A molecular dynamics-based method is used to compute the vibrational spectra and dispersion curves of a polyethylene chain. The results are compared and contrasted with those of normal mode calculations, demonstrating the validity of the approach and providing fundamental insight into a number of dynamical processes. The strength of the method is its computational efficiency and that it represents an exact classical dynamics approach to calculating vibrational spectra, thereby eliminating many of the weaknesses of normal mode calculations (i.e., the harmonic approximation).
NASA Astrophysics Data System (ADS)
Biggs, Jason D.; Cina, Jeffrey A.
2009-12-01
The preceding paper [J. D. Biggs and J. A. Cina, J. Chem. Phys. 131, 224101 (2009)] (referred to here as Paper 1), describes a strategy for externally influencing the course of short-time electronic excitation transfer (EET) in molecular dimers and observing the process by nonlinear wave-packet interferometry (nl-WPI). External influence can, for example, be exerted by inducing coherent intramolecular vibration in one of the chromophores prior to short-pulse electronic excitation of the other. Within a sample of isotropically oriented dimers having a specified internal geometry, a vibrational mode internal to the acceptor chromophore can be preferentially driven by electronically nonresonant impulsive stimulated Raman (or resonant infrared) excitation with a short polarized "control" pulse. A subsequent electronically resonant polarized pump then preferentially excites the donor, and EET ensues. Paper 1 investigates control-pulse-influenced nl-WPI as a tool for the spectroscopic evaluation of the effect of coherent molecular vibration on excitation transfer, presenting general expressions for the nl-WPI difference signal from a dimer following the action of a control pulse of arbitrary polarization and shape. Electronic excitation is to be effected and its interchromophore transfer monitored by resonant pump and probe "pulses," respectively, each consisting of an optical-phase-controlled ultrashort pulse-pair having arbitrary polarization, duration, center frequency, and other characteristics. Here we test both the control strategy and its spectroscopic investigation—with some sacrifice of amplitude-level detail—by calculating the pump-probe difference signal. That signal is the limiting case of the control-influenced nl-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference signals for (1) a model excitation-transfer complex in which two equal-energy monomers
Vibrational Heat Transport in Molecular Junctions
NASA Astrophysics Data System (ADS)
Segal, Dvira; Agarwalla, Bijay Kumar
2016-05-01
We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.
Vibrational Heat Transport in Molecular Junctions.
Segal, Dvira; Agarwalla, Bijay Kumar
2016-05-27
We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules. PMID:27215814
Mary, Y Sheena; Panicker, C Yohannan; Thiemann, Thies; Al-Azani, Mariam; Al-Saadi, Abdulaziz A; Van Alsenoy, C; Raju, K; War, Javeed Ahmad; Srivastava, S K
2015-12-01
FT-IR and FT-Raman spectra of bis[(E)-anthranyl-9-acrylic]anhydride were recorded and analyzed. The conformational behavior is also investigated. The vibrational wave numbers were calculated using density functional theory (DFT) quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in Infrared and Raman spectra. Potential energy distribution was done using GAR2PED program. The geometrical parameters are compared with related structures. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using Natural Bonding Orbital (NBO) analysis. The Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) analysis are used to determine the charge transfer within the molecule. Molecular Electrostatic Potential (MEP) was performed by the DFT method. The calculated first hyperpolarizability of the title compound is comparable with the reported values of similar derivatives and is 4.23 times that of the standard nonlinear optical (NLO) material urea and the title compound and its derivatives are an attractive object for future studies of nonlinear optical properties. To evaluate the in silico antitumor activity of the title compound molecular docking studies were carried out against protein Bcl-xL. The (1)H-NMR spectrum is also reported. PMID:26143327
Corrections to the Born-Oppenheimer approximation for a harmonic oscillator
NASA Astrophysics Data System (ADS)
Patterson, Chris W.
1993-02-01
We derive simple expressions for the energy corrections to the Born-Oppenheimer approximation valid for a harmonic oscillator. We apply these corrections to the electronic and rotational ground state of H+2 and show that the diabatic energy corrections are linearly dependent on the vibrational quantum numbers as seen in recent variational calculations [D. A. Kohl and E. J. Shipsey, J. Chem. Phys. 84, 2707 (1986)].
Fan Flutter Computations Using the Harmonic Balance Method
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Thomas, Jeffrey P.; Reddy, T.S.R.
2009-01-01
An experimental forward-swept fan encountered flutter at part-speed conditions during wind tunnel testing. A new propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This threedimensional code models the unsteady flowfield due to blade vibrations using a harmonic balance method to solve the Navier-Stokes equations. This paper describes the flutter calculations and compares the results to experimental measurements and previous results from a time-accurate propulsion aeroelasticity code.
Zoghaib, Wajdi M; Husband, John; Soliman, Usama A; Shaaban, Ibrahim A; Mohamed, Tarek A
2013-03-15
The Raman (1400-100 cm(-1)) and infrared (4000-400 cm(-1)) of solid hexachlorocyclotriphosphazene, P(3)N(3)Cl(6) (HCCTP) were recorded. The conformational energies were calculated using MP2 and DFT (B3LYP and B3PW91) methods utilizing a variety of basis sets up to 6-311+G(d). On the basis of D(3h) symmetry, the simulated vibrational spectra of P(3)N(3)Cl(6) from MP2 and DFT methods were in excellent agreement with those obtained experimentally. Additionally, Frontier Molecular Orbitals and electronic transitions were predicted using steady state and time dependent DFT(B3LYP)/PCM calculations respectively, each employing the 6-311+G(d,p) optimized structural parameters. The predicted wavelengths were in excellent agreement with experimental values when CH(2)Cl(2) was used as solvent. The (14)N and (31)P chemical shifts were predicted with B3LYP/6-311+G(2d,p) calculations using the GIAO technique with solvent effect modeled using the PCM method. The computed structural parameters of the planar P(3)N(3)Cl(6) (D(3h)) agree well with experimental values from both X-ray and electron diffraction data with slight distortions observed due to lattice defects in the solid phase. The experimental/computational results favor a slightly distorted D(3h) symmetry for the title compound in the gas and solid phases and in solution (τPNPN and τNPNP ranged from 0.018° to 0.90°). Aided by normal coordinate analysis, and the simulated vibrational spectra utilizing MP2, B3LYP and B3PW91 methods at 6-31G(d) basis set, revised and complete vibrational assignments for all fundamentals are provided herein. PMID:23348197
NASA Astrophysics Data System (ADS)
Zoghaib, Wajdi M.; Husband, John; Soliman, Usama A.; Shaaban, Ibrahim A.; Mohamed, Tarek A.
2013-03-01
The Raman (1400-100 cm-1) and infrared (4000-400 cm-1) of solid hexachlorocyclotriphosphazene, P3N3Cl6 (HCCTP) were recorded. The conformational energies were calculated using MP2 and DFT (B3LYP and B3PW91) methods utilizing a variety of basis sets up to 6-311+G(d). On the basis of D3h symmetry, the simulated vibrational spectra of P3N3Cl6 from MP2 and DFT methods were in excellent agreement with those obtained experimentally. Additionally, Frontier Molecular Orbitals and electronic transitions were predicted using steady state and time dependent DFT(B3LYP)/PCM calculations respectively, each employing the 6-311+G(d,p) optimized structural parameters. The predicted wavelengths were in excellent agreement with experimental values when CH2Cl2 was used as solvent. The 14N and 31P chemical shifts were predicted with B3LYP/6-311+G(2d,p) calculations using the GIAO technique with solvent effect modeled using the PCM method. The computed structural parameters of the planar P3N3Cl6 (D3h) agree well with experimental values from both X-ray and electron diffraction data with slight distortions observed due to lattice defects in the solid phase. The experimental/computational results favor a slightly distorted D3h symmetry for the title compound in the gas and solid phases and in solution (τPNPN and τNPNP ranged from 0.018° to 0.90°). Aided by normal coordinate analysis, and the simulated vibrational spectra utilizing MP2, B3LYP and B3PW91 methods at 6-31G(d) basis set, revised and complete vibrational assignments for all fundamentals are provided herein.
NASA Astrophysics Data System (ADS)
Hussein, M. F. M.; François, S.; Schevenels, M.; Hunt, H. E. M.; Talbot, J. P.; Degrande, G.
2014-12-01
This paper presents an extension of the Pipe-in-Pipe (PiP) model for calculating vibrations from underground railways that allows for the incorporation of a multi-layered half-space geometry. The model is based on the assumption that the tunnel displacement is not influenced by the existence of a free surface or ground layers. The displacement at the tunnel-soil interface is calculated using a model of a tunnel embedded in a full space with soil properties corresponding to the soil in contact with the tunnel. Next, a full space model is used to determine the equivalent loads that produce the same displacements at the tunnel-soil interface. The soil displacements are calculated by multiplying these equivalent loads by Green's functions for a layered half-space. The results and the computation time of the proposed model are compared with those of an alternative coupled finite element-boundary element model that accounts for a tunnel embedded in a multi-layered half-space. While the overall response of the multi-layered half-space is well predicted, spatial shifts in the interference patterns are observed that result from the superposition of direct waves and waves reflected on the free surface and layer interfaces. The proposed model is much faster and can be run on a personal computer with much less use of memory. Therefore, it is a promising design tool to predict vibration from underground tunnels and to assess the performance of vibration countermeasures in an early design stage.
Taleb-Mokhtari, Ilham Naoual; Lazreg, Abbassia; Sekkal-Rahal, Majda; Bestaoui, Noreya
2016-01-15
A structural investigation of the organic molecules is being carried out using vibrational spectroscopy. In this study, normal co-ordinate calculations of anomers of the methyl-D-glucopyranoside and methyl-β-D-xylopyranoside in the crystalline state have been performed using the modified Urey-Bradley-Shimanouchi force field (mUBSFF) combined with an intermolecular potential energy function. The latter includes Van der Waals interactions, electrostatic terms, and explicit hydrogen bond functions. The vibrational spectra of the compounds recorded in the crystalline state, in the 4000-500 cm(-1) spectral region for the IR spectra, and in the 4000-20 cm(-1) spectral range for the Raman spectra are presented. After their careful examination, several differences in the intensities and frequency shifts have been observed. The theoretical spectra have been obtained after a tedious refinement of the force constants. Thus, on the basis of the obtained potential distribution, each observed band in IR and in Raman has been assigned to a vibrational mode. The obtained results are indeed in agreement with those observed experimentally and thus confirm the previous assignments made for the methyl-α and β-D-glucopyranoside, as well as for the methyl-β-D-xylopyranoside. PMID:26342821
NASA Astrophysics Data System (ADS)
Chain, Fernando E.; Ladetto, María Florencia; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia
2016-02-01
In the present work, the structural, topological and vibrational properties of four members of the N-benzylamides series derived from Maca (Lepidium meyenii) whose names are, N-benzylpentadecanamide, N-benzylhexadecanamide, N-benzylheptadecanamide and N-benzyloctadecanamide, were studied combining the FTIR, FT-Raman and 1H and 13C-NMR spectroscopies with density functional theory (DFT) and ONION calculations. Furthermore, the N-benzylacetamide, N-benzylpropilamide and N-benzyl hexanamide derivatives were also studied in order to compare their properties with those computed for the four macamides. These seven N-benzylamides series have a common structure, C8H8NO-R, being R the side chain [-(CH2)n-CH3] with a variable n number of CH2 groups. Here, the atomic charges, molecular electrostatic potentials, stabilization energies, topological properties of those macamides were analyzed as a function of the number of C atoms of the side chain while the frontier orbitals were used to compute the gap energies and some descriptors in order to predict their reactivities and behaviors in function of the longitude of the side chain. Here, the force fields, the complete vibrational assignments and the corresponding force constants were only reported for N-benzylacetamide, N-benzyl hexanamide and N-benzylpentadecanamide due to the high number of vibration normal modes that present the remains macamides.
NASA Astrophysics Data System (ADS)
Taleb-Mokhtari, Ilham Naoual; Lazreg, Abbassia; Sekkal-Rahal, Majda; Bestaoui, Noreya
2016-01-01
A structural investigation of the organic molecules is being carried out using vibrational spectroscopy. In this study, normal co-ordinate calculations of anomers of the methyl-D-glucopyranoside and methyl-β-D-xylopyranoside in the crystalline state have been performed using the modified Urey-Bradley-Shimanouchi force field (mUBSFF) combined with an intermolecular potential energy function. The latter includes Van der Waals interactions, electrostatic terms, and explicit hydrogen bond functions. The vibrational spectra of the compounds recorded in the crystalline state, in the 4000-500 cm- 1 spectral region for the IR spectra, and in the 4000-20 cm- 1 spectral range for the Raman spectra are presented. After their careful examination, several differences in the intensities and frequency shifts have been observed. The theoretical spectra have been obtained after a tedious refinement of the force constants. Thus, on the basis of the obtained potential distribution, each observed band in IR and in Raman has been assigned to a vibrational mode. The obtained results are indeed in agreement with those observed experimentally and thus confirm the previous assignments made for the methyl-α and β-D-glucopyranoside, as well as for the methyl-β-D-xylopyranoside.
NASA Astrophysics Data System (ADS)
Medeiros, Subenia; Araujo, Maeva
2015-03-01
The structural, electronic, vibrational, and optical properties of perovskite CaTiO3 in the cubic, orthorhombic, and tetragonal phase are calculated in the framework of density functional theory (DFT) with different exchange-correlation potentials by CASTEP package. The calculated band structure shows an indirect band gap of 1.88 eV at the Γ-R points in the Brillouin zone to the cubic structure, a direct band gap of 2.41 eV at the Γ- Γ points to the orthorhombic structure, and an indirect band gap of 2.31 eV at theM - Γ points to the tetragonal phase. It is still known that the CaTiO3 has a static dielectric constant that extrapolates to a value greater than 300 at zero temperature, and the dielectric response is dominated by low frequency (ν ~ 90cm-1) polar optical modes in which cation motion opposes oxygen motion. Our calculated lattice parameters, elastic constants, optical properties, and vibrational frequencies are found to be in good agreement with the available theoretical and experimental values. The results for the effective mass in the electron and hole carriers are also presented in this work.
NASA Astrophysics Data System (ADS)
Govindarasu, K.; Kavitha, E.
2015-05-01
In this paper, the vibrational wavenumbers of N-(2,4-dinitrophenyl)-L-alanine methyl ester (abbreviated as Dnp-ala-ome) were obtained from ab initio studies based on the density functional theory approach with B3LYP and M06-2X/6-31G(d,p) level of theories. The optimized geometry and structural features of the most potential nonlinear optical crystal Dnp-ala-ome and the vibrational spectral investigations have been thoroughly described with the FT-Raman and FT-IR spectra supported by the DFT computations. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-50 cm-1) in the solid phase and the UV-Vis spectra that dissolved in ethanol were recorded in the range of 200-800 nm. The Natural population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer, intramolecular and hyperconjugative interactions on the geometries. The effects of frontier orbitals, HOMO and LUMO, transition of electron density transfer have also been discussed. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of Dnp-ala-ome were calculated. In addition, molecular electrostatic potential (MEP) was investigated using theoretical calculations. The chemical reactivity and thermodynamic properties (heat capacity, entropy and enthalpy) of at different temperature are calculated.
NASA Astrophysics Data System (ADS)
Ramos, Joanna Maria; Viana, Robson M.; Téllez S, Claudio A.; Pereira, Wagnyr C.; Izolani, Antônio O.; da Silva, Maria Isabel P.
2006-10-01
To elucidate tentative assignments of metal-ligand modes of thiosemicarbazide complexes, a structural study and a assignment of the normal vibrations of 2-methylthiosemicarbazide copper(II) nitrate, [Cu(2MeTSC) 2(NO 3) 2] have been done through the ab initio DFT: pBP86/DN** procedure, and through the normal coordinate analysis (NCA). In the vibrational calculations, the elongated Cu sbnd ONO 2 bonds of the nitrate groups were considered in the C dbnd S and C dbnd N tautomers of the complex. DFT calculations had revealed that the infrared spectra can be well interpreted through the C dbnd N tautomer, failing in the prediction of the -NO 2 group wavenumbers. A little difference stabilization energy for the tautomers were found: for the C dbnd N tautomer was E = -3487,36376 a.u., and for the C dbnd S tautomer, E = -3473,93598 a.u. The observed combination bands at 1763.0 and at 1754.0 cm -1 are an indicative that the -NO 3- groups acts as monodentate ligands. Calculations had confirmed the experimental assignment of the infrared spectrum.
Kedziera, Dariusz; Stanke, Monika; Bubin, Sergiy; Barysz, Maria; Adamowicz, Ludwik
2006-07-01
The Darwin and mass-velocity relativistic corrections have been calculated for all pure vibrational states of the H2 using the perturbation theory and very accurate variational wave functions obtained without assuming the Born-Oppenheimer (BO) approximation. Expansions in terms of explicitly correlated Gaussians with premultipliers in the form of even powers of the internuclear distance were used for the wave functions. With the inclusion of the two relativistic corrections to the non-BO energies the transition energies for the highest states agree more with the experimental results. PMID:16863309
Potel, G.; Barranco, F.; Marini, F.; Idini, A.; Vigezzi, E.; Broglia, R. A.
2011-08-26
Absolute values of two-particle transfer cross sections along the Sn-isotopic chain are calculated. They agree with measurements within errors and without free parameters. Within this scenario, the predictions concerning the absolute value of the two-particle transfer cross sections associated with the excitation of the pairing vibrational spectrum expected around the recently discovered closed shell nucleus {sub 50}{sup 132}Sn{sub 82} and the very exotic nucleus {sub 50}{sup 100}Sn{sub 50} can be considered quantitative, opening new perspectives in the study of pairing in nuclei.
NASA Astrophysics Data System (ADS)
Searles, D. J.; von Nagy-Felsobuki, E. I.
1991-07-01
A rovibrational Hamiltonian has been derived in terms of rectilinear displacement coordinates which is based on the Watson Hamiltonian. Moreover, it is a generalization of the Carney and Porter analysis for D3h triatomic systems [J. Chem. Phys. 65, 3547 (1976)] and Carney et al. analysis for C2v triatomic systems [J. Chem. Phys. 66, 3724 (1977)]. It is therefore the most general form of the Watson Hamiltonian which is applicable to a bent triatomic system. Ab initio variational calculations using this Hamiltonian are presented for vibrational properties of Li+3, Li2Na+, LiNa+2, and KLiNa+.
The evolution of harmonic Indian musical drums: A mathematical perspective
NASA Astrophysics Data System (ADS)
Gaudet, Samuel; Gauthier, Claude; Léger, Sophie
2006-03-01
We explain using mathematics how harmonic musical drums were discovered by Indian artisans and musicians more than 2000 years ago. To this end, we introduce a harmonic error function which measures the quality of the harmonic relationship and degeneracy of the first modes of vibration of a centrally symmetric loaded membrane. We explain that although the tabla configuration found by the ancient Indians is the most natural one, other configurations exist and some are harmonically superior to the classical one.
Multi-Frequency Harmonics Technique for HIFU Tissue Treatment
NASA Astrophysics Data System (ADS)
Rybyanets, Andrey N.; Lugovaya, Maria A.; Rybyanets, Anastasia A.
2010-03-01
New technique for enhancing of tissue lysis and enlarging treatment volume during one HIFU sonification is proposed. The technique consists in simultaneous or alternative (at optimal repetition frequency) excitation of single element HIFU transducer on a frequencies corresponding to odd natural harmonics of piezoceramic element at ultrasound energy levels sufficient for producing cavitational, thermal or mechanical damage of fat cells at each of aforementioned frequencies. Calculation and FEM modeling of transducer vibrations and acoustic field patterns for different frequencies sets were performed. Acoustic pressure in focal plane was measured in water using calibrated hydrophone and 3D acoustic scanning system. In vitro experiments on different tissues and phantoms confirming the advantages of multifrequency harmonic method were performed.
Franck-Condon factors for multidimensional harmonic oscillators
NASA Astrophysics Data System (ADS)
Malmqvist, Per-Åke; Forsberg, Niclas
1998-03-01
We present a simple formula for the overlap integrals of two sets of multi-dimensional harmonic oscillators. The oscillators have in general different equilibrium points, force constants, and natural vibration modes. The formula expresses the overlap matrix in the one-dimensional case, < m'| n''>, as a so-called LU decomposition,
Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings
ERIC Educational Resources Information Center
Fang, Tian-Shen
2007-01-01
This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…
NASA Astrophysics Data System (ADS)
Kouach-Alix, I.; Vergoten, G.
1994-07-01
Combining the modified Urey—Bradley—Shimanouchi intramolecular potential energy function with an appropriate intermolecular energy function, normal coordinate calculations have been performed for N-acetyl-α- D-glucosamine in the crystalline state. The infrared spectra in the mid range (4000-500 cm -1) and the Raman spectra in 3500-20 cm -1 range were recorded. The overall agreement between the observed and calculated frequencies led to an average error of the order of 3.5 cm -1. The computed potential energy distribution was found to be compatible with previous assignments of D-glucose and D-galactose for the pyranose ring and for N-methylacetamide for the acetamido group. The set of force constants used for N-acetyl-α- D-glucosamine was approximately the same as that obtained for the glucose and N-methylacetamide respectively for the pyranose ring and the acetamido group, a difference existing only for the atoms involved in the anomeric and hydroxy groups.
NASA Technical Reports Server (NTRS)
Bielawa, R. L.
1984-01-01
The mathematical development for the expanded capabilities of the G400 rotor aeroelastic analysis was examined. The G400PA expanded analysis simulates the dynamics of all conventional rotors, blade pendulum vibration absorbers, and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. The methodology for modeling the unsteady stalled airloads of two dimensional airfoils is discussed. Formulations for calculating the rotor impedance matrix appropriate to the higher harmonic blade excitations are outlined. This impedance matrix, and the associated vibratory hub loads, are the rotor dynamic characteristic elements for use in the simplified coupled rotor/fuselage vibration analysis (SIMVIB). Updates to the development of the original G400 theory, program documentation, user instructions and information are presented.
NASA Astrophysics Data System (ADS)
Durig, J. R.; Zhao, Wenyun; Little, T. S.; Dakkouri, M.
1988-12-01
The infrared (3500 to 50 cm -1) and Raman (3500 to 20 cm -1) spectra of solid 1,1-dicyanocyclobutane have been recorded. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. The spectral features observed at room temperature for the solid phase (m.p. 37 °C) are very similar to those obtained for the neat liquid at ≈ 60 °C but the spectral features observed at -120 °C were clearly those of an annealed solid. These spectra have been interpreted on the basis of C s molecular symmetry for 1,1-dicyanocyclobutane where the ring is puckered and the two cyano groups are "quasi-linear". The vibrational assignment is based on depolarization values, group frequencies, and in some cases the relative intensities of the observed bands. The potential function governing the ring puckering motion has been determined from optimized geometries obtained by ab initio Hartree-Fock gradient calculations at both the 3-21G and 4-31G basis set levels. The assignments of the fundamental vibrational frequencies are compared to those obtained from a force field obtained by ab initio calculations employing the 3-21G basis set. These results are discussed and compared to those obtained for some similar molecules.
NASA Astrophysics Data System (ADS)
Tremblay, B.; Madebène, B.; Alikhani, M. E.; Perchard, J. P.
2010-12-01
The infrared spectrum of the water trimer trapped in solid neon has been identified. Eighteen groups of absorptions between 1600 and 11,000 cm -1 were assigned to one-, two- and three-quanta transitions of the intramolecular modes. Because of the near equivalence of the three molecules and their weak interactions most of these modes correspond to quasi degenerate vibrations involving the bending δ, free OH stretching (OH f) and bonded OH stretching (OH b) of the three subunits at 1608, 3725 and 3525-3473 cm -1, respectively. In the last case the 52 cm -1 splitting is due to the coupling between the OH b oscillators. Calculated anharmonic frequencies correctly agree with these observations and allow to propose a new assignment of the intermolecular modes. Finally combinations of intra + intermolecular transitions were identified and assigned on the basis of calculated anharmonicity coefficients.
NASA Astrophysics Data System (ADS)
Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.
2015-03-01
In this research work, the vibrational IR, polarization Raman, NMR and mass spectra of terephthalic acid (TA) were recorded. The observed fundamental peaks (IR, Raman) were assigned according to their distinctiveness region. The hybrid computational calculations were carried out for calculating geometrical and vibrational parameters by DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The molecular mass spectral data related to base molecule and substitutional group of the compound was analyzed. The modification of the chemical property by the reaction mechanism of the injection of dicarboxylic group in the base molecule was investigated. The 13C and 1H NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method and the absolute chemical shifts related to TMS were compared with experimental spectra. The study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by hybrid Gaussian calculation methods. The orbital energies of different levels of HOMO and LUMO were calculated and the molecular orbital lobe overlapping showed the inter charge transformation between the base molecule and ligand group. From the frontier molecular orbitals (FMO), the possibility of electrophilic and nucleophilic hit also analyzed. The NLO activity of the title compound related to Polarizability and hyperpolarizability were also discussed. The present molecule was fragmented with respect to atomic mass and the mass variation depends on the substitutions have also been studied.
Including slot harmonics to mechanical model of two-pole induction machine with a force actuator
NASA Astrophysics Data System (ADS)
Sinervo, Anssi; Arkkio, Antero
2012-10-01
A simple mechanical model is identified for a two-pole induction machine that has a four-pole extra winding as a force actuator. The actuator can be used to suppress rotor vibrations. Forces affecting the rotor of the induction machine are separated into actuator force, purely mechanical force due to mass unbalance, and force caused by unbalanced magnetic pull from higher harmonics and unipolar flux. The force due to higher harmonics is embedded to the mechanical model. Parameters of the modified mechanical model are identified from measurements and the modifications are shown to be necessary. The force produced by the actuator is calculated using the mechanical model, direct flux measurements, and voltage and current of the force actuator. All three methods are shown to give matching results proving that the mechanical model can be used in vibration control. The test machine is shown to have time periodic behavior and discrete Fourier analysis is used to obtain time-invariant model parameters.
NASA Astrophysics Data System (ADS)
Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.
2013-04-01
The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.
NASA Astrophysics Data System (ADS)
Mishra, Alok; Srivastava, Sunil Kumar; Swati, D.
2013-09-01
The structure-activity relationship of the anticoagulant drug warfarin were studied by studying two enantiomeric forms (S-form and R-form) of warfarin and its protonated as well as deprotonated structures in aqueous media using density functional theory (DFT). Theoretically computed Raman and IR spectra of all the computed structures were compared and their specific vibrational spectroscopic signatures were discussed. The percentage contributions of individual normal modes of warfarin, which provides direct evidence of the different molecular activity due to change in relative atomic position of atoms in molecule, were investigated through potential energy distribution (PED). The optimized energy and molecular electrostatic potential (MEP) maps show that the S-form of the drug molecules warfarin is energetically more stable than R-form and provides higher docking opportunity for the molecular binding with the receptors in the bio-systems.
Technology Transfer Automated Retrieval System (TEKTRAN)
The structures and energies of glucose and glucose monohydrates have been calculated at the B3LYP/6-311++G** level of theory. Both the alpha and beta anomers were studied, with all possible combinations of hydroxymethyl rotamer (gg, gt, or tg) and hydroxyl orientation (clockwise or counter-clockwis...
NASA Astrophysics Data System (ADS)
Borromeo, M.; Marchesoni, F.
2006-01-01
Transport in one-dimensional symmetric devices can be activated by the combination of thermal noise and a biharmonic drive. For the study case of an overdamped Brownian particle diffusing on a periodic one-dimensional substrate, we distinguish two apparently different biharmonic regimes: (i) Harmonic mixing, where the two drive frequencies are commensurate and of the order of some intrinsic relaxation rate. Earlier predictions based on perturbation expansions seem inadequate to interpret our simulation results; (ii) Vibrational mixing, where one harmonic drive component is characterized by high frequency but finite amplitude-to-frequency ratio. Its effect on the device response to either a static or a low-frequency additional input signal is accurately reproduced by rescaling each spatial Fourier component of the substrate potential, separately. Contrary to common wisdom, based on the linear response theory, we show that extremely high-frequency modulations can indeed influence the response of slowly (or dc) operated devices, with potential applications in sensor technology and cellular physiology. Finally, the mixing of two high-frequency beating signal is also investigated both numerically and analytically.
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto
2012-06-01
Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1
Recarte, V; Zbiri, M; Jiménez-Ruiz, M; Sánchez-Alarcos, V; Pérez-Landazábal, J I
2016-05-25
The different contributions to the entropy change linked to the austenite-martensitic transition in a Ni-Mn-Sn metamagnetic shape memory alloy have been determined by combining different experimental techniques. The vibrational contribution has been inferred from the vibrational density of states of both the martensitic and austenite phases. This has been accomplished by combining time-of-flight neutron scattering measurements and ab initio calculations. Further, the electronic part of the entropy change has also been calculated. Since the martensitic transformation takes place between two paramagnetic phases, the magnetic contribution can be neglected and the entropy change can be reduced to the sum of two terms: vibrational and electronic. The obtained value of the vibrational contribution ([Formula: see text]) nearly provides the total entropy change measured by calorimetry ([Formula: see text]), the difference being the electronic contribution within the experimental error. PMID:27120315
Guo, Y.; Keller, J.; Parker, R. G.
2012-06-01
The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.
Bennett, Charles L.
2009-10-20
A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.
Harmonic generation at high intensities
Schafer, K.J.; Krause, J.L.; Kulander, K.C.
1993-06-01
Atomic electrons subject to intense laser fields can absorb many photons, leading either to multiphoton ionization or the emission of a single, energetic photon which can be a high multiple of the laser frequency. The latter process, high-order harmonic generation, has been observed experimentally using a range of laser wavelengths and intensities over the past several years. Harmonic generation spectra have a generic form: a steep decline for the low order harmonics, followed by a plateau extending to high harmonic order, and finally an abrupt cutoff beyond which no harmonics are discernible. During the plateau the harmonic production is a very weak function of the process order. Harmonic generation is a promising source of coherent, tunable radiation in the XUV to soft X-ray range which could have a variety of scientific and possibly technological applications. Its conversion from an interesting multiphoton phenomenon to a useful laboratory radiation source requires a complete understanding of both its microscopic and macroscopic aspects. We present some recent results on the response of single atoms at intensities relevant to the short pulse experiments. The calculations employ time-dependent methods, which we briefly review in the next section. Following that we discuss the behavior of the harmonics as a function of laser intensity. Two features are notable: the slow scaling of the harmonic intensities with laser intensity, and the rapid variation in the phase of the individual harmonics with respect to harmonic order. We then give a simple empirical formula that predicts the extent of the plateau for a given ionization potential, wavelength and intensity.
NASA Astrophysics Data System (ADS)
Landerville, Aaron; Oleynik, Ivan
2015-06-01
Dispersion Corrected Density Functional Theory (DFT+vdW) calculations are performed to predict vibrational and thermal properties of the bulk energetic materials (EMs) β-octahydrocyclotetramethylene-tetranitramine (β-HMX) and triaminotrinitrobenzene (TATB). DFT+vdW calculations of optimized unit cells along the hydrostatic equation of state are followed by frozen-phonon calculations of their respective vibration spectra. These are then used under the quasi-harmonic approximation to obtain zero-point and thermal free energy contributions to the pressure, resulting in PVT equations of state for each material that is in excellent agreement with experiment. Further, heat capacities, thermal expansion coefficients, and Gruneissen parameters as functions of temperature are calculated and compared with experiment. The vibrational properties, including phonon densities of states and pressure dependencies of individual modes, are also analyzed and compared with experiment.
Luo, Ye Sorella, Sandro; Zen, Andrea
2014-11-21
We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.
Ritchie, Andrew W; Webb, Lauren J
2015-11-01
Biological function emerges in large part from the interactions of biomacromolecules in the complex and dynamic environment of the living cell. For this reason, macromolecular interactions in biological systems are now a major focus of interest throughout the biochemical and biophysical communities. The affinity and specificity of macromolecular interactions are the result of both structural and electrostatic factors. Significant advances have been made in characterizing structural features of stable protein-protein interfaces through the techniques of modern structural biology, but much less is understood about how electrostatic factors promote and stabilize specific functional macromolecular interactions over all possible choices presented to a given molecule in a crowded environment. In this Feature Article, we describe how vibrational Stark effect (VSE) spectroscopy is being applied to measure electrostatic fields at protein-protein interfaces, focusing on measurements of guanosine triphosphate (GTP)-binding proteins of the Ras superfamily binding with structurally related but functionally distinct downstream effector proteins. In VSE spectroscopy, spectral shifts of a probe oscillator's energy are related directly to that probe's local electrostatic environment. By performing this experiment repeatedly throughout a protein-protein interface, an experimental map of measured electrostatic fields generated at that interface is determined. These data can be used to rationalize selective binding of similarly structured proteins in both in vitro and in vivo environments. Furthermore, these data can be used to compare to computational predictions of electrostatic fields to explore the level of simulation detail that is necessary to accurately predict our experimental findings. PMID:26375183
NASA Astrophysics Data System (ADS)
Jorissen, Kevin; Story, Shauna; Rehr, John
2014-03-01
Accurate calculations of x-ray absorption spectra (XAS) often require linking several materials science codes. To reduce the complexity and support the hardware requirements of such calculations, we have virtualized XAS modeling workflows using a Cloud-based approach, with interfacing and configuration of codes handled by developers, and virtual HPC resources allocated on demand. When coupled to user-friendly GUIs this puts powerful multi-code simulations in the hands of general users. For instance, FEFF users can improve XAS interpretation and analysis using accurate ab initio Debye-Waller factors and self energy from the ABINIT DFT code, rather than semi-empirical models. Additionally, such workflows allow robust automation of large-scale calculation sets such as the Materials Project where our approach could enable a theoretical spectroscopy database of many thousands of structures for systematic study of materials. Supported by NSF-1216716.
NASA Astrophysics Data System (ADS)
Schröder, Markus; Meyer, Hans-Dieter
2014-07-01
We report energies and tunneling splittings of vibrational excited states of malonaldehyde which have been obtained using full dimensional quantum mechanical calculations. To this end we employed the multi configuration time-dependent Hartree method. The results have been obtained using a recently published potential energy surface [Y. Wang, B. J. Braams, J. M. Bowman, S. Carter, and D. P. Tew, J. Chem. Phys. 128, 224314 (2008)] which has been brought into a suitable form by a modified version of the n-mode representation which was used with two different arrangements of coordinates. The relevant terms of the expansion have been identified with a Metropolis algorithm and a diffusion Monte-Carlo technique, respectively.
Vibrational overtone stretching transitions in sarin
NASA Astrophysics Data System (ADS)
Petryk, Michael W. P.
2006-10-01
The CH stretching overtone transitions of the nerve agent sarin (O-isopropyl methylphosphonofluoridate) are of interest to the standoff detection of chemical warfare agents, as many of these transitions occur near regions where small, efficient, portable diode lasers (originally developed for use in the telecommunications industry) operate. However, the interpretation of experimental vibrational overtone spectra is often difficult, and the computational simulation of overtone transitions in a molecule is challenging. Presented herein are the simulated CH overtone stretching transitions in sarin. Spectral regions are simulated from overtone transition energies and intensities, both of which are calculated within the harmonically coupled anharmonic oscillator (HCAO) model. Data for HCAO calculations are obtained from ab initio calculations, without any recourse to experimental data.
NASA Astrophysics Data System (ADS)
Anand, S.; Sundararajan, R. S.; Ramachandraraja, C.; Ramalingam, S.; Durga, R.
2015-03-01
In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the 13C NMR and 1H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.
NASA Astrophysics Data System (ADS)
Boopalachandran, Praveenkumar; Sheu, Hong-Li; Laane, Jaan
2012-09-01
The infrared and Raman spectra of 2-chloropyridine, 3-chloropyridine, 2-bromopyridine, and 3-bromopyridine have been recorded and assigned. Density functional theory calculations (B3LYP with 6-311++G(d,p) basis set) produce excellent agreement with the experimental values. Ab initio calculations (MP2 with the cc-pVTZ basis set) were utilized to compute the molecular structures, which were compared to those of pyridine and the corresponding fluoropyridines. All of the 2-halopyridines show a shortening of the N-C(2) bond resulting from the halogen substitution on the C(2) carbon atom. All of the other ring bond distances for the 2-halopyridines and 3-halopyridines are little different from pyridine itself.
Anharmonic vibrations of the dicarbon antisite defect in 4H-SiC
Yan, F.; Devaty, R. P.; Choyke, W. J.; Gali, A.; Kimoto, T.; Ohshima, T.; Pensl, G.
2012-03-26
Dicarbon antisite defects were created by either electron irradiation or ion implantation into 4H-SiC. The no-phonon lines from the dicarbon antisite defect center were observed with their phonon replicas. The stretch frequencies of the defect were observed up to the fifth harmonic. The Morse potential model accounts for the anharmonicity quite well and gives a very good prediction of the vibration energies up to the fifth harmonic with an error of less than 1%. First principles calculations show that the model of a dicarbon antisite defect along with its four nearest neighboring carbon atoms can explain the observed anharmonicity.
Bennett, Charles L.; Sewall, Noel; Boroa, Carl
2014-08-19
An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.
Talaczyńska, Alicja; Lewandowska, Kornelia; Jelińska, Anna; Garbacki, Piotr; Podborska, Agnieszka; Zalewski, Przemysław; Oszczapowicz, Irena; Sikora, Adam; Kozak, Maciej; Cielecka-Piontek, Judyta
2015-01-01
FT-IR and Raman scattering spectra of cefuroxime axetil were proposed for identification studies of its crystalline and amorphous forms. An analysis of experimental spectra was supported by quantum-chemical calculations performed with the use of B3LYP functional and 6-31G(d,p) as a basis set. The geometric structure of a cefuroxime axetil molecule, HOMO and LUMO orbitals, and molecular electrostatic potential were also determined by using DFT (density functional theory). The benefits of applying FT-IR and Raman scattering spectroscopy for characterization of drug subjected to degradation were discussed. PMID:25654137
Lewandowska, Kornelia; Jelińska, Anna; Zalewski, Przemysław; Oszczapowicz, Irena; Sikora, Adam; Kozak, Maciej
2015-01-01
FT-IR and Raman scattering spectra of cefuroxime axetil were proposed for identification studies of its crystalline and amorphous forms. An analysis of experimental spectra was supported by quantum-chemical calculations performed with the use of B3LYP functional and 6-31G(d,p) as a basis set. The geometric structure of a cefuroxime axetil molecule, HOMO and LUMO orbitals, and molecular electrostatic potential were also determined by using DFT (density functional theory). The benefits of applying FT-IR and Raman scattering spectroscopy for characterization of drug subjected to degradation were discussed. PMID:25654137
Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine
NASA Astrophysics Data System (ADS)
Srivastava, Santosh K.; Singh, Vipin B.
2013-11-01
Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.
NASA Astrophysics Data System (ADS)
Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.
2013-05-01
An absolute vibrational analysis has been attempted on the basis of experimental FTIR and NIR-FT Raman spectra with calculated vibrational wavenumbers and intensities of phenoxy acetic acids. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers have been calculated with the help of B3LYP method with Dunning correlation consistent basis set aug-cc-pVTZ. The electronic structures of molecular fragments were described in terms of natural bond orbital analysis, which shows intermolecular Osbnd H⋯O and intramolecular Csbnd H⋯O hydrogen bonds. The electronic absorption spectra with different solvents have been investigated in combination with time-dependent density functional theory calculation. The pKa values of phenoxy acetic acids were compared.
NASA Astrophysics Data System (ADS)
Maruyama, Shinichi; Nagai, Ken-Ichi; Yamaguchi, Takao; Hoshi, Kazuaki
Analytical results are presented on contribution of multiple modes of vibration to chaotic responses of a post-buckled clamped beam constrained by an axial spring. Introducing the mode shape function proposed by the senior author and applying the Galerkin procedure to the governing equation of the beam, a set of nonlinear ordinary differential equations in amultiple-degree-of-freedom system is obtained. Chaotic time responses are integrated numerically. Responses of the beam subjected to periodic lateral acceleration are investigated by comparing with the relevant experimental results. Dominant chaotic responses are generated within the frequency ranges of the subharmonic resonance of 1/2 and 1/3 orders. The maximum Lyapunov exponent of the chaotic response corresponding to the sub-harmonic resonance of 1/2 order is greater than that of the chaos with the sub-harmonic resonance of 1/3 order. The analytical results of the chaotic responses have remarkable agreement with that of the experimental results. The Lyapunov dimension and the Poincaré projection of the chaotic responses predict that more than three modes of vibration contribute to the chaos based on the calculation from the equation of multiple-degree-of-freedom system. The principal component analysis shows that the lowest vibration mode contributes dominantly. Higher modes of vibration contribute to the chaos with small amount of amplitude.
NASA Astrophysics Data System (ADS)
Shaaban, Ibrahim A.; Hassan, Ahmed E.; Abuelela, Ahmed M.; Zoghaieb, Wajdi M.; Mohamed, Tarek A.
2016-01-01
Raman (3500-55 cm-1) and infrared (4000-300 cm-1) spectra of 2-Amino-5-ethyl-1,3,4-thiadiazole (AET; C4H7N3S) have been recorded in the solid phase. In addition, the 1H and 13C NMR spectra of AET were obtained in DMSO-d6. As a result of internal rotations of either methyl and/or ethyl groups around the C-C bonds with NH2 moiety being planar (sp2) and/or non-planar (sp3) eight structures are theoretically proposed (1-8). The conformational energies and vibrational frequencies have been calculated using Density Functional Theory (DFT) with the methods of B3LYP and B3PW91 utilizing 6-31G (d) and 6-311++G(d,p) basis sets. And then S-4 (the only conformer with real frequencies) was optimized, to yield S-9, however the Thiadiazole ring slightly twisted (tilt angle is 0.9°). The 1H and 13C NMR chemical shifts were also predicted using a GIAO approximation at 6-311++G(d,p) basis set utilizing B3LYP and B3PW91 methods with solvent effects using PCM method. The computational outcomes favor S-9; the methyl group being staggered to the lone pair of N4 and reside trans position to the S atom, whereas NH2 is non-planar in good agreement with the current study. Aided by the above mentioned DFT computations, a complete vibrational assignment of the observed infrared and Raman bands along with NMR chemical shifts has been proposed. The vibrational interpretations have been supported by normal coordinate analysis and potential energy distributions (PEDs). Finally, NH2, CH3 and C2H5 barriers to internal rotations were carried out using B3LYP/6-31G(d) optimized structural parameters (S-9). The results are reported herein and compared with X-ray structural parameters.
NASA Astrophysics Data System (ADS)
Chen, J. T.; Chen, I. L.; Lee, Y. T.
2008-03-01
Zhang and Chen [The boundary point method for the calculation of exterior acoustic radiation problem, Journal of Sound and Vibration 228 (1999) 761-772] proposed a boundary point method (BPM) for exterior acoustic problems. The idea is similar to the CHUNKY CHIEF by Wu [A weighted residual formulation for the CHIEF method in acoustic, Journal of Acoustical Society of America 90 (1991) 1608-1614], but Chunky CHIEF provides constraints using null-field equations while the BPM used the CHUNKY BLOCK singularity outside the domain. The mathematical structure is similar to Trefftz method and method of fundamental solutions [J.T. Chen et al., On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations, Computers & Mathematics with Applications 53 (2007) 851-879], since the interpolation function satisfies the governing equation. Later, Wu commented twice [Sean F. Wu, Comments on "The boundary point method for the calculation of exterior acoustic radiation" (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772), Journal of Sound and Vibration, 298 (2006) 1173]; Sean F. Wu, Comments on "Reply to the comments on 'The boundary point method for the calculation of exterior acoustic radiation' (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772)", Journal of Sound and Vibration, 298 (2006) 1176-1177] that the formulation of BPM is wrong and the authors replied also twice [X.Z. Chen, C.X. Bi, Reply to the comments on "The boundary point method for the calculation of exterior acoustic radiation" (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772), Journal of Sound and Vibration, 298 (2006) 1174-1175; [X.Z. Chen, C.X. Bi, Reply to the comments on "Reply to the comments on 'The boundary point method for the calculation of exterior acoustic radiation' (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772)", Journal of Sound
NASA Astrophysics Data System (ADS)
Majumder, Moumita; Hegger, Samuel E.; Dawes, Richard; Manzhos, Sergei; Wang, Xiao-Gang; Tucker, Carrington, Jr.; Li, Jun; Guo, Hua
2015-07-01
A data-set of nearly 100,000 symmetry unique multi-configurational ab initio points for methane were generated at the (AE)-MRCI-F12(Q)/CVQZ-F12 level, including energies beyond 30,000 cm-1 above the minimum and fit into potential energy surfaces (PESs) by several permutation invariant schemes. A multi-expansion interpolative fit combining interpolating moving least squares (IMLS) fitting and permutation invariant polynomials (PIP) was able to fit the complete data-set to a root-mean-square deviation of 1.0 cm-1 and thus was used to benchmark the other fitting methods. The other fitting methods include a single PIP expansion and two neural network (NN) based approaches, one of which combines NN with PIP. Full-dimensional variational vibrational calculations using a contracted-iterative method (and a Lanczos eigensolver) were used to assess the spectroscopic accuracy of the electronic structure method. The results show that the NN-based fitting approaches are able to fit the data-set remarkably accurately with the PIP-NN method producing levels in remarkably close agreement with the PIP-IMLS benchmark. The (AE)-MRCI-F12(Q)/CVQZ-F12 electronic structure method produces vibrational levels of near spectroscopic accuracy and a superb equilibrium geometry. The levels are systematically slightly too high, beginning at ∼ 1-2 cm-1 above the fundamentals and becoming correspondingly higher for overtones. The PES is therefore suitable for small ab initio or empirical corrections and since it is based on a multi-reference method, can be extended to represent dynamically relevant dissociation channels.
Belmonte, D; Ottonello, G; Vetuschi Zuccolini, M
2013-02-14
We present the results of a computational investigation of the structure-energy and vibrational properties of alumina under various aggregation states (crystalline, glassy, and liquid) with ab initio procedures. IV-fold, V-fold, and VI-fold oxygen-coordinated aluminum monomeric forms in a dielectric continuum with dielectric constant ε = 4.575 were investigated through DFT/B3LYP gas-phase calculations coupled with a Polarized Continuum Model approach and those of the periodical structure D(6)(3d) (R-3c) which leads to the α-Al(2)O(3) polymorph of alumina, when subjected to symmetry operations, were investigated with the same functional within the LCAO approximation and in the framework of Bloch's theorem. Based on the computed energies and vibrational features, an aggregate of the D(6)(3d) positively charged cluster [Al(12)O(11)](14+) contoured by [AlO(4)](5-) units in an approximate 1:3 proportion to achieve neutrality satisfactorily reproduce the heat capacity of the liquid within experimental uncertainty. The glass is seen as a wrong accretionary form induced by fast cooling rates and subjected to steric forces that locally modify the coordination state of the central atom. Cessation of rotational and translational movements, only partly counterbalanced by acoustic sine-wave-dispersed and excess phonons, gives rise to the huge heat-capacity gap observed at the glass transition (~5.3R). When cooling rates are sufficiently slow, the accretion around the D(6)(3d) seeds follows the structural constraints and the heat capacity of α-alumina is almost perfectly reproduced by the 27 Einstein oscillators coupled with the 3 acoustic terms and the anharmonic corrections. PMID:23425479
NASA Astrophysics Data System (ADS)
Belmonte, D.; Ottonello, G.; Zuccolini, M. Vetuschi
2013-02-01
We present the results of a computational investigation of the structure-energy and vibrational properties of alumina under various aggregation states (crystalline, glassy, and liquid) with ab initio procedures. IV-fold, V-fold, and VI-fold oxygen-coordinated aluminum monomeric forms in a dielectric continuum with dielectric constant ɛ = 4.575 were investigated through DFT/B3LYP gas-phase calculations coupled with a Polarized Continuum Model approach and those of the periodical structure D63d (R-3c) which leads to the α-Al2O3 polymorph of alumina, when subjected to symmetry operations, were investigated with the same functional within the LCAO approximation and in the framework of Bloch's theorem. Based on the computed energies and vibrational features, an aggregate of the D63d positively charged cluster [Al12O11]14+ contoured by [AlO4]5- units in an approximate 1:3 proportion to achieve neutrality satisfactorily reproduce the heat capacity of the liquid within experimental uncertainty. The glass is seen as a wrong accretionary form induced by fast cooling rates and subjected to steric forces that locally modify the coordination state of the central atom. Cessation of rotational and translational movements, only partly counterbalanced by acoustic sine-wave-dispersed and excess phonons, gives rise to the huge heat-capacity gap observed at the glass transition (˜5.3R). When cooling rates are sufficiently slow, the accretion around the D63d seeds follows the structural constraints and the heat capacity of α-alumina is almost perfectly reproduced by the 27 Einstein oscillators coupled with the 3 acoustic terms and the anharmonic corrections.
NASA Astrophysics Data System (ADS)
Brizuela, Alicia B.; Raschi, Ana B.; Castillo, María V.; Davies, Lilian; Romano, Elida; Brandán, Silvia A.
2014-09-01
In this study, aqueous solutions at different molar concentrations of sodium cyclamate in water were completely characterized by HATR (Horizontal Attenuated Total Reflectance) and Raman spectroscopies. The theoretical structures of cyclamate ion, the zwitterionic and neutral forms of the cyclamic acid and its dimer were optimized in gas and aqueous solution phases by using the hybrid B3LYP/6-31G* method. The solvent effects for the four species in aqueous solutions were simulated by using self-consistent reaction field (SCRF) calculations employing the integral equation formalism variant (IEFPCM) model. The complete assignments of the vibrational spectra of all the forms of cyclamic acid were performed taking into account the factor group analysis with the Scaled Quantum Mechanics Force Field (SQMFF) methodology. The existence of the zwitterionic and neutral forms of the cyclamic acid and its dimer in a solution of cyclamate in water is evidenced by characteristic bands in the HATR and Raman spectra. The dimerization of cyclamate in aqueous solution was previously reported by conductimetric method. The natural population analysis (NPA) and Merz-Kollman (MK) charges, molecular electrostatic potential (MEP), natural bond orbital (NBO) and atoms in molecules (AIM) calculations predict for all the species the principal donor and acceptor sites for the H bonds formation in aqueous solution. The SQM force fields for the cyclamate ion, the zwitterionic and neutral species of the cyclamic acid were obtained and their corresponding force constants in both phases were reported. Additionally, the solvation energies for those species were reported.
Sridevi, C; Velraj, G
2014-01-01
This study represents the conformation, tautomeric stability, protonation and deprotonation effects, vibrational, electronic, NBO and NMR aspects of 2,4-Dioxoimidazolidine-5-acetic acid (DOIAA). Theoretical calculations were performed by ab initio HF and density functional theory (DFT)/B3LYP method using 6-311++G(d,p) basis sets. Tautomerism and the effect of solvent on the tautomeric equilibria in the gas phase and in different solvents were studied. The protonation and deprotonation effects on the reactivity and conformations of DOIAA were investigated. Electronic transitions were also studied and the most prominent transition corresponds to π→π*. Natural bond orbital (NBO) analysis was also carried out to find the intramolecular interactions and their stabilization energy. In DOIAA, the interaction between the lone pair donor orbital (n(LP1N5)) and the acceptor antibonding orbital π*(C6O7) reveals the strong stabilization energy of 224.9 kJ mol(-1). Molecular electrostatic potential (MEP) was calculated to predict the reactive sites of the title compound. The NMR results indicated that the observed chemical shifts for NH, COOH protons of DOIAA not only depend on the structure of the molecule being studied but also on the nature of the solvent, concentration of the sample and the presence of the other exchangeable protons. PMID:24291430
NASA Astrophysics Data System (ADS)
Tasinato, Nicola; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi
2015-10-01
Photodegradation over titanium dioxide (TiO2) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F2Cdbnd CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO2 nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti4+ of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of -45.6 and -41.0 kJ mol-1 according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.
Efficient configuration selection scheme for vibrational second-order perturbation theory
NASA Astrophysics Data System (ADS)
Yagi, Kiyoshi; Hirata, So; Hirao, Kimihiko
2007-07-01
A fast algorithm of vibrational second-order Møller-Plesset perturbation theory is proposed, enabling a substantial reduction in the number of vibrational self-consistent-field (VSCF) configurations that need to be summed in the calculations. Important configurations are identified a priori by assuming that a reference VSCF wave function is approximated well by harmonic oscillator wave functions and that fifth- and higher-order anharmonicities are negligible. The proposed scheme has reduced the number of VSCF configurations by more than 100 times for formaldehyde, ethylene, and furazan with an error in computed frequencies being not more than a few cm-1.
Efficient configuration selection scheme for vibrational second-order perturbation theory.
Yagi, Kiyoshi; Hirata, So; Hirao, Kimihiko
2007-07-21
A fast algorithm of vibrational second-order Moller-Plesset perturbation theory is proposed, enabling a substantial reduction in the number of vibrational self-consistent-field (VSCF) configurations that need to be summed in the calculations. Important configurations are identified a priori by assuming that a reference VSCF wave function is approximated well by harmonic oscillator wave functions and that fifth- and higher-order anharmonicities are negligible. The proposed scheme has reduced the number of VSCF configurations by more than 100 times for formaldehyde, ethylene, and furazan with an error in computed frequencies being not more than a few cm(-1). PMID:17655435
Jiménez-Hoyos, Carlos A.; Janesko, Benjamin G.
2016-01-01
We present an assessment of different density functionals, with emphasis on range-separated hybrids, for the prediction of fundamental and harmonic vibrational frequencies, infrared intensities, and Raman activities. Additionally, we discuss the basis set convergence of vibrational properties of H2O with long-range corrected hybrids. Our results show that B3LYP is the best functional for predicting vibrational frequencies (both fundamental and harmonic); the screened-PBE hybrid (HSE) density functional works best for infrared intensities, and the long-range corrected PBE (LC-ωPBE), M06-HF, and M06-L density functionals are almost as good as MP2 for predicting Raman activities. We show the predicted Raman spectrum of adenine as an example of a medium-size molecule where a DFT/Sadlej pVTZ calculation is affordable and compare our results against the experimental spectrum. PMID:18989473
NASA Astrophysics Data System (ADS)
Clemy Monicka, J.; James, C.
2015-09-01
FTIR and Raman spectral techniques were employed for the vibrational characterization of the herbicide mefenacet. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were investigated with the help of density functional theory calculations. A detailed assignment of the vibrational spectra was made with the aid of theoretically predicted vibrational frequencies. Natural bond orbital analysis on mefenacet was carried out to reveal the nature of different interactions responsible for electron delocalization and the charge transfer between the orbitals (n → π∗, n → σ∗, π → π∗). Structural changes in the molecule due to the substitution of highly electronegative oxygen atom, conjugation and resonance effect were analyzed.
NASA Astrophysics Data System (ADS)
Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı
2015-01-01
In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm-1) and Laser-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found.
Analysis of vibrational-translational energy transfer using the direct simulation Monte Carlo method
NASA Technical Reports Server (NTRS)
Boyd, Iain D.
1991-01-01
A new model is proposed for energy transfer between the vibrational and translational modes for use in the direct simulation Monte Carlo method (DSMC). The model modifies the Landau-Teller theory for a harmonic oscillator and the rate transition is related to an experimental correlation for the vibrational relaxation time. Assessment of the model is made with respect to three different computations: relaxation in a heat bath, a one-dimensional shock wave, and hypersonic flow over a two-dimensional wedge. These studies verify that the model achieves detailed balance, and excellent agreement with experimental data is obtained in the shock wave calculation. The wedge flow computation reveals that the usual phenomenological method for simulating vibrational nonequilibrium in the DSMC technique predicts much higher vibrational temperatures in the wake region.
Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
2010-01-01
The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.
NASA Astrophysics Data System (ADS)
Ledesma, A. E.; Contreras, C.; Svoboda, J.; Vektariane, A.; Brandán, S. A.
2010-04-01
A theoretical structural and experimental vibrational study for the benzothieno [3,2- b] furan and thieno [3,2- b] benzofuran compounds is presented. The density functional theory (DFT) has been used to study its structures and vibrational properties. The geometries were fully optimised at the B3LYP/6-31G∗ and B3LYP/6-311++G∗∗ levels of theory and the harmonic vibrational frequencies were evaluated at the same levels. The calculated harmonic vibrational frequencies for the compound are consistent with the experimental IR spectrum in chloroform solution. These calculations gave us precise knowledge of the normal modes of vibration of these compounds. A complete assignment of all the observed bands in the infrared and Raman spectra for both benzothieno [3,2- b] furans compound was performed. The nature of the different rings bonds in both compounds was quantitatively investigated by means of Natural Bond Orbital (NBO) analysis. The topological properties of electronic charge density are analysed by employing Bader's Atoms in the Molecules theory (AIM).
Thermal weights for semiclassical vibrational response functions
Moberg, Daniel R.; Alemi, Mallory; Loring, Roger F.
2015-08-28
Semiclassical approximations to response functions can allow the calculation of linear and nonlinear spectroscopic observables from classical dynamics. Evaluating a canonical response function requires the related tasks of determining thermal weights for initial states and computing the dynamics of these states. A class of approximations for vibrational response functions employs classical trajectories at quantized values of action variables and represents the effects of the radiation-matter interaction by discontinuous transitions. Here, we evaluate choices for a thermal weight function which are consistent with this dynamical approximation. Weight functions associated with different semiclassical approximations are compared, and two forms are constructed which yield the correct linear response function for a harmonic potential at any temperature and are also correct for anharmonic potentials in the classical mechanical limit of high temperature. Approximations to the vibrational linear response function with quantized classical trajectories and proposed thermal weight functions are assessed for ensembles of one-dimensional anharmonic oscillators. This approach is shown to perform well for an anharmonic potential that is not locally harmonic over a temperature range encompassing the quantum limit of a two-level system and the limit of classical dynamics.
NASA Technical Reports Server (NTRS)
Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.
1996-01-01
The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.
NASA Astrophysics Data System (ADS)
Stancil, Phillip
We propose to compute accurate collisional excitation rate coefficients for rovibrational transitions of CS, SiO, SO, NO, H_2O, and HCN due to H_2, He, or H impact. This extends our previous grant which focused on 3- and 4-atom systems to 4- and 5-atom collision complexes, with dynamics to be performed on 6-9 dimensional potential energy surfaces (PESs). This work, which uses fully quantum mechanical methods for inelastic scattering and incorporates full-dimensional PESs, pushes beyond the state-of-the-art for such calculations, as recently established by our group for rovibrational transitions in CO-H_2 in 6D. Many of the required PESs will be computed as part of this project using ab initio theory and basis sets of the highest level feasible and particular attention will be given to the long range form of the PESs. The completion of the project will result in 6 new global PESs and state-to-state rate coefficients for a large range of initial rovibrational levels for temperatures between 1 and 3000 K. The chosen collision systems correspond to cases where data are limited or lacking, are important coolants or diagnostics, and result in observable emission features in the infrared (IR). The final project results will be important for the analysis of a variety of interstellar and extragalactic environments in which the local conditions of gas density, radiation field, and/or shocks drive the level populations out of equilibrium. In such cases, collisional excitation data are critical to the accurate prediction and interpretation of observed molecular IR emission lines in protoplanetary disks, star-forming regions, planetary nebulae, embedded protostars, photodissociation regions, etc. The use of the proposed collisional excitation data will lead to deeper examination and understanding of the properties of many astrophysical environments, hence elevating the scientific return from the upcoming JWST, as well as from current (SOFIA, Herschel, HST) and past IR missions
Method and apparatus for vibrating a substrate during material formation
Bailey, Jeffrey A [Richland, WA; Roger, Johnson N [Richland, WA; John, Munley T [Benton City, WA; Walter, Park R [Benton City, WA
2008-10-21
A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.
Calculation of multi-layer plate damper under one-axial load
NASA Astrophysics Data System (ADS)
Hui, Yan; Lu, Zhang; Hong-Yuan, Jiang; Alexander, M. Ulanov
2016-02-01
A multi-layer damper with waved plates under one-axial load is considered. A method of theoretical calculation of its energy dissipation coefficient is proposed. An experimental research of own frequencies and vibration transfer ratios for different parameters of damper structure, harmonic vibration load and random load is performed. Results of this research are approximated by functions; it is possible to use these functions for the calculation of the damper too. Project supported by the Programme of Introducing Talents of Discipline to Universities (Grant No. B07018).
NASA Technical Reports Server (NTRS)
Green, C.
1971-01-01
Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.
Nový, Jakub; Böhm, Stanislav; Králová, Jarmila; Král, Vladimír; Urbanová, Marie
2008-02-01
Variations in the structure of d(GGGA)(5) oligonucleotide in the presence of Li(+), Na(+), and K(+) ions and its temperature stability were studied using electronic and vibrational circular dichroism, IR absorption, and ab initio calculations with the Becke 3-Lee-Yang-Parr functional at the 6-31G** level. The samples were characterized by nondenaturing gel electrophoresis. Oligonucleotide d(GGGA)(5) in the presence of Li(+) forms a nonplanar single tetramer, with angles of 102 degrees and 171 degrees between neighboring guanine bases. This tetramer changes its geometry at temperatures >50 degrees C, but does not form a quadruplex structure. In the presence of Na(+), the d(GGGA)(5) structure was optimized to almost planar tetramers with an angle of 177 degrees between neighboring guanines. The spectral results suggest that it stacks into a quadruplex helical structure. This quadruplex structure decayed to a single tetramer at temperatures >60 degrees C. The Hartree-Fock energies imply that d(GGGA)(5) prefers to form complexes with Na(+) rather than Li(+). The d(GGGA)(5) structure in the presence of monovalent ions is stabilized against thermal denaturation in the order Li(+) < Na(+) < K(+). PMID:17960602
Welsch, Ralph Manthe, Uwe
2014-08-07
The mode-selective chemistry of the title reaction is studied by full-dimensional quantum dynamics simulation on an accurate ab initio potential energy surface for vanishing total angular momentum. Using a rigorous transition state based approach and multi-configurational time-dependent Hartree wave packet propagation, initial state-selected reaction probabilities for many ro-vibrational states of methane are calculated. The theoretical results are compared with experimental trends seen in reactions of methane. An intuitive interpretation of the ro-vibrational control of the chemical reactivity provided by a sudden model based on the quantum transition state concept is discussed.
Hetmańczyk, Joanna; Hetmańczyk, Łukasz; Migdał-Mikuli, Anna; Mikuli, Edward
2015-02-01
The vibrational and reorientational motions of NH3 ligands and ClO4(-) anions were investigated by Fourier transform middle-infrared spectroscopy (FT-IR) in the high- and low-temperature phases of [Mn(NH3)6](ClO4)2. The temperature dependencies of full width at half maximum (FWHM) of the infrared bands at: 591 and 3385cm(-1), associated with: ρr(NH3) and νas(N-H) modes, respectively, indicate that there exist fast (correlation times τR≈10(-12)-10(-13)s) reorientational motions of NH3 ligands, with a mean values of activation energies: 7.8 and 4.5kJmol(-1), in the phase I and II, respectively. These reorientational motions of NH3 ligands are only slightly disturbed in the phase transition region and do not significantly contribute to the phase transition mechanism. Fourier transform far-infrared and middle-infrared spectra with decreasing of temperature indicated characteristic changes at the vicinity of PT at TC(c)=137.6K (on cooling), which suggested lowering of the crystal structure symmetry. Infrared spectra of [Mn(NH3)6](ClO4)2 were recorded and interpreted by comparison with respective theoretical spectra calculated using DFT method (B3LYP functional, LANL2DZ ECP basis set (on Mn atom) and 6-311+G(d,p) basis set (on H, N, Cl, O atoms) for the isolated equilibrium two models (Model 1 - separate isolated [Mn(NH3)6](2+) cation and ClO4(-) anion and Model 2 - [Mn(NH3)6(ClO4)2] complex system). Calculated optical spectra show a good agreement with the experimental infrared spectra (FT-FIR and FT-MIR) for the both models. PMID:25459713
NASA Astrophysics Data System (ADS)
Hetmańczyk, Joanna; Hetmańczyk, Łukasz; Migdał-Mikuli, Anna; Mikuli, Edward
2015-02-01
The vibrational and reorientational motions of NH3 ligands and ClO4- anions were investigated by Fourier transform middle-infrared spectroscopy (FT-IR) in the high- and low-temperature phases of [Mn(NH3)6](ClO4)2. The temperature dependencies of full width at half maximum (FWHM) of the infrared bands at: 591 and 3385 cm-1, associated with: ρr(NH3) and νas(N-H) modes, respectively, indicate that there exist fast (correlation times τR ≈ 10-12-10-13 s) reorientational motions of NH3 ligands, with a mean values of activation energies: 7.8 and 4.5 kJ mol-1, in the phase I and II, respectively. These reorientational motions of NH3 ligands are only slightly disturbed in the phase transition region and do not significantly contribute to the phase transition mechanism. Fourier transform far-infrared and middle-infrared spectra with decreasing of temperature indicated characteristic changes at the vicinity of PT at TCc = 137.6 K (on cooling), which suggested lowering of the crystal structure symmetry. Infrared spectra of [Mn(NH3)6](ClO4)2 were recorded and interpreted by comparison with respective theoretical spectra calculated using DFT method (B3LYP functional, LANL2DZ ECP basis set (on Mn atom) and 6-311 + G(d,p) basis set (on H, N, Cl, O atoms) for the isolated equilibrium two models (Model 1 - separate isolated [Mn(NH3)6]2+ cation and ClO4- anion and Model 2 - [Mn(NH3)6(ClO4)2] complex system). Calculated optical spectra show a good agreement with the experimental infrared spectra (FT-FIR and FT-MIR) for the both models.
Vibrational and VCD spectra of poly(menthyl vinyl ether)
NASA Astrophysics Data System (ADS)
McCann, J. L.; Bour, P.; Wieser, H.
1998-06-01
The detailed assignments are reported for the vibrational and VCD spectra of (1S,2R,5S)-(+)-menthol. Energy minimized geometries, harmonic force fields, and atomic polar tensors were calculated at the Becke3LYP/6-31G** level, and atomic axial tensors with the vibronic coupling theory at the HF/6-31G level. The spectra consist of contributions mainly from two isomers (70%) distinguished only by conformation of the OH group. An attempt was made to simulate the absorption and VCD spectra of poly(methyl vinyl ether) using a component approach and invoking the excitation scheme with promising though not conclusive results at this stage.
Azhagiri, Sachidanandam; Ramkumaar, Govindaswamy Ranganathan; Jayakumar, Suryanarayan; Kumaresan, Subramanian; Arunbalaji, Ramadoss; Gunasekaran, Sethu; Srinivasan, Shanmugam
2010-01-01
The FTIR spectrum of 2-nitroaniline was recorded in the regions 4000-400 cm(-1). The optimized molecular geometry, bond orders, atomic charges, harmonic vibrational wave numbers and intensities of vibrational bands of 2-nitroaniline and its cation were calculated at DFT levels invoking two different basis sets 6-31G and 6-31+G using Gaussian 03W program. The X-ray geometry and FTIR vibrational frequencies were compared with the results of DFT calculations. The thermal stability of 2NA is studied by the thermo gravimetric analysis (TGA). Experimental degradation process of 2-nitroaniline was interpreted with the bond order analysis. The Mulliken atomic charge analysis was also made in the present study. Based on the molecular geometry and Mulliken charge analysis, intra molecular hydrogen bonding was identified. PMID:19504134
Analysis of a high Tc superconducting levitation system with vibration isolation control
Nagaya, Kosuke
1996-03-01
This paper presents a method for controlling vibrations of a levitated high Tc superconducting body subjected to base disturbances. To have the control forces, an actuator consisting of a permanent magnet with an electromagnet was presented. The analytical solution for calculating levitation forces due to the permanent magnet and the control currents in the electromagnet was obtained. The levitation forces obtained coincide with the previously published results. The equation of motion of the levitated body subjected to base disturbances under the control was presented. Nonlinear vibrations of the body were first discussed; then the method of vibration isolation control using the direct disturbance cancellation combining the velocity feedback control was investigated. Numerical calculations were carried out for the levitation forces, with respect to the levitated body subjected to harmonic or pulse base excitations. It was clarified that the present method is valid for controlling nonlinear systems like the magnetic levitated superconducting body.
NASA Astrophysics Data System (ADS)
Durig, J. R.; Liu, Jian; Little, T. S.
1991-08-01
The far-IR spectrum (350-35 cm -1) of gaseous 1 -bromo-2-fluoroethane, BrCH 2CH 2F, has been recorded at a resolution of 0.10 cm -1. The fundamental asymmetric torsional frequencies of the more stable trans (two halogen atoms oriented trans) and high energy gauche conformers have been observed at 125.3 cm -1 and 111.3 cm -1, respectively, and the asymmetric torsional potential function governing internal rotation about the CC bond has been determined. This potential function gives values for the torsional potential coefficients of V 1=584±6, V 2=-147±4, V 3=1217±11, V 4=138±2, and V 4= -21+4 cm -1, and a dihedral angle (∠FCCBr) of 67°0 for the gauche conformer. The trans to gauche, gauche to gauche, and gauche to trans barriers have been determined to be 1356 cm -1, 1418 cm -1 and 973 cm -1, respectively, with an energy difference between the conformations of 383±21 cm -1 (1.09±10.06 kcal mol -1). From studies of the Raman spectra at variable temperatures the conformational energy difference has been determined to be 350 ± 87 cm -1 (1.00±0.25 kcal mol -1) with the trans more stable and 300±46cm -1 (0.86±0.13 kcal mol -1) with the gauche more stable for the gas and liquid, respectively. A complete assignment of the vibrational spectra including the IR (3500-400 cm') spectra of the gas and solid and the Raman (3200-10 cm -1) spectra of the gas, liquid and solid is proposed. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental vibrational frequencies which have been determined from experiment, are compared to those obtained from ab initio Hartree-Fock gradient calculations and to the corresponding quantities obtained for some similar molecules.
Sunspots and Their Simple Harmonic Motion
ERIC Educational Resources Information Center
Ribeiro, C. I.
2013-01-01
In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.
Milne, Bruce F; Norman, Patrick
2015-05-28
The first-order hyperpolarizability, β, has been calculated for a group of marine natural products, the makaluvamines. These compounds possess a common cationic pyrroloiminoquinone structure that is substituted to varying degrees. Calculations at the MP2 level indicate that makaluvamines possessing phenolic side chains conjugated with the pyrroloiminoquinone moiety display large β values, while breaking this conjugation leads to a dramatic decrease in the calculated hyperpolarizability. This is consistent with a charge-transfer donor-π-acceptor (D-π-A) structure type, characteristic of nonlinear optical chromophores. Dynamic hyperpolarizabilities calculated using resonance-convergent time-dependent density functional theory coupled to polarizable continuum model (PCM) solvation suggest that significant resonance enhancement effects can be expected for incident radiation with wavelengths around 800 nm. The results of the current work suggest that the pyrroloiminoquinone moiety represents a potentially useful new chromophore subunit, in particular for the development of molecular probes for biological imaging. The introduction of solvent-solute interactions in the theory is conventionally made in a density matrix formalism, and the present work will provide detailed account of the approximations that need to be introduced in wave function theory and our program implementation. The program implementation as such is achieved by a mere combination of existing modules from previous developments, and it is here only briefly reviewed. PMID:25584854
A vibrational spectroscopy study on anserine and its aqueous solutions.
Akkaya, Y; Balci, K; Goren, Y; Akyuz, S; Stricker, M C; Stover, D D; Ritzhaupt, G; Collier, W B
2015-10-01
In this study based on vibrational spectroscopic measurements and Density Functional Theory (DFT), we aimed for a reliable interpretation of the IR and Raman spectra recorded for anserine in the solid phase and water (H2O) and heavy water (D2O) solutions. Initial DFT calculations at the B3LYP/6-31G(d) searched possible conformers of the anserine zwitterion using a systematic conformational search. The corresponding equilibrium geometrical parameters and vibrational spectral data were determined for each of the stable conformers (in water) by the geometry optimization and hessian calculations performed at the same level of theory using the polarized continuum model (PCM). The same calculations were repeated to determine the most energetically preferred dimer structure for the molecule and the associated geometry, force field and vibrational spectral data. The harmonic force constants obtained from these calculations were scaled by the Scaled Quantum Mechanical Force Field (SQM) method and then used in the calculation of the refined wavenumbers, potential energy distributions, IR and Raman intensities. These refined theoretical data, which confirm the zwitterion structure for anserine in the solid phase or aqueous solvents, revealed the remarkable effects of intermolecular hydrogen bonding on the structural properties and observed IR and Raman spectra of this molecule. PMID:25997178
NASA Astrophysics Data System (ADS)
Ramkumaar, G. R.; Srinivasan, S.; Bhoopathy, T. J.; Gunasekaran, S.
2012-12-01
The solid phase FT-IR and FT-Raman spectra of zidovudine (AZT) were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of zidovudine were obtained by the Restricted Hartree-Fock (RHF) density functional theory (DFT) with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The harmonic vibrational frequencies for zidovudine were calculated and the scaled values have been compared with experimental values of FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The harmonic vibrational wave numbers and intensities of vibrational bands of zidovudine with its cation and anion were calculated and compared with the neutral AZT. The DFT calculated HOMO and LUMO energies shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in AZT.
NASA Technical Reports Server (NTRS)
Payne, M. H.
1973-01-01
A computer program is described for the calculation of the zeroes of the associated Legendre functions, Pnm, and their derivatives, for the calculation of the extrema of Pnm and also the integral between pairs of successive zeroes. The program has been run for all n,m from (0,0) to (20,20) and selected cases beyond that for n up to 40. Up to (20,20), the program (written in double precision) retains nearly full accuracy, and indications are that up to (40,40) there is still sufficient precision (4-5 decimal digits for a 54-bit mantissa) for estimation of various bounds and errors involved in geopotential modelling, the purpose for which the program was written.
Sharkey, Keeper L.; Kirnosov, Nikita; Adamowicz, Ludwik
2015-05-07
Direct variational calculations where the Born-Oppenheimer approximation is not assumed are done for all rovibrational states of the D{sub 2} molecule corresponding to first excited rotational level (the N = 1 states). All-particle explicitly correlated Gaussian basis functions are used in the calculations. The exponential parameters of the Gaussians are optimized with the aid of analytically calculated energy gradient determined with respect to these parameters. The results allow to determine the ortho-para spin isomerization energies as a function of the vibrational quantum number.
NASA Astrophysics Data System (ADS)
Li, Ying-Cheng; Chuang, Hsiao-Han; Tan, Jake Acedera; Takahashi, Kaito; Kuo, Jer-Lai
2014-06-01
Recent experimental observations of (H_2O)_3^+, (H_2O)_3^+Ar, H^+(H_2O)_3, and H^+(H_2O)_3Ar clusters in the region 1400-3800 wn show that the OH stretching vibration has distinct characteristics. Multidimensional normal mode calculations were carried out for OH stretching vibrations in the 1200-4000 wn photon energy range. The potential energy and dipole surfaces were evaluated by using first-principles methods. By comparing the calculated frequencies and intensities of OH stretching vibration with experimental spectra, we found that the assignment of OH strecthing of H_3O^+ moiety and free OH strectching vibration have resonable agreement with experimental data. Jeffrey M. Headrick, Eric G. Diken, Richard S. Walters, Nathan I. Hammer, Richard A. Christie, Jun Cui, Evgeniy M. Myshakin, Michael A. Duncan, Mark A. Johnson, Kenneth D. Jordan, Science, 2005, 17, 1765. Kenta Mizuse, Jer-Lai Kuo and Asuka Fujii, Chem. Sci., 2011, 2, 868 Kenta Mizuse and Asuka Fujii, J. Phys. Chem. A, 2013, 117, 929.
Futami, Yoshisuke; Ozaki, Yasushi; Ozaki, Yukihiro
2016-02-21
Infrared (IR) and near infrared (NIR) spectra were measured for methanol and the methanol-pyridine complex in carbon tetrachloride. Upon the formation of the methanol-pyridine complex, the frequencies of both the fundamental and first overtone bands of the OH stretching vibration shifted to lower frequencies, and the absorption intensity of the fundamental increased significantly, while that of the first overtone decreased markedly. By using quantum chemical calculations, we estimated the absorption intensities and frequencies of the fundamental and first overtone bands for the OH stretching vibration based on the one-dimensional Schrödinger equation. The calculated results well reproduced the experimental results. The molecular vibration potentials and dipole moment functions of the OH stretching vibration modes were compared between methanol and the methanol-pyridine complex in terms of absorption intensity changes and frequency shifts. The large change in the dipole moment function was found to be the main cause for the variations in absorption intensity for the fundamental and first overtone bands. PMID:26862859
NASA Astrophysics Data System (ADS)
Recarte, V.; Zbiri, M.; Jiménez-Ruiz, M.; Sánchez-Alarcos, V.; Pérez-Landazábal, J. I.
2016-05-01
The different contributions to the entropy change linked to the austenite-martensitic transition in a Ni–Mn–Sn metamagnetic shape memory alloy have been determined by combining different experimental techniques. The vibrational contribution has been inferred from the vibrational density of states of both the martensitic and austenite phases. This has been accomplished by combining time-of-flight neutron scattering measurements and ab initio calculations. Further, the electronic part of the entropy change has also been calculated. Since the martensitic transformation takes place between two paramagnetic phases, the magnetic contribution can be neglected and the entropy change can be reduced to the sum of two terms: vibrational and electronic. The obtained value of the vibrational contribution (-36+/- 5 \\text{J} \\text{k}{{\\text{g}}-1} {{\\text{K}}-1} ) nearly provides the total entropy change measured by calorimetry (-41~+/- 3 \\text{J} \\text{k}{{\\text{g}}-1} {{\\text{K}}-1} ), the difference being the electronic contribution within the experimental error.
Color harmonization for images
NASA Astrophysics Data System (ADS)
Tang, Zhen; Miao, Zhenjiang; Wan, Yanli; Wang, Zhifei
2011-04-01
Color harmonization is an artistic technique to adjust a set of colors in order to enhance their visual harmony so that they are aesthetically pleasing in terms of human visual perception. We present a new color harmonization method that treats the harmonization as a function optimization. For a given image, we derive a cost function based on the observation that pixels in a small window that have similar unharmonic hues should be harmonized with similar harmonic hues. By minimizing the cost function, we get a harmonized image in which the spatial coherence is preserved. A new matching function is proposed to select the best matching harmonic schemes, and a new component-based preharmonization strategy is proposed to preserve the hue distribution of the harmonized images. Our approach overcomes several shortcomings of the existing color harmonization methods. We test our algorithm with a variety of images to demonstrate the effectiveness of our approach.
Non-Equilibrium Casimir Force between Vibrating Plates
Hanke, Andreas
2013-01-01
We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed. PMID:23326401
Structure and vibrational spectra of the salts of mononitroalkanes
NASA Astrophysics Data System (ADS)
Shlyapochnikov, V. A.; Tafipolsky, M. A.; Tokmakov, I. V.; Oleneva, G. I.
2000-03-01
The molecular geometries of the anions of nitromethane and 2-nitropropane were optimised and their harmonic force fields were calculated by the RHF/6-311G(d,p), MP2/6-311G(d,p) and B3LYP/6-311G(d,p) methods. The force fields obtained made it possible to reliably interpret the IR and Raman spectra of the Na + salt of nitromethane, d2-nitromethane and 2-nitropropane. The assignment proposed significantly improves the interpretation of vibrational spectra known so far. Some general conclusions on geometry and vibrational spectra of the salts of mononitroalkanes studied are made. The hybrid density functional method used (B3LYP) is shown to be in better agreement with experimental data available than the Hartree-Fock methods.
Non-equilibrium Casimir force between vibrating plates.
Hanke, Andreas
2013-01-01
We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed. PMID:23326401
Negahdar, M J; Kadbi, Mo; Cha, J; Cebral, J; Amini, A
2013-01-01
Use of phase-contrast (PC) MRI in assessment of hemodynamics has significant clinical importance. In this paper we develop a novel approach to determination of hemodynamic pressures. 3D gradients of pressure obtained from Navier-Stokes equation are expanded into a series of orthogonal basis functions, and are subsequently projected onto an integrable subspace. Before the projection step however, a scheme is devised to eliminate the discontinuity at the vessel and image boundaries. In terms of the computation time, the proposed approach significantly improves on previous iterative methods for pressure calculations. The method has been validated using computational fluid dynamic simulations and in-vitro MRI studies of stenotic flows. PMID:24110706
The Harmonic Oscillator Influenced by Gravitational Wave in Noncommutative Quantum Phase Space
NASA Astrophysics Data System (ADS)
Yakup, Rehimhaji; Dulat, Sayipjamal; Li, Kang; Hekim, Mamatabdulla
2014-04-01
Dynamical property of harmonic oscillator affected by linearized gravitational wave (LGW) is studied in a particular case of both position and momentum operators which are noncommutative to each other. By using the generalized Bopp's shift, we, at first, derived the Hamiltonian in the noncommutative phase space (NPS) and, then, calculated the time evolution of coordinate and momentum operators in the Heisenberg representation. Tiny vibration of flat Minkowski space and effect of NPS let the Hamiltonian of harmonic oscillator, moving in the plain, get new extra terms from it's original and noncommutative space partner. At the end, for simplicity, we take the general form of the LGW into gravitational plain wave, obtain the explicit expression of coordinate and momentum operators.
Effective harmonic approach to helix proteins
NASA Astrophysics Data System (ADS)
Choi, Sung Nam Peter
Recent laser-induced experiments have shown that on the time scale of long range tertiary contact formation, the kinetics of the helix-coil interconversion are very rapid (1). The notion that secondary structures form first before long range tertiary contacts are made, suggests that the helix-coil interconversion is one key in understanding the protein folding problem. We developed a method of generating an alpha-helix conformation of any residue using AMBER 4.0, the Protein Data Bank (PDB), and a series of pattern matching translation and rotation operations. We have chosen to study Alanine for its highly non polar nature, and Glutamine for its highly polar characteristic. Using the information obtained from the above method, analysis of vibrational lattice dynamics are carried out on polymers Poly-alpha-L alanine (PLA) and Poly-alpha-L glutamic acid (PLGA). The lattice dynamics method called Modified Self- consistent Harmonic Approach theory (MSHA) was used in carrying out the analysis of the PLA and PLGA helix-coil transition. MSHA was originally developed for the DNA molecule by Prohofsky et al. In this model, the molecule is considered as a one dimensional, repeating unit cell of an infinite helix. The lattice was modeled with harmonic force constants. Anharmonicity of hydrogen bond force constants at different temperatures are introduced along with the effects of water on the polar PLGA and the non polar PLA. Using MSHA, we calculated the opening bond probabilities of PLGA at different temperatures. The experimentally observed helix to coil relaxation time τ* of PLGA was inversely compared to our results with a correlation coefficient of 0.8424 (5, 13, 58). These experiments were done at temperatures ranging from 295 K to 310 K. Our calculation also yielded critical melting temperatures of Tc=317 K for PLGA and Tc=347 K for PLA. The calculated acoustic compressional velocities were 4.78 km/s and 4.84 km/s for PLA and PLGA respectively. Our calculation
Pirozhnaya, L.N.; Zubkova, O.B.
1986-05-01
In the valence-optical scheme approximation, vibrational frequencies and absorption band intensities have been calculated for the molecules n-C/sub 4/F/sub 10/ (I) and n-C/sub 6/F/sub 14/ (II) in various conformations. A comparison of the calculated and observed spectra shows that I in the gas and liquid phases contains molecules in the T and G forms, and II in the conformations TTT, TTG, TGT, and TGT'. The crystalline phase of both compounds consists of molecules in the extended form. The most informative region for determination of rotational isomers for the perfluoroparaffins is the 720-1150 cm/sup -1/ frequency region in the IR spectrum, corresponding to the frequency phase branch of symmetric stretching vibrations of CF/sub 2/ in the spectrum of polytetrafluoroethylene.
Cacciatore, M.; Billing G.D.
1992-01-09
The authors present calculations of vibration-vibration and vibration-translation energy transfer rate constants in diatom-diatom collisions. The results are compared to recent experimental measurements.
Simple Harmonic Motion in Harmonic Plane Waves.
ERIC Educational Resources Information Center
Benumof, Reuben
1980-01-01
Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)
NASA Astrophysics Data System (ADS)
Haghshenas, Javad
2015-09-01
Image motion due to satellite platform vibrations often limits the resolution and performance of remote sensing payloads, especially for the missions with high resolution objectives. Vibration blurs the incoming energy and degrades the overall payload's ability to detect the target with proper quality. Effects of Linear and high frequency vibrations on the overall MTF are known exactly in closed-form but the low frequency vibration effect is a random process and must be considered statistically. It should be considered in system level payload design to know whether or not the overall MTF is limited by the vibration blur radius. The maximum resolvable spatial frequency of the camera may be limited by this vibration effects. Here we fully analyzed different vibration effects on the image quality and have specified the allowable image motion. Image motion velocity due to the Earth rotation around its axis and the satellite motion in its orbit considered separately. Degradation in the modulation transfer function due to this kind of movement is calculated to define the required pointing stability of the satellite. In this paper we have considered the effects of a single and double harmonics low frequency vibration on the Modulation Transfer Function (MTF). Because of its random effects, the majority of this paper deals with the statistical analysis of its blur radius and its consequent MTF budget.
NASA Technical Reports Server (NTRS)
Corrigan, J. C.; Cronkhite, J. D.; Dompka, R. V.; Perry, K. S.; Rogers, J. P.; Sadler, S. G.
1989-01-01
Under a research program designated Design Analysis Methods for VIBrationS (DAMVIBS), existing analytical methods are used for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM), which has been developed, extensively documented, and correlated with ground vibration test. One procedure that was used for predicting coupled rotor-fuselage vibrations using the advanced Rotorcraft Flight Simulation Program C81 and NASTRAN is summarized. Detailed descriptions of the analytical formulation of rotor dynamics equations, fuselage dynamic equations, coupling between the rotor and fuselage, and solutions to the total system of equations in C81 are included. Analytical predictions of hub shears for main rotor harmonics 2p, 4p, and 6p generated by C81 are used in conjunction with 2p OLS measured control loads and a 2p lateral tail rotor gearbox force, representing downwash impingement on the vertical fin, to excite the NASTRAN model. NASTRAN is then used to correlate with measured OLS flight test vibrations. Blade load comparisons predicted by C81 showed good agreement. In general, the fuselage vibration correlations show good agreement between anslysis and test in vibration response through 15 to 20 Hz.
Free vibrations of delaminated beams
NASA Technical Reports Server (NTRS)
Shen, M.-H. H.; Grady, J. E.
1992-01-01
Free vibration of laminated composite beams is studied. The effect of interply delaminations on natural frequencies and mode shapes is evaluated both analytically and experimentally. A generalized vibrational principle is used to formulate the equation of motion and associated boundary conditions for the free vibration of a composite beam with a delamination of arbitrary size and location. The effect of coupling between longitudinal vibration and bending vibration is considered. This coupling effect is shown to significantly affect the calculated natural frequencies and mode shapes of the delaminated beam.
Harmonization of Biodiesel Specifications
Alleman, T. L.
2008-02-01
Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.
Experimental and DFT studies on the vibrational and electronic spectra of 9-anthracenemethanol
NASA Astrophysics Data System (ADS)
Kou, Shanshan; Zhou, Hu; Tang, Guodong; Li, Rongqing; Zhang, Yu; Zhao, Jianying; Wei, Changmei
2012-10-01
Vibrational spectral measurements were made for 9-anthracenemethanol. Optimized geometrical structure and harmonic vibration frequencies were computed based on ab initio and density functional theory B3LYP methods using 6-311G∗∗ and LANL2DZ basis sets. The equilibrium geometries got from all of the methods and basis were compared with X-ray diffraction results. The IR and UV-vis spectra of the title compound were computed using all of the methods and choose the most appropriate way to discuss. And the absorption spectra were calculated both in gas phase and in CH3CH2OH and CH3CN solution. The calculated results matched well with the experimental values. On the basis, the first excited state electronic transition energy has been calculated using time-dependent density functional theory.
NASA Astrophysics Data System (ADS)
Martin-Drumel, M. A.; Pirali, O.; Loquais, Y.; Falvo, C.; Bréchignac, Ph.
2013-02-01
Far infrared (FIR) gas phase absorption spectra of azulene, quinoline and isoquinoline have been recorded using a Fourier transform Bruker IFS125 interferometer at medium resolution (0.5 cm-1). Assignments of these weak vibrational bands were performed using density-functional theory calculations carried out at the harmonic and anharmonic levels. Agreement between observed and calculated band positions is better than 5% for azulene and 1% for quinoline and isoquinoline. The relative band intensities are also correctly predicted. Molecular structure dependence of the FIR spectra is discussed based on the comparative study of three selected FIR modes.
Analysis of potential helicopter vibration reduction concepts
NASA Technical Reports Server (NTRS)
Landgrebe, A. J.; Davis, M. W.
1985-01-01
Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.
Ab initio calculation and anharmonic force field of hypochlorous acid, HOCl
NASA Astrophysics Data System (ADS)
Halonen, L.; Ha, T.-K.
1988-03-01
Ab initio calculations on HOCl have been performed at the third-order Møller-Plesset perturbation theory level to determine the equilibrium structure and the anharmonic force field. An empirical anharmonic force field based on the ab initio results is obtained using available experimental vibration-rotation data. Four of the six harmonic and six of the ten cubic force constants have been determined experimentally, the remaining values being fixed at the ab initio values. A good fit to the experimental vibration-rotation data of four isotopic species is obtained.
Fedorov, Dmitry A.; Varganov, Sergey A.; Derevianko, Andrei
2014-05-14
We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}Σ{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup −1} for LiNa and by no more than 114 cm{sup −1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup −1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup −1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.
NASA Astrophysics Data System (ADS)
Fedorov, Dmitry A.; Derevianko, Andrei; Varganov, Sergey A.
2014-05-01
We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X1Σ+ electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm-1 for LiNa and by no more than 114 cm-1 for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm-1, and the discrepancies for the anharmonic correction are less than 0.1 cm-1. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.
Diao, Chuan-Ling; Wang, Chun-Hai; Lu, Jing; Luo, Neng-Neng; Jing, Xi-Ping E-mail: xpjing@pku.edu.cn; Qi, Ze-Ming; Shao, Tao; Wang, Yu-Yin; Wang, Quan-Chao; Kuang, Xiao-Jun; Fang, Liang; Shi, Feng E-mail: xpjing@pku.edu.cn
2014-03-21
1:2 B-site cation ordered Ba(Mg{sub 1/3}Nb{sub 2/3})O{sub 3} ceramic was synthesized using conventional solid-state reaction at 1600 °C for 12 h. The structure parameters were obtained through Rietveld refinement of X-ray diffraction data. The Raman peak frequencies were obtained by Lorenz fitting on Raman spectrum. Four-parameter semiquantum model was used to fit the infrared (IR) reflectivity spectrum, and the fitted parameters were used to calculate the dielectric permittivity ε and dielectric loss tanδ. A total of 9 active Raman and 16 active IR modes were obtained using first-principle calculations based on density functional theory with local density approximation. All of the vibrational modes were assigned and represented by linear combinations of the symmetry coordinates deduced using group theory analysis. The Raman mode with the highest frequency A{sub 1g}{sup (4)} (789 cm{sup −1}) can be described as the breathing vibration of NbO{sub 6}. The IR modes E{sub u}{sup (1)} (149 cm{sup −1}) and A{sub 2u}{sup (2)} (212 cm{sup −1}), which can be described as the twisting vibrations of Ba–MgO{sub 6}/Ba–NbO{sub 6} on the a–b plane and the stretching vibrations of Ba–MgO{sub 6}/Ba–NbO{sub 6} along the c direction, respectively, are the dominant contributing modes to ε and tanδ. The dielectric property parameters obtained using IR spectrum fittings, first-principal calculations, and microwave measurements were compared.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
Ab initio self-consistent field study of the vibrational spectra for NO sub 3 geometric isomers
Morris, V.R.; Hall, J.H. Jr. Georgia Institute of Technology, Atlanta ); Bhatia, S.C. Spelman College, Atlanta, GA )
1990-09-20
Ab initio self-consistent field results at the UHF/6-31G* and UHF-DZP levels for harmonic vibrational frequencies of symmetric NO{sub 3} with C{sub 2v}, C{sub s}, and D{sub 3h} symmetry; cis and trans forms of OONO are reported. At both levels of calculations (6-31G* and DZP), the theoretical vibrational frequencies for C{sub 2v} sym-NO{sub 3} are in agreement with the recent experimental results. Their calculations for cis and trans isomers of OONO show large deviations from the only observed vibrational frequency (1,838 cm{sup {minus}1}) for trans OONO. The trans isomer of OONO is predicted to be more stable than the cis isomer by approximately 2 kcal/mol and in each case, the ground state for OONO is predicted to be {sup 2}A{double prime}.
The harmonic oscillator and nuclear physics
NASA Technical Reports Server (NTRS)
Rowe, D. J.
1993-01-01
The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.
NASA Astrophysics Data System (ADS)
Butel, Arnaud; Annaloro, Julien; Schneider, Ioan F.; Benredgem, Djamel
2011-08-01
In relation with the problem of space vehicles re-entry into the earth atmosphere, we have developed a nonlinear electronic and vibrational specific time-dependent Collisional-Radiative (CR) model for air plasma working between 100 Pa and atmospheric pressure and between 2000 K and 20000 K for the translation temperatures. 13 species are considered: N2, O2, NO, N, O, Ar, N+2 , O+2 , NO+ , N+ , O+ , Ar+ and electrons. This model takes into account a total of 335 different states separated in excited electronic states and vibrational states of N2, O2 and NO on their electronic ground state. Owing to the temperature levels involved, many elementary processes are considered. The CR model is partially validated by comparison with experimental results under atmospheric pressure. Time scales to reach the final steady state are derived. Two models of dissociation are tested with respect to the vibration-translation transfers. The excitation and vibrational temperature results are analyzed in a typical Heaviside-like case at constant pressure and temperature.
Lloyd, K.G.; Banse, B.A.; Hemminger, J.C.
1986-02-15
A harmonic picture of the vibrations of water adsorbed on Pd(100) is presented. The shift of the water-bending mode (against the surface plane) upon deuteration is well described by this purely harmonic picture. Normal-mode calculations in which the Pd(100) substrate is described by a finite cluster of 66 atoms were used to study the sensitivity of the isotope shift of the bending-mode frequency to the bonding site. The on-top and two-fold bridge sites are consistent with experimental results whereas the four-fold hollow site is not.
Polyatomic molecule vibrations
NASA Technical Reports Server (NTRS)
1976-01-01
Polyatomic molecule vibrations are analyzed as harmonic vibrations along normal coordinates. The energy eigenvalues are found for linear and nonlinear symmetric triatomic molecules for valence bond models of the potential function with arbitrary coupling coefficients; such models can usually be fitted to observed energy levels with reasonably good accuracy. Approximate normal coordinates for the H2O molecule are discussed. Degenerate vibrational modes such as occur in CO2 are analyzed and expressions for Fermi resonance between close-lying states of the same symmetry are developed. The bending modes of linear triatomic molecules are expressed in terms of Laguerre polynomials in cylindrical coordinates as well as in terms of Hermite polynomials in Cartesian coordinates. The effects of large-amplitude bending such as occur in the C3 molecule are analyzed, along with anharmonic effects, which split the usually degenerate bending mode energy levels. Finally, the vibrational frequencies, degeneracies, and symmetry properties of XY3, X2Y2, and XY4 type molecules are discussed.
High-order harmonic generation and Fano resonances
NASA Astrophysics Data System (ADS)
Strelkov, V. V.; Khokhlova, M. A.; Shubin, N. Yu
2014-05-01
We present a high-order harmonic generation theory which generalizes the strong-field approximation to the resonant case when the harmonic frequency is close to that of the transition from the ground state to an autoionizing state of the generating system. We show that the line shape of the resonant harmonic is a product of the Fano-like factor and the harmonic line which would be emitted in the absence of the resonance. The theory predicts rapid variation of the harmonic phase in the vicinity of the resonance. The calculated resonant harmonic phase is in reasonable agreement with recent measurements. Predicting the phase locking of a group of resonantly enhanced harmonics, our theory allows us to study the perspectives of producing an attosecond pulse train using such harmonics.
NASA Astrophysics Data System (ADS)
Bykov, A. D.; Kalinin, K. V.
2012-03-01
The Rayleigh-Schrödinger perturbation theory is applied to calculation of vibrational energy levels of triatomic molecules with the C 2v and C s symmetries: SO2, H2S, F2O, HOF, HOCl, and DOCl. Particular attention is given to the states coupled by anharmonic resonances; for such states, the perturbation theory series diverge. To sum these series, the known methods of Padé, Padé-Borel, and Padé-Hermite and the method of power moments are used. For low-lying levels, all the summation methods give satisfactory results, while the method of quadratic Padé-Hermite approximants appears to be more efficient for high-excited states. Using these approximants, the structure of singularities of the vibrational energy, as a function in the complex plane, is studied.
NASA Astrophysics Data System (ADS)
Hu, Zhan; Zheng, Gangtie
2016-08-01
A combined analysis method is developed in the present paper for studying the dynamic properties of a type of geometrically nonlinear vibration isolator, which is composed of push-pull configuration rings. This method combines the geometrically nonlinear theory of curved beams and the Harmonic Balance Method to overcome the difficulty in calculating the vibration and vibration transmissibility under large deformations of the ring structure. Using the proposed method, nonlinear dynamic behaviors of this isolator, such as the lock situation due to the coulomb damping and the usual jump resulting from the nonlinear stiffness, can be investigated. Numerical solutions based on the primary harmonic balance are first verified by direct integration results. Then, the whole procedure of this combined analysis method is demonstrated and validated by slowly sinusoidal sweeping experiments with different amplitudes of the base excitation. Both numerical and experimental results indicate that this type of isolator behaves as a hardening spring with increasing amplitude of the base excitation, which makes it suitable for isolating both steady-state vibrations and transient shocks.
Characteristic of torsional vibration of mill main drive excited by electromechanical coupling
NASA Astrophysics Data System (ADS)
Zhang, Yifang; Yan, Xiaoqiang; Lin, Qihui
2016-01-01
In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMULINK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system.
NASA Technical Reports Server (NTRS)
Chin, G.; Weaver, H. A.
1984-01-01
The vibrational and rotational excitation of the CO molecule in cometary comae were investigated using a model which includes IR vibrational pumping by the solar flux, vibrational and rotational radiative decay, and collisional coupling among rotational states. Steady state was not assumed in solving the rate equations. The evolution of a shell of CO gas was monitored as it expanded from the nucleus into the outer coma. Collisional effects were treated using a kinetic temperature profile derived from theoretical work on the coma energy balance. The kinetic temperature was assumed to be extremely cold in the inner coma; this has significant consequences for the CO excitation. If optical depth effects are ignored, only low J transitions will be significantly excited in comets observed at high spatial resolution. Ground-based observations of CO co-vibrational and rotational transitions will be extremely difficult due to lack of sensitivity and/or terrestrial absorption. However, CO should be detectable from a large comet with favorable observing geometry if the CO is a parent molecule present at the 10% level (or greater) relative to H2O. Observations using cooled, spaceborne instruments should be capable of detecting CO emission from even moderately bright comets.
NASA Astrophysics Data System (ADS)
Łuczko, Jan; Czerwiński, Andrzej
2016-07-01
The article presents an analysis of a model describing transverse vibrations of an elastic hose induced by non-harmonic fluid flow pulsation. The equation of motion is given as a nonlinear partial differential equation with periodically variable coefficients. The Galerkin method is employed, utilising orthogonal polynomials as shape functions. The effect of selected parameters on increased vibration intensity range and the character and form of vibrations is investigated. It is demonstrated that sub-harmonic and quasi-periodic vibrations can be induced in the simple and combination parametric resonance range. The occurrence of the parametric resonance phenomenon is evidenced by experimental data.
Semiclassical approaches to below-threshold harmonics
Hostetter, James A.; Tate, Jennifer L.; Schafer, Kenneth J.; Gaarde, Mette B.
2010-08-15
We study the generation of below-threshold harmonics in a model atom by extending the three-step semiclassical model of harmonic generation to include effects of the atomic potential. We explore the generalization of semiclassical trajectories of the electron in the presence of the combined laser-atom potential and calculate the intensity-dependent dipole phase associated with these trajectories. Our results are in good agreement with fully quantum mechanical calculations, as well as with recent experimental observations. We show that the so-called long trajectory readily generalizes to below-threshold harmonic generation and is relatively insensitive to the choice of initial conditions. We also find that the short trajectory can only lead to low-energy harmonics for electrons that have been released close to the ion core in a process that is closer to multiphoton than to tunnel ionization.
Semiclassical approaches to below-threshold harmonics
NASA Astrophysics Data System (ADS)
Hostetter, James A.; Tate, Jennifer L.; Schafer, Kenneth J.; Gaarde, Mette B.
2010-08-01
We study the generation of below-threshold harmonics in a model atom by extending the three-step semiclassical model of harmonic generation to include effects of the atomic potential. We explore the generalization of semiclassical trajectories of the electron in the presence of the combined laser-atom potential and calculate the intensity-dependent dipole phase associated with these trajectories. Our results are in good agreement with fully quantum mechanical calculations, as well as with recent experimental observations. We show that the so-called long trajectory readily generalizes to below-threshold harmonic generation and is relatively insensitive to the choice of initial conditions. We also find that the short trajectory can only lead to low-energy harmonics for electrons that have been released close to the ion core in a process that is closer to multiphoton than to tunnel ionization.
Vibration response of misaligned rotors
NASA Astrophysics Data System (ADS)
Patel, Tejas H.; Darpe, Ashish K.
2009-08-01
Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.
Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method
NASA Astrophysics Data System (ADS)
Muthu, S.; Prabhakaran, A.
2014-08-01
In this work, we reported the vibrational spectra of tranexamic acid (TA) by experimental and quantum chemical calculation. The solid phase FT-Raman and FT-IR spectra of the title compound were recorded in the region 4000 cm-1 to 100 cm-1 and 4000 cm-1 to 400 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of TA in the ground state have been calculated by using density functional theory (DFT) B3LYP method with standard 6-31G(d,p) basis set. The scaled theoretical wavenumber showed very good agreement with the experimental values. The vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The results show that ED in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electrostatic potential mapped onto an isodensity surface has been obtained. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.
Vibrational spectroscopy of resveratrol
NASA Astrophysics Data System (ADS)
Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő
2007-11-01
In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.
Berghout, H. Laine; Crim, F. Fleming; Zyrianov, Mikhail; Reisler, Hanna
2000-04-15
The combination of vibrationally mediated photofragment yield spectroscopy, which excites molecules prepared in single vibrational states, and multiphoton fluorescence spectroscopy, which excites molecules cooled in a supersonic expansion, provides detailed information on the energetics and vibrational structure of the first excited singlet state (S{sub 1}) of isocyanic acid (HNCO). Dissociation of molecules prepared in individual vibrational states by stimulated Raman excitation probes vibrational levels near the origin of the electronically excited state. Detection of fluorescence from dissociation products formed by multiphoton excitation through S{sub 1} of molecules cooled in a supersonic expansion reveals the vibrational structure at higher energies. Both types of spectra show long, prominent progressions in the N-C-O bending vibration built on states with different amounts of N-C stretching excitation and H-N-C bending excitation. Analyzing the spectra locates the origin of the S{sub 1} state at 32 449{+-}20 cm{sup -1} and determines the harmonic vibrational frequencies of the N-C stretch ({omega}{sub 3}=1034{+-}20 cm{sup -1}), the H-N-C bend ({omega}{sub 4}=1192{+-}19 cm{sup -1}), and the N-C-O bend ({omega}{sub 5}=599{+-}7 cm{sup -1}), values that are consistent with several ab initio calculations. The assigned spectra strongly suggest that the N-C stretching vibration is a promoting mode for internal conversion from S{sub 1} to S{sub 0}. (c) 2000 American Institute of Physics.
Vibrational contributions to the stability of point defects in bcc iron: A first-principles study
NASA Astrophysics Data System (ADS)
Lucas, G.; Schäublin, R.
2009-09-01
The purpose of this study is to investigate the modes of vibration of the self-interstitial atoms and the vacancy in bcc iron and to estimate how the vibrational properties can affect the stability of these defects. The phonon density of states of the vacancy and the self-interstitials have been calculated within the quasi harmonic approximation using density functional theory calculations. It was observed that self-interstitial atoms have several localized high frequency modes of vibration related to the stretching of the dumbbell bond, but also soft modes favoring their migration. From the phonon density of states, the vibrational contributions to the free energy have been estimated for finite temperatures. Results are compared to previous work performed by others using empirical potentials. We found a rather large formation entropy for the vacancy, SVf = 4.08 kB. Our results show that the vibrational entropy can have a significant influence on the formation of the point defects even at moderate temperature. Possible consequences on the mobility of these defects are also discussed.
Harmonic Electromagnetic Forces in Induction Motors
NASA Astrophysics Data System (ADS)
Ishibashi, Fuminori; Matsushita, Makoto; Noda, Shinichi
Recently, there has been increasing demand for quiet motors, and the same trend has been observed in the case of induction motors. In induction motors, electromagnetic noise is sometimes the predominant acoustic noise. In small motors, the major cause of vibration and noise is electromagnetic forces resulting from the combination of harmonic fluxes in the air gap. In this study, the spatial distribution of fundamental and harmonic time electromagnetic forces was studied by using search coils, by performing FEM analysis, and by using conventional equations. In a four-pole 2.2kW motor, harmonic electromagnetic forces were measured using 36 search coils on the inner surface of the stator teeth, and the spatial distribution of electromagnetic forces was obtained at each time harmonic frequency. Spatial distribution was also analyzed by FEM, and the results were analytically validated by using conventional equations. On the basis of these analyses, the spatial distribution of electromagnetic forces for various time harmonics was confirmed. These results can be used in the design and development of quiet motors.
Size-extensive vibrational self-consistent field method
NASA Astrophysics Data System (ADS)
Keçeli, Murat; Hirata, So
2011-10-01
The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the partial ^4 V / partial Q_i^2 partial Q_j^2 type, where V is the electronic energy and Qi is the ith normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures.
Coupled rotor/airframe vibration analysis
NASA Technical Reports Server (NTRS)
Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.
1982-01-01
A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.
Coupling between plate vibration and acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin
1992-01-01
A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.
VIBRATIONALLY EXCITED C{sub 6}H
Gottlieb, C. A.; McCarthy, M. C.; Thaddeus, P.
2010-08-15
Rotational spectra of the linear carbon chain radical C{sub 6}H in two low-lying excited vibrational states were observed both at millimeter wavelengths in a low-pressure glow discharge and at centimeter wavelengths in a supersonic molecular beam. Two series of harmonically related lines with rotational constants within 0.3% of the {sup 2{Pi}} ground state were assigned to the {sup 2{Sigma}} and {sup 2{Delta}} vibronic components of an excited bending vibrational level. Measurements of the intensities of the lines in the glow discharge indicate that the {sup 2{Sigma}} component lies very close to ground, but the {sup 2{Delta}} component is much higher in energy. The standard Hamiltonian for an isolated {sup 2{Delta}} state with five spectroscopic constants reproduces the observed rotational spectrum, but several high-order distortion terms in the spin-rotation interaction are needed to reproduce the spectrum of the {sup 2{Sigma}} component in C{sub 6}H and C{sub 6}D. The derived spectroscopic constants allow astronomers to calculate the rotational spectra of the {sup 2{Sigma}} and {sup 2{Delta}} states up to 260 GHz to within 0.1 km s{sup -1} or better in equivalent radial velocity.
Molecular vibrational states during a collision
NASA Technical Reports Server (NTRS)
Recamier, Jose A.; Jauregui, Rocio
1995-01-01
Alternative algebraic techniques to approximate a given Hamiltonian by a harmonic oscillator are described both for time-independent and time-dependent systems. We apply them to the description of a one dimensional atom-diatom collision. From the resulting evolution operator, we evaluate vibrational transition probabilities as well as other time-dependent properties. As expected, the ground vibrational state becomes a squeezed state during the collision.
Monitoring Bearing Vibrations For Signs Of Damage
NASA Technical Reports Server (NTRS)
Martinez, Carol L.
1991-01-01
Real-time spectral analysis of vibrations being developed for use in monitoring conditions of critical bearings in rotating machinery. Underlying concept simple and fairly well established: appearance and growth of vibrations at frequencies associated with rotations of various parts of bearing system indicate wear, damage, and imperfections of manufacture. Frequencies include fundamental and harmonics of frequency of rotation of ball cage, frequency of passage of balls, and frequency of rotation of shaft.
Workshop on Harmonic Oscillators
NASA Technical Reports Server (NTRS)
Han, D. (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)
1993-01-01
Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.
Vibrational circular dichroism of tetraphenylporphyrin in peptide complexes? A computational study.
Bour, P; Záruba, K; Urbanová, M; Setnicka, V; Matejka, P; Fiedler, Z; Král, V; Volka, K
2000-05-01
The Raman and absorption spectra of tetraphenylporphyrin (TPP) were calculated and compared to experiment. The computation was based on the harmonic molecular force field and electric tensors obtained ab initio at the BPW91/6-31G* level. Good agreement was found between experimental and calculated frequencies and intensities. In order to estimate whether induced optical activity in chiral complexes interferes with the signal of peptide vibrations, the vibrational circular dichroism (VCD) spectra of TPP were simulated. The magnetic field perturbation theory (MFP) and the gauge-invariant atomic orbitals (GIAO) were used for the simulation. Such spectra were compared to theoretical VCD intensities of a model tripeptide as well to experimental spectra of a complex of the peptide and tetrakis(p-sulfonatophenyl)porphyrin (TSPP). No significant contribution to VCD signal from the TPP residue was found in experimental spectra. Thus, possible peptide conformational changes occurring during the complexation can be monitored directly in the amide I frequency region. PMID:10790189
An Accurate Quartic Force Field and Vibrational Frequencies for HNO and DNO
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Lee, Timothy J.; Schwenke, David W.
1994-01-01
An accurate ab initio quartic force field for HNO has been determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, CCSD(T), in conjunction with the correlation consistent polarized valence triple zeta (cc-pVTZ) basis set. Improved harmonic frequencies were determined with the cc-pVQZ basis set. Fundamental vibrational frequencies were determined using a second-order perturbation theory analysis and also using variational calculations. The N-0 stretch and bending fundamentals are determined well from both vibrational analyses. The H-N stretch, however, is shown to have an unusually large anharmonic correction, and is not well determined using second-order perturbation theory. The H-N fundamental is well determined from the variational calculations, demonstrating the quality of the ab initio quartic force field. The zero-point energy of HNO that should be used in isodesmic reactions is also discussed.