Science.gov

Sample records for calculated nuclide compositions

  1. Calculation of the minimum critical mass of fissile nuclides

    SciTech Connect

    Wright, R Q; Hopper, Calvin Mitchell

    2008-01-01

    The OB-1 method for the calculation of the minimum critical mass of fissile actinides in metal/water systems was described in a previous paper. A fit to the calculated minimum critical mass data using the extended criticality parameter is the basis of the revised method. The solution density (grams/liter) for the minimum critical mass is also obtained by a fit to calculated values. Input to the calculation consists of the Maxwellian averaged fission and absorption cross sections and the thermal values of nubar. The revised method gives more accurate values than the original method does for both the minimum critical mass and the solution densities. The OB-1 method has been extended to calculate the uncertainties in the minimum critical mass for 12 different fissile nuclides. The uncertainties for the fission and capture cross sections and the estimated nubar uncertainties are used to determine the uncertainties in the minimum critical mass, either in percent or grams. Results have been obtained for U-233, U-235, Pu-236, Pu-239, Pu-241, Am-242m, Cm-243, Cm-245, Cf-249, Cf-251, Cf-253, and Es-254. Eight of these 12 nuclides are included in the ANS-8.15 standard.

  2. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    SciTech Connect

    Hu, Jianwei; Gauld, Ian C.

    2014-12-01

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried out to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.

  3. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    DOE PAGESBeta

    Hu, Jianwei; Gauld, Ian C.

    2014-12-01

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less

  4. TOF-Bρ mass measurements of very exotic nuclides for astrophysical calculations at the NSCL

    NASA Astrophysics Data System (ADS)

    Matoš, M.; Estrade, A.; Amthor, M.; Aprahamian, A.; Bazin, D.; Becerril, A.; Elliot, T.; Galaviz, D.; Gade, A.; Gupta, S.; Lorusso, G.; Montes, F.; Pereira, J.; Portillo, M.; Rogers, A. M.; Schatz, H.; Shapira, D.; Smith, E.; Stolz, A.; Wallace, M.

    2008-01-01

    Atomic masses play a crucial role in many nuclear astrophysics calculations. The lack of experimental values for relevant exotic nuclides triggered a rapid development of new mass measurement devices around the world. The time-of-flight (TOF) mass measurements offer a complementary technique to the most precise one, Penning trap measurements (Blaum 2006 Phys. Rep. 425 1), the latter being limited by the rate and half-lives of the ions of interest. The NSCL facility provides a well-suited infrastructure for the TOF mass measurements of very exotic nuclei. At this facility, we have recently implemented a TOF-Bρ technique and performed mass measurements of neutron-rich nuclides in the Fe region, important for r-process calculations and for calculations of processes occurring in the crust of accreting neutron stars.

  5. The CAIRN method: automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations

    NASA Astrophysics Data System (ADS)

    Marius Mudd, Simon; Harel, Marie-Alice; Hurst, Martin D.; Grieve, Stuart W. D.; Marrero, Shasta M.

    2016-08-01

    We report a new program for calculating catchment-averaged denudation rates from cosmogenic nuclide concentrations. The method (Catchment-Averaged denudatIon Rates from cosmogenic Nuclides: CAIRN) bundles previously reported production scaling and topographic shielding algorithms. In addition, it calculates production and shielding on a pixel-by-pixel basis. We explore the effect of sampling frequency across both azimuth (Δθ) and altitude (Δϕ) angles for topographic shielding and show that in high relief terrain a relatively high sampling frequency is required, with a good balance achieved between accuracy and computational expense at Δθ = 8° and Δϕ = 5°. CAIRN includes both internal and external uncertainty analysis, and is packaged in freely available software in order to facilitate easily reproducible denudation rate estimates. CAIRN calculates denudation rates but also automates catchment averaging of shielding and production, and thus can be used to provide reproducible input parameters for the CRONUS family of online calculators.

  6. Workshop on Cosmogenic Nuclides

    NASA Technical Reports Server (NTRS)

    Reedy, R. C. (Editor); Englert, P. (Editor)

    1986-01-01

    Abstracts of papers presented at the Workshop on Cosmogenic Nuclides are compiled. The major topic areas covered include: new techniques for measuring nuclides such as tandem accelerator and resonance mass spectrometry; solar modulation of cosmic rays; pre-irradiation histories of extraterrestrial materials; terrestrial studies; simulations and cross sections; nuclide production rate calculations; and meteoritic nuclides.

  7. CosmoCalc: An Excel add-in for cosmogenic nuclide calculations

    NASA Astrophysics Data System (ADS)

    Vermeesch, Pieter

    2007-08-01

    As dating methods using Terrestrial Cosmogenic Nuclides (TCN) become more popular, the need arises for a general-purpose and easy-to-use data reduction software. The CosmoCalc Excel add-in calculates TCN production rate scaling factors (using Lal, Stone, Dunai, and Desilets methods); topographic, snow, and self-shielding factors; and exposure ages, erosion rates, and burial ages and visualizes the results on banana-style plots. It uses an internally consistent TCN production equation that is based on the quadruple exponential approach of Granger and Smith (2000). CosmoCalc was designed to be as user-friendly as possible. Although the user interface is extremely simple, the program is also very flexible, and nearly all default parameter values can be changed. To facilitate the comparison of different scaling factors, a set of converter tools is provided, allowing the user to easily convert cut-off rigidities to magnetic inclinations, elevations to atmospheric depths, and so forth. Because it is important to use a consistent set of scaling factors for the sample measurements and the production rate calibration sites, CosmoCalc defines the production rates implicitly, as a function of the original TCN concentrations of the calibration site. The program is best suited for 10Be, 26Al, 3He, and 21Ne calculations, although basic functionality for 36Cl and 14C is also provided. CosmoCalc can be downloaded along with a set of test data from http://cosmocalc.googlepages.com.

  8. Cosmogenic nuclide production rates as a function of latitude and altitude calculated via a physics based model and excitation functions

    NASA Astrophysics Data System (ADS)

    Argento, D.; Reedy, R. C.; Stone, J. O.

    2012-12-01

    Cosmogenic nuclides have been used to develop a set of tools critical to the quantification of a wide range of geomorphic and climatic processes and events (Dunai 2010). Having reliable absolute measurement methods has had great impact on research constraining ice age extents as well as providing important climatic data via well constrained erosion rates, etc. Continuing to improve CN methods is critical for these sciences. While significant progress has been made in the last two decades to reduce uncertainties (Dunai 2010; Gosse & Phillips 2001), numerous aspects still need to be refined in order to achieve the analytic resolution desired by glaciologists and geomorphologists. In order to investigate the finer details of the radiation responsible for cosmogenic nuclide production, we have developed a physics based model which models the radiation cascade of primary and secondary cosmic-rays through the atmosphere. In this study, a Monte Carlo method radiation transport code, MCNPX, is used to model the galactic cosmic-ray (GCR) radiation impinging on the upper atmosphere. Beginning with a spectrum of high energy protons and alpha particles at the top of the atmosphere, the code tracks the primary and resulting secondary particles through a model of the Earth's atmosphere and into the lithosphere. Folding the neutron and proton flux results with energy dependent cross sections for nuclide production provides production rates for key cosmogenic nuclides (Argento et al. 2012, in press; Reedy 2012, in press). Our initial study for high latitude shows that nuclides scale at different rates for each nuclide (Argento 2012, in press). Furthermore, the attenuation length for each of these nuclide production rates increases with altitude, and again, they increase at different rates. This has the consequence of changing the production rate ratio as a function of altitude. The earth's geomagnetic field differentially filters low energy cosmic-rays by deflecting them away

  9. CHARACTERIZATION OF GRAPHITE SLEEVES FROM BUGEY 1 EDF PLANT FOR PERMANENT DISPOSAL--MEASUREMENT AND CALCULATION OF SCALING FACTORS FOR DIFFICULT-TO-MEASURE NUCLIDES

    SciTech Connect

    PONCET, Bernard R.

    2003-02-27

    Electricite De France's Bugey-1 reactor, with graphite moderator, was shutdown permanently in 1994. The natural uranium elements are encased in graphite sleeves to facilitate handling. 2,000 m3 of concrete containers, containing non conditioned graphite sleeves, must be characterized and conditioned before shipment to the national repository site called ''Centre de l'Aube''. The characterization work consists in quantifying Difficult-To-Measure nuclides (DTM) by the use of Scaling Factors (SF), which use Co-60 as tracer. Bugey developed an industrial method for the gamma counting of each package to perform easily and rapidly the measurement of the Co-60 content. Depending upon the DTM radionuclide, Co-60 scaling factors are determined, or by measurement on graphite samples (case of C-14, Cl-36, Ni-63, H-3), either by using a calculation technique which is based upon the impurities present in the graphite sleeves. This method is applied for the other pure beta emitters all DTM radionucli des : Ag-108m, Be-10, Ca-41, Cd-109, Cd-113m, Co-57, Cs-135, Cs-137, Eu-155, Fe-55, Gd-153, Mo-93, Nb- 93m, Nb-94, Ni-59, Pd-107, Pm-147, Sm-151, Sn-119m, Sn-121m, Sn-126, Sr-90, Tc-99, V-49 and Zr-93. Calculations use six sleeve history cases : 1 year at 50% power, 2 years at 50 % power, 3 years at 50 % power, 4 years at 50 % power, 1 year at 100 % power and 2 years at 100 % power. The DTM nuclides have been calculated from impurity concentrations for each of these six cases, and the greatest scaling factor has been kept. The calculation is based upon two impurity sets: First impurity set : a reverse activation calculation provides us with the best estimate value of impurities calculated from the measured mean gamma spectrum and from measured scaling factors. It consists in solving a system of simultaneous equations for the impurities as a function of the mean gamma radioactive spectrum and of the measured scaling factors. The concerned calculated impurities are Co, Cl, Li, Ag, Cs

  10. Absolute isotopic composition of molybdenum and the solar abundances of the p-process nuclides Mo92,94

    NASA Astrophysics Data System (ADS)

    Wieser, M. E.; de Laeter, J. R.

    2007-05-01

    The isotopic composition of molybdenum has been measured with high precision using a thermal ionization mass spectrometer, the linearity of which has been verified by measuring the isotopically-certified reference material for strontium (NIST 987). The abundance sensitivity of the mass spectrometer in the vicinity of the molybdenum ion beams has been carefully examined to ensure the absence of tailing effects. Particular care was given to ensuring that potential isobaric interferences from zirconium and ruthenium did not affect the measurement of the isotopic composition of molybdenum. Gravimetric mixtures of two isotopically enriched isotopes, Mo92 and Mo98, were analyzed mass spectrometrically to calibrate the mass spectrometer, in order to establish the isotope fractionation of the spectrometer for the molybdenum isotopes. This enabled the “absolute” isotopic composition of molybdenum to be determined. An accurate determination of the isotopic composition is required in order to calculate the atomic weight of molybdenum, which is one of the least accurately known values of all the elements. The absolute isotope abundances (in atom %) of molybdenum measured in this experiment are as follows: Mo92=14.5246±0.0015; Mo94=9.1514±0.0074; Mo95=15.8375±0.0098; Mo96=16.672±0.019; Mo97=9.5991±0.0073; Mo98=24.391±0.018; and Mo100=9.824±0.050, with uncertainties at the 1s level. These values enable an atomic weight Ar(Mo) of 95.9602±0.0023 (1s) to be calculated, which is slightly higher than the current Standard Atomic Weight Ar(Mo) =95.94±0.02 and with a much improved uncertainty interval. These “absolute” isotope abundances also enable the Solar System abundances of molybdenum to be calculated for astrophysical purposes. Of particular interest are the Solar System abundances of the two p-process nuclides—Mo92 and Mo94, which are present in far greater abundance than p-process theory suggests. The Solar System abundances for Mo92 and Mo94 of 0.364±0

  11. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    NASA Astrophysics Data System (ADS)

    Nevinitsa, V. A.; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N.; Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.

    2015-12-01

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing 233U from 232Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  12. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    SciTech Connect

    Nevinitsa, V. A. Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N.; Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.

    2015-12-15

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing {sup 233}U from {sup 232}Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  13. Factors affecting production rates of cosmogenic nuclides in extraterrestrial matter

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.

    2015-10-01

    Good production rates are needed for cosmic-ray-produced nuclides to interpret their measurements. Rates depend on many factors, especially the pre-atmospheric object's size, the location of the sample in that object (such as near surface or deep inside), and the object's bulk composition. The bulk composition affects rates, especially in objects with very low and very high iron contents. Extraterrestrial materials with high iron contents usually have higher rates for making nuclides made by reactions with energetic particles and lower rates for the capture of thermal neutrons. In small objects and near the surface of objects, the cascade of secondary neutrons is being developed as primary particles are being removed. Deep in large objects, that secondary cascade is fully developed and the fluxes of primary particles are low. Recent work shows that even the shape of an object in space has a small but measureable effect. Work has been done and continues to be done on better understanding those and other factors. More good sets of measurements in meteorites with known exposure geometries in space are needed. With the use of modern Monte Carlo codes for the production and transport of particles, the nature of these effects have been and is being studied. Work needs to be done to improve the results of these calculations, especially the cross sections for making spallogenic nuclides.

  14. a Quantitative Method for Analyzing Radioactive Nuclides in Infinite Composite Materials Using High-Resolution Gamma-Ray Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Day, John Henry, Jr.

    1982-03-01

    A theory is formulated in which the concentration of a radionuclide uniformly distributed throughout an infinite medium is related to the photopeak count rate of a signature gamma ray acquired by a detector within the medium. The mass fraction of the i('th) radionuclide in the medium is given by f(,i) = W(,i)(psi)(,i) (E)/(lamda)(,i)I(,I)(E)K(E); where (psi)(,i)(E) and I(,i)(E) are the observed photopeak count rate and absolute intensity for a gamma-ray emission of energy E. (lamda)(,i) and W(,i) are the decay constant and isotopic mass, respectively. It is shown that the function K(E) is a source volume integration over(' )(epsilon)(E,R)B(E,R)exp( -(SIGMA)(mu)(E)r(R))/(VBAR)R(VBAR)('2) which depends on gamma-ray energy only. Values of the narrow-beam attenuation coefficient (mu) are known for many materials. However, several laboratory experiments are performed in order to obtain data from which to empirically determine the detector response function (epsilon)(E,R)(' )and the gamma-ray build -up-factor(' )B(E,R). Special experimental instrumentation for analyzing radionuclides in infinite composite materials using high -resolution gamma-ray spectrometry is introduced. A probe is constructed which contains a coaxial high-purity germanium crystal to detect the gamma rays, a cryostat to cool the crystal and electronic circuitry to process the signal from the detector. Laboratory models of natural formations are prepared using high-grade radioactive samples diluted with silicon dioxide to obtain the desired concentrations. Each model is sampled to obtain X-ray fluorescence, delayed neutron and fluorimetric analysis from independent laboratories to compare with results using the method presented in this work.

  15. Nuclide Guide and International Chart of Nuclides - 2008

    NASA Astrophysics Data System (ADS)

    Golashvili, T.

    2009-08-01

    New versions of Nuclide Guide and Chart of the Nuclides were developed as a result of Russian-Chinese collaboration. The Nuclide Guide contains the basic information on more than 3000 radioactive and stable nuclides. The characteristics of isomers with half-lives more than 1 ms are included. For each nuclide spin, parity, mass of nuclide, magnetic moment (if available), mass excess, half-life or abundance, decay modes, branching ratios, emitted particles, energies of most intense gamma-rays and their intensities, decay energies and mean values of radiation energy per decay are given. For stable and natural long-lived nuclides cross-sections of thermal neutron induced activation are indicated. The information presented in the Guide was compiled from 5 sources: 1) ENSDF-2008, 2) atomic mass evaluation-2005 by Audi and Wapstra, 3) interactive data bases at web-sites , , 4) original evaluations of authors, 5) recent publications. The International Chart ot Nuclides was developed on the basis of information presented in Nuclide Guide.

  16. Approximate flash calculations for equation-of-state compositional models

    SciTech Connect

    Nghiem, L.X.; Li, Y.K.

    1985-02-01

    An approximate method for flash calculations (AFC) with an equation of state is presented. The equations for AFC are obtained by linearizing the thermodynamic equilibrium equations at an equilibrium condition termed reference condition. The AFC equations are much simpler than the actual equations for flash calculations and yet give almost the same results. A procedure for generating new reference conditions to keep the AFC results close to the true flash calculation (TFC) results is described. AFC is compared to TFC in the calculation of standard laboratory tests and in the simulation of gas injection processes with a composition model. Excellent results are obtained with AFC in less than half the original execution time.

  17. Chart of the Nuclides

    Energy Science and Technology Software Center (ESTSC)

    1999-03-23

    Nucleus is an interactive PC-based graphical viewer of NUBASE nuclear property data. NUBASE contains experimentally known nuclear properties, together with some values that have been estimated from extrapolation of experimental data for 3010 nuclides. NUBASE also contains data on those isomeric states that have half-lives greater than 1 millisecond; there are 669 such nuclides of which 58 have more than one isomeric state. The latest version of NUCLEUS-CHART has been corrected to include the namesmore » and the chemical symbols of the elements 104 to 109 that have been finally adopted by the Commission on Nomenclature of Inorganic Chemistry (CNIC) of the International Union of Pure and Applied Chemistry (IUPAC). They differ from those recommended by the same commission a few years before and that were widely used in the evaluations AME''95 and NUBASE''97. It results in some shuffling of the names and symbols, that may cause confusion in the near future. At AMDC we''ll be as careful as possible to try to avoid such confusion. In advance we apologize if any will occur in the future and recommend the user to always double check these few names.« less

  18. Chart of the Nuclides

    SciTech Connect

    Sartori, Enrico

    1999-03-23

    Nucleus is an interactive PC-based graphical viewer of NUBASE nuclear property data. NUBASE contains experimentally known nuclear properties, together with some values that have been estimated from extrapolation of experimental data for 3010 nuclides. NUBASE also contains data on those isomeric states that have half-lives greater than 1 millisecond; there are 669 such nuclides of which 58 have more than one isomeric state. The latest version of NUCLEUS-CHART has been corrected to include the names and the chemical symbols of the elements 104 to 109 that have been finally adopted by the Commission on Nomenclature of Inorganic Chemistry (CNIC) of the International Union of Pure and Applied Chemistry (IUPAC). They differ from those recommended by the same commission a few years before and that were widely used in the evaluations AME''95 and NUBASE''97. It results in some shuffling of the names and symbols, that may cause confusion in the near future. At AMDC we''ll be as careful as possible to try to avoid such confusion. In advance we apologize if any will occur in the future and recommend the user to always double check these few names.

  19. The computation of body composition data using a programmable calculator.

    PubMed

    Withers, R T

    1986-01-01

    A body composition programme has been developed for the Texas Instruments TI 59 programmable calculator and printer. The methodology involves the determination of body density by underwater weighing with the ventilated residual volume being measured by helium dilution. Some of the labelled output variables included on the printout are: body density, percent body fat, fat mass and fat free mass. PMID:3755094

  20. Cosmogenic nuclide budgeting of floodplain sediment transfer

    NASA Astrophysics Data System (ADS)

    Wittmann, H.; von Blanckenburg, F.

    2009-08-01

    Cosmogenic nuclides produced in quartz may either decay or accumulate while sediment is moved through a river basin. A change in nuclide concentration resulting from storage in a floodplain is potentially important in large drainage basins in which sediment is prone to repeated burial and remobilization as a river migrates through its floodplain. We have modeled depth- and time-dependent cosmogenic nuclide concentration changes for 10Be, 26Al, and 14C during sediment storage and mixing in various active floodplain settings ranging from confined, shallow rivers with small floodplains to foreland-basin scale floodplains traversed by deep rivers. Floodplain storage time, estimated from channel migration rates, ranges from 0.4 kyr for the Beni River basin (Bolivia) to 7 kyr for the Amazon River basin, while floodplain storage depth, estimated from channel depth, ranges from 1 to 25 m. For all modeled active floodplain settings, the long-lived nuclides 10Be and 26Al show neither significant increase in nuclide concentration from irradiation nor decrease from decay. We predict a hypothetical response time after which changes in 10Be or 26Al concentrations become analytically resolvable. This interval ranges from 0.07 to 2 Myr and exceeds in all cases the typical residence time of sediment in a floodplain. Due to the much shorter half life of 14C, nuclide concentrations modeled for the in situ-produced variety of this nuclide are, however, sensitive to floodplain storage on residence times of < 20 kyr. The cosmogenic nuclide composition of old deposits in currently inactive floodplains that have been isolated for periods of millions of years from the river that once deposited them is predicted to either increase or decrease in 10Be and 26Al concentration, depending on the depositional depth. These conditions can be evaluated using the 26Al/ 10Be ratio that readily discloses the depth and duration of storage. We illustrate these models with examples from the Amazon basin

  1. Nuclide production by primary cosmic-ray protons

    SciTech Connect

    Reedy, R.C.

    1986-01-01

    The production rates of cosmogenic nuclides in the solar system and in interstellar space were calculated for the primary protons in the galactic and solar cosmic rays. At 1 AU, the long-term average fluxes of solar protons usually produce many more atoms of a cosmogenic nuclide than the primary protons in the galactic cosmic rays (GCR), the exceptions being nuclides made only by high-energy reactions (like /sup 10/Be). Because the particle fluxes inside meteorites and other large objects in space include many secondary neutrons, the production rates are much higher and ratios inside large objects are often very different from those by just the primary GCR protons in small objects. The production rates of cosmogenic nuclides are calculated to vary by about factors of 2.5 during at typical 11-year solar cycle, in agreement with measurements of short-lived radionuclides in recently fallen meteorites. The production of cosmogenic nuclides by the GCR particles outside the heliosphere is higher than that by the modulated GCR primaries normally in the solar system. However, there is considerable uncertainty in the fluxes of interstellar protons and, therefore, in the production rates of cosmogenic nuclides in interstellar space. Production rates and ratios for cosmogenic nuclides would be able to identify particles that were small in space or that were exposed to an unmodulated spectrum of GCR particles. 25 refs., 2 figs., 2 tabs.

  2. Approximate flash calculations for equation-of-state compositional models--

    SciTech Connect

    Nghiem, L.X.; Li, Y.K. )

    1990-02-01

    An approximate flash-calculation (AFC) method with an equation of state (EOS) is presented. The equations for AFC are obtained by linearizing the thermodynamic equilibrium equations at an equilibrium condition called the reference condition. The AFC equations are much simpler than the actual equations for flash calculations and yet give almost the same results. A procedure for generating new reference conditions to keep the AFC results close to the true flash-calculation (TFC) results is described. AFC is compared with TFC in the calculation of standard laboratory tests and in the simulation of gas-injection processes with a compositional model. Excellent results are obtained with AFC in less than half the original execution time.

  3. Lattice calculation of composite dark matter form factors

    NASA Astrophysics Data System (ADS)

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Cheng, M.; Cohen, S. D.; Fleming, G. T.; Kiskis, J.; Lin, M. F.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Voronov, G.; Vranas, P.; Wasem, J.

    2013-07-01

    Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf=2 and 6 degenerate fermions in the fundamental representation. We calculate the (connected) charge radius and anomalous magnetic moment, both of which can play a significant role for direct detection of composite dark matter. We find minimal Nf dependence in these quantities. We generate mass-dependent cross sections for dark matter-nucleon interactions and use them in conjunction with experimental results from XENON100, excluding dark matter candidates of this type with masses below 10 TeV.

  4. Application of different nuclides in retrospective dosimetry

    SciTech Connect

    Konheiser, J.; Mittag, S.; Viehrig, H.W.; Gleisberg, B.

    2011-07-01

    The activities of nuclides produced via the neutron irradiation of reactor pressure vessel (RPV) steel are used to validate respective fluence calculations. Niobium, nickel, and technetium isotopes from RPV trepans of the decommissioned NPP Greifswald (VVER-440) have been analyzed. The activities were determined by TRAMO (Monte-Carlo) fluence calculations, newly applying 640 neutron-energy groups and ENDF/B7 data. Relative to earlier results, fluences up to 20% higher have been computed, leading to somewhat better agreement between measurement and calculation, particularly in the case of Tc-99. (authors)

  5. Unconventional Nuclides for Radiopharmaceuticals

    PubMed Central

    Holland, Jason P.; Williamson, Matthew J.; Lewis, Jason S.

    2016-01-01

    Rapid and widespread growth in the use of nuclear medicine for both diagnosis and therapy of disease has been the driving force behind burgeoning research interests in the design of novel radiopharmaceuticals. Until recently, the majority of clinical and basic science research has focused on the development of 11C-, 13N-, 15O-, and 18F-radiopharmaceuticals for use with positron emission tomography (PET) and 99mTc-labeled agents for use with single-photon emission computed tomography (SPECT). With the increased availability of small, low-energy cyclotrons and improvements in both cyclotron targetry and purification chemistries, the use of “nonstandard” radionuclides is becoming more prevalent. This brief review describes the physical characteristics of 60 radionuclides, including β+, β−, γ-ray, and α-particle emitters, which have the potential for use in the design and synthesis of the next generation of diagnostic and/or radiotherapeutic drugs. As the decay processes of many of the radionuclides described herein involve emission of high-energy γ-rays, relevant shielding and radiation safety issues are also considered. In particular, the properties and safety considerations associated with the increasingly prevalent PET nuclides 64Cu, 68Ga, 86Y, 89Zr, and 124I are discussed. PMID:20128994

  6. Composite electron propagator methods for calculating ionization energies

    NASA Astrophysics Data System (ADS)

    Díaz-Tinoco, Manuel; Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.

    2016-06-01

    Accurate ionization energies of molecules may be determined efficiently with composite electron-propagator (CEP) techniques. These methods estimate the results of a calculation with an advanced correlation method and a large basis set by performing a series of more tractable calculations in which large basis sets are used with simpler approximations and small basis sets are paired with more demanding correlation techniques. The performance of several CEP methods, in which diagonal, second-order electron propagator results with large basis sets are combined with higher-order results obtained with smaller basis sets, has been tested for the ionization energies of closed-shell molecules from the G2 set. Useful compromises of accuracy and computational efficiency employ complete-basis-set extrapolation for second-order results and small basis sets in third-order, partial third-order, renormalized partial-third order, or outer valence Green's function calculations. Analysis of results for vertical as well as adiabatic ionization energies leads to specific recommendations on the best use of regular and composite methods. Results for 22 organic molecules of interest in the design of photovoltaic devices, benzo[a]pyrene, Mg-octaethylporphyrin, and C60 illustrate the capabilities of CEP methods for calculations on large molecules.

  7. Composite electron propagator methods for calculating ionization energies.

    PubMed

    Díaz-Tinoco, Manuel; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V

    2016-06-14

    Accurate ionization energies of molecules may be determined efficiently with composite electron-propagator (CEP) techniques. These methods estimate the results of a calculation with an advanced correlation method and a large basis set by performing a series of more tractable calculations in which large basis sets are used with simpler approximations and small basis sets are paired with more demanding correlation techniques. The performance of several CEP methods, in which diagonal, second-order electron propagator results with large basis sets are combined with higher-order results obtained with smaller basis sets, has been tested for the ionization energies of closed-shell molecules from the G2 set. Useful compromises of accuracy and computational efficiency employ complete-basis-set extrapolation for second-order results and small basis sets in third-order, partial third-order, renormalized partial-third order, or outer valence Green's function calculations. Analysis of results for vertical as well as adiabatic ionization energies leads to specific recommendations on the best use of regular and composite methods. Results for 22 organic molecules of interest in the design of photovoltaic devices, benzo[a]pyrene, Mg-octaethylporphyrin, and C60 illustrate the capabilities of CEP methods for calculations on large molecules. PMID:27305999

  8. Cosmogenic nuclides: Observable effects of Martian volatiles

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Drake, D. M.; Feldman, W. C.

    1988-01-01

    Cosmic-ray produced (cosmogenic) nuclides in returned Martian samples could be used to study the amounts and distributions of volatiles in the recent past on Mars. In planning for the gamma-ray spectrometer experiment that is scheduled to fly on the Mars Observer, many calculations were done on the nuclear reactions that should occur in the Martian surface, studying especially the production and transport of neutrons. It is found that three aspects of Mars can very significantly affect the production of cosmogenic products in Mars: the Martian atmosphere and the presence of H2O in or CO2 on the surface of Mars. These volatile components can greatly affect the energy and spatial distributions of neutrons, expecially those with thermal or near thermal energies, in the surface of Mars. In turn, these neutrons produce many cosmogenic nuclides that can be observed in samples returned from Mars.

  9. Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza M.-R.; Mbarek, Rostom

    2015-12-01

    Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At

  10. Nuclide Importance and the Steady-State Burnup Equation

    SciTech Connect

    Sekimoto, Hiroshi; Nemoto, Atsushi

    2000-05-15

    Conventional methods for evaluating some characteristic values of nuclides relating to burnup in a given neutron spectrum are reviewed in a mathematically systematic way, and a new method based on the importance theory is proposed. In this method, these characteristic values of a nuclide are equivalent to the importances of the nuclide. By solving the equation adjoint to the steady-state burnup equation with a properly chosen source term, the importances for all nuclides are obtained simultaneously.The fission number importance, net neutron importance, fission neutron importance, and absorbed neutron importance are evaluated and discussed. The net neutron importance is a measure directly estimating neutron economy, and it can be evaluated simply by calculating the fission neutron importance minus the absorbed neutron importance, where only the absorbed neutron importance depends on the fission product. The fission neutron importance and absorbed neutron importance are analyzed separately, and detailed discussions of the fission product effects are given for the absorbed neutron importance.

  11. Solar-Cosmic-Ray-Produced Nuclides in Extraterrestrial Matter

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.

    2000-01-01

    There are two main types of cosmic rays that have sufficient energy to induce nuclear reactions -- the galactic cosmic rays (GCR) and solar cosmic rays (also called solar energetic particles). Both types of particles can have production rates and production ratios in the small objects often found in cold and hot deserts that are different from those seen for most meteorites, which typically have radii of approx.10-100 centimeters. GCR production rates are often lower than those for most meteorites. GCR production ratios, such as Ne-22/Ne-21, are also often different in small objects. Smaller meteoroids also are more likely to have nuclides made by solar-cosmic-ray (SCR) particles than typically-sized meteorites. The very small meteorite Salem had large amounts of SCR-produced radionuclides. Meteorites recovered in Antarctica are more likely to contain SCR-produced nuclides than other meteorites. Martian and lunar meteorites are also likely to have SCR-produced nuclides. Production rates and profiles for SCR-produced nuclides in meteoroids have been calculated previously. However, the cross sections for the nuclear reactions making many SCR-produced nuclides, such as Be-10, were not well measured then. New rates and profiles are calculated here using good cross sections for the reactions making these nuclides.

  12. Solar-Cosmic-Ray-Produced Nuclides in Extraterrestrial Matter

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.

    1999-01-01

    There are two main types of cosmic rays that have sufficient energy to induce nuclear reactions -- the galactic cosmic rays (GCR) and solar cosmic rays (also called solar energetic particles). Both types of particles can have production rates and production ratios in the small objects often found in cold and hot deserts that are different from those seen for most meteorites, which typically have radii of approx. 10-100 centimeters. GCR production rates are often lower than those for most meteorites. GCR production ratios, such as Ne-22/Ne-21, are also often different in small objects. Smaller meteoroids also are more likely to have nuclides made by solar-cosmic-ray (SCR) particles than typically-sized meteorites. The very small meteorite Salem had large amounts of SCR-produced radionuclides. Meteorites recovered in Antarctica are more likely to contain SCR-produced nuclides than other meteorites. Martian and lunar meteorites are also likely to have SCR-produced nuclides. Production rates and profiles for SCR-produced nuclides in meteoroids have been calculated previously. However, the cross sections for the nuclear reactions making many SCR-produced nuclides, such as Be-10 were not well measured then. New rates and profiles are calculated here using good cross sections for the reactions making these nuclides.

  13. Calculated stormtime variations in plasmaspheric thermal ion composition

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Mayr, H. G.; Harris, I.

    1983-01-01

    Model calculations describing stormtime variations in the earth's dayside plasmasphere are used to examine variations in ion composition. The model storm is initiated by high-latitude thermospheric heating that generates meridional winds that carry neutral species, momentum, and energy equatorward. The thermosphere acts on the plasmasphere through collisional transfer of momentum and through chemical reactions between neutral species and ions. Over latitudes near the region of thermospheric heating, the thermosphere-plasmasphere coupling processes cause enhancement in the density of oxygen ions while protons are being lost. Meanwhile, densities of oxygen ions and protons near the equator are increasing together, almost in phase. The largest enhancements in ion density develop at latitudes near 45 deg invariant for both oxygen and hydrogen.

  14. International Chart of the Nuclides - 2003

    SciTech Connect

    Zhao Zhixiang; Zhuang Youxiang; Zhou Chunmei; Huang Xiaolong; Antony, M.S.; Hasegawa, Akira; Katakura, Junichi; Golashvili, T.V.; Kupriyanov, V.M.; Lbov, A.A.; Demidov, A.P.; Chechev, V.P.

    2005-05-24

    The International Chart of Nuclides - 2003 has been developed taking into account the data obtained in 1998 - 2003. Unlike widespread nuclide charts the present Chart of Nuclides contains EVALUATED values of the main characteristics. These values are supplied with the standard deviations. The presented data are applicable in medicine, agriculture, environmental protection etc.

  15. Plumbing Neutron Stars to New Depths with the Binding Energy of the Exotic Nuclide Zn82

    NASA Astrophysics Data System (ADS)

    Wolf, R. N.; Beck, D.; Blaum, K.; Böhm, Ch.; Borgmann, Ch.; Breitenfeldt, M.; Chamel, N.; Goriely, S.; Herfurth, F.; Kowalska, M.; Kreim, S.; Lunney, D.; Manea, V.; Minaya Ramirez, E.; Naimi, S.; Neidherr, D.; Rosenbusch, M.; Schweikhard, L.; Stanja, J.; Wienholtz, F.; Zuber, K.

    2013-01-01

    Modeling the composition of neutron-star crusts depends strongly on binding energies of neutron-rich nuclides near the N=50 and N=82 shell closures. Using a recent development of time-of-flight mass spectrometry for on-line purification of radioactive ion beams to access more exotic species, we have determined for the first time the mass of Zn82 with the ISOLTRAP setup at the ISOLDE-CERN facility. With a robust neutron-star model based on nuclear energy-density-functional theory, we solve the general relativistic Tolman-Oppenheimer-Volkoff equations and calculate the neutron-star crust composition based on the new experimental mass. The composition profile is not only altered but now constrained by experimental data deeper into the crust than before.

  16. A three dimensional calculation of elastic equilibrium for composite materials

    NASA Technical Reports Server (NTRS)

    Lustman, Liviu R.; Rose, Milton E.

    1988-01-01

    A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.

  17. A three dimensional calculation of elastic equilibrium for composite materials

    NASA Technical Reports Server (NTRS)

    Lustman, Liviu R.; Rose, Milton E.

    1986-01-01

    A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.

  18. Statistical Uncertainty Analysis Applied to Criticality Calculation

    SciTech Connect

    Hartini, Entin; Andiwijayakusuma, Dinan; Susmikanti, Mike; Nursinta, A. W.

    2010-06-22

    In this paper, we present an uncertainty methodology based on a statistical approach, for assessing uncertainties in criticality prediction using monte carlo method due to uncertainties in the isotopic composition of the fuel. The methodology has been applied to criticality calculations with MCNP5 with additional stochastic input of the isotopic fuel composition. The stochastic input were generated using the latin hypercube sampling method based one the probability density function of each nuclide composition. The automatic passing of the stochastic input to the MCNP and the repeated criticality calculation is made possible by using a python script to link the MCNP and our latin hypercube sampling code.

  19. Simulations of Terrestrial in-situ Cosmogenic-Nuclide Production

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Nishiizumi, K.; Lal, D.; Arnold, J. R.; Englert, P. A. J.; Klein, J.; Middleton, R.; Jull, A. J. T.; Donahue, D. J.

    1994-01-01

    Targets of silicon and silicon dioxide were irradiated with spallation neutrons to simulate the production of long-lived radionuclides in the surface of the Earth. Gamma-ray spectroscopy was used to measure Be-7 and Na-22, and accelerator mass spectrometry was used to measure Be-10, C-14, and Al-26. The measured ratios of these nuclides are compared with calculated ratios and with ratios from other simulations and agree well with ratios inferred from terrestrial samples.

  20. Thick-Target Simulation Experiments as a Basis for Consistent Modeling of Cosmogenic Nuclide Production in Extraterrestrial Matter

    NASA Astrophysics Data System (ADS)

    Michel, R.; Lange, H.-J.; Leya, I.; Herpers, U.; Meltzow, B.; Dittrich-Hannen, B.; Suter, M.; Kubik, P. W.

    1995-09-01

    Cosmogenic nuclide production rates in meteoroids depend on size and bulk chemical composition of the meteoroid, on the shielding depth and the chemical composition of a sample in it, on spectral distribution, composition and intensity of solar and galactic cosmic radiation, and on the possibly complex exposure history. Except for bulk and sample chemical compositions, all parameters are unknown and must be reconstructed. In order to interpret cosmogenic nuclide abundances in meteorites with respect to their exposure histories, to reconstruct the preatmospheric shapes of the meteoroids and to draw conclusions about long-term spectral distributions and intensities of the cosmic radiation, reliable model calculations of producton rates must be available. The lack of knowledge about the parameters which influence the production rates causes ambiguity of empirical and physical model calculations, if exclusively meteorite data are taken into account. Physical models of cosmogenic nuclide production in meteoroids without free parameters can be established on the basis of thick-target experiments by which the cosmic ray exposure of meteoroids in space is simulated as close as possible under completely controlled conditions. During recent years, we have performed five such experiments to simulate the exposure of meteoroids to galactic protons [1-6]. Here, we report new results on the latest one of these experiments, in which an artificial iron meteoroid made of steel with a radius of 10 cm was isotropically irradiated by 1.6 GeV protons [4,5]. Measurements and evaluation are now completed for shortand mediumlived radionuclides. Results for long-lived nuclides by AMS and of stable rare gas isotopes are partially available with additional measurements still going on. The results obtained up to now for radionuclide production are presented and discussed with respect to some aspects of the production of cosmogenic nuclides in iron meteoroids and of the influence of bulk

  1. Prediction of fiber composite mechanical behavior made simple. [using a rocket calculator

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1980-01-01

    The elastic properties and failure stresses of angleplied fiber composite laminates were determined using a pocket calculator. The procedure uses simple equations and appropriate graphs of elastic properties versus angle plies, and can handle all types of fiber composites including hybrids. The versatility and generality of the method is illustrated in several step-by-step numerical examples.

  2. Cosmogenic Nuclides Study of Large Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Hutzler, A.; Smith, T.; Rochette, P.; Bourles, D. L.; Leya, I.; Gattacceca, J.

    2014-09-01

    Six large iron meteorites were selected (Saint-Aubin, Mont-Dieu, Caille, Morasko, Agoudal, and Gebel Kamil). We measured stable and radiogenic cosmogenic nuclides, to study pre-atmospheric size, cosmic-ray exposure ages and terrestrial ages.

  3. Ab initio calculations on magnetism induced by composite defects in magnesium oxide

    SciTech Connect

    Zhang, Yao-Fang; Feng, Min; Shao, Bin; Lu, Yuan; Zuo, Xu; Liu, Hong

    2014-05-07

    The local magnetic state induced by the composite defects, composed of an oxygen vacancy and a nitrogen substituting oxygen, in magnesium oxide has been studied by using ab initio calculation based on density functional theory. The calculated results show that local magnetic moment can be induced by the composite defects around the oxygen vacancy, when the exchange split of the oxygen vacancy is enhanced either by the hybridization between the N-p and nearest neighbor O-p orbitals or by applying on-site Coulomb repulsion (U) and exchange interaction (J). We show that the magnetic state induced by the composite defect is energetically more stable than the non-magnetic state. In addition, we show that the U and J applied on the p-orbitals of N and O atoms may significantly impact the calculated magnetic state of the composite defect, resulting in magnetic state for a configuration that is non-magnetic by generalized gradient approximation.

  4. Nuclear fission of neutron-deficient protactinium nuclides

    SciTech Connect

    Nishinaka, I.; Nagame, Y.; Tsukada, K.; Ikezoe, H.; Sueki, K.; Nakahara, H.; Tanikawa, M.; Ohtsuki, T.

    1997-08-01

    Fragment velocity, kinetic energy, mass yield, and element yield distributions in the fission of neutron-deficient Pa isotopes produced in the reactions of {sup 16}O and {sup 18}O on {sup 209}Bi have been measured at incident beam energies near and above the Coulomb barriers by the time-of-flight and radiochemical methods. An asymmetric mass-division component has been observed. Measured fission cross sections were compared with the results of statistical model calculations which take into account two fission barrier heights for symmetric and asymmetric yields. The fission barrier height deduced for the asymmetric fission is found slightly lower than that for the symmetric one. The difference between the two barrier heights in the fission of the present protactinium nuclides (N{approximately}135) is considerably smaller than that in the neutron-rich nuclide of {sup 233}Pa (N{approximately}142), indicating that the difference sensitively depends on the neutron number of the fissioning nuclide. {copyright} {ital 1997} {ital The American Physical Society}

  5. Production systematics of cosmogenic nuclides in the earth

    SciTech Connect

    Reedy, R.C.

    1995-01-01

    The high-energy particles in the galactic cosmic rays, (GCR) can produce nuclides deep in any object exposed to them. These cosmic-ray-produced (cosmogenic) nuclides have been extensively studied during the last four decades, mainly in meteorites and lunar samples (e.g., 1,2). In extraterrestrial matter, several approaches have been used to determine the production systematics of these cosmogenic nuclides. Production rates of most cosmogenic nuclides in the Earth axe much lower, especially those nuclides made ``in situ`` in the Earth`s surface. Many of these @trial cosmogenic nuclides are only now being measured because of improved techniques, such as accelerator mass spectrometry (AMS). There have been very few determinations of the production rates of nuclides made in the Earth by cosmic rays. The work being done for terrestrial cosmogenic nuclides is following the approaches used for, studying the production of extraterrestrial nuclides.

  6. Thermodynamic method of calculating the effect of alloying additives on interphase interaction in composite materials

    NASA Technical Reports Server (NTRS)

    Tuchinsky, L. I.

    1986-01-01

    The effect of alloying additives to the matrix of a composite on the high temperature solubility rate of a single component fiber was analyzed thermodynamically. With an example of binary Ni alloys, with Group IV-VI transition metals reinforced with W fibers, agreement between the calculated and experimental data was demonstrated.

  7. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  8. Scan angle calculation and image compositing for the Mexico Forest Mapping Project. Forest Service research note

    SciTech Connect

    Zhu, Z.

    1994-02-01

    Data from the Advanced Very High Resolution Radiometer (AVHRR) were used in a cooperative project, sponsored by the U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, and the United Nations, Food and Agriculture Organization (FAO), to map Mexico's forest cover types. To provide satisfactory AVHRR data sets for the project, the sensor scan angle needed to be calculated for data points in the composite image data, and the clouds had to be removed and composite image data created from individual data sets. Techniques used to accomplish those two tasks are described here. Concepts illustrated here should be applicable to other similar projects.

  9. Cosmogenic nuclides in cometary materials: Implications for rate of mass loss and exposure history

    NASA Technical Reports Server (NTRS)

    Herzog, G. F.; Englert, P. A. J.; Reedy, R. C.

    1989-01-01

    As planned, the Rosetta mission will return to earth with a 10-kg core and a 1-kg surface sample from a comet. The selection of a comet with low current activity will maximize the chance of obtaining material altered as little as possible. Current temperature and level of activity, however, may not reliably indicate previous values. Fortunately, from measurements of the cosmogenic nuclide contents of cometary material, one may estimate a rate of mass loss in the past and perhaps learn something about the exposure history of the comet. Perhaps the simplest way to estimate the rate of mass loss is to compare the total inventories of several long-lived cosmogenic radionuclides with the values expected on the basis of model calculations. Although model calculations have become steadily more reliable, application to bodies with the composition of comets will require some extension beyond the normal range of use. In particular, the influence of light elements on the secondary particle cascade will need study, in part through laboratory irradiations of volatile-rich materials. In the analysis of cometary data, it would be valuable to test calculations against measurements of short-lived isotopes.

  10. Accelerator experiments on the contribution of secondary particles to the production of cosmogenic nuclides in meteorites

    NASA Technical Reports Server (NTRS)

    Dragovitsch, P.; Englert, P.

    1985-01-01

    Through the interaction of galactic cosmic particle radiation (GCR) a wide variety of cosmogenic nuclides is produced in meteorites. They provide historical information about the cosmic radiation and the bombarded meteorites. An important way to understand the production mechanisms of cosmogenic nuclides in meteorites is to gather information about the depth and size dependence of the build-up of Galactic Rays Cosmic-secondary particles within meteorites of different sizes and chemical compositions. Simulation experiments with meteorite models offer an alternative to direct observation providing a data basis to describe the development and action of the secondary cascade induced by the GCR in meteorites.

  11. Benchmark data for validating irradiated fuel compositions used in criticality calculations

    SciTech Connect

    Bierman, S.R.; Talbert, R.J.

    1994-10-01

    To establish criticality safety margins utilizing burnup credit in the storage and transport of spent reactor fuels requires a knowledge of the uncertainty in the calculated fuel composition used in making the reactivity assessment. To provide data for validating such calculated burnup fuel compositions, radiochemical assays have been obtained as part of the United States Department of Energy From-Reactor Cask Development Program. Assay results and associated operating histories on the initial three samples analyzed in this effort are presented. The three samples were taken from different axial regions of a Pressurized Water Reactor fuel rod and represent radiation exposures of about 37, 27, and 44 GWd/MTU. The data are presented in a benchmark type format to facilitate identification/referencing and computer code input.

  12. Feasibility on the spectrometric determination of the individual dose rate for detected gamma nuclides using the dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Chung, Kun Ho; Lee, Wanno; Park, Doo-Won; Kang, Mun-Ja

    2014-04-01

    A spectrometric determination of the dose rate using a detector is a very useful method to identify the contribution of artificial nuclides. In addition, the individual dose rate for detected gamma nuclides from the radioactive materials as well as the environment can give further information such as the in-situ measurement because of the direct relation between the individual dose rate and the activity of a nuclide. In this study, the calculation method for the individual dose rate for detected gamma nuclides was suggested by introducing the concept of the dose rate spectroscopy and the peak-to-total ratio in the energy spectrum for the dose rate, which means just a form of multiplied counts and the value of a G-factor in the spectrum. In addition, the validity of the suggested method for the individual dose rate was experimentally verified through a comparison of the calculation results on the energy spectra for several conditions of the standard source.

  13. Corrosion Tests of LWR Fuels - Nuclide Release

    SciTech Connect

    P.A. Finn; Y. Tsai; J.C. Cunnane

    2001-12-14

    Two BWR fuels [64 and 71 (MWd)/kgU], one of which contained 2% Gd, and two PWR fuels [30 and 45 (MWd)/kgU], are tested by dripping groundwater on the fuels under oxidizing and hydrologically unsaturated conditions for times ranging from 2.4 to 8.2 yr at 90 C. The {sup 99}Tc, {sup 129}I, {sup 137}Cs, {sup 97}Mo, and {sup 90}Sr releases are presented to show the effects of long reaction times and of gadolinium on nuclide release. This investigation showed that the five nuclides at long reaction times have similar fractional release rates and that the presence of 2% Gd reduced the {sup 99}Tc cumulative release fraction by about an order of magnitude over that of a fuel with a similar burnup.

  14. Structural predictions based on the compositions of cathodic materials by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Yang; Lian, Fang; Chen, Ning; Hao, Zhen-jia; Chou, Kuo-chih

    2015-05-01

    A first-principles method is applied to comparatively study the stability of lithium metal oxides with layered or spinel structures to predict the most energetically favorable structure for different compositions. The binding and reaction energies of the real or virtual layered LiMO2 and spinel LiM2O4 (M = Sc-Cu, Y-Ag, Mg-Sr, and Al-In) are calculated. The effect of element M on the structural stability, especially in the case of multiple-cation compounds, is discussed herein. The calculation results indicate that the phase stability depends on both the binding and reaction energies. The oxidation state of element M also plays a role in determining the dominant structure, i.e., layered or spinel phase. Moreover, calculation-based theoretical predictions of the phase stability of the doped materials agree with the previously reported experimental data.

  15. A finite element method for shear stresses calculation in composite blade models

    NASA Astrophysics Data System (ADS)

    Paluch, B.

    1991-09-01

    A finite-element method is developed for accurately calculating shear stresses in helicopter blade models, induced by torsion and shearing forces. The method can also be used to compute the equivalent torsional stiffness of the section, their transverse shear coefficient, and the position of their center of torsion. A grid generator method which is a part of the calculation program is also described and used to discretize the sections quickly and to condition the grid data reliably. The finite-element method was validated on a few sections composed of isotropic materials and was then applied to a blade model sections made of composite materials. Good agreement was obtained between the calculated and experimental data.

  16. Neutron multiplicities for the transplutonium nuclides

    SciTech Connect

    Holden, N.E.; Zucker, M.S.

    1985-01-01

    This paper continues, with respect to the transplutonium nuclides, earlier efforts to collate and evaluate data from the scientific literature on the prompt neutron multiplicity distribution from fission and its first moment = ..sigma..nuPnu. The isotopes considered here for which P/sub nu/ and or data (or both) were found in the literature are of americium (Am), curium (Cm), berkelium (Bk), californium (Cf), einsteinium (Es), fermium (Fm), and nobelium (No).

  17. Characterization of nuclide inventories in waste streams from nuclear power plants

    SciTech Connect

    Oppermann, U.; Mueller, W.

    1993-12-31

    Producers of radioactive waste are increasingly required to characterize the nuclide specific activity inventory of their wastes to demonstrate compliance with the acceptance criteria of interim storages or repositories for the final disposal of radioactive wastes. Nuclide specific characterization of activity inventories for nuclides that are hard to measure in nuclear power plant wastes in general is based on calculations by fixed correlations to easy measurable intense {gamma}-emitters (key nuclides). This method is establish within a CEC project for LWR waste streams from four European countries. First experiences from this project in comparison to data from the US and to earlier evaluations for German LWRs are presented. The applicability of the method is discussed with regard to the measurability of radiologically relevant nuclides comparability between different reactor systems and waste streams, and the availability of the necessary data. All topics are illustrated by examples for individual correlations. Conclusions are drawn for the degree of necessary differentiation and the main factors responsible for these differences.

  18. Calculations of evaporative losses using stable water isotope composition in dry climates

    NASA Astrophysics Data System (ADS)

    Skrzypek, Grzegorz; Mydlowski, Adam; Dogramaci, Shawan; Hedley, Paul; Gibson, John; Grierson, Pauline

    2014-05-01

    Evaporative loss from surface waters is a major component of the hydrological cycle in arid zones, restricting recharge to aquifers and limiting the persistence of surface water bodies. Calculation of evaporative loss is founded on the so-called Craig-Gordon model (C-G), and the stable hydrogen and oxygen isotope composition of water can be successfully used to estimate progressive evaporation. The advantage of this approach is that it does not require monitoring of water levels, inflow and outflow rates. However, the precision and reliability of calculations in very hot and dry climates can be compromised by variable isotope composition of air moisture, which thus needs to be calibrated for C-G model calculations. In this study, we tested the range of uncertainty in the estimation of evaporative losses by cross-validating a simplified stable isotope model with field pan evaporation experiments. The use of standardized pans (1.2 m diameter, max volume 300 dm3) allowed simulation of fast evaporation from shallow water bodies in hot and dry climates (mean daily temperature 29° C and relative humidity between 19 and 26% RH during an 11 day experiment). The stable isotope composition of water in pans changed from -8.23o (δ18O) and -56o (δ2H) to approximately +6.0o (δ18O) and +2.4o (δ2H), reflecting evaporative losses of 56% in sun and 53% in shade. The maximum difference between observed (measured in the field) and calculated evaporative losses was

  19. Significance of the effect of mineral alteration of nuclide migration

    SciTech Connect

    Murakami, Takashi; Ohnuki, Toshihiko; Isobe, Hiroshi; Sato, Tsutomu; Yanase, Nobuyuki; Kimura, Hideo

    1994-12-31

    In order to clarify the effect of mineral alteration on nuclide migration, we examined the processes, mechanisms, and kinetics of chlorite weathering, and the uranium concentrations in minerals and rocks at Koongarra, Australia. The observed concentrations of uranium in rocks were compared to those calculated. The sequence of chlorite weathering may be simply expressed as a chlorite {yields} vermiculite {yields} kaolinite conversion. These minerals occur as a function of depth, which corresponds well to uranium concentrations on the meter scale. Iron minerals, closely related to the uranium redistribution, are released during the weathering. The first-order kinetic model of the weathering process suggests that the weathering rate is not constant but time-dependent. The uranium concentrations are qualitatively proportional to the extent of the weathering, the weathered part having higher uranium concentration. Uranium mainly occurs with iron minerals, and sub micron sized saleeite, a uranyl phosphate, is one of the most probable uranyl phases associated with the iron minerals. The uranium fixation mechanisms are probably saleeite microcrystal coprecipitation and sorption to the iron minerals. Our model, which describes uranium concentrations in rocks as a function of time, shows that the transition zone (a vermiculite dominant area) plays an important role in the uranium migration. We have established that weathering of chlorite has affected the redistribution of uranium for more than one million years. The present study demonstrates the significance of mineral alteration when we estimate nuclide migration for geologic time.

  20. Reliability of the finite element method for calculating free edge stresses in composite laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.; Raju, I. S.; Goree, J. G.

    1982-01-01

    The interlaminar normal stress distributions along the interface between the +45 deg and -45 deg plies of a graphite/epoxy laminate, obtained by various investigators, were found to disagree in both magnitude and sign. The reliability of the displacement-formulated finite element method in analyzing the edge-stress problem of a composite laminate is investigated. The history of the edge-stress problem is reviewed, and two well-known elasticity problems, one involving a stress discontinuity and one a singularity, are analyzed. The finite element analysis in these problems yields accurate stress distributions everywhere except in two elements closest to the stress discontinuity or singularity. Stress distributions for a + or -45 deg ply laminate near the singularity were similar to those of the two elasticity problems, demonstrating the methods, accuracy for calculating interlaminar stresses in composite laminates. The disagreement between the numerical methods was attributed to the unsymmetric stress tensor at singularity.

  1. Comment on ''Walker diffusion method for calculation of transport properties of composite materials''

    SciTech Connect

    Kim, In Chan; Cule, Dinko; Torquato, Salvatore

    2000-04-01

    In a recent paper [C. DeW. Van Siclen, Phys. Rev. E 59, 2804 (1999)], a random-walk algorithm was proposed as the best method to calculate transport properties of composite materials. It was claimed that the method is applicable both to discrete and continuum systems. The limitations of the proposed algorithm are analyzed. We show that the algorithm does not capture the peculiarities of continuum systems (e.g., ''necks'' or ''choke points'') and we argue that it is the stochastic analog of the finite-difference method. (c) 2000 The American Physical Society.

  2. Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.

    2016-06-01

    The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.

  3. Rock Maker: an MS Excel™ spreadsheet for the calculation of rock compositions from proportional whole rock analyses, mineral compositions, and modal abundance

    NASA Astrophysics Data System (ADS)

    Büttner, Steffen H.

    2012-01-01

    Rock Maker is a simple software tool that computes bulk rock compositions resulting from mixing or unmixing of rocks or minerals. The calculations describe the chemical expression of processes such as magma mixing, fractional crystallization, assimilation, residual melt extraction, or formation of solid solutions. Rock Maker can also be used for the elimination of thermodynamically inactive or unwanted chemical components from the whole rock composition, such as cores of porphyroblasts that are considered not to be in equilibrium with the matrix. The calculation of the resulting rock composition is essentially based on modal proportions and compositions of different components in rocks, which may include specific portions of the rock or individual mineral phases. Compositional data, obtained using XRF, ICPMS, EDS, or EPMA, may include major and trace element concentrations. Depending upon the nature of the problem to be solved, the concentrations of oxidic and elemental components can be added to, or subtracted from, each other, producing the calculated normalized whole rock composition after completion of the investigated process (mixing, unmixing, depletion, enrichment, etc.). Furthermore, the software allows the calculation of whole rock compositions from ideal mineral compositions, for which modal proportions can be chosen from pre-defined mineral compositions. The data set includes the most common rock forming minerals and allows the addition of further phases. This section can be used to calculate the approximate whole rock compositions from petrographic modal analysis. This part of Rock Maker is specifically suitable as a teaching tool that illustrates the interrelationship between mineral compositions, modes, and the corresponding whole rock compositions.

  4. Mass measurements of exotic nuclides at SHIPTRAP

    SciTech Connect

    Block, M.; Ackermann, D.; Eliseev, S.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Kluge, H.-J.; Maero, G.; Martin, A.; Mazzocco, M.; Mukherjee, M.; Quint, W.; Rahaman, S.; Rauth, C.; Rodriguez, D.; Scheidenberger, C.; Vorobjev, G.; Blaum, K.; Ferrer, R.; Weber, C.

    2007-05-22

    The Penning trap mass spectrometer SHIPTRAP is installed behind the velocity-filter SHIP at GSI for high-precision mass measurements of fusion-evaporation residues. To facilitate an efficient stopping of the reaction products a buffer gas stopping cell is utilized. In an investigation of neutron-deficient nuclides in the terbium-to-thulium region around A {approx_equal} 146, 18 new or improved mass values have been obtained, resulting in a more accurate determination of the proton drip line for holmium and thulium. With the present performance of SHIPTRAP, a first direct mass measurement of transuranium elements in the nobelium region is within reach.

  5. Mass Evaluation for Proton Rich Nuclides

    SciTech Connect

    Wang, M.; Audi, G.; Xu, X.; Pfeiffer, B.; Kondev, F. G.

    2011-11-30

    The Atomic mass evaluation (AME) provides the reliable resource for the values related to atomic masses. Since the publication of the latest version of AME in 2003, many developments for atomic mass determination have been done and important results changed significantly our knowledge. A preliminary version of AME was released in April 2011, and an official version is foreseen to be published in early 2013. The general status of AME is presented and some specific features of AME for proton-rich nuclides are discussed.

  6. Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments

    NASA Astrophysics Data System (ADS)

    Schaller, M.; von Blanckenburg, F.; Hovius, N.; Kubik, P. W.

    2001-06-01

    We have calculated long-term erosion rates of 20-100 mm/kyr from quartz-contained 10Be in the bedload of middle European rivers for catchments ranging from 10 2 to 10 5 km 2. These rates average over 10-40 kyr and agree broadly with rock uplift, incision and exhumation rates, historic soil erosion rates, and erosion rates calculated from the measured sediment loads of the same rivers. Moreover, our new erosion rate estimates correlate well with lithology and relief. However, in the Regen, Neckar, Loire, and Meuse catchments, cosmogenic nuclide-derived erosion rates are consistently 1.5-4 times greater than the equivalent rates derived from measured river loads. This may be due to the systematic under-representation of high-magnitude, low-frequency transport events in the gauging records which cover less than a century. Alternatively the discrepancy may derive from spatially non-uniform erosion and preferential tapping of deeper sections of the irradiation profile. A third explanation relates the high cosmogenic nuclide-derived erosion rates to inheritance of an elevated Pleistocene erosion signal. Uncertainties associated with the cosmogenic nuclide-derived erosion rate estimates are not greater than the potential errors in conventional estimates. Therefore, the cosmogenic nuclide approach is an effective tool for rapid, catchment-wide assessment of time-integrated rates of bedrock weathering and erosion, and we anticipate its fruitful application to the Quaternary sedimentary record.

  7. Chart of Nuclides from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    The Chart of Nuclides is a software product that allows users to search and plot nuclear structure and nuclear decay data interactively. The Chart of Nuclides was developed by the National Nuclear Data Center (NNDC). It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Using the Chart of Nuclides, it is possible to search for nuclear level properties (energy, half-life, spin-parity), gamma-ray information (energy, intensity, multipolarity, coincidences),radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by the Chart of Nuclides can be seen in tables, level schemes and an interactive chart of nuclides. (From the Chart of Nuclides Description at http://www.nndc.bnl.gov/chart/help/index.jsp?product=chart)

  8. Calculation of compositional dependence of stresses in GaInAs/GaAs strained multilayer heterostructures

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuo

    1993-02-01

    A theoretical model was proposed to calculate the stress in strained multilayer heterostructures. In this model, each composed crystal layer is divided into many imaginary thin layers. The face force, moment and strained balance were considered over all the imaginary thin layers with coherent interfaces. The accurate bending moment for multilayer heterostructures was derived by expanding Davidenkov's expression of a two-phase composite layer, and it was used in the model. Using this model, the stresses at 25°C were calculated for both the GaInAs/GaAs strained multilayer heterostructure and the GaInAs/GaAs single layer heterostructure, and were compared with each other. In this calculation, the relative thickness of GaInAs layers in the GaInAs/GaAs strained multilayer heterostructure is set up to be equal to that of the GaInAs layer in the GaInAs/GaAs single layer heterostructure. The stress in both the structures was calculated over the entire GaInAs layer composition range. The relative stress in the GaInAs/GaAs bottom heterointerface of the multilayer heterostructure is smaller than that in the GaInAs/GaAs heterointerface of the single layer heterostructure especially for In-rich GaInAs. However, the absolute stress in the GaInAs layer at the bottom heterointerface of the multilayer heterostructure is larger than that in the GaInAs layer at the heterointerface of the single layer heterostructure over the entire GaInAs composition range. The difference between the stresses of both heterostructures increases as the thickness of the GaInAs layer increases. The total thickness of GaInAs layers in the multilayer heterostructure corresponding to a constant interfacial relative stress decreases as the Ga composition in the GaInAs layers decreases and it abruptly decreases when the Ga composition is smaller than 0.4. The relative stress in the GaInAs/GaAs bottom heterointerface of the multilayer heterostructure decreases as the thickness of the GaAs barrier layer

  9. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    NASA Technical Reports Server (NTRS)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  10. Monte Carlo calculation based on hydrogen composition of the tissue for MV photon radiotherapy.

    PubMed

    Demol, Benjamin; Viard, Romain; Reynaert, Nick

    2015-01-01

    The purpose of this study was to demonstrate that Monte Carlo treatment planning systems require tissue characterization (density and composition) as a function of CT number. A discrete set of tissue classes with a specific composition is introduced. In the current work we demonstrate that, for megavoltage photon radiotherapy, only the hydrogen content of the different tissues is of interest. This conclusion might have an impact on MRI-based dose calculations and on MVCT calibration using tissue substitutes. A stoichiometric calibration was performed, grouping tissues with similar atomic composition into 15 dosimetrically equivalent subsets. To demonstrate the importance of hydrogen, a new scheme was derived, with correct hydrogen content, complemented by oxygen (all elements differing from hydrogen are replaced by oxygen). Mass attenuation coefficients and mass stopping powers for this scheme were calculated and compared to the original scheme. Twenty-five CyberKnife treatment plans were recalculated by an in-house developed Monte Carlo system using tissue density and hydrogen content derived from the CT images. The results were compared to Monte Carlo simulations using the original stoichiometric calibration. Between 300 keV and 3 MeV, the relative difference of mass attenuation coefficients is under 1% within all subsets. Between 10 keV and 20 MeV, the relative difference of mass stopping powers goes up to 5% in hard bone and remains below 2% for all other tissue subsets. Dose-volume histograms (DVHs) of the treatment plans present no visual difference between the two schemes. Relative differences of dose indexes D98, D95, D50, D05, D02, and Dmean were analyzed and a distribution centered around zero and of standard deviation below 2% (3 σ) was established. On the other hand, once the hydrogen content is slightly modified, important dose differences are obtained. Monte Carlo dose planning in the field of megavoltage photon radiotherapy is fully achievable using

  11. Assessment of adult body composition using bioelectrical impedance: comparison of researcher calculated to machine outputted values

    PubMed Central

    Franco-Villoria, Maria; Wright, Charlotte M; McColl, John H; Sherriff, Andrea; Pearce, Mark S

    2016-01-01

    Objectives To explore the usefulness of Bioelectrical Impedance Analysis (BIA) for general use by identifying best-evidenced formulae to calculate lean and fat mass, comparing these to historical gold standard data and comparing these results with machine-generated output. In addition, we explored how to best to adjust lean and fat estimates for height and how these overlapped with body mass index (BMI). Design Cross-sectional observational study within population representative cohort study. Setting Urban community, North East England Participants Sample of 506 mothers of children aged 7–8 years, mean age 36.3 years. Methods Participants were measured at a home visit using a portable height measure and leg-to-leg BIA machine (Tanita TBF-300MA). Measures Height, weight, bioelectrical impedance (BIA). Outcome measures Lean and fat mass calculated using best-evidenced published formulae as well as machine-calculated lean and fat mass data. Results Estimates of lean mass were similar to historical results using gold standard methods. When compared with the machine-generated values, there were wide limits of agreement for fat mass and a large relative bias for lean that varied with size. Lean and fat residuals adjusted for height differed little from indices of lean (or fat)/height2. Of 112 women with BMI >30 kg/m2, 100 (91%) also had high fat, but of the 16 with low BMI (<19 kg/m2) only 5 (31%) also had low fat. Conclusions Lean and fat mass calculated from BIA using published formulae produces plausible values and demonstrate good concordance between high BMI and high fat, but these differ substantially from the machine-generated values. Bioelectrical impedance can supply a robust and useful field measure of body composition, so long as the machine-generated output is not used. PMID:26743700

  12. Interpretation of an index of phytoplankton population composition calculated from Remote Airborne Fluorsensor (RAF) data

    NASA Technical Reports Server (NTRS)

    Farmer, F. H.

    1981-01-01

    The calculation of indices of phytoplankton population composition from chlorophyll a fluorescence at 685 nm excited by narrow band light at 454 and 539 nm is discussed. The ratio of the fluorescence excited by light of these two wavelengths is a function of the distribution of the phytoplankton between two color groups, designated the golden-brown and the green. The golden-brown group consists of those species which have the highly photosynthetically active carotenoid-chlorophyll-a-protein complexes, i.e. members of the classes Bacillariophyceae, diatoms Dinophyceae, dinoflagellates, and some members of the class Prymnesiophyceae. The green color group consists those species of phytoplankton which apparently lack those complexes, i.e. members of the classes Chlorophyceae, Euglenophyceae, Prasinophyceae, Eustigmatophyceae, Xanthophyceae, and a few members of the Prymnesiophyceae. A few species of phytoplankton appear to have intermediate characteristics, and would apparently belong to neither group. Most of these species are members of the class Cryptophyceae. The composition index for this class is examined in detail.

  13. A comparison of measured and calculated thermal stresses in a hybrid metal matrix composite spar cap element

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Taylor, A. H.; Sakata, I. F.

    1985-01-01

    A hybrid spar of titanium with an integrally brazed composite, consisting of an aluminum matrix reinforced with boron-carbide-coated fibers, was heated in an oven and the resulting thermal stresses were measured. Uniform heating of the spar in an oven resulted in thermal stresses arising from the effects of dissimilar materials and anisotropy of the metal matrix composite. Thermal stresses were calculated from a finite element structural model using anisotropic material properties deduced from constituent properties and rules of mixtures. Comparisons of calculated thermal stresses with measured thermal stresses on the spar are presented. It was shown that failure to account for anisotropy in the metal matrix composite elements would result in large errors in correlating measured and calculated thermal stresses. It was concluded that very strong material characterization efforts are required to predict accurate thermal stresses in anisotropic composite structures.

  14. Cosmogenic nuclides in football-sized rocks.

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Honda, M.; Imamura, M.; Fruchter, J. S.; Finkel, R. C.; Kohl, C. P.; Arnold, J. R.; Reedy, R. C.

    1972-01-01

    The activity of long- and short-lived isotopes in a series of samples from a vertical column through the center of rock 14321 was measured. Rock 14321 is a 9 kg fragmental rock whose orientation was photographically documented on the lunar surface. Also investigated was a sample from the lower portion of rock 14310, where, in order to study target effects, two different density fractions (mineral separates) were analyzed. A few nuclides in a sample from the comprehensive fines 14259 were measured. This material has been collected largely from the top centimeter of the lunar soil. The study of the deep samples of 14321 and 14310 provided values for the activity of isotopes at points where only effects produced by galactic cosmic rays are significant.

  15. Prompt neutron multiplicities for the transplutonium nuclides

    SciTech Connect

    Holden, N.E.; Zucker, M.S.

    1985-01-01

    The direct determination of the average prompt neutron emission values is reviewed, and a method of comparing different sites of neutron emission multiplicity distribution values is described. Measured and recommended values are tabulated for these nuclides: /sup 241/Am, /sup 242/Am, /sup 242/Cm, /sup 243/Cm, /sup 244/Cm, /sup 246/Cm, /sup 247/Cm, /sup 248/Cm, /sup 250/Cm, /sup 245/Cm, /sup 249/Bk, /sup 246/Cf, /sup 249/Cf, /sup 250/Cf, /sup 252/Cf, /sup 254/Cf, /sup 251/Cf, /sup 253/Es, /sup 254/Es, /sup 244/Fm, /sup 246/Fm, /sup 255/Fm, /sup 252/No, /sup 254/Fm, /sup 256/Fm, /sup 257/Fm. 59 refs., 24 tabs. (LEW)

  16. Measurements of long-lived cosmogenic nuclides in returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Kohl, C. P.; Arnold, J. R.

    1989-01-01

    Measurements of long lived cosmic ray produced radionuclides have given much information on the histories and rates of surface evolution for meteorites, the Moon and the Earth. These nuclides can be equally useful in studying cometary histories and post nebular processing of cometary surfaces. The concentration of these nuclides depends on the orbit of the comet (cosmic ray intensity changes with distance from the sun), the depth of the sampling site in the comet surface, and the rate of continuous evolution of the surface (erosion rate of surface materials). If the orbital parameters and the sampling depth are known, production rates of cosmogenic nuclides can be fairly accurately calculated by theoretical models normalized to measurement on lunar surface materials and meteoritic samples. Due to the continuous evaporation of surface materials, it is expected that the long lived radioactivities will be undersaturated. Accurate measurements of the degree of undersaturation in nuclides of different half-lives allows for the determination of the rate of surface material loss over the last few million years.

  17. Nuclide production in (very) small meteorites

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Nishiizumi, K.

    1986-01-01

    One of the most interesting open questions in the study of cosmic-ray effects in meteorites is the expected behavior of objects which are very small compared to the mean interaction length of primary galactic cosmic ray (GCR) particles. A reasonable limit might be a pre-atmospheric radius of 5 gram/cm(2), or 1.5 cm for chondrites. These are interesting for at least three reasons: (1) this is a limiting case for large objects, and can help us make better models; (2) this size is intermediate between usual meteorites and irradiated grams (spherules); and (3) these are the most likely objects to show solar cosmic ray (SCR) effects. Reedy (1984) has recently proposed a model for production by GCR of radioactive and stable nuclides in spherical meteorites. Very small objects are expected to deviate from this model in the direction of fewer secondary particles (larger spectral shape parameter), at all depths. The net effect will be significantly lower production of such low-energy products as Mn-53 and Al-26. The SCR production of these and other nuclides will be lower, too, because meteorite orbits extend typically out into the asteroid belt, and the mean SCR flux must fall off approximately as r(-2) with distance from the Sun. Kepler's laws insure that for such orbits most of the exposure time is spent near aphelion. None the less the equivalent mean exposure distance, R(exp), is slightly less than the semimajor axis A because of the weighting by R(-2). For the three meteorite orbits we have, R(exp) has a narrow range, from about 1.6 to 2.1 a.u. This is probably true for the great majority of meteorites.

  18. Cosmogenic nuclides in the Martian surface: Constraints for sample recovery and transport

    NASA Technical Reports Server (NTRS)

    Englert, Peter A. J.

    1988-01-01

    Stable and radioactive cosmogenic nuclides and radiation damage effects such as cosmic ray tracks can provide information on the surface history of Mars. A recent overview on developments in cosmogenic nuclide research for historical studies of predominantly extraterrestrial materials was published previously. The information content of cosmogenic nuclides and radiation damage effects produced in the Martian surface is based on the different ways of interaction of the primary galactic and solar cosmic radiation (GCR, SCR) and the secondary particle cascade. Generally the kind and extent of interactions as seen in the products depend on the following factors: (1) composition, energy and intensity of the primary SCR and GCR; (2) composition, energy and intensity of the GCR-induced cascade of secondary particles; (3) the target geometry, i.e., the spatial parameters of Martian surface features with respect to the primary radiation source; (4) the target chemistry, i.e., the chemical composition of the Martian surface at the sampling location down to the minor element level or lower; and (5) duration of the exposure. These factors are not independent of each other and have a major influence on sample taking strategies and techniques.

  19. Analytical source term optimization for radioactive releases with approximate knowledge of nuclide ratios

    NASA Astrophysics Data System (ADS)

    Hofman, Radek; Seibert, Petra; Kovalets, Ivan; Andronopoulos, Spyros

    2015-04-01

    We are concerned with source term retrieval in the case of an accident in a nuclear power with off-site consequences. The goal is to optimize atmospheric dispersion model inputs using inverse modeling of gamma dose rate measurements (instantaneous or time-integrated). These are the most abundant type of measurements provided by various radiation monitoring networks across Europe and available continuously in near-real time. Usually, a source term of an accidental release comprises of a mixture of nuclides. Unfortunately, gamma dose rate measurements do not provide a direct information on the source term composition; however, physical properties of respective nuclides (deposition properties, decay half-life) can yield some insight. In the method presented, we assume that nuclide ratios are known at least approximately, e.g. from nuclide specific observations or reactor inventory and assumptions on the accident type. The source term can be in multiple phases, each being characterized by constant nuclide ratios. The method is an extension of a well-established source term inversion approach based on the optimization of an objective function (minimization of a cost function). This function has two quadratic terms: mismatch between model and measurements weighted by an observation error covariance matrix and the deviation of the solution from a first guess weighted by the first-guess error covariance matrix. For simplicity, both error covariance matrices are approximated as diagonal. Analytical minimization of the cost function leads to a liner system of equations. Possible negative parts of the solution are iteratively removed by the means of first guess error variance reduction. Nuclide ratios enter the problem in the form of additional linear equations, where the deviations from prescribed ratios are weighted by factors; the corresponding error variance allows us to control how strongly we want to impose the prescribed ratios. This introduces some freedom into the

  20. Constraints in calculations of evaporative losses in arid climates using the stable isotope composition of water

    NASA Astrophysics Data System (ADS)

    Skrzypek, G.; Mydlowski, A.; Dogramaci, S.; Hedley, P.; Gibson, J. J.; Grierson, P. F.

    2014-12-01

    Accurate quantification of evaporative losses to the atmosphere from surface water bodies is essential for calibration and validation of hydrological models, particularly in remote arid and semi-arid regions, where rivers and lakes are generally minimally gauged. In this study, we reviewed and combined the most recent equations for estimation of evaporative losses based on the revised Craig-Gordon model. We designed new software, called Hydrocalculator, which allows quick and robust estimation of evaporative losses based on the isotopic composition of water. We validated Hydrocalculator by testing the range of uncertainty in the estimation of evaporative losses in arid climates by cross-validating a simplified stable isotope model with field pan evaporation experiments. The use of standardized pans (1.2 m diameter, volume 300 dm3) in hot and dry climates (temperature 29°C and relative humidity between 19 and 26%) allowed simulation of fast evaporation from shallow water bodies. Several factors may contribute to the uncertainty in the evaporative loss calculations. The analytical uncertainty in the determination of the stable isotope composition of water may contribute to ~0.6% for δ18O and ~1.4% for δ2H. The model is less sensitive to uncertainty in climatic variables and an uncertainty of 1°C in air temperature will result only in the ~0.1% uncertainty in δ18O and δ2H. However, uncertainty in relative humidity of 10% will result in an uncertainty in the final outcome of 0.4% (δ18O) and 1.0% (δ2H). Significantly higher uncertainty in evaporative loss estimation is thus associated with uncertainty in ambient air moisture estimation or analysis. An error of 20‰ in δ2H and 5.0‰ in δ18O will result in a maximum difference of 2.4% (δ2H) and 1.7% (δ18O) in the final calculations. Hydrocalculator can thus provide accurate, rapid and cost-effective insight into the water balance of surface water pools. We used the new software to determine the origin of

  1. Effect of elemental compositions on Monte Carlo dose calculations in proton therapy of eye tumors

    NASA Astrophysics Data System (ADS)

    Rasouli, Fatemeh S.; Farhad Masoudi, S.; Keshazare, Shiva; Jette, David

    2015-12-01

    Recent studies in eye plaque brachytherapy have found considerable differences between the dosimetric results by using a water phantom, and a complete human eye model. Since the eye continues to be simulated as water-equivalent tissue in the proton therapy literature, a similar study for investigating such a difference in treating eye tumors by protons is indispensable. The present study inquires into this effect in proton therapy utilizing Monte Carlo simulations. A three-dimensional eye model with elemental compositions is simulated and used to examine the dose deposition to the phantom. The beam is planned to pass through a designed beam line to moderate the protons to the desired energies for ocular treatments. The results are compared with similar irradiation to a water phantom, as well as to a material with uniform density throughout the whole volume. Spread-out Bragg peaks (SOBPs) are created by adding pristine peaks to cover a typical tumor volume. Moreover, the corresponding beam parameters recommended by the ICRU are calculated, and the isodose curves are computed. The results show that the maximum dose deposited in ocular media is approximately 5-7% more than in the water phantom, and about 1-1.5% less than in the homogenized material of density 1.05 g cm-3. Furthermore, there is about a 0.2 mm shift in the Bragg peak due to the tissue composition difference between the models. It is found that using the weighted dose profiles optimized in a water phantom for the realistic eye model leads to a small disturbance of the SOBP plateau dose. In spite of the plaque brachytherapy results for treatment of eye tumors, it is found that the differences between the simplified models presented in this work, especially the phantom containing the homogenized material, are not clinically significant in proton therapy. Taking into account the intrinsic uncertainty of the patient dose calculation for protons, and practical problems corresponding to applying patient

  2. Nuclide analysis in high burnup fuel samples irradiated in Vandellós 2

    NASA Astrophysics Data System (ADS)

    Zwicky, H. U.; Low, J.; Granfors, M.; Alejano, C.; Conde, J. M.; Casado, C.; Sabater, J.; Lloret, M.; Quecedo, M.; Gago, J. A.

    2010-07-01

    In the framework of a high burnup fuel demonstration programme, rods with an enrichment of 4.5% 235U were operated to a rod average burnup of about 70 MWd/kgU in the Spanish Vandellós 2 pressurised water reactor. The rods were sent to hot cells and used for different research projects. This paper describes the isotopic composition measurements performed on samples of those rods, and the analysis of the measurement results based on comparison against calculated values. The fraction and composition of fission gases released to the rod free volume was determined for two of the rods. About 8% of Kr and Xe produced by fission were released. From the isotopic composition of the gases, it could be concluded that the gases were not preferentially released from the peripheral part of the fuel column. Local burnup and isotopic content of gamma emitting nuclides were determined by quantitatively evaluating axial gamma scans of the full rods. Nine samples were cut at different axial levels from three of the rods and analysed in two campaigns. More than 50 isotopes of 16 different elements were assessed, most of them by Inductively Coupled Plasma Mass Spectrometry after separation with High Performance Liquid Chromatography. In general, these over 400 data points gave a consistent picture of the isotopic content of irradiated fuel as a function of burnup. Only in a few cases, the analysis provided unexpected results that seem to be wrong, in most cases due to unidentified reasons. Sample burnup analysis was performed by comparing experimental isotopic abundances of uranium and plutonium composition as well as neodymium isotopic concentrations with corresponding CASMO based data. The results were in agreement with values derived independently from gamma scanning and from core design data and plant operating records. Measured isotope abundances were finally assessed using the industry standard SAS2H sequence of the SCALE code system. This exercise showed good agreement between

  3. Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections

    SciTech Connect

    Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane

    2001-07-15

    The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However, it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy.

  4. Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses

    SciTech Connect

    Radulescu, Georgeta; Gauld, Ian C.; Ilas, Germina; Wagner, John C.

    2014-11-01

    This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application of the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. Furthermore, the validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.

  5. Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses

    DOE PAGESBeta

    Radulescu, Georgeta; Gauld, Ian C.; Ilas, Germina; Wagner, John C.

    2014-11-01

    This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application ofmore » the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. Furthermore, the validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.« less

  6. Modeling for calculation of vanadium oxide film composition in reactive-sputtering process

    SciTech Connect

    Yu He; Jiang Yadong; Wang Tao; Wu Zhiming; Yu Junsheng; Wei Xiongbang

    2010-05-15

    A modified model describing the changing ratio of vanadium to oxide on the target and substrate as a function of oxygen flow is described. Actually, this ratio is extremely sensitive to the deposition conditions during the vanadium oxide (VO{sub x}) reactive magnetron-sputtering process. The method in this article is an extension of a previously presented Berg's model, where only a single stoichiometry compound layer was taken into consideration. This work deals with reactive magnetron sputtering of vanadium oxide films with different oxygen contents from vanadium metal target. The presence of vanadium mixed oxides at both target and substrate surface produced during reactive-sputtering process are included. It shows that the model can be used for the optimization of film composition with respect to oxygen flow in a stable hysteresis-free reactive-sputtering process. A systematic experimental study of deposition rate of VO{sub x} with respect to target ion current was also made. Compared to experimental results, it was verified that the theoretical calculation from modeling is in good agreement with the experimental counterpart.

  7. Alpha-emitting nuclides in the marine environment

    NASA Astrophysics Data System (ADS)

    Pentreath, R. J.

    1984-06-01

    The occurrence of alpha-emitting nuclides and their daughter products in the marine environment continues to be a subject of study for many reasons. Those nuclides which occur naturally, in the uranium, thorium and actinium series, are of interest because of their value in determining the rates of geological and geochemical processes in the oceans. Studies of them address such problems as the determination of rates of transfer of particulate matter, deposition rates, bioturbation rates, and so on. Two of the natural alpha-series nuclides in which a different interest has been expressed are 210Po and 226Ra, because their concentrations in marine organisms are such that they contribute to a significant fraction of the background dose rates sustained both by the organisms themselves and by consumers of marine fish and shellfish. To this pool of naturally-occurring nuclides, human activities have added the transuranium nuclides, both from the atmospheric testing of nuclear devices and from the authorized discharges of radioactive wastes into coastal waters and the deep sea. Studies have therefore been made to understand the chemistry of these radionuclides in sea water, their association with sedimentary materials, and their accumulation by marine organisms, the last of these being of particular interest because the transuranics are essentially "novel" elements to the marine fauna and flora. The need to predict the long-term behaviour of these nuclides has, in turn, stimulated research on those naturally-occurring nuclides which may behave in a similar manner.

  8. Reportable Nuclide Criteria for ORNL Radioactive Waste Management Activities - 13005

    SciTech Connect

    McDowell, Kip; Forrester, Tim; Saunders, Mark

    2013-07-01

    The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of these criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration. (authors)

  9. Reportable Nuclide Criteria for ORNL Waste Management Activities - 13005

    SciTech Connect

    McDowell, Kip; Forrester, Tim; Saunders, Mark Edward

    2013-01-01

    The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed a reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of this criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration.

  10. Depth and size effects on cosmogenic nuclide production in meteorites

    NASA Technical Reports Server (NTRS)

    Englert, P.

    1985-01-01

    The galactic cosmic particle radiation (GCR) can cause changes in condensed extraterrestrial matter in different ways. It can lose energy via ionization processes of induced nuclear reactions which lead to a wide variety of stable and radioactive cosmogenic nuclides. Heavy particles incur radiation damage in minerals such as olivine and pyroxene. Light particles predominantly tend to induce nuclear reactions, causing the development of a secondary particle cascade of neutrons, protons, pions and gamma-rays and the production of cosmogenic nuclides. Such processes are described by various models, which predict the depth and size dependent production of cosmogenic nuclides.

  11. NEANSC international evaluation cooperation SG10 activities on inelastic scattering cross sections for weakly absorbing fission-product nuclides

    SciTech Connect

    Kawai, Masayoshi; Chiba, Satoshi; Nakagawa, Tsuneo; Nakajima, Yutaka; Zukeran, Atsushi; Gruppelaar, H.; Hogenbirk, A.; Salvatores, M.; Dietze, K.

    1994-12-31

    An evaluation method of inelastic scattering cross sections of FP nuclides is investigated. The origins of the discrepancy found in the calculated and measured sample reactivity worths are also discussed emphasizing the effect of ambiguity in inelastic scattering cross sections and neutron spectra.

  12. Light mass elements total half-lives for selected long-lived nuclides

    NASA Astrophysics Data System (ADS)

    Holden, N. E.

    In the past, many compilations and evaluations of half lives have been made which have uncritically accepted authors' values and uncertainties. They have merely recommended weight averaged reported results. This evaluation attempts to reanalyze each experiment in the literature including an estimate of the standard deviation utilizing, where possible, an estimate of the systematic error. This paper constitutes a preliminary step in the process of recommending values. The long lived nuclides of light elements are of interest for their use in dating methods and for calculating cosmic ray exposure ages of meteorites. Experimental data on the half lives of selected nuclides have been evaluated and recommended values and uncertainties are presented for the following nuclides: (3)H, (10)Be, (14)C, (26)Al, (39)Ar, (40)K, (50)V, (53)Mn, (76)Ge, (87)Eb, (92)Nb, (107)Pd, (113)Cd, (115)In and (123)Te. The impact of the recommended (14)C half life of 5715 years on the carbon dating techniques, which uses the Libby value of 5568 years, will be discussed. Also the possible primordial occurrence of (92)Nb is now definitely ruled out by the recommended half life of 3.7 x 10(7). Finally, based on the recommended (26)Al half life value, the (21)Ne production rate for calculating cosmic ray exposure ages remains too high, compared to rates using the (53)Mn and (10)Be half life values.

  13. The even-odd systematics in R-process nuclide abundances

    NASA Technical Reports Server (NTRS)

    Marti, K.; Suess, H. E.

    1988-01-01

    The paper reports and discusses solar system N(R) abundances for nuclides A greater than 70, obtained as differences between measured solar system abundances and calculated S-process contributions. The abundance peak at A of about 163 in the rare earth element region reveals properties which are similar to those of the R-process peaks corresponding to magic neutron numbers N = 82 and N = 126. Systematic differences in the N(R) abundances of even-A and odd-A nuclides are restricted to specific mass regions. It is concluded that these differences are most probably related to the properties of nuclear species during beta(-) decay to the stability valley.

  14. PRODUCTION CONSIDERATIONS FOR THE CLASSICAL PET NUCLIDES.

    SciTech Connect

    FINN,R.; SCHLYER,D.

    2001-06-25

    Nuclear Medicine is the specialty of medical imaging, which utilizes a variety of radionuclides incorporated into specific compounds for diagnostic imaging and therapeutic applications. During recent years, research efforts associated with this discipline have concentrated on the decay characteristics of particular radionuclides and the design of unique radiolabeled tracers necessary to achieve time-dependent molecular images. The specialty is expanding with specific Positron emission tomography (PET) and SPECT radiopharmaceuticals allowing for an extension from functional process imaging in tissue to pathologic processes and nuclide directed treatments. PET is an example of a technique that has been shown to yield the physiologic information necessary for clinical oncology diagnoses based upon altered tissue metabolism. Most PET drugs are currently produced using a cyclotron at locations that are in close proximity to the hospital or academic center at which the radiopharmaceutical will be administered. In November 1997, a law was enacted called the Food and Drug Administration Modernization Act of 1997 which directed the Food and Drug Administration (FDA) to establish appropriate procedures for the approval of PET drugs in accordance with section 505 of the Federal Food, Drug, and Cosmetic Act and to establish current good manufacturing practice requirements for such drugs. At this time the FDA is considering adopting special approval procedures and cGMP requirements for PET drugs. The evolution of PET radiopharmaceuticals has introduced a new class of ''drugs'' requiring production facilities and product formulations that must be closely aligned with the scheduled clinical utilization. The production of the radionuclide in the appropriate synthetic form is but one critical component in the manufacture of the finished radiopharmaceutical.

  15. Production and Recoil Loss of Cosmogenic Nuclides in Presolar Grains

    NASA Astrophysics Data System (ADS)

    Trappitsch, Reto; Leya, Ingo

    2016-05-01

    Presolar grains are small particles that condensed in the vicinity of dying stars. Some of these grains survived the voyage through the interstellar medium (ISM) and were incorporated into meteorite parent bodies at the formation of the Solar System. An important question is when these stellar processes happened, i.e., how long presolar grains were drifting through the ISM. While conventional radiometric dating of such small grains is very difficult, presolar grains are irradiated with galactic cosmic rays (GCRs) in the ISM, which induce the production of cosmogenic nuclides. This opens the possibility to determine cosmic-ray exposure (CRE) ages, i.e., how long presolar grains were irradiated in the ISM. Here, we present a new model for the production and loss of cosmogenic 3He, 6,7Li, and 21,22Ne in presolar SiC grains. The cosmogenic production rates are calculated using a state-of-the-art nuclear cross-section database and a GCR spectrum in the ISM consistent with recent Voyager data. Our findings are that previously measured 3He and 21Ne CRE ages agree within the (sometimes large) 2σ uncertainties and that the CRE ages for most presolar grains are smaller than the predicted survival times. The obtained results are relatively robust since interferences from implanted low-energy GCRs into the presolar SiC grains and/or from cosmogenic production within the meteoroid can be neglected.

  16. (The fate of nuclides in natural water systems)

    SciTech Connect

    Turekian, K.K. . Dept. of Geology and Geophysics)

    1989-01-01

    Our research at Yale on the fate of nuclides in natural water systems has three components to it: the study of the atmospheric precipitation of radionuclides and other chemical species; the study of the behavior of natural radionuclides in groundwater and hydrothermal systems; and understanding the controls on the distribution of radionuclides and stable nuclides in the marine realm. In this section a review of our progress in each of these areas is presented.

  17. Calculation of the relative uniformity coefficient on the green composites reinforced with cotton and hemp fabric

    NASA Astrophysics Data System (ADS)

    Baciu, Florin; Hadǎr, Anton; Sava, Mihaela; Marinel, Stǎnescu Marius; Bolcu, Dumitru

    2016-06-01

    In this paper it is studied the influence of discontinuities on elastic and mechanical properties of green composite materials (reinforced with fabric of cotton or hemp). In addition, it is studied the way variations of the volume f the reinforcement influences the elasticity modulus and the tensile strength for the studied composite materials. In order to appreciate the difference in properties between different areas of the composite material, and also the dimensions of the defective areas, we have introduced a relative uniformity coefficient with which the mechanical behavior of the studied composite is compared with a reference composite. To validate the theoretical results we have obtained we made some experiments, using green composites reinforced with fabric, with different imperfection introduced special by cutting the fabric.

  18. Nuclear Properties and Decay Data Chart of Nuclides.

    Energy Science and Technology Software Center (ESTSC)

    2008-04-04

    Version 00 NUCHART displays nuclear decay data graphically on a PC and, includes a search routine for assigning gamma-ray energies to radionuclides. The numerical data included in NUCHART were taken from the online database "NUDAT" Version of March 1994. The following information is presented: (1) Nuclide information: for each nuclide, abundance, mass excess, (main) decay mode, half-life and uncertainty, branching ratio, decay Q; (2) decay radiation: for each nuclide, tables of radiation energy, intensity andmore » equivalent dose for the 5 most intense decay radiations of beta+, beta-, conversion electrons, gammas, alphas and x-rays, including electron Augers; (3) adopted gammas: for each nuclide, table containing energy, relative intensity, energy level of the main gamma lines and year of publication in Nuclear Data Sheets; (4) search gamma energies: for a specified interval of gamma energies all know gamma lines and their nuclides are displayed; the database contains 132,000 gamma lines; (5) a search mode by specific nuclide is also available. For the latest data and online tools for viewing the data, see NuDat 2.4 on the NNDC and IAEA NDS websites: http://www.nndc.bnl.gov/ and http://www-nds.iaea.org/.« less

  19. Thermodynamic calculation and interatomic potential to predict the favored composition region for the Cu-Zr-Al metallic glass formation.

    PubMed

    Cui, Y Y; Wang, T L; Li, J H; Dai, Y; Liu, B X

    2011-03-01

    For the Cu-Zr-Al system, the glass forming compositions were firstly calculated based on the extended Miedema's model, suggesting that the amorphous phase could be thermodynamically favored over a large composition region. An n-body potential was then constructed under the smoothed and long-range second-moment-approximation of tight-binding formulism. Applying the constructed Cu-Zr-Al potential, molecular dynamics simulations were conducted using solid solution models to compare relative stability of crystalline solid solution versus its disordered counterpart. Simulations reveal that the physical origin of metallic glass formation is crystalline lattice collapsing while solute concentration exceeding the critical value, thus predicting a hexagonal composition region, within which the Cu-Zr-Al ternary metallic glass formation is energetically favored. The molecular dynamics simulations predicted composition region is defined as the quantitative glass-forming-ability or glass-forming-region of the Cu-Zr-Al system. PMID:21229150

  20. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes

    NASA Astrophysics Data System (ADS)

    Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.

    2014-01-01

    Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling

  1. Initial Test Determination of Cosmogenic Nuclides in Magnetite

    NASA Astrophysics Data System (ADS)

    Matsumura, H.; Caffee, M. W.; Nagao, K.; Nishiizumi, K.

    2014-12-01

    Long-lived radionuclides, such as 10Be, 26Al, and 36Cl, are produced by cosmic rays in surficial materials on Earth, and used for determinations of cosmic-ray exposure ages and erosion rates. Quartz and limestone are routinely used as the target minerals for these geomorphological studies. Magnetite also contains target elements that produce abundant cosmogenic nuclides when exposed to the cosmic rays. Magnetite has several notable merits that enable the measurement of cosmogenic nuclides: (1) the target elements for production of cosmogenic nuclides in magnetite comprise the dominant mineral form of magnetite, Fe3O4; (2) magnetite can be easily isolated, using a magnet, after rock milling; (3) multiple cosmogenic nuclides are produced by exposure of magnetite to cosmic-ray secondaries; and (4) cosmogenic nuclides produced in the rock containing the magnetite, but not within the magnetite itself, can be separated using nitric acid and sodium hydroxide leaches. As part of this initial study, magnetite was separated from a basaltic sample collected from the Atacama Desert in Chili (2,995 m). Then Be, Al, Cl, Ca, and Mn were separated from ~2 g of the purified magnetite. We measured cosmogenic 10Be, 26Al, and 36Cl concentrations in the magnetite by accelerator mass spectrometry at PRIME Lab, Purdue University. Cosmogenic 3He and 21Ne concentrations of aliquot of the magnetite were measured by mass spectrometry at the University of Tokyo. We also measured the nuclide concentrations from magnetite collected from a mine at Ishpeming, Michigan as a blank. The 10Be and 36Cl concentrations as well as 3He concentration produce concordant cosmic ray exposure ages of ~0.4 Myr for the Atacama basalt. However, observed high 26Al and 21Ne concentrations attribute to those nuclides incorporation from silicate impurity.

  2. A modified direct method for the calculation of elastic moduli of composite materials

    SciTech Connect

    Wang, J.A.; Lubliner, J.; Monteiro, P.J.M.

    1996-02-01

    The modified direct method is a scheme for the estimation of elastic moduli of composite materials and is based on micromechanical theory and classical elasticity. Using the statistical homogeneous assumption and the two-phase composite approach, one takes the average field of the composite. Due to the complexity of composite materials, the modeling parameters for the exact analytical theory are not always available and then the effective bounds are usually too wide for practical application. For engineering purposes a more practical and general model is desired. The modified direct method was developed to approach the above requirements. In this work the modified direct method is compared with different available experiment data and methods, for example, Kuster-Toksoez, Christensen-Lo. The comparison results show that the modified direct method provides a very good estimation of the elastic moduli in different kinds of problems, such as the soft and hard inclusion cases, porous materials, at various concentrations and/or various porosities.

  3. Calculation of the elastic properties of a triangular cell core for lightweight composite mirrors

    NASA Astrophysics Data System (ADS)

    Penado, F. Ernesto; Clark, James H., III; Walton, Joshua P.; Romeo, Robert C.; Martin, Robert N.

    2007-09-01

    The use of composite materials in the fabrication of optical telescope mirrors offers many advantages over conventional methods, including lightweight, portability and the potential for lower manufacturing costs. In the construction of the substrate for these mirrors, sandwich construction offers the advantage of even lower weight and higher stiffness. Generally, an aluminum or Nomex honeycomb core is used in composite applications requiring sandwich construction. However, the use of a composite core offers the potential for increased stiffness and strength, low thermal distortion compatible with that of the facesheets, the absence of galvanic corrosion and the ability to readily modify the core properties. In order to design, analyze and optimize these mirrors, knowledge of the mechanical properties of the core is essential. In this paper, the mechanical properties of a composite triangular cell core (often referred to as isogrid) are determined using finite element analysis of a representative unit cell. The core studied offers many advantages over conventional cores including increased thermal and dimensional stability, as well as low weight. Results are provided for the engineering elastic moduli of cores made of high stiffness composite material as a function of the ply layup and cell size. Finally, in order to illustrate the use of these properties in a typical application, a 1.4-m diameter composite mirror is analyzed using the finite element method, and the resulting stiffness and natural frequencies are presented.

  4. Development of an analytic procedure to calculate damage accumulation in composites during low velocity impact

    NASA Technical Reports Server (NTRS)

    Humphreys, E. A.; Goering, J.

    1983-01-01

    A computerized procedure was developed to model the response of a laminated composite plate subjected to low velocity impact. The methodology incorporated transient dynamics finite element analysis coupled with composite layer and interlaminar stress predictions. Damage was predicted using a stress based failure criteria and incorporated into the solution as stiffness modifications. The force-displacement relation between the impactor and plate was modelled with a nonlinear contact spring similar to Hertzian contact. Analyses performed predicted ply damage early in the impact event when the displacement fields were characteristic of high frequency flexurable response.

  5. Variable temperature effects on release rates of readily soluble nuclides

    SciTech Connect

    Kim, C.-L.; Light, W.B.; Lee, W.W.-L.; Chambre, P.L.; Pigford, T.H.; Lawrence Berkeley Lab., CA )

    1988-09-01

    In this paper we study the effect of temperature on the release rate of readily soluble nuclides, as affected by a time-temperature dependent diffusion coefficient. In this analysis ground water fills the voids in the waste package at t = 0 and one percent of the inventories of cesium and iodine are immediately dissolved into the void water. Mass transfer resistance of partly failed container and cladding is conservatively neglected. The nuclides move through the void space into the surrounding rock under a concentration gradient. We use an analytic solution to compute the nuclide concentration in the gap or void, and the mass flux rate into the porous rock. 8 refs., 4 figs.

  6. Electron and proton absorption calculations for a graphite/epoxy composite model. [large space structures

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1979-01-01

    The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.

  7. Stress Free Temperature Testing and Calculations on Out-of-Autoclave Composites

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Tate, LeNetra C.; Danley, Susan E.; Sampson, Jeffrey W.; Taylor, Brian J.; Sutter, James K.; Miller, Sandi G.

    2013-01-01

    Future launch vehicles will require the incorporation of large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7/Bismaleimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the stress free temperature of the materials

  8. Stress Free Temperature Testing and Residual Stress Calculations on Out-of-Autoclave Composites

    NASA Technical Reports Server (NTRS)

    Cox, Sarah; Tate, LaNetra C.; Danley, Susan; Sampson, Jeff; Taylor, Brian; Miller, Sandi

    2012-01-01

    Future launch vehicles will require the incorporation large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7 /Bismalieimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the residual stress of the materials.

  9. 40 CFR 1066.820 - Composite calculations for FTP exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... composite gaseous test results as a mass-weighted value, e -FTPcomp, in grams per mile using the following... interval (generally known as bag 1 and bag 2), in grams. D ct = the measured driving distance from the... from the hot-start UDDS test interval in grams. This is the hot-stabilized portion from either...

  10. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Mcbride, Bonnie J.

    1994-01-01

    This report presents the latest in a number of versions of chemical equilibrium and applications programs developed at the NASA Lewis Research Center over more than 40 years. These programs have changed over the years to include additional features and improved calculation techniques and to take advantage of constantly improving computer capabilities. The minimization-of-free-energy approach to chemical equilibrium calculations has been used in all versions of the program since 1967. The two principal purposes of this report are presented in two parts. The first purpose, which is accomplished here in part 1, is to present in detail a number of topics of general interest in complex equilibrium calculations. These topics include mathematical analyses and techniques for obtaining chemical equilibrium; formulas for obtaining thermodynamic and transport mixture properties and thermodynamic derivatives; criteria for inclusion of condensed phases; calculations at a triple point; inclusion of ionized species; and various applications, such as constant-pressure or constant-volume combustion, rocket performance based on either a finite- or infinite-chamber-area model, shock wave calculations, and Chapman-Jouguet detonations. The second purpose of this report, to facilitate the use of the computer code, is accomplished in part 2, entitled 'Users Manual and Program Description'. Various aspects of the computer code are discussed, and a number of examples are given to illustrate its versatility.

  11. rp Process and Masses of N{approx_equal}Z{approx_equal}34 Nuclides

    SciTech Connect

    Savory, J.; Schury, P.; Bachelet, C.; Block, M.; Bollen, G.; Facina, M.; Folden, C. M. III; Guenaut, C.; Kwan, E.; Kwiatkowski, A. A.; Morrissey, D. J.; Pang, G. K.; Prinke, A.; Ringle, R.; Schatz, H.; Schwarz, S.; Sumithrarachchi, C. S.

    2009-04-03

    High-precision Penning-trap mass measurements of the N{approx_equal}Z{approx_equal}34 nuclides {sup 68}Se, {sup 70}Se, {sup 70m}Br, and {sup 71}Br were performed, reaching experimental uncertainties of 0.5-15 keV. The new and improved mass data together with theoretical Coulomb displacement energies were used as input for rp process network calculations. An increase in the effective lifetime of the waiting point nucleus {sup 68}Se was found, and more precise information was obtained on the luminosity during a type I x-ray burst along with the final elemental abundances after the burst.

  12. Calculating the performance of 1{endash}3 piezoelectric composites for hydrophone applications: An effective medium approach

    SciTech Connect

    Avellaneda, M.; Swart, P.J.

    1998-03-01

    A new method is presented for evaluating the performance of 1{endash}3 polymer/piezoelectric ceramic composites for hydrophone applications. The Poisson`s ratio effect, i.e., the enhancement of the hydrostatic performance which can be achieved by mixing piezoelectric ceramics with polymers, is studied in detail. Using an `effective medium` approach, algebraic expressions are derived for the composite hydrostatic charge coefficient d{sub h}, the hydrostatic figure of merit d{sub h}g{sub h}, and the hydrostatic electromechanical coupling coefficient k{sub h} in terms of the properties of the constituent materials, the ceramic volume fraction, and a microstructural parameter p. The high contrast in stiffness and dielectric constants existing between the two phases can be exploited to derive simple, geometry-independent approximations which explain quantitatively the Poisson`s ratio effect. It is demonstrated that the stiffness and the Poisson`s ratio of the polymer matrix play a crucial role in enhancing hydrophone performance. Using a differential scheme to model the parameter p, we evaluate d{sub h}, d{sub h}g{sub h}, and k{sub h} for polymer/piezoelectric ceramic systems at varying compositions. Several examples involving Pb(Zr,Ti)O{sub 3} and (Pb,Ca)TiO{sub 3} piezoelectric ceramics are given to illustrate the theory. {copyright} {ital 1998 Acoustical Society of America.}

  13. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    NASA Technical Reports Server (NTRS)

    Gordon, S.; Mcbride, B.; Zeleznik, F. J.

    1984-01-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  14. Study of interaction between radioactive nuclides and graphite surface by the first-principles and statistic physics

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofeng; Fang, Chao; Li, Xin; Lai, Wensheng; Sun, Lifeng; Liang, Tongxiang

    2013-11-01

    The adsorption and desorption of four kinds of main radioactive productions (cesium, iodine, strontium and silver) on graphite surface in high temperature gas cooled reactors (HTGRs) have been studied. Using the first-principles density-functional theory, adsorptive geometry, energy and electron structure on the perfect and defective graphite surfaces have been calculated. It turns out that the adsorption of Cs, I and Sr atoms belongs to chemisorption while the adsorption of Ag is a pure physisorption. When introducing a vacancy in graphite surface, nuclide adatoms will be trapped by the vacancy and form chemical bonds with three nearest neighbor carbon atoms, leading to significant increase of the adsorption energy. In addition, a model of grand canonical ensemble is employed to deduce the adsorption rate as a function of temperature and partial pressure of nuclides produced. The transition temperate from adsorption to desorption of nuclides on graphite surface is defined as the inflexion point of the adsorption rate and its variation with nuclide density is obtained.

  15. An Approach to Calculate Mineralś Bulk Moduli KS from Chemical Composition and Density ρ

    NASA Astrophysics Data System (ADS)

    Breuer, S.; Schilling, F. R.; Mueller, B.; Drüppel, K.

    2015-12-01

    The elastic properties of minerals are fundamental parameters for technical and geotechnical applications and an important research topic towards a better understanding of the Eart&hacute;s interior. Published elastic properties, chemical composition, and density data of 86 minerals (total of 258 data including properties of minerals at various p, T conditions) were collected into a database. It was used to test different hypotheses about relationships between these properties (e.g. water content in minerals and their Poisson's ratio). Furthermore, a scheme to model the average elastic properties, i.e. the bulk modulus KS, based on mineral density and composition was developed. Birc&hacute;s law, a linearity between density ρ and wave velocity (e.g. vp.), is frequently used in seismic and seismology to derive density of the Eart&hacute;s interior from seismic velocities. Applying the compiled mineral data contradicts the use of a simple velocity-density relation (e.g. Gardneŕs relation, 1974). The presented model-approach to estimate the mineralś bulk moduli Ks (as Voigt-Reuss-Hill average) is based on the idea of pressure-temperature (p-T) dependent ionś bulk moduli. Using a multi-exponential regression to ascertain the ionś bulk moduli and by applying an exponential scaling with density ρ, their bulk moduli could be modelled. As a result, > 88 % of the 258 bulk moduli data are predicted with an uncertainty of < 20 % compared to published values. Compared to other models (e.g. Anderson et al. 1970 and Anderson & Nafe 1965), the here presented approach to model the bulk moduli only requires the density ρ and chemical composition of the mineral and is not limited to a specific group of minerals, composition, or structure. In addition to this, by using the pressure and temperature dependent density ρ(p, T), it is possible to predict bulk moduli for varying p-T conditions. References:Gardner, G.H.F, Gardner, L.W. and Gregory, A.R. (1974). Geophysics, 39, No. 6

  16. An Approach to Calculate Mineralś Bulk Moduli KS from Chemical Composition and Density ρ

    NASA Astrophysics Data System (ADS)

    Breuer, S.; Schilling, F. R.; Mueller, B.; Drüppel, K.

    2015-12-01

    The elastic properties of minerals are fundamental parameters for technical and geotechnical applications and an important research topic towards a better understanding of the Earth's interior. Published elastic properties, chemical composition, and density data of 86 minerals (total of 258 data including properties of minerals at various p, T conditions) were collected into a database. It was used to test different hypotheses about relationships between these properties (e.g. water content in minerals and their Poisson's ratio). Furthermore, a scheme to model the average elastic properties, i.e. the bulk modulus KS, based on mineral density and composition was developed. Birch's law, a linearity between density ρ and wave velocity (e.g. vp.), is frequently used in seismic and seismology to derive density of the Earth's interior from seismic velocities. Applying the compiled mineral data contradicts the use of a simple velocity-density relation (e.g. Gardneŕs relation, 1974). The presented model-approach to estimate the mineralś bulk moduli Ks (as Voigt-Reuss-Hill average) is based on the idea of pressure-temperature (p-T) dependent ionś bulk moduli. Using a multi-exponential regression to ascertain the ionś bulk moduli and by applying an exponential scaling with density ρ, their bulk moduli could be modelled. As a result, > 88 % of the 258 bulk moduli data are predicted with an uncertainty of < 20 % compared to published values. Compared to other models (e.g. Anderson et al. 1970 and Anderson & Nafe 1965), the here presented approach to model the bulk moduli only requires the density ρ and chemical composition of the mineral and is not limited to a specific group of minerals, composition, or structure. In addition to this, by using the pressure and temperature dependent density ρ(p, T), it is possible to predict bulk moduli for varying p-T conditions. References:Gardner, G.H.F, Gardner, L.W. and Gregory, A.R. (1974). Geophysics, 39, No. 6, 770

  17. Electronic interaction in composites of a conjugated polymer and carbon nanotubes: first-principles calculation and photophysical approaches

    PubMed Central

    Wéry, Jany; Duvail, Jean-Luc; Lefrant, Serge; Yaya, Abu; Ewels, Chris

    2015-01-01

    Summary The mechanisms that control the photophysics of composite films made of a semiconducting conjugated polymer (poly(paraphenylene vinylene), PPV) mixed with single-walled carbon nanotubes (SWNT) up to a concentration of 64 wt % are determined by using photoexcitation techniques and density functional theory. Charge separation is confirmed experimentally by rapid quenching of PPV photoluminescence and changes in photocurrent starting at relatively low concentrations of SWNT. Calculations predict strong electronic interaction between the polymer and the SWNT network when nanotubes are semiconducting. PMID:26171290

  18. Chemical composition data and calculated aquifer temperature for selected wells and springs of Honey Lake Valley, California

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1976-01-01

    Major element, minor element, and gas composition data are tabulated for 15 springs and wells in Honey Lake Valley, California. Wendel and Amedee hot springs issue Na-S04-C1 waters at boiling or near boiling temperatures; the remaining springs and wells issue Na-HC03 waters at temperatures ranging from 14 to 33 deg C. Gases escaping from the hot springs are principally nitrogen with minor amounts of methane. The geothermometers calculated from the chemical data are also tabulated for each spring. (Woodard-USGS)

  19. A Novel Method for Calculation of Strain Energy Release Rate of Asymmetric Double Cantilever Laminated Composite Beams

    NASA Astrophysics Data System (ADS)

    Shokrieh, M. M.; Zeinedini, A.

    2014-06-01

    In this research, a novel data reduction method for calculation of the strain energy release rate ( SERR) of asymmetric double cantilever beams ( ADCB) is presented. For this purpose the elastic beam theory ( EBT) is modified and the new method is called as the modified elastic beam theory ( MEBT). Also, the ADCB specimens are modeled using ABAQUS/Standard software. Then, the initiation of delamination of ADCB specimens is modeled using the virtual crack closure technique ( VCCT). Furthermore, magnitudes of the SERR for different samples are also calculated by an available data reduction method, called modified beam theory ( MBT). Using the hand lay-up method, different laminated composite samples are manufactured by E-glass/epoxy unidirectional plies. In order to measure the SERR, all samples are tested using an experimental setup. The results determined by the new data reduction method ( MEBT) show good agreements with the results of the VCCT and the MBT.

  20. Cosmogenic neutron-capture-produced nuclides in stony meteorites

    NASA Technical Reports Server (NTRS)

    Spergel, M. S.; Reedy, R. C.; Lazareth, O. W.; Levy, P. W.; Slatest, L. A.

    1986-01-01

    The complete neutron-flux results and production rates for Cl-36, Ni-59, and Co-60 in stony meteorites of various radii and composition are presented. The relative neutron source strengths and neutron production-versus-depth profiles were determined by using calculated H-3 production rates. The absolute source strengths were normalized to that determined for the moon by Woolum et al. (1975). The energy spectrum of the source neutrons and the neutron transport calculations, which employed the ANISN computer code, were similar to those used for the moon by Lingenfelter et al. (1972). The production rates of the three radionuclides were determined as a function of depth in various spherical meteoroids from the calculated equilibrium neutron-flux distributions and from energy-dependent neutron-capture cross sections. Rates for producing these radionuclides by spallation reactions were also calculated.

  1. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: A multiple nuclide approach

    USGS Publications Warehouse

    Bierman, P.R.; Marsella, K.A.; Patterson, Chris; Davis, P.T.; Caffee, M.

    1999-01-01

    Paired 10Be and 26Al analyses (n = 14) indicate that pre-Wisconsinan, glaciated bedrock surfaces near the northern (Baffin Island) and southern (Minnesota) paleo-margins of the Laurentide Ice Sheet have long and complex histories of cosmic-ray exposure, including significant periods of partial or complete shielding from cosmic rays. Using the ratio, 26Al/10Be, we calculate that striated outcrops of Sioux Quartzite in southwestern Minnesota (southern margin) were last overrun by ice at least 500,000 years ago. Weathered bedrock tors on the once-glaciated uplands of Baffin Island (northern margin) are eroding no faster than 1.1 m Myr-1, the equivalent of at least 450,000 years of surface and near-surface exposure. Our data demonstrate that exposure ages and erosion rates calculated from single nuclides can underestimate surface stability dramatically because any intermittent burial, and the resultant lowering of nuclide production rates and nuclide abundances, will remain undetected.

  2. Calculation of skin-stiffener interface stresses in stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Cohen, David; Hyer, Michael W.

    1987-01-01

    A method for computing the skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The finite-element analysis is standard, while the elasticity solution is based on an eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be valid in the local flange termination region and is coupled with the finite-element analysis using collocation of stresses on the local region boundaries. Accuracy and convergence of the local elasticity solution are assessed using a geometrically linear analysis. Using this analysis procedure, the influence of geometric nonlinearities and stiffener parameters on the skin-stiffener interface stresses is evaluated.

  3. Theoretical calculation of a composite pulse for 2H broadband excitation by average Hamiltonian theory

    PubMed Central

    Shen, Ming; Roopchand, Rabia; Amoureux, Jean-Paul; Chen, Qun

    2015-01-01

    Quadrupolar echo NMR spectroscopy of solids often requires RF pulse excitation that covers spectral widths exceeding 100 kHz. In a recent work we found out that a four pulse, composite pulse COM-II ( 90180¯90135¯45 ), provided robust broadband excitation for deuterium quadrupolar echo spectroscopy. Moreover, when combined with an eight step phase cycle, spectral distortions arising from finite pulse widths were greatly supressed. In this paper we report on a theoretical analysis COM-II with 8-step phase cycle by average Hamiltonian theory. This treatment is combined with the fictitious spin-1 operator formalism, and the mechanism of the 8-step phase cycling that minimizes the spectral distortions is discussed. PMID:26681896

  4. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    NASA Astrophysics Data System (ADS)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3 / 2 , 5 / 2 , 7 / 2, and 9 / 2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  5. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    DOE PAGESBeta

    Cho, Herman

    2016-02-28

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2,5/2,7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Furthermore, applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  6. Shielding and activity estimator for template-based nuclide identification methods

    DOEpatents

    Nelson, Karl Einar

    2013-04-09

    According to one embodiment, a method for estimating an activity of one or more radio-nuclides includes receiving one or more templates, the one or more templates corresponding to one or more radio-nuclides which contribute to a probable solution, receiving one or more weighting factors, each weighting factor representing a contribution of one radio-nuclide to the probable solution, computing an effective areal density for each of the one more radio-nuclides, computing an effective atomic number (Z) for each of the one more radio-nuclides, computing an effective metric for each of the one or more radio-nuclides, and computing an estimated activity for each of the one or more radio-nuclides. In other embodiments, computer program products, systems, and other methods are presented for estimating an activity of one or more radio-nuclides.

  7. Comparison of measured and calculated composition of irradiated EBR-II blanket assemblies.

    SciTech Connect

    Grimm, K. N.

    1998-07-13

    In anticipation of processing irradiated EBR-II depleted uranium blanket subassemblies in the Fuel Conditioning Facility (FCF) at ANL-West, it has been possible to obtain a limited set of destructive chemical analyses of samples from a single EBR-II blanket subassembly. Comparison of calculated values with these measurements is being used to validate a depletion methodology based on a limited number of generic models of EBR-II to simulate the irradiation history of these subassemblies. Initial comparisons indicate these methods are adequate to meet the operations and material control and accountancy (MC and A) requirements for the FCF, but also indicate several shortcomings which may be corrected or improved.

  8. An Analytical Investigation of Three General Methods of Calculating Chemical-Equilibrium Compositions

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.; Gordon, Sanford

    1960-01-01

    The Brinkley, Huff, and White methods for chemical-equilibrium calculations were modified and extended in order to permit an analytical comparison. The extended forms of these methods permit condensed species as reaction products, include temperature as a variable in the iteration, and permit arbitrary estimates for the variables. It is analytically shown that the three extended methods can be placed in a form that is independent of components. In this form the Brinkley iteration is identical computationally to the White method, while the modified Huff method differs only'slightly from these two. The convergence rates of the modified Brinkley and White methods are identical; and, further, all three methods are guaranteed to converge and will ultimately converge quadratically. It is concluded that no one of the three methods offers any significant computational advantages over the other two.

  9. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    SciTech Connect

    Burkes, Douglas; Casella, Amanda J.; Gardner, Levi D.; Casella, Andrew M.; Huber, Tanja K.; Breitkreutz, Harald

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  10. Theoretical Investigation of Calculating Temperatures in the Combining Zone of Cu/Fe Composite Plate Jointed by Explosive Welding

    NASA Astrophysics Data System (ADS)

    Qu, Y. D.; Zhang, W. J.; Kong, X. Q.; Zhao, X.

    2016-03-01

    The heat-transfer behavior of the interface of Flyer plate (or Base Plate) has great influence on the microcosmic structures, stress distributions, and interface distortion of the welded interface of composite plates by explosive welding. In this paper, the temperature distributions in the combing zone are studied for the case of Cu/Fe composite plate jointed by explosive welding near the lower limit of explosive welding. The results show that Flyer plate (Cu plate) and Base Plate (Fe plate) firstly almost have the same melting rate in the explosive welding process. Then, the melting rate of Cu plate becomes higher than that of Fe plate. Finally, the melt thicknesses of Cu plate and Fe plate trend to be different constants, respectively. Meanwhile, the melting layer of Cu plate is thicker than that of Fe plate. The research could supply some theoretical foundations for calculating the temperature distribution and optimizing the explosive welding parameters of Cu/Fe composite plate to some extent.

  11. Constraints on Abundances and Compositional Ranges of X-Ray Amorphous Components in Soils and Rocks at Gale Crater from Mass Balance Calculations

    NASA Astrophysics Data System (ADS)

    Dehouck, E.; McLennan, S. M.; Meslin, P.-Y.; Cousin, A.; Rampe, E. B.; Morris, R. V.; Lanza, N. L.; Hurowitz, J. A.; Rapin, W.; MSL Science Team

    2014-07-01

    We present the results of mass balance calculations that explore the domain of possible chemical compositions (with constraints on abundances) of the amorphous component detected by Curiosity within the Rocknest and Cumberland samples.

  12. Regular Cosmogenic Nuclide Dosing of Sediment Moving Down Desert Piedmonts

    NASA Astrophysics Data System (ADS)

    Nichols, K. K.; Bierman, P. R.; Hooke, R. L.; Eppes, M. C.; Persico, L.; Caffee, M.; Finkel, R.

    2001-12-01

    Low-gradient alluvial piedmonts are common in desert areas throughout the world; however, long-term rates of processes that modify these landscapes are poorly understood. Using cosmogenic 10Be and 26Al, we attempt to quantify the long-term (>103 y) behavior of desert piedmonts in Southern California. We measured the activity of 10Be and 26Al in three samples of drainage basin alluvium and six amalgamated samples from transects spaced at 1-km intervals down a piedmont in Fort Irwin, Mojave Desert, California. Each transect sample consists of sediment from 21 collection sites spaced at 150 m intervals. Such sampling averages the variability of nuclide activity between sub-sample locations and thus gives a long-term dosing history of sediment as it is transported from uplands to the distal piedmont. The piedmont is heavily used during military training exercises during which hundreds of wheeled and tracked vehicles traverse the surface. The piedmont surface is planar, and fan-head incision is minimal at the rangefront decreasing to zero between the first and second transects, 1.5 km from the rangefront. 10Be activity increases steadily from 5.87 X 105 atoms g-1 at the rangefront to 1.02 X 6 atoms g-1 at the piedmont bottom. Nuclide activity and distance are well correlated (r2 = 0.95) suggesting that sediment is dosed uniformly as it is transported down piedmont. We have measured similar increases in nuclide activity in transect samples collected from two other Mojave Desert piedmonts, those fringing the Iron and Granite Mountains (Nichols et al, in press, Geomorphology). These piedmonts have nuclide activities that also correlate well with distance (r2 = 0.98 and 0.96, respectively) from their rangefronts, but nuclides increase at a lower rate down piedmont. Modeled sediment transport speeds for the Iron and Granite Mountain piedmonts are decimeters per year. The regular increase in nuclide activities down three different Mojave Desert piedmonts suggests that

  13. Calculation of optical properties of dental composites as a basis for determining color impression and penetration depth of laser light

    NASA Astrophysics Data System (ADS)

    Weniger, Kirsten K.; Muller, Gerhard J.

    2005-03-01

    In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.

  14. Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.; Fenton, C. R.; Kober, F.; Wiggs, G. F. S.; Bristow, C. S.; Xu, S.

    2010-12-01

    The Namib Sand Sea is one of the world's oldest and largest sand deserts, yet little is known about the source of the sand in this, or other large deserts. In particular, it is unclear whether the sand is derived from local sediment or comes from remote sources. The relatively uniform appearance of dune sands and low compositional variability within dune fields make it difficult to address this question. Here we combine cosmogenic-nuclide measurements and geochronological techniques to assess the provenance and migration history of sand grains in the Namib Sand Sea. We use U-Pb geochronology of detrital zircons to show that the primary source of sand is the Orange River at the southern edge of the Namib desert. Our burial ages obtained from measurements of the cosmogenic nuclides 10Be, 26Al and 21Ne suggest that the residence time of sand within the sand sea is at least one million years. We therefore conclude that, despite large climatic changes in the Namib region associated with Quaternary glacial-interglacial cycles, the area currently occupied by the Namib Sand Sea has never been entirely devoid of sand during the past million years.

  15. Radio-nuclide mixture identification using medium energy resolution detectors

    SciTech Connect

    Nelson, Karl Einar

    2013-09-17

    According to one embodiment, a method for identifying radio-nuclides includes receiving spectral data, extracting a feature set from the spectral data comparable to a plurality of templates in a template library, and using a branch and bound method to determine a probable template match based on the feature set and templates in the template library. In another embodiment, a device for identifying unknown radio-nuclides includes a processor, a multi-channel analyzer, and a memory operatively coupled to the processor, the memory having computer readable code stored thereon. The computer readable code is configured, when executed by the processor, to receive spectral data, to extract a feature set from the spectral data comparable to a plurality of templates in a template library, and to use a branch and bound method to determine a probable template match based on the feature set and templates in the template library.

  16. Recent MARS15 developments: nuclide inventory, DPA and gas production

    SciTech Connect

    Mokhov, N.V.; /Fermilab

    2010-12-01

    Recent developments in the MARS15 code are described for the critical modules related to demands of hadron and lepton colliders and Megawatt proton and heavy-ion beam facilities. Details of advanced models for particle production and nuclide distributions in nuclear interactions at low and medium energies, energy loss, atomic displacements and gas production are presented along with benchmarking against data. Recent developments in the MARS15 physics models, such as nuclide production, decay and transmutation and all-component DPA modelling for arbitrary projectiles in the 1 keV to 10 TeV energy range, add new capabilities to the code crucial in numerous applications with high-intensity high-power beams. Some discrepancies in DPA rate predictions by several codes, relation of DPA and H/He production rates to changes in material properties, as well as corresponding experimental studies at energies above a hundred of MeV are the areas requiring further efforts.

  17. Measurements of cosmogenic nuclides in lunar rock 64455

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Kohl, C. P.; Nishiizumi, K.; Caffee, M. W.; Finkel, R. C.; Southon, J. R.

    1993-01-01

    Eleven samples were ground from the glass coated surface of lunar rock 64455,82 with an average depth resolution of 50 microns and were measured for Be-10, Al-26, and Cl-36 using AMS (accelerator mass spectrometry). Results show no evidence of SCR (solar cosmic ray) effects. The flat cosmogenic nuclide profiles and activity levels are consistent with a 2 My exposure history for the rock and a sample location on the bottom of the rock. These AMS measurements are some of the most precise ever obtained for these three nuclides. This precision and the demonstrated fine depth resolution will enable us to conduct a number of detailed studies of depth effects in lunar and meteoritic samples, including investigating SCR effects in the surface exposed top of the glass coating of 64455 and possibly in the underlying rock.

  18. Production rates of terrestrial in-situ-produced cosmogenic nuclides

    SciTech Connect

    Reedy, R.C.; Tuniz, C.; Fink, D.

    1993-12-31

    Production rates of cosmogenic nuclides made in situ in terrestrial samples and how they are applied to the interpretation of measured radionuclide concentrations were discussed at a one-day Workshop held 2 October 1993 in Sydney, Australia. The status of terrestrial in-situ studies using the long-lived radionuclides {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, and {sup 41}Ca and of various modeling and related studies were presented. The relative uncertainties in the various factors that go into the interpretation of these terrestrial in-situ cosmogenic nuclides were discussed. The magnitudes of the errors for these factors were estimated and none dominated the final uncertainty.

  19. Hot demonstration of proposed commercial nuclide removal technology

    SciTech Connect

    Lee, D.

    1996-10-01

    This task covers the development and operation of an experimental test unit located in a Building 4501 hot cell within Building 4501 at Oak Ridge National Laboratory (ORNL). This equipment is designed to test radionuclides removal technologies under continuous operatoin on actual ORNL Melton Valley Storage Tank (MVST) supernatant, Savannah River high-level waste supernatant, and Hanford supernatant. The latter two may be simulated by adding the appropriate chemicals and/or nuclides to the MVST supernatant.

  20. Atomic Mass Measurements of Stable and Unstable Nuclides

    NASA Astrophysics Data System (ADS)

    Dyck, Gary Robert

    1990-01-01

    This work describes three experiments in which precise atomic mass differences are determined by the technique of high resolution mass spectrometry. The Manitoba II mass spectrometer has been used to measure precise differences, involving naturally occurring nuclides, in two distinct studies, both of which have implications for the current work related to the question of neutrino mass. The first is a set of 6 doublet measurements in the Gd-Tb region, which show that the decay energy of 1220.64 +/- 0.83 keV is insufficient to allow the K-capture decay of ^{158} Tb to the 1187 keV level of ^{158 }Gd, which was proposed as a possible candidate for low energy beta decay in which the effect of a nu mass would be clearly seen. The second study is one in which 4 doublet spacings were determined in order to provide precise Q_ {2beta} values for the decays of ^{130}Te and ^{128}Te, which have long been of interest because they represent similar decays where the Q-values are significantly different. In a third experiment the Chalk River on-line isotope separator (ISOL) has been used to determine the masses of unstable nuclides. The tandem Van de Graaff accelerator was used to produce ^{105 }In, ^{104}In and ^{103}In which were then studied with the ISOL. This represents only the second time that masses of nuclides far from stability, other than alkali metals, have been determined directly.

  1. Recent developments in cosmogenic nuclide production rate scaling

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.

    2013-12-01

    A new cosmogenic nuclide production rate scaling model based on analytical fits to Monte Carlo simulations of atmospheric cosmic ray flux spectra (both of which agree well with measured spectra) enables identification and quantification of the biases in previously published models (Lifton, N., Sato, T., Dunai, T., in review, Earth and Planet. Sci. Lett.). Scaling predictions derived from the new model (termed LSD) suggest two potential sources of bias in the previous models: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. In addition, the particle flux spectra generated by the LSD model allow one to generate nuclide-specific scaling factors that reflect the influences of the flux energy distribution and the relevant excitation functions (probability of nuclide production in a given nuclear reaction as a function of energy). Resulting scaling factors indicate 3He shows the strongest positive deviation from the flux-based scaling, while 14C exhibits a negative deviation. These results are consistent with previous studies showing an increasing 3He/10Be ratio with altitude in the Himalayas, but with a much lower magnitude for the effect. Furthermore, the new model provides a flexible framework for exploring the implications of future advances in model inputs. For example, the effects of recently updated paleomagnetic models (e.g. Korte et al., 2011, Earth and Planet Sci. Lett. 312, 497-505) on scaling predictions will also be presented.

  2. Identification of heavy and superheavy nuclides using chemical separator systems

    NASA Astrophysics Data System (ADS)

    Türler, Andreas

    1999-11-01

    With the recent synthesis of superheavy nuclides produced in the reactions 48Ca+238U and 48Ca+242,244Pu, much longer-lived nuclei than the previously known neutron-deficient isotopes of the heaviest elements have been identified. Half-lives of several hours and up to several years have been predicted for the longest-lived isotopes of these elements. Thus, the sensitivity of radiochemical separation techniques may present a viable alternative to physical separator systems for the discovery of some of the predicted longer-lived heavy and superheavy nuclides. The advantages of chemical separator systems in comparison to kinematic separators lie in the possibility of using thick targets, high beam intensities spread over larger target areas and in providing access to nuclides emitted under large angles and low velocities. Thus, chemical separator systems are ideally suited to study also transfer and (HI, αxn) reaction products. In the following, a study of (HI, αxn) reactions will be presented and prospects to chemically identify heavy and superheavy elements discussed.

  3. Light-ion-induced reactions in mass measurements of neutron-deficient nuclides close to A = 100

    NASA Astrophysics Data System (ADS)

    Elomaa, V.-V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Rahaman, S.; Rissanen, J.; Rubchenya, V.; Weber, C.; Äystö, J.

    2009-04-01

    A survey of neutron-deficient nuclides which can be produced via proton- and 3He -induced fusion-evaporation reactions in the A = 100 region was made using a Penning trap as a high-resolution mass filter. A comparison of the measured isotopic rates with a statistical model calculation for the proton-induced reactions shows the importance of using the precise binding energy values for the final reaction products. In particular, proton separation energies were found to play an important role in the evaporation process. In addition, accurate masses of 12 nuclides, 97-99, 101Pd , 100Ag , 101-105Cd and 102, 104In , were determined with uncertainties of less than 10keV.

  4. A comparison of finite-difference and finite-element methods for calculating free edge stresses in composites

    NASA Technical Reports Server (NTRS)

    Bauld, N. R., Jr.; Goree, J. G.; Tzeng, L.-S.

    1985-01-01

    It is pointed out that edge delamination is a serious failure mechanism for laminated composite materials. Various numerical methods have been utilized in attempts to calculate the interlaminar stress components which precede delamination in a laminate. There are, however, discrepancies regarding the results provided by different methods, taking into account a finite-difference procedure, a perturbation procedure, and finite element approaches. The present investigation has the objective to assess the capacity of a finite difference method to predict the character and magnitude of the interlaminar stress distributions near an interface corner. A second purpose of the investigation is to determine if predictions by finite element method in-plane, interlaminar stress components near an interface corner represent actual laminate behavior.

  5. Uncertainty in nutrient loads from tile-drained landscapes: Effect of sampling frequency, calculation algorithm, and compositing strategy

    NASA Astrophysics Data System (ADS)

    Williams, Mark R.; King, Kevin W.; Macrae, Merrin L.; Ford, William; Van Esbroeck, Chris; Brunke, Richard I.; English, Michael C.; Schiff, Sherry L.

    2015-11-01

    Accurate estimates of annual nutrient loads are required to evaluate trends in water quality following changes in land use or management and to calibrate and validate water quality models. While much emphasis has been placed on understanding the uncertainty of nutrient load estimates in large, naturally drained watersheds, few studies have focused on tile-drained fields and small tile-drained headwater watersheds. The objective of this study was to quantify uncertainty in annual dissolved reactive phosphorus (DRP) and nitrate-nitrogen (NO3-N) load estimates from four tile-drained fields and two small tile-drained headwater watersheds in Ohio, USA and Ontario, Canada. High temporal resolution datasets of discharge (10-30 min) and nutrient concentration (2 h to 1 d) were collected over a 1-2 year period at each site and used to calculate a reference nutrient load. Monte Carlo simulations were used to subsample the measured data to assess the effects of sample frequency, calculation algorithm, and compositing strategy on the uncertainty of load estimates. Results showed that uncertainty in annual DRP and NO3-N load estimates was influenced by both the sampling interval and the load estimation algorithm. Uncertainty in annual nutrient load estimates increased with increasing sampling interval for all of the load estimation algorithms tested. Continuous discharge measurements and linear interpolation of nutrient concentrations yielded the least amount of uncertainty, but still tended to underestimate the reference load. Compositing strategies generally improved the precision of load estimates compared to discrete grab samples; however, they often reduced the accuracy. Based on the results of this study, we recommended that nutrient concentration be measured every 13-26 h for DRP and every 2.7-17.5 d for NO3-N in tile-drained fields and small tile-drained headwater watersheds to accurately (±10%) estimate annual loads.

  6. Cosmogenic nuclide age constraints on Middle Stone Age lithics from Niassa, Mozambique

    NASA Astrophysics Data System (ADS)

    Mercader, Julio; Gosse, John C.; Bennett, Tim; Hidy, Alan J.; Rood, Dylan H.

    2012-07-01

    The late phases of the Middle Stone Age (MSA) in the East African Rift System (EARS) are known for their evolutionary shifts and association with bottlenecks, transcontinental expansion, and climatic fluctuations. The chronology of MSA sites contemporaneous with these eco-demographic upheavals is uncertain because of the scarcity of datable sites and the poor understanding of their depositional and erosional histories. We apply terrestrial cosmogenic nuclide dating in a stratigraphic section with a complex exposure history to the study of the Luchamange Beds, a widespread sedimentological unit underlying MSA sites from the shores of Lake Niassa (Mozambican EARS). We use an innovative approach, which may be applicable elsewhere, to calculate their age using a Monte Carlo-based Bayesian model that links depth profiles of 26Al and 10Be, and uses other geomorphic and cosmogenic nuclide age constraints on episodic erosion and burial. The age of the basal Luchamange Beds is 42 + 77/-15 ka, and the MSA occupation on top is 29 + 3/-11 ka. These dates suggest temporal overlap between MSA and the earliest Later Stone Age and diversity in cultural manifestations at the end of the MSA.

  7. Carbon Isotope Composition of Ecosystem Respired Carbon Dioxide in Three Boreal Forest Ecosystems: Measurements and Model Calculations

    NASA Astrophysics Data System (ADS)

    Cai, T.; Flanagan, L. B.

    2007-12-01

    We conducted measurements of seasonal and inter-annual variation in the carbon isotope composition of ecosystem respired CO2 (δR) in aspen, black spruce and jack pine dominated ecosystems in northern Saskatchewan during 2004-2006 as part of the Fluxnet-Canada Research Network. All three sites showed relatively small variation (approximately -26 to -29 per mil) in δR values during the entire study. The measurements were strongly correlated with modeled δ13C values of ecosystem respired CO2. The model calculated leaf CO2 assimilation, stomatal conductance and chloroplast CO2 concentration separately for sunlit and shaded leaves within multiple canopy layers, and, therefore, allowed us to estimate canopy photosynthetic 13C discrimination. All three sites showed variation in canopy 13C discrimination in response to environmental conditions in a manner consistent with well-known leaf-level studies. Specifically, 13C discrimination was positively correlated with soil moisture and negatively correlated with photon flux density, air temperature and vapor pressure deficit. As a consequence a strong diurnal pattern was observed for 13C discrimination. The measured δR values also varied in response to environmental conditions in a manner consistent with well-known leaf-level studies of photosynthetic 13C discrimination, but with a dampened response caused by the contribution of heterotrophic respiration, which had a constant δ13C value. These results indicate that the stable isotope composition of respired CO2 is a useful ecosystem-scale tool to study constraints to photosynthesis and acclimation of ecosystems to environmental stress.

  8. Notre Dame Nuclear Database: A New Chart of Nuclides

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Khouw, Timothy; Fasano, Patrick; Mumpower, Matthew; Aprahamian, Ani

    2014-09-01

    Nuclear data is critical to research fields from medicine to astrophysics. We are creating a database, the Notre Dame Nuclear Database, which can store theoretical and experimental datasets. We place emphasis on storing metadata and user interaction with the database. Users are able to search in addition to the specific nuclear datum, the author(s), the facility where the measurements were made, the institution of the facility, and device or method/technique used. We also allow users to interact with the database by providing online search, an interactive nuclide chart, and a command line interface. The nuclide chart is a more descriptive version of the periodic table that can be used to visualize nuclear properties such as half-lives and mass. We achieve this by using D3 (Data Driven Documents), HTML, and CSS3 to plot the nuclides and color them accordingly. Search capabilities can be applied dynamically to the chart by using Python to communicate with MySQL, allowing for customization. Users can save the customized chart they create to any image format. These features provide a unique approach for researchers to interface with nuclear data. We report on the current progress of this project and will present a working demo that highlights each aspect of the aforementioned features. This is the first time that all available technologies are put to use to make nuclear data more accessible than ever before in a manner that is much easier and fully detailed. This is a first and we will make it available as open source ware.

  9. ANDROS: A code for Assessment of Nuclide Doses and Risks with Option Selection

    SciTech Connect

    Begovich, C.L.; Sjoreen, A.L.; Ohr, S.Y.; Chester, R.O.

    1986-11-01

    ANDROS (Assessment of Nuclide Doses and Risks with Option Selection) is a computer code written to compute doses and health effects from atmospheric releases of radionuclides. ANDROS has been designed as an integral part of the CRRIS (Computerized Radiological Risk Investigation System). ANDROS reads air concentrations and environmental concentrations of radionuclides to produce tables of specified doses and health effects to selected organs via selected pathways (e.g., ingestion or air immersion). The calculation may be done for an individual at a specific location or for the population of the whole assessment grid. The user may request tables of specific effects for every assessment grid location. Along with the radionuclide concentrations, the code requires radionuclide decay data, dose and risk factors, and location-specific data, all of which are available within the CRRIS. This document is a user manual for ANDROS and presents the methodology used in this code.

  10. Facies composition calculated from the sonic, neutron, and density log suite, upper part of the Minnelusa Formation, Powder River basin, Wyoming

    USGS Publications Warehouse

    Schmoker, J.W.; Schenk, C.J.

    1988-01-01

    Sandstones and dolomites of the Permian upper part of the Minnelusa Formation are treated here as four-component systems consisting of fluid-filled pore space, quartz, dolomite, and anhydrite. Response equations of sonic, neutron, and density logs form a system of four simultaneous equations. With four equations and four unknowns, the composition of upper Minnelusa facies is defined by the three-log suite and can be calculated by solving a 4 ?? 4 matrix. Such calculations of facies composition help in establishing subsurface correlations and yield information on the diagenesis and physical character of upper Minnelusa sandstones and dolomites. Applications of composition calculations are illustrated by examples drawn from the area of the West Mellott field (T52N, R68W), where the upper Minnelusa is at depths of about 7000 ft (2100m). -from Authors

  11. Steady-state creep of bent reinforced metal-composite plates with consideration of their reduced resistance to transverse shear 2. Analysis of calculated results

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2014-07-01

    Deformation of annular plates with different structures of helical reinforcement is studied. It is demonstrated that the use of the classical theory for calculating steady-state creep for thick reinforced plates subjected to bending leads to underprediction of the compliance of thin-walled metal-composite structures. It is also shown that there are significant shear strain rates in the binder of such plates, which has to be taken into account and which is mainly responsible for creep strain accumulation. Results calculated by two different models, which take into account the composite structure, are compared.

  12. ICoN, the Interactive Chart of Nuclides

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Mumpower, Matthew; Aprahamian, Ani

    2015-10-01

    Nuclear data is critical to research fields from medicine to astrophysics. The chart of nuclides is a more descriptive version of the periodic table that can be used to visualize nuclear properties such as half-lives and mass. We have created ICoN (simply short for Interactive Chart of Nuclides), an API which can be used to visualize theoretical and experimental datasets. This visualization is achieved by using D3 (Data Driven Documents), HTML, and CSS3 to plot the elements and color them accordingly. ICoN features many customization options that users can access that are dynamically applied to the chart without reloading the page. Users can save the customized chart they create to various formats. We have constructed these features in order to provide a unique approach for researchers to interface with nuclear data. ICoN can also be used on all electronic devices without loss of support. We report on the current progress of this project and will present a working demo that highlights each aspect of the aforementioned features. This is the first time that all available technologies are put to use to make nuclear data more accessible than ever before. This is a first and we will make it available as open source ware.

  13. Interpolations of nuclide-specific scattering kernels generated with Serpent

    SciTech Connect

    Scopatz, A.; Schneider, E.

    2012-07-01

    The neutron group-to-group scattering cross section is an essential input parameter for any multi-energy group physics model. However, if the analyst prefers to use Monte Carlo transport to generate group constants this data is difficult to obtain for a single species of a material. Here, the Monte Carlo code Serpent was modified to return the group transfer probabilities on a per-nuclide basis. This ability is demonstrated in conjunction with an essential physics reactor model where cross section perturbations are used to dynamically generate reactor state dependent group constants via interpolation from pre-computed libraries. The modified version of Serpent was therefore verified with three interpolation cases designed to test the resilience of the interpolation scheme to changes in intra-group fluxes. For most species, interpolation resulted in errors of less than 5% of transport-computed values. For important scatterers, such as {sup 1}H, errors less than 2% were observed. For nuclides with high errors ( > 10%), the scattering channel typically only had a small probability of occurring. (authors)

  14. Forbush decreases geomagnetic and atmospheric effects cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Flueckiger, E. O.

    1986-01-01

    An overview and synthesis is given of recent developments that have occurred in the areas of Forbush decreases, geomagnetic and atmospheric effects, and cosmogenic nuclides. Experimental evidence has been found for substantial differences in the effects of the various types of interplanetary perturbations on cosmic rays, and for a dependence of these effects on the three-dimensional configuration of the interplanetary medium. In order to fully understand and to be able to simulate the solar cosmic ray particle access to the polar regions of the earth we need accurate models of the magnetospheric magnetic field. These models must include all major magnetospheric current systems (in particular the field aligned currents), and they should represent magnetically quiet time periods as well as different levels of geomagnetic activity. In the evolution of magnetospheric magnetic field models, cosmic ray and magnetospheric physicists should work closely together since cosmic ray measurements are a powerful additional tool in the study of the perturbed magnetosphere. In the field of cosmogenic nuclides, finally, exciting new results and developments follow in rapid succession. Thanks to new techniques and new isotopes the analysis of cosmic ray history has entered into a new dimension.

  15. Penning trap mass measurements of nuclides along the astrophysical rp- and νp- process paths

    NASA Astrophysics Data System (ADS)

    Clark, Jason

    2009-10-01

    X-ray bursters and supernovae are examples of explosive stellar phenomena in which nuclides are quickly produced in great quantities. Observed as x-ray bursts, thermonuclear runaways on the surface of neutron stars accreting material from its binary star companion create elements by a nucleosynthetic procoess which involves a series of rapid proton-capture reactions, termed the rp process. The timescale, nuclides produced, and energy released during the rp process are very sensitive to delays encountered at waiting-point nuclides, nuclides in which their slow β decay is more probable than net proton capture. A possible mechanism to bypass the waiting-point nuclides is through the νp process, in which (n,p) and (n,γ) reactions on the waiting-point nuclides, in addition to the proton-capture reactions, are possible. Supernovae are possible sites for the νp process as the proton-rich ejecta can absorb antineutrinos to produce the required free neutrons. It is this νp process which may resolve the long-standing discrepancy between the observed and predicted abundances of ^92Mo and ^94Mo. Proton-capture Q values of nuclides along the rp- and νp- process paths are required to accurately model the nucleosynthesis, especially at the waiting-point nuclides. In recent years, Penning traps have become the preferred tool to make precise mass measurements of stable and unstable nuclides. To make the best use of these devices in measuring the masses of radioactive nuclides, systems have been developed to quickly, cleanly, and efficiently transport the short-lived, weakly produced nuclides to the Penning traps. This talk will discuss the rp and νp nucleosynthetic processes and will highlight the precise Penning trap mass measurements of nuclides along these process paths.

  16. Bridging the timescales between thermochronological and cosmogenic nuclide data

    NASA Astrophysics Data System (ADS)

    Glotzbach, Christoph

    2015-04-01

    Reconstructing the evolution of Earth's landscape is a key to understand its future evolution and to identify the driving forces that shape Earth's surface. Cosmogenic nuclide and thermochronological methods are routinely used to quantify Earth surface processes over 102-104 yr and 106-107 yr, respectively (e.g. Lal 1991; Reiners and Ehlers 2005; von Blanckenburg 2006). A comparison of the rates of surface processes derived from these methods is, however, hampered by the large difference in their timescales. For instance, a constant erosion rate of 0.1 mm/yr yield an apatite (U-Th)/He age of ~24 Ma and a 10Be age of ~6 ka, respectively. Analytical methods that bridge this time gap are on the way, but are not yet fully established (e.g. Herman et al. 2010). A ready to use alternative are river profiles, which record the regional uplift history over 102-107 yr (e.g. Pritchard et al. 2009). Changes in uplift are retained in knickzones that propagate with a distinct velocity upstream, and therefore the time of an uplift event can be estimated. Here I present an integrative inverse modelling approach to simultaneously reconstruct river profiles, model thermochronological and cosmogenic nuclide data and to derive robust information about landscape evolution over thousands to millions of years. An efficient inversion routine is used to solve the forward problem and find the best uplift history and erosional parameters that reproduce the observed data. I test the performance of the algorithm by inverting a synthetic dataset and a dataset from the Sila massif (Italy). Results show that even complicated uplift histories can be reliably retrieved by the combined interpretation of river profiles, thermochronological and cosmogenic nuclide data. References Gallagher, K., Brown, R. & Johnson, C. (1998): Fission track analysis and its applications to geological problems. - Annu. Rev. Earth Planet., 26: 519-572. Herman, F., Rhodes, E.J., Braun, J. & Heiniger, L. (2010): Uniform

  17. Nuclides.net: A Web-Based Environment for Nuclear Data and Applications

    SciTech Connect

    Galy, J.; Magill, J.

    2005-05-24

    An interactive multimedia tool, Nuclides.net, has been developed at the Institute for Transuranium Elements. The Nuclides.net 'integrated environment' is a suite of computer programs ranging from a powerful user-friendly interface, which allows the user to navigate the nuclides chart and explore the properties of nuclides, to various computational modules. Through this powerful interface, the user can access a wide variety of nuclear data including, e.g., radioactive decay data, cross sections, fission yields, etc. from international recognized sources.

  18. ACDOS1: a computer code to calculate dose rates from neutron activation of neutral beamlines and other fusion-reactor components

    SciTech Connect

    Keney, G.S.

    1981-08-01

    A computer code has been written to calculate neutron induced activation of neutral-beam injector components and the corresponding dose rates as a function of geometry, component composition, and time after shutdown. The code, ACDOS1, was written in FORTRAN IV to calculate both activity and dose rates for up to 30 target nuclides and 50 neutron groups. Sufficient versatility has also been incorporated into the code to make it applicable to a variety of general activation problems due to neutrons of energy less than 20 MeV.

  19. Removal of radio nuclides of the U- and Th- series from aqueous solutions by adsorption onto Polyacryamide-expanded perlite: Effects of pH, concentration and temperature

    NASA Astrophysics Data System (ADS)

    Akkaya, Recep

    2012-10-01

    Poly (Acryamide-expanded perlite) [P(AAm-EP)], was synthesized. The influence of process parameters: initial pH and five radio nuclides of the U- and Th- series (TI+, Ra2+, Bi3+, Ac3+ and Pb2+ in a leaching solution) concentration, on sorption thermodynamic was studied and discussed. The five natural radio nuclides were counted by gamma spectrometer using a type NAI (Tl) detector. The amounts of five radio nuclides sorbed at equlibrium were well represented by Langmuir and Freundlich type isotherms. The Langmuir adsorption capacities (XL) were in the order of 208Tl (0.4 MBq kg-1)>212Pb and 212Bi (0.3 MBq kg-1)>228Ac and (0.1 MBq kg-1)>226Ra (0.04 MBq kg-1). These results demonstrated that P(AAm-EP) had high affinity to the five natural radio nuclides. In order to specify the type of adsorption reaction, thermodynamic parameters such as the standard enthalpy, entropy, and Gibbs free energy were also determined. It was also demonstrated that the adsorption mechanism was spontaneous (ΔG<0), the process was exothermic (ΔH<0) thus increasing entropy (ΔS>0). The composite was reused for four more times after regeneration without any detectable changes either in its structure or adsorptive capability.

  20. Multi-nuclide AMS system at the University of Tsukuba

    SciTech Connect

    Sasa, Kimikazu; Takahashi, Tsutomu

    2010-05-12

    A multi-nuclide AMS system on the 12UD Pelletron tandem accelerator at the University of Tsukuba (Tsukuba AMS system) can measure environmental levels of long-lived radioisotopes of {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 129}I by employing a molecular pilot beam. AMS is an ultrasensitive technique for the study of long-lived radioisotopes, and stable isotopes at very low abundances. The high terminal voltage has an advantage in the detection of heavy radioisotopes. Much progress has been made in the development of new AMS techniques. For example, a standard deviation of the fluctuation for the {sup 36}Cl/Cl ratio is +- 2%, and the effective detection limit is better than 1x10{sup -15}. In recent years, the main research field of the 12UD Pelletron tandem accelerator has shifted to accelerator mass spectrometry (AMS) research from nuclear physics. This report presents an overview of the Tsukuba AMS system.

  1. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature

    NASA Astrophysics Data System (ADS)

    Abers, Geoffrey A.; Hacker, Bradley R.

    2016-02-01

    To interpret seismic images, rock seismic velocities need to be calculated at elevated pressure and temperature for arbitrary compositions. This technical report describes an algorithm, software, and data to make such calculations from the physical properties of minerals. It updates a previous compilation and Excel® spreadsheet and includes new MATLAB® tools for the calculations. The database of 60 mineral end-members includes all parameters needed to estimate density and elastic moduli for many crustal and mantle rocks at conditions relevant to the upper few hundreds of kilometers of Earth. The behavior of α and β quartz is treated as a special case, owing to its unusual Poisson's ratio and thermal expansion that vary rapidly near the α-β transition. The MATLAB tools allow integration of these calculations into a variety of modeling and data analysis projects.

  2. Fission barriers at the end of the chart of the nuclides

    SciTech Connect

    Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira; Mumpower, Matthew

    2015-02-12

    We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤ A ≤ 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop (FRLDM) with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than five million different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ϵ) and the spherical-harmonic (β) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ϵ,γ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about one MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. In addition these studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.

  3. Fission barriers at the end of the chart of the nuclides

    DOE PAGESBeta

    Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira; Mumpower, Matthew

    2015-02-12

    We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤ A ≤ 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop (FRLDM) with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than five million different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ϵ) andmore » the spherical-harmonic (β) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ϵ,γ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about one MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. In addition these studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.« less

  4. Fission barriers at the end of the chart of the nuclides

    NASA Astrophysics Data System (ADS)

    Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira; Mumpower, Matthew

    2015-02-01

    We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤A ≤330 . The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop model with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than 5 000 000 different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ɛ ) and the spherical-harmonic (β ) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ɛ ,γ ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about 1 MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β -delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. These studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.

  5. Modified microspheres for cleaning liquid wastes from radioactive nuclides

    SciTech Connect

    Danilin, Lev; Drozhzhin, Valery

    2007-07-01

    An effective solution of nuclear industry problems related to deactivation of technological and natural waters polluted with toxic and radioactive elements is the development of inorganic sorbents capable of not only withdrawing radioactive nuclides, but also of providing their subsequent conservation under conditions of long-term storage. A successful technical approach to creation of sorbents can be the use of hollow aluminosilicate microspheres. Such microspheres are formed from mineral additives during coal burning in furnaces of boiler units of electric power stations. Despite some reduction in exchange capacity per a mass unit of sorbents the latter have high kinetic characteristics that makes it possible to carry out the sorption process both in static and dynamic modes. Taking into account large industrial resources of microspheres as by-products of electric power stations, a comparative simplicity of the modification process, as well as good kinetic and capacitor characteristics, this class of sorbents can be considered promising enough for solving the problems of cleaning liquid radioactive wastes of various pollution levels. (authors)

  6. Excited states in the proton-unbound nuclide 158Ta

    NASA Astrophysics Data System (ADS)

    Carroll, R. J.; Page, R. D.; Joss, D. T.; O'Donnell, D.; Uusitalo, J.; Darby, I. G.; Andgren, K.; Auranen, K.; Bönig, S.; Cederwall, B.; Doncel, M.; Drummond, M. C.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; Greenlees, P. T.; Hadinia, B.; HerzáÅ, A.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Konki, J.; Kröll, T.; Leino, M.; Leppänen, A.-P.; McPeake, C.; Nyman, M.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Revill, J.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayǧi, B.; Scholey, C.; Seweryniak, D.; Simpson, J.; Sorri, J.; Stolze, S.; Taylor, M. J.; Thornthwaite, A.

    2016-03-01

    Excited states in the neutron-deficient odd-odd proton-unbound nuclide 158Ta have been investigated in two separate experiments. In the first experiment, 166Ir nuclei were produced in the reactions of 380 MeV 78Kr ions with an isotopically enriched 92Mo target. The α -decay chain of the 9+ state in 166Ir was analyzed. Fine structure in the α decay of the 9+ state in 162Re established a 66 keV difference in excitation energy between the lowest-lying 9+ and 10+ states in 158Ta. Higher-lying states in 158Ta were populated in the reactions of 255 MeV 58Ni ions with an isotopically enriched 102Pd target. Gamma-ray decay paths that populate, depopulate, and bypass a 19- isomeric state have been identified. The general features of the deduced level scheme are discussed and the prospects for observing proton emission branches from excited states are considered.

  7. Engineering refinements to overcome default nuclide regulatory constraints

    NASA Astrophysics Data System (ADS)

    Finn, R.; Capitelli, P.; Sheh, Y.; Lom, C.; Graham, M.; Germain, J. St.

    2005-12-01

    The "classical" positron emitting radionuclides include oxygen-15, nitrogen-13 and carbon-11 which possess unique properties for medical imaging. They are radionuclides of the fundamental elements of biological matter. They each possess short half-lives which allow their use in designed radiotracers for clinical investigations with minimal risk and they are readily able to be produced in sufficient activities by low energy nuclear reactions. At present several accelerator manufacturers offer production packages for these radionuclides emphasizing targetry with consideration of the cyclotron extracted energies for nuclide production and on-line chemistry systems for the continuous production of specific precursors or radiotracers. Following the installation and acceptance of the MSKCC TR 19/9 Cyclotron, our experience with the procured chemistry module for the preparation of oxygen-15 labeled water has forced us to examine the design and the operation of the synthetic unit with a view toward the state of New York's regulations addressing the environmental pollution from radioactive materials. The chemistry module was refined with subtle modifications to the chemistry procedure/unit and our experience with the unit is presented as an example of our approach to insure regulatory compliance.

  8. Calculation of the Rate of Combustion of a Metallized Composite Solid Propellant with Allowance for the Size Distribution of Agglomerates

    NASA Astrophysics Data System (ADS)

    Poryazov, V. A.; Krainov, A. Yu.

    2016-06-01

    A physicomathematical model of combustion of a metallized composite solid propellant based on ammonium perchlorate has been presented. The model takes account of the thermal effect of decomposition of a condensed phase (c phase), convection, diffusion, the exothermal chemical reaction in a gas phase, the heating and combustion of aluminum particles in the gas flow, and the velocity lag of the particles behind the gas. The influence of the granulometric composition of aluminum particles escaping from the combustion surface on the linear rate of combustion has been investigated. It has been shown that information not only on the kinetics of chemical reactions in the gas phase, but also on the granulometric composition of aluminum particles escaping from the surface of the c phase into the gas, is of importance for determination of the linear rate of combustion.

  9. Calculation of the Rate of Combustion of a Metallized Composite Solid Propellant with Allowance for the Size Distribution of Agglomerates

    NASA Astrophysics Data System (ADS)

    Poryazov, V. A.; Krainov, A. Yu.

    2016-05-01

    A physicomathematical model of combustion of a metallized composite solid propellant based on ammonium perchlorate has been presented. The model takes account of the thermal effect of decomposition of a condensed phase (c phase), convection, diffusion, the exothermal chemical reaction in a gas phase, the heating and combustion of aluminum particles in the gas flow, and the velocity lag of the particles behind the gas. The influence of the granulometric composition of aluminum particles escaping from the combustion surface on the linear rate of combustion has been investigated. It has been shown that information not only on the kinetics of chemical reactions in the gas phase, but also on the granulometric composition of aluminum particles escaping from the surface of the c phase into the gas, is of importance for determination of the linear rate of combustion.

  10. Composition.

    ERIC Educational Resources Information Center

    Nemanich, Donald, Ed.

    1974-01-01

    The articles in this special issue of the "Illinois English Bulletin" concern the state of composition instruction at the secondary and college levels. The titles and authors are "Monologues or Dialogues? A Plea for Literacy" by Dr. Alfred J. Lindsey, "Teaching Composition: Curiouser and Curiouser" by Denny Brandon, and "Teaching Writing to High…

  11. The concentration of short-lived spontaneously fissioning nuclides from iron-manganes nodules

    NASA Astrophysics Data System (ADS)

    Maslov, O. D.

    2016-03-01

    The paper reports on the observation of the spontaneously fissioning nuclides as a result of hydrochemical and high-temperature processing of iron-manganese nodules. The spontaneous fission in the samples obtained was measured by the track method using electrochemical etching, and nuclides with T 1/2 = 15 d, T 1/2 = 25 d that is similar in chemical properties to Os and T 1/2 = 62 d, (similar in chemical properties to Pb and Ra) were detected. The content of the parent nuclide in iron-manganese nodules corresponds to 4 × 10-14-8 × 10-14 g/g.

  12. Implementation of Improved Transverse Shear Calculations and Higher Order Laminate Theory Into Strain Rate Dependent Analyses of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.

  13. The Navy/NASA Engine Program (NNEP89): Interfacing the program for the calculation of complex Chemical Equilibrium Compositions (CEC)

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford

    1991-01-01

    The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.

  14. A new tool for the search of nuclides with properties suitable for nuclear solid state physics based on the Evaluated Nuclear Structure Data Files

    NASA Astrophysics Data System (ADS)

    Nagl, M. A.; Barbosa, M. B.; Vetter, U.; Correia, J. G.; Hofsäss, H. C.

    2013-10-01

    A software tool for the displaying of nuclear decay schemes, the calculation of angular γ emission anisotropies, and the automated search for appropriate decay cascade properties based on the Evaluated Nuclear Structure Data Files (ENSDF) was created and published for free download. After a short introduction of this tool, candidate nuclides for time differential perturbed γ-γ angular correlation (TDPAC) measurements are presented. These candidates are grouped according to their parent nuclides’ half-life periods in groups for online, on-site, and off-site measurements. For all candidates angular correlation coefficients (also called anisotropy values) were computed and are shown alongside magnetic and quadrupole moments from the ENSDF database and other sources. An extension of the presented software for the search of nuclides for Mössbauer spectroscopy, Nuclear Resonant Scattering, and other methods is easily possible.

  15. New effective moduli of isotropic viscoelastic composites. Part II. Comparison of approximate calculation with the analytical solution

    NASA Astrophysics Data System (ADS)

    Kupriyanov, N. A.; Simankin, F. A.; Manabaev, K. K.

    2016-04-01

    A new approximate algorithm for calculating a stress-strain state of viscoelastic bodies is used. The algorithm is based on the derivation of the expressions of time-effective modules. These modules are obtained by iterative changes, compressing the fork of Voigt-Reuss. As an example the analytic solution about the action of a concentrated force on the viscoelastic half-space is compared with the approximate solution. Numerical calculations are performed for a wide range of relaxation characteristics of a viscoelastic half-space. Results of the comparison of stresses and displacements with the analytic solution give coincidence within 3... 15%.

  16. Phase II Nuclide Partition Laboratory Study Influence of Cellulose Degradation Products on the Transport of Nuclides from SRS Shallow Land Burial Facilities

    SciTech Connect

    Serkiz, S.M.

    1999-10-04

    Degradation products of cellulosic materials (e.g., paper and wood products) can significantly influence the subsurface transport of metals and radionuclides. Codisposal of radionuclides with cellulosic materials in the E-Area slit trenches at the Savannah River Site (SRS) is, therefore, expected to influence nuclide fate and transport in the subsurface. Due to the complexities of these systems and the scarcity of site-specific data, the effects of cellulose waste loading and its subsequent influence on nuclide transport are not well established.

  17. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies.

    PubMed

    Feng, Yong; Liu, Lei; Wang, Jin-Ti; Huang, Hao; Guo, Qing-Xiang

    2003-01-01

    Composite ab initio CBS-Q and G3 methods were used to calculate the bond dissociation energies (BDEs) of over 200 compounds listed in CRC Handbook of Chemistry and Physics (2002 ed.). It was found that these two methods agree with each other excellently in the calculation of BDEs, and they can predict BDEs within 10 kJ/mol of the experimental values. Using these two methods, it was found that among the examined compounds 161 experimental BDEs are valid because the standard deviation between the experimental and theoretical values for them is only 8.6 kJ/mol. Nevertheless, 40 BDEs listed in the Handbook may be highly inaccurate as the experimental and theoretical values for them differ by over 20 kJ/mol. Furthermore, 11 BDEs listed in the Handbook may be seriously flawed as the experimental and theoretical values for them differ by over 40 kJ/mol. Using the 161 cautiously validated experimental BDEs, we then assessed the performances of the standard density functional (DFT) methods including B3LYP, B3P86, B3PW91, and BH&HLYP in the calculation of BDEs. It was found that the BH&HLYP method performed poorly for the BDE calculations. B3LYP, B3P86, and B3PW91, however, performed reasonably well for the calculation of BDEs with standard deviations of about 12.1-18.0 kJ/mol. Nonetheless, all the DFT methods underestimated the BDEs by 4-17 kJ/mol in average. Sometimes, the underestimation by the DFT methods could be as high as 40-60 kJ/mol. Therefore, the DFT methods were more reliable for relative BDE calculations than for absolute BDE calculations. Finally, it was observed that the basis set effects on the BDEs calculated by the DFT methods were usually small except for the heteroatom-hydrogen BDEs. PMID:14632451

  18. Recommended Partition Coefficient (Kd) Values for Nuclide Partitioning in the Presence of Cellulose Degradation Products

    SciTech Connect

    Serkiz, S.M.

    2001-02-23

    This report documents the data analysis of the results of the described laboratory studies in order to recommend Kd values for use in Performance Assessment modeling of nuclide transport in the presence of CDP.

  19. (1) Selective separation and solidification of radioactive nuclides by zeolites

    NASA Astrophysics Data System (ADS)

    Mimura, Hitoshi; Sato, Nobuaki; Kirishima, Akira

    Massive tsunami generated by the Great East Japan Earthquake attacked the Fukushima Daiichi Nuclear Power Plant and caused the nuclear accident of level 7 to overturn the safety myth of the nuclear power generation. The domestic worst accident does not yet reach the convergence, and many inhabitants around the power plant are forced to double pains of earthquake disaster and nuclear accident. Large amounts of high-activity-level water over 200,000 tons are accumulated on the basement floor of each turbine building, which is a serious obstacle to take measures for the nuclear accident. For the decontamination of high-activity-level water containing seawater, the inorganic ion-exchangers having high selectivity are effective especially for the selective removal of radioactive Cs. On the other hand, radioactive Cs and I released into the atmosphere from the power plant spread widely around Fukushima prefecture, and the decontamination of rainwater and soil become the urgent problem. At present, passing about four months after nuclear accident, the radioactive nuclides of 137Cs and 134Cs are mainly contained in the high-activity-level water and the selective adsorbents for radioactive Cs play an important part in the decontamination. Since the construction of original decontamination system is an urgent necessity, selective separation methods using inorganic ion-exchangers are greatly expected. From the viewpoint of cost efficiency and high Cs-selectivity, natural zeolites are effective for the decontamination of radioactive Cs. This special issue deals with the selective separation and solidification of radioactive Cs and Sr using zeolites.

  20. Investigation of Naturally Occurring Radio Nuclides in Shir-kuh Granites

    SciTech Connect

    Mazarei, Mohammad Mehdi; Zarei, Mojtaba

    2011-12-26

    One of the principle natural radiation resources is Granite which can be dangerous for human because of its radiations. Based on this fact, in this research we attempt to specify the activity amount of these natural radio nuclides, existing in Shir-kuh Granite of Yazd state. To specify the activity amount of this natural radio nuclides, it has been applied the measurement method of Gamma spectroscopy using high purity Germanium (HPGe) detector.

  1. Investigation of Naturally Occurring Radio Nuclides in Shir-kuh Granites

    NASA Astrophysics Data System (ADS)

    Mazarei, Mohammad Mehdi; Zarei, Mojtaba

    2011-12-01

    One of the principle natural radiation resources is Granite which can be dangerous for human because of its radiations. Based on this fact, in this research we attempt to specify the activity amount of these natural radio nuclides, existing in Shir-kuh Granite of Yazd state. To specify the activity amount of this natural radio nuclides, it has been applied the measurement method of Gamma spectroscopy using high purity Germanium (HPGe) detector.

  2. Measurements of Cosmogenic Nuclides in and their Significance for Samples Returned from Asteroids

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Herzog, G. F.; Reedy, R. C.

    2000-01-01

    Nuclear interactions of cosmic rays with matter produce cosmogenic nuclides (CNs). Ever since they were first measured nearly 50 years ago, cosmogenic nuclides have been used to infer the irradiation histories of terrestrial and extraterrestrial materials. Here we call for an extension of such measurements to samples returned from an asteroidal surface. The information gained in this way will be important for elucidating the evolution of the asteroidal surface. Additional information is contained in the original extended abstract.

  3. Composites

    SciTech Connect

    Chou, T.; McCullough, R.L.; Pipes, R.B.

    1986-10-01

    The degree of control over material properties that is typified by hybrid composites is transforming engineering design. In part because homogeneous materials such as metals and alloys do not offer comparable control, specifying a material and designing a component have traditionally taken place separately. As composites begin to replace traditional materials in fields and such as aerospace, component design and the specification of a material are merging and becoming aspects of a single process. The controllable microstructure of a composite allows it to be tailored to match the distribution of stresses to which it will be subject. At the same time components must come to reflect the distinctive nature of composites: their directional properties and the intricate forms they can be given through processes such as injection molding, filament winding and three-dimensional weaving. The complexity inherent in conceiving components and their materials at the same time suggests engineering design will grow increasingly dependent on computers and multidisciplinary teams. Such an approach will harness the full potential of composites for the technologies of the future. 10 figures.

  4. MAGMIX: a basic program to calculate viscosities of interacting magmas of differing composition, temperature, and water content

    USGS Publications Warehouse

    Frost, T.P.; Lindsay, J.R.

    1988-01-01

    MAGMIX is a BASIC program designed to predict viscosities at thermal equilibrium of interacting magmas of differing compositions, initial temperatures, crystallinities, crystal sizes, and water content for any mixing proportion between end members. From the viscosities of the end members at thermal equilibrium, it is possible to predict the styles of magma interaction expected for different initial conditions. The program is designed for modeling the type of magma interaction between hypersthenenormative magmas at upper crustal conditions. Utilization of the program to model magma interaction at pressures higher than 200 MPa would require modification of the program to account for the effects of pressure on heat of fusion and magma density. ?? 1988.

  5. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation.

    PubMed

    Zhang, Rui; Newhauser, Wayne D

    2009-03-21

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material. PMID:19218739

  6. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    PubMed Central

    Zhang, Rui; Newhauser, Wayne D

    2014-01-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg–Kleeman rule (BK), the Bethe–Bloch equation (BB) or an empirical version of the Bethe–Bloch equation (EBB). Alternative approaches were developed for targets that were ‘radiologically thin’ or ‘thick’. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material. PMID:19218739

  7. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Newhauser, Wayne D.

    2009-03-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material.

  8. 10Be concentrations and the long-term fate of particle-reactive nuclides in five soil profiles from California

    NASA Astrophysics Data System (ADS)

    Monaghan, M. C.; Krishnaswami, S.; Thomas, J. H.

    1983-10-01

    Concentration-depth profiles of cosmic-ray-produced 10Be ( t1/2 = 1.5m.y.) have been measured by accelerator-mass spectrometry in five soil profiles. These measurements were made in an effort (1) to understand the retentivity of soil surfaces for particle-reactive tracers depositing from the atmosphere on time scales of 10 4-10 6 years, and (2) to explore the application of 10Be as a chronometer of geomorphic surface age. The profiles sampled are from two wave-cut terraces located near Mendocino, California, a table mountain top and an alluvial fan, both located near Friant, California. The ages of the Mendocino terraces are inferred to be (1-5) × 10 5 years based on amino-stratigraphic correlations and models of terrace evolution; those of the table mountain top and alluvial fan are 9.5 × 10 6 years and 6.0 × 10 5 years, respectively, based on K-Ar analyses. All the surfaces sampled are nearly flat and exhibit few erosional features. In addition to 10Be we measured 210Pb, 239,240Pu and 7Be to ascertain the retentivity of the soils for particle-reactive nuclides and to assess the present-day delivery rate of nuclides from the atmosphere. The 7Be inventory is 4.0 dpm/cm 2 similar to those observed at nearby locations. The inventories of 210Pb and Pu isotopes conform to those predicted from model calculations and suggest that the soil surfaces sampled retain the entire burden of particle-reactive nuclides delivered to them over short time scales, ˜ 100 years. The 10Be concentrations in the sample range between (0.2 and 7) × 10 8 atoms/g soil and show strong correlations with leachable Fe and/or Al. The inventory of 10Be in the soil domain sampled is 1-2 orders of magnitude lower than that expected from the geological age of the surface and an average delivery rate of 10Be from the atmosphere, 5.2 × 10 5 atoms/cm 2 yr. The low inventory of 10Be is attributed to its loss from the soil domain sampled by solution transport. Based on a simple ☐-model type

  9. Modeling of nuclide release from low-level radioactive paraffin waste: a comparison of simulated and real waste.

    PubMed

    Kim, Ju Youl; Kim, Chang Lak; Chung, Chang Hyun

    2002-10-01

    Nuclide leaching models based on mass transfer theory are reviewed and evaluated to analyze the leaching test results of simulated and real paraffin waste from Korean nuclear power plants (NPPs). An empirical model (EM), bulk diffusion model (BDM), coupled diffusion/dissolution model (CDDM), shrinking core model (SCM), modified SCM (MSCM), and uniform reaction model (URM) are selected for comparison. In case of simulated paraffin waste form, the experimental results are satisfactorily explained by the SCM which is based on a diffusion-controlled dissolution reaction. Leaching behavior of real paraffin waste form is well predicted by URM that considers inter-aggregated porous medium and intra-aggregated porous medium separately. If real paraffin waste forms are manufactured with relatively uniform composition, their leaching behaviors are expected to be similar to those of simulated paraffin waste forms. PMID:12169419

  10. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. Interim Revision, March 1976

    NASA Technical Reports Server (NTRS)

    Gordon, S.; Mcbride, B. J.

    1976-01-01

    A detailed description of the equations and computer program for computations involving chemical equilibria in complex systems is given. A free-energy minimization technique is used. The program permits calculations such as (1) chemical equilibrium for assigned thermodynamic states (T,P), (H,P), (S,P), (T,V), (U,V), or (S,V), (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. The program considers condensed species as well as gaseous species.

  11. Cosmogenic nuclides application on French Mediterranean shore platform development

    NASA Astrophysics Data System (ADS)

    Giuliano, Jérémy; Lebourg, Thomas; Godard, Vincent; Dewez, Thomas; Braucher, Régis; Bourlès, Didier; Marçot, Nathalie

    2014-05-01

    Rocky shorelines are among the most common elements of the world's littoral zone, and the potential effects of rising sea level on the ever increasing populations require a better understanding of their dynamics. The sinuosity and heterogeneity of the shoreline morphology at large and intermediate wavelengths (1-100 km) results from their constant evolution under the combined influence of marine and continental forcings. This macro-scale organization is the expression of the action of elementary erosion processes acting at shorter wavelengths (<1 km) which lead to the development of shore platforms by landward retreat of cliff edges. Modern analytical techniques (laser-scaning, micro-erosion meters, aerial surveys) constitute appropriate methods to identify and quantify processes of cliff retreat to 1-100 yrs time-scales. But over this time frame, shore platform development appears imperceptible. Precise knowledge of long-term erosion rates are needed to understand rocky shore evolution, and develop quantitative modeling of platform development. Rocky coasts constitute a Quaternary sea level evolution archive that is partly preserved and progressively destroyed. One major challenges is to determine the degree to which coast morphologies are (i) contemporary, (ii) or ancient features inherited, (iii) or partly inherited from Quaternary interglacial stages. In order to fill the lack of long term coast morphodynamic data, we use cosmogenic nuclides (36Cl) to study abrasion surfaces carved in carbonates lithologies along the French Mediterranean coast, in a microtidal environment (Côte Bleue, West of Marseille). 36Cl concentration heritage influences strongly our interpretations in terms of age and denudation of the surfaces. We propose to constrain heritage in sampling oldest relic marine surfaces at 10m of altitude, and along recent cliff scarp. 36Cl concentrations show that the lowest platforms near sea level are contemporary and the highest ones (8-14 m above sea

  12. A new methodology to calculate the environmental protection index (Ep). A case study applied to a company producing composite materials.

    PubMed

    Siracusa, G; La Rosa, A D; Sterlini, S E

    2004-12-01

    Environmental indicators can be used as a first stage in progress towards comprehensive environmental impact measures [J. Environ. Manage 65/3 (2002) 285]. In this article, we develop a 'pollutant interaction matrix method' that allows calculation of a global environmental protection index (Ep) in order to verify the eco-compatibility of an industrial activity. Two methods are proposed for the Ep index evaluation (which represents the numerical measure of the environmental sustainability): the Direct Method (Epd) and the Weighted Method (Epw). Both methods need to define, in the whole industrial process, homogeneous sectors (defined as construction sites where activities of the same type are carried out). Furthermore, for each activity a set of parameters (t, duration of pollution effect, P, quantity of pollutant produced,G, hazard of the pollutant) are required to evaluate the relative pollution index Y. All indices calculations were carried out using a set of matrices. The correct use of Ep evaluation provides an improvement in the total environmental performance of companies because it points out possible critical operations in each homogeneous sector which require solutions. The methodology is applied to evaluate the environmental pollution risk of a company that produces polymer materials and to improve their environmental performance. The results obtained show that the whole productive process has a low environmental impact factor. Nevertheless the applied methodology puts in evidence some processes that generate local pollution in specific areas of the factory and which could be dangerous for the workers' health. PMID:15531386

  13. Composites

    NASA Astrophysics Data System (ADS)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  14. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.

    PubMed

    Jain, Prashant K; Lee, Kyeong Seok; El-Sayed, Ivan H; El-Sayed, Mostafa A

    2006-04-13

    The selection of nanoparticles for achieving efficient contrast for biological and cell imaging applications, as well as for photothermal therapeutic applications, is based on the optical properties of the nanoparticles. We use Mie theory and discrete dipole approximation method to calculate absorption and scattering efficiencies and optical resonance wavelengths for three commonly used classes of nanoparticles: gold nanospheres, silica-gold nanoshells, and gold nanorods. The calculated spectra clearly reflect the well-known dependence of nanoparticle optical properties viz. the resonance wavelength, the extinction cross-section, and the ratio of scattering to absorption, on the nanoparticle dimensions. A systematic quantitative study of the various trends is presented. By increasing the size of gold nanospheres from 20 to 80 nm, the magnitude of extinction as well as the relative contribution of scattering to the extinction rapidly increases. Gold nanospheres in the size range commonly employed ( approximately 40 nm) show an absorption cross-section 5 orders higher than conventional absorbing dyes, while the magnitude of light scattering by 80-nm gold nanospheres is 5 orders higher than the light emission from strongly fluorescing dyes. The variation in the plasmon wavelength maximum of nanospheres, i.e., from approximately 520 to 550 nm, is however too limited to be useful for in vivo applications. Gold nanoshells are found to have optical cross-sections comparable to and even higher than the nanospheres. Additionally, their optical resonances lie favorably in the near-infrared region. The resonance wavelength can be rapidly increased by either increasing the total nanoshell size or increasing the ratio of the core-to-shell radius. The total extinction of nanoshells shows a linear dependence on their total size, however, it is independent of the core/shell radius ratio. The relative scattering contribution to the extinction can be rapidly increased by increasing

  15. Composites

    NASA Astrophysics Data System (ADS)

    Chmielewski, M.; Nosewicz, S.; Pietrzak, K.; Rojek, J.; Strojny-Nędza, A.; Mackiewicz, S.; Dutkiewicz, J.

    2014-11-01

    It is commonly known that the properties of sintered materials are strongly related to technological conditions of the densification process. This paper shows the sintering behavior of a NiAl-Al2O3 composite, and its individual components sintered separately. Each kind of material was processed via the powder metallurgy route (hot pressing). The progress of sintering at different stages of the process was tested. Changes in the microstructure were examined using scanning and transmission electron microscopy. Metal-ceramics interface was clean and no additional phases were detected. Correlation between the microstructure, density, and mechanical properties of the sintered materials was analyzed. The values of elastic constants of NiAl/Al2O3 were close to intermetallic ones due to the volume content of the NiAl phase particularly at low densities, where small alumina particles had no impact on the composite's stiffness. The influence of the external pressure of 30 MPa seemed crucial for obtaining satisfactory stiffness for three kinds of the studied materials which were characterized by a high dense microstructure with a low number of isolated spherical pores.

  16. Constraining Landscape History and Glacial Erosivity Using Paired Cosmogenic Nuclides in Upernavik, Northwest Greenland

    NASA Technical Reports Server (NTRS)

    Corbett, Lee B.; Bierman, Paul R.; Graly, Joseph A.; Neumann, Thomas A.; Rood, Dylan H.

    2013-01-01

    High-latitude landscape evolution processes have the potential to preserve old, relict surfaces through burial by cold-based, nonerosive glacial ice. To investigate landscape history and age in the high Arctic, we analyzed in situ cosmogenic Be(sup 10) and Al (sup 26) in 33 rocks from Upernavik, northwest Greenland. We sampled adjacent bedrock-boulder pairs along a 100 km transect at elevations up to 1000 m above sea level. Bedrock samples gave significantly older apparent exposure ages than corresponding boulder samples, and minimum limiting ages increased with elevation. Two-isotope calculations Al(sup26)/B(sup 10) on 20 of the 33 samples yielded minimum limiting exposure durations up to 112 k.y., minimum limiting burial durations up to 900 k.y., and minimum limiting total histories up to 990 k.y. The prevalence of BE(sup 10) and Al(sup 26) inherited from previous periods of exposure, especially in bedrock samples at high elevation, indicates that these areas record long and complex surface exposure histories, including significant periods of burial with little subglacial erosion. The long total histories suggest that these high elevation surfaces were largely preserved beneath cold-based, nonerosive ice or snowfields for at least the latter half of the Quaternary. Because of high concentrations of inherited nuclides, only the six youngest boulder samples appear to record the timing of ice retreat. These six samples suggest deglaciation of the Upernavik coast at 11.3 +/- 0.5 ka (average +/- 1 standard deviation). There is no difference in deglaciation age along the 100 km sample transect, indicating that the ice-marginal position retreated rapidly at rates of approx.120 m yr(sup-1).

  17. Fast-neutron activation of long-lived nuclides in natural Pb

    NASA Astrophysics Data System (ADS)

    Guiseppe, V. E.; Elliott, S. R.; Fields, N. E.; Hixon, D.

    2015-04-01

    We measured the production of the long-lived nuclides 207 Bi, 202 Pb, and 194 Hg in a sample of natural Pb due to high-energy neutron interactions using a neutron beam at the Los Alamos Neutron Science Center. The activated sample was counted by a HPGe detector to measure the amount of radioactive nuclides present. These nuclides are critical in understanding potential backgrounds in low background experiments utilizing large amounts of Pb shielding due to cosmogenic neutron interactions in the Pb while residing on the Earth's surface. By scaling the LANSCE neutron flux to a cosmic neutron flux, we measure the sea level cosmic ray production rates of 8.0 ± 1.3 atoms/kg/day of 194 Hg, 120 ± 25 atoms/kg/day 202 Pb, and <0.17 ± 0.04 atoms/kg/day 207 Bi.

  18. (n, charged particle) reactions on lp-shell nuclides at 14 MeV

    SciTech Connect

    Haight, R.C.

    1981-06-01

    The reactions (n,p), (n,d), (n,t) and (n,..cap alpha..) of 14-MeV neutrons with 1p-shell nuclides are of interest in several areas: they can provide tests of charge symmetry by comparisons with proton-induced reactions (on T=O nuclides); they allow study of the complex, often many-body decay of excited nuclear states; and they yield information on final-state interactions. As part of the program in (n, charged particle) reaction studies, several 1p-shell nuclides were investigated: /sup 9/Be, /sup 12/C, /sup 14/N, and /sup 16/O at E/sub n/ = 14 MeV (Haight et. al. 1981). These measurements, with the newly developed magnetic quadrupole charged-particle spectrometer, provide data with a much higher signal-to-background than heretofore available. Experimental methods and results are briefly described. (WHK)

  19. Comparison of RESRAD with hand calculations

    SciTech Connect

    Rittmann, P.D.

    1995-09-01

    This report is a continuation of an earlier comparison done with two other computer programs, GENII and PATHRAE. The dose calculations by the two programs were compared with each other and with hand calculations. These band calculations have now been compared with RESRAD Version 5.41 to examine the use of standard models and parameters in this computer program. The hand calculations disclosed a significant computational error in RESRAD. The Pu-241 ingestion doses are five orders of magnitude too small. In addition, the external doses from some nuclides differ greatly from expected values. Both of these deficiencies have been corrected in later versions of RESRAD.

  20. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis.

    PubMed

    Palomares, R I; Dayman, K J; Landsberger, S; Biegalski, S R; Soderquist, C Z; Casella, A J; Brady Raap, M C; Schwantes, J M

    2015-04-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. PMID:25644079

  1. Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution

    SciTech Connect

    Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi

    2013-07-01

    We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.

  2. Applications of in situ cosmogenic nuclides in the geologic site characterization of Yucca Mountain, Nevada

    SciTech Connect

    Gosse, J.C.; Harrington, C.D.; Whitney, J.W.

    1995-12-31

    The gradual buildup of rare isotopes from interactions between cosmic rays and atoms in an exposed rock provides a new method of directly determining the exposure age of rock surfaces. The cosmogenic nuclide method can also provide constraints on erosion rates and the length of time surface exposure was interrupted by burial. Numerous successful applications of the technique have been imperative to the complete surface geologic characterization of Yucca Mountain, Nevada, a potential high level nuclear waste repository. In this short paper, we summarize the cosmogenic nuclide method and describe with examples some the utility of the technique in geologic site characterization. We report preliminary results from our ongoing work at Yucca Mountain.

  3. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOEpatents

    Caldwell, John T.; Kunz, Walter E.; Cates, Michael R.; Franks, Larry A.

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  4. A model for calculating the errors of 2D bulk analysis relative to the true 3D bulk composition of an object, with application to chondrules

    NASA Astrophysics Data System (ADS)

    Hezel, Dominik C.

    2007-09-01

    Certain problems in Geosciences require knowledge of the chemical bulk composition of objects, such as, for example, minerals or lithic clasts. This 3D bulk chemical composition (bcc) is often difficult to obtain, but if the object is prepared as a thin or thick polished section a 2D bcc can be easily determined using, for example, an electron microprobe. The 2D bcc contains an error relative to the true 3D bcc that is unknown. Here I present a computer program that calculates this error, which is represented as the standard deviation of the 2D bcc relative to the real 3D bcc. A requirement for such calculations is an approximate structure of the 3D object. In petrological applications, the known fabrics of rocks facilitate modeling. The size of the standard deviation depends on (1) the modal abundance of the phases, (2) the element concentration differences between phases and (3) the distribution of the phases, i.e. the homogeneity/heterogeneity of the object considered. A newly introduced parameter " τ" is used as a measure of this homogeneity/heterogeneity. Accessory phases, which do not necessarily appear in 2D thin sections, are a second source of error, in particular if they contain high concentrations of specific elements. An abundance of only 1 vol% of an accessory phase may raise the 3D bcc of an element by up to a factor of ˜8. The code can be queried as to whether broad beam, point, line or area analysis technique is best for obtaining 2D bcc. No general conclusion can be deduced, as the error rates of these techniques depend on the specific structure of the object considered. As an example chondrules—rapidly solidified melt droplets of chondritic meteorites—are used. It is demonstrated that 2D bcc may be used to reveal trends in the chemistry of 3D objects.

  5. 26Al - 10Be cosmogenic nuclide isochron burial dating in combination with luminescence dating of two Danube terraces

    NASA Astrophysics Data System (ADS)

    Neuhuber, Stephanie; Braumann, Sandra; Lüthgens, Christopher; Fiebig, Markus; Häuselmann, Philipp; Schäfer, Jörg

    2016-04-01

    The Quaternary sediment record in the Vienna Basin is influenced by two main factors: (1) the tectonic development of a pull apart basin along a sinistral strike slip fault system between the Eastern Alps and the West Carpathians and by (2) strongly varying sediment supply during the Plio- and Pleistocene. From the Late Pannonian (8.8 Ma) onward a large-scale regional uplift (Decker et al., 2005) controls terrace formation in the Vienna Basin. The main sediment supply into the Vienna Basin originates from the Danube, and subordinately from tributaries to the south such as Piesting, Fischa, Leitha and from the north by the river March. Today the Danube forms a large floodplain that is bordered to the north by one large Pleistocene terrace, the Gänserndorf Terrace that is situated 17 m above todays water level. Farther to the east a smaller terrace, the Schlosshof Terrace, reaches 25 m above todays water level. These terrace levels are tilted by movement of underlying blocks (Peresson, 2006). Both, the Schlosshof and Gänserndorf terraces consist of successions of up to 2 m thick gravel beds with intercalated sand layers or -lenses that may locally reach thicknesses up to 0.8 m. At each terrace one gavel pit was selected to calculate the time of terrace deposition by luminescence dating in combination with 26Al/10Be cosmogenic nuclide isochrone dating (Balco and Rovery, 2008). Five quartz stones from the base of each terrace were physically and chemically processed to obtain Al and Be oxides for Acceleration Mass Spectrometry. Sand samples for luminescence dating were taken above the cosmogenic nuclide samples from the closest suitable sand body. Decker et al., 2005. QSR 24, 307-322 Peresson, 2006 Geologie der österreichischen Bundesländer Niederösterreich 255-258 Balco and Rovey, 2008. AJS 908, 1083-1114 Thanks to FWF P 23138-N19, OMAA 90öu17

  6. A Method for Calculating Strain Energy Release Rates in Preliminary Design of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; OBrien, T. Kevin

    1999-01-01

    Three simple procedures were developed to determine strain energy release rates, G, in composite skin/stringer specimens for various combinations of unaxial and biaxial (in-plane/out-of-plane) loading conditions. These procedures may be used for parametric design studies in such a way that only a few finite element computations will be necessary for a study of many load combinations. The results were compared with mixed mode strain energy release rates calculated directly from nonlinear two-dimensional plane-strain finite element analyses using the virtual crack closure technique. The first procedure involved solving three unknown parameters needed to determine the energy release rates. Good agreement was obtained when the external loads were used in the expression derived. This superposition technique was only applicable if the structure exhibits a linear load/deflection behavior. Consequently, a second technique was derived which was applicable in the case of nonlinear load/deformation behavior. The technique involved calculating six unknown parameters from a set of six simultaneous linear equations with data from six nonlinear analyses to determine the energy release rates. This procedure was not time efficient, and hence, less appealing. A third procedure was developed to calculate mixed mode energy release rates as a function of delamination lengths. This procedure required only one nonlinear finite element analysis of the specimen with a single delamination length to obtain a reference solution for the energy release rates and the scale factors. The delamination was extended in three separate linear models of the local area in the vicinity of the delamination subjected to unit loads to obtain the distribution of G with delamination lengths. This set of sub-problems was Although additional modeling effort is required to create the sub- models, this local technique is efficient for parametric studies.

  7. The intercomparison of mixed nuclide rod source sets used to calibrate waste assay systems

    SciTech Connect

    Kirkpatrick, J.M.; Philips, S.; Croft, S.

    2007-07-01

    The relative activities of five sets of commercially available, certified mixed-nuclide rod gamma sources have been measured. The results are compared with one another and with the manufacturer's calibration certificates in order to evaluate the self consistency, accuracies and uncertainties of the activities claimed. The comparison measurements were made with Canberra's Tomographic Gamma Scanner (TGS) System in Segmented Gamma Scanner (SGS) mode, operated with a single segment and using a 120% relative efficiency HPGe detector. Each set of six rods was measured in a rotating 208-liter drum geometry typical of applications in which such rod source sets are commonly used for both initial calibration and operational verification measurements. Three of the five source sets were found to be consistent with one another within the experimental and claimed certificate uncertainties; however, two of the mixed-nuclide source sets were found to have nuclide-to-nuclide variations of activity significantly in excess of expectations based upon the claimed 99% confidence-level uncertainties. Such discrepancies could introduce substantial bias into waste measurement results made using the afflicted rod sets as the calibration standards. The findings of this work lead us to conclude that, where possible, the certified activities and associated uncertainties on newly acquired sources should be independently confirmed before relying on them as calibration standards. (authors)

  8. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  9. An improved choice of oscillator basis for banana shaped nuclides

    SciTech Connect

    Chasman, R.R.

    1994-03-01

    The question of the appropriate choice of oscillator basis functions for studying exotic nuclear shapes is raised. Difficulties with the conventional choice of oscillator basis states are noted for shapes having a large banana component. A prescription for an improved oscillator basis to study these shapes is given. It can be applied in a more general context. New calculations with this improved basis are presented for the banana deformation mode. The change of basis gives results that improve the prospects of finding states in the banana minimum for many isotopes of Tl, Pb and Bi.

  10. Optical model methods of predicting nuclide production from spallation reactions

    NASA Technical Reports Server (NTRS)

    Ramsey, C. R.; Townsend, L. W.; Tripathi, R. K.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1998-01-01

    Quantum mechanical optical model methods for calculating isotope production cross sections from the spallation of heavy nuclei by high-energy protons are developed from a modified abrasion-ablation collision formalism. The abrasion step is treated quantum-mechanically as a knockout process which leaves the residual prefragment nucleus in an excited state. In ablation the prefragment deexcites to produce the final fragment. The excitation energies of the prefragments are estimated from a combination of liquid drop and frictional-spectator interaction considerations. Estimates of elemental and isotopic production cross sections are in good agreement with recently published cross section measurements.

  11. Using Cosmogenic Nuclides to Examine Erosional Steady-State in the Western Alps

    NASA Astrophysics Data System (ADS)

    Perg, L. A.; von Blanckenburg, F.; Kubik, P.

    2002-12-01

    Geomorphologists have long been interested in the amount of time needed for landscapes to reach equilibrium after climate or tectonic perturbation. Cosmogenic nuclides provide a means to determine whether landscapes have reached equilibrium after glacial retreat. The cosmogenic nuclide budget should be mostly balanced (input through production equals output through erosion) after removal of one spallation length scale, about 60 cm of material. If a catchment has achieved steady-state erosional loss of cosmogenic nuclides, the cosmogenic nuclide concentration of the river sediment will provide the long-term basin-averaged denudation rate. If a deglaciated catchment has not reached steady-state, the apparent erosion rates will be too high. The apparent erosion rates obtained using cosmogenic nuclides can be compared with the denudation rates obtained from sediment accumulation in glacial lakes and valleys to determine whether the landscape has reached steady-state. Different sediment sources were sampled along a NS transect through the Western Alps from the highland (1 mm/yr uplift) to the foreland (no uplift, net deposition). Samples include: subglacial outwash; intraglacial sediment; moraines (surface and deeply buried material); currently glaciated, formerly glaciated and never glaciated catchments; and large river samples that integrate these sediment sources. Sediment traps indicate a long-term erosion rate of about 0.12 m / k.y. in the W. Alps during the Holocene (Hinderer, 2001). At this rate of denudation, the cosmogenic nuclide concentrations should approach steady-state in 5-6 k.y. However, the apparent cosmogenic nuclide erosion rates are much higher (0.3 m / k.y. in the foreland and 2 m / k.y. in the highland) indicating that the landscape has not reached equilibrium in two to three times that length of time. One possible explanation is intermediate sediment storage, such as alluvial fans, with higher concentration sediment not yet reaching the streams

  12. The light curve of SN 1987A revisited: constraining production masses of radioactive nuclides

    SciTech Connect

    Seitenzahl, Ivo R.; Timmes, F. X.; Magkotsios, Georgios

    2014-09-01

    We revisit the evidence for the contribution of the long-lived radioactive nuclides {sup 44}Ti, {sup 55}Fe, {sup 56}Co, {sup 57}Co, and {sup 60}Co to the UVOIR light curve of SN 1987A. We show that the V-band luminosity constitutes a roughly constant fraction of the bolometric luminosity between 900 and 1900 days, and we obtain an approximate bolometric light curve out to 4334 days by scaling the late time V-band data by a constant factor where no bolometric light curve data is available. Considering the five most relevant decay chains starting at {sup 44}Ti, {sup 55}Co, {sup 56}Ni, {sup 57}Ni, and {sup 60}Co, we perform a least squares fit to the constructed composite bolometric light curve. For the nickel isotopes, we obtain best fit values of M({sup 56}Ni) = (7.1 ± 0.3) × 10{sup –2} M {sub ☉} and M({sup 57}Ni) = (4.1 ± 1.8) × 10{sup –3} M {sub ☉}. Our best fit {sup 44}Ti mass is M({sup 44}Ti) = (0.55 ± 0.17) × 10{sup –4} M {sub ☉}, which is in disagreement with the much higher (3.1 ± 0.8) × 10{sup –4} M {sub ☉} recently derived from INTEGRAL observations. The associated uncertainties far exceed the best fit values for {sup 55}Co and {sup 60}Co and, as a result, we only give upper limits on the production masses of M({sup 55}Co) < 7.2 × 10{sup –3} M {sub ☉} and M({sup 60}Co) < 1.7 × 10{sup –4} M {sub ☉}. Furthermore, we find that the leptonic channels in the decay of {sup 57}Co (internal conversion and Auger electrons) are a significant contribution and constitute up to 15.5% of the total luminosity. Consideration of the kinetic energy of these electrons is essential in lowering our best fit nickel isotope production ratio to [{sup 57}Ni/{sup 56}Ni] = 2.5 ± 1.1, which is still somewhat high but is in agreement with gamma-ray observations and model predictions.

  13. A model for the production of cosmogenic nuclides in chondrites

    NASA Technical Reports Server (NTRS)

    Graf, TH.; Baur, H.; Signer, P.

    1990-01-01

    A model is presented for calculating the production rates of cosmic-ray-produced He, Ne, and Ar as well as Be-10, Al-26, and Mn-53 in chondrites of variable size and shape. The predictions of this model are compared with published data for the meteorites ALH78084, St. Severin, and Keyes. The agreement is found to be about 5 percent for the concentrations of Be-10, Ne-21, Ne-22, Ar-38, and Mn-53, and to be better than 1 percent for the Ne-22/Ne-21 ratios. The correlation between P(Be-10)/P(Ne-21) and Ne-22/Ne-21 ratios is experimentally verified over a wide range of irradiation conditions.

  14. ANEMOS: A computer code to estimate air concentrations and ground deposition rates for atmospheric nuclides emitted from multiple operating sources

    SciTech Connect

    Miller, C.W.; Sjoreen, A.L.; Begovich, C.L.; Hermann, O.W.

    1986-11-01

    This code estimates concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operating Sources. ANEMOS is one component of an integrated Computerized Radiological Risk Investigation System (CRRIS) developed for the US Environmental Protection Agency (EPA) for use in performing radiological assessments and in developing radiation standards. The concentrations and deposition rates calculated by ANEMOS are used in subsequent portions of the CRRIS for estimating doses and risks to man. The calculations made in ANEMOS are based on the use of a straight-line Gaussian plume atmospheric dispersion model with both dry and wet deposition parameter options. The code will accommodate a ground-level or elevated point and area source or windblown source. Adjustments may be made during the calculations for surface roughness, building wake effects, terrain height, wind speed at the height of release, the variation in plume rise as a function of downwind distance, and the in-growth and decay of daughter products in the plume as it travels downwind. ANEMOS can also accommodate multiple particle sizes and clearance classes, and it may be used to calculate the dose from a finite plume of gamma-ray-emitting radionuclides passing overhead. The output of this code is presented for 16 sectors of a circular grid. ANEMOS can calculate both the sector-average concentrations and deposition rates at a given set of downwind distances in each sector and the average of these quantities over an area within each sector bounded by two successive downwind distances. ANEMOS is designed to be used primarily for continuous, long-term radionuclide releases. This report describes the models used in the code, their computer implementation, the uncertainty associated with their use, and the use of ANEMOS in conjunction with other codes in the CRRIS. A listing of the code is included in Appendix C.

  15. Kinetics analysis and quantitative calculations for the successive radioactive decay process

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang

    2015-01-01

    The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.

  16. Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel

    SciTech Connect

    Gauld, I. C.; Ryman, J. C.

    2000-12-11

    This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance. The importance is investigated as a function of increasing burnup to assist in identifying the key changes in spent fuel characteristics between conventional- and extended-burnup regimes. Studies involving both pressurized water-reactor (PWR) fuel assemblies and boiling-water-reactor (BWR) assemblies are included. This study is seen to be a necessary first step in identifying the high-burnup spent fuel characteristics that may adversely affect the accuracy of current computational methods and data, assess the potential impact on previous guidance on isotopic source terms and decay-heat values, and thus help identify areas for methods and data improvement. Finally, several recommendations on the direction of possible future code validation efforts for high-burnup spent fuel predictions are presented.

  17. The production of residual nuclides in Pb irradiated by 400 MeV/u carbon ions

    NASA Astrophysics Data System (ADS)

    Ge, H. L.; Ma, F.; Zhang, X. Y.; Ju, Y. Q.; Zhang, H. B.; Chen, L.; Luo, P.; Zhou, B.; Zhang, Y. B.; Li, J. Y.; Xu, J. K.; Liang, T. J.; Wang, S. L.; Yang, Y. W.; Yang, L.

    2014-10-01

    The experiment was performed by irradiating a Pb foil with 400 MeV/u carbon beam at the HIRFL-CSR in Lanzhou, China. The experimental data was acquired by the off-line γ-spectroscopy method. 32 radioactive residual nuclides had been observed and their cross sections were determined. The measured results were compared with the results simulated by Monte Carlo code MCNPX2.7.0. The comparison shows that the simulated cross sections were underestimated for the fragments from A = 20 to 41 and A = 110 to 175. By fitting the measured and simulated cross sections to Rudstams semi-empirical formula, it was found that the charge distribution of products was asymmetric for the residual nuclides with a high mass number.

  18. The exposure history of Jilin and production rates of cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Heusser, G.

    1986-01-01

    Jilin, the largest known story meteorite, is a very suitable object for studying the systematics of cosmic ray produced nuclides in stony meteorites. Its well established two stage exposure history even permits to gain information about two different irradiation geometries (2pi and 4pi). All stable and long-lived cosmogenic nuclides measured in Jilin so far correlate well with each other. An example is shown where the Al-26 activities are plotted vs. the spallogenic Ne-21 concentration. These records of cosmic-ray interaction in Jilin can be used both to determine the history of the target and to study the nature of production rate profiles. This is unavoidably a bootstrap process, involving studying one with assumption about the other. Production rate equations are presented and discussed.

  19. Determination of Concentrations of Radioactive Nuclides in Soil Samples using Gamma Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Adil, Arsalan; Weaver, Joshua

    2015-10-01

    A hyper-pure Germanium detector system was used to determine the contents and concentrations of various nuclides in soil samples collected from different parts of the United States. These include areas in close proximity to nuclear power plants, areas susceptible to nuclear fallout from weapons testing from the pre Comprehensive Nuclear Test Ban Treaty (CTBT) period, and areas vulnerable to fallout from Fukushima from the west coast. The concentrations of naturally occurring nuclides in the 238U, 232Th, and 40K decay chains as well as that of synthetic isotopes of 137Cs and 60Co were measured with the aid of Genie-2000 and Radware (gf3m). An efficiency curve was obtained by designing a simulation and compared with standard sources. The research, now in its next stage, aims to do the same in samples from Karachi (Pakistan) which is home to three nuclear power plant projects but has no available baseline radioactivity measurements. University of Richmond.

  20. Weathering histories of Chinese loess deposits based on uranium and thorium series nuclides and cosmogenic {sup 10}Be

    SciTech Connect

    Gu, Z.Y. |; Lal, D.; Liu, T.S.

    1997-12-01

    The long, continuous deposition of dust in the Chinese loess plateau offers an unique opportunity to study the nature of soil weathering in a wide range of climatic conditions. In this paper we report on measurements of concentrations of U- and Th-series nuclides and of major cations in 150 loess and paleosol samples from five sites, going back 2.5 Ma. Using the results for {sup 10}Be concentrations in these soils, we determined the absolute amounts of water added to several soil units and obtained: (1) first-order leaching constants for U and several cations and (2) the compositions of the soils contributing to the dust-source regions and of the dust at deposition. Further, based on analyses of {sup 230}Th in soils deposited in the past ca. 140 ka, we determined when the soils weathered in the source regions. We conclude that most of the weathering in the dust-source regions may have occurred during the interglacials. 34 refs., 8 figs., 2 tabs.

  1. Heavy mass elements total half-lives for selected long-lived nuclides

    SciTech Connect

    Holden, N.E.

    1985-01-01

    In the past, many compilations and evaluations of half-lives have been made which have uncritically accepted authors' values and uncertainties. They have merely recommended weight-averaged reported results. This evaluation attempts to reanalyze each experiment in the literature including an estimate of the standard deviation utilizing, where possible, an estimate of the systematic error. This paper constitutes a preliminary step in the process of recommending values. The long-lived nuclides of heavy mass elements are of interest in determining geological ages using the Re-Os or the Lu-Hf dating methods, in supplying information on the p-process (proton capture) of nucleo-synthesis, in providing information on lepton number conservation and the rest mass for the electron neutrino from double ..beta.. decay processes and in the case of tantalum because it represents the first long-lived state which is actually an isomer. Experimental data on the half-lives of selected nuclides have been evaluated and recommended values and uncertainties are presented for the following nuclides: /sup 128/Te, /sup 130/Te, /sup 129/I, /sup 138/La, /sup 144,145/Nd, /sup 146,147,148/Sm, /sup 152/Gd, /sup 154/Dy, /sup 176/Lu, /sup 174/Hf, /sup 180/Ta, /sup 187/Re, /sup 186/Os, /sup 190/Pt, /sup 204,205/Pb and /sup 230,232/Th. It is shown that /sup 204/Pb, which was previously thought to be radioactive, is stable. For /sup 205/Pb, the L electron capture x-rays have been revised for the M and higher x-ray yields. The resulting half-life for /sup 205/Pb is 1.9 +- 0.3 x 10/sup 7/ years. /sup 146/Sm with a half-life of 1.03 +- 0.05 x 10/sup 8/ years is the longest-lived extinct natural nuclide. 21 tabs.

  2. Fukushima-derived fission nuclides monitored around Taiwan: Free tropospheric versus boundary layer transport

    NASA Astrophysics Data System (ADS)

    Huh, Chih-An; Hsu, Shih-Chieh; Lin, Chuan-Yao

    2012-02-01

    The 2011 Fukushima nuclear accident in Japan was the worst nuclear disaster following the 1986 Chernobyl accident. Fission products (nuclides) released from the Fukushima plant site since March 12, 2011 had been detected around the northern hemisphere in about two weeks and also in the southern hemisphere about one month later. We report here detailed time series of radioiodine and radiocesium isotopes monitored in a regional network around Taiwan, including one high-mountain and three ground-level sites. Our results show several pulses of emission from a sequence of accidents in the Fukushima facility, with the more volatile 131I released preferentially over 134Cs and 137Cs at the beginning. In the middle of the time series, there was a pronounced peak of radiocesium observed in northern Taiwan, with activity concentrations of 134Cs and 137Cs far exceeding that of 131I during that episode. From the first arrival time of these fission nuclides and their spatial and temporal variations at our sampling sites and elsewhere, we suggest that Fukushima-derived radioactive nuclides were transported to Taiwan and its vicinity via two pathways at different altitudes. One was transported in the free troposphere by the prevailing westerly winds around the globe; the other was transported in the planetary boundary layer by the northeast monsoon wind directly toward Taiwan.

  3. Grain size bias in cosmogenic nuclide studies of stream sediment in steep terrain

    NASA Astrophysics Data System (ADS)

    Lukens, Claire E.; Riebe, Clifford S.; Sklar, Leonard S.; Shuster, David L.

    2016-05-01

    Cosmogenic nuclides in stream sediment are widely used to quantify catchment-average erosion rates. A key assumption is that sampled sediment is representative of erosion from the entire catchment. Here we show that the common practice of collecting a narrow range of sizes—typically sand—may not yield a representative sample when the grain size distribution of sediment produced on slopes is spatially variable. A grain size bias arises when some parts of the catchment produce sand more readily than others. To identify catchments that are prone to this bias, we used a forward model of sediment mixing and erosion to explore the effects of catchment relief and area across a range of altitudinal gradients in sediment size and erosion rate. We found that the bias increases with increasing relief, because higher-relief catchments have a larger fraction of high elevations that are underrepresented in the sampled sand when grain size increases with altitude. The bias also increases with catchment area, because sediment size reduction during transport causes an underrepresentation of more distal, higher elevations within the catchment. Our analysis indicates that grain size bias may be significant at many sites where cosmogenic nuclides have been used to quantify catchment-average erosion rates. We discuss how to quantify and account for the bias using cosmogenic nuclides and detrital thermochronometry in multiple sediment sizes.

  4. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR CALCULATING INGESTION EXPOSURE FROM DAY 4 COMPOSITE MEASUREMENTS, THE DIRECT METHOD OF EXPOSURE ESTIMATION (IIT-A-6.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures undertaken for calculating ingestion exposure from Day 4 composite measurements from duplicate diet using the direct method of exposure estimation. This SOP uses data that have been properly coded and certified with appropria...

  5. REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG TERM DISPOSAL

    SciTech Connect

    Radulescu, Georgeta; Wagner, John C

    2011-01-01

    This paper summarizes the problem specification and compares participants results for the OECD/NEA/WPNCS Expert Group on Burn-up Credit Criticality Safety Phase VII Benchmark Study of Spent Fuel Compositions for Long-Term Disposal. The Phase VII benchmark was developed to study the ability of relevant computer codes and associated nuclear data to predict spent fuel isotopic compositions and corresponding keff values in a cask configuration over the time duration relevant to spent nuclear fuel (SNF) disposal. The benchmark was divided into two sets of calculations: (1) decay calculations out to 1,000,000 years for provided pressurized-water-reactor (PWR) UO2 discharged fuel compositions and (2) burnup credit criticality calculations for a representative cask model at selected time steps. Contributions from 15 organizations and companies in 10 countries were submitted to the Phase VII benchmark exercise. This paper provides a description of the Phase VII benchmark and detailed comparisons of the participants isotopic compositions and keff values that were calculated with a diversity of computer codes and nuclear data sets. Differences observed in the calculated time-dependent nuclide densities are attributed to different decay data or code-specific numerical approximations. The variability of the keff results is consistent with the evaluated uncertainty associated with cross-section data.

  6. Light nuclides produced in the proton-induced spallation of {sup 238}U at 1 GeV

    SciTech Connect

    Ricciardi, M.V.; Armbruster, P.; Enqvist, T.; Kelic, A.; Rejmund, F.; Schmidt, K.-H.; Yordanov, O.; Benlliure, J.; Pereira, J.; Bernas, M.; Mustapha, B.; Stephan, C.; Tassan-Got, L.

    2006-01-15

    The production of light and intermediate-mass nuclides formed in the reaction {sup 1}H+{sup 238}U at 1 GeV was measured at the Fragment Separator at GSI, Darmstadt. The experiment was performed in inverse kinematics, by shooting a 1 A GeV {sup 238}U beam on a thin liquid-hydrogen target. A total of 254 isotopes of all elements in the range 7{<=}Z{<=}37 were unambiguously identified, and the velocity distributions of the produced nuclides were determined with high precision. The results show that the nuclides are produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of uranium. All the features of the produced nuclides merge with the characteristics of the fission products as their mass increases.

  7. Long- and short-lived nuclide constraints on the recent evolution of permafrost soils

    NASA Astrophysics Data System (ADS)

    Bagard, M.; Chabaux, F. J.; Rihs, S.; Pokrovsky, O. S.; Prokushkin, A. S.; Viers, J.

    2011-12-01

    Frozen permafrost ecosystems are particularly sensitive to climate warming, which notably induces a deepening of the active layer (the maximum thawing depth during summer time). As a consequence, geochemical and hydrological fluxes within boreal areas are expected to be significantly affected in the future. Understanding the relationship between environmental changes and permafrost modifications is then a major challenge. This work aims to evaluate in a Siberian watershed the dynamics of the permafrost active layer and their recent modifications by combining a classic study of long-lived nuclides to the study of short-lived nuclides of U and Th decay series. Two soil profiles, located on opposite slopes (north- and south-facing slopes) of the Kulingdakan watershed (Putorana Plateau, Central Siberia), were sampled at several depths within the active layer and (238U), (234U), (232Th), (230Th), (226Ra), (228Ra), (228Th) and (210Pb) were measured on bulk soil samples by TIMS or gamma spectrometry. Our results show that south-facing and north-facing soil profiles are significantly different in terms of evolution of chemical concentrations and nuclide activities; north-facing soil profile is strongly affected by atmospheric inputs whereas long-lived nuclide dynamics within south-facing soil profile are dominated by weathering and exhibit more complex patterns. The amount of above-ground biomass being the single varying parameter between the two slopes of the watershed, we suggest that the structuring of permafrost active layer is very sensitive to vegetation activity and that the functioning of boreal soils will be significantly modified by its development due to more favorable climatic conditions. Moreover, the coupling of long and short-lived nuclides highlights the superimposition of a recent mobilization of chemical elements within soils (<10 years) over a much older soil structure (>8000 years), which can be observed for both soil profiles. The shallowest layer of

  8. Recent evolution of permafrost soils: insight from U-Th series nuclides

    NASA Astrophysics Data System (ADS)

    Bagard, marie-laure; Chabaux, Francois; Rihs, Sophie; Pokrovsky, Oleg; Viers, Jérome

    2015-04-01

    Permafrost ecosystems are particularly sensitive to climate warming, which notably induces a deepening of the active layer (the maximum thawing depth during summer time). As a consequence, geochemical and hydrological fluxes within boreal areas are expected to be significantly affected in the future. Understanding the relationship between environmental changes and permafrost modifications is then a major challenge. This work aims to evaluate in a Siberian watershed the dynamics of the permafrost active layer and their recent modifications by combining a classic study of long-lived nuclides to the study of short-lived nuclides of U and Th decay series in two soil profiles. These profiles, located on opposite slopes (north- and south-facing slopes) of the Kulingdakan watershed (Putorana Plateau, Central Siberia), were sampled at several depths within the active layer and (238U), (230Th), (232Th), (226Ra), (228Ra), (228Th), (210Pb) were measured on bulk soil samples by TIMS or gamma spectrometry. Our results show that south-facing and north-facing soil profiles are significantly different in terms of evolution of chemical concentrations and nuclide activities; north-facing soil profile is strongly affected by atmospheric inputs whereas long-lived nuclide dynamics within south-facing soil profile are dominated by weathering and exhibit more complex patterns. The amount of above-ground biomass being the single varying parameter between the two slopes of the watershed, we suggest that the structuring of permafrost active layer is very sensitive to vegetation activity and that the functioning of boreal soils will be significantly modified by its development due to more favorable climatic conditions. Moreover, the coupling of long and short-lived nuclides highlights the superimposition of a recent mobilization of chemical elements within soils (<10 years) over a much older soil structuring (>8000 years), which can be observed for both soil profiles. The shallowest layer of

  9. Nuclear event zero-time calculation and uncertainty evaluation.

    PubMed

    Pan, Pujing; Ungar, R Kurt

    2012-04-01

    It is important to know the initial time, or zero-time, of a nuclear event such as a nuclear weapon's test, a nuclear power plant accident or a nuclear terrorist attack (e.g. with an improvised nuclear device, IND). Together with relevant meteorological information, the calculated zero-time is used to help locate the origin of a nuclear event. The zero-time of a nuclear event can be derived from measured activity ratios of two nuclides. The calculated zero-time of a nuclear event would not be complete without an appropriately evaluated uncertainty term. In this paper, analytical equations for zero-time and the associated uncertainty calculations are derived using a measured activity ratio of two nuclides. Application of the derived equations is illustrated in a realistic example using data from the last Chinese thermonuclear test in 1980. PMID:22305002

  10. Impact of vegetation change on the mobility of uranium- and thorium-series nuclides in soils

    NASA Astrophysics Data System (ADS)

    Gontier, A.; Rihs, S.; Turpault, M.-P.; Chabaux, F.

    2012-04-01

    The effect of land cover change on chemical mobility and soil response was investigated using short- and long-lived nuclides from the U- and Th series. Indeed, the matching of these nuclides half-live to the pedogenic processes rates make these nuclides especially suitable to investigate either time or mechanism of transfers within a soil-water-plant system. This study was carried out from the experimental Breuil-Chenue site (Morvan mountains, France). The native forest (150 year-old) was partially clear-felled and replaced in 1976 by mono-specific plantations distributed in different stands. Following this cover-change, some mineralogical changes in the acid brown soil were recognized (Mareschal, 2008). Three soil sections were sampled under the native forest and the replanted oak and Douglas spruce stands respectively. The (238U), (234U), (230Th), (226Ra), (232Th) and (228Ra) activities were analysed by thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (MC-ICPMS) and gamma spectrometry. Significant differences in U, Th, and Ra activities were observed between the soils located under the native forest or the replanted-trees stands, mostly dominated by a large uranium mobilization from the replanted soils. Moreover, all the investigated U and Th-series activity ratios show a contrasted trend between the shallowest horizons (0-50cm) and the deepest one (below 50cm), demonstrating the chemical effect of the vegetation change on the shallow soil layers. Using a continuous open-system leaching model, the coupled radioactive disequilibria measured in the different soil layers permit to quantify the rate of the radionuclides mobilities. Reference: Mareschal, L., 2008. Effet des substitutions d'essences forestières sur l'évolution des sols et de leur minéralogie : bilan après 28 ans dans le site expérimental de Breuil (Morvan) Université Henri Poincaré, Nancy-I.

  11. Tantalum-178--a short-lived nuclide for nuclear medicine: development of a potential generator system.

    PubMed

    Neirinckx, R D; Jones, A G; Davis, M A; Harris, G I; Holman, B L

    1978-05-01

    We describe a chemical separation that may form the basis of a generator system for the short-lived radionuclide Ta-178 (T 1/2 = 9 min). The parent nuclide W-178 (T 1/2 = 21.7 days) is loaded on an anion-exchange column and the daughter eluted with a mixture of dilute hydrochloric acid and hydrogen peroxide. The yields of tantalum and the breakthrough of the tungsten parent as a function of the eluting conditions are discussed, and preliminary animal distribution data are presented for various treatments of the eluant solution. PMID:641574

  12. Results of calculations of external gamma radiation exposure rates from local fallout and the related radionuclide compositions of two hypothetical 1-MT nuclear bursts. Final report

    SciTech Connect

    Hicks, H.

    1984-12-01

    This report presents data on calculated gamma radiation exposure rates and local surface deposition of related radionuclides resulting from two hypothetical 1-Mt nuclear bursts. Calculations are made of the debris from two types of bombs: one containing /sup 235/U as a fissionable material (designated oralloy), the other containing /sup 238/U (designated tuballoy). 4 references.

  13. Runoff and sediment yield model for predicting nuclide transport in watersheds using BIOTRAN

    SciTech Connect

    Gallegos, A.F.; Wenzel, W.J.

    1990-09-01

    The environmental risk simulation model BIOTRAN was interfaced with a series of new subroutines (RUNOFF, GEOFLX, EROSON, and AQUIFER) to predict the movement of nuclides, elements, and pertinent chemical compounds in association with sediments through lateral and channel flow of runoff water. In addition, the movement of water into and out of segmented portions of runoff channels was modeled to simulate the dynamics of moisture flow through specified aquifers within the watershed. The BIOTRAN soil water flux subroutine, WATFLX, was modified to interface the relationships found in the SPUR model for runoff and sediment transport into channels with the particle sorting relationships to predict radionuclide enrichment and movement in watersheds. The new subroutines were applied specifically to Mortandad Canyon within Los Alamos National Laboratory by simultaneous simulation of eight surface vegetational subdivisions and associated channel and aquifer segments of this watershed. This report focuses on descriptions of the construction and rationale for the new subroutines and on discussing both input characteristics and output relationships to known runoff events from Mortandad Canyon. Limitations of the simplified input on model behavior are also discussed. Uranium-238 was selected as the nuclide for demonstration of the model because it could be assumed to be homogeneously distributed over the watershed surface. 22 refs., 18 figs., 9 tabs.

  14. [Determination of natural radioactive nuclides in the travertine samples from Tamagawa hot spring].

    PubMed

    Hashimoto, T; Masumura, S; Takahashi, K; Sotobayashi, T

    1982-07-01

    The determination of natural radioactive nuclides was carried out for 7 travertine samples collected from Tamagawa hot spring by means of the non-distructive gamma-ray spectrometry and of the alpha-ray spectrometry. From the former measurements, the relative activity strength, due to 223Ra, 226Ra, and 228Th, and their ratios was obtained in comparison with the photopeak strength due to respective daughters, 228Ac, 214Bi, and 212Pb, and with the results from a monazite sand standard. One travertine sample was engaged to the alpha-ray spectrometric determination of Th isotopes after the chemical purification using a 234Th-yield tracer. On the basis of the resultant absolute content of 228Th, the 228Ra and 228Th contents in the remainder samples were evaluated to be the range of 3 approximately 80 Bq (81 approximately 2160 pCi)/g and 2 approximately 20 Bq (54 approximately pCi)/g respectively. These radioactive nuclides were verified to exist almost within a Hokutolite small crystals up to 90% and there are apparently the radioactive disequilibrium relations between 228Ra and 228Th among freshly deposited travertines. The presence of 227Ac in Hokutolite was also suggested from the detection of 227Th owing to 215Po-alpha peak. PMID:7178540

  15. Progress on multi-nuclide AMS of JAEA-AMS-TONO

    NASA Astrophysics Data System (ADS)

    Saito-Kokubu, Yoko; Matsubara, Akihiro; Miyake, Masayasu; Nishizawa, Akimitsu; Ohwaki, Yoshio; Nishio, Tomohiro; Sanada, Katsuki; Hanaki, Tatsumi

    2015-10-01

    The JAEA-AMS-TONO (Japan Atomic Energy Agency's Accelerator Mass Spectrometer established at the Tono Geoscience Center) facility has been used for the dating of geological samples. The AMS system is versatile, based on a 5 MV tandem Pelletron-type accelerator. Since its establishment in 1997, the AMS system has been used for measurement of carbon-14 (14C) mainly for 14C dating studies in neotectonics and hydrogeology, in support of JAEA's research on geosphere stability applicable to the long-term isolation of high-level radioactive waste. Results of the measurement of 14C in soils and plants has been applied to the dating of fault activity and volcanism. Development of beryllium-10 (10Be) and aluminum-26 (26Al) AMS systems are now underway to enhance the capability of the multi-nuclide AMS in studies of dating by cosmogenic nuclides. The 10Be-AMS system has already been used for routine measurements in applied studies and improvements of the measurement technique have been made. Now we plan to fine tune the system and perform test measurements to develop the 26Al-AMS system.

  16. Linear Transformation Method for Multinuclide Decay Calculation

    SciTech Connect

    Ding Yuan

    2010-12-29

    A linear transformation method for generic multinuclide decay calculations is presented together with its properties and implications. The method takes advantage of the linear form of the decay solution N(t) = F(t)N{sub 0}, where N(t) is a column vector that represents the numbers of atoms of the radioactive nuclides in the decay chain, N{sub 0} is the initial value vector of N(t), and F(t) is a lower triangular matrix whose time-dependent elements are independent of the initial values of the system.

  17. Activity-composition relations in the system CaCO 3-MgCO 3 predicted from static structure energy calculations and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Vinograd, Victor L.; Burton, Benjamin P.; Gale, Julian D.; Allan, Neil L.; Winkler, Björn

    2007-02-01

    Thermodynamic mixing properties and subsolidus phase relations of the rhombohedral carbonate system, (1 - x) · CaCO 3 - x · MgCO 3, were modelled in the temperature range of 623-2023 K with static structure energy calculations based on well-parameterised empirical interatomic potentials. Relaxed static structure energies of a large set of randomly varied structures in a 4 × 4 × 1 supercell of R3¯c calcite ( a = 19.952 Å, c = 17.061 Å) were calculated with the General Utility Lattice Program (GULP). These energies were cluster expanded in a basis set of 12 pair-wise effective interactions. Temperature-dependent enthalpies of mixing were calculated by the Monte Carlo method. Free energies of mixing were obtained by thermodynamic integration of the Monte Carlo results. The calculated phase diagram is in good agreement with experimental phase boundaries.

  18. Comparative studies in direct slow-neutron capture calculations

    SciTech Connect

    Mughabghab, S.F.

    1987-08-01

    Primary E1 transitions due to thermal neutron capture by the nuclides /sup 9/Be, /sup 32,34/S, /sup 40,42,44,46,48/Ca, and /sup 58/Ni are quantitatively interpreted by the Lane-Lynn formula and are compared with recent optical model calculations. The two approaches are equivalent provided the internal region of the nucleus is excluded in the optical model approach. Theoretical justifications for such a procedure are briefly presented. 32 refs., 4 tabs.

  19. Detailed Burnup Calculations for Testing Nuclear Data

    NASA Astrophysics Data System (ADS)

    Leszczynski, F.

    2005-05-01

    A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross

  20. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples. [Patent application

    DOEpatents

    Caldwell, J.T.; Kunz, W.E.; Cates, M.R.; Franks, L.A.

    1982-07-07

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fission are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for /sup 239/Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  1. Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude

    NASA Astrophysics Data System (ADS)

    Desilets, Darin; Zreda, Marek; Prabu, T.

    2006-06-01

    Production rates of cosmogenic nuclides at the earth's surface are controlled by the intensity of energetic cosmic-ray nucleons, which changes rapidly with elevation. An incomplete knowledge of how nucleon fluxes vary with elevation remains a major obstacle to utilizing cosmogenic nuclides as geochronometers in applications requiring highly accurate ages. One problem is that attenuation characteristics depend on nucleon energy. Measurements of high-energy (> 50 MeV) nucleon fluxes tend to give shorter attenuation lengths than low-energy (< 1 MeV) fluxes, but these differences are not well characterized due to a lack of data at lower energies. Another problem is that the atmospheric attenuation length for nucleon fluxes varies with the geomagnetic cutoff rigidity (a parameter related to geomagnetic latitude), RC, and that there has been an incomplete mapping of nucleon fluxes at high RC (low geomagnetic latitude). We report new measurements of nucleon fluxes from altitude transects in Hawaii ( RC = 12.8 GV) and Bangalore, India ( RC = 17.3 GV). Our measurements in Hawaii of low-energy neutrons (median energy 1 eV) and energetic nucleons (median energy 140 MeV) confirm that nucleon scaling functions are energy-dependent in the range of energies at which cosmogenic nuclides are produced. Our measurements in southern India extend our previously reported scaling model for spallation reactions [D. Desilets, M. Zreda, Spatial and temporal distribution of secondary cosmic-ray nucleon intensity and applications to in situ cosmogenic dating. Earth Planet. Sci. Lett. 206 (2003) 21-42] from RC = 13.3 GV to RC = 17.3 GV, nearly the highest cutoff rigidity on earth. The anomalously high cutoff rigidity over India provides a geomagnetic shielding condition that is effectively the same as would be observed at the geomagnetic equator in a dipole field with an intensity 1.2 times the modern value. This makes it possible to scale low-latitude production rates to paleomagnetic fields

  2. Regional Dispersal of Fukushima-derived Fission Nuclides by East Asia Monsoon

    NASA Astrophysics Data System (ADS)

    Huh, Chih-An; Lin, Chuan-Yao; Hsu, Shih-Chieh

    2013-04-01

    Since the Fukushima nuclear accident happened on 12 March 2011, there have been a plethora of publications about the dispersion of radioactive material from the damaged reactors. Most of these works dealt with global transport of Fukushima-derived radionuclides in the northern hemisphere and local transport in the vicinity of Fukushima and around Japan. In contrast, few works investigated into dispersal of radiation plumes from Japan to other areas on regional scales. This is because regional dispersal out of Japan in the springtime is most likely dominated by the northeastern monsoon, whereas there are few monitoring stations downwind in the southeastern Asia region. In this respect, we are only aware of the data in Vietnam published by Long et al (2012) in addition to our own data obtained in and around Taiwan (Huh et al., 2012; Hsu et al., 2012). By integrating the data published in the literature plus those that can be searched from relevant websites, we try to further elucidate the dispersal of Fukushima-derived radiation toward the southeastern Asia region. The WRF/Chem tracer model is employed to simulate the dispersal of radiation plumes from the damaged Fukushima Daiichi Nuclear Power Plant. From a vis-à-vis comparison between the model simulation and the time-series of Fukushima-derived fission nuclides monitored around the southeastern Asia, we can distinguish between global transport by the Westerlies in the free troposphere and regional transport by the northeast monsoon in the planetary boundary layer. In general, regional (mainly meridional) transport carried more weight than global (mainly zonal) transport in contributing Fukushima-derived radioactivity to the area covered in this review, particularly at the ground-level sites. References 1. Hsu, S.C., Huh, C.A., Chan, C.Y., Lin, S.H., Lin, F.J. and Liu, S.C. (2012). Hemispheric dispersion of radioactive plume laced with fission nuclides from the Fukushima nuclear event. Geophys. Res. Lett. 39, L00

  3. Comparing Time-Dependent Geomagnetic and Atmospheric Effects on Cosmogenic Nuclide Production Rate Scaling

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.

    2014-12-01

    A recently published cosmogenic nuclide production rate scaling model based on analytical fits to Monte Carlo simulations of atmospheric cosmic ray flux spectra (both of which agree well with measured spectra) (Lifton et al., 2014, Earth Planet. Sci. Lett. 386, 149-160: termed the LSD model) provides two main advantages over previous scaling models: identification and quantification of potential sources of bias in the earlier models, and the ability to generate nuclide-specific scaling factors easily for a wide range of input parameters. The new model also provides a flexible framework for exploring the implications of advances in model inputs. In this work, the scaling implications of two recent time-dependent spherical harmonic geomagnetic models spanning the Holocene will be explored. Korte and Constable (2011, Phys. Earth Planet. Int. 188, 247-259) and Korte et al. (2011, Earth Planet. Sci. Lett. 312, 497-505) recently updated earlier spherical harmonic paleomagnetic models used by Lifton et al. (2014) with paleomagnetic measurements from sediment cores in addition to archeomagnetic and volcanic data. These updated models offer improved accuracy over the previous versions, in part to due to increased temporal and spatial data coverage. With the new models as input, trajectory-traced estimates of effective vertical cutoff rigidity (RC- the standard method for ordering cosmic ray data) yield significantly different time-integrated scaling predictions when compared to the earlier models. These results will be compared to scaling predictions using another recent time-dependent spherical harmonic model of the Holocene geomagnetic field by Pavón-Carrasco et al. (2014, Earth Planet. Sci. Lett. 388, 98-109), based solely on archeomagnetic and volcanic paleomagnetic data, but extending to 14 ka. In addition, the potential effects of time-dependent atmospheric models on LSD scaling predictions will be presented. Given the typical dominance of altitudinal over

  4. Implications of two Holocene time-dependent geomagnetic models for cosmogenic nuclide production rate scaling

    NASA Astrophysics Data System (ADS)

    Lifton, Nathaniel

    2016-01-01

    The geomagnetic field is a major influence on in situ cosmogenic nuclide production rates at a given location (in addition to atmospheric pressure and, to a lesser extent, solar modulation effects). A better understanding of how past fluctuations in these influences affected production rates should allow more accurate application of cosmogenic nuclides. As such, this work explores the cosmogenic nuclide production rate scaling implications of two recent time-dependent spherical harmonic geomagnetic models spanning the Holocene. Korte and Constable (2011, Phys. Earth Planet. Inter.188, 247-259) and Korte et al. (2011, Earth Planet. Sci. Lett. 312, 497-505) recently updated earlier spherical harmonic paleomagnetic models with new paleomagnetic data from sediment cores in addition to new archeomagnetic and volcanic data. These updated models offer improved resolution and accuracy over the previous versions, in part due to increased temporal and spatial data coverage. In addition, Pavón-Carrasco et al. (2014, Earth Planet. Sci. Lett. 388, 98-109) developed another time-dependent spherical harmonic model of the Holocene geomagnetic field, based solely on archeomagnetic and volcanic paleomagnetic data from the same underlying paleomagnetic database as the Korte et al. models, but extending to 14 ka. With the new models as input, trajectory-traced estimates of effective vertical cutoff rigidity (RC - the standard method for ordering cosmic ray data) yield significantly different time-integrated scaling predictions when compared to each other and to results using the earlier models. In addition, predictions of each new model using RC are tested empirically using recently published production rate calibration data for both 10Be and 3He, and compared to predictions using corresponding time-varying geocentric dipolar RC formulations and a static geocentric axial dipole (GAD) model. Results for the few calibration sites from geomagnetically sensitive regions suggest that the

  5. Code System to Calculate Mixed Cores in TRIGA Mark II Research Reactor.

    Energy Science and Technology Software Center (ESTSC)

    2001-08-29

    Version 00 TRIGLAV is a computer program for reactor calculations of mixed cores in a TRIGA Mark II research reactor. It can be applied for fuel element burn-up calculations, for power and flux distributions calculations and for reactivity predictions. The TRIGLAV program requires the WIMS-D4 program with the original WIMS cross-section library extended for TRIGA reactor specific nuclides. This package includes the code TRIGAC, which is a new version of TRIGAP.

  6. Towards a magnetic field stabilization at ISOLTRAP for high-accuracy mass measurements on exotic nuclides

    NASA Astrophysics Data System (ADS)

    Marie-Jeanne, M.; Alonso, J.; Blaum, K.; Djekic, S.; Dworschak, M.; Hager, U.; Herlert, A.; Nagy, Sz.; Savreux, R.; Schweikhard, L.; Stahl, S.; Yazidjian, C.

    2008-03-01

    The field stability of a mass spectrometer plays a crucial role in the accuracy of mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of fluctuations are temperature variations in the vicinity of the trap and pressure changes in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the temperature and pressure fluctuations by at least an order of magnitude down to ΔT≈±5 mK and Δp≈±5 Pa has been achieved, which corresponds to a relative magnetic field change of ΔB/B=2.7×10-9 and 1.1×10-10, respectively.

  7. Atomic mass measurements of short-lived nuclides around the doubly-magic 208Pb

    NASA Astrophysics Data System (ADS)

    Weber, C.; Audi, G.; Beck, D.; Blaum, K.; Bollen, G.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Schwarz, S.

    2008-04-01

    Accurate atomic mass measurements of neutron-deficient and neutron-rich nuclides around the doubly-magic 208Pb and of neutron-rich cesium isotopes were performed with the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The masses of 145,147Cs, 181,183Tl, 186Tl m, 187Tl m, 196Tl m, 205Tl, 197Pb m, 208Pb, 190-197Bi, 209,215,216Bi, 203,205,229Fr, and 214,229,230Ra were determined. The obtained relative mass uncertainty in the range of 2×10 to 2×10 is not only required for safe identification of isomeric states but also allows mapping the detailed structure of the mass surface. A mass adjustment procedure was carried out and the results included into the Atomic Mass Evaluation. The resulting separation energies are discussed and the mass spectrometric and laser spectroscopic data are examined for possible correlations.

  8. A counter-intuitive approach to calculating non-exchangeable 2H isotopic composition of hair: treating the molar exchange fraction fE as a process-related rather than compound-specific variable

    USGS Publications Warehouse

    Landwehr, J.M.; Meier-Augenstein, W.; Kemp, H.F.

    2011-01-01

    Hair is a keratinous tissue that incorporates hydrogen from material that an animal consumes but it is metabolically inert following synthesis. The stable hydrogen isotope composition of hair has been used in ecological studies to track migrations of mammals as well as for forensic and archaeological purposes to determine the provenance of human remains or the recent geographic life trajectory of living people. Measurement of the total hydrogen isotopic composition of a hair sample yields a composite value comprised of both metabolically informative, non-exchangeable hydrogen and exchangeable hydrogen, with the latter reflecting ambient or sample preparation conditions. Neither of these attributes is directly measurable, and the non-exchangeable hydrogen composition is obtained by estimation using a commonly applied mathematical expression incorporating sample measurements obtained from two distinct equilibration procedures. This commonly used approach treats the fraction of exchangeable hydrogen as a mixing ratio, with a minimal procedural fractionation factor assumed to be close or equal to 1. Instead, we propose to use full molar ratios to derive an expression for the non-exchangeable hydrogen composition explicitly as a function of both the procedural fractionation factor α and the molar hydrogen exchange fraction fE. We apply these derivations in a longitudinal study of a hair sample and demonstrate that the molar hydrogen exchange fraction fE should, like the procedural fractionation factor α, be treated as a process-dependent parameter, i.e. a reaction-specific constant. This is a counter-intuitive notion given that maximum theoretical values for the molar hydrogen exchange fraction fE can be calculated that are arguably protein-type specific and, as such, fE could be regarded as a compound-specific constant. We also make some additional suggestions for future approaches to determine the non-exchangeable hydrogen composition of hair and the use of

  9. Vapor pressures and calculated heats of vaporization of concentrated nitric acid solutions in the composition range 71 to 89 percent nitrogen dioxide, 1 to 10 percent water, and in the temperature range 10 to 60 degrees C

    NASA Technical Reports Server (NTRS)

    Mckeown, A B; Belles, Frank E

    1954-01-01

    Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.

  10. Probing the nuclides {sup 102}Pd, {sup 106}Cd, and {sup 144}Sm for resonant neutrinoless double-electron capture

    SciTech Connect

    Goncharov, M.; Blaum, K.; Eliseev, S.; Block, M.; Herfurth, F.; Minaya Ramirez, E.; Droese, C.; Schweikhard, L.; Novikov, Yu. N.; Zuber, K.

    2011-08-15

    The Q values for double-electron capture in {sup 102}Pd, {sup 106}Cd, and {sup 144}Sm have been measured by Penning-trap mass spectrometry. The results exclude at present all three nuclides from the list of suitable candidates for a search for resonant neutrinoless double-electron capture.

  11. The tendency analytical equations of stable nuclides and the superluminal velocity motion laws of matter in geospace

    NASA Astrophysics Data System (ADS)

    Yan, Kun

    In this paper, by discussing the existent distribution trend of relation for the proton number and the neutron number to be included by the stable nuclides in geospace, the tendency analytical method and it's periodic distribution equation forms of the stable nuclides are expressed at first. Then the comparison result between the curve of the theoretical equation analysis and the points of the experimental distribution data of the stable nuclides in geospace are given. Further more, the stable nuclide limit and the chemical element limit for the chemical element periodic table are given, and the possible corresponding relation equation with the positron-particle annihilation is expressed, which includes the estimation of the order of the static mass to be situated nearby at the electron neutrino structural dimension. Subsequently, by forming two hypotheses about the energy state of vacuum matter, and basing on the equivalent Binet equation, the mass equations and the energy equations of the partial moving with light-velocity or superluminal-velocity motion fusing with the results of Einstein special relativity are expressed. As inference, the possible corresponding relations between the mass equations and energy equations with the dark matter and dark energy are discussed tentatively.

  12. A Statistical Framework for Calculating and Assessing Compositional Linear Trends Within Fault Zones: A Case Study of the NE Block of the Clark Segment, San Jacinto Fault, California, USA

    NASA Astrophysics Data System (ADS)

    Rockwell, Brian G.; Girty, Gary H.; Rockwell, Thomas K.

    2014-11-01

    Utilizing chemical data derived from the various fault zone architectural components of the Clark strand of the San Jacinto fault, southern California, USA, we apply for the first time non-central principal component analysis to calculate a compositional linear trend within molar A-CN-K space. In this procedure A-CN-K are calculated as the molar proportions of Al2O3 (A), CaO* + Na2O (CN), and K2O (K) in the sum of molar Al2O3, Na2O, CaO*, and K2O. CaO* is the molar CaO after correction for apatite. We then derive translational invariant chemical alteration intensity factors, t, for each architectural component through orthogonal projection of analyzed samples onto the compositional linear trend. The chemical alteration intensity factor t determines the relative change in composition compared to the original state (i.e., the composition of the altered wall rocks). It is dependent on the degree of intensity to which the process or processes responsible for the change in composition of each architectural component has been active. These processes include shearing, fragmentation, fluid flow, and generation of frictional heat. Non-central principal component analysis indicates that principal component 1 explains 99.7 % of the spread of A-CN-K data about the calculated compositional linear trend (i.e., the variance). The significance level for the overall one-way analysis of variance (ANOVA) is 0.0001. Such a result indicates that at least one significant difference across the group of means of t values is different at the 95 % confidence level. Following completion of the overall one-way ANOVA, the difference in means t test indicated that the mean of the t values for the fault core are different than the means obtained from the transition and damage zones. In contrast, at the 95 % confidence level, the means of the t values for the transition and damage zones are not statistically distinguishable. The results of XRD work completed during this study revealed that the <2

  13. Explicitly correlated benchmark calculations on C8H8 isomer energy separations: how accurate are DFT, double-hybrid, and composite ab initio procedures?

    NASA Astrophysics Data System (ADS)

    Karton, Amir; Martin, Jan M. L.

    2012-10-01

    Accurate isomerization energies are obtained for a set of 45 C8H8 isomers by means of the high-level, ab initio W1-F12 thermochemical protocol. The 45 isomers involve a range of hydrocarbon functional groups, including (linear and cyclic) polyacetylene, polyyne, and cumulene moieties, as well as aromatic, anti-aromatic, and highly-strained rings. Performance of a variety of DFT functionals for the isomerization energies is evaluated. This proves to be a challenging test: only six of the 56 tested functionals attain root mean square deviations (RMSDs) below 3 kcal mol-1 (the performance of MP2), namely: 2.9 (B972-D), 2.8 (PW6B95), 2.7 (B3PW91-D), 2.2 (PWPB95-D3), 2.1 (ωB97X-D), and 1.2 (DSD-PBEP86) kcal mol-1. Isomers involving highly-strained fused rings or long cumulenic chains provide a 'torture test' for most functionals. Finally, we evaluate the performance of composite procedures (e.g. G4, G4(MP2), CBS-QB3, and CBS-APNO), as well as that of standard ab initio procedures (e.g. MP2, SCS-MP2, MP4, CCSD, and SCS-CCSD). Both connected triples and post-MP4 singles and doubles are important for accurate results. SCS-MP2 actually outperforms MP4(SDQ) for this problem, while SCS-MP3 yields similar performance as CCSD and slightly bests MP4. All the tested empirical composite procedures show excellent performance with RMSDs below 1 kcal mol-1.

  14. Measuring the Noble Metal and Iodine Composition of Extracted Noble Metal Phase from Spent Nuclear Fuel Using Instrumental Neutron Activation Analysis

    SciTech Connect

    Palomares, R. I.; Dayman, Kenneth J.; Landsberger, Sheldon; Biegalski, Steven R.; Soderquist, Chuck Z.; Casella, Amanda J.; Brady Raap, Michaele C.; Schwantes, Jon M.

    2015-04-01

    Mass quantities of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis (NAA). Nuclide presence is predicted using fission yield analysis, and mass quantification is derived from standard gamma spectroscopy and radionuclide decay analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. Lastly, the implications of the rapid analytic speed of instrumental NAA are discussed in relation to potential nuclear forensics applications.

  15. Calculation of the performance of {sup 3}He alternative detectors with MCNPX

    SciTech Connect

    Swinhoe, M. T.; Hendricks, J. S.

    2011-07-01

    This paper describes the techniques that are available to calculate the performance of {sup 3}He alternative detectors using MCNPX. Calculations of the performance of safeguards detectors that use {sup 3}He have been successfully carried out for many years. In the case of coincidence or multiplicity counting, specific tallies have been implemented to calculate the Singles, Doubles and Triples counting rates. The implementation of the method was done in such a way that it equates every capture in some nuclide in the detection zone with the production of an electronic pulse from the detector. This is a very good approximation for {sup 3}He detectors and BF{sub 3} detectors. However it is not appropriate for detectors such as boron-lined proportional counters, in which the fraction of capture events leading to an electronic pulse above threshold is very dependent on the geometric arrangement, in particular the thickness and composition of the boron-containing layer. This paper gives calculations of the ideal pulse height distributions to be expected from different detector types and gives values for the probability, as a function of detector energy threshold, that a neutron capture reaction will cause an electronic pulse from the detector. This is termed the electronic efficiency. This electronic detection efficiency depends very little on the energy of the captured neutron, which in most practical cases are heavily weighted towards thermal energies. It does not depend on the position of the source neutron or moderation in the sample. For cases of interest to nuclear safeguards, measurement of uranium and plutonium in specially designed detectors, the spectrum of detected neutrons is fairly constant and thus the electronic detection efficiency becomes a detector constant. The paper discusses how the electronic detection efficiency needs to be included in the calculation of Singles, Doubles and Triples, and describes proposals to improve the tallying capability of

  16. MEMS Calculator

    National Institute of Standards and Technology Data Gateway

    SRD 166 MEMS Calculator (Web, free access)   This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  17. Rotational Spectrum, Conformational Composition, Intramolecular Hydrogen Bonding, and Quantum Chemical Calculations of Mercaptoacetonitrile (HSCH2C≡N), a Compound of Potential Astrochemical Interest.

    PubMed

    Møllendal, Harald; Samdal, Svein; Guillemin, Jean-Claude

    2016-03-31

    The microwave spectra of mercaptoacetonitrile (HSCH2C≡N) and one deuterated species (DSCH2C≡N) were investigated in the 7.5-124 GHz spectral interval. The spectra of two conformers denoted SC and AP were assigned. The H-S-C-C chain of atoms is synclinal in SC and anti-periplanar in AP. The ground state of SC is split into two substates separated by a comparatively small energy difference resulting in closely spaced transitions with equal intensities. Several transitions of the parent species of SC deviate from Watson's Hamiltonian. Only slight improvements were obtained using a Hamiltonian that takes coupling between the two substates into account. Deviations from Watson's Hamiltonian were also observed for the parent species of AP. However, the spectrum of the deuterated species, which was investigated only for the SC conformer, fits satisfactorily to Watson's Hamiltonian. Relative intensity measurements found SC to be lower in energy than AP by 3.8(3) kJ/mol. The strength of the intramolecular hydrogen bond between the thiol and cyano groups was estimated to be ∼2.1 kJ/mol. The microwave work was augmented by quantum chemical calculations at CCSD and MP2 levels using basis sets of minimum triple-ζ quality. Mercaptoacetonitrile has astrochemical interest, and the spectra presented herein should be useful for a potential identification of this compound in the interstellar medium. Three different ways of generating mercaptoacetonitrile from compounds already found in the interstellar medium were explored by quantum chemical calculations. PMID:26974178

  18. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    NASA Astrophysics Data System (ADS)

    Solum, John G.; Davatzes, Nicholas C.; Lockner, David A.

    2010-12-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ˜1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon.

  19. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  20. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description. 2; Users Manual and Program Description

    NASA Technical Reports Server (NTRS)

    McBride, Bonnie J.; Gordon, Sanford

    1996-01-01

    This users manual is the second part of a two-part report describing the NASA Lewis CEA (Chemical Equilibrium with Applications) program. The program obtains chemical equilibrium compositions of complex mixtures with applications to several types of problems. The topics presented in this manual are: (1) details for preparing input data sets; (2) a description of output tables for various types of problems; (3) the overall modular organization of the program with information on how to make modifications; (4) a description of the function of each subroutine; (5) error messages and their significance; and (6) a number of examples that illustrate various types of problems handled by CEA and that cover many of the options available in both input and output. Seven appendixes give information on the thermodynamic and thermal transport data used in CEA; some information on common variables used in or generated by the equilibrium module; and output tables for 14 example problems. The CEA program was written in ANSI standard FORTRAN 77. CEA should work on any system with sufficient storage. There are about 6300 lines in the source code, which uses about 225 kilobytes of memory. The compiled program takes about 975 kilobytes.

  1. Erosion of mountain plateaus along Sognefjord, Norway, constrained by cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Andersen, Jane Lund; Egholm, David L.; Knudsen, Mads F.; Linge, Henriette; Jansen, John D.

    2016-04-01

    Norway is famous for its deeply incised, steep-sided fjords, carved out by glacial erosion. The high relief of the fjords stands in contrast to the extensive areas of relatively low relief found between the fjords. The origin and development of these low-relief areas remain debated. The classical interpretation relates them to a Mesozoic peneplanation surface, uplifted to the current high elevation in the early Cenozoic (e.g. Nesje, 1994). The validity of this interpretation has, however, been repeatedly questioned in recent times (e.g. Nielsen et al. 2009, Steer et al. 2012). Recent studies point instead to a significant impact of glacial and periglacial erosion processes on the long-term development of the low-relief surfaces (Egholm et al. 2015). Here, we present a large new dataset of in-situ produced cosmogenic 10Be and 26Al in bedrock and boulders from the high, flat summit surfaces along a transect from the coast to the inner parts of Sognefjorden in Norway. Our results indicate substantial glacial modification of the sampled low-relief surfaces within the last 50 ka. Close to the coast, at an elevation of around 700 meters, the cosmogenic nuclide signal was reset around the Younger Dryas due to extensive glacial erosion. Regarding the higher surfaces further inland, our results indicate a maximum cosmogenic nuclide inheritance of 20-30 ka prior to the last deglaciation. We do not find any signs of exceptional longevity of the low-relief landscape. In contrast, our results indicate that the low-relief areas were continuously eroded by glacial and periglacial processes in the Quaternary. Nesje & Whillans. Erosion of Sognefjord, Norway. Geomorphology 9(1), 33-45, 1994. Nielsen et al. The evolution of western Scandinavian topography: a review of Neogene uplift versus the ICE (isostasy-climate-erosion) hypothesis. Journal of Geodynamics 47(2), 72-95, 2009. Steer et al. Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia

  2. Incision of the Yangtze River at the First Bend Determined by Three-Nuclide Burial Dating

    NASA Astrophysics Data System (ADS)

    McPhillips, D. F.; Hoke, G. D.; Rood, D. H.; Bierman, P. R.

    2015-12-01

    On the southeast margin of the Tibetan Plateau, the evolution of the Yangtze River and its major tributaries has become an important source of data for investigating geodynamics. In particular, the timing of river incision is frequently interpreted as a proxy for the timing of surface uplift in the absence of structural evidence. We investigate the timing of the incision of the gorge at the First Bend using cosmogenic nuclide burial dating of coarse, quartz sediments from caves. Sediments were deposited when the caves were near river level and subsequently abandoned as the river incised. To resolve burial ages >5 Ma, we measured the radionuclides 10Be and 26Al, and the stable nuclide 21Ne. Results from 4 caves show that 26Al and 10Be concentrations are an order of magnitude lower in abandoned cave samples than in a river-level cave sample where deposition is active (10Be: 1.3x104 and 3.4x105 at/g). In contrast, 26Al/10Be ratios in all caves are ≥6.2 and indistinguishable within error. 21Ne concentrations range from 2.1x106 to 7.8x106 at/g. The results are consistent with an old age for the abandoned cave deposits, such that most of the radionuclides initially present have decayed and the concentrations that we measure today are the result of millions of years of exposure to muons. We solve for burial ages, taking into account in situ muogenic production, and find that the majority of the gorge (1 km) was likely incised between ~12 and 9 Ma. The results also require that the rate of river incision declined after the gorge was cut below the lowest elevation cave at 9 Ma. Inverse modeling of published low-temperature thermochronology (Ouimet et al., 2010) supports our burial age results. River capture near the First Bend, which likely integrated the modern Yangtze, likely occurred prior to the mid-Miocene incision of the gorge. In view of the geographic position of the First Bend—just downslope from the southeast margin of the Plateau—it is difficult to explain

  3. Analysis of the material behavior of metal-matrix composites under tension by synchrotron radiation-based microtomography and FE calculations

    NASA Astrophysics Data System (ADS)

    Crostack, Horst-Artur; Nellesen, Jens; Blum, Heribert; Rauscher, Thomas; Beckmann, Felix; Fischer, Gottfried

    2004-10-01

    Micro-deformation and -damage processes running before the macroscopical failure of a component determine its macroscopically observable behaviour. Such processes in metal matrix composites (MMCs) can be imaged during tensile tests with high resolution microtomography utililising synchrotron radiation. To improve the understanding of the material's behaviour the microstructural changes in tensile experiments were studied by tomography and compared with FE computer simulations. Miniaturised tensile test specimens consisting of the particle reinforced MMC Al/10% TiN were manufactured on a powder metallurgic route. From a sub-volume in the gauge length of a specimen high resolution tomograms were created at different deformation stages deploying monochromatic synchrotron radiation supplied by the wiggler beamline BW2 in HASYLAB at DESY in Hamburg. After segmentation and binarization, wherein to each voxel of the 3D tomogram a phase property like e.g. surrounding air, particle or matrix is assigned, the FE-model of the area of interest was set up: Two and three dimensional micro-tomographical sections of interest were discretized using different element shapes to apply a non-linear finite-element method on the real microstructure. The ductile metal matrix was modelled using von Mises flow theory with isotropic hardening. Displacements computed by iterative matching of the tomograms of different deformation states were applied to the FE-model as boundary conditions. The FE-simulations show the appearance and development of plastic zones in the metal matrix as well as high stress concentrations on particles' surfaces, which are areas of crack initiation as the experiments reveal. In future work, criteria for micro-damaging like particle or matrix cracking and delamination can be derived from the comparison of the real with the computer experiments.

  4. Major- and minor-metal composition of three distinct solid material fractions associated with Juan de Fuca hydrothermal fluids (northeast Pacific), and calculation of dilution fluid samples

    USGS Publications Warehouse

    Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.

    1988-01-01

    Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.

  5. Analysis of burnup and isotopic compositions of BWR 9 x 9 UO{sub 2} fuel assemblies

    SciTech Connect

    Suzuki, M.; Yamamoto, T.; Ando, Y.; Nakajima, T.

    2012-07-01

    In order to extend isotopic composition data focusing on fission product nuclides, measurements are progressing using facilities of JAEA for five samples taken from high burnup BWR 9 x 9 UO{sub 2} fuel assemblies. Neutronics analysis with an infinite assembly model was applied to the preliminary measurement data using a continuous-energy Monte Carlo burnup calculation code MVP-BURN with nuclear libraries based on JENDL-3.3 and JENDL-4.0. The burnups of the samples were determined to be 28.0, 39.3, 56.6, 68.1, and 64.0 GWd/t by the Nd-148 method. They were compared with those calculated using node-average irradiation histories of power and in-channel void fractions which were taken from the plant data. The comparison results showed that the deviations of the calculated burnups from the measurements were -4 to 3%. It was confirmed that adopting the nuclear data library based on JENDL-4.0 reduced the deviations of the calculated isotopic compositions from the measurements for {sup 238}Pu, {sup 144}Nd, {sup 145}Nd, {sup 146}Nd, {sup 148}Nd, {sup 134}Cs, {sup 154}Eu, {sup 152}Sm, {sup 154}Gd, and {sup 157}Gd. On the other hand, the effect of the revision in the nuclear. data library on the neutronics analysis was not significant for major U and Pu isotopes. (authors)

  6. Development of the sampling and nuclide analysis methods for spent HEPA filter wastes

    SciTech Connect

    Young-Yong Ji; Dae Seok Hong; Il-Sik Kang; Bum-Kyoung Seo; Jong-Sik Shon

    2007-07-01

    Spent filter wastes of about 2,160 units have been stored in the waste storage facility of the Korea Atomic Energy Research Institute since its operation. These spent filters have generally consisted of a HEPA filter after its filtering of all the contaminants in the gas stream generated during the operation of the HANARO research reactor and the nuclear fuel cycle facilities. At the moment, to secure enough storage space, it is necessary to make a volume reduction of the stored radioactive wastes through a compression treatment or a regulatory clearance. There have been many studies on a treatment and a clearance of the low level radioactive wastes generated from nuclear facilities. These methods are used in view of a reduction of a management cost and disposal cost and the security of free space for a waste storage facility approaching saturation. In order to dispose of the spent filters, it is first necessary to conduct a radionuclide assessment of them. To do that, a sampling procedure should be prepared to obtain a representative sample from a spent filter. As for conducting a nuclide analysis for this representative sample, a corresponding spent filter can be determined as either a regulatory clearance waste or a radioactive waste. (authors)

  7. Applications of in situ cosmogenic nuclides in the geologic site characterization of Yucca Mountain, Nevada

    SciTech Connect

    Gosse, J.C.; Harrington, C.D.; Whitney, J.W.

    1996-08-01

    The gradual buildup of rare isotopes from interactions between cosmic rays and atoms in an exposed rock provides a new method of directly determining the exposure age of rock surfaces. The cosmogenic nuclide method can also provide constraints on erosion rates and the length of time surface exposure was interrupted by burial. Numerous successful applications of the technique have been imperative to the complete surface geologic characterization of Yucca Mountain, Nevada, a potential high level nuclear waste repository. The {sup 10}Be exposure age of Black Cone lava, within a ten mile radius of the proposed repository site, is 840 {+-} 210 kyr (in agreement with previous K/Ar dates of 1.0 {+-} 0.1 Ma). Rates of erosion of the tuff bedrock (< 0.4 cm/kyr from 7 {sup 10}Be measurements) and of hillslope colluvium ({approximately} 0.5 cm/kyr from {sup 10}Be dates on boulder deposits) preclude denudation of the mountain as a concern. Neotectonic concerns (rate of slip and timing of last significant movement along faults) are also being addressed with in situ {sup 14}C and {sup 10}Be measurements on scarp surfaces and on fault-dissected landforms where no surficial expression of the fault is preserved.

  8. Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad

    PubMed Central

    Lebatard, Anne-Elisabeth; Bourlès, Didier L.; Duringer, Philippe; Jolivet, Marc; Braucher, Régis; Carcaillet, Julien; Schuster, Mathieu; Arnaud, Nicolas; Monié, Patrick; Lihoreau, Fabrice; Likius, Andossa; Mackaye, Hassan Taisso; Vignaud, Patrick; Brunet, Michel

    2008-01-01

    Ages were determined at two hominid localities from the Chad Basin in the Djurab Desert (Northern Chad). In the Koro Toro fossiliferous area, KT 12 locality (16°00′N, 18°53′E) was the site of discovery of Australopithecus bahrelghazali (Abel) and in the Toros-Menalla fossiliferous area, TM 266 locality (16°15′N, 17°29′E) was the site of discovery of Sahelanthropus tchadensis (Toumaï). At both localities, the evolutive degree of the associated fossil mammal assemblages allowed a biochronological estimation of the hominid remains: early Pliocene (3–3.5 Ma) at KT 12 and late Miocene (≈7 Ma) at TM 266. Atmospheric 10Be, a cosmogenic nuclide, was used to quasicontinuously date these sedimentary units. The authigenic 10Be/9Be dating of a pelite relic within the sedimentary level containing Abel yields an age of 3.58 ± 0.27 Ma that points to the contemporaneity of Australopithecus bahrelghazali (Abel) with Australopithecus afarensis (Lucy). The 28 10Be/9Be ages obtained within the anthracotheriid unit containing Toumaï bracket, by absolute dating, the age of Sahelanthropus tchadensis to lie between 6.8 and 7.2 Ma. This chronological constraint is an important cornerstone both for establishing the earliest stages of hominid evolution and for new calibrations of the molecular clock. PMID:18305174

  9. Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad.

    PubMed

    Lebatard, Anne-Elisabeth; Bourlès, Didier L; Duringer, Philippe; Jolivet, Marc; Braucher, Régis; Carcaillet, Julien; Schuster, Mathieu; Arnaud, Nicolas; Monié, Patrick; Lihoreau, Fabrice; Likius, Andossa; Mackaye, Hassan Taisso; Vignaud, Patrick; Brunet, Michel

    2008-03-01

    Ages were determined at two hominid localities from the Chad Basin in the Djurab Desert (Northern Chad). In the Koro Toro fossiliferous area, KT 12 locality (16 degrees 00'N, 18 degrees 53'E) was the site of discovery of Australopithecus bahrelghazali (Abel) and in the Toros-Menalla fossiliferous area, TM 266 locality (16 degrees 15'N, 17 degrees 29'E) was the site of discovery of Sahelanthropus tchadensis (Toumaï). At both localities, the evolutive degree of the associated fossil mammal assemblages allowed a biochronological estimation of the hominid remains: early Pliocene (3-3.5 Ma) at KT 12 and late Miocene ( approximately 7 Ma) at TM 266. Atmospheric (10)Be, a cosmogenic nuclide, was used to quasicontinuously date these sedimentary units. The authigenic (10)Be/(9)Be dating of a pelite relic within the sedimentary level containing Abel yields an age of 3.58 +/- 0.27 Ma that points to the contemporaneity of Australopithecus bahrelghazali (Abel) with Australopithecus afarensis (Lucy). The 28 (10)Be/(9)Be ages obtained within the anthracotheriid unit containing Toumaï bracket, by absolute dating, the age of Sahelanthropus tchadensis to lie between 6.8 and 7.2 Ma. This chronological constraint is an important cornerstone both for establishing the earliest stages of hominid evolution and for new calibrations of the molecular clock. PMID:18305174

  10. Activity concentration of natural radioactive nuclides in nonmetallic industrial raw materials in Japan.

    PubMed

    Iwaoka, Kazuki; Tabe, Hiroyuki; Yonehara, Hidenori

    2014-11-01

    Natural materials such as rock, ore, and clay, containing natural radioactive nuclides are widely used as industrial raw materials in Japan. If these are high concentrations, the workers who handle the material can be unknowingly exposed to radiation at a high level. In this study, about 80 nonmetallic natural materials frequently used as industrial raw materials in Japan were comprehensively collected from several industrial companies, and the activity concentrations of (238)U series, (232)Th series and (40)K in the materials was determined by ICP-MS (inductively-coupled plasma mass spectrometer) and gamma ray spectrum analyses. Effective doses to workers handling them were estimated by using methods for dose estimation given in the RP 122. We found the activity concentrations to be lower than the critical values defined by regulatory requirements as described in the IAEA Safety Guide. The maximum estimated effective dose to workers handling these materials was 0.16 mSv y(-1), which was lower than the reference level (1-20 mSv y(-1)) for existing situation given in the ICRP Publ.103. PMID:25046866

  11. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides

    SciTech Connect

    Kohl, C.P.; Nishiizumi, K. )

    1992-09-01

    Measurement of cosmogenic nuclides produced in situ in terrestrial samples shows great potential as a tool for quantifying continental erosion rates, determining exposure ages of rocks, dating various geologic events, and elucidating past climates. An isolation method relying totally on chemical steps was developed to separate large quantities (10-200 g) of clean mono-minerallic quartz samples from a variety of terrestrial rocks and soils for the purpose of measuring [sup 10]Be (t[sub 1/2] = 1.5 Myr) and [sup 26]Al (t[sub 1/2] = 0.705 Myr) produced by cosmic rays in situ in the quartz phase. The procedure consists of grinding the sample, heating it in HCl, and treating it with a series of leaches using a dilute HF/HNO[sub 3] mixture in a heated ultrasonic tank. The purified quartz was also used for the measurements of in-situ-cosmic-ray-produced [sup 21]Ne and [sup 14]C (t[sub 1/2] = 5,730 yr). The method is applicable to any problem requiring purified quartz on a large scale.

  12. Studies of Itokawa's Surface Exposure by Measurements of Cosmic-ray Produced Nuclides

    NASA Technical Reports Server (NTRS)

    Caffee, M. W.; Nishiizumi, K.; Tsuchiyama, A.; Uesugi, M.; Zolensky, M. E.

    2014-01-01

    We plan to investigate the evolutionary history of surface materials from 25143 Itokawa, the Hayabusa samples. Our studies are based on the measurement of nuclides produced in asteroidal surface materials by cosmic rays. Cosmogenic radionuclides are used to determine the duration and nature of the exposure of materials to energetic particles. Our goals are to understand both the fundamental processes on the asteroidal surface and the evolutionary history of its surface materials. They are also key to understanding the history of Itokawa's surface and asteroid-meteoroid evolutionary dynamics. To achieve our key goals, in particular reconstructing the evolutionary histories of the asteroidal surface, we proposed: (1) characterizing Itokawa particles using SXCT, SXRD, and FE-SEM without modification of the sample; (2) embedding each particle in acrylic resin, then slicing a small corner with an ultra-microtome and examining it using super-STEM and SIMS for characterizing surface morphology, space weathering, and oxygen three-isotope analysis; and finally (3) measuring small amounts of cosmogenic radionuclides (104-105 atoms) in Hayabusa samples by AMS. However, we have to modify our plan due to unexpected situation.

  13. From the HINDAS Project: Excitation Functions for Residual Nuclide Production by Proton-Induced Reactions

    SciTech Connect

    Michel, R.; Gloris, M.; Protoschill, J.; Uosif, M.A.M.; Weug, M.; Herpers, U.; Kuhnhenn, J.; Kubik, P.-W.; Schumann, D.; Synal, H.-A.; Weinreich, R.; Leya, I.; David, J.C.; Leray, S.; Duijvestijn, M.; Koning, A.; Kelic, A.; Schmidt, K.H.; Cugnon, J.

    2005-05-24

    A survey is given about efforts undertaken during the HINDAS project to investigate the energy dependence of residual nuclide production by proton-induced reactions from thresholds up to 2.6 GeV. For proton-induced reactions, our experiments aimed to further develop and complete the cross-section database that was established by our collaboration in recent years. It was extended to the heavy-target elements Ta, W, Pb, and Bi for energies up to 2.6 GeV. In addition, new measurements for the target element iron were performed up to 2.6 GeV and for natural uranium for energies from 21 MeV to 69 MeV. For the target element lead, a comprehensive set of excitation functions published recently was completed by AMS-measurements of cross sections for the production of the long-lived radionuclides Be-10, Al-26, Cl-36, and I-129 and by mass spectrometric measurements for stable and radioactive rare gas isotopes of He, Ne, Ar, Kr, and Xe. Comprehensive tests of the nuclear-reaction codes TALYS and INCL4+ABLA, which were developed within the HINDAS project, were performed with the new experimental results over the entire energy range.

  14. Measurement of the complete nuclide production and kinetic energies of the system {sup 136}Xe+hydrogen at 1 GeV per nucleon

    SciTech Connect

    Napolitani, P.; Tassan-Got, L.; Audouin, L.; Bernas, M.; Lafriaskh, A.; Stephan, C.; Rejmund, F.

    2007-12-15

    We present an extensive overview of production cross sections and kinetic energies for the complete set of nuclides formed in the spallation of {sup 136}Xe by protons at the incident energy of 1 GeV per nucleon. The measurement was performed in inverse kinematics at the GSI fragment separator. Slightly below the Businaro-Gallone point, {sup 136}Xe is the stable nuclide with the largest neutron excess. The kinematic data and cross sections collected in this work for the full nuclide production are a general benchmark for modeling the spallation process in a neutron-rich nuclear system, where fission is characterized by predominantly mass-asymmetric splits.

  15. Dating the incision of the Yangtze River gorge at the First Bend using three-nuclide burial ages

    NASA Astrophysics Data System (ADS)

    McPhillips, Devin; Hoke, Gregory D.; Liu-Zeng, Jing; Bierman, Paul R.; Rood, Dylan H.; Niedermann, Samuel

    2016-01-01

    Incision of the Yangtze River gorge is widely interpreted as evidence for lower crustal flow beneath the southeast margin of the Tibetan Plateau. Previous work focused on the onset of incision, but the duration of incision remains unknown. Here we present cosmogenic nuclide burial ages of sediments collected from caves on the walls of the gorge that show the gorge was incised ~1 km sometime between 18 and 9 Ma. Thereafter, incision slowed substantially. We resolve middle Miocene burial ages by using three nuclides and accounting for in situ muogenic production. This approach explains the absolute concentrations of 10Be, 26Al, and 21Ne, as well as 26Al/10Be and 21Ne/10Be ratios. A declining incision rate challenges existing geodynamic interpretations by suggesting that either (1) surface uplift has ceased immediately south of the plateau margin or (2) gorge incision is not a useful proxy for the timing of surface uplift.

  16. First Use of High Charge States for Mass Measurements of Short-Lived Nuclides in a Penning Trap

    SciTech Connect

    Ettenauer, S.; Gallant, A. T.; Dilling, J.; Simon, M. C.; Chaudhuri, A.; Mane, E.; Delheij, P.; Pearson, M. R.; Brunner, T.; Chowdhury, U.; Simon, V. V.; Brodeur, M.; Andreoiu, C.; Audi, G.; Lopez-Urrutia, J. R. Crespo; Ullrich, J.; Gwinner, G.; Lapierre, A.; Lunney, D.; Ringle, R.

    2011-12-30

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {beta} emitter {sup 74}Rb (T{sub 1/2}=65 ms). The determination of its atomic mass and an improved Q{sub EC} value are presented.

  17. First use of high charge states for mass measurements of short-lived nuclides in a Penning trap.

    PubMed

    Ettenauer, S; Simon, M C; Gallant, A T; Brunner, T; Chowdhury, U; Simon, V V; Brodeur, M; Chaudhuri, A; Mané, E; Andreoiu, C; Audi, G; López-Urrutia, J R Crespo; Delheij, P; Gwinner, G; Lapierre, A; Lunney, D; Pearson, M R; Ringle, R; Ullrich, J; Dilling, J

    2011-12-30

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed β emitter 74Rb (T(1/2)=65  ms). The determination of its atomic mass and an improved Q(EC) value are presented. PMID:22243307

  18. Instrumental activation analysis of coal and fly ash with thermal and epithermal neutrons and short-lived nuclides

    USGS Publications Warehouse

    Steinnes, E.; Rowe, J.J.

    1976-01-01

    Instrumental neutron activation analysis is applied to the determination of about 25 elements in coals and fly ash by means of nuclides with half-lives of less than 48 h ; thermal and epithermal irradiations are used. The results indicate that epithermal activation is preferable for twelve of the elements (Ga, As, Br, Sr, In, Cs, Ba, La, Sm, Ho, W and U). Data for SRM 1632 (coal) and SRM 1633 (fly ash) compare favorably with the results obtained by other investigators. ?? 1976.

  19. Measurements of cross sections for production of light nuclides by 120 GeV proton bombardment of Ni and Au

    NASA Astrophysics Data System (ADS)

    Okumura, Shintaro; Sekimoto, Shun; Yashima, Hiroshi; Matsushi, Yuki; Matsuzaki, Hiroyuki; Shibata, Seiichi; Ohtsuki, Tsutomu

    2014-09-01

    Production cross sections for long-lived cosmogenic nuclides, such as Be-10 and Al-26 have a very practical benefit for health and safety in radiation protection; they serve as a comprehensive nuclear database that can be used to estimate residual radioactivities in accelerator facilities. Cross sections are also indispensable for studying the specific formation mechanisms of these nuclides, where spallation, fission, or fragmentation is a dominant process. The fragmentation process is usually studied by production cross sections of light nuclides which are best measured by AMS. For energies above 100 MeV few measurements have been made and published. We have measured and report the first Be-10 and Al-26 production cross sections from Ni and Au produced by 120 GeV protons. The proton irradiation at 120 GeV was performed at Fermi National Accelerator Laboratory. The AMS measurements were performed at MALT, University of Tokyo. We will discuss the production mechanism of Be-10 and Al-26 by spallation and fragmentation.

  20. On a solar origin for the cosmogenic nuclide event of 775 A.D

    SciTech Connect

    Cliver, E. W.; Tylka, A. J.; Dietrich, W. F.; Ling, A. G.

    2014-01-20

    We explore requirements for a solar particle event (SPE) and flare capable of producing the cosmogenic nuclide event of 775 A.D., and review solar circumstances at that time. A solar source for 775 would require a >1 GV spectrum ∼45 times stronger than that of the intense high-energy SPE of 1956 February 23. This implies a >30 MeV proton fluence (F {sub 30}) of ∼8 × 10{sup 10} proton cm{sup –2}, ∼10 times larger than that of the strongest 3 month interval of SPE activity in the modern era. This inferred F {sub 30} value for the 775 SPE is inconsistent with the occurrence probability distribution for >30 MeV solar proton events. The best guess value for the soft X-ray classification (total energy) of an associated flare is ∼X230 (∼9 × 10{sup 33} erg). For comparison, the flares on 2003 November 4 and 1859 September 1 had observed/inferred values of ∼X35 (∼10{sup 33} erg) and ∼X45 (∼2 × 10{sup 33} erg), respectively. The estimated size of the source active region for a ∼10{sup 34} erg flare is ∼2.5 times that of the largest region yet recorded. The 775 event occurred during a period of relatively low solar activity, with a peak smoothed amplitude about half that of the second half of the 20th century. The ∼1945-1995 interval, the most active of the last ∼2000 yr, failed to witness a SPE comparable to that required for the proposed solar event in 775. These considerations challenge a recent suggestion that the 775 event is likely of solar origin.

  1. Extensive MIS 3 glaciation in southernmost Patagonia revealed by cosmogenic nuclide dating of outwash sediments

    NASA Astrophysics Data System (ADS)

    Darvill, Christopher M.; Bentley, Michael J.; Stokes, Chris R.; Hein, Andrew S.; Rodés, Ángel

    2015-11-01

    The timing and extent of former glacial advances can demonstrate leads and lags during periods of climatic change and their forcing, but this requires robust glacial chronologies. In parts of southernmost Patagonia, dating pre-global Last Glacial Maximum (gLGM) ice limits has proven difficult due to post-deposition processes affecting the build-up of cosmogenic nuclides in moraine boulders. Here we provide ages for the Río Cullen and San Sebastián glacial limits of the former Bahía Inútil-San Sebastián (BI-SSb) ice lobe on Tierra del Fuego (53-54°S), previously hypothesised to represent advances during Marine Isotope Stages (MIS) 12 and 10, respectively. Our approach uses cosmogenic 10Be and 26Al exposure dating, but targets glacial outwash associated with these limits and uses depth-profiles and surface cobble samples, thereby accounting for surface deflation and inheritance. The data reveal that the limits formed more recently than previously thought, giving ages of 45.6 ka (+139.9/-14.3) for the Río Cullen, and 30.1 ka (+45.6/-23.1) for the San Sebastián limits. These dates indicate extensive glaciation in southern Patagonia during MIS 3, prior to the well-constrained, but much less extensive MIS 2 (gLGM) limit. This suggests the pattern of ice advances in the region was different to northern Patagonia, with the terrestrial limits relating to the last glacial cycle, rather than progressively less extensive glaciations over hundreds of thousands of years. However, the dates are consistent with MIS 3 glaciation elsewhere in the southern mid-latitudes, and the combination of cooler summers and warmer winters with increased precipitation, may have caused extensive glaciation prior to the gLGM.

  2. Removal of Radioactive Nuclides from Mo-99 Acidic Liquid Waste - 13027

    SciTech Connect

    Hsiao, Hsien-Ming; Pen, Ben-Li

    2013-07-01

    About 200 liters highly radioactive acidic liquid waste originating from Mo-99 production was stored at INER (Institute of Nuclear Energy Research). A study regarding the treatment of the radioactive acidic liquid waste was conducted to solve storage-related issues and allow discharge of the waste while avoiding environmental pollution. Before discharging the liquid waste, the acidity, NO{sub 3}{sup -} and Hg ions in high concentrations, and radionuclides must comply with environmental regulations. Therefore, the treatment plan was to neutralize the acidic liquid waste, remove key radionuclides to reduce the dose rate, and then remove the nitrate and mercury ions. Bench tests revealed that NaOH is the preferred solution to neutralize the high acidic waste solution and the pH of solution must be adjusted to 9∼11 prior to the removal of nuclides. Significant precipitation was produced when the pH of solution reached 9. NaNO{sub 3} was the major content in the precipitate and part of NaNO{sub 3} was too fine to be completely collected by filter paper with a pore size of approximately 3 μm. The residual fine particles remaining in solution therefore blocked the adsorption column during operation. Two kinds of adsorbents were employed for Cs-137 and a third for Sr-90 removal to minimize cost. For personnel radiation protection, significant lead shielding was required at a number of points in the process. The final process design and treatment facilities successfully treated the waste solutions and allowed for environmentally compliant discharge. (authors)

  3. On a Solar Origin for the Cosmogenic Nuclide Event of 775 A.D.

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Tylka, A. J.; Dietrich, W. F.; Ling, A. G.

    2014-01-01

    We explore requirements for a solar particle event (SPE) and flare capable of producing the cosmogenic nuclide event of 775 A.D., and review solar circumstances at that time. A solar source for 775 would require a greater than 1 GV spectrum approximately 45 times stronger than that of the intense high-energy SPE of 1956 February 23. This implies a greater than 30 MeV proton fluence (F(sub 30)) of approximately 8 × 10(exp 10) proton cm(exp -2), approximately 10 times larger than that of the strongest 3 month interval of SPE activity in the modern era. This inferred F(sub 30) value for the 775 SPE is inconsistent with the occurrence probability distribution for greater than 30 MeV solar proton events. The best guess value for the soft X-ray classification (total energy) of an associated flare is approximately X230 (approximately 9 × 10(exp 33) erg). For comparison, the flares on 2003 November 4 and 1859 September 1 had observed/inferred values of approximately X35 (approximately 10(exp 33) erg) and approximately X45 (approximately 2 × 10(exp 33) erg), respectively. The estimated size of the source active region for a approximately 10(exp 34) erg flare is approximately 2.5 times that of the largest region yet recorded. The 775 event occurred during a period of relatively low solar activity, with a peak smoothed amplitude about half that of the second half of the 20th century. The approximately 1945-1995 interval, the most active of the last approximately 2000 yr, failed to witness a SPE comparable to that required for the proposed solar event in 775. These considerations challenge a recent suggestion that the 775 event is likely of solar origin.

  4. Feasibility Study: Applicability of geochronologic methods involving radiocarbon and other nuclides to the groundwater hydrology of the Rustler Formation, southeastern New Mexico

    SciTech Connect

    Lambert, S.J.

    1987-12-01

    Radiocarbon, tritium, and /sup 36/Cl were measured in groundwaters from the dolomite aquifers of the Rustler Formation in the northern Delaware Basin of southeastern New Mexico to determine the feasibility of using these nuclides in dating the groundwater at and near the Waste Isolation Pilot Plant, a facility for geological disposal of Radioactive waste. No measurable /sup 36/Cl was found in any of these groundwaters, which derive their dissolved chloride from Permian evaporites. Demonstrably uncontaminated groundwaters contained no significant amounts of tritium (<0.2 TU). Percent modern carbon (PMC) correlates linearly and directly with bicarbonate concentration, indicating mixing of a high-PMC/high-bicarbonate reservoir with a low-PMC/low-bicarbonate reservoir. This relationship together with the history of development of the wells sampling the groundwaters, indicates contamination by anthropogenic modern carbon rather than simple dilution by dissolving rock carbonate. /delta//sup 13/C does not linearly correlate with bicarbonate, indicating no single source of contaminant radiocarbon. Values of PMC and /delta//sup 13/C for groundwaters were used to calculate apparent radiocarbon ages according to an interpretive model that accounts for water/rock interactions in carbonate aquifers. All but six pairs of values give significant negative ages (/minus/1,000 to /minus/7,000 years). This suggests that in contaminated samples the model over-adjusts (based on /delta//sup 13/C) for radiocarbon loss due to dilution and isotopic exchange with the rock. 52 refs., 10 figs., 6 tabs.

  5. High-precision Penning trap mass measurements of 9,10Be and the one-neutron halo nuclide 11Be

    NASA Astrophysics Data System (ADS)

    Ringle, R.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Smith, M.; Lapierre, A.; Ryjkov, V. L.; Delheij, P.; Drake, G. W. F.; Lassen, J.; Lunney, D.; Dilling, J.

    2009-05-01

    Penning trap mass measurements of 9Be, 10Be (t1 / 2 = 1.51 My), and the one-neutron halo nuclide 11Be (t1 / 2 = 13.8 s) have been performed using TITAN at TRIUMF. The resulting 11Be mass excess (ME = 20 177.60 (58) keV) is in agreement with the current Atomic Mass Evaluation (AME03) [G. Audi, et al., Nucl. Phys. A 729 (2003) 337] value, but is over an order of magnitude more precise. The precision of the mass values of 9,10Be have been improved by about a factor of four and reveal a ≈ 2 σ deviation from the AME mass values. Results of new atomic physics calculations are presented for the isotope shift of 11Be relative to 9Be, and it is shown that the new mass values essentially remove atomic mass uncertainties as a contributing factor in determining the relative nuclear charge radius from the isotope shift. The new mass values of 10,11Be also allow for a more precise determination of the single-neutron binding energy of the halo neutron in 11Be.

  6. Electron capture of strongly screening nuclides 56Fe, 56Co, 56Ni, 56Mn,56Cr and 56V in pre-supernovae

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Jing

    2013-08-01

    According to the shell-model Monte Carlo method, based on the random-phase approximation and linear response theory, we carried out an estimation of electron capture (EC) of the strongly screening nuclides 56Fe, 56Co, 56Ni, 56Mn,56Cr and 56V during strong electron screening (SES) in pre-supernovae. The EC rates are decreased greatly and may even exceed 21.5 per cent in the case of SES. We also compare our results with those calculated by the method of Aufderheide in the case of SES. Our results agree reasonably well with those of Aufderheide in higher density and temperature surroundings (e.g. ρ7 > 60, T9 = 15.40) and the maximum error is ˜0.5 per cent. However, the maximum error is ˜13.0 per cent in lower density surroundings (e.g. 56Cr at ρ7 = 10, T9 = 15.40, Ye = 0.41). We also compared our results for SES with those of Fuller, Fowler & Newman and Nabi, which apply to a case without SES. The comparisons show that our results are lower than those of Fuller, Fowler & Newman by more than one order of magnitude and about 7.23 per cent lower than those of Nabi.

  7. WBGT Calculator

    Energy Science and Technology Software Center (ESTSC)

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulatemore » the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.« less

  8. WBGT Calculator

    SciTech Connect

    Hunter, Charles H.

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulate the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.

  9. Flux of transuranium nuclides and chlorinated hydrocarbons in the northwestern Mediterranean

    NASA Astrophysics Data System (ADS)

    Fowler, S. W.; Ballestra, S.; Villeneuve, J.-P.

    1990-09-01

    The transuranium nuclides, plutonium and americium, and selected chlorinated hydrocarbon compounds have been measured in sediment trap samples, bottom sediments and waters. These measurements have been used to quantify vertical fluxes and elucidate particulate biogeochemical cycles, of these man-made contaminants in the northwestern Mediterranean. Sediment trap experiments in the Gulf of Lions (Lacaze-Duthiers Canyon) have shown that transuranic fluxes are considerably higher in the Gulf of Lions, than those which have been reported for the northeast Pacific; principally this is due to the relatively high mass fluxes in this region of the Mediterranean. Water, surface sediment and sediment trap data indicate that 241Am is being transported downward (via particle settling) more rapidly than 239+240Pu. From direct flux measurement, residence times for 239+240Pu and 241Am in the upper 300 m were computed to be 2.5 and 0.14 years, respectively. Comparison of 239+240Pu concentrations in the water column, in 1986, with similar measurements made 5-11 years earlier suggests that fallout input to the Mediterranean has decreased by nearly a factor of 2 during the period 1975-1986. Fluxes of PCB, HCB, γ-HCH and DDT residues varied by as much as an order of magnitude, or more, both temporally and with depth. The average fluxes of most of the compounds in the Lacaze-Duthiers Canyon, during 1985-1986, were quite similar to those measured off the coast of Monaco several years earlier. Generally, the increased chlorinated hydrocarbon fluxes observed with depth were a direct result of the much higher mass fluxes which occurred at depth. Demonstrated differences in PCB concentrations in the settling particles, deposited surface sediments and overlying sediment floc indicate that simple bottom sediment resuspension is not a major contributor to the enhanced PCB flux noted at depth. The PCB concentration in sedimenting particulate material collected from deeper waters, is similar to

  10. Temporal and latitudinal cosmogenic nuclide-derived denudation rates from European river terraces

    NASA Astrophysics Data System (ADS)

    Schaller, Mirjam; Ehlers, Todd A.

    2014-05-01

    Denudation of the Earth surface is sensitive to changes in tectonics, climate, and biotic activity. The determination of these denudation rates over space and time has proven difficult. Cosmogenic nuclide concentrations in active river sediment and river terrace deposits contain information about catchment-wide denudation rates and paleo-denudation rates, respectively. In this study, temporal and spatial variations in denudation across Europe are investigated as a function of Quaternary climate change. We test the hypothesis that Quaternary climate change impacted catchment denudation rates between glacial and interglacial cycles and during late Cenozoic global cooling. Furthermore, the latitudinal dependence and perhaps the spatially and temporally asynchronous behavior of catchments due to the effect of climate change on denudation are considered. Methods used include quantification of paleo-denudation rates from in situ-produced cosmogenic 10Be and 26Al measured in river terraces determined from catchments in southern and northern Spain (Guadalquivir and Esla, respectively), central France (Allier and Loire), and the Czech Republic (Vltava). These five catchments span 12 degrees latitude and provide a rich temporal record of denudation rates. Results from work in progress indicate that modern denudation rates (over timescales of ~20 kyr) in the Guadalquivir range between 34 to 42 mm/kyr. In the upper course of the Esla denudation rates are 50 mm/kyr and 30 mm/kyr in the lower course of the river system. For the Allier, denudation rates recalculated from measurements by Schaller et al., (2001) are around 40 mm/kyr, The denudation rates of the Vltava and the Elbe are around 30 mm/kyr with the Elbe at 38 mm/kyr. All denudation rates of the four catchments studied are very similar despite the different latitudinal and present day climatic settings. Given these similarities in denudation rates so far suggest that modern catchment denudation is relatively insensitive

  11. [Bibliographic consideration of proper management of radioactive waste on short-lived period nuclides that are used in nuclear medicine].

    PubMed

    Kida, Tetsuo; Watanabe, Hiroshi; Yamaguchi, Ichirou; Nagaoka, Hiroaki; Fujibuchi, Toshioh; Tanaka, Shinji; Hayakawa, Toshio

    2009-05-20

    A rational clearance system for medical radioactive waste has not yet been established in Japan. As Europe and USA's ways, the establishment of DIS that medical radioactive waste what are kept in storage room for more than decided period each nuclide except from regulation of radiation's control. The purpose of this report is to clarify the problems with the establishment of DIS in Japan through a literature review of the experience in Europe and the USA and previous research that has been reported in Japan. To establish the DIS system, the radiation control system in nuclear medicine should be rebuilt and put into effect. PMID:19498253

  12. Mass measurements of the neutron-deficient 41Ti, 45Cr, 49Fe, and 53Ni nuclides: first test of the isobaric multiplet mass equation in f p-shell nuclei.

    PubMed

    Zhang, Y H; Xu, H S; Litvinov, Yu A; Tu, X L; Yan, X L; Typel, S; Blaum, K; Wang, M; Zhou, X H; Sun, Y; Brown, B A; Yuan, Y J; Xia, J W; Yang, J C; Audi, G; Chen, X C; Jia, G B; Hu, Z G; Ma, X W; Mao, R S; Mei, B; Shuai, P; Sun, Z Y; Wang, S T; Xiao, G Q; Xu, X; Yamaguchi, T; Yamaguchi, Y; Zang, Y D; Zhao, H W; Zhao, T C; Zhang, W; Zhan, W L

    2012-09-01

    Isochronous mass spectrometry has been applied to neutron-deficient 58Ni projectile fragments at the HIRFL-CSR facility in Lanzhou, China. Masses of a series of short-lived T(z)=-3/2 nuclides including 41Ti, 45Cr, 49Fe, and 53Ni have been measured with a precision of 20-40 keV. The new data enable us to test for the first time the isobaric multiplet mass equation (IMME) in fp-shell nuclei. We observe that the IMME is inconsistent with the generally accepted quadratic form for the A=53, T=3/2 quartet. We perform full space shell model calculations and compare them with the new experimental results. PMID:23005283

  13. Measurement and simulation of the cross sections for nuclide production in {sup nat}W and {sup 181}Ta targets irradiated with 0.04- to 2.6-GeV protons

    SciTech Connect

    Titarenko, Yu. E. Batyaev, V. F.; Titarenko, A. Yu.; Butko, M. A.; Pavlov, K. V.; Florya, S. N.; Tikhonov, R. S.; Zhivun, V. M.; Ignatyuk, A. V.; Mashnik, S. G.; Leray, S.; Boudard, A.; Cugnon, J.; Mancusi, D.; Yariv, Y.; Nishihara, K.; Matsuda, N.; Kumawat, H.; Mank, G.; Gudowski, W.

    2011-04-15

    The cross sections for nuclide production in thin {sup nat}Wand {sup 181}Ta targets irradiated by 0.04-2.6-GeV protons have been measured by direct {gamma} spectrometry using two {gamma} spectrometers with the resolutions of 1.8 and 1.7 keV in the {sup 60}Co 1332-keV {gamma} line. As a result, 1895 yields of radioactive residual product nuclei have been obtained. The {sup 27}Al(p, x){sup 22}Na reaction has been used as a monitor reaction. The experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

  14. Measurement and simulation of the cross sections for nuclide production in {sup 93}Nb and {sup nat}Ni targets irradiated with 0.04- to 2.6-GeV protons

    SciTech Connect

    Titarenko, Yu. E. Batyaev, V. F.; Titarenko, A. Yu.; Butko, M. A.; Pavlov, K. V.; Florya, S. N.; Tikhonov, R. S.; Zhivun, V. M.; Ignatyuk, A. V.; Mashnik, S. G.; Leray, S.; Boudard, A.; Cugnon, J.; Mancusi, D.; Yariv, Y.; Nishihara, K.; Matsuda, N.; Kumawat, H.; Mank, G.; Gudowski, W.

    2011-04-15

    The cross sections for nuclide production in thin {sup 93}Nb and {sup nat}Ni targets irradiated by 0.04- to 2.6-GeV protons have been measured by direct {gamma} spectrometry using two {gamma} spectrometers with the resolutions of 1.8 and 1.7 keV in the {sup 60}Co 1332-keV {gamma} line. As a result, 1112 yields of radioactive residual nuclei have been obtained. The {sup 27}Al(p, x){sup 22}Na reaction has been used as a monitor reaction. The experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

  15. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    USGS Publications Warehouse

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through

  16. Natural Paleoseismometers: Cosmogenic Nuclide Dating of Precariously Balanced Rocks (PBRs) - Integral Constraints on Maximum Ground Accelerations

    NASA Astrophysics Data System (ADS)

    Perg, L. A.; Ludwig, L. G.; Kendrick, K.; Brune, J.; Purvance, M.; Anooshehpoor, R.; Akciz, S.

    2007-12-01

    Precariously balanced rocks (PBRs) act as natural seismometers constraining maximum ground acceleration over the surface exposure history of the PBR. These key paleoseismic indicators have the potential to validate ground motions on the timescale necessary to test earthquake rupture forecasts and Seismic Hazard Assessment estimates, and are an active topic of research to validate CyberShake results and constrain National Seismic Hazard Maps. This research focuses on examining the post-exhumation history of PBRs using in-situ terrestrial cosmogenic nuclides (TCNs). TCNs provide a record of near-surface exposure history. The measured concentrations are a function of the residence time in the upper ~20 m of the subsurface (inherited concentration), the timing and rate of exhumation, and post-exhumation surface spalling and chemical erosion. Our goal in the project is to provide reasonable constraints on the post-exhumation history, specifically the age of the PBRs and evolution of precariousness: we should be able to constrain whether the rocks were of similar precariousness 2.5 ka, 5 ka, and 10 ka ago. These specific targets will provide important constraints on time since exceedance for the CyberShake models. We developed our sampling strategy to address subsurface inheritance, exhumation rate and timing, and post- exhumation spalling and chemical erosion. PBRs were selected to meet a variety of considerations. These rocks constrain ground motions from large earthquakes on the San Jacinto and Elsinore faults, in Southern California. Inherited concentrations lead to an age estimate that is too old; we are investigating inherited concentrations though sampling a rock quarry near Perris CA, with shielded samples at greater than 15 m depth. We also have partially shielded samples from the interior of rocks toppled to measure their stability, and through vandalism. To determine exhumation age and rate, our sampling strategy is to collect 5-6 samples per PBR: 1 on top, 3

  17. Thermodynamic Calculations for Complex Chemical Mixtures

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.

    1986-01-01

    General computer program, CECTRP, developed for calculation of thermodynamic properties of complex mixtures with option to calculate transport properties of these mixtures. Free-energy minimization technique used in equilibrium calculation. Rigorous equations used in transport calculations. Program calculates equilibrium compositions and corresponding thermodynamic and transport properties of mixtures. CECTRP accommodates up to 24 reactants, 20 elements, and 600 products, 400 of which are condensed. Written in FORTRAN IV for any large computer system.

  18. Comparative study of beta-decay data for eight nuclides measured at the Physikalisch-Technische Bundesanstalt

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Fischbach, E.; Javorsek, D.; Jenkins, J. H.; Lee, R. H.; Nistor, J.; Scargle, J. D.

    2014-07-01

    We present the results of time-series analyses of data, kindly provided by the Physikalisch-Technische Bundesanstalt, concerning the beta-decays of Ag108, Ba133, Cs137, Eu152, Eu154, Kr85, Ra226, and Sr90. From measurements of the detector currents, we find evidence of annual oscillations (especially for Ra226), and for several solar r-mode oscillations. It is notable that the frequencies of these r-mode oscillations correspond to exactly the same sidereal rotation rate (12.08 year-1) that we have previously identified in r-mode oscillations detected in both Mt Wilson solar diameter data and Lomonosov Moscow State University Sr90 beta-decay data. Ba133 is found to be anomalous in that current measurements for this nuclide have a much larger variation (by 4 σ) than those of the other nuclides. It is interesting that analysis of variability measurements in the PTB files yields strong evidence for an oscillation for Ba133 but only weak evidence for Ra226.

  19. SOURCES: a code for calculating (alpha,n), spontaneous fission, and delayed neutron sources and spectra.

    PubMed

    Wilson, W B; Perry, R T; Charlton, W S; Parish, T A; Shores, E F

    2005-01-01

    SOURCES is a computer code that determines neutron production rates and spectra from (alpha,n) reactions, spontaneous fission and delayed neutron emission owing to the decay of radionuclides in homogeneous media, interface problems and three-region interface problems. The code is also capable of calculating the neutron production rates due to (alpha,n) reactions induced by a monoenergetic beam of alpha particles incident on a slab of target material. The (alpha,n) spectra are calculated using an assumed isotropic angular distribution in the centre-of-mass system with a library of 107 nuclide decay alpha-particle spectra, 24 sets of measured and/or evaluated (alpha,n) cross sections and product nuclide level branching fractions, and functional alpha particle stopping cross sections for Z < 106. Spontaneous fission sources and spectra are calculated with evaluated half-life, spontaneous fission branching and Watt spectrum parameters for 44 actinides. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron sources. It also provides an analysis of the contributions to that source by each nuclide in the problem. PMID:16381695

  20. Alcohol Calorie Calculator

    MedlinePlus

    ... Alcohol Calorie Calculator Weekly Total 0 Calories Alcohol Calorie Calculator Find out the number of beer and ... Calories College Alcohol Policies Interactive Body Calculators Alcohol Calorie Calculator Alcohol Cost Calculator Alcohol BAC Calculator Alcohol ...

  1. [Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides in phosphate rocks and phosphate fertilizers].

    PubMed

    Komura, K; Yanagisawa, M; Sakurai, J; Sakanoue, M

    1985-10-01

    Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides have been studied for 2 phosphate rocks and 7 phosphate fertilizers. Uranium contents were found to be rather high (39-117 ppm) except for phosphate rock from Kola. The uranium series nuclides were found to be in various equilibration states, which can be grouped into following three categories. Almost in the equilibrium state, 238U approximately 230Th greater than 210Pb greater than 226Ra and 238U greater than 230Th greater than 210Pb greater than 226Ra. Thorium contents were found to be, in general, low and appreciable disequilibrium of the thorium series nuclides was not observed except one sample. Potassium contents were also very low (less than 0.3% K2O) except for complex fertilizers. Based on the present data, discussions were made for the radiation exposure due to phosphate fertilizers. PMID:3006158

  2. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    SciTech Connect

    Perkasa, Y. S.; Waris, A. Kurniadi, R. Su'ud, Z.

    2014-09-30

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

  3. Effects of NN potentials on p Nuclides in the A ˜100-120 region

    NASA Astrophysics Data System (ADS)

    Lahiri, C.; Biswal, S. K.; Patra, S. K.

    2016-02-01

    Microscopic optical potentials for low-energy proton reactions have been obtained by folding density dependent M3Y (DDM3Y) interaction derived from nuclear matter calculation with densities from mean field approach to study astrophysically important proton rich nuclei in mass 100-120 region. We compare S factors for low-energy (p,γ) reactions with available experimental data and further calculate astrophysical reaction rates for (p,γ) and (p,n) reactions. Again, we choose some nonlinear R3Y (NR3Y) interactions from relativistic mean field (RMF) calculation and folded them with corresponding RMF densities to reproduce experimental S-factor values in this mass region. Finally, the effect of nonlinearity on our result is discussed.

  4. Hybrid reduced order modeling for assembly calculations

    SciTech Connect

    Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; Mertyurek, Ugur

    2015-08-14

    While the accuracy of assembly calculations has greatly improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This paper extends those works to coupled code systems as currently employed in assembly calculations. Finally, numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.

  5. Hybrid reduced order modeling for assembly calculations

    SciTech Connect

    Bang, Y.; Abdel-Khalik, H. S.; Jessee, M. A.; Mertyurek, U.

    2013-07-01

    While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)

  6. Hybrid reduced order modeling for assembly calculations

    DOE PAGESBeta

    Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; Mertyurek, Ugur

    2015-08-14

    While the accuracy of assembly calculations has greatly improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the usemore » of the reduced order modeling for a single physics code, such as a radiation transport calculation. This paper extends those works to coupled code systems as currently employed in assembly calculations. Finally, numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.« less

  7. In-situ measurements of U-series nuclides by electron microprobe on zircons and monazites from Gandak river sediments

    NASA Astrophysics Data System (ADS)

    Bosia, C.; Deloule, E.; France-Lanord, C.; Chabaux, F.

    2015-12-01

    Determination of sediment transfer time during transport in the alluvial plains is a critical issue to correctly understand the relationship between climate, tectonics and Earth surface evolution. The residence time of river sediments may be constrained by analyzing the U series nuclides fractionations (e.g. [1] and [2]), which are created during water rock interactions by the ejection of the daughter nuclides of the grain (α-recoil) and the preferential mobilization of nuclides in decay damaged crystal structure. However, recent studies on sediments from the Gandak river, one of the main Ganga tributary, highlighted the difficulties to obtain reproducible data on bulk sediments, due to the nuggets distribution of U-Th enriched minor minerals in the samples (Bosia et al., unpublished data). We therefore decided to analyze the U and Th isotopic systematic at a grain-scale for Himalayan sediments from the Gandak river. This has been tested by performing in situ depth profiles of 238U-234U-230Th and 232Th on zircons and monazites (50-250 μm) by Secondary Ion Mass Spectrometry (SIMS) at the CRPG, Nancy, France. The first results point the occurrence of 238U-234U-230Th disequilibria in the outermost parts of both monazite and zircon minerals with a return to the equilibrium state in the core of the grains. The relative U and Th enrichment is however slightly different depending on considered minerals, suggesting possible adsorption processes of 230-Th. Coupled to a simple model of U and Th mobility during water-mineral interactions, these data should help to constrain the origin of 238U-234U-230Th disequilibria in these minerals. Moreover, the results of the study should be relevant to discuss the potential of this approach to constrain the residence time of zircons and monazites in the Gandak alluvial plain. [1] Chabaux et al., 2012, C. R. Geoscience, 344 (11-12): 688-703; [2] Granet et al., 2007, Earth and Planet. Sci. Lett., 261 (3-4): 389-406.

  8. Cosmogenic nuclide concentrations in Neogene rivers of the Great Plains reveal the evolution of fluvial storage and recycling

    NASA Astrophysics Data System (ADS)

    Sinclair, Hugh; Stuart, Fin; McCann, Louise; Tao, Zui

    2016-04-01

    The measurement of the duration of near surface residence of sediment grains from the stratigraphic record has the potential to quantitatively reconstruct processes such as stratal condensation, sediment recycling and the exposure histories of unconformities. Geomorphological measurements of dates and rates of surfaces and erosion respectively has enabled significant advances in understanding, however, the radiogenic half life of typical cosmogenic nuclides such as 10Be and 26Al means they are not suitable for the stratigraphic record. Instead, we have applied the stable cosmogenic nuclide of 21Ne to quartz-rich sediment to quantify the routing history of the river systems that have drained the southern Rockies of Wyoming and Colorado during Neogene times. The Neogene sediments of Nebraska record fluvial systems of the Great Plains that flow from the Rockies towards the east and into the Mississippi catchment. This succession is <300 m thick, and records successive episodes of fluvial incision and aggradation associated with regional tilting from 6 to 4 Ma and periods of climate change. As part of an evaluation of the application of 21Ne to the stratigraphic record, we sampled quartzite pebbles from an Upper Miocene, Pliocene and modern river channel of the North Platte approximately 400 km from their mountainous source. The quartzite is derived from a single exposure of the Medicine Bow quartzites in Wyoming, therefore all three intervals recorded the same travel distance from source. Additionally, we know the erosion rate of the Medicine Bow quartzites from detrital 10Be analyses, and we also sampled shielded bedrock samples from the quartzite to evaluate for any non-cosmogenic 21Ne. This means that the concentrations of 21Ne in detrital pebbles >400 km from their source could be corrected for both inherited non-cosmogenic and erosion induced accumulation at source. Therefore, any additional amounts of 21Ne must record storage and exposure during transport down

  9. Depth Distribution of Cosmogenic Nuclides in Boring Core Samples of Jilin Meteorite and its Cosmic Ray Irradiation History

    NASA Astrophysics Data System (ADS)

    Ouyang, Z.; Fan, C.; Yi, W.; Wang, X.; Begemann, F.; Kersten, T.; Heusser, G.; Pernicka, E.

    Two boring cores were sampled from the Jilin No. 1 meteorite in such a way that they were kept parallel or perpendicular to the surface of the 1st stage parent body, but across the center of the 2nd stage parent body. Cosmogenic nuclides (3He, 20,21,22Ne, 22Na, 26Al, 53Mn, 60Co), radiogenic gases and trapped noble gases in the two cores have been studied in detail, which has confirmed the two-staged cosmic ray irradiation history proposed by the authors as being typical of the Jilin meteorite, and also justified their previous models regarding the ages, shapes and sizes of the two parent bodies related to the two stages as well as the emplacement of various samples.

  10. Chlorine-36 in fossil rat urine: An archive of cosmogenic nuclide deposition during the past 40,000 years

    SciTech Connect

    Plummer, M.A.; Phillips, F.M.; Fabryka-Martin, J.

    1997-07-25

    Knowledge of the production history of cosmogenic nuclides, which is needed for geological and archaeological dating, has been uncertain. Measurements of chlorine-36/chlorine ({sup 36}Cl/Cl) ratios in fossil packrat middens from Nevada that are radiocarbon-dated between about 38 thousand years ago (ka) and the present showed that {sup 36}Cl/Cl ratios were higher by a factor of about 2 before {approx} 11 ka. This raises the possibility that cosmogenic production rates just before the close of the Pleistocene were up to 50% higher than is suggested by carbon-14 calibration data. The discrepancy could be explained by addition of low-carbon-14 carbon dioxide to the atmosphere during that period, which would have depressed atmospheric radiocarbon activity. Alternatively, climatic effects on {sup 36}Cl deposition may have enhanced the {sup 36}Cl/Cl ratios. 49 refs., 3 figs.

  11. Novel Solvent for the Simultaneous recovery of Radioactive Nuclides from Liquid Radioactive Wastes

    SciTech Connect

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Lgor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    1999-10-07

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  12. Neutron activation analysis of nuclides from stellar and man-induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Oliver, L. L.

    Neutron activation and gamma counting were used to determine the relative abundances of six stable tellurium isotopes in the acid-etched residues of the Allende meteorite. The results were correlated with the isotopic compositions of xenon and the elemental abundances of helium and neon in similarly prepared residues. Nucleosynthesis appears to be the only viable explanation or the anomalous isotopic and elemental compositions observed in these residues. Results suggest that the solar system condensed from an isotopically and chemically zoned nebula that was produced by the explosion of a supernova, concentric with the present Sun. A combination of neutron activation and mass spectrometry was used to determine the concentrations of fissiogenic iodine 129 and stable iodine 127 in rain, milk and the thyroids of man, cow and deer from Missouri. Rain and deer thyroids show the highest average values of the iodine 129/iodine 127 ratio. Milk and the thyroids of cattle and humans show successively lower values of the iodine 129/iodine 127 ratio due to dietary additives of mineral iodine and to biological averaging.

  13. Ultrasensitive search for long-lived superheavy nuclides in the mass range A=288 to A=300 in natural Pt, Pb, and Bi

    SciTech Connect

    Dellinger, F.; Forstner, O.; Golser, R.; Priller, A.; Steier, P.; Wallner, A.; Winkler, G.; Kutschera, W.

    2011-06-15

    Theoretical models of superheavy elements (SHEs) predict a region of increased stability around the proton and neutron shell closures of Z = 114 and N = 184. Therefore a sensitive search for nuclides in the mass range from A = 288 to A = 300 was performed in natural platinum, lead, and bismuth, covering long-lived isotopes of Eka-Pt (Ds, Z = 110), Eka-Pb (Z = 114), and Eka-Bi (Z = 115). Measurements with accelerator mass spectrometry (AMS) at the Vienna Environmental Research Accelerator (VERA) established upper limits for these SHE isotopes in Pt, Pb, and Bi with abundances of <2x10{sup -15}, <5x10{sup -14}, and <5x10{sup -13}, respectively. These results complement earlier searches for SHEs with AMS at VERA in natural thorium and gold, which now amounts to a total number of 37 SHE nuclides having been explored with AMS. In none of our measurements was evidence found for the existence of SHEs in nature at the reported sensitivity level. Even though a few events were observed in the window for {sup 293}Eka-Bi, a particularly strong pileup background did not allow a definite SHE isotope identification. The present result sets limits on nuclides around the center of the island of stability, essentially ruling out the existence of SHE nuclides with half-lives longer than {approx}150 million years.

  14. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Saito, Kimiaki; Tanihata, Isao; Fujiwara, Mamoru; Saito, Takashi; Shimoura, Susumu; Otsuka, Takaharu; Onda, Yuichi; Hoshi, Masaharu; Ikeuchi, Yoshihiro; Takahashi, Fumiaki; Kinouchi, Nobuyuki; Saegusa, Jun; Seki, Akiyuki; Takemiya, Hiroshi; Shibata, Tokushi

    2015-01-01

    Soil deposition density maps of gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident were constructed on the basis of results from large-scale soil sampling. In total 10,915 soil samples were collected at 2168 locations. Gamma rays emitted from the samples were measured by Ge detectors and analyzed using a reliable unified method. The determined radioactivity was corrected to that of June 14, 2011 by considering the intrinsic decay constant of each nuclide. Finally the deposition maps were created for (134)Cs, (137)Cs, (131)I, (129m)Te and (110m)Ag. The radioactivity ratio of (134)Cs-(137)Cs was almost constant at 0.91 regardless of the locations of soil sampling. The radioactivity ratios of (131)I and (129m)Te-(137)Cs were relatively high in the regions south of the Fukushima NPP site. Effective doses for 50 y after the accident were evaluated for external and inhalation exposures due to the observed radioactive nuclides. The radiation doses from radioactive cesium were found to be much higher than those from the other radioactive nuclides. PMID:24703526

  15. Chemical and isotopic compositions in acid residues from various meteorites

    NASA Technical Reports Server (NTRS)

    Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.

    1993-01-01

    We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.

  16. Optical model methods of predicting nuclide production cross sections from heavy ion fragmentation

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Ramsey, C. R.; Tripathi, R. K.; Cucinotta, F. A.; Norbury, J. W.; Wilson, J. W. (Principal Investigator)

    1999-01-01

    Quantum mechanical optical potential methods for calculating inclusive isotope and element production cross sections from the fragmenting of heavy nuclei by intermediate- and high-energy protons and heavy ions are presented based upon a modified abrasion-ablation-FSI (frictional spectator interaction) collision model. The abrasion stage is treated as a quantum mechanical knockout process that leaves the residual prefragment in an excited state. Prefragment excitation energies are estimated using a combined liquid drop and FSI method. In ablation the prefragment deexcites by particle and photon emission to produce the final fragment. Contributions from electromagnetic dissociation to single nucleon removal cross sections are incorporated using a Weiszacker-Williams theory that includes electric dipole and electric quadrupole interactions. Estimates of elemental and isotopic production cross sections are in good agreement with published cross section measurements for a variety of projectile-target-beam energy combinations.

  17. Hydrologic Nuclide Transport Models in Cyder, A Geologic Disposal Software Library - 13328

    SciTech Connect

    Huff, Kathryn D.

    2013-07-01

    Component level and system level abstraction of detailed computational geologic repository models have resulted in four rapid computational models of hydrologic radionuclide transport at varying levels of detail. Those models are described, as is their implementation in Cyder, a software library of interchangeable radionuclide transport models appropriate for representing natural and engineered barrier components of generic geology repository concepts. A proof of principle demonstration was also conducted in which these models were used to represent the natural and engineered barrier components of a repository concept in a reducing, homogenous, generic geology. This base case demonstrates integration of the Cyder open source library with the Cyclus computational fuel cycle systems analysis platform to facilitate calculation of repository performance metrics with respect to fuel cycle choices. (authors)

  18. PRODUCTION OF ALL THE r-PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS

    SciTech Connect

    Wanajo, Shinya; Sekiguchi, Yuichiro; Kiuchi, Kenta; Shibata, Masaru; Nishimura, Nobuya; Kyutoku, Koutarou

    2014-07-10

    Recent studies suggest that binary neutron star (NS-NS) mergers robustly produce heavy r-process nuclei above the atomic mass number A ∼ 130 because their ejecta consist of almost pure neutrons (electron fraction of Y {sub e} < 0.1). However, the production of a small amount of the lighter r-process nuclei (A ≈ 90-120) conflicts with the spectroscopic results of r-process-enhanced Galactic halo stars. We present, for the first time, the result of nucleosynthesis calculations based on the fully general relativistic simulation of a NS-NS merger with approximate neutrino transport. It is found that the bulk of the dynamical ejecta are appreciably shock-heated and neutrino processed, resulting in a wide range of Y {sub e} (≈0.09-0.45). The mass-averaged abundance distribution of calculated nucleosynthesis yields is in reasonable agreement with the full-mass range (A ≈ 90-240) of the solar r-process curve. This implies, if our model is representative of such events, that the dynamical ejecta of NS-NS mergers could be the origin of the Galactic r-process nuclei. Our result also shows that radioactive heating after ∼1 day from the merging, which gives rise to r-process-powered transient emission, is dominated by the β-decays of several species close to stability with precisely measured half-lives. This implies that the total radioactive heating rate for such an event can be well constrained within about a factor of two if the ejected material has a solar-like r-process pattern.

  19. Neutron core excitations in the N=126 nuclide {sup 210}Po

    SciTech Connect

    Dracoulis, G. D.; Lane, G. J.; Davidson, P. M.; Kibedi, T.; Nieminen, P.; Maier, K. H.; Watanabe, H.; Byrne, A. P.; Wilson, A. N.

    2008-03-15

    Excited states above the 16{sup +} isomer in {sup 210}Po have been identified using time-correlated {gamma}-ray spectroscopy techniques and the {sup 204}Hg({sup 13}C,3n{alpha}){sup 210}Po reaction. States up to {approx}27({Dirac_h}/2{pi}) have been identified, including an isomer at 8074 keV with a mean life of 13(2) ns. Among the new states, a candidate for the 17{sup +} state obtained from maximal coupling of the {pi}[h{sub 9/2}i{sub 13/2}]{sub 11{sup -}} valence proton configuration and the {nu}[p{sub 1/2}{sup -1}i{sub 11/2}]{sub 6{sup -}} neutron core excitation has been identified. This and other results are compared with semiempirical shell-model calculations that predict that single core excitations from the i{sub 13/2} neutron orbital and double core excitations out of the p{sub 1/2} and f{sub 5/2} orbitals, populating the g{sub 9/2},i{sub 11/2}, and j{sub 15/2} orbitals above the N=126 shell, will compete in energy. Good agreement is obtained for the lower states but there are systematic discrepancies at high spins including the absence of states that are calculated to lie low in the spectrum, implying uncertainties for configurations associated either with the i{sub 13/2} neutron hole or double core excitations.

  20. Groundwater flow and radionuclide transport calculations for a performance assessment of a low-level waste site

    NASA Astrophysics Data System (ADS)

    Birdsell, Kay H.; Wolfsberg, Andrew V.; Hollis, Diana; Cherry, Terry A.; Bower, Kathleen M.

    2000-11-01

    Predictions of subsurface radionuclide transport are used to support the groundwater pathway analysis for the performance assessment of the low-level, solid radioactive waste site at Los Alamos National Laboratory. Detailed process-based models rather than higher-level performance-assessment models are used to perform the transport calculations. The deterministic analyses predict the fate of the waste from its source, through the vadose zone, into the saturated zone and, finally, the potential dose to humans at the accessible environment. The calculations are run with the finite-element code FEHM, which simulates fluid flow, heat transport, and reactive, contaminant transport through porous and fractured media. The modeling approach for this study couples realistic source-term models with an unsaturated-zone flow and transport model, which is then linked to the saturated-zone flow and transport model. The three-dimensional unsaturated-zone flow and transport model describes the complex hydrology associated with the mesa-top and volcanic geology of the site. The continued migration of nuclides into the main aquifer is calculated using a three-dimensional, steady-flow, saturated-zone model that maintains the spatial and temporal distribution of nuclide flux from the vadose zone. Preliminary results for the aquifer-related dose assessments show that doses are well below relevant performance objectives for low-level waste sites. A general screening technique that compares the nuclide's half-life to its unsaturated-zone travel time is described. This technique helps to decrease the number of transport calculations required at a site. In this case, over half the nuclides were eliminated from further consideration through this screening.

  1. HENRY'S LAW CALCULATOR

    EPA Science Inventory

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  2. Pregnancy Weight Gain Calculator

    MedlinePlus

    ... Newsroom Dietary Guidelines Communicator’s Guide Pregnancy Weight Gain Calculator You are here Home / Online Tools Pregnancy Weight Gain Calculator Print Share Pregnancy Weight Gain Calculator Pregnancy Weight Gain Calculator Pregnancy Weight Gain Intro ...

  3. Cosmogenic nuclides in the Košice meteorite: Experimental investigations and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Sýkora, Ivan; KováčIk, Andrej; BeåO, Juraj; Meier, Matthias M. M.; Wieler, Rainer; Laubenstein, Matthias; PorubčAn, Vladimir

    2015-05-01

    Results of nondestructive gamma-ray analyses of cosmogenic radionuclides (7Be, 22Na, 26Al, 46Sc, 48V, 54Mn, 56Co, 57Co, 58Co, and 60Co) in 19 fragments of the Košice meteorite are presented and discussed. The activities varied mainly with position of fragments in the meteoroid body, and with fluxes of cosmic-ray particles in the space affecting radionuclides with different half-lives. Monte Carlo simulations of the production rates of 60Co and 26Al compared with experimental data indicate that the pre-atmospheric radius of the meteoroid was 50 ± 5 cm. In two Košice fragments, He, Ne, and Ar concentrations and isotopic compositions were also analyzed. The noble-gas cosmic-ray exposure age of the Košice meteorite is 5-7 Myr, consistent with the conspicuous peak (or doublet peak) in the exposure age histogram of H chondrites. One sample likely contains traces of implanted solar wind Ne, suggesting that Košice is a regolith breccia. The agreement between the simulated and observed 26Al activities indicate that the meteoroid was mostly irradiated by a long-term average flux of galactic cosmic rays of 4.8 particles cm-2 s-1, whereas the short-lived radionuclide activities are more consistent with a flux of 7.0 protons cm-2 s-1 as a result of the low solar modulation of the galactic cosmic rays during the last few years before the meteorite fall.

  4. Removal of Radioactive Nuclides by Multi-Functional Microcapsules Enclosing Inorganic Ion-Exchangers and Organic Extractants

    SciTech Connect

    Mimura, H.; Akiba, K.; Onodera, Y.

    2002-02-26

    The microcapsules enclosing two kinds of functional materials, inorganic ion-exchangers and organic extractants, were prepared by taking advantage of the high immobilization ability of alginate gel polymer. The fine powders of inorganic ion-exchanger and oil drops of extractant were kneaded with sodium alginate (NaALG) solution and the kneaded sol readily gelled in a salt solution of CaCl2, BaCl2 or HCl to form spherical gel particles. The uptake properties of various nuclides, 137Cs, 85Sr, 60Co, 88Y, 152Eu and 241Am, for thirty-four specimens of microcapsules in the presence of 10-1-10-4 M HNO3 were evaluated by the batch method. The distribution coefficient (Kd) of Cs+ above 103 cm3/g was obtained for the microcapsules enclosing CuFC or AMP. The Kd of Sr2+ around 102 cm3/g was obtained for the microcapsules containing clinoptilolite, antimonic acid, zeolite A, zeolite X or titanic acid. The microcapsules enclosing DEHPA exhibited relatively large Kd values of trivalent metal ions above 103 cm3/g; for example, the Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ for a favorable microcapsule (CuFC/clinoptilolite/DEHPA/CaALG) were 1.1x104, 7.5x10, 1.1x10, 1.0x104, 1.4x104, 3.4x103 cm3/g, respectively. The uptake rates of Cs+, Y3+, Eu3+ and Am3+ for this microcapsule were rather fast; the uptake percentage above 90% was obtained after 19 h-shaking and the uptake equilibrium was attained within 1 d. The AMP/CaALG exhibited high uptake ability for Cs+ even after irradiation of 188 kGy, and DEHPA/CaALG microcapsule had similar Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ ions before and after irradiation. The microcapsules with various shapes such as spherical, columnar, fibrous and filmy forms were easily prepared by changing the way of dipping kneaded sol into gelling salt solution. The microcapsules enclosing inorganic ion-exchangers and extractants have a potential possibility for the simultaneous removal of various radioactive nuclides from waste solutions.

  5. Data and software tools for gamma radiation spectral threat detection and nuclide identification algorithm development and evaluation

    NASA Astrophysics Data System (ADS)

    Portnoy, David; Fisher, Brian; Phifer, Daniel

    2015-06-01

    spectral data at 1 s time intervals, which represents data collected by a mobile system operating in a dynamic radiation background environment; and one that represents static measurements with a foreground spectrum (background plus source) and a background spectrum. These data include controlled variations in both Source Related Factors (nuclide, nuclide combinations, activities, distances, collection times, shielding configurations, and background spectra) and Detector Related Factors (currently only gain shifts, but resolution changes and non-linear energy calibration errors will be added soon). The software tools will allow the developer to evaluate the performance impact of each of these factors. Although this first implementation is somewhat limited in scope, considering only NaI-based detection systems and two application domains, it is hoped that (with community feedback) a wider range of detector types and applications will be included in the future. This article describes the methods used for dataset creation, the software validation/performance measurement tools, the performance metrics used, and examples of baseline performance.

  6. Glacial Erosion Rates from Bayesian Inversion of Cosmogenic Nuclide Concentrations in a Bedrock Core, Streaked Mtn., ME

    NASA Astrophysics Data System (ADS)

    Ploskey, Z. T.; Stone, J. O.

    2014-12-01

    Glacial erosion is an important source of sediment and could be an important coupling to glacier and ice sheet models that track sediment. However, glacial erosion is difficult to quantify, and models of glacial erosion can benefit from independent erosion rate estimates. Here we present the results of a Bayesian Markov chain Monte Carlo (MCMC) inversion of a cosmogenic nuclide (CN) geomorphic model for glacial erosion rates on a bedrock landform formerly eroded beneath the Laurentide ice sheet. The CN 10Be was measured in quartz to 8 m depth in a bedrock core from the summit of Streaked Mountain, ME. The accumulation of 10Be was modeled over multiple glacial cycles of alternating exposure and glacial erosion. This model was invertedfor glacial erosion rates and burial history using MCMC algorithms implemented in PyMC (Patil et al., 2010). This Bayesian approach allows us to incorporate prior constraints on ice cover history, including oxygen isotope records and radiometric dates, which is otherwise difficult to differentiate from erosion in rapidly eroding areas. We compare these results to depth profile and surface CN measurements elsewhere in Maine (Ploskey and Stone, 2013).The forward model of CN production used in the inversion is part of Cosmogenic (github.com/cosmolab/cosmogenic), an open-source Python-based software library we developed for modeling the growth and decay of in-situ CN inventories in rock during geomorphic evolution. It includes calibrated production rates for 10Be and 26Al in quartz and 36Cl in K-feldspar by both neutrons and muons, with more isotopic production pathways and material targets to be added in the future. Production rates are scaled to the site altitude and latitude using modular scaling schemes. Cosmogenic includes a variety of functions representing common geomorphic histories, and can be used to model any arbitrary exposure, erosion and burial history that can be defined as Python function.ReferencesPatil, A., D. Huard and C

  7. Decays of New Nuclides and Isomers Beyond the Proton Drip Line--The Influence of Neutron Configurations

    SciTech Connect

    Page, R. D.; Bianco, L.; Darby, I. G.; Joss, D. T.; Cooper, R. J.; Grahn, T.; Judson, D. S.; Sapple, P. J.; Thomson, J.; Simpson, J.; Labiche, M.; O'Donnell, D.; Al-Khalili, J. S.; Cannon, A. J.; Stevenson, P. D.; Suckling, E. B.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.

    2008-11-11

    The energy of the vh{sub 9/2} orbital in nuclei above N = 82 drops rapidly in energy relative to the vf{sub 7/2} orbital as the occupancy of the {pi}h{sub 11/2} orbital increases. These two neutron orbitals become nearly degenerate as the proton drip line is approached. In this work, we have discovered the new nuclides {sup 161}Os and {sup 157}W, and studied the decays of the proton emitter {sup 160}Re in detail. The {sup 161}Os and {sup 160}Re nuclei were produced in reactions of 290, 300 and 310 MeV {sup 58}Ni ions with an isotopically enriched {sup 106}Cd target, separated in-flight using the RITU separator and implanted into the GREAT spectrometer. The {sup 161}Os{alpha} a decays populated the new nuclide {sup 157}W, which decayed by {beta}-particle emission. The {beta} decay fed the known {alpha}-decaying 1/2{sup +} and 11/2{sup -} states in {sup 157}Ta, which is consistent with a vf{sub 7/2} ground state in {sup 157}W. The measured {alpha}-decay energy and half-life for {sup 161}Os correspond to a reduced {alpha}-decay width that is compatible with s-wave {alpha}-particle emission, implying that its ground state is also a vf{sub 7/2} state. Over 7000 {sup 160}Re nuclei were produced and the {gamma} decays of a new isomeric state feeding the {pi}d{sub 3/2} level in {sup 160}Re were discovered, but no evidence for the proton or a decay of the expected {pi}h{sub 11/2} state could be found. The isomer decays offer a natural explanation for this non-observation and provides a striking example of the influence of the near degeneracy of the vh{sub 9/2} and vf{sub 7/2} orbitals on the properties of nuclei in this region.

  8. Release of uranium decay-series nuclides from Florida phosphate rock

    SciTech Connect

    Chin, P.A.; Deetae, S.; Burnett, W.C.

    1985-01-01

    Studies are being conducted on Florida phosphate rock to help understand the release of natural decay-series radionuclides into associated groundwaters. The authors have analyzed all isotopes with half-lives longer than a few days in samples of both weathered and unweathered phosphate rock previously separated into seven size classes. Samples which have been subjected to intense weathering display higher specific activities than relatively fresh materials with the highest activities in weathered samples occurring in the <63 ..mu..m size class. When normalized to mass, the most significant fraction of the activity of the weathered samples is in the finest size fraction. Activities in the fresher materials, on the other hand, are concentrated in the intermediate size classes. In bulk samples of the weathered materials, there is significant disequilibrium in the uranium decay series chain except for /sup 210/Pb//sup 226/Ra which is close to unity. Unweathered samples show exactly the reverse behavior. This is probably a result of /sup 222/Rn diffusion and subsequent adsorption onto fine particles. Mass balance calculations of total activities by summation of the activities measured within each individual size class produce lower results compared to those actually measured in bulk samples of the phosphatic materials. This apparent loss may be due either to loss of very fine-grained, high-activity particles or actual solution of these radionuclides into the deionized water used during the wet seiving process.

  9. Sensitivity of MCNP5 calculations for a spherical numerical benchmark problem to the angular scattering distributions for deuterium

    SciTech Connect

    Kozier, K. S.

    2006-07-01

    This paper examines the sensitivity of MCNP5 k{sub eff} results to various deuterium data files for a simple benchmark problem consisting of an 8.4-cm radius sphere of uranium surrounded by an annulus of deuterium at the nuclide number density corresponding to heavy water. This study was performed to help clarify why {Delta}k{sub eff} values of about 10 mk are obtained when different ENDF/B deuterium data files are used in simulations of critical experiments involving solutions of high-enrichment uranyl fluoride in heavy water, while simulations of low-leakage, heterogeneous critical lattices of natural-uranium fuel rods in heavy water show differences of <1 mk. The benchmark calculations were performed as a function of deuterium reflector thickness for several uranium compositions using deuterium ACE files derived from ENDF/B-VII.b1 (release beta 1), ENDF/B-VI.4 and JENDL-3.3, which differ primarily in the energy/angle distributions for elastic scattering <3.2 MeV. Calculations were also performed using modified ACE files having equiprobable cosine bin values in the centre-of-mass reference frame in a progressive manner with increasing energy. It was found that the {Delta}k{sub eff} values increased with deuterium reflector thickness and uranium enrichment. The studies using modified ACE files indicate that most of the reactivity differences arise at energies <1 MeV; hence, this energy range should be given priority if new scattering distribution measurements are undertaken. (authors)

  10. Stability Test for Transient-Temperature Calculations

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1984-01-01

    Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.

  11. Nuclear-decay studies of neutron-rich rare-earth nuclides

    SciTech Connect

    Chasteler, R.M. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1990-04-26

    Neutron-rich rare-earth nuclei were produced in multinucleon transfer reactions of {sup 170}Er and {sup 176}Yb projectiles on {sup nat}W targets at the Lawrence Berkeley Laboratory SuperHILAC and their radioactive decays properties studied at the on-line mass separation facility OASIS. Two unknown isotopes, {sup 169}Dy (t {sub 1/2} {equals} 39 {plus minus} 8 s) and {sup 174}Er(t{sub 1/2} {equals} 3.3 {plus minus} 0.2 m) were discovered and their decay characteristics determined. The decay schemes for two previously identified isotopes, {sup 168}Dy (t{sub 1/2} {equals} 8.8 {plus minus} 0.3 m) and {sup 171}Ho (t{sub 1/2} {equals} 55 {plus minus} 3 s), were characterized. Evidence for a new isomer of 3.0 m {sup 168}Ho{sup g}, {sup 168}Ho{sup m} (t{sub 1/2} {equals} 132 {plus minus} 4 s) which decays by isomeric transition (IT) is presented. Beta particle endpoint energies were determined for the decay of {sup 168}Ho{sup g}, {sup 169}Dy, {sup 171}Ho, and {sup 174}Er, the resulting Q{beta}-values are: 2.93 {plus minus} 0.03, 3.2 {plus minus} 0.3, 3.2 {plus minus} 0.6, and 1.8 {plus minus} 0.2 MeV, respectively. These values were compared with values calculated using recent atomic mass formulae. Comparisons of various target/ion source geometries used in the OASIS mass separator facility for these multinucleon transfer reactions were performed. 73 refs., 40 figs., 11 tabs.

  12. New Decay Data Sub-library for Calculation of Nuclear Reactors Antineutrino Spectra

    NASA Astrophysics Data System (ADS)

    Sonzogni, Alejandro; McCutchan, Elizabeth; Johnson, Timothy

    2015-10-01

    The ENDF/B-VII.1 decay data sub-library contains up-to-date decay properties for all known nuclides and can be used in a wide variety of applications such as decay heat, delayed nu-bar and astrophysics. We have recently completed an upgrade to the ENDF/B-VII.1 decay data sub-library in order to better calculate antineutrino spectra from fission of actinide nuclides. This sub-library has been used to identify the main contributors to the antineutrino spectra as well as to derive a systematic behavior of the energy integrated spectra similar to that of the beta-delayed neutron multiplicities. The main improvements have been the use of the TAGS data from Algora et al and Greenwood et al, as well as some of the single beta spectrum data from Rudstam et al to obtain beta minus level feedings. Additionally, we have calculated the antineutrino spectra for neutron energies higher than thermal, needed for highly-enriched uranium cores, such as the HFIR in ORNL that will be used in the PROSPECT experiment. These calculations are relevant since the high precision beta spectra which are used in many antineutrino calculations were measured at thermal energies. The impact of the fission yield data on these calculations will be discussed. This work was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

  13. Incorporating 3-D parent nuclide zonation for apatite 4He/3He thermochronometry: An example from the Appalachian Mountains

    NASA Astrophysics Data System (ADS)

    Fox, Matthew; McKeon, Ryan E.; Shuster, David L.

    2014-11-01

    ability to constrain km-scale exhumation with apatite 4He/3He thermochronometry is well established and the technique has been applied to a range of tectonic and geomorphic problems. However, multiple sources of uncertainty in specific crystal characteristics limit the applicability of the method, especially when geologic problems require identifying small perturbations in a cooling path. Here we present new 4He/3He thermochronometric data from the Appalachian Mountains, which indicate significant parent nuclide zonation in an apatite crystal. Using LA-ICPMS measurements of U and Th in the same crystal, we design a 3-D model of the crystal to explore the effects of intracrystal variability in radiation damage accumulation. We describe a numerical approach to solve the 3-D production-diffusion equation. Using our numerical model and a previously determined time temperature path for this part of the Appalachians, we find excellent agreement between predicted and observed 4He/3He spectra. Our results confirm this time-temperature path and highlight that for complex U and Th zonation patterns, 3-D numerical models are required to infer an accurate time-temperature history. In addition, our results provide independent and novel evidence for a radiation damage control on diffusivity. The ability to exploit intracrystal differences in 4He diffusivity [i.e., temperature sensitivity) greatly increases the potential to infer complex thermal histories.

  14. (89)Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges.

    PubMed

    Fischer, Gabriel; Seibold, Uwe; Schirrmacher, Ralf; Wängler, Björn; Wängler, Carmen

    2013-01-01

    Molecular imaging-and especially Positron Emission Tomography (PET)-is of increasing importance for the diagnosis of various diseases and thus is experiencing increasing dissemination. Consequently, there is a growing demand for appropriate PET tracers which allow for a specific accumulation in the target structure as well as its visualization and exhibit decay characteristics matching their in vivo pharmacokinetics. To meet this demand, the development of new targeting vectors as well as the use of uncommon radionuclides becomes increasingly important. Uncommon nuclides in this regard enable the utilization of various selectively accumulating bioactive molecules such as peptides, antibodies, their fragments, other proteins and artificial structures for PET imaging in personalized medicine. Among these radionuclides, 89Zr (t1/2 = 3.27 days and mean Eβ+ = 0.389 MeV) has attracted increasing attention within the last years due to its favorably long half-life, which enables imaging at late time-points, being especially favorable in case of slowly-accumulating targeting vectors. This review outlines the recent developments in the field of 89Zr-labeled bioactive molecules, their potential and application in PET imaging and beyond, as well as remaining challenges. PMID:23736785

  15. Validation of corrections for errors in collimation during measurement of gastric emptying of nuclide-labeled meals.

    PubMed

    VanDeventer, G; Thomson, J; Graham, L S; Thomasson, D; Meyer, J H

    1983-03-01

    The study was undertaken to validate phantom-derived corrections for errors in collimation due to septal penetration or scatter, which vary with the size of the gastric region of interest (ROI). Six volunteers received 495 ml of 20% glucose labeled with both In-113m DTPA and Tc-99m DTPA. Gastric emptying of each nuclide was monitored by gamma camera as well as by periodic removal and reinstillation of the meal through a gastric tube. Serial aspirates from the gastric tube confirmed parallel emptying of In-113m and Tc-99m, but analyses of gamma-camera data yielded parallel emptying only when adequate corrections were made for errors in collimation. Analyses of ratios of gastric counts from anterior to posterior, as well as analyses of peak-to-scatter ratios, revealed only small, insignificant anteroposterior movement of the tracers within the stomach during emptying. Accordingly, there was no significant improvement in the camera data when corrections were made for attenuation with intragastric depth. PMID:6338170

  16. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India

    USGS Publications Warehouse

    Owen, L.A.; Caffee, M.W.; Bovard, K.R.; Finkel, R.C.; Sharma, M.C.

    2006-01-01

    Terrestrial cosmogenic nuclide surface exposure dating of moraine boulders and alluvial fan sediments define the timing of five glacial advances over at least the last five glacial cycles in the Ladakh Range of the Transhimalaya. The glacial stages that have been identified are: the Indus Valley glacial stage, dated at older than 430 ka; the Leh glacial stage occurring in the penultimate glacial cycle or older; the Karglacial stage, occurring during the early part of the last glacial cycle; the Bazgo glacial stage, at its maximum during the middle of the last glacial cycle; and the early Holocene Khalling glacial stage. The exposure ages of the Indus Valley moraines are the oldest observed to date throughout the Himalayan orogen. We observe a pattern of progressively more restricted glaciation during the last five glacial cycles, likely indicating a progressive reduction in the moisture supply necessary to sustain glaciation. A possible explanation is that uplift of Himalayan ranges to the south and/or of the Karakoram Mountains to the west of the region may have effectively blocked moisture supply by the south Asian summer monsoon and mid-latitude westerlies, respectively. Alternatively, this pattern of glaciation may reflect a trend of progressively less extensive glaciation in mountain regions that has been observed globally throughout the Pleistocene. ?? 2006 Geological Society of America.

  17. MCNP Analytical Models of a Calibration Head Phantom for Bone-Seeker Nuclides In Vivo Measurements

    NASA Astrophysics Data System (ADS)

    Gualdrini, G.; Ferrari, P.; Battisti, P.; De Felice, P.; Pierotti, L.

    homogeneous activity in the plastic phantom, and to calculate a correction coefficient to be associated to the calibration factor. It should be mentioned that some of the results of this paper have already been presented in a previous work [6], although in non-Monte Carlo forum. Particular emphasis was devoted here to the numerical analyses concerning the modelling of progressively more complex skull phantoms.

  18. Exciton Model Code System for Calculating Preequilibrium and Direct Double Differential Cross Sections.

    Energy Science and Technology Software Center (ESTSC)

    2007-07-09

    Version 02 PRECO-2006 is a two-component exciton model code for the calculation of double differential cross sections of light particle nuclear reactions. PRECO calculates the emission of light particles (A = 1 to 4) from nuclear reactions induced by light particles on a wide variety of target nuclei. Their distribution in both energy and angle is calculated. Since it currently only considers the emission of up to two particles in any given reaction, it ismore » most useful for incident energies of 14 to 30 MeV when used as a stand-alone code. However, the preequilibrium calculations are valid up to at least around 100 MeV, and these can be used as input for more complete evaporation calculations, such as are performed in a Hauser-Feshbach model code. Finally, the production cross sections for specific product nuclides can be obtained« less

  19. Mass measurements on stable nuclides in the rare-earth region with the Penning-trap mass spectrometer TRIGA-TRAP

    NASA Astrophysics Data System (ADS)

    Ketelaer, J.; Audi, G.; Beyer, T.; Blaum, K.; Block, M.; Cakirli, R. B.; Casten, R. F.; Droese, C.; Dworschak, M.; Eberhardt, K.; Eibach, M.; Herfurth, F.; Minaya Ramirez, E.; Nagy, Sz.; Neidherr, D.; Nörtershäuser, W.; Smorra, C.; Wang, M.

    2011-07-01

    The masses of 15 stable nuclides in the rare-earth region have been measured with the Penning-trap mass spectrometer TRIGA-TRAP. This is the first series of absolute mass measurements linking these nuclides to the atomic-mass standard C12. Previously, nuclear reaction studies almost exclusively determined the literature values of these masses in the Atomic-Mass Evaluation. The TRIGA-TRAP results show deviations on the order of 3-4 standard deviations from the latest published values of the Atomic-Mass Evaluation 2003 for some cases. However, the binding-energy differences that are important for nuclear structure studies have been confirmed and improved. The new masses are discussed in the context of valence proton-neutron interactions using double differences of binding energies, δVpn(Z,N).

  20. Mass measurements on stable nuclides in the rare-earth region with the Penning-trap mass spectrometer TRIGA-TRAP

    SciTech Connect

    Ketelaer, J.; Audi, G.; Beyer, T.; Blaum, K.; Block, M.; Dworschak, M.; Herfurth, F.; Cakirli, R. B.; Casten, R. F.; Droese, C.; Eberhardt, K.; Eibach, M.; Smorra, C.; Minaya Ramirez, E.; Nagy, Sz.; Neidherr, D.; Noertershaeuser, W.; Wang, M.

    2011-07-15

    The masses of 15 stable nuclides in the rare-earth region have been measured with the Penning-trap mass spectrometer TRIGA-TRAP. This is the first series of absolute mass measurements linking these nuclides to the atomic-mass standard {sup 12}C. Previously, nuclear reaction studies almost exclusively determined the literature values of these masses in the Atomic-Mass Evaluation. The TRIGA-TRAP results show deviations on the order of 3-4 standard deviations from the latest published values of the Atomic-Mass Evaluation 2003 for some cases. However, the binding-energy differences that are important for nuclear structure studies have been confirmed and improved. The new masses are discussed in the context of valence proton-neutron interactions using double differences of binding energies, {delta}V{sub pn}(Z,N).

  1. Exoplanet Equilibrium Chemistry Calculations

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, J.; Bowman, M.; Blecic, J.

    2013-10-01

    Recently, Agundez et al. (2012, A&A 548, A73) used a chemical kinetics code to study a model HD 209458b (equilibrium temperature of 1450 K, assuming full redistribution and 0 albedo). They found that thermochemistry dominates most of the dayside, but that significant compositional gradients may exist across the dayside. We calculate equilibrium-chemistry molecular abundances for several model exoplanets, using NASA's open-source Chemical Equilibrium Abundances code (McBride and Gordon 1996). We vary the degree of radiation redistribution to the dark side, ranging from total redistribution to instantaneous reradiation. Atomically, both the solar abundance multiple and the carbon fraction vary. Planet substellar temperatures range from just above 1200 K, where photochemistry should no longer be important, to those of hot planets (3000 K). We present synthetic abundance images for the key spectroscopic molecules CO, CH4, and H2O for several hot-Jupiter model planets. This work was supported by the NASA Planetary Atmospheres grant NNX12AI69G.

  2. Distillation Calculations with a Programmable Calculator.

    ERIC Educational Resources Information Center

    Walker, Charles A.; Halpern, Bret L.

    1983-01-01

    Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…

  3. Microscopic Shell Model Calculations for the Fluorine Isotopes

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.

    2015-10-01

    Using a formalism based on the No Core Shell Model (NCSM), we have determined miscroscopically the core and single-particle energies and the effective two-body interactions that are the input to standard shell model (SSM) calculations. The basic idea is to perform a succession of a Okubo-Lee-Suzuki (OLS) transformation, a NCSM calculation, and a second OLS transformation to a further reduced space, such as the sd-shell, which allows the separation of the many-body matrix elements into an ``inert'' core part plus a few valence-nucleons calculation. In the present investigation we use this technique to calculate the properties of the nuclides in the Fluorine isotopic chain, using the JISP16 nucleon-nucleon interaction. The obtained SSM input, along with the results of the SSM calculations for the Fluorine isotopes, will be presented. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.

  4. Identification of parameters of models of nonlinear deformation of isotropic and composite materials on the basis of calculations and experiments aimed at analyzing the dynamic behavior of cylindrical metal-plastic shells

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2015-11-01

    A method for identification of material parameters of the constitutive relations of elastoplastic and viscoelastic deformation of isotropic and composite materials is developed. The method is based on minimizing the functional of the residue of results of numerical and experimental analysis of unsteady deformation of structural elements made of examined materials. The method is tested, and prospects of its application for determining material parameters of viscoelastic and elastoplastic models of nonlinear deformation of cylindrical metal-plastic shells under explosive loading are demonstrated.

  5. Comparative radiation resistance calculation for graded- and constant-composition n Al/x/Ga/1-x/As-p Al/z/Ga/1-z/As solar cells

    NASA Technical Reports Server (NTRS)

    Hutchby, J. A.

    1978-01-01

    The performance and radiation resistance of a new double-graded-band-gap solar cell are theoretically determined. The performance of this device is similar to that of the single-graded-band-gap cell. The power-conversion efficiencies of both graded-band-gap structures are shown to be less sensitive to minority-carrier lifetime degradation than a similar constant-composition heteroface cell.

  6. Transport and exchange of U-series nuclides between suspended material, dissolved load and colloids in rivers draining basaltic terrains

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, Philip A. E.; Burton, Kevin W.; Porcelli, Don; James, Rachael H.; van Calsteren, Peter; Gislason, Sigurður R.

    2011-01-01

    This study presents uranium and thorium concentrations and activity ratios for all riverine phases (bedload, suspended load, dissolved load and colloids) from basaltic terrains in Iceland and the Azores. Small basaltic islands, such as these, are thought to account for ~ 25% of CO2 consumed by global silicate weathering, and for ~ 45% of the flux of suspended material to the oceans. These data indicate that [U] and [Th] in the dissolved and colloidal fractions are strongly controlled by pH, and to a much lesser extent by levels of dissolved organic carbon (which are low in these environments). At high pH, basalt glass dissolution is enhanced, and secondary mineral formation (e.g. Fe-oxyhydroxides and allophane) is suppressed, resulting in high dissolved [U], and low colloidal [U] and [Th], indicating a direct chemical weathering control on elemental abundances. When the dissolved (234U/238U) activity ratio is >~1.3 (i.e. when physical weathering, groundwater contribution or soil formation are high), there is little isotope exchange between dissolved and colloidal fractions. At lower activity ratios, the dissolved load and colloids have indistinguishable activity ratios, suggesting that when chemical weathering rates are high, secondary clay formation is also high, and colloids rapidly adsorb dissolved U. Many of the suspended sediment samples have (234U/238U) activity ratios of > 1, which suggests that uptake of U onto the suspended load is important. Identical (230Th/232Th) in suspended, dissolved and colloidal samples suggests that Th, like U, is exchanged or sorbed rapidly between all riverine phases. This particle-reactivity, combined with poorly constrained contributions from groundwater and hydrothermal water, and short-term variations in input to soils (volcanic and glacial), suggests that U-series nuclides in riverine material from such basaltic terrains are unlikely to reflect steady state erosion processes.

  7. Extracting dynamic topography from river profiles and cosmogenic nuclide geochronology in the Middle Atlas and the High Plateaus of Morocco

    NASA Astrophysics Data System (ADS)

    Pastor, Alvar; Babault, Julien; Owen, Lewis A.; Teixell, Antonio; Arboleya, María-Luisa

    2015-11-01

    The Moulouya river system has intensely eroded the Arhbalou, Missour, and Guercif Neogene foreland basins in northeastern Morocco, having changed from net aggradation during the Miocene-early Pliocene to net incision punctuated by alluvial fan deposition at late Pliocene or early Quaternary time. This region as a whole has experienced mantle-driven, surface uplift (dynamic topography) since the late Cenozoic, being locally affected by uplift due to crustal shortening and thickening of the Middle Atlas too. Knickpoints located along the major streams of the Moulouya fluvial network, appear on both the undeformed margins of the Missour and Guercif foreland basins (High Plateaus), as well as along the thrust mountain front of the southern Middle Atlas, where they reach heights of 800-1000 m. 500-550 m of the knickpoint vertical incision might be explained by long-wavelength mantle-driven dynamic surface uplift, whereas the remaining 450-500 m in the southern Middle Atlas front and 200-300 m in the northeastern Middle Atlas front seem to be thrust-related uplift of the Jebel Bou Naceur. Be-10 terrestrial cosmogenic nuclides have been used to date two Quaternary river terraces in the Chegg Ard valley at 62 ± 14 ka and 411 ± 55 ka. The dated terraces allow the incision rates associated with the frontal structures of the Middle Atlas to be estimated at ~ 0.3 mm yr- 1. Furthermore, these ages have served to evaluate mantle-driven regional surface uplift since the middle Pleistocene in the central Missour basin, yielding values of ~ 0.1-0.2 mm yr- 1.

  8. Autistic Savant Calendar Calculators.

    ERIC Educational Resources Information Center

    Patti, Paul J.

    This study identified 10 savants with developmental disabilities and an exceptional ability to calculate calendar dates. These "calendar calculators" were asked to demonstrate their abilities, and their strategies were analyzed. The study found that the ability to calculate dates into the past or future varied widely among these calculators. Three…

  9. Programmable calculator stress analysis

    SciTech Connect

    Van Gulick, L.A.

    1983-01-01

    Advanced programmable alphanumeric calculators are well suited for closed-form calculation of pressure-vessel stresses. They offer adequate computing power, portability, special programming features, and simple interactive execution procedures. Representative programs that demonstrate calculator capabilities are presented. Problems treated are stress and strength calculations in thick-walled pressure vessels and the computation of stresses near head/pressure-vessel junctures.

  10. Prediction of Combustion Gas Deposit Compositions

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Mcbride, B. J.; Zeleznik, F. J.; Gordon, S.

    1985-01-01

    Demonstrated procedure used to predict accurately chemical compositions of complicated deposit mixtures. NASA Lewis Research Center's Computer Program for Calculation of Complex Chemical Equilibrium Compositions (CEC) used in conjunction with Computer Program for Calculation of Ideal Gas Thermodynamic Data (PAC) and resulting Thermodynamic Data Base (THDATA) to predict deposit compositions from metal or mineral-seeded combustion processes.

  11. Augmentation of ENDF/B fission product gamma-ray spectra by calculated spectra

    SciTech Connect

    Katakura, J. ); England, T.R. )

    1991-11-01

    Gamma-ray spectral data of the ENDF/B-V fission product decay data file have been augmented by calculated spectra. The calculations were performed with a model using beta strength functions and cascade gamma-ray transitions. The calculated spectra were applied to individual fission product nuclides. Comparisons with several hundred measured aggregate gamma spectra after fission were performed to confirm the applicability of the calculated spectra. The augmentation was extended to a preliminary ENDF/B-VI file, and to beta spectra. Appendix C provides information on the total decay energies for individual products and some comparisons of measured and aggregate values based on the preliminary ENDF/B-VI files. 15 refs., 411 figs.

  12. Comparison of k0-NAA measurement results with calculated uncertainties for reference samples

    NASA Astrophysics Data System (ADS)

    Smodiš, B.; Bučar, T.

    2010-10-01

    Standard samples of well-defined geometry containing accurately known amounts of Co, Fe, Gd, Mo, Nd, Sb, Se, W, Zn and Zr were prepared and assayed using k0-based neutron activation analysis ( k0-NAA). Measurement results for six independent determinations of each standard spiked sample were evaluated and compared to calculated uncertainties using the computer program ERON, which computes uncertainty propagation factors from the relevant formulae and calculates the overall uncertainty following the internationally recommended approach. The calculated relative expanded uncertainties U ( k=2), which ranged from 6 to 11% for particular nuclides/gamma-lines agreed well with the measurements results thus proving the correctness of the applied approach. One of the important measures to further reduce uncertainties in the k0-NAA measurements is to review and re-determine more accurately specific nuclear constants involved in the relevant calculations.

  13. Compositional dependence of the local structure of Se{sub x}Te{sub 1-x} alloys: Electron energy-loss spectra, real-space multiple-scattering calculations, and first-principles molecular dynamics

    SciTech Connect

    Katcho, N. A.; Lomba, E.; Urones-Garrote, E.; Otero-Diaz, L. C.; Landa-Canovas, A. R.

    2006-06-01

    In this work we present an investigation on the composition dependence of the local structure in Se{sub x}Te{sub 1-x} crystalline alloys analyzing their experimental energy-loss spectra with the aid of a real-space multiple-scattering modeling approach and first-principles molecular dynamics. The concourse of this latter technique is essential for a proper modeling of the alloy spectra. From our results, it can be inferred that Se{sub x}Te{sub 1-x} alloys exhibit a high degree of substitutional disorder ruling out the existence of fully ordered alternating copolymer chains of Se and Te atoms.

  14. Compositional dependence of the local structure of SexTe1-x alloys: Electron energy-loss spectra, real-space multiple-scattering calculations, and first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Katcho, N. A.; Lomba, E.; Urones-Garrote, E.; Landa-Cánovas, A. R.; Otero-Díaz, L. C.

    2006-06-01

    In this work we present an investigation on the composition dependence of the local structure in SexTe1-x crystalline alloys analyzing their experimental energy-loss spectra with the aid of a real-space multiple-scattering modeling approach and first-principles molecular dynamics. The concourse of this latter technique is essential for a proper modeling of the alloy spectra. From our results, it can be inferred that SexTe1-x alloys exhibit a high degree of substitutional disorder ruling out the existence of fully ordered alternating copolymer chains of Se and Te atoms.

  15. Cross sections for fuel depletion and radioisotope production calculations in TRIGA reactors

    SciTech Connect

    Aguilar, H.F.; Mazon, R.R.

    1994-07-01

    For TRIGA Reactors, the fuel depletion and isotopic inventory calculations, depends on the computer code and in the cross sections of some important actinides used. Among these we have U-235, U-238, Pu-239, Pu-240 and Pu-241. We choose ORIGEN2, a code with a good reputation in this kind of calculations, we observed the cross sections for these actinides in the libraries that we have (PWR's and BWR), the fission cross section for U-235 was about 50 barns. We used a PWR library and our results were not satisfactory, specially for standard elements. We decided to calculate cross sections more suitable for our reactor, for that purpose we simulate the standard and FLIP TRIGA cells with the transport code WIMS. We used the fuel average flux and COLAPS (a home made program), to generate suitable cross sections for ORIGEN2, by collapsing the WIMS library cross sections of these nuclides. For the radioisotope production studies using the Central Thimble, we simulate the A and B rings and used the A average flux to collapse cross sections. For these studies, the required nuclides sometimes are not present in WIMS library, for them we are planning to process the ENDF/B data, with NJOY system, and include the cross sections to WIMS library or to collapse them using the appropriate average-flux and the program COLAPS. (author)

  16. Pothole and channel system formation in the McMurdo Dry Valleys of Antarctica: New insights from cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Middleton, Jennifer L.; Ackert, Robert P.; Mukhopadhyay, Sujoy

    2012-11-01

    Large pothole and channel features (˜15 m deep, ˜30 m wide) carved into the Beacon Sandstone in the upland Dry Valleys of Antarctica have been used to infer catastrophic subglacial flooding beneath an expanded East Antarctic Ice Sheet that overran the Transantarctic Mountains during the mid-Miocene. Though the age and erosion rates of these geomorphic features have not been quantified, preservation of the potholes and channels has been attributed to negligible erosion under consistent polar desert conditions since the retreat of the ice sheet at ˜14 Ma. We present cosmogenic 21Ne and 10Be data from samples collected along vertical transects of pothole and channel walls, as well as from intervening benches, within Battleship Promontory in the Convoy Range and within Sessrumnir Valley in the Western Asgard Range to constrain their exposure history. Measurements of fissiogenic 136Xe are used to estimate a nucleogenic 21Ne concentration in the Beacon Sandstone of 7.7±2.4×106 atoms g-1 and to correct our 21Ne data for this component. Sample concentrations of cosmogenic 21Ne and 10Be are significantly lower than previously measured in the regional bedrock and reveal steady state erosion rates ranging from 99 to 171 cm Ma-1 in Battleship Promontory and from 59 to 383 cm Ma-1 in Sessrumnir Valley. Continuous exposure at such erosion rates would remove 8-54 m of bedrock over a 14 Ma period, a length scale similar to the features themselves, and suggests that these systems could have formed primarily through subaerial erosive processes. Alternatively, if the features formed subglacially in the Miocene, then a complex erosion and exposure history must have occurred to prevent the accumulation of cosmogenic nuclides to levels higher than those observed. Either prolonged and extensive ice cover of these features prior to 2 Ma, or a threefold increase in erosion rates during the Plio-Pleistocene could produce the 21Ne and 10Be concentrations measured here. Ultimately, all

  17. Cosmogenic nuclide and uranium-series dating of old, high shorelines in the western Great Basin, USA

    USGS Publications Warehouse

    Kurth, G.; Phillips, F.M.; Reheis, M.C.; Redwine, J.L.; Paces, J.B.

    2011-01-01

    Closed-basin pluvial lakes are sensitive recorders of effective moisture, and they provide a terrestrial signal of climate change that can be compared to marine and ice records of glacial-interglacial cycles. Although the most recent deep-lake cycle in the western Great Basin (at ca. 16 ka) has been studied intensively, comparatively little is known about the longer-term Quaternary lacustrine history of the region. Lacustrine features higher than those of the most recent highstand have been discovered in many locations throughout the western Great Basin. Qualitative geomorphic and soil studies of shoreline sequences above the latest Pleistocene level suggest that their ages increase as a function of increasing altitude. The results of cosmogenic nuclide dating using chlorine-36 depth profiles from three sites in Nevada (Walker Lake, Columbus Salt Marsh, and Newark Valley), combined with uranium-series and radiocarbon ages, corroborate the geomorphic and soil evidence. The 36Cl results are consistent with available 14C ages and together indicate that the most recent highstands of all three lakes occurred ca. 20-15 ka, late in marine isotope stage (MIS) 2, as shown by previous ages. The 36Cl ages indicate that older lakes in all three basins reached highstands between 100 and 50 ka, and most likely during MIS 4. Shorelines of this age are at about the same or higher altitudes as the younger, MIS 2 shorelines in those basins. The 36Cl results combined with uranium-series ages and one tephra correlation obtained on shorelines higher in altitude than those of MIS 4 and 2 lakes suggest that there were also major lake highstands in the western Great Basin at ca. 100-200 ka, likely corresponding with MIS 6, and during at least two older periods. From these results, we conclude that the preserved shorelines show an apparent decrease in maximum levels with time, suggesting long-term drying of the region since the early middle Pleistocene. ?? 2011 Geological Society of

  18. Denudation rates derived from spatially-averaged cosmogenic nuclide analysis in Nelson catchments, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Burdis, A.; Norton, K. P.; Ditchburn, B.; Zondervan, A.

    2013-12-01

    New Zealand's tectonically and climatically dynamic environment generates erosion rates that outstrip global averages by up to ten times in some locations. In order to assess recent changes in erosion rate, and also to predict future erosion dynamics, it is important to quantify long-term, background erosion. Current research on erosion in New Zealand predominantly covers short-term (100 yrs) erosion dynamics and Myr dynamics from thermochronological proxy data. Without medium-term denudation data for New Zealand, it is uncertain which variables (climate, anthropogenic disturbance of the landscape, tectonic uplift, lithological, or geomorphic characteristics) exert the dominant control on denudation in New Zealand. Spatially-averaged cosmogenic nuclide analysis can effectively offer this information by providing averaged rates of denudation on millennial timescales without the biases and limitations of short-term erosion methods. Basin-averaged denudation rates were obtained in the Nelson region, New Zealand, from analysis of concentrations of meteoric 10Be in clay and in-situ produced 10Be in quartz. The measured denudation rates integrate over ~8000 yrs (meteoric) and ~3000 yrs (in-situ). Not only do the 10Be records produce erosion rates that are remarkably consistent with each other, but they are also independent of topographic metrics. Denudation rates range from ~116 - 306 t km-2 yr-1, with the exception of one basin which is eroding at 789 t km-2 yr-1(derived from meteoric 10Be) and 644 t km-2 yr-1(derived from in-situ 10Be). The homogeneity of rates and absence of a significant correlation with geomorphic or lithological characteristics suggest another factor is exerting the dominant control on landscape denudation in the Nelson region. Storm variability is a likely driver of erosion in this setting. The background rates are higher than current short term rates (~50 - 200 t km-2 yr-1) due to the significant erosion caused by high magnitude, low frequency

  19. The Not-so-Dry Valleys? : Cosmogenic Nuclides and Complex Exposure in the Dry Valleys of Antarctica

    NASA Astrophysics Data System (ADS)

    Middleton, J. L.; Ackert, R.; Mukhopadhyay, S.

    2011-12-01

    Battleship potholes and channels systems were formed subglacially 14 Myr ago, or subaerially since that time, the cosmogenic nuclide data suggest that they have been ice-covered for extended periods of time.

  20. PACKAGE (Plasma Analysis, Chemical Kinetics and Generator Efficiency): a computer program for the calculation of partial chemical equilibrium/partial chemical rate controlled composition of multiphased mixtures under one dimensional steady flow

    SciTech Connect

    Yousefian, V.; Weinberg, M.H.; Haimes, R.

    1980-02-01

    The NASA CEC Code was the starting point for PACKAGE, whose function is to evaluate the composition of a multiphase combustion product mixture under the following chemical conditions: (1) total equilibrium with pure condensed species; (2) total equilibrium with ideal liquid solution; (3) partial equilibrium/partial finite rate chemistry; and (4) fully finite rate chemistry. The last three conditions were developed to treat the evolution of complex mixtures such as coal combustion products. The thermodynamic variable pairs considered are either pressure (P) and enthalpy, P and entropy, at P and temperature. Minimization of Gibbs free energy is used. This report gives detailed discussions of formulation and input/output information used in the code. Sample problems are given. The code development, description, and current programming constraints are discussed. (DLC)

  1. Calculators In Class

    ERIC Educational Resources Information Center

    Denman, Theresa

    1974-01-01

    Calculators are fast becoming accepted as needed household appliances. Certainly, children in school now will, as adults, look on calculators as being as necessary to everyday life as telephones. (Author)

  2. Personal Finance Calculations.

    ERIC Educational Resources Information Center

    Argo, Mark

    1982-01-01

    Contains explanations and examples of mathematical calculations for a secondary level course on personal finance. How to calculate total monetary cost of an item, monthly payments, different types of interest, annual percentage rates, and unit pricing is explained. (RM)

  3. Calculating drug doses.

    PubMed

    2016-09-01

    Numeracy and calculation are key skills for nurses. As nurses are directly accountable for ensuring medicines are prescribed, dispensed and administered safely, they must be able to understand and calculate drug doses. PMID:27615351

  4. Effects of slag composition and process variables on decontamination of metallic wastes by melt refining

    SciTech Connect

    Heshmatpour, B.; Copeland, G. L.

    1981-01-01

    Melt refining has been suggested as an alternative for decontamination and volume reduction of low-level-contaminated metallic wastes. Knowledge of metallurgical and thermochemical aspects of the process is essential for effective treatment of various metals. Variables such as slag type and composition, melting technique, and refractory materials need to be identified for each metal or alloy. Samples of contaminated metals were melted with fluxes by resistance furnace or induction heating. The resulting ingots as well as the slags were analyzed for their nuclide contents, and the corresponding partition ratios were calculated. Compatibility of slags and refractories was also investigated, and proper refractory materials were identified. Resistance furnace melting appeared to be a better melting technique for nonferrous scrap, while induction melting was more suitable for ferrous metals. In general uranium contents of the metals, except for aluminum, could be reduced to as low as 0.01 to 0.1 ppM by melt refining. Aluminum could be decontaminated to about 1 to 2 ppM U when certain fluoride slags were used. The extent of decontamination was not very sensitive to slag type and composition. However, borosilicate and basic oxidizing slags were more effective on ferrous metals and Cu; NaNO/sub 3/-NaCl-NaOH type fluxes were desirable for Zn, Pb, and Sn; and fluoride type slags were effective for decontamination of Al. Recrystallized alumina proved to be the most compatible refractory for melt refining both ferrous and nonferrous metals, while graphite was suitable for nonferrous metal processing. In conclusion, melt refining is an effective technique for volume reduction ad decontamination of contaminated metal scrap when proper slags, melting technique, and refractories are used.

  5. Calculators, Computers, and Classrooms.

    ERIC Educational Resources Information Center

    Higgins, Jon L.; Kirschner, Vicky

    Suggestions for using four-function calculators, programmable calculators, and microcomputers are considered in this collection of 36 articles. The first section contains articles considering general implications for mathematics curricula implied by the freedom calculators offer students from routine computation, enabling them to focus on results…

  6. Measurement of natural radioactive nuclide concentrations in various metal ores used as industrial raw materials in Japan and estimation of dose received by workers handling them.

    PubMed

    Iwaoka, Kazuki; Tagami, Keiko; Yonehara, Hidenori

    2009-11-01

    Natural resources such as ores and rocks contain natural radioactive nuclides at various concentrations. If these resources contain high concentrations of natural radioactive nuclides, workers handling them might be exposed to significant levels of radiation. Therefore, it is important to investigate the radioactive activity in these resources. In this study, concentrations of radioactive nuclides in Th, Zr, Ti, Mo, Mn, Al, W, Zn, V, and Cr ores used as industrial raw materials in Japan were investigated. The concentrations of (238)U and (232)Th were determined by inductively coupled plasma mass spectrometry (ICP-MS), while those of (226)Ra, (228)Ra, and (40)K were determined by gamma-ray spectrum. We found the concentrations of (238)U series, (232)Th series, and (40)K in Ti, Mo, Mn, Al, W, Zn, V, and Cr ores to be lower than the critical values defined by regulatory requirements as described in the International Atomic Energy Agency (IAEA) Safety Guide. The doses received by workers handling these materials were estimated by using methods for dose assessment given in a report by the European Commission. In transport, indoor storage, and outdoor storage scenarios, an effective dose due to the use of Th ore was above 4.3 x 10(-2)Sv y(-1), which was higher than that of the other ores. The maximum value of effective doses for other ores was estimated to be about 4.5 x 10(-4)Sv y(-1), which was lower than intervention exemption levels (1.0 x 10(-3)Sv y(-1)) given in International Commission of Radiological Protection (ICRP) Publication 82. PMID:19703725

  7. How Do Calculators Calculate Trigonometric Functions?

    ERIC Educational Resources Information Center

    Underwood, Jeremy M.; Edwards, Bruce H.

    How does your calculator quickly produce values of trigonometric functions? You might be surprised to learn that it does not use series or polynomial approximations, but rather the so-called CORDIC method. This paper will focus on the geometry of the CORDIC method, as originally developed by Volder in 1959. This algorithm is a wonderful…

  8. First results using a new technology for measuring masses of very short-lived nuclides with very high accuracy: The MISTRAL program at ISOLDE

    SciTech Connect

    Monsanglant, C.; Audi, G.; Conreur, G.; Cousin, R.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Lunney, D.; Saint Simon, M. de; Thibault, C.; Toader, C.; Bollen, G.; Lebee, G.; Scheidenberger, C.; Borcea, C.; Duma, M.; Kluge, H.-J.; Le Scornet, G.

    1999-11-16

    MISTRAL is an experimental program to measure masses of very short-lived nuclides (T{sub 1/2} down to a few ms), with a very high accuracy (a few 10{sup -7}). There were three data taking periods with radioactive beams and 22 masses of isotopes of Ne, Na, Mg, Al, K, Ca, and Ti were measured. The systematic errors are now under control at the level of 8x10{sup -7}, allowing to come close to the expected accuracy. Even for the very weakly produced {sup 30}Na (1 ion at the detector per proton burst), the final accuracy is 7x10{sup -7}.

  9. Calculation of Macrosegregation in an Ingot

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.; Maples, A. L.

    1986-01-01

    Report describes both two-dimensional theoretical model of macrosegregation (separating into regions of discrete composition) in solidification of binary alloy in chilled rectangular mold and interactive computer program embodying model. Model evolved from previous ones limited to calculating effects of interdendritic fluid flow on final macrosegregation for given input temperature field under assumption of no fluid in bulk melt.

  10. Denudation rates across a steep rainfall gradient on Kauai, constrained by cosmogenic nuclides and landslide mapping (Invited)

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Perron, T.; Mukhopadhyay, S.; Huppert, K. L.

    2010-12-01

    Climate has long been thought to influence landscape form and dynamics, but climatic effects on erosion rates have been difficult to discern in field measurements, in part because site-to-site variations in climate are often accompanied by variations in non-climatic factors that also affect erosion rates, such as rock uplift rates and lithology. The Hanalei River canyon on Kauai offers an exceptional natural laboratory for studying landscape evolution under spatial variations in climate, as it is home to one of Earth's steepest precipitation gradients and it exhibits minimal variations in lithology. Over a 15 km transect, mean annual rainfall in the Hanalei basin ranges from >11 m/yr at Mt. Wai'ale'ale - one of the wettest places on Earth - to <2 m/yr at the river's outlet to the ocean. Field observations and satellite imagery suggest that soils in the Hanalei basin are intensely weathered and that hillslope erosion proceeds by a combination of soil creep and frequent shallow landsliding. Over the past fifteen years, many studies have inferred basin-wide millennial-scale denudation rates from concentrations of cosmogenic nuclides in detrital sediment under the assumption of steady erosion at the hillslope surface. To assess the effects of non-steady erosion on cosmogenic 3He in detrital olivine in the Hanalei basin, we modeled mineral exposure to cosmogenic radiation on eroding hillslopes in a synthetic Hanalei-like basin. In this model, hillslope mass transport proceeds by a combination of slow, steady erosion at the hillslope surface and intermittent shallow landsliding. Under this erosional scenario, modeled cosmogenic 3He concentrations in detrital olivine largely reflect the background hillslope denudation rate and are largely insensitive to additional erosion by shallow landslides. When interpreted within this framework, our measurements of 3He in detrital olivine imply minimum denudation rates as high as 443 t km-2 yr-1 in Hanalei’s wettest, steepest

  11. Calculators for Beginners.

    ERIC Educational Resources Information Center

    Albrecht, Bob

    1978-01-01

    This is the fourth installment of a "teach yourself" style workbook about simple four function calculators and elementary concepts in computer programing. This installment introduces mixed operations. (MN)

  12. Multiphase flow calculation software

    DOEpatents

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  13. Waste Package Lifting Calculation

    SciTech Connect

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  14. Erosion rates and weathering history of rock surfaces associated with Aboriginal rock art engravings (petroglyphs) on Burrup Peninsula, Western Australia, from cosmogenic nuclide measurements

    NASA Astrophysics Data System (ADS)

    Pillans, Brad; Fifield, L. Keith

    2013-06-01

    The Burrup Peninsula and surrounding Dampier Archipelago, in Western Australia, contain the world's largest known gallery of rock art engravings (petroglyphs), estimated to number up to 1 million images. The peninsula is also the site of major industrial development and there are concerns that industrial emissions may adversely affect the stability and longevity of the rock art. We have studied the natural processes and rates of weathering and erosion, including the effects of fire, that affect the stability of rock surfaces and hence the longevity of the rock art, using cosmogenic nuclides. The concentration of 10Be in quartz yields erosion rates in the range 0.15-0.48 mm/1000 years on horizontal rock surfaces and 0.34-2.30 mm/1000 years on vertical rock faces. The former, largely caused by mm-scale surface flaking, are amongst the lowest erosion rates measured by cosmogenic nuclides anywhere in the world. The latter are inferred to represent a combination of mm-scale flaking and very rare centimetre- to metre-scale block falls, controlled by failure along joint planes. Such low erosion rates result from a combination of resistant rocks, low relief and low rainfall, favouring long-term preservation of the petroglyphs - long enough to encompass the known period of human settlement in Australia.

  15. TI-73 Calculator Activities

    ERIC Educational Resources Information Center

    Phillips-Bey, Carol K.

    2004-01-01

    This article describes TI-73 calculator activities appropriate for middle school students. It was found that the use of the calculator allowed for higher-level thinking and a richer exploration of mathematical ideas by students. [Included with this article are "Dice Roll Worksheet" and "Transforming Tree Worksheet".] (Contains 9 figures.)

  16. Calculators and Polynomial Evaluation.

    ERIC Educational Resources Information Center

    Weaver, J. F.

    The intent of this paper is to suggest and illustrate how electronic hand-held calculators, especially non-programmable ones with limited data-storage capacity, can be used to advantage by students in one particular aspect of work with polynomial functions. The basic mathematical background upon which calculator application is built is summarized.…

  17. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1991-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the permselective layer. The invention also provides high performance membranes with optimized properties.

  18. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1992-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the perselective layer. The invention also provides high performance membranes with optimized properties.

  19. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1990-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the permselective layer. The invention also provides high performance membranes with optimized properties.

  20. Sample size calculations.

    PubMed

    Noordzij, Marlies; Dekker, Friedo W; Zoccali, Carmine; Jager, Kitty J

    2011-01-01

    The sample size is the number of patients or other experimental units that need to be included in a study to answer the research question. Pre-study calculation of the sample size is important; if a sample size is too small, one will not be able to detect an effect, while a sample that is too large may be a waste of time and money. Methods to calculate the sample size are explained in statistical textbooks, but because there are many different formulas available, it can be difficult for investigators to decide which method to use. Moreover, these calculations are prone to errors, because small changes in the selected parameters can lead to large differences in the sample size. This paper explains the basic principles of sample size calculations and demonstrates how to perform such a calculation for a simple study design. PMID:21293154

  1. Methods for Melting Temperature Calculation

    NASA Astrophysics Data System (ADS)

    Hong, Qi-Jun

    the melting temperature is a design criterion. We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr 2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf 1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC 5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the

  2. SOURCES 4A: A Code for Calculating (alpha,n), Spontaneous Fission, and Delayed Neutron Sources and Spectra

    SciTech Connect

    Madland, D.G.; Arthur, E.D.; Estes, G.P.; Stewart, J.E.; Bozoian, M.; Perry, R.T.; Parish, T.A.; Brown, T.H.; England, T.R.; Wilson, W.B.; Charlton, W.S.

    1999-09-01

    SOURCES 4A is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., a mixture of {alpha}-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an analysis of the contributions to that source by each nuclide in the problem.

  3. SOURCES 4C : a code for calculating ([alpha],n), spontaneous fission, and delayed neutron sources and spectra.

    SciTech Connect

    Wilson, W. B.; Perry, R. T.; Shores, E. F.; Charlton, W. S.; Parish, Theodore A.; Estes, G. P.; Brown, T. H.; Arthur, Edward D. ,; Bozoian, Michael; England, T. R.; Madland, D. G.; Stewart, J. E.

    2002-01-01

    SOURCES 4C is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to radionuclide decay. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., an intimate mixture of a-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code provides the magnitude and spectra, if desired, of the resultant neutron source in addition to an analysis of the'contributions by each nuclide in the problem. LASTCALL, a graphical user interface, is included in the code package.

  4. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Mielke, R. R.

    1981-01-01

    Progress on the development of modeling software, testing software against caclulated data from program VPAP and measured patterns, and calculating roll plane patterns for general aviation aircraft is reported. Major objectives are the continued development of computer software for aircraft modeling and use of this software and program OSUVOL to calculate principal plane and volumetric radiation patterns. The determination of proper placement of antennas on aircraft to meet the requirements of the Microwave Landing System is discussed. An overview of the performed work, and an example of a roll plane model for the Piper PA-31T Cheyenne aircraft and the resulting calculated roll plane radiation pattern are included.

  5. Dose Calculation Spreadsheet

    Energy Science and Technology Software Center (ESTSC)

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses atmore » various downwind distances as specified by the user.« less

  6. Electrocatalyst compositions

    DOEpatents

    Mallouk, Thomas E.; Chan, Benny C.; Reddington, Erik; Sapienza, Anthony; Chen, Guoying; Smotkin, Eugene; Gurau, Bogdan; Viswanathan, Rameshkrishnan; Liu, Renxuan

    2001-09-04

    Compositions for use as catalysts in electrochemical reactions are described. The compositions are alloys prepared from two or more elemental metals selected from platinum, molybdenum, osmium, ruthenium, rhodium, and iridium. Also described are electrode compositions including such alloys and electrochemical reaction devices including such catalysts.

  7. The calculation of thermophysical properties of nickel plasma

    SciTech Connect

    Apfelbaum, E. M.

    2015-09-15

    The thermophysical properties of Nickel plasma have been calculated for the temperatures 10–60 kK and densities less than 1 g/cm{sup 3}. These properties are the pressure, internal energy, heat capacity, and the electronic transport coefficients (electrical conductivity, thermal conductivity, and thermal power). The thermodynamic values have been calculated by means of the chemical model, which also allows one to obtain the ionic composition of considered plasma. The composition has been used to calculate the electronic transport coefficients within the relaxation time approximation. The results of the present investigation have been compared with the calculations of other researchers and available data of measurements.

  8. Residual Nuclide Production from Iron, Lead, and Uranium by Neutron-Induced Reactions up to 180 MeV

    SciTech Connect

    Michel, R.; Glasser, W.; Herpers, U.; Schuhmacher, H.; Brede, H.J.; Dangendorf, V.; Nolte, R.; Malmborg, P.; Prokofiev, A.V.; Smirnov, A.N.; Rishkov, I.; Kollar, D.; Meulders, J.P.; Duijvestijn, M.; Koning, A.

    2005-05-24

    Within the HINDAS project, activation experiments with quasi mono-energetic neutrons were performed at UCL and TSL. Cross sections for the production of residual radionuclides were derived from the measured activities by unfolding, based on the neutron spectra inside the target stacks and starting from 'guess' excitation functions. Exemplary results are presented and are compared with theoretical calculations using the TALYS code.

  9. A Simple Calculator Algorithm.

    ERIC Educational Resources Information Center

    Cook, Lyle; McWilliam, James

    1983-01-01

    The problem of finding cube roots when limited to a calculator with only square root capability is discussed. An algorithm is demonstrated and explained which should always produce a good approximation within a few iterations. (MP)

  10. The CIPW Normative Calculation.

    ERIC Educational Resources Information Center

    Bickel, Charles

    1979-01-01

    The author has rewritten rules for CIPW norm calculation and has written FORTRAN IV programs to assist the student in this procedure. Includes a set of problems utilizing the CIPW norm to illustrate principles of chemical petrology. (MA)

  11. Calculator Function Approximation.

    ERIC Educational Resources Information Center

    Schelin, Charles W.

    1983-01-01

    The general algorithm used in most hand calculators to approximate elementary functions is discussed. Comments on tabular function values and on computer function evaluation are given first; then the CORDIC (Coordinate Rotation Digital Computer) scheme is described. (MNS)

  12. PHYSICOCHEMICAL PROPERTY CALCULATIONS

    EPA Science Inventory

    Computer models have been developed to estimate a wide range of physical-chemical properties from molecular structure. The SPARC modeling system approaches calculations as site specific reactions (pKa, hydrolysis, hydration) and `whole molecule' properties (vapor pressure, boilin...

  13. Small portable speed calculator

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Billions, J. C.

    1973-01-01

    Calculator is adapted stopwatch calibrated for fast accurate measurement of speeds. Single assembled unit is rugged, self-contained, and relatively inexpensive to manufacture. Potential market includes automobile-speed enforcement, railroads, and field-test facilities.

  14. Target Heart Rate Calculator

    MedlinePlus

    ... My Saved Articles » My ACS » + - Text Size Target Heart Rate Calculator Compute your best workout Enter your age ... is your age? years. How to Check Your Heart Rate Right after you stop exercising, take your pulse: ...

  15. Alcohol Calorie Calculator

    MedlinePlus

    ... Alcohol Calorie Calculator Find out the number of beer and hard alcohol calories you are consuming. Simply ... calories) Average Drinks Per Week Monthly Subtotal Calories Beer Regular 12 149 Regular Beer Light 12 110 ...

  16. More Experiments and Calculations.

    ERIC Educational Resources Information Center

    Siddons, J. C.

    1984-01-01

    Describes two experiments that illustrate basic ideas but would be difficult to carry out. Also presents activities and experiments on rainbow cups, electrical charges, electrophorus calculation, pulse electrometer, a skidding car, and on the Oersted effect. (JN)

  17. Source and replica calculations

    SciTech Connect

    Whalen, P.P.

    1994-02-01

    The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem.

  18. Systematics and limit calculations

    SciTech Connect

    Fisher, Wade; /Fermilab

    2006-12-01

    This note discusses the estimation of systematic uncertainties and their incorporation into upper limit calculations. Two different approaches to reducing systematics and their degrading impact on upper limits are introduced. An improved {chi}{sup 2} function is defined which is useful in comparing Poisson distributed data with models marginalized by systematic uncertainties. Also, a technique using profile likelihoods is introduced which provides a means of constraining the degrading impact of systematic uncertainties on limit calculations.

  19. Quantum Chemical Calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The current methods of quantum chemical calculations will be reviewed. The accent will be on the accuracy that can be achieved with these methods. The basis set requirements and computer resources for the various methods will be discussed. The utility of the methods will be illustrated with some examples, which include the calculation of accurate bond energies for SiF$_n$ and SiF$_n^+$ and the modeling of chemical data storage.

  20. Composition and thermal evolution of planetesimals in the primordial nebula: a key to understand the nitrogen deficiency in comets?

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Lunine, J. I.; Guilbert-Lepoutre, A.; Cochran, A. L.; Petit, J.-M.; Cordier, D.

    2011-10-01

    We use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in the different clathrate hydrates (dominated by H2S, Xe, CH4 or CO) formed at given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically averaged Kihara potential with a nominal set of parameters, most of which being fitted on experimental equilibrium data [1]. Based on the use of recent Kihara potential parameters [2, 3], our model allows us to find that argon and molecular nitrogen cannot be efficiently encaged in clathrate hydrates formed in the primitive nebula (see Fig. 1). Instead, these volatiles form pure condensates at temperatures below 30 K in the disk. Using a planetesimal composition based on these calculations, we find that it is possible to explain the loss of nitrogen, argon, and other pure condensates during the post-accretion evolution of planetesimals as a result of the internal heating engendered by the decay of radiogenic nuclides. This scenario provides a viable mechanism to account for the origin of the nitrogen deficiency observed in comets [4, 5] and is also found consistent with the presence of nitrogenrich atmospheres around Pluto and Triton. Indeed, in the cases of such big bodies, gravity would have prevented the important losses of ultravolatiles during the planetesimals accretion.

  1. Impact of nuclear data on sodium-cooled fast reactor calculations

    NASA Astrophysics Data System (ADS)

    Aures, Alexander; Bostelmann, Friederike; Zwermann, Winfried; Velkov, Kiril

    2016-03-01

    Neutron transport and depletion calculations are performed in combination with various nuclear data libraries in order to assess the impact of nuclear data on safety-relevant parameters of sodium-cooled fast reactors. These calculations are supplemented by systematic uncertainty analyses with respect to nuclear data. Analysed quantities are the multiplication factor and nuclide densities as a function of burn-up and the Doppler and Na-void reactivity coefficients at begin of cycle. While ENDF/B-VII.0 / -VII.1 yield rather consistent results, larger discrepancies are observed between the JEFF libraries. While the newest evaluation, JEFF-3.2, agrees with the ENDF/B-VII libraries, the JEFF-3.1.2 library yields significant larger multiplication factors.

  2. Application of Gaussian expansion method to nuclear mean-field calculations with deformation

    NASA Astrophysics Data System (ADS)

    Nakada, H.

    2008-08-01

    We extensively develop a method of implementing mean-field calculations for deformed nuclei, using the Gaussian expansion method (GEM). This GEM algorithm has the following advantages: (i) it can efficiently describe the energy-dependent asymptotics of the wave functions at large r, (ii) it is applicable to various effective interactions including those with finite ranges, and (iii) the basis parameters are insensitive to nuclide, thereby many nuclei in wide mass range can be handled by a single set of bases. Superposing the spherical GEM bases with feasible truncation for the orbital angular momentum, we obtain deformed single-particle wave-functions to reasonable precision. We apply the new algorithm to the Hartree-Fock and the Hartree-Fock-Bogolyubov calculations of Mg nuclei with the Gogny interaction, by which neck structure of a deformed neutron halo is suggested for 40Mg.

  3. ON-LINE CALCULATOR: FORWARD CALCULATION JOHNSON ETTINGER MODEL

    EPA Science Inventory

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  4. Precipitates/Salts Model Sensitivity Calculation

    SciTech Connect

    P. Mariner

    2001-12-20

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO{sub 2}) on the chemical evolution of water in the drift.

  5. First Results Using a New Technology for Measuring Masses of Very Short-Lived Nuclides with Very High Accuracy: the MISTRAL Program at ISOLDE

    SciTech Connect

    C. Monsanglant; C. Toader; G. Audi; G. Bollen; C. Borcea; G. Conreur; R. Cousin; H. Doubre; M. Duma; M. Jacotin; S. Henry; J.-F. Kepinski; H.-J. Kluge; G. Lebee; G. Le Scornet; D. Lunney; M. de Saint Simon; C. Scheidenberger; C. Thibault

    1999-12-31

    MISTRAL is an experimental program to measure masses of very short-lived nuclides (T{sub 1/2} down to a few ms), with a very high accuracy (a few 10{sup -7}). There were three data taking periods with radioactive beams and 22 masses of isotopes of Ne, Na{clubsuit}, Mg, Al{clubsuit}, K, Ca, and Ti were measured. The systematic errors are now under control at the level of 8x10{sup -7}, allowing to come close to the expected accuracy. Even for the very weakly produced {sup 30}Na (1 ion at the detector per proton burst), the final accuracy is 7x10{sup -7}.

  6. Collective degrees of freedom of neutron-rich A≈100 nuclei and the first mass measurement of the short-lived nuclide 100Rb

    NASA Astrophysics Data System (ADS)

    Manea, V.; Atanasov, D.; Beck, D.; Blaum, K.; Borgmann, C.; Cakirli, R. B.; Eronen, T.; George, S.; Herfurth, F.; Herlert, A.; Kowalska, M.; Kreim, S.; Litvinov, Yu. A.; Lunney, D.; Neidherr, D.; Rosenbusch, M.; Schweikhard, L.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2013-11-01

    The mass surface in the A˜100 region of the nuclear chart is extended by the measurement of the 98-100Rb isotopes with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The mass of 100Rb is determined for the first time. The studied nuclides mark the known low-Z frontier of the shape transition at N=60. To describe the shape evolution towards the krypton isotopic chain, a theoretical analysis is presented in the framework of the Hartree-Fock-Bogoliubov approach. The importance of the pairing interaction for describing the extent and strength of the region of quadrupole deformation is emphasized. A later transition to large prolate deformation or, alternatively, the predominance of oblate deformation is proposed as explanation for the different behavior of the krypton isotopes. Octupole collectivity is explored as a possible mechanism for the evolution of two-neutron separation energies around N=56.

  7. Neutron activation analysis for Dy, Hf, Rb, Sc and Se in some Ghanaian cereals and vegetables using short-lived nuclides and Compton suppression spectrometry.

    PubMed

    Nyarko, B J B; Akaho, E H K; Fletcher, J J; Chatt, A

    2008-08-01

    A pseudo-cyclic instrumental neutron activation analysis (PCINAA) method has been developed to determine selected elements in various types of cereal and vegetable from Ghana using relatively short-lived nuclides (t1/2<80 s) and the Compton suppression counting. The samples were irradiated for 10 s at the Dalhousie University SLOWPOKE-2 research reactor facility (DUSR) and allowed to decay for 20 s, and counted for 40 s. The process is repeated every 50 s for 4 cycles to quantify Dy, Hf, Rb, Sc and Se through 165mDy, 179Hf, 86mRb, 46mSc, and 77mSe. The detection limits were generally of the order of 1.0 ng g(-1) except for Rb which is about 1 microg g(-1). Both precision and accuracy of the method were found to be good. PMID:18424050

  8. Observation of the 3n evaporation channel in the complete hot-fusion reaction 26Mg + 248Cm leading to the new superheavy nuclide 271Hs.

    PubMed

    Dvorak, J; Brüchle, W; Chelnokov, M; Düllmann, Ch E; Dvorakova, Z; Eberhardt, K; Jäger, E; Krücken, R; Kuznetsov, A; Nagame, Y; Nebel, F; Nishio, K; Perego, R; Qin, Z; Schädel, M; Schausten, B; Schimpf, E; Schuber, R; Semchenkov, A; Thörle, P; Türler, A; Wegrzecki, M; Wierczinski, B; Yakushev, A; Yeremin, A

    2008-04-01

    The analysis of a large body of heavy ion fusion reaction data with medium-heavy projectiles (6 < or = Z < or = 18) and actinide targets suggests a disappearance of the 3n exit channel with increasing atomic number of the projectile. Here, we report a measurement of the excitation function of the reaction (248)Cm ((26)Mg,xn)(274-x)Hs and the observation of the new nuclide (271)Hs produced in the 3n evaporation channel at a beam energy well below the Bass fusion barrier with a cross section comparable to the maxima of the 4n and 5n channels. This indicates the possible discovery of new neutron-rich transactinide nuclei using relatively light heavy ion beams of the most neutron-rich stable isotopes and actinide targets. PMID:18517941

  9. Erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides (26 Al, 36 Cl, 3 He, and 21 Ne)

    PubMed Central

    Cvetković, V.; Niedermann, S.; Pejović, V.; Amthauer, G.; Boev, B.; Bosch, F.; Aničin, I.; Henning, W. F.

    2016-01-01

    Abstract This paper focuses on constraining the erosion rate in the area of the Allchar Sb‐As‐Tl‐Au deposit (Macedonia). It contains the largest known reserves of lorandite (TlAsS2), which is essential for the LORanditeEXperiment (LOREX), aimed at determining the long‐term solar neutrino flux. Because the erosion history of the Allchar area is crucial for the success of LOREX, we applied terrestrial in situ cosmogenic nuclides including both radioactive (26Al and 36Cl) and stable (3He and 21Ne) nuclides in quartz, dolomite/calcite, sanidine, and diopside. The obtained results suggest that there is accordance in the values obtained by applying 26Al, 36Cl, and 21Ne for around 85% of the entire sample collection, with resulting erosion rates varying from several tens of m/Ma to ∼165 m/Ma. The samples from four locations (L‐8 CD, L1b/R, L1c/R, and L‐4/ADR) give erosion rates between 300 and 400 m/Ma. Although these localities reveal remarkably higher values, which may be explained by burial events that occurred in part of Allchar, the erosion rate estimates mostly in the range between 50 and 100 m/Ma. This range further enables us to estimate the vertical erosion rate values for the two main ore bodies Crven Dol and Centralni Deo. We also estimate that the lower and upper limits of average paleo‐depths for the ore body Centralni Deo from 4.3 Ma to the present are 250–290 and 750–790 m, respectively, whereas the upper limit of paleo‐depth for the ore body Crven Dol over the same geological age is 860 m. The estimated paleo‐depth values allow estimating the relative contributions of 205Pb derived from pp‐neutrino and fast cosmic‐ray muons, respectively, which is an important prerequisite for the LOREX experiment. PMID:27587984

  10. Erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides (26Al, 36Cl, 3He, and 21Ne)

    NASA Astrophysics Data System (ADS)

    Pavićević, M. K.; Cvetković, V.; Niedermann, S.; Pejović, V.; Amthauer, G.; Boev, B.; Bosch, F.; Aničin, I.; Henning, W. F.

    2016-02-01

    This paper focuses on constraining the erosion rate in the area of the Allchar Sb-As-Tl-Au deposit (Macedonia). It contains the largest known reserves of lorandite (TlAsS2), which is essential for the LORanditeEXperiment (LOREX), aimed at determining the long-term solar neutrino flux. Because the erosion history of the Allchar area is crucial for the success of LOREX, we applied terrestrial in situ cosmogenic nuclides including both radioactive (26Al and 36Cl) and stable (3He and 21Ne) nuclides in quartz, dolomite/calcite, sanidine, and diopside. The obtained results suggest that there is accordance in the values obtained by applying 26Al, 36Cl, and 21Ne for around 85% of the entire sample collection, with resulting erosion rates varying from several tens of m/Ma to ˜165 m/Ma. The samples from four locations (L-8 CD, L1b/R, L1c/R, and L-4/ADR) give erosion rates between 300 and 400 m/Ma. Although these localities reveal remarkably higher values, which may be explained by burial events that occurred in part of Allchar, the erosion rate estimates mostly in the range between 50 and 100 m/Ma. This range further enables us to estimate the vertical erosion rate values for the two main ore bodies Crven Dol and Centralni Deo. We also estimate that the lower and upper limits of average paleo-depths for the ore body Centralni Deo from 4.3 Ma to the present are 250-290 and 750-790 m, respectively, whereas the upper limit of paleo-depth for the ore body Crven Dol over the same geological age is 860 m. The estimated paleo-depth values allow estimating the relative contributions of 205Pb derived from pp-neutrino and fast cosmic-ray muons, respectively, which is an important prerequisite for the LOREX experiment.

  11. Effects of Climate on Long-term Rates of Physical Erosion and Chemical Weathering: Evidence from Cosmogenic Nuclides and Geochemical Mass Balance

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.; Riebe, C. S.; Ferrier, K. L.; Finkel, R. C.

    2004-12-01

    Cosmogenic nuclides such as 10Be and 26Al have recently become important tools for measuring long-term denudation rates. We have recently shown how cosmogenic nuclide measurements of denudation fluxes can be partitioned into their physical and chemical components, using the enrichment of insoluble tracers in regolith relative to its parent rock. We used these methods to measure long-term rates of physical erosion and chemical weathering for 42 sites, encompassing widely varying climates and denudation rates. Across these sites, mean annual temperatures vary from 2 to 25 ° C, average annual precipitation spans a 20-fold range (from 22 to 420 cm/yr), and denudation rates vary by 32-fold (from 23 to 755 t km-2 yr-2). Our measurements show that chemical weathering rates are tightly coupled with physical erosion rates, such that the relationship between climate and chemical weathering rates may be obscured by site-to-site differences in the rate that minerals are supplied to soil by physical erosion of rock. The relative importance of chemical weathering can be quantified using the "Weathering Intensity Factor" (WIF), the ratio of the chemical weathering rate to the physical erosion rate. Over 60 percent of the variance in WIF's can be explained by a simple Arrhenius-like relationship based on mean annual temperature and average annual precipitation. The temperature-dependence of WIF is roughly half of what one would expect from laboratory measurements of activation energies for feldspar weathering and previous inter-comparisons of short-term average weathering rates from the field. Our results imply that the strength of climate change feedbacks between temperature and silicate weathering rates may be weaker than previously thought, at least in actively eroding, unglaciated granitic terrain similar to our study sites.

  12. Calculating incoherent diffraction MTF

    NASA Astrophysics Data System (ADS)

    Friedman, Melvin; Vizgaitis, Jay

    2008-04-01

    The incoherent diffraction MTF plays an increasingly important role in the range performance of imaging systems as the wavelength increases and the optical aperture decreases. Accordingly, all NVESD imager models have equations that describe the incoherent diffraction MTF of a circular entrance pupil. NVThermIP, a program which models thermal imager range performance, has built in equations which analytically model the incoherent diffraction MTF of a circular entrance pupil and has a capability to input a table that describes the MTF of other apertures. These can be calculated using CODE V, which can numerically calculate the incoherent diffraction MTF in the vertical or horizontal direction for an arbitrary aperture. However, we are not aware of any program that takes as input a description of the entrance pupil and analytically outputs equations that describe the incoherent diffraction MTF. This work explores the effectiveness of Mathematica to analytically and numerically calculate the incoherent diffraction MTF for an arbitrary aperture. In this work, Mathematica is used to analytically and numerically calculate the incoherent diffraction MTF for a variety of apertures and the results are compared with CODE V calculations.

  13. Calculation of magnetocrystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Schneider, Gunter

    The magnetocrystalline anisotropy energy (MAE) for fcc Ni and bcc Fe is calculated as the difference of single particle energy eigenvalue sums using a tight-binding model. For nickel we predict a MAE of -0.15 eV and the wrong easy axis, for iron we find a MAE of -0.7 eV with the easy axis in agreement with experiment. Our results compare favorably with previously reported first-principles calculations based on density functional theory and the local spin density approximation. The inclusion of an orbital polarization correction improves the magnitude of the MAE for iron, but fails to bring the result for nickel closer to the experimental value. The outstanding feature of our calculations is the careful handling of the necessary Brillouin zone integrals. Linear interpolation schemes and methods based on Fermi surface smearing were used and analyzed. An alternative method of calculating the MAE based on the torque on a magnetic moment centered on an atom is found to be equivalent to the calculation of the MAE in terms of energy differences.

  14. Calculations in apheresis.

    PubMed

    Neyrinck, Marleen M; Vrielink, Hans

    2015-02-01

    It's important to work smoothly with your apheresis equipment when you are an apheresis nurse. Attention should be paid to your donor/patient and the product you're collecting. It gives additional value to your work when you are able to calculate the efficiency of your procedures. You must be capable to obtain an optimal product without putting your donor/patient at risk. Not only the total blood volume (TBV) of the donor/patient plays an important role, but also specific blood values influence the apheresis procedure. Therefore, not all donors/patients should be addressed in the same way. Calculation of TBV, extracorporeal volume, and total plasma volume is needed. Many issues determine your procedure time. By knowing the collection efficiency (CE) of your apheresis machine, you can calculate the number of blood volumes to be processed to obtain specific results. You can calculate whether you need one procedure to obtain specific results or more. It's not always needed to process 3× the TBV. In this way, it can be avoided that the donor/patient is needless long connected to the apheresis device. By calculating the CE of each device, you can also compare the various devices for quality control reasons, but also nurses/operators. PMID:25041907

  15. Estimating the instability of a composite clock

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A.

    2004-01-01

    A composite clock created from a local clock ensemble is known by its time offsets from the ensemble clocks. By a geometrical argument, estimate for the instability of the composite clock are calculated from the instabilities of the ensemble clocks, individually and against the composite clock. The method is illustrated by examples using simulated and real ensembles.

  16. Calculation of coincidence summing corrections for a specific small soil sample geometry

    SciTech Connect

    Helmer, R.G.; Gehrke, R.J.

    1996-10-01

    Previously, a system was developed at the INEL for measuring the {gamma}-ray emitting nuclides in small soil samples for the purpose of environmental monitoring. These samples were counted close to a {approx}20% Ge detector and, therefore, it was necessary to take into account the coincidence summing that occurs for some nuclides. In order to improve the technical basis for the coincidence summing corrections, the authors have carried out a study of the variation in the coincidence summing probability with position within the sample volume. A Monte Carlo electron and photon transport code (CYLTRAN) was used to compute peak and total efficiencies for various photon energies from 30 to 2,000 keV at 30 points throughout the sample volume. The geometry for these calculations included the various components of the detector and source along with the shielding. The associated coincidence summing corrections were computed at these 30 positions in the sample volume and then averaged for the whole source. The influence of the soil and the detector shielding on the efficiencies was investigated.

  17. Calculated fission-fragment yield systematics in the region 74 <=Z <= 94 and 90 <=N <= 150

    SciTech Connect

    Möller, Peter; Randrup, Jørgen

    2015-04-01

    Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ≈ 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ≈ 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al. [Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹⁸⁰Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹⁸⁰Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ≤ Z ≤ 85 and 100 ≤ N ≤ 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the

  18. Calculated fission-fragment yield systematics in the region 74 <=Z <= 94 and 90 <=N <= 150

    DOE PAGESBeta

    Möller, Peter; Randrup, Jørgen

    2015-04-01

    Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ≈ 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ≈ 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al.more » [Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹⁸⁰Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹⁸⁰Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ≤ Z ≤ 85 and 100 ≤ N ≤ 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the main

  19. Calculations for waste characterization

    SciTech Connect

    Hemmer, R.J.

    1994-09-01

    Measurements are the first step in the characterization of waste forms. The results are used to determine the types and amounts of radioactive material present. From this data, several characteristics are calculated which are used to satisfy site, Department of Energy (DOE), and Waste Isolation Pilot Plant (WIPP) requirements. How well these calculations are made becomes important to the waste characterization program. Several sources are available to obtain the required values needed to calculate these characteristics. To ensure consistency among all sites within the DOE complex, a standardized program for all necessary data needs to be established. The effects of several of the inconsistencies are presented along with a recommended list of criteria to be used.

  20. Alpha Induced Reaction Cross Section Calculations of Tantalum Nucleus

    NASA Astrophysics Data System (ADS)

    Tel, E.; Ugur, F. A.; Gokce, A. A.

    2013-04-01

    The fusion energy is attractive as an energy source because the fusion will not produce CO2 or SO2 and so fusion will not contribute to environmental problems, such as particulate pollution and excessive CO2 in the atmosphere. The fusion reaction does not produce radioactive nuclides and it is not self-sustaining, as is a fission reaction when a critical mass of fissionable material is assembled. Since the fusion reaction is easily and quickly quenched the primary sources of heat to drive such an accident are heat from radioactive decay and heat from chemical reactions. Both the magnitude and time dependence of the generation of heat from radioactive decay can be controlled by proper selection and design of materials. Tantalum is one of the candidate materials for the first wall of fusion reactors and for component parts of irradiation chambers. Accurate experimental cross-section data of alpha induced reactions on Tantalum are also of great importance for thermonuclear reaction rate determinations since the models used in the study of stellar nucleosynthesis are strongly dependent on these rates (Santos et al. in J Phys G 26:301, 2000). In this study, neutron-production cross sections for target nuclei 181Ta have been investigated up to 100 MeV alpha energy. The excitation functions for (α, xn) reactions (x = 1, 2, 3) have been calculated by pre-equilibrium reaction mechanism. And also neutron emission spectra for 181Ta (α, xn) reactions at 26.8 and 45.2 MeV have been calculated. The mean free path multiplier parameters has been investigated. The pre-equilibrium results have been calculated by using the hybrid model, the geometry dependent hybrid (GDH) model. Calculation results have been also compared with the available measurements in literature.

  1. Spin resonance strength calculations

    SciTech Connect

    Courant,E.D.

    2008-10-06

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  2. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  3. Three recent TDHF calculations

    SciTech Connect

    Weiss, M.S.

    1981-05-01

    Three applications of TDHF are discussed. First, vibrational spectra of a post grazing collision /sup 40/Ca nucleus is examined and found to contain many high energy components, qualitatively consistent with recent Orsay experiments. Second, the fusion cross section in energy and angular momentum are calculated for /sup 16/O + /sup 24/Mg to exhibit the parameters of the low l window for this system. A sensitivity of the fusion cross section to the effective two body potential is discussed. Last, a preliminary analysis of /sup 86/Kr + /sup 139/La at E/sub lab/ = 505 MeV calculated in the frozen approximation is displayed, compared to experiment and discussed.

  4. Graphing Calculator Mini Course

    NASA Technical Reports Server (NTRS)

    Karnawat, Sunil R.

    1996-01-01

    The "Graphing Calculator Mini Course" project provided a mathematically-intensive technologically-based summer enrichment workshop for teachers of American Indian students on the Turtle Mountain Indian Reservation. Eleven such teachers participated in the six-day workshop in summer of 1996 and three Sunday workshops in the academic year. The project aimed to improve science and mathematics education on the reservation by showing teachers effective ways to use high-end graphing calculators as teaching and learning tools in science and mathematics courses at all levels. In particular, the workshop concentrated on applying TI-82's user-friendly features to understand the various mathematical and scientific concepts.

  5. Confidence Calculation with AMV+

    SciTech Connect

    Fossum, A.F.

    1999-02-19

    The iterative advanced mean value algorithm (AMV+), introduced nearly ten years ago, is now widely used as a cost-effective probabilistic structural analysis tool when the use of sampling methods is cost prohibitive (Wu et al., 1990). The need to establish confidence bounds on calculated probabilities arises because of the presence of uncertainties in measured means and variances of input random variables. In this paper an algorithm is proposed that makes use of the AMV+ procedure and analytically derived probability sensitivities to determine confidence bounds on calculated probabilities.

  6. Calculations of the Chemical Composition of the Sacramento Urban Plume

    NASA Astrophysics Data System (ADS)

    Perez, I. M.; Cohen, R. C.

    2007-12-01

    Recent measurements within the Sacramento urban plume have provided a detailed benchmark for testing our understanding of tropospheric chemistry. Available measurements include a wide suite of VOC and BVOC, NOy,i, O3, and CO at the source and at a receptor site five hours downwind. Further, the meteorology in the region is extremely regular making it possible to evaluate effects of temperature or day-of-week patterns with a single season of measurements. Here we use a Lagrangian model representing transport from Granite Bay, a suburb at the eastern edge of Sacramento, to the University of California Blodgett Forest Research Station (UC- BFRS). The model represents chemistry based on MCM v3.1 along with mixing and dilution. The model is initiated with concentrations of NOx, peroxynitrates, alkyl and multifunctional nitrates, HNO3, VOCs and O3 based on measurements at the edge of the Sacramento suburban sprawl east of the city. Biogenic VOC emissions throughout the transect are included. The outputs of the model are compared with ozone measurements at Cool three hours downwind, and detailed measurements of VOC, the speciation of the nitrogen oxides and O3 at UC-BFRS, 5 hours downwind of the Sacramento suburbs in the center of the Mountain counties air basin. The comparisons indicate 1) O3 at UC-BFRS and Cool is largely driven by the combination of rural biogenic emissions and urban NOx emissions, 2) that OH is underestimated by standard chemical models, 3) that partitioning of NOy is dominated by peroxy and other multifunctional nitrates that are not represented in standard chemical models and which have a strong impact on how much NO2 is available for ozone production. We also investigate model representation of temperature and weekend/weekday effects.

  7. Composite Materials

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Composites are lighter and stronger than metals. Aramid fibers like Kevlar and Nomex were developed by DuPont Corporation and can be combined in a honeycomb structure which can give an airplane a light, tough structure. Composites can be molded into many aerodynamic shapes eliminating rivets and fasteners. Langley Research Center has tested composites for both aerospace and non-aerospace applications. They are also used in boat hulls, military shelters, etc.

  8. Composites review

    NASA Technical Reports Server (NTRS)

    Hordonneau, A.

    1987-01-01

    The properties and applications of composite materials are reviewed. Glass, carbon, Kevlar, ceramic, whisker, and metal fibers are discussed along with polyester, epoxy, polyimide, Peek, carbon, ceramic, and metal matrices. The quantitative distribution of high technology fiber in various applications is given. The role of aerospace industry in the development and promotion of composite utilization is discussed. Consumption trends indicate a rapid development of the composite market.

  9. Guiding ab initio calculations by alchemical derivatives.

    PubMed

    to Baben, M; Achenbach, J O; von Lilienfeld, O A

    2016-03-14

    We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects. PMID:26979677

  10. Guiding ab initio calculations by alchemical derivatives

    NASA Astrophysics Data System (ADS)

    to Baben, M.; Achenbach, J. O.; von Lilienfeld, O. A.

    2016-03-01

    We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects.

  11. Micromechanical modeling of laminated composites with interfaces and woven composites using the boundary element method

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Hopkins, Dale A.

    1993-01-01

    The boundary element method is utilized to analyze the effects of fiber/matrix interfaces on the micromechanical behavior of laminated composites as well as the elastic behavior of woven composites. Effective composite properties are computed for laminated SiC/RBSN and SiC/Ti-15-3 composites, as well as a woven SiC/SiC composite. The properties calculated using the computerized tool BEST-CMS match the experimental results well.

  12. Energetic composites

    DOEpatents

    Danen, Wayne C.; Martin, Joe A.

    1993-01-01

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application.

  13. Energetic composites

    DOEpatents

    Danen, W.C.; Martin, J.A.

    1993-11-30

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application. 3 figures.

  14. Composite floorpan

    SciTech Connect

    Frutiger, R.L.; Baskar, S.

    1993-02-01

    Composite applications for automotive components have been a topic of increased interest. Some applications--load-bearing composites such as bumpers and leaf springs--have been implemented successfully in production vehicles. On the other hand, semi-structural load-bearing composites such as floorpans have not been investigated as extensively for stiffness, strength, and durability. Past studies have used structural composites to achieve parts consolidation in van crossmembers. A rear floorpan has also been demonstrated in composites. A hybrid vehicle structure consisting of a composite passenger module on a steel frame has been proposed. Assessments of the energy management of full composite front structures have also been reported. There remains a need to assess structural composites for a major load-bearing panel with real-vehicle packaging and design requirements; a floorplan is one such application. This design concept might be used in a space-frame vehicle structure in which composite panels could be used to complete the structure and provide additional torsional rigidity while meeting local strength and stiffness requirements.

  15. Solar Guide and Calculator.

    ERIC Educational Resources Information Center

    Mazria, Edward; Winitsky, David

    This guide provides users with a basic understanding of where and how the sun works in relation to a building and site and provides a simplified method of calculating sun angles and the available heat energy from the sun on vertical and horizontal surfaces. (Author/IRT)

  16. Calendrical Calculation and Intelligence.

    ERIC Educational Resources Information Center

    O'Connor, Neil; Cowan, Richard; Samella, Katerina

    2000-01-01

    Studied the ability to name the days of the week for dates in the past and future (calendrical calculation) of 10 calendrical savants with Wechlser Adult Intelligence Scale scores from 50 to 97. Results suggest that although low intelligence does not prevent the development of this skill, the talent depends on general intelligence. (SLD)

  17. Calculation of enviromental indices

    SciTech Connect

    1995-10-01

    This portion of the Energy Vision 2020 draft report discusses the development of environmental indices. These indices were developed to be a quantitative measure of characterizing how TVA power system operations and alternative energy strategies might affect the environment. All indices were calculated relative to the reference strategy, and for the environmental review, the reference strategy was `no action`.

  18. Problem Solving Using Calculators.

    ERIC Educational Resources Information Center

    Billings, Karen; Moursund, David

    1978-01-01

    The first part in the serialized version of a book on the use of calculators for problem solving is presented. It contains prefaces for teachers and students and a chapter on getting started which includes topics such as symmetries, operations, powers, and chaining. (MP)

  19. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  20. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Bagherian, A. B.; Mielke, R. R.

    1983-01-01

    Use of calculation program START and modeling program P 3D to produce radiation patterns of antennas mounted on a space station is discussed. Basic components of two space stations in the early design stage are simulated and radiation patterns for antennas mounted on the modules are presented.

  1. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Owens, T. M.; Mielke, R. R.

    1981-01-01

    Calculated principal-and off-principal plane patterns are presented for the following aircraft: de Havilland DHC-7, Rockwell Sabreliner 75A, Piper PA-31T Cheyenne, Lockheed Jet Star II, Piper PA-31-350 Navajo Chieftain, Beechcraft Duke B60, Rockwell Commander 700, Cessna Citation 3, Piper PA-31P Pressurized Navajo, Lear Jet, and Twin Otter DHC-6.

  2. Nonperturbative QCD Calculations

    NASA Astrophysics Data System (ADS)

    Dellby, Niklas

    1995-01-01

    The research described in this thesis is an exact transformation of the Yang-Mills quantum chromodynamics (QCD) Lagrangrian into a form that is suitable for nonperturbative calculations. The conventional Yang-Mills Lagrangian has proven to be an excellent basis for perturbative calculations, but in nonperturbative calculations it is difficult to separate gauge problems from physical properties. To mitigate this problem, I develop a new equivalent Lagrangian that is not only expressed completely in terms of the field strengths ofthe gauge field but is also manifestly Lorentz and gauge invariant. The new Lagrangian is quadratic in derivatives, with non-linear local couplings, thus it is ideally suited for a numerical calculation. The field-strength Lagrangian is of such a form that it is possible to do a straightforward numerical stationary path expansion and find the fundamental QCD properties. This thesis examines several approximations analytically, investigating different ways to utilize the new Lagrangian. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  3. Water vapor pressure calculation.

    PubMed

    Hall, J R; Brouillard, R G

    1985-06-01

    Accurate calculation of water vapor pressure for systems saturated with water vapor can be performed using the Goff-Gratch equation. A form of the equation that can be adapted for computer programming and for use in electronic databases is provided. PMID:4008425

  4. A Computer Calculated Index.

    ERIC Educational Resources Information Center

    Brown, Francis J.

    The Gunning Fog Index of readability indicates both the average length of words and the difficult words (three or more syllables) in written material. This document describes a business communication course at Wayne State University in which students calculate the Gunning Fog Index of two of their writing assignments with the aid of the…

  5. A Specific Calculating Ability.

    ERIC Educational Resources Information Center

    Anderson, Mike; O'Connor, Neil; Hermelin, Beate

    1998-01-01

    Studied the calculating ability used by a low IQ savant to identify prime numbers in two experiments comparing him to control subjects, one involving reaction time and the other involving inspection time. Concludes that this individual uses a complex computational algorithm to identify primes and discusses the apparent contradiction of his low IQ.…

  6. Curvature calculations with GEOCALC

    NASA Astrophysics Data System (ADS)

    Moussiaux, A.; Tombal, Ph.

    1987-04-01

    A new method for calculating the curvature tensor has been recently proposed by D. Hestenes. This method is a particular application of geometric calculus, which has been implemented in an algebraic programming language on the form of a package called GEOCALC. We show how to apply this package to the Schwarzchild case and we discuss the different results.

  7. Curvature calculations with GEOCALC

    SciTech Connect

    Moussiaux, A.; Tombal, P.

    1987-04-01

    A new method for calculating the curvature tensor has been recently proposed by D. Hestenes. This method is a particular application of geometric calculus, which has been implemented in an algebraic programming language on the form of a package called GEOCALC. They show how to apply this package to the Schwarzchild case and they discuss the different results.

  8. Tunnel closure calculations

    SciTech Connect

    Moran, B.; Attia, A.

    1995-07-01

    When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

  9. Methods of increasing the performance of radionuclide generators used in nuclear medicine: daughter nuclide build-up optimisation, elution-purification-concentration integration, and effective control of radionuclidic purity.

    PubMed

    Le, Van So; Do, Zoe Phuc-Hien; Le, Minh Khoi; Le, Vicki; Le, Natalie Nha-Truc

    2014-01-01

    Methods of increasing the performance of radionuclide generators used in nuclear medicine radiotherapy and SPECT/PET imaging were developed and detailed for 99Mo/99mTc and 68Ge/68Ga radionuclide generators as the cases. Optimisation methods of the daughter nuclide build-up versus stand-by time and/or specific activity using mean progress functions were developed for increasing the performance of radionuclide generators. As a result of this optimisation, the separation of the daughter nuclide from its parent one should be performed at a defined optimal time to avoid the deterioration in specific activity of the daughter nuclide and wasting stand-by time of the generator, while the daughter nuclide yield is maintained to a reasonably high extent. A new characteristic parameter of the formation-decay kinetics of parent/daughter nuclide system was found and effectively used in the practice of the generator production and utilisation. A method of "early elution schedule" was also developed for increasing the daughter nuclide production yield and specific radioactivity, thus saving the cost of the generator and improving the quality of the daughter radionuclide solution. These newly developed optimisation methods in combination with an integrated elution-purification-concentration system of radionuclide generators recently developed is the most suitable way to operate the generator effectively on the basis of economic use and improvement of purposely suitable quality and specific activity of the produced daughter radionuclides. All these features benefit the economic use of the generator, the improved quality of labelling/scan, and the lowered cost of nuclear medicine procedure. Besides, a new method of quality control protocol set-up for post-delivery test of radionuclidic purity has been developed based on the relationship between gamma ray spectrometric detection limit, required limit of impure radionuclide activity and its measurement certainty with respect to

  10. On a model of calculating bond strength

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yang, T. T.; Lin, T. S.

    1976-01-01

    Diffusion bonding is a fabricating process to join the fibers and a matrix together forming a composite. The efficiency of the bonding process depends on temperature, time, and pressure. Based on a simplified pair potential model, an expression for the bond-energy at the fiber-matrix interface is formulated in terms of the above-mentioned three parameters. From this expression and the mean atomic distance, the bond-strength between the fibers and the matrix can be calculated.

  11. Plutonium 239 Equivalency Calculations

    SciTech Connect

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  12. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  13. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  14. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  15. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  16. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  17. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  18. Thermodynamic Calculation of n-COMPONENT Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Brunet, L.; Caillard, J.; André, P.

    This paper presents a simple numerical method to calculate the eutectic mixture composition and melting temperature. Using a Newton-Raphson method to solve the nonlinear problem, the calculation is possible for n-component eutectic. We tested this algorithm on inorganic and organic mixtures. A better correlation between experimental and numerical results has been found for organic compound.

  19. Repairs of composite structures

    NASA Astrophysics Data System (ADS)

    Roh, Hee Seok

    Repair on damaged composite panels was conducted. To better understand adhesively bonded repair, the study investigates the effect of design parameters on the joint strength. The design parameters include bondline length, thickness of adherend and type of adhesive. Adhesives considered in this study were tested to measure their tensile material properties. Three types of adhesively bonded joints, single strap, double strap, and single lap joint were considered under changing bondline lengths, thickness of adherend and type of adhesive. Based on lessons learned from bonded joints, a one-sided patch repair method for composite structures was conducted. The composite patch was bonded to the damaged panel by either film adhesive FM-73M or paste adhesive EA-9394 and the residual strengths of the repaired specimens were compared under varying patch sizes. A new repair method using attachments has been suggested to enhance the residual strength. Results obtained through experiments were analyzed using finite element analysis to provide a better repair design and explain the experimental results. It was observed that the residual strength of the repaired specimen was affected by patch length. Method for rapid repairs of damaged composite structures was investigated. The damage was represented by a circular hole in a composite laminated plate. Pre-cured composite patches were bonded with a quick-curing commercial adhesive near (rather than over) the hole. Tensile tests were conducted on specimens repaired with various patch geometries. The test results showed that, among the methods investigated, the best repair method restored over 90% of the original strength of an undamaged panel. The interfacial stresses in the adhesive zone for different patches were calculated in order to understand the efficiencies of the designs of these patch repairs. It was found that the composite patch that yielded the best strength had the lowest interfacial peel stress between the patch and

  20. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  1. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  2. Calculation of the impact sensitivity characteristics of solid explosives

    SciTech Connect

    Dubovik, A.V.

    1986-07-01

    A method is proposed for calculating the critical impact initiation parameters of solid explosive in connection with fall-hammer sensitivity tests using a Kholevo No. 2 instrument. Tables present the initial data for calculating the critical initiation parameters of a series of common explosives, and the results of the calculations. Also shown are the results of calculating p and delta as functions of the composition of an ammonium perchlorate-Plexiglas mixture. The experimental data on the sensitivity of this mixture are consistent with the calculations made on the assumption of a chemical reaction between the ammonium-perchlorate and the Plexiglas (or their thermal decomposition products) on impact.

  3. Post-irradiation analysis of an ISOLDE lead-bismuth target: Stable and long-lived noble gas nuclides

    NASA Astrophysics Data System (ADS)

    Leya, I.; Grimberg, A.; David, J.-C.; Schumann, D.; Neuhausen, J.; Zanini, L.; Noah, E.

    2016-07-01

    We measured the isotopic concentrations of long-lived and stable He, Ne, Ar, Kr, and Xe isotopes in a sample from a lead-bismuth eutectic target irradiated with 1.0 and 1.4 GeV protons. Our data indicate for most noble gases nearly complete release with retention fractions in the range of percent or less. Higher retention fractions result from the decay of long-lived radioactive progenitors from groups 1, 2, or 7 of the periodic table. From the data we can calculate a retention fraction for 3H of 2-3%. For alkaline metals we find retention fractions of about 10%, 30%, and 50% for Na, Rb, and Cs, respectively. For the alkaline earth metal Ba we found complete retention. Finally, the measured Kr and Xe concentrations indicate that there was some release of the halogens Br and I during and/or after the irradiation.

  4. Test Design Calculations II

    SciTech Connect

    Gerassimenko, M.

    2000-07-27

    In an earlier report, we presented results of modeling calculations for one simple geometry that represents an experiment potentially to be performed at Sandia National Laboratory, which is examining equation of state issues of interest to the National Missile Defense Program. In the earlier report, we showed snapshots of calculations with two different initial zone dimensions for Gruneisen EOS and LEOS. We also showed pressure profiles at various locations in a witness plate out of the way of direct projectile impact, but hit by shrapnel generated during impact. It was found that the pressure profiles exhibit strong dependence on location, zone size, and equation of state. In this report we examine the overall momentum impacted to the witness plate. This momentum shows negligible dependence on the equation of state and some dependence on zone size.

  5. ETC: Exposure Time Calculator

    NASA Astrophysics Data System (ADS)

    Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien

    2013-11-01

    Written for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey, the exposure time calculator (ETC) works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and S/N determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The program may be useful outside of WFIRST but no warranties are made regarding its suitability for general purposes. The software is available for download; IPAC maintains a web interface for those who wish to run a small number of cases without having to download the package.

  6. INC Model interpretation of the proton induced residual nuclide production cross sections below 2 GeV

    SciTech Connect

    Divadeenam, M.; Ward, T.E.; Spergel, M.S.; Lakatos, S.; Manche, E.P.

    1991-12-31

    For the purposes of interpreting the abundances of various isotopes in meteorites or on lunar and planetary surfaces exposed to fragmentation by cosmic rays, Webber et al. recently reported the measured total elemental and isotopic cross sections with heavy ions as projectiles on H, He, and C targets with beam energies of 0.33 - 1.7 GeV/nucleon. We employ the INC model to predict the fragmentation of the heavy ions in a hydrogen target with the inverse reaction process: proton bombardment of a heavy-ion nucleus leading to spallation products. Charge-changing and mass-changing cross sections are calculated for proton bombardment of an {sup 56}Fe target with beam energies ranging from 0.33 to 1.88 GeV. Total Z-changing and A-changing cross sections in the energy range 0.6 to 1.88 GeV are in excellent agreement with the corresponding experimental data of Webber et al. and Westfall at al., while the agreement below 0.6 GeV proton energy is not as good. The general trend of the Z-changing cross sections are reproduced by the model calculations at each proton incident energy. The interaction of 200-MeV protons with synthetic Stony Meteorite samples was undertaken to explain radionuclide production in a cosmic-ray environment. The BNL Linac 200-MeV-proton beam was used to irradiate synthetic Stony Meteorites to simulate cosmic-ray exposures corresponding to 6.4 and 16.4 million years. Each irradiated sample was analyzed with the help of a high-resolution gamma-ray spectrometer for long-lived radioisotopes. The intranuclear cascade code HETC was employed to simulate the 200-MeV proton bombardment on the meteorite samples to predict the radionuclides {sup 7}Be, {sup 22}Na, {sup 46}Mn, and {sup 56}Co produced in the experimental investigation.

  7. CONVEYOR FOUNDATIONS CALCULATION

    SciTech Connect

    S. Romanos

    1995-03-10

    The purpose of these calculations is to design foundations for all conveyor supports for the surface conveyors that transport the muck resulting from the TBM operation, from the belt storage to the muck stockpile. These conveyors consist of: (1) Conveyor W-TO3, from the belt storage, at the starter tunnel, to the transfer tower. (2) Conveyor W-SO1, from the transfer tower to the material stacker, at the muck stockpile.

  8. Nuclear Material Variance Calculation

    Energy Science and Technology Software Center (ESTSC)

    1995-01-01

    MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet that significantly reduces the effort required to make the variance and covariance calculations needed to determine the detection sensitivity of a materials accounting system and loss of special nuclear material (SNM). The user is required to enter information into one of four data tables depending on the type of term in the materials balance (MB) equation. The four data tables correspond to input transfers, output transfers,more » and two types of inventory terms, one for nondestructive assay (NDA) measurements and one for measurements made by chemical analysis. Each data entry must contain an identification number and a short description, as well as values for the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements during an accounting period. The user must also specify the type of error model (additive or multiplicative) associated with each measurement, and possible correlations between transfer terms. Predefined spreadsheet macros are used to perform the variance and covariance calculations for each term based on the corresponding set of entries. MAVARIC has been used for sensitivity studies of chemical separation facilities, fuel processing and fabrication facilities, and gas centrifuge and laser isotope enrichment facilities.« less

  9. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  10. Consideration of geomorphological uncertainties with terrestrial cosmogenic nuclide dating (TCND): combining Schmidt-hammer and 10Be dating, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan

    2010-05-01

    As the importance of glaciers as key indicators of global change has increased during recent years, investigating Holocene glaciers chronologies has gained higher attention accordingly. One reason is the need for a better understanding of the climate - glacier relationship. Comparative studies play a major role in this field of research owing to the natural diversity of glacier behaviour. Detailed Holocene glacier chronologies are, furthermore, necessary to verify and eventually adjust glacier models indispensable for many attempts to predict future glacier changes. The Southern Alps of New Zealand are one of the few key study areas on the Southern Hemisphere where, in general, evidence is still sparse compared to its Northern counterpart. Improvement and reassessment of the Late Holocene glacier chronology in this region is, therefore, an important goal of current research. Recently, terrestrial (in situ) cosmogenic nuclide (10Be) surface exposure dating has been increasingly applied to Holocene moraines in New Zealand and elsewhere. In the context of numerical ("absolute") dating techniques, terrestrial cosmogenic nuclide dating (TCND) seems to have been established as an alternative to the previously dominating radiocarbon (14C) dating of organic material (plant remains, organic-rich soil layers etc.) buried beneath or within moraines. Precision and time resolution achieved by the newest laboratory standards and procedures (Schaefer et al. 2009) is truly a milestone and will promote future attempts of TCND in any comparable context. Maybe, TCND has the potential to at least partially replace radiocarbon (14C) dating in its dominating role for the "absolute" dating of Holocene glacial deposits. By contrast, field sampling for TCND often lacks appropriate consideration of geomorphological uncertainties. Whereas much effort is made with the high precision results achieved in the laboratory, the choice of boulders sampled on Holocene moraines is often purely made

  11. Production of the entire range of r-process nuclides by black hole accretion disk outflows from neutron star mergers

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-08-01

    We consider r-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A < 130 nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of r-process elements in metal poor stars. Disk outflows reach the third peak (A ˜ 195) in most of our simulations, although the amounts produced depend sensitively on the disk viscosity, initial mass or entropy of the torus, and nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar System r-process distribution. The spike arises from convection in the disk and depends on the treatment of nuclear heating in the simulations. We conclude that disk outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  12. Velocity Based Modulus Calculations

    NASA Astrophysics Data System (ADS)

    Dickson, W. C.

    2007-12-01

    A new set of equations are derived for the modulus of elasticity E and the bulk modulus K which are dependent only upon the seismic wave propagation velocities Vp, Vs and the density ρ. The three elastic moduli, E (Young's modulus), the shear modulus μ (Lamé's second parameter) and the bulk modulus K are found to be simple functions of the density and wave propagation velocities within the material. The shear and elastic moduli are found to equal the density of the material multiplied by the square of their respective wave propagation-velocities. The bulk modulus may be calculated from the elastic modulus using Poisson's ratio. These equations and resultant values are consistent with published literature and values in both magnitude and dimension (N/m2) and are applicable to the solid, liquid and gaseous phases. A 3D modulus of elasticity model for the Parkfield segment of the San Andreas Fault is presented using data from the wavespeed model of Thurber et al. [2006]. A sharp modulus gradient is observed across the fault at seismic depths, confirming that "variation in material properties play a key role in fault segmentation and deformation style" [Eberhart-Phillips et al., 1993] [EPM93]. The three elastic moduli E, μ and K may now be calculated directly from seismic pressure and shear wave propagation velocities. These velocities may be determined using conventional seismic reflection, refraction or transmission data and techniques. These velocities may be used in turn to estimate the density. This allows velocity based modulus calculations to be used as a tool for geophysical analysis, modeling, engineering and prospecting.

  13. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  14. Zero Temperature Hope Calculations

    SciTech Connect

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the

  15. Calculation of Electron Trajectories

    Energy Science and Technology Software Center (ESTSC)

    1982-06-01

    EGUN, the SLAC Electron Trajectory Program, computes trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child''s Law conditions on cathodes of various shapes, user-specified initial conditions for each ray, and a combination of Child''s Law conditions and user specifications. Either rectangular or cylindrically symmetric geometry may be used. Magnetic fields may be specified using arbitrary configuration of coils, or the outputmore » of a magnet program, such as Poisson, or by an externally calculated array of the axial fields.« less

  16. Primordial Compositions of Refractory Inclusions

    SciTech Connect

    Grossman, L; Simon, S B; Rai, V K; Thiemens, M H; Hutcheon, I D; Williams, R W; Galy, A; Ding, T; Fedkin, A V; Clayton, R N; Mayeda, T K

    2008-02-20

    Bulk chemical and oxygen, magnesium and silicon isotopic compositions were measured for each of 17 Types A and B refractory inclusions from CV3 chondrites. After bulk chemical compositions were corrected for non-representative sampling in the laboratory, the Mg and Si isotopic compositions of each inclusion were used to calculate its original chemical composition assuming that the heavy-isotope enrichments of these elements are due to Rayleigh fractionation that accompanied their evaporation from CMAS liquids. The resulting pre-evaporation chemical compositions are consistent with those predicted by equilibrium thermodynamic calculations for high-temperature nebular condensates but only if different inclusions condensed from nebular regions that ranged in total pressure from 10{sup -6} to 10{sup -1} bar, regardless of whether they formed in a system of solar composition or in one enriched in OC dust relative to gas by a factor of ten relative to solar composition. This is similar to the range of total pressures predicted by dynamic models of the solar nebula for regions whose temperatures are in the range of silicate condensation temperatures. Alternatively, if departure from equilibrium condensation and/or non-representative sampling of condensates in the nebula occurred, the inferred range of total pressure could be smaller. Simple kinetic modeling of evaporation successfully reproduces observed chemical compositions of most inclusions from their inferred pre-evaporation compositions, suggesting that closed-system isotopic exchange processes did not have a significant effect on their isotopic compositions. Comparison of pre-evaporation compositions with observed ones indicates that 80% of the enrichment in refractory CaO + Al{sub 2}O{sub 3} relative to more volatile MgO + SiO{sub 2} is due to initial condensation and 20% due to subsequent evaporation for both Type A and Type B inclusions.

  17. Comparing Composites.

    ERIC Educational Resources Information Center

    Mathras, Michael S.

    1993-01-01

    Presents an activity that models the work of chemical engineers. Students design, fabricate, and perform mechanical tests on plaster matrix composites and compare the strength to mass ratios of several products. (PR)

  18. Fuel composition

    SciTech Connect

    Johnson, T.H.

    1990-06-26

    This patent describes a motor fuel composition. It comprises: a mixture of hydrocarbons in the gasoline boiling range containing a deposit preventing or reducing effective amount of poly(olefin)-N-substituted- carbamate.

  19. Buoyant plume calculations

    SciTech Connect

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures.

  20. Hydride compositions

    DOEpatents

    Lee, Myung W.

    1995-01-01

    A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.

  1. Hydride compositions

    DOEpatents

    Lee, Myung, W.

    1994-01-01

    Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

  2. Point Kernel Calculation for Complex and Time-Dependent Gamma-Ray Source Spectra.

    Energy Science and Technology Software Center (ESTSC)

    1990-04-01

    Version 00 PRESTO is written especially for simple shielding design studies. The chosen approximation is due to calculations of shielding for piping and spherical/cylindrical containers. Surface sources built up by radioactive deposits can be estimated. PRESTO I treats cylinder sources with shields at the side, such as pipelines or containers in radioactive facilities. PRESTO II is the analogous code for spherical sources. The programs consider volume sources or a combination of volume and surface sources.more » To describe the source spectrum, one begins with the nuclides contained in the source mixture or (with the aid of PRESTO IA) from energy group sets. The internal data set contains 5 common shield construction materials.« less

  3. Neutron dosimetry and damage calculations for the TRIGA MARK-II reactor in Vienna

    NASA Astrophysics Data System (ADS)

    Weber, H. W.; Böck, H.; Unfried, E.; Greenwood, L. R.

    1986-02-01

    In order to improve the source characterization of the reactor, especially for recent irradiation experiments in the central irradiation thimble, neutron activation experiments were made on 16 nuclides and the neutron flux spectrum was adjusted using the computer code STAY'SL. The results for the total, thermal and fast neutron flux density at a reactor power of 250 kW are as follows: 2.1 × 10 17, 6.1 × 10 16 ( E < 0.55 eV), 7.6 × 10 16 ( E > 0.1 MeV) and 4.0 × 10 16 ( E > 1 MeV) m -2 s -1. respectively. Calculated damage energy cross sections and gas production rates are presented for selected elements.

  4. The LAW Library -- A multigroup cross-section library for use in radioactive waste analysis calculations

    SciTech Connect

    Greene, N.M.; Arwood, J.W.; Wright, R.Q.; Parks, C.V.

    1994-08-01

    The 238-group LAW Library is a new multigroup neutron cross-section library based on ENDF/B-V data, with five sets of data taken from ENDF/B-VI ({sup 14}N{sub 7}, {sup 15}N{sub 7}, {sup 16}O{sub 8}, {sup 154Eu}{sub 63}, and {sup 155}Eu{sub 63}). These five nuclides are included because the new evaluations are thought to be superior to those in Version 5. The LAW Library contains data for over 300 materials and will be distributed by the Radiation Shielding Information Center, located at Oak Ridge National Laboratory. It was generated for use in neutronics calculations required in radioactive waste analyses, although it has equal utility in any study requiring multigroup neutron cross sections.

  5. Precipitates/Salts Model Calculations for Various Drift Temperature Environments

    SciTech Connect

    P. Marnier

    2001-12-20

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b).

  6. Programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae and ashing analysis: A decrement solution for nuclide and heavy metal disposal.

    PubMed

    Liu, Mingxue; Dong, Faqin; Zhang, Wei; Nie, Xiaoqin; Sun, Shiyong; Wei, Hongfu; Luo, Lang; Xiang, Sha; Zhang, Gege

    2016-08-15

    One of the waste disposal principles is decrement. The programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae regarding bioremoval and ashing process for decrement were studied in present research. The results indicated that S. cerevisiae cells showed valid biosorption for strontium ions with greater than 90% bioremoval efficiency for high concentration strontium ions under batch culture conditions. The S. cerevisiae cells bioaccumulated approximately 10% of strontium ions in the cytoplasm besides adsorbing 90% strontium ions on cell wall. The programmed gradient descent biosorption presented good performance with a nearly 100% bioremoval ratio for low concentration strontium ions after 3 cycles. The ashing process resulted in a huge volume and weight reduction ratio as well as enrichment for strontium in the ash. XRD results showed that SrSO4 existed in ash. Simulated experiments proved that sulfate could adjust the precipitation of strontium ions. Finally, we proposed a technological flow process that combined the programmed gradient descent biosorption and ashing, which could yield great decrement and allow the supernatant to meet discharge standard. This technological flow process may be beneficial for nuclides and heavy metal disposal treatment in many fields. PMID:27136735

  7. The behavior of the uranium decay chain nuclides and thorium during the flank eruptions of Kilauea (Hawaii) between 1983 and 1985

    SciTech Connect

    Reinitz, I.M.; Turekian, K.K. )

    1991-12-01

    The concentrations of members of the {sup 238}U decay chain and {sup 232}Th have been determined for the lavas that erupted on the East Rift Zone of Kilauea Volcano, Hawaii (Puu Oo) between January 1983 and January 1985. There was a decrease during the first 180 days in the abundances of all nuclides, following the behavior of the incompatible elements. ({sup 230}Th/{sup 238}U) varies with ({sup 232}Th/{sup 238}U) yielding a batch process age for the source magma of 127,800 {plus minus} 28,500 (2{omega}) y, similar to East Pacific Rise basalts. No ({sup 226}Ra/{sup 230}Th) disequilibrium was evident at Puu Oo although Haleakala and Loihi show significant excesses of ({sup 226}Ra) over ({sup 230}Th). The initial ({sup 210}Pb) excess relative to ({sup 226}Ra) implies strong incompatibility of {sup 210}Pb probably with the help of chloride complexing, and the deficiency in later episodes indicates volatilization from the melt mediated by the formation of volatile chloride compounds.

  8. 12. 3-min /sup 256/Cf and 43-min /sup 258/Md and systematics of the spontaneous fission propertiesof heavy nuclides

    SciTech Connect

    Hoffman, D.C.; Wilhelmy, J.B.; Weber, J.; Daniels, W.R.; Hulet, E.K.; Lougheed, R.W.; Landrum, J.H.; Wild, J.F.; Dupzyk, R.J.

    1980-03-01

    The new isotope 12.3-min /sup 256/Cf was produced via the /sup 254/Cf(t,p) reaction, and a new 43-min isomer of /sup 258/Md was produced via the /sup 255/Es(..cap alpha..,n) reaction. The fragment mass and kinetic energy distributions from the spontaneous fission of /sup 256/Cf were found to be very similar to those from the spontaneous fission of lighter Cf isotopes. The mass division is primarily asymmetric, and the average total kinetic energy is 189.8 +- 0.9 MeV. The 43-min /sup 258/Md presumably decays by electron capture and provides an opportunity to study the mass and kinetic energy distributions from the spontaneous fission of the 380-..mu..s /sup 258/Fm daughter. The observed narrow, symmetric mass distribution and the most probable total kinetic energy of 238 +- 3 MeV are similar to those reported for the spontaneous fission of /sup 259/Fm but show a sharp increase in symmetric mass division and total kinetic energy compared to /sup 257/Fm and the lighter Fm isotopes. No such abrupt change in properties was observed for /sup 256/Cf, which, like /sup 258/Fm, has 158 neutrons. The marked difference between the spontaneous fission properties of the heavier Fm isotopes and those of other spontaneously fissioning nuclides is compared to some theoretical predictions.

  9. Roof Savings Calculator Suite

    SciTech Connect

    New, Joshua R; Garrett, Aaron; Erdem, Ender; Huang, Yu

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance, roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.

  10. Molecular Dynamics Calculations

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two

  11. Roof Savings Calculator Suite

    Energy Science and Technology Software Center (ESTSC)

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance,more » roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.« less

  12. Calculating Trajectories And Orbits

    NASA Technical Reports Server (NTRS)

    Alderson, Daniel J.; Brady, Franklyn H.; Breckheimer, Peter J.; Campbell, James K.; Christensen, Carl S.; Collier, James B.; Ekelund, John E.; Ellis, Jordan; Goltz, Gene L.; Hintz, Gerarld R.; Legerton, Victor N.; Mccreary, Faith A.; Mitchell, Robert T.; Mottinger, Neil A.; Moultrie, Benjamin A.; Moyer, Theodore D.; Rinker, Sheryl L.; Ryne, Mark S.; Stavert, L. Robert; Sunseri, Richard F.

    1989-01-01

    Double-Precision Trajectory Analysis Program, DPTRAJ, and Orbit Determination Program, ODP, developed and improved over years to provide highly reliable and accurate navigation capability for deep-space missions like Voyager. Each collection of programs working together to provide desired computational results. DPTRAJ, ODP, and supporting utility programs capable of handling massive amounts of data and performing various numerical calculations required for solving navigation problems associated with planetary fly-by and lander missions. Used extensively in support of NASA's Voyager project. DPTRAJ-ODP available in two machine versions. UNIVAC version, NPO-15586, written in FORTRAN V, SFTRAN, and ASSEMBLER. VAX/VMS version, NPO-17201, written in FORTRAN V, SFTRAN, PL/1 and ASSEMBLER.

  13. Cross Sections Needed for the Interpretation of Long-Lived and Short-Lived Cosmogenic Nuclide Production in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Sisterson, J. M.; Beverding, A.; Kim, K. J.; Englert, P. A. J.; Jull, A. J. T.; Donahue, D. J.; Cloudt, S.; Castaneda, C.; Vincent, J.; Caffee, M. W.; Osazuwa, C. O.; Reedy, R. C.

    1995-09-01

    Radionuclides produced by cosmic rays in extraterrestrial materials archive information that can be used to determine cosmic-ray fluxes and to study the history of the irradiated object. Long-lived radionuclides give information about the last ~5 Myr; short-lived radionuclides give information about recent events. To calculate the solar cosmic ray (SCR) flux from measured depth profiles for cosmogenic radionuclides produced in lunar rocks, accurate and precise cross section values for the production of these radionuclides from all relevant elements are needed. About 98% of SCR and ~87% of galactic cosmic rays (GCR) falling on extraterrestrial materials are protons. Cross section measurements were made using three proton accelerators to cover the energy range ~20 - 500 MeV. Thin target techniques used in the irradiations minimized the number of protons scattered out of the stack and the neutron production within the stack. After irradiation, the short-lived radionuclides e.g. 22Na, 7Be, 24Na, 54Mn, and 56Co were determined using gamma-ray spectroscopy. 14C, 10Be, and 26Al were determined using Accelerator Mass Spectrometry. Our main objective is to measure the production cross sections of long-lived radionuclides. We have reported new cross section values for making 10Be from O and 14C from O, Mg, Al, Si, Fe, and Ni [1,2]. Using these new results, better estimates for the solar proton flux over several time periods in the past were determined [3]. However, no single value for the SCR flux could explain the measured data from different time periods. Further cross section measurements are being made to verify that the values used in these estimates were accurate. Irradiations designed to give good cross section measurements for long-lived radionuclides also give good cross section measurements for short-lived radionuclides. Results will be presented for proton production cross sections of 22Na from Mg, Al and Si, and 54Mn and 56Co from Fe and Ni; some values at low

  14. A simple model for examining composition effects in eutectic nucleation

    SciTech Connect

    Morris, James R; Jiang, Feng; Liaw, Peter K

    2007-01-01

    We present a simple thermodynamic calculation for a strongly partitioning eutectic system, to examine how the critical nucleus energy changes, depending upon assumptions of the chemical diffusion. The calculations show that for strongly partitioning systems, the maximum undercooling may occur at a composition significantly different than the eutectic composition, particularly if the rate of diffusion is slow in the undercooled state. These simple calculations emphasize the role that partitioning and composition may play in determining optimal compositions in metallic glass systems, which typically occur near (but not at) deep eutectic compositions.

  15. Photoimageable composition

    DOEpatents

    Dentinger, Paul; Krafick, Karen L.; Simison, Kelby Liv

    2005-02-22

    The use of photoacid generators including an alkoxyphenylphenyliodonium salt and/or bis(t-butylphenyl)iodonium salt in a photoimageable composition helps improve resolution. Suitable photoimageable compositions includes: (a) a multifuctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; and a photoacid generator comprising an alkoxyphenylphenyliodonium salt and/or bis(t-butylphenyl)iodonium salt. Preferred alkoxyphenylphenyliodonium salts include 4-octyloxyphenyl phenyliodonium hexafluoroantimonate and 4-methoxyphenyl phenyliodonium hexafluoroantimonate. The photoimageable composition is particularly suited for producing high aspect ratio microstructures.

  16. Photoimageable composition

    DOEpatents

    Simison, Kelby Liv; Dentinger, Paul

    2003-11-11

    The use of selected buffering amines in a photoimageable composition prevents process bias which with conventional photoresists causes designed features to be distorted, especially in corners and high resolution features. It is believed that the amines react with the catalysts, e.g., photoacids, generated to create an inert salt. The presence of the amines also increases resolution. Suitable photoimageable compositions includes: (a) a multifunctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; (b) a photoactive compound; and (c) an amine that is selected from the group consisting of triisobutylamine, 1,8-bis(dimethylamino)naphthalene (also known as PROTON SPONGET.TM.), 2,2'-diazabicyclo[2.2.2] octane and mixtures thereof. The photoimageable composition is particularly suited for producing high aspect ratio metal microstructures.

  17. Composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  18. Surfactant compositions

    SciTech Connect

    Novakovic, M.; Abend, P.G.

    1987-09-29

    A surfactant composition is described for subsequent addition to a soap slurring comprising an acyloxy alkane sulfonate salt. The sulfonate salt is present in an amount by weight of about 44 percent of about 56 percent. The polyol is present in an amount by weight of about 2 percent to about 6 percent, and water is present in an amount by weight of 26 to 36 percent. The composition constituting a solid reversible solution at ambient temperature and having a solids content of about 58 to 72 percent, whereby subsequent addition of the surfactant composition to a soap slurry results in formation of a soap/detergent bar having a smooth texture, uniform wear properties and a lack of grittiness.

  19. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2001-01-01

    We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.

  20. Calculation of shielding parameters

    NASA Astrophysics Data System (ADS)

    Montoya, Zeferino Jorge

    Within the nuclear reaction exists three types of energy producing reactions: (1) radioactive disintegration; (2) fission; and (3) fusion. Besides the radiation produced in these reactions there are radioactive emissions of a different type, and in some of these cases they are of great penetration power and scope. The radiation produces great damage when interacted with materials, in particular the most dangerous are neutrons and gamma photons. For this reason it is necessary to protect people who work in places which operate with radioactive sources from the radiation, in addition to reducing the radiation doses to the most reasonably possible, considering the circumstances of the installations. The three determining factors in the proposition of reducing exposure to radiation are: (1) to maintain control over the reduced exposure in the time of the permanence in the irradiated areas; (2) to increase the distance between the source and the operating personnel as much as possible; and (3) to place an armor-plate between the source and the receptor. The work described in this paper has its objective a calculation of the parameters of an armor-plate in radioactive sources, with the goal of estimating the doses of radiation in protecting people and other biological systems from exposure to radiation produced during the nuclear reactions. The parameters to be principally considered are: (1) characteristics of the source; (2) geometry of the source at the point of exposure; and (3) material and thickness of the armor-plate.