Science.gov

Sample records for calculated oxygen fugacity

  1. Armalcolite - An oxygen fugacity indicator

    NASA Technical Reports Server (NTRS)

    Stanin, F. T.; Taylor, L. A.

    1980-01-01

    Lunar armaloclites, (Fe, Mg)Ti2O5, contain appreciable amounts of Ti(3+) (less than 1 to 17% of Ti mole fraction). This is a function of the oxygen fugacity occurring at the time of its formation, with lower fugacities being reflected in higher Ti(3+) contents. Controlled cooling-rate and isothermal experimentation on synthetic analog and natural specimens of 70017 and 74275 have been used to calibrate an oxygen geobarometer. Most lunar rocks have followed crystallization paths in oxygen fugacity/T space such that the prevailing oxygen fugacity can be represented by a curve near parallel to the I/W buffer curve. The oxygen fugacity estimates derived from Ti(3+) considerations of armalcolites range from the iron/wustite curve to about 1.5 log units below.

  2. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    NASA Technical Reports Server (NTRS)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  3. The oxygen fugacity within carbonated eclogites

    NASA Astrophysics Data System (ADS)

    Stagno, V.; Frost, D. J.; McCammon, C. A.

    2011-12-01

    The subduction of carbon back into the mantle is an important natural form of carbon sequestration. Eclogitic nodules and CO2-rich metasomatic agents show evidence for the passage of carbon and carbonate (solid or melts) in the mantle. Further, diamonds from kimberlites occur in eclogite xenoliths more frequently than in peridotite xenoliths but the reason for this is unclear. The redox conditions at which both carbon and carbonate are stable in eclogitic settings are still relatively uncertain. Possible control factors may include silicate-carbonate-diamond reactions and ferrous/ferric bearing minerals such as garnet and clinopyroxene. A comparison between the oxygen fugacities defined by carbon/carbonate equilibria in peridotite and eclogite assemblages indicates that diamond-bearing eclogites might be stable at conditions where only carbonates would be stable in peridotite rocks. Although these observations are suggested by thermodynamic calculations involving typical equilibria in eclogitic rocks, an experimentally calibrated oxy barometer is still not available. The aim of this study is to determine the oxygen fugacity at which elemental carbon coexists with carbonate minerals and melts in eclogitic rocks. Therefore, we performed experiments at both above and below the solidus of a carbonated eclogite in the Na-Ca-Mg-Al-Si-Fe-O-C system at pressures between 3 and 7 GPa and temperature of 800-1250 °C. A MORB-like eclogite bulk composition was saturated in kyanite. Iridium powder was added to the starting mixture to act as redox sensor. Experiments were run in piston cylinder and multi anvil devices. Further, the ferric iron of synthetic omphacite and garnet equilibrated with carbon and carbonate in the eclogitic assemblages was measured using Mössbauer spectroscopy. The results are used to understand the oxygen fugacity at which carbonate melts become stable in eclogitic regions of the mantle and to determine the ferric iron contents of eclogitic minerals as a function of pressure and temperature in the presence of carbonate. The results also have implications for the formation of diamonds in eclogitic rocks and are used to develop an oxygen thermobarometer for eclogitic rocks.

  4. Oxygen fugacities directly measured in magmatic gases

    USGS Publications Warehouse

    Sato, M.; Wright, T.L.

    1966-01-01

    An electrochemical device was used to measure the fugacity of oxygen (fO2) in holes drilled through the crust of Makaopuhi lava lake, Kilauea Volcano, Hawaii. Results obtained within 6 months of the lake formation show that log fO2 normally varies linearly with the reciprocal of the absolute temperature, and that chemical changes occurring in the cooling tholeiitic basalt are reflected in the fO2 values measured in the holes.

  5. Microprobe and oxygen fugacity study of armalcolite

    NASA Technical Reports Server (NTRS)

    Friel, J. J.

    1976-01-01

    The stability of synthetic armalcolite was determined as a function of oxygen fugacity with particular regard to the oxidation state of iron and titanium. The equilibrium pseudobrookite (armalcolite) composition was measured at 1200 C under various conditions of oxidation typical of the lunar environment. These data, when compared with published descriptions of mare basalts, provide information about the conditions of crystallization of armalcolite-bearing lunar rocks. Some information about the crystal chemistry of armalcolite was obtained from X-ray diffraction and electron microprobe analyses of synthetic armalcolite and Zr-armalcolite. Further data were gathered from a comparison of the Mossbauer spectra of a phase pure stoichiometric armalcolite and one containing appreciable amounts of trivalent titanium.

  6. The oxidation state of europium as an indicator of oxygen fugacity. [lunar and terrestrial rocks, achondritic meteorites

    NASA Technical Reports Server (NTRS)

    Drake, M. J.

    1975-01-01

    Empirical oxygen barometers based on Eu(2+)/Eu(3+) ratios in plagioclase feldspar and magmatic liquid were developed using Philpott's (1970) approach and the experimental data of Drake (1972). Oxygen fugacities calculated on the basis of Eu(2+)/Eu(3+) ratios for terrestrial basalts cluster tightly around 10 to the negative seventh power. Oxygen fugacities for Apollo 11 and 12 lunar ferrobasalts cluster tightly around 10 to the negative 12.7 power. Calculated oxygen fugacities for achondritic meteorites are lower than for lunar samples by several orders of magnitude.

  7. Oxygen Fugacity Recorded by Xenoliths from Pacific Oceanic Islands

    NASA Astrophysics Data System (ADS)

    Wall, K.; Davis, F. A.; Cottrell, E.

    2014-12-01

    Oxygen fugacity (fO2) plays a vital role in determining mineral stability and depth of melting in the mantle. Several studies have used the spinel peridotite oxybarometer to estimate fO2; yet few data exist from ocean islands, despite the importance of fO2 to understanding ocean island basalt petrogenesis (Herzberg and Asimow, 2008). We report fO2 recorded by peridotite xenoliths from three ocean islands: Savai'i (average fO2 = QFM -1.4 to +0.9), Tahiti (QFM +0.6 to +0.7) and Tubuai (QFM -1.1 to +0.2). We calculate fO2 using methods and standards from Wood and Virgo (1989) and Wood (RiMG, 1990). Oxygen fugacities span a similar range to those reported for El Hierro, Oahu, and Tahiti by Ballhaus (1993): more reduced than arc peridotites, but more oxidized than abyssal peridotites. Spinels in several of the xenoliths are heterogeneous and record a range of apparent fO2 at the mm scale. We propose two distinct mechanisms for introducing fO2 heterogeneity: melt refertilization (Tubuai) and diffusive reequilibration (Savai'i and Tubuai). Spinels in one Tubuai sample record increasing fO2 from QFM-0.6 in the xenolith interior to +1.1 at the basalt interface. Apparent fO2 recorded by these spinels correlate with TiO2, an indicator of melt refertilization (Pearce et al., 2000). We suggest that spinels from the xenolith interior record the relatively low fO2 conditions of the lithospheric mantle, while host basalt has oxidized near-interface spinels. Uniformly high TiO2, fO2, and low olivine Mg# in Tahitian xenoliths from this study may indicate that refertilization has reset the fO2 recorded by these rocks. Closed-system diffusive reequilibration, caused by changes in temperature, can also change the fO2 recorded by a peridotite. In samples from Savai'i and Tubuai with multiple spinel habits, fine intergrowth spinels and the rims of large, equant spinels record higher apparent fO2 and lower Al2O3 than cores of large grains. Canil and O'Neill (1996) suggest that the MgAl2O4 component in spinel dissolves into pyroxenes as a function of increasing temperature, leaving a lower modal proportion of Fe3+-rich spinel. Because we find no evidence for melt refertilization, we suggest that thermal interaction with a plume caused subsolidus, partial reequilibration that increased the fO2 recorded by these peridotites prior to eruption.

  8. Oxygen isotope diffusion and zoning in diopside: The importance of water fugacity during cooling

    SciTech Connect

    Edwards, K.J.; Valley, J.W.

    1998-07-01

    The oxygen isotope ratio of diopside correlates with crystal size in many high grade marbles, permitting the intracrystalline self-diffusion rate of oxygen in diopside to be empirically evaluated. Small (75--300 {micro}m) and large (1.2--1.5 mm) diopside grains were analyzed in bulk for their oxygen isotope ratios by laser extraction. Cooling histories were calculated using the Fast Grain Boundary diffusion model, assuming equilibrium at peak metamorphic temperatures (700--800 C), slow cooling of 1.5--4 C/Ma, and experimentally determined diffusion coefficients for oxygen in minerals. Measurements and calculations to predict differences in {delta}{sup 18}O between large and small diopside grains lead to the following conclusions. (1) Natural diopsides in this study exhibit variations in oxygen isotope ratios between grains of different size, which are related to the peak temperature, cooling rate, and water fugacity during cooling. Diffusion distances are properly modeled by the size of an entire grain; there is no evidence for subdomains. (2) In slowly cooled high grade metamorphic terrains, water fugacity can be highly variable from rock to rock during cooling. For many rocks, water fugacity is the most important constraint on the degree of oxygen isotope retrograde exchange.

  9. Low oxygen fugacity dependency for the deformation of partially molten lherzolite

    NASA Astrophysics Data System (ADS)

    Wang, Yongfeng; Zhang, Junfeng; Jin, Zhenmin; Kohlstedt, David L.

    2012-12-01

    We present the results of an experimental investigation of the influence of oxygen fugacity on the deformation of a partially molten spinel lherzolite using a 0.1 MPa gas-media creep rig under temperatures of 1160-1190 °C, stresses of 4-74 MPa and well-controlled oxygen fugacities of 10- 7 to 10- 11 MPa. The partially molten spinel lherzolite was deformed by a dislocation-mediated creep process such as dislocation creep or dislocation-accommodated grain boundary sliding (DGBS) (n = 3.5 ± 0.3) as well as in the diffusion creep regime (n = 1.2 ± 0.2). The average oxygen fugacity exponent of lherzolite is 0.04 ± 0.02, which is significantly smaller than the values measured for olivine single crystals (0.10-0.36) and dunite rocks (0.20) deformed by dislocation creep. We attribute the low oxygen fugacity exponent of partially molten lherzolite samples either to the operation of grain boundary sliding, if DGBS dominates the deformation, or to the presence of pyroxenes whose deformation has a weak or no dependency on oxygen fugacity, if dislocation creep dominates the deformation. In the latter case, the oxygen fugacity exponent decreases rapidly with decreasing volume fraction of olivine. The low oxygen fugacity exponent for our partially molten lherzolite samples implies that dislocation creep or DGBS of mantle peridotite will most likely be insensitive to variations of oxygen fugacity in the upper mantle.

  10. The Relationship Between Clinopyroxene Fe3+ Content and Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    McCanta, M. C.; Rutherford, M. J.; Dyar, M. J.; Delaney, J. S.

    2004-01-01

    The intrinsic oxygen fugacity (fO2) imposed on a magma has the ability to influence the crystallization sequence of the melt, as well as the composition of the resulting minerals. fO2 is an easily controlled parameter in the lab, either through gas-mixing equilibria or with a solid-state buffer assemblage. In nature, the fO2 of a closed system is imposed on the system internally through multivalent equilibria involving the phenocryst-melt assemblage. This results in a characteristic oxidation state. The physical parameter used to quantify oxidation state is oxygen fugacity. Iron is the only major rock forming element in basaltic melts to exist in multiple valence states and, therefore, it is commonly used to assess fO2. Traditional methods to quantify fO2 utilize the ferric content of glasses or coexisting Fe-Ti oxides. However, many rocks, such as the Martian meteorites, do not contain the necessary phases or have oxides which have suffered reequilibration, thereby rendering them unmeasureable by current techniques. For these rocks, new methods, utilizing other phases are needed. Mafic minerals have Fe(3+)/SigmaFe ratios that are a function of two factors: 1) crystal chemistry and 2) their intrinsic fO2 during crystallization. Olivine and orthopyroxene, for example, have steric constraints on the extent to which Fe(3+) can be incorporated in their structures, and may not record changes in magmatic fO2 in a way that can easily be measured. The chemistry of clinopyroxene, however, allows for extensive incorporation of Fe(3+) in its crystal structure, making it a potentially useful oxybarometer. To date, there have been few, if any, systematic experimental studies of the variation of the Fe(3+)/SigmaFe ratio as a function of fO2 in clinopyroxene. This study seeks to address this lack of data.

  11. Control and monitoring of oxygen fugacity in piston cylinder experiments

    NASA Astrophysics Data System (ADS)

    Matjuschkin, Vladimir; Brooker, Richard A.; Tattitch, Brian; Blundy, Jon D.; Stamper, Charlotte C.

    2015-01-01

    We present a newly developed capsule design that resolves some common problems associated with the monitoring and control of oxygen fugacity ( fO2) in high-pressure piston cylinder experiments. The new fO2 control assembly consists of an AuPd outer capsule enclosing two inner capsules: one of AuPd capsule containing the experimental charge (including some water), and the other of Pt containing a solid oxygen buffer plus water. The inner capsules are separated by crushable alumina. The outer capsule is surrounded by a Pyrex sleeve to simultaneously minimise hydrogen loss from the cell and carbon infiltration from the graphite furnace. Controlled fO2 experiments using this cell design were carried out at 1.0 GPa and 1,000 °C. We used NiPd, CoPd and (Ni, Mg)O fO2 sensors, whose pressure sensitivity is well calibrated, to monitor the redox states achieved in experiments buffered by Re-ReO2, Ni-NiO and Co-CoO, respectively. Results for the fO2 sensors are in good agreement with the intended fO2 established by the buffer, demonstrating excellent control for durations of 24-48 h, with uncertainties less than ± 0.3 log bar units of fO2.

  12. Experimental Constraints on the Cr Content, Oxygen Fugacity, and Petrogenesis of EETA79001 Lithology A

    NASA Technical Reports Server (NTRS)

    Herd, C. D. K.; Jones, J. H.; Papike, J. J.

    2000-01-01

    Experiments involving the composition of the groundmass of EETA79001 Lithology A constrain the Cr content of the melt and the oxygen fugacity, and suggest that overgrowth of olivine and pyroxene from the groundmass onto xenocrysts has occurred.

  13. Oxygen fugacity control in piston-cylinder experiments: a re-evaluation

    NASA Astrophysics Data System (ADS)

    Jakobsson, Sigurdur; Blundy, Jon; Moore, Gordon

    2014-06-01

    Jakobsson (Contrib Miner Petrol 164(3):397-407, 2012) investigated a double capsule assembly for use in piston-cylinder experiments that would allow hydrous, high-temperature, and high-pressure experiments to be conducted under controlled oxygen fugacity conditions. Using a platinum outer capsule containing a metal oxide oxygen buffer (Ni-NiO or Co-CoO) and H2O, with an inner gold-palladium capsule containing hydrous melt, this study was able to compare the oxygen fugacity imposed by the outer capsule oxygen buffer with an oxygen fugacity estimated by the AuPdFe ternary system calibrated by Barr and Grove (Contrib Miner Petrol 160(5):631-643, 2010). H2O loss or gain, as well as iron loss to the capsule walls and carbon contamination, is often observed in piston-cylinder experiments and often go unexplained. Only a few have attempted to actually quantify various aspects of these changes (Brooker et al. in Am Miner 83(9-10):985-994, 1998; Truckenbrodt and Johannes in Am Miner 84:1333-1335, 1999). It was one of the goals of Jakobsson (Contrib Miner Petrol 164(3):397-407, 2012) to address these issues by using and testing the AuPdFe solution model of Barr and Grove (Contrib Miner Petrol 160(5):631-643, 2010), as well as to constrain the oxygen fugacity of the inner capsule. The oxygen fugacities of the analyzed melts were assumed to be equal to those of the solid Ni-NiO and Co-CoO buffers, which is incorrect since the melts are all undersaturated in H2O and the oxygen fugacities should therefore be lower than that of the buffer by 2 log.

  14. Oxygen diffusion in olivine: Effect of oxygen fugacity and implications for creep

    SciTech Connect

    Ryerson, F. J.; Durham, W. B.; Cherniak, D. J.; Lanford, W. A.

    1989-04-10

    Oxygen self-diffusion experiments on single crystals of San Carlosolivine (/similar to/Fo/sub 92/) at 1200/degree/less than or equal to/ital T/less than or equal to1400 /degree/C, oxygen fugacities(/ital f//sub O2/) along the Ni-NiO and Fe-FeO buffers, and silica activityat the olivine-orthopyroxene buffer yielded results that follow therelationship /ital D/=2.6/times/10/sup /minus/10//ital f/ /sub O2//sup 0.21+-0.03/ exp (/minus/266+-11)(kJ mol/sup /minus/1///ital RT/), where/ital D/ is the diffusion coefficient in m/sup 2/ s/sup /minus/1/ and /ital f//sub O2/ is givenin pascals. The activation energy compares reasonably well with results forpure forsterite. The positive dependence of /ital f//sub O/sub 2// implies that theoxygen defect responsible for diffusion is an interstitial rather than a morestericaly reasonable oxygen vacancy. Diffusion of oxygen in other close-packedoxides has also shown a positive dependence on /ital f//sub O2/. The rate ofcreep of single-crystal olivine at fixed orthopyroxene activity also showsa positive /ital f//sub O2/ dependence. If oxygen interstitials should be shown tobe unimportant in oxygen diffusion in oxides, then coupled mechanisms such ascountervacancy diffusion must be appealed to in order to explain the positive/ital f//sub O2/ dependence. Such processes are rate-limited by the diffusion ofmetal vacancies which also display a positive /ital f//sub O2/ dependence inolivine. Compared with data for silicon diffusion in forsterite, our dataindicate that oxygen is not the slowest diffusing species in olivine.

  15. Technical Update: Johnson Space Center system using a solid electrolytic cell in a remote location to measure oxygen fugacities in CO/CO2 controlled-atmosphere furnaces

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Williams, R. J.; Le, L.; Wagstaff, J.; Lofgren, G.; Lanier, A.; Carter, W.; Roshko, A.

    1993-01-01

    Details are given for the design and application of a (one atmosphere) redox-control system. This system differs from that given in NASA Technical Memorandum 58234 in that it uses a single solid-electrolytic cell in a remote location to measure the oxygen fugacities of multiple CO/CO2 controlled-atmosphere furnaces. This remote measurement extends the range of sample-furnace conditions that can be measured using a solid-electrolytic cell, and cuts costs by extending the life of the sensors and by minimizing the number of sensors in use. The system consists of a reference furnace and an exhaust-gas manifold. The reference furnace is designed according to the redox control system of NASA Technical Memorandum 58234, and any number of CO/CO2 controlled-atmosphere furnaces can be attached to the exhaust-gas manifold. Using the manifold, the exhaust gas from individual CO/CO2 controlled atmosphere furnaces can be diverted through the reference furnace, where a solid-electrolyte cell is used to read the ambient oxygen fugacity. The oxygen fugacity measured in the reference furnace can then be used to calculate the oxygen fugacity in the individual CO/CO2 controlled-atmosphere furnace. A BASIC computer program was developed to expedite this calculation.

  16. Oxygen fugacity dependence of Ni, Co, Mn, Cr, V, and Si partitioning between liquid metal and magnesiowüstite at 9-18 GPa and 2200°C

    NASA Astrophysics Data System (ADS)

    Gessmann, C. K.; Rubie, D. C.; McCammon, C. A.

    1999-06-01

    The oxidation states of Ni, Co, Mn, Cr, V and Si in magnesiowüstite have been determined in metal-oxide distribution experiments using a multi anvil apparatus at 9 and 18 GPa and 2200°C as a function of oxygen fugacity. Despite limitations to control oxygen fugacity by applying conventional buffering methods in high pressure experiments, a wide range of redox-conditions (3 log bar units) has been imposed to the metal-oxide partitioning experiments by varying the Si/O ratio of the starting material. The oxygen fugacity was calculated according to the Fe-FeO equilibrium between the run products. The ability to impose different oxygen fugacities by varying the starting material is confirmed by the large variation of element partitioning coefficients obtained at constant pressure and temperature. The calculated valences at both pressures investigated are divalent for Co, Mn, V and 4+ for Si. The results for Cr (˜2.5+) and Ni (˜1.5+) indicate non-ideal mixing of Ni and Cr in at least one of the product phases. Because the application of 1 bar activity coefficients for Ni and Cr in metal alloys does not change these valences, non-ideal mixing in magnesiowüstite or significantly larger non-ideal mixing properties of Ni and Cr in metal alloys at high pressure are likely to be responsible for the apparent valences. Omitting such non-ideal mixing properties when extrapolating high-pressure element partitioning data may be significant. The elements Cr, V and Mn become siderophile (D Mmet/ox > 1) at 9-18 GPa and 2200°C at oxygen fugacities below IW-2.7 to IW-3.7. Considering, in addition, the influence of temperature, the depletion of Cr, Mn and V in the Earth's mantle may be due, at least partly, to siderophile behavior at high pressure and temperature.

  17. Armalcolite stability as a function of pressure and oxygen fugacity. [in lunar mare rocks

    NASA Technical Reports Server (NTRS)

    Friel, J. J.; Harker, R. I.; Ulmer, G. C.

    1977-01-01

    High-pressure experiments in a piston-cylinder apparatus with silver-palladium containers were conducted to study the stability of synthetic armalcolite, (Fe,Mg)Ti2O5, as a function of pressures up to 15 kbar at 1000, 1100, and 1200 C. Three armalcolite compositions were used, each with an initial Fe/(Fe + Mg) ratio of 0.5. Composition I contained no zirconium, whereas compositions II and III were prepared with 4% and 10% by weight ZrO2. Difference in stability due to the presence or absence of Zr in these synthetic armalcolites is discussed. 4 wt% ZrO2 appears to saturate armalcolite at 1200 C and 1 atm. Zirconium is found to reduce armalcolite stability, but this effect is not great. The stability of armalcolite as a function of oxygen fugacity is determined thermogravimetrically at 1200 C and 1 atm. Knowledge of the range of oxygen fugacity at which armalcolite is stable and of the equilibrium oxide mineral assemblages outside this range provides important information about lunar cooling histories in terms of oxygen fugacity.

  18. Using vanadium in spinel as a sensor of oxygen fugacity in meteorites: Applications to Mars, Vesta, and other asteroids.

    SciTech Connect

    Righter, K.; Sutton, S.; Danielson, L.; Pando, K.; Le, L.; Newville, M.

    2009-03-23

    Some meteorites do not contain mineral assemblages required to apply traditional oxy-barometers. Here we introduce a technique using vanadium X-ray absorption features in spinels to characterize the oxygen fugacity of meteoritic dunites, pyroxenites, and chondrites. Igneous and metamorphic rocks commonly contain a mineral assemblage that allows oxygen fugacity to be calculated or constrained such as FeTi oxides, olivine-opx-spinel, or some other oxybarometer. Some rocks, however, contain a limited mineral assemblage and do not provide constraints on fO{sub 2} using mineral equilibria. Good examples of the latter are orthopyroxenites or dunites, such as diogenites, ALH 84001, chassignites, or brachinites. In fact it is no surprise that the fO{sub 2} of many of these samples is not well known, other than being 'reduced' and below the metal saturation value. In order to bridge this gap in our understanding, we have initiated a study of V in chromites in natural meteorite samples. Because the V pre-edge peak intensity and energy in chromites varies with fO{sub 2}, and this has been calibrated over a large fO{sub 2} range, we can apply this relation to rocks for which we otherwise have no fO{sub 2} constraints.

  19. Tracing Oxygen Fugacity in Asteroids and Meteorites Through Olivine Composition

    NASA Technical Reports Server (NTRS)

    Sunshine, J. M.; Bus, S. J.; Burbine, T. H.; McCoy, T. J.

    2005-01-01

    Olivine absorptions are known to dominate telescopic spectra of several asteroids. Among the meteorite collection, three groups (excluding Martian meteorites), the pallasites, brachinites, and R group chondrites are plausible analogs to olivine-rich asteroids in that they are dominated by olivine. These meteorite groups have distinct petrologic origins. The primitive achondrite brachinites (which include both depleted and undeleted subgroups) are products of relatively minor differentiation and evolved in oxidizing environments. R chondrites are also thought to have formed in high oxygen states, but are closely related to ordinary chondrites (yet with their own distinct compositions and oxygen isotopic signatures). In contrast, pallasites, widely thought to be mantle components from much more evolved bodies, formed in more reducing environments. Petrologic indicators that are identifiable in spectral data must be used in order to infer the petrologic history of asteroids from surveys of their actual population. As discussed below, olivine composition (e.g. Fa#) can provide key constraints in exploring the origin and significance of olivine dominated asteroids.

  20. A system using solid ceramic oxygen electrolyte cells to measure oxygen fugacities in gas-mixing systems

    NASA Technical Reports Server (NTRS)

    Williams, R. J.; Mullins, O.

    1976-01-01

    Details are given for the construction and operation of a 101.3 kN/sq m (1 atmosphere) redox control system. A solid ceramic oxygen electrolyte cell is used to monitor the oxygen fugacity in the furnace. The system consists of a vertical quench, gas mixing furnace with heads designed for mounting the electrolyte cell and with facilities for inserting and removing the samples. The system also contains the high input impedance electronics necessary for measurements, a simplified version of a gas mixing apparatus, and devices for experiments under controlled rates of change relative to temperature and redox state. The calibration and maintenance of the system are discussed.

  1. SNC Oxygen Fugacity Recorded in Pyroxenes and its Implications for the Oxidation State of the Martian Interior: An Experimental and Analytical Study

    NASA Technical Reports Server (NTRS)

    McCanta, M. C.; Rutherford, M. J.

    2003-01-01

    Knowledge of the oxidation state of a magma is critical as it is one of the parameters which controls the nature and composition of the resulting crystals. In terrestrial magmatic systems, oxygen fugacity (fo2) is known to vary by over nine orders of magnitude. With variations of this magnitude, understanding the compositional differences, phase changes, and crystallization sequence variations, caused by the magma fo2, is essential in deciphering the origin of all igneous rocks. Magmatic oxidation state is of great importance in that it reflects the degree of oxidation of the source region and can provide insight into magmatic processes, such as metasomatism, degassing, and assimilation, which may have changed them. Carmichael [1991] argues that most magmas are unlikely to have their redox states altered from those of their source region. This assumption allows for estimation of the oxidation state of planetary interiors. Conversely, it is known that the fo2 of the magma can be affected by other processes, which occur outside of the source region and therefore, the oxidation state may record those too. Processes which could overprint source region fugacities include melt dehydrogenation or other volatile loss, water or melt infiltration, or assimilation of oxidized or reduced wallrock. Understanding which of these processes is responsible for the redox state of a magma can provide crucial information regarding igneous processes and other forces active in the region. The composition of the SNC basalts and their widely varying proposed oxidation states raise some interesting questions. Do the SNC meteorites have an oxidized or reduced signature? What was the oxygen fugacity of the SNC source region at the time of melt generation? Is the fugacity calculated for the various SNC samples the fugacity of the magma source region or was it overprinted by later events? Are there different oxidation states in the Martian interior or a single one? This proposal seeks to address all of these questions.

  2. Ultra-oxidized redox conditions in subduction mélanges? Decoupling between oxygen fugacity and oxygen availability in a metasomatic environment

    NASA Astrophysics Data System (ADS)

    Tumiati, Simone; Poli, Stefano; Godard, Gaston; Martin, Silvana; Malaspina, Nadia

    2014-05-01

    The manganese ore of Praborna (Italian Western Alps) is embedded within a metasedimentary sequence belonging to a subduction mélange equilibrated at high-pressure conditions (~2 GPa) during the Alpine orogenesis and record environmental conditions typical for a subducting slab setting. The pervasive veining of the ore and the growth of "pegmatoid" HP minerals suggest an open system with large fluid/rock ratio and a strong interaction with slab-derived fluids. This natural case provides an excellent natural laboratory for the study of the oxygen mobility in subducting oceanic slab mélanges at high-P, fluid-present conditions. The Mn-rich rocks in contact with the underlying sulphide- and magnetite-bearing metabasites, in textural and chemical equilibrium with the veins, contain braunite (Mn2+Mn3+6SiO12) + quartz + pyroxmangite (Mn2+SiO3), and minor hematite, omphacite, the epidote piemontite and spessartine-rich garnet. Similarly to Fe-bearing systems, Mn oxides and silicates can be regarded as natural redox-sensors, capable to monitor a process of fluid infiltration that could fix externally the intensive variable fO2 (or ?O2). Sulphides are absent in these Mn-rich rocks, sulphates (barite, celestine) occurring instead together with As- and Sb oxides and silicates. On the basis of the observed assemblages, new thermodynamic calculations show that these mélange rocks are characterized by unrealistic ultra-oxidized states (?FMQ up to +12) if the chemical potential of oxygen (or the oxygen fugacity) is accounted for. However, if the molar quantity of oxygen in excess with reference to with reference to a system where all iron and manganese are considered to be ferrous, the ore appears only moderately oxidized, and comparable to typical subduction-slab mafic eclogites. Therefore, oxygen can be hardly considered a perfectly mobile component, even in the most favourable conditions. In the Earth's interior redox reactions take place mainly among solid oxides and silicates, as oxygen is a negligible species in the fluid phase, if any. Therefore, the description of the redox state of petrological systems requires the introduction of the conjugate oxygen molar quantity, becoming the oxygen chemical potential a dependent variable. As a consequence, µO2, and therefore fO2, should not be regarded as long-range properties, indicative of the redox state of the entire rock column of a subduction zone, from the dehydrating oceanic crust to the overlying mantle wedge. On a more general basis, the comparison of fO2s retrieved from different bulk compositions and different phase assemblages may lead to apparent redox heterogeneities. On the contrary, the distribution of oxygen is expected to be much more continuous moving from a maximum in the subducted mafic eclogites, formed from the altered oceanic basalts and gabbros, down (upward) to a minimum in the peridotites of the mantle hanging-wall.

  3. Oxygen fugacity profile of the oceanic upper mantle and the depth of redox melting beneath ridges

    NASA Astrophysics Data System (ADS)

    Davis, F. A.; Cottrell, E.

    2014-12-01

    Oxygen fugacity (fO2) of a mantle mineral assemblage, controlled primarily by Fe redox chemistry, sets the depth of the diamond to carbonated melt reaction (DCO3). Near-surface fO2 recorded by primitive MORB glasses and abyssal peridotites anchor the fO2 profile of the mantle at depth. If the fO2-depth relationship of the mantle is known, then the depth of the DCO3 can be predicted. Alternatively, if the DCO3 can be detected geophysically, then its depth can be used to infer physical and chemical characteristics of upwelling mantle. We present an expanded version of a model of the fO2-depth profile of adiabatically upwelling mantle first presented by Stagno et al. (2013), kindly provided by D. Frost. The model uses a chemical mass balance and empirical fits to experimental data to calculate compositions and modes of mantle minerals at specified P, T, and bulk Fe3+/?Fe. We added P and T dependences to the partitioning of Al and Ca to better simulate the mineralogical changes in peridotite at depth and included majorite component in garnet to increase the depth range of the model. We calculate fO2 from the mineral assemblages using the grt-ol-opx oxybarometer (Stagno et al., 2013). The onset of carbonated melting occurs at the intersection of a Fe3+/?Fe isopleth with the DCO3. Upwelling mantle is tied to the DCO3 until all native C is oxidized to form carbonated melts by reduction of Fe3+ to Fe2+. The depth of intersection of a parcel of mantle with the DCO3 is a function of bulk Fe3+/?Fe, potential temperature, and bulk composition. We predict that fertile mantle (PUM) along a 1400 °C adiabat, with 50 ppm bulk C, and Fe3+/?Fe = 0.05 after C oxidation begins redox melting at a depth of 250 km. The model contextualizes observations of MORB redox chemistry. Because fertile peridotite is richer in Al2O3, the Fe2O3-bearing components of garnet are diluted leading to lower fO2 at a given depth compared to refractory mantle under the same conditions. This may indicate that the negativecorrelation observed between enrichment and fO2 at ridges (Cottrell and Kelley, 2013) is a consequence of the increased fertility of remixing recycled crust into the mantle. Addition of reduced C to the mantle during subduction can also explain this observation. Geophysical detection of the depth of the DCO3 may resolve these hypotheses.

  4. The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks

    NASA Astrophysics Data System (ADS)

    Stagno, V.; Frost, D. J.; McCammon, C. A.; Mohseni, H.; Fei, Y.

    2015-02-01

    The oxygen fugacity ( fO2) at which carbonate-bearing melts are reduced to either graphite or diamond in synthetic eclogite compositions has been measured in multi-anvil experiments performed at pressures between 3 and 7 GPa and temperatures between 800 and 1,300 °C using iron-iridium and iron-platinum alloys as sliding redox sensors. The determined oxygen fugacities buffered by the coexistence of elemental carbon and carbonate-bearing melt are approximately 1 log unit below thermodynamic calculations for a similar redox buffering equilibrium involving only solid phases. The measured oxygen fugacities normalized to the fayalite-magnetite-quartz oxygen buffer decrease with temperature from ~-0.8 to ~-1.7 log units at 3 GPa, most likely as a result of increasing dilution of the carbonate liquid with silicate. The normalized fO2 values also decrease with pressure and show a similar decrease with temperature at 6 GPa from ~-1.5 log units at 1,100 °C to ~-2.4 log units at 1,300 °C. In contrast to previous arguments, the stability field of the carbonate-bearing melt extends to lower oxygen fugacity in eclogite rocks than in peridotite rocks, which implies a wider range of conditions over which carbon remains mobile in natural eclogites. The raised prevalence of diamonds in eclogites compared to peridotites may, therefore, reflect more effective scavenging of carbon by melts in these rocks. The ferric iron contents of monomineralic layers of clinopyroxene and garnet contained in the same experiments were also measured using Mössbauer spectroscopy. A preliminary model was derived for determining the fO2 of eclogitic rocks from the compositions of garnet and clinopyroxene, including the Fe3+/?Fe ratio of garnet, using the equilibrium, The model, which reproduces the independently determined fO2 of the experimental data to within 0.5 log units, can be used to estimate the fO2 of ultrahigh-pressure metamorphic eclogites and cratonic eclogitic xenoliths. Although there are very few analyses of garnet Fe3+/?Fe ratios from eclogite samples, the range in fO2 recorded by available eclogitic xenoliths is similar to that reported for peridotitic xenoliths and generally within the graphite/diamond stability field. Estimates for the average bulk Fe3+/?Fe ratio of modern basaltic oceanic crust, however, are higher than the values for most of these xenoliths, and upon subduction, crustal carbon is likely to remain in the carbonate stability field to depths of at least 250 km. If eclogite xenoliths originated from subducted oceanic crust, then their generally lower fO2 most likely reflects either lower initial basaltic Fe3+/?Fe ratios, loss of Fe2O3 through partial melting or the initial presence of organic carbon.

  5. Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: Implications for degassing processes and oxygen fugacities of basaltic systems

    NASA Astrophysics Data System (ADS)

    Moor, J. M.; Fischer, T. P.; Sharp, Z. D.; King, P. L.; Wilke, M.; Botcharnikov, R. E.; Cottrell, E.; Zelenski, M.; Marty, B.; Klimm, K.; Rivard, C.; Ayalew, D.; Ramirez, C.; Kelley, K. A.

    2013-10-01

    We investigate the relationship between sulfur and oxygen fugacity at Erta Ale and Masaya volcanoes. Oxygen fugacity was assessed utilizing Fe3+/?Fe and major element compositions measured in olivine-hosted melt inclusions and matrix glasses. Erta Ale melts have Fe3+/?Fe of 0.15-0.16, reflecting fO2 of ?QFM 0.0 ± 0.3, which is indistinguishable from fO2 calculated from CO2/CO ratios in high-temperature gases. Masaya is more oxidized at ?QFM +1.7 ± 0.4, typical of arc settings. Sulfur isotope compositions of gases and scoria at Erta Ale (?34Sgas - 0.5‰; ?34Sscoria + 0.9‰) and Masaya (?34Sgas + 4.8‰; ?34Sscoria + 7.4‰) reflect distinct sulfur sources, as well as isotopic fractionation during degassing (equilibrium and kinetic fractionation effects). Sulfur speciation in melts plays an important role in isotope fractionation during degassing and S6+/?S is <0.07 in Erta Ale melt inclusions compared to >0.67 in Masaya melt inclusions. No change is observed in Fe3+/?Fe or S6+/?S with extent of S degassing at Erta Ale, indicating negligible effect on fO2, and further suggesting that H2S is the dominant gas species exsolved from the S2--rich melt (i.e., no redistribution of electrons). High SO2/H2S observed in Erta Ale gas emissions is due to gas re-equilibration at low pressure and fixed fO2. Sulfur budget considerations indicate that the majority of S injected into the systems is emitted as gas, which is therefore representative of the magmatic S isotope composition. The composition of the Masaya gas plume (+4.8‰) cannot be explained by fractionation effects but rather reflects recycling of high ?34S oxidized sulfur through the subduction zone.

  6. A short timescale for changing oxygen fugacity in the solar nebula revealed by high-resolution 26

    E-print Network

    Manning, Craig

    A short timescale for changing oxygen fugacity in the solar nebula revealed by high-resolution 26 Al­26 Mg dating of CAI rims Justin I. Simon a,*, Edward D. Young a,b , Sara S. Russell c , Eric K of Mineralogy, Natural History Museum, Cromwell Road London, SW7 7BD, UK Received 4 April 2005; received

  7. High Pressure Effects on the Iron-Iron Oxide and Nickel-Nickel Oxide Oxygen Fugacity Buffers

    E-print Network

    High Pressure Effects on the Iron-Iron Oxide and Nickel- Nickel Oxide Oxygen Fugacity Buffers and volume difference between the metal-oxide pairs Fe-FeO and Ni-NiO were measured using synchrotron x interpretation of high pressure experiments, specifically Fe-Ni exchange between metallic and oxide phases

  8. Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.

    PubMed

    Righter, Kevin

    2015-09-01

    A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history. PMID:26037825

  9. Magma Ocean Depth and Oxygen Fugacity in the Early Earth—Implications for Biochemistry

    NASA Astrophysics Data System (ADS)

    Righter, Kevin

    2015-09-01

    A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.

  10. Fe3+ partitioning during basalt differentiation on Mars: insights into the oxygen fugacity of the shergottite mantle source(s).

    NASA Astrophysics Data System (ADS)

    Medard, E.; Martin, A. M.; Collinet, M.; Righter, K.; Grove, T. L.; Newville, M.; Lanzirotti, A.

    2014-12-01

    The partitioning of Fe3+ between silicate melts and minerals is a key parameter to understand magmatic processes, as it is directly linked to oxygen fugacity (fO2). fO2 is, a priori, not a constant during magmatic processes, and its evolution depends on the compatibility of Fe3+. We have experimentally determined the partition coefficients of Fe3+ between augite, pigeonite, and silicate melt, and use them to constrain the fO2of the martian mantle and of differentiated martian basalts. A series of experiments on various martian basaltic compositions were performed under controlled fO2 in one-atmosphere gas-mixing furnaces. Fe3+/Fetotal ratios in silicate melts and pyroxenes were determined using synchrotron Fe K-edge XANES on the 13 IDE beamline at APS (Argonne). Fe3+ mineral/melt partition coefficients (DFe3+) for augite and pigeonite were obtained with a relative uncertainty of 10-15 %. Both are constant over a wide range of oxygen fugacity (FMQ-2.5 to FMQ+2.0). DFe3+ for augite and pigeonite are broadly consistent with previous data by [1], but DFe3+ for augite is significantly higher (by a factor of 2) than the indirect determinations of [2]. Since augites in [2] are extremely poor in iron compared to ours (0.18 wt% vs 13 wt% FeO), this strongly suggests that DFe3+ varies with Mg#, indicating that Fe3+is more compatible than previously thought in terrestrial mantle pyroxenes (3 wt% FeO) as well. Crystallization paths for shergottite parental melts have been calculated using the MELTS software, combined with our partition coefficients. fO2 in the residual melts is calculated from the models of [3] and [4]. It stays relatively constant at high temperatures, but increases very strongly during the latest stages of crystallization. These results explain the large range of fO2 determined in enriched shergottites. In order to estimate the fO2 of the martian mantle, only the highest temperature phases in the most primitive martian samples should be used. The most primitive shergottites record a mantle fO2 around FMQ-2.5, consistent with the lowest fO2estimated for surface basalts [5]. [1] McCanta et al. (2004) Am Min 89:1685-1693; [2] Mallmann and O'Neill (2009) J Petrol 50:1765-1794; [3] Righter et al. (2013) Am Min 98:616-628; [4] Kress and Carmichael (1991) CMP 108:82-92; [5] Schmidt ME et al. (2014) EPSL 384:198-208.

  11. Temperature and Oxygen Fugacity Constraints on CK and R Chondrites and Implications for Water and Oxidation in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Righter, K.; Neff, K. E.

    2007-01-01

    Recent chondritic meteorite finds in Antarctica have included CB, CH, CK and R chondrites, the latter two of which are among the most oxidized materials found in meteorite collections. In this study we present petrographic and mineralogic data for a suite of CK and R chondrites, and compare to previous studies of CK and R, as well as some CV chondrites. In particular we focus on the opaque minerals magnetite, chromite, sulfides, and metal as well as unusual silicates hornblende, biotite, and plagioclase. Several mineral thermometers and oxy-barometers are utilized to calculate temperatures and oxygen fugacities for these unusual meteorites compared to other more common chondrite groups. R and CK chondrites show lower equilibrium temperatures than ordinary chondrites, even though they are at similar petrologic grades (e.g., thermal type 6). Oxygen fugacity calculated for CV and R chondrites ranges from values near the iron-wustite (IW) oxygen buffer to near the fayalite-magnetite-quartz (FMQ) buffer. In comparison, the fO2 recorded by ilmenite-magnetite pairs from CK chondrites are much higher, from FMQ+3.1 to FMQ+5.2. The latter values are the highest recorded for materials in meteorites, and place some constraints on the formation conditions of these magnetite-bearing chondrites. Differences between mineralogic and O isotopic compositions of CK and R chondrites suggest two different oxidation mechanisms, which may be due to high and low water: rock ratios during metamorphism, or to different fluid compositions, or both.

  12. Vanadium Stable Isotope Variations in the Mariana Island Arc: Oxygen Fugacity Versus Magmatic Differentiation

    NASA Astrophysics Data System (ADS)

    Prytulak, J.; Elliott, T.; Halliday, A.; Kelley, K. A.; Nielsen, S. G.; Plank, T.; Schauble, E. A.

    2010-12-01

    A widely held view in igneous geochemistry is that the sub-arc mantle has elevated oxygen fugacity (fO2) compared to the upper mantle source of Mid-Ocean Ridge basalts (MORB). However, debate on the fO2 of the sub-arc mantle has arisen from examination of V/Sc ratios [1], which suggest no difference between the sub-arc mantle and the MORB source. This supposition is contrasted by recent ?-XANES determination of Fe3+/Fe? in olivine-hosted melt inclusions [2], which supports the more traditional notion of an oxidized source for arc lavas. We have recently developed a method for high precision analyses of stable vanadium (V) isotope variations, able to resolve isotope fractionation to a precision of 0.15‰ 2sd [3, 4]. Theoretical calculations predict that stable V isotope fractionation should be robustly related to changes in fO2, with heavier isotopes favored in oxidizing conditions. Furthermore, V isotopes should be immune to alteration and late-stage degassing processes that could affect fO2 determined by Fe3+/Fe? ratios. Therefore, examination of this new isotopic tracer in arc lavas may provide insight into the fO2 conditions of their source. Here we present the first stable V isotope measurements (reported as ?51V relative to a standard defined as 0‰) on subduction zone inputs (sediments, MORB) and outputs (arc lavas). We have focused initial efforts on well-characterized lavas from the Mariana central island province [5] and subducting sediment and underlying MORB from ODP Site 801, just outboard of the Mariana trench [6]. We find a surprisingly large, resolvable range in ?51V of the arc lavas of almost 0.8‰, which co-varies with SiO2, CaO, and V/Sc ratios. Co-variation of ?51V with SiO2 and CaO is suggestive of possible influence of clinopyroxene fractionation on the isotope composition. We explore the affects of magmatic differentiation and causes of ?51V inter-suite variability in arc lavas versus the ?51V signature of MORB. [1] Lee, C.T.A., Leeman, W.P., Canil, D., Li, Z.X.A. 2005. J. Pet. 46, 2313-2336. [2] Kelley, K.A., Cottrell, E. 2009. Science, 325, 605-607. [3] Nielsen S.G., Prytulak J., Halliday A.N. 2010. Geost. Geoanal. Res., accepted. [4] Prytulak J., Nielsen S.G., Halliday A.N. 2010. Geost. Geoanal. Res., accepted. [5] Elliott,T., Plank, T., Zindler, A., White, W., Bourdon, B. 1997. J. Geophys. Res. 102, 14991-15019. [6] Kelley, K.A., Plank, T., Ludden, J., Staudigel, H. 2003. Geochem. Geophys. Geosyst. 4, doi: 10.1029/2002GC000435.

  13. Viscosity of carbonate-rich melts under different oxygen fugacity conditions

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Hess, Kai-Uwe; Cimarelli, Corrado; Dingwell, Donald B.

    2015-04-01

    Viscosity is a fundamental property of many materials and its changes affects the fluid dynamics of natural system as well as industrial processes. The mobility of carbonatitic melts, which are carbonate-rich and very fluid melts, has attracted renewed interest in both earth science and industry. In fact, these melts are considered the main transport agent of carbon from the mantle to the crust and may be intimately linked to the generation of kimberlites. At the same time lithium, potassium and sodium carbonate are used as electrolytes in molten carbonate fuel cells which operate at high temperatures (~650° C) for the production of electricity without CO2 emissions. Accurate measurement of the transport property (i.e. viscosity) of carbonatitic melts is a priority in order to understand the carbonatite mobility and reaction rates. Additionally, obtaining accurate viscosity measurements of such low viscosity melts is however an experimental challenge due to volatility, very low torques and chemical melt instability in the viscometer. To overcome these limitations we have customized a Modular Compact Rheometer (MCR 502 from Anton Paar) ad hoc equipped with 2 narrow gap concentric-cylinder geometries of steel and Pt-Au. The rheometer is characterized by an air-bearing-supported synchronous motor with torque ranging between 0.01 ?Nm and 230 mNm (resolution of 0.1 nNm), achieving very low viscosity measurements in the order of mPa s, temperatures up to 1000° C and shear rates ranging between 1 and 100 sec-1. These experimental conditions well match the temperature-viscosity-shear rate window relevant for carbonate melts. Here we present the calibration of the rheometer and the results of a rheological characterization study on a series of very low viscous synthetic and natural carbonatitic melts at different oxygen fugacity (air and CO2 saturated atmosphere). Viscosity measurements on carbonate melts have been performed in the temperature range between ~650 and 1000° C. Measured values range between ~2 and 20 mPa sec. The results point out that the viscosity of synthetic samples is inversely related to the cations radius, being Li2CO3 melt the more viscous. Viscosity measurements on natural samples (carbonatitic lava from Lengai volcano, Tanzania), reveal a higher viscosity (~1000 mPa s) and a dramatic higher activation energy than the synthetic samples. Our results have been compared with literature data in order to determine the effect of chemical composition and oxygen fugacity conditions on the liquid viscosity of carbonatitic melts.

  14. Oxidation state of vanadium in glass and olivine from terrestrial and Martian basalts: Implications for oxygen fugacity estimates

    SciTech Connect

    Karner, J.M.; Sutton, S.R.; Papike, J.J.; Shearer, C.K.; Newville, M.

    2005-04-22

    Several studies have demonstrated the usefulness of synchrotron micro x-ray absorption near-edge structure ({mu}-XANES or SmX) spectroscopy in determining the oxidation state of elements in planetary materials. Delaney et al. used SmX to investigate the oxidation states of Fe, Cr, and V in extraterrestrial samples, and they later determined the oxidation state of V in experimental glasses as a function of oxygen fugacity. More recently, Sutton et al. studied the oxidation state of V in meteoritic fassaite and also in synthetic pyroxene. This report discusses our first results using SmX spectroscopy to determine the oxidation state of V in olivine and glass from a terrestrial ocean floor (OF) basalt and a martian basaltic shergottite meteorite, Dar Al Gani 476. The goal of this and future studies is to use V (and Cr, Fe) valence states to determine the oxygen fugacity of basalts from different planetary bodies.

  15. Oxygen Fugacity at High Pressure: Equations of State of Metal-Oxide Pairs

    NASA Technical Reports Server (NTRS)

    Campbell A. J.; Danielson, L.; Righter, K.; Wang, Y.; Davidson, G.; Wang, Y.

    2006-01-01

    Oxygen fugacity (fO2) varies by orders of magnitude in nature, and can induce profound changes in the chemical state of a substance, and also in the chemical equilibrium of multicomponent systems. One prominent area in high pressure geochemistry, in which fO2 is widely recognized as a principal controlling factor, is that of metal-silicate partitioning of siderophile trace elements (e.g., [1]). Numerous experiments have shown that high pressures and temperatures can significantly affect metal/silicate partitioning of siderophile and moderately siderophile elements. Parameterization of these experimental results over P, T, X, and fO2 can allow the observed siderophile element composition of the mantle to be associated with particular thermodynamic conditions [2]. However, this is best done only if quantitative control exists over each thermodynamic variable relevant to the experiments. The fO2 values for many of these partitioning experiments were determined relative to a particular metal-oxide buffer (e.g., Fe-FeO (IW), Ni-NiO (NNO), Co-CoO, Re-ReO2 (RRO)), but the parameterization of all experimental results is weakened by the fact that the pressure-induced relative changes between these buffer systems are imprecisely known.

  16. Using Vanadium in Spinel as a Sensor of Oxygen Fugacity in Meteorites: Applications to Mars, Vesta, and Other Asteroids

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S.; Danielson, L.; Le, L.; Newville, M.; Pando, K.

    2009-01-01

    Igneous and metamorphic rocks commonly contain a mineral assemblage that allows oxygen fugacity to be calculated or constrained such as FeTi oxides, olivine-opx-spinel, or some other oxybarometer [1]. Some rocks, however, contain a limited mineral assemblage and do not provide constraints on fO2 using mineral equilibria. Good examples of the latter are orthopyroxenites or dunites, such as diogenites, ALH 84001, chassignites, or brachinites. In fact it is no surprise that the fO2 of many of these samples is not well known, other than being "reduced" and below the metal saturation value. In order to bridge this gap in our understanding, we have initiated a study of V in chromites in natural meteorite samples. Because the V pre-edge peak intensity and energy in chromites varies with fO2 (Fig. 1) [2], and this has been calibrated over a large fO 2 range, we can apply this relation to rocks for which we otherwise have no fO2 constraints.

  17. The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle

    SciTech Connect

    E Cottrell; K Kelley

    2011-12-31

    Micro-analytical determination of Fe{sup 3+}/{Sigma}Fe ratios in mid-ocean ridge basalt (MORB) glasses using micro X-ray absorption near edge structure ({mu}-XANES) spectroscopy reveals a substantially more oxidized upper mantle than determined by previous studies. Here, we show that global MORBs yield average Fe{sup 3+}/{Sigma}Fe ratios of 0.16 {+-} 0.01 (n = 103), which trace back to primary MORB melts equilibrated at the conditions of the quartz-fayalite-magnetite (QFM) buffer. Our results necessitate an upward revision of the Fe{sup 3+}/{Sigma}Fe ratios of MORBs, mantle oxygen fugacity, and the ferric iron content of the mantle relative to previous wet chemical determinations. We show that only 0.01 (absolute, or < 10%) of the difference between Fe{sup 3+}/{Sigma}Fe ratios determined by micro-colorimety and XANES can be attributed to the Moessbauer-based XANES calibration. The difference must instead derive from a bias between micro-colorimetry performed on experimental vs. natural basalts. Co-variations of Fe{sup 3+}/{Sigma}Fe ratios in global MORB with indices of low-pressure fractional crystallization are consistent with Fe{sup 3+} behaving incompatibly in shallow MORB magma chambers. MORB Fe{sup 3+}/{Sigma}Fe ratios do not, however, vary with indices of the extent of mantle melting (e.g., Na{sub 2}O(8)) or water concentration. We offer two hypotheses to explain these observations: The bulk partition coefficient of Fe{sup 3+} may be higher during peridotite melting than previously thought, and may vary with temperature, or redox exchange between sulfide and sulfate species could buffer mantle melting at {approx} QFM. Both explanations, in combination with the measured MORB Fe{sup 3+}/{Sigma}Fe ratios, point to a fertile MORB source with greater than 0.3 wt.% Fe{sub 2}O{sub 3}.

  18. Magnesium and titanium partitioning between anorthite and Type B CAI liquid: Dependence on oxygen fugacity and liquid composition

    NASA Astrophysics Data System (ADS)

    Peters, Mark T.; Shaffer, Elizabeth E.; Burnett, Donald S.; Kim, Soon Sam

    1995-07-01

    Experiments were conducted in air and at low oxygen fugacity (fO2) to evaluate Mg and Ti partitioning between anorthite and liquid (DMg and DTi in a synthetic composition similar to that of a Type B Ca, AI-rich inclusion (CAI). The starting material showed a range of compositions, which allowed assessment of the composition dependence of DMg and DTi in this system. Additional experiments using a homogeneous split of the same material investigated the effect of oxygen fugacity on the partitioning of Ti3+ and Ti4+ between anorthite and liquid. The low foe charges were purple, consistent with the presence of significant amounts of Ti3+.This was verified by electron spin resonance (ESR) spectra, and quantitative estimates of Ti3+ contents were obtained using ESR. The Ti and Mg partition coefficients in the air run using the homogeneous starting material are similar (0.034 and 0.036, respectively) and consistent with those determined in other studies. However, DTi at low fO2 is slightly greater than DT; in the air experiments. Using Ti3+/total Ti from the ESR measurements, DTi3+ is calculated to be about 0.040. The range of compositions reveal a clustering of DMg and DTi within charges, but a wide range of Ds between charges of different composition. A well-defined inverse correlation exists between DMg and DTi. This variation is not due to temperature-dependence, but is instead due to the dependence of DMg and DTi on liquid composition (Si and Al in particular). DMg correlates positively with Si content and negatively with Al content, while DTi shows the opposite correlations. The results of these experiments have interesting implications for the petrogenesis of Type B CAIs and for substitution mechanisms of Mg, Ti4+, and Ti3+ into anorthite. Crystallization models for Type B CAIs permit certain predictions concerning trace element systematics in plagioclase. The Mg and Ti systematics are best explained by a fractional crystallization model where plagioclase crystallizes very late (>95% crystallization), and DTi3+. is equal to DTi4+. The results from our experiments support this model for the relative partitioning of Ti4+ and Ti3+ between plagioclase and liquid. In addition, the dependence of DMg, and DTi on the Si content of a Type B CAI liquid helps explain systematics expected during late-stage crystallization of plagioclase. The composition dependence of DMg and DTi also allows assessment of substitution mechanisms in anorthite using a crystallization reaction approach. Using these methods, a plausible mechanism for Mg involves substitution for tetrahedral A1 by the reaction Mg2+ + Si4+ = 2AI3+, consistent with that proposed by previous workers. The systematics are also consistent with Ti4+ and Ti3+ substitution for tetrahedral Si4+ by the reactions 2Al3+ + Ti4+ = Ca2+ + 2Si4+ and Al3+ + Ti3+ = Ca2+ + Si4+, respectively.

  19. Phase Relations of Peridotite at 21-24 GPa and Variable Oxygen Fugacity: Implications for the 660 km Discontinuity

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.; Frost, D. J.; Walter, M. J.; McCammon, C.; Nakamura, E.

    2001-12-01

    Experiments to determine the liquidus to solidus phase relations were performed on different peridotite model compositions: a pyrolite doped with trace elements, an undoped KLB-1 composition, and a primitive mantle composition (PM-1) made from a 9:1 mixture of natural lherzolite and andesite. The pyrolite and KLB-1 compositions, prepared as oxide mixes, were contained in Re-capsules, whereas the PM-1 composition was contained in C-capsules. The experiments were carried out using multianvil presses with 10/4 mm and 18/8 mm octahedral pressure cell configurations with cylindrical LaCrO3 heaters and axial W-Re thermocouples. Massive Re-containers with double sample holes allowed two compositions to be run simultaneously at identical conditions in some of the experiments. Both the thermal gradient and the oxygen fugacity are lower in the thick-walled diamond capsules relative to the Re-capsules. Within experimental uncertainties, the phase relations of the KLB-1 and pyrolite compositions in Re-capsules are identical in the 21-24 GPa range. The crystallization sequence is garnet-ferropericlase-Ca-perovskite (ga-fp-cpv) at 21 GPa, ga-fp-perovskite (pv)-cpv at 22 GPa, and fp-pv-ga-cpv at 23-24 GPa. The solidus is approximately coincident with the appearance of cpv. Ringwoodite is replaced by ga at near-solidus conditions at 21-22 GPa. The near-liquidus and near-solidus fp have Mg/(Mg+Fe) ratios of about 0.92 and 0.85, respectively, with compositions largely independent of pressure in the 21-24 GPa range. Whereas the majoritic ga formulas have cation sums of 8.00, assuming 12 oxygen atoms and no ferric Fe, the pv formulas have cation sums exceeding 8.00, possibly resulting from the presence of ferric iron. Mössbauer spectroscopy of a 23 GPa run product gives Fe3+/total Fe ratios of 0.19 in the quenched melt and 0.28 in the bulk solid assemblage, indicating that the perovskites are dominated by ferric iron. Addition of 1% metallic iron to the starting material in a 23 GPa experiment changed the crystallization sequence from fp-pv-ga to fp-ga-pv, indicating a relative destabilization of perovskite at reduced oxygen fugacity. Experiments on the PM-1 composition in C-capsules resulted in the crystallization sequence ga-fp-pv and fp-ga-pv at about 23 and 24 GPa, respectively. The relative stabilization of ga at the expense of pv in C-capsule experiments on PM-1 may be partly related to the slightly higher contents of Si, Al, and Ca in the PM-1 starting material. Based on the identical phase relations of the pyrolite and KLB-1 compositions and the overall similarity between the pyrolite and PM-1 compositions, the destabilization of pv is mainly due to the lower oxygen fugacity imposed by the C-capsule. The depth to the 660 km discontinuity may vary laterally as a function of the oxygen fugacity, with relatively oxidized regions resulting in a shallowing of the discontinuity. This effect may reduce the depression of the discontinuity in areas of cold subducted slabs. The replacement of ringwoodite by ga at high subsolidus temperatures implies that the high-T pv-forming reaction has positive dp/dT-slope, and hot plumes may consequently accelerate through the boundary. Such an acceleration would be enhanced or reduced, depending on whether the plume has lower or higher oxygen fugacity than the ambient mantle.

  20. Links between oxygen fugacity, slab fluids, and calc-alkaline differentiation of arc magmas (Invited)

    NASA Astrophysics Data System (ADS)

    Kelley, K. A.; Cottrell, E.; Brounce, M. N.

    2013-12-01

    Calc-alkaline differentiation, a process by which magmas become depleted in Fe early in their crystallization history, is observed in magmas at subduction zone settings and is thought to drive arc magmas towards the bulk composition of continental crust. Basaltic arc magmas may achieve calc-alkaline affinity through some combination of high magmatic H2O, which delays the crystallization of silicates (most notably plagioclase), and high magmatic oxygen fugacity (fO2), which enhances the onset of magnetite crystallization. The relative importance of H2O, fO2, and magmatic bulk composition in generating calc-alkaline magma series, however, is not yet clearly resolved. Here, we present new measurements of the oxidation state of Fe (expressed as Fe3+/?Fe ratio; a proxy for magmatic fO2), in combination with previously-published analyses, of mafic (Mg#?0.5) olivine-hosted melt inclusions from global arc volcanoes (Galunggung, Paricutin, Cerro Negro, and several volcnaoes from the Mariana and Aleutian arcs), acquired using X-ray Absorption Near Edge Structure spectroscopy. We use the Tholeiitic Index (THI) of Zimmer et al., 2010 to quantify the calc-alkaline affinity of arc magma series (<1 is more calc-alkaline, >1 is more tholeiitic). These volcanoes span a range of calc-alkaline affinity, with THI ranging from 0.65 to 1.3. The Fe3+/?Fe ratios of arc basalts, corrected for fractional crystallization to 6 wt.% MgO (i.e., Fe3+/?Fe6.0) range globally from 0.15-0.31 and all but Galunggung are more oxidized than the more tholeiitic basaltic glasses from the Mariana trough back-arc basin (THI=1.4; Fe3+/?Fe6.0=0.185) or normal MORB (THI=1.6; Fe3+/?Fe6.0=0.167×0.01). Our results show a strong correlation between THI and Fe3+/?Fe6.0 ratios at these volcanoes, such that more calc-alkaline magmas contain a greater proportion of oxidized Fe. At the same time, the maximum dissolved H2O contents of basaltic melt inclusions from these volcanoes also strongly correlate with THI, and with Fe3+/?Fe6.0 ratios (although H2O is not the direct cause of oxidation), which points to a slab-derived origin of both H2O and oxidation and thus potentially links slab-derived fluids to the generation of calc-alkaline magma series. These correlations also illustrate the challenge of separating the effects of H2O and fO2 on arc magmatic differentiation, as the two are difficult to isolate in nature. Yet, some volcanoes may shed light on this issue. Arc volcanoes with similar Fe3+/?Fe6.0 or H2O, but significantly different THI, may illustrate most clearly the isolated effects of the other variable.

  1. Partition coefficients for iron between plagioclase and basalt as a function of oxygen fugacity - Implications for Archean and lunar anorthosites

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.

    1992-01-01

    As a prelude to determinations of the content of total iron as FeO(T) in melts in equilibrium with calcic anorthosites, the partition coefficients (Ds) for FeO(T) between calcic plagioclase and basaltic melt were determined, as a function of oxygen fugacity (f(O2)), for a basaltic composition that occurs as matrices for plagioclase megacrysts. Results showed that, at the liquidus conditions, the value of D for FeO(T) between calcic plagioclase and tholeiitic basalt changed little (from 0.030 to 0.044) between the very low f(O2) of the iron-wustite buffer and that of the quartz-fayalite-magnetite (QFM) buffer. At fugacities above QFM, the value for D increased rapidly to 0.14 at the magnetite-hematite buffer and to 0.33 in air. The increase in D results from the fact that, at f(O2) below QFM, nearly all of the Fe is in the Fe(2+) state; above QFM, the Fe(3+)/Fe(2+) ratio in the melt increases rapidly, causing more Fe to enter the plagioclase which accepts Fe(3+) more readily than Fe(2+).

  2. An Experimental Study of Eu/Gd Partitioning Between a Shergottite Melt and Pigeonite: Implications for the Oxygen Fugacity of the Martian Interior

    NASA Technical Reports Server (NTRS)

    McCanta, M. C.; Rutherford, M. J.; Jones, J. H.

    2002-01-01

    We experimentally investigated the partitioning behavior of Eu/Gd between a synthetic shergottite melt and pigeonite as a function of oxygen fugacity. This has implications for the oxidation state of the source region of the martian meteorites. Additional information is contained in the original extended abstract.

  3. Intrinsic oxygen fugacity measurements on seven chondrites, a pallasite, and a tektite and the redox state of meteorite parent bodies

    USGS Publications Warehouse

    Brett, R.; Sato, M.

    1984-01-01

    Intrinsic oxygen-fugacity (fO2) measurements were made on five ordinary chondrites, a carbonaceous chondrite, an enstatite chondrite, a pallasite, and a tektite. Results are of the form of linear log fO2 - 1 T plots. Except for the enstatite chondrite, measured results agree well with calculated estimates by others. The tektite produced fO2 values well below the range measured for terrestrial and lunar rocks. The lowpressure atmospheric regime that is reported to follow large terrestrial explosions, coupled with a very high temperature, could produce glass with fO2 in the range measured. The meteorite Salta (pallasite) has low fO2 and lies close to Hvittis (E6). Unlike the other samples, results for Salta do not parallel the iron-wu??stite buffer, but are close to the fayalite-quartz-iron buffer in slope. Minor reduction by graphite appears to have taken place during metamorphism of ordinary chondrites. fO2 values of unequilibrated chondrites show large scatter during early heating suggesting that the constituent phases were exposed to a range of fO2 conditions. The samples equilibrated with respect to fO2 in relatively short time on heating. Equilibration with respect to fO2 in ordinary chondrites takes place between grades 3 and 4 of metamorphism. Application of P - T - fO2 relations in the system C-CO-CO2 indicates that the ordinary chondrites were metamorphosed at pressures of 3-20 bars, as it appears that they lay on the graphite surface. A steep positive thermal gradient in a meteorite parent body lying at the graphite surface will produce thin reduced exterior, an oxidized near-surface layer, and an interior that is increasingly reduced with depth; a shallow thermal gradient will produce the reverse. A body heated by accretion on the outside will have a reduced exterior and oxidized interior. Meteorites from the same parent body clearly are not required to have similar redox states. ?? 1984.

  4. The effect of oxygen fugacity on the partitioning of nickel and cobalt between olivine, silicate melt, and metal

    NASA Technical Reports Server (NTRS)

    Ehlers, Karin; Grove, Timothy L.; Sisson, Thomas W.; Recca, Steven I.; Zervas, Deborah A.

    1992-01-01

    The effect of oxygen fugacity, f(O2), on the partitioning behavior of Ni and Co between olivine, silicate melt, and metal was investigated in the CaO-MgO-Al2O3-SiO2-FeO-Na2O system, an analogue of a chondrule composition from an ordinary chondrite. The conditions were 1350 C and 1 atm, with values of f(O2) varying between 10 exp -5.5 and 10 exp -12.6 atm (i.e., the f(O2) range relevant for crystal/liquid processes in terrestrial planets and meteorite parent bodies). Results of chemical analysis showed that the values of the Ni and Co partitioning coefficients begin to decrease at values of f(O2) that are about 3.9 log units below the nickel-nickel oxide and cobalt-cobalt oxide buffers, respectively, near the metal saturation for the chondrule analogue composition.

  5. Ultra-oxidized rocks in subduction mélanges? Decoupling between oxygen fugacity and oxygen availability in a Mn-rich metasomatic environment

    NASA Astrophysics Data System (ADS)

    Tumiati, Simone; Godard, Gaston; Martin, Silvana; Malaspina, Nadia; Poli, Stefano

    2015-06-01

    The manganese ore of Praborna (Italian Western Alps) is embedded within a metasedimentary sequence belonging to a subduction mélange equilibrated at high-pressure (HP) conditions (ca. 2 GPa) during the Alpine orogenesis. The pervasive veining of the ore and the growth of "pegmatoid" HP minerals suggest that these Mn-rich rocks strongly interacted with slab-derived fluids during HP metamorphism. These rocks are in textural and chemical equilibrium with the veins and in contact with sulphide- and magnetite-bearing metabasites at the bottom of the sequence. They contain braunite (Mn2+Mn3+6SiO12), quartz, pyroxmangite (Mn2+SiO3), and minor hematite, omphacite, piemontite and spessartine-rich garnet. Sulphides are absent in the Mn-rich rocks, whereas sulphates (barite, celestine) occur together with As- and Sb-oxides and silicates. This rock association provides an excellent natural laboratory to constrain the redox conditions in subducting oceanic slab mélanges at HP and fluid-present conditions. Similarly to Fe-bearing minerals, Mn oxides and silicates can be regarded as natural redox-sensors. A thermodynamic dataset for these Mn-bearing minerals is built, using literature data as well as new thermal expansion parameters for braunite aud pyrolusite, derived from experiments. Based on this dataset and the observed assemblages at Praborna, thermodynamic calculations show that these mélange rocks are characterised by ultra-oxidized conditions (?FMQ up to + 12.7) if the chemical potential of oxygen (or the oxygen fugacity fO2) is accounted for. On the other hand, if the molar quantity of oxygen is used as the independent state variable to quantify the bulk oxidation state, the ore appears only moderately oxidized and comparable to typical subduction-slab mafic eclogites. Such an apparent contradiction may happen in rock systems whenever oxygen is improperly considered as a perfectly mobile component. In the Earth's mantle, redox reactions take place mainly between solid oxides and silicates, because O2 is a negligible species in the fluid phase. Therefore, the description of the redox conditions of most petrological systems requires the introduction of an extensive variable, namely the oxygen molar quantity (nO2). As a consequence, the oxygen chemical potential, and thus fO2, becomes a dependent state variable, not univocally indicative of the redox conditions of the entire rock column of a subduction zone, from the dehydrating oceanic crust to the overlying mantle wedge. On a more general basis, the comparison of fO2 retrieved from different bulk compositions and different phase assemblages is sometimes challenging and should be undertaken with care. From the study of mélange rocks at Praborna, the distribution of oxygen at subduction zones could be modelled as an oxidation gradient, grading from a maximum in the subducted altered oceanic crust to a minimum in the overlying peridotites of the mantle hanging-wall.

  6. Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Sutton, S. R.; Papike, J. J.; Shearer, C. K.; Jones, J. H.; Newville, M.

    2004-01-01

    We have been developing an oxygen barometer based on the valence state of V (V(2+), V(3+), V(4+), and V(5+)) in solar system basaltic glasses. The V valence is determined by synchrotron micro x-ray absorption near edge structure (XANES), which uses x-ray absorption associated with core-electronic transitions (absorption edges) to reveal a pre-edge peak whose intensity is directly proportional to the valence state of an element. XANES has advantages over other techniques that determine elemental valence because measurements can be made non-destructively in air and in situ on conventional thin sections at a micrometer spatial resolution with elemental sensitivities of approx. 100 ppm. Recent results show that fO2 values derived from the V valence technique are consistent with fO2 estimates determined by other techniques for materials that crystallized above the IW buffer. The fO2's determined by V valence (IW-3.8 to IW-2) for the lunar pyroclastic glasses, however, are on the order of 1 to 2.8 log units below previous estimates. Furthermore, the calculated fO2's decrease with increasing TiO2 contents from the A17 VLT to the A17 Orange glasses. In order to investigate these results further, we have synthesized lunar green and orange glasses and examined them by XANES.

  7. Oxygen fugacity determined from iron oxidation state in natural (Mg,Fe)O ferropericlase: new insights for lower mantle diamond formation

    NASA Astrophysics Data System (ADS)

    Longo, M.; McCammon, C.; Bulanova, G.; Kaminsky, F. V.; Tappert, R.

    2009-12-01

    The most common mineral found in diamonds originating in the lower mantle is (Mg,Fe)O ferropericlase (more than 50 percent of occurrences). Since it is well known that the Fe3+ concentration in (Mg,Fe)O is sensitive to oxygen fugacity, even at high pressures, the determination of Fe3+ over Fe total in such inclusions provides a direct method for investigating lower mantle redox conditions during diamond formation. Therefore, the goal of this study is to measure Fe3+ using a new method, namely the flank method (EMPA) in (Mg,Fe)O lower mantle diamond inclusions from a wide range of sites worldwide in order to explore the variation of oxygen fugacity with chemical, physical and geographic parameters. Eighteen (Mg,Fe)O ferropericlase inclusions from ultra deep diamonds selected worldwide (four from Juina area, Brazil, two from Machado River, Brazil, and twelve from Ororoo, Australia) were analyzed by the flank method. Inclusions were all less than 50 microns in size. Our results follow the theoretical trend described by the synthetic samples, confirming high phase homogeneity for most of the samples. Flank method measurements show a large range of redox conditions for (Mg,Fe)O inclusions, with a Fe3+ over Fe total ratio varying between 1 and 15 percent, similar to results for a suite of much larger diameter inclusions that were studied using Mössbauer spectroscopy. Inclusions recovered from the same host diamond show a strong redox gradient, which leads to the conclusion of varying oxygen fugacity conditions involved in the formation of the inclusions. These observations combined with the geographical correlation observed among all inclusions measured in the present work and from previous studies in literature leads to the suggestion of other mechanisms than subducted slabs being involved in diamond formation. In order to provide insights on the mechanisms controlling the redox conditions at lower mantle depths and how a heterogeneous oxygen fugacity may affect the physical and chemical properties of the lower mantle, new measurements are planned to increase the data set on ferropericlase inclusions. Moreover, a multi disciplinary study involving cathodoluminescence studies combined to isotopic and optical studies is suggested for further work.

  8. Experimental study of trace element partitioning between enstatite and melt in enstatite chondrites at low oxygen fugacities and 5 GPa

    NASA Astrophysics Data System (ADS)

    Cartier, Camille; Hammouda, Tahar; Doucelance, Régis; Boyet, Maud; Devidal, Jean-Luc; Moine, Bertrand

    2014-04-01

    In order to investigate the influence of very reducing conditions, we report enstatite-melt trace element partition coefficients (D) obtained on enstatite chondrite material at 5 GPa and under oxygen fugacities (fO2) ranging between 0.8 and 8.2 log units below the iron-wustite (IW) buffer. Experiments were conducted in a multianvil apparatus between 1580 and 1850 °C, using doped (Sc, V, REE, HFSE, U, Th) starting materials. We used a two-site lattice strain model and a Monte-Carlo-type approach to model experimentally determined partition coefficient data. The model can fit our partitioning data, i.e. trace elements repartition in enstatite, which provides evidence for the attainment of equilibrium in our experiments. The precision on the lattice strain model parameters obtained from modelling does not enable determination of the influence of intensive parameters on crystal chemical partitioning, within our range of conditions (fO2, P, T, composition). We document the effect of variable oxygen fugacity on the partitioning of multivalent elements. Cr and V, which are trivalent in the pyroxene at around IW - 1 are reduced to 2+ state with increasingly reducing conditions, thus affecting their partition coefficients. In our range of redox conditions Ti is always present as a mixture between 4+ and 3+ states. However the Ti3+-Ti4+ ratio increases strongly with increasingly reducing conditions. Moreover in highly reducing conditions, Nb and Ta, that usually are pentavalent in magmatic systems, appear to be reduced to lower valence species, which may be Nb2+ and Ta3+. We propose a new proxy for fO2 based on D(Cr)/D(V). Our new data extend the redox range covered by previous studies and allows this proxy to be used in the whole range of redox conditions of the solar system objects. We selected trace-element literature data of six chondrules on the criterion of their equilibrium. Applying the proxy to opx-matrix systems, we estimated that three type I chondrules have equilibrated at IW - 7 ± 1, one type I chondrule at IW - 4 ± 1, and two type II chondrules at IW + 3 ± 1. This first accurate estimation of enstatite-melt fO2 for type I chondrules is very close to CAI values. Find the best-fit for trivalent elements. We set the r0M1 (3+) range to 0.55-0.75 Å, based on visual observations of the datapoints. For the other variables we have set boundary values beyond which the solutions would be unacceptable. For example, r0M2 (3+) has to be larger than r0M1 (3+). Finally we restricted the D0 range as follow: 0.2 r0(3+) > r0(4+) (see van Westrenen et al., 2000, for explanation), together with visual observation of our experimental data. D0 ranges: 1 < D0M1(2+) < 100; D0M2 (3+) < D0M2(2+) < 100 ; 0.01 < D0M1(4+) < 0.1 ; 0.0001 < D0M2(4+) < 0.01. These ranges are based on visual observation of our experimental data.

  9. Oxygen fugacities determined from iron oxidation state in natural (Mg,Fe)O ferropericlase: new insights into lower mantle diamond formation

    NASA Astrophysics Data System (ADS)

    Longo, Micaela; McCammon, Catherine; Bulanova, Galina; Kaminsky, Felix; Tappert, Ralf

    2010-05-01

    Mineral inclusions in diamonds reflect the chemical composition and mineral assemblages of the two principal rock types occurring in the deep lithosphere, peridotite and eclogite. However, in the past two decades, the discovery of rare diamonds containing inclusions such as former Mg,Si-perovskite and (Mg,Fe)O ferropericlase led to the possibility that diamonds can form also at greater depths. (Mg,Fe)O ferropericlase is the most commonly found inclusion in lower mantle diamonds (more than 50% of the occurrences). Since the Fe3+ concentration in (Mg,Fe)O is sensitive to oxygen fugacity also at high pressures (Frost et al., 2004), the determination of Fe3+/? Fe in such inclusions provides a direct method for investigating lower mantle redox conditions during diamond formation. In the present study we explore whether variations in mantle oxygen fugacity exist as a function of chemical, physical and geographic parameters, by studying (Mg,Fe)O inclusions in lower mantle diamonds from a wide range of localities. Eighteen (Mg,Fe)O ferropericlase inclusions from lower mantle diamonds selected worldwide were measured by the flank method using the calibration previously established for synthetic ferropericlase (Longo et al., in preparation). The Fe3+/? Fe measured in (Mg,Fe)O inclusions of the present work (Juina, Brazil, Machado River, Brazil and Orroroo, Australia) were compared to data already available for other inclusions of larger size previously measured by Mössbauer spectroscopy (McCammon et al. 1997, 2004). Oxygen fugacity was estimated for each specimen relative to two reference buffers such as the Fe-(Mg,Fe)O buffer (reducing conditions) and the Re-ReO2 buffer (oxidizing conditions). Our results show a dependence on geographical location, and in particular, inclusions from the African province (Kankan Guinea) seem to record more reducing mantle conditions than the inclusions measured from the other provinces, which cover a larger range of fO2 conditions. It is noteworthy that a variation of oxygen fugacity was registered in multiple inclusions extracted from the same host diamonds. However, because the inclusions were removed from the host without textural control, information on the direction of any redox gradient that may have evolved, and possible correlation with diamond growth or anomalies in the variation of the redox conditions through time, were lost. These observations combined with the geographical correlation observed among all inclusions measured in the present work and from previous studies leads to the suggestion of other mechanisms than subducted slabs being involved in diamond formation. In order to provide insights on the mechanisms controlling the redox conditions at lower mantle depths and how such oxygen fugacities may affect the physical and chemical properties of the lower mantle, new measurements are planned to increase the data set on ferropericlase inclusions. Moreover, a multi disciplinary study involving cathodoluminescence studies and isotopic and optical studies is suggested for further work. References Frost et al. (2004) Nature, 428, 409-412. Longo et al., In preparation McCammon et al. (2004) Earth and Planetary Science Letters, 222, 423-434. McCammon et al. (1997) Science, 278, 434-436.

  10. The W-W02 Oxygen Fugacity Buffer at High Pressures and Temperatures: Implications for f02 Buffering and Metal-silicate Partitioning

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Campbell, A. J.; Danielson, L.; Righter, K.

    2013-01-01

    Oxygen fugacity (fO2) controls multivalent phase equilibria and partitioning of redox-sensitive elements, and it is important to understand this thermodynamic parameter in experimental and natural systems. The coexistence of a metal and its oxide at equilibrium constitutes an oxygen buffer which can be used to control or calculate fO2 in high pressure experiments. Application of 1-bar buffers to high pressure conditions can lead to inaccuracies in fO2 calculations because of unconstrained pressure dependencies. Extending fO2 buffers to pressures and temperatures corresponding to the Earth's deep interior requires precise determinations of the difference in volume (Delta) V) between the buffer phases. Synchrotron x-ray diffraction data were obtained using diamond anvil cells (DAC) and a multi anvil press (MAP) to measure unit cell volumes of W and WO2 at pressures and temperatures up to 70 GPa and 2300 K. These data were fitted to Birch-Murnaghan 3rd-order thermal equations of state using a thermal pressure approach; parameters for W are KT = 306 GPa, KT' = 4.06, and aKT = 0.00417 GPa K-1. Two structural phase transitions were observed for WO2 at 4 and 32 GPa with structures in P21/c, Pnma and C2/c space groups. Equations of state were fitted for these phases over their respective pressure ranges yielding the parameters KT = 190, 213, 300 GPa, KT' = 4.24, 5.17, 4 (fixed), and aKT = 0.00506, 0.00419, 0.00467 GPa K-1 for the P21/c, Pnma and C2/c phases, respectively. The W-WO2 buffer (WWO) was extended to high pressure by inverting the W and WO2 equations of state to obtain phase volumes at discrete pressures (1-bar to 100 GPa, 1 GPa increments) along isotherms (300 to 3000K, 100 K increments). The slope of the absolute fO2 of the WWO buffer is positive with increasing temperature up to approximately 70 GPa and is negative above this pressure. The slope is positive along isotherms from 1000 to 3000K with increasing pressure up to at least 100 GPa. The WWO buffer is at a higher fO2 than the IW buffer at pressures lower than 40 GPa, and the magnitude of this difference decreases at higher pressures. This qualitatively indicates an increasingly lithophile character for W at higher pressures. The WWO buffer was quantitatively applied to W metal-silicate partitioning by using the WWO-IW buffer difference in combination with literature data on W metal-silicate partitioning to model the exchange coefficient (KD) for the Fe-W exchange reaction. This approach captures the pressure dependence of W metal-silicate partitioning using the WWO-IW buffer difference and models the activities of the components in the silicate and metallic phases using an expression of the Gibbs excess energy of mixing. Calculation of KD along a peridotite liquidus predicts a decrease in W siderophility at higher pressures that supports the qualitative behavior predicted by the WWO-IW buffer difference, and agrees with findings of others. Comparing the competing effects of temperature and pressure on W metal-silicate partitioning, our results indicate that pressure exerts a greater effect.

  11. The Mineralogical Record of Oxygen Fugacity Variation and Alteration in Northwest Africa 8159: Evidence for Interaction Between a Mantle Derived Martian Basalt and a Crustal Component(s)

    NASA Technical Reports Server (NTRS)

    Shearer, Charles K.; Burger, Paul V.; Bell, Aaron S.; McCubbin, Francis M.; Agee, Carl; Simon, Justin I.; Papike, James J.

    2015-01-01

    A prominent geochemical feature of basaltic magmatism on Mars is the large range in initial Sr isotopic ratios (approx. 0.702 - 0.724) and initial epsilon-Nd values (approx. -10 to greater than +50). Within this range, the shergottites fall into three discreet subgroups. These subgroups have distinct bulk rock REE patterns, mineral chemistries (i.e. phosphate REE patterns, Ni, Co, V in olivine), oxygen fugacity of crystallization, and stable isotopes, such as O. In contrast, nakhlites and chassignites have depleted epsilon-Nd values (greater than or equal to +15), have REE patterns that are light REE enriched, and appear to have crystallized near the FMQ buffer. The characteristics of these various martian basalts have been linked to different reservoirs in the martian crust and mantle, and their interactions during the petrogenesis of these magmas. These observations pose interesting interpretive challenges to our understanding of the conditions of the martian mantle (e.g. oxygen fugacity) and the interaction of mantle derived magmas with the martian crust and surface. Martian meteorite NWA 8159 is a unique fine-grained augite basalt derived from a highly depleted mantle source as reflected in its initial epsilon-Nd value, contains a pronounced light REE depleted pattern, and crystallized presumably under very oxidizing conditions. Although considerably older than both shergottites and nahklites, it has been petrogenetically linked to both styles of martian magmatism. These unique characteristics of NWA 8159 may provide an additional perspective for deciphering the petrogenesis of martian basalts and the nature of the crust of Mars.

  12. Oxygen fugacity of mare basalts and the lunar mantle application of a new microscale oxybarometer based on the valence state of vanadium

    SciTech Connect

    Shearer, C.K.; Karner, J.; Papike, J.J.; Sutton, S.R.

    2004-05-25

    Using the valence state of vanadium on a microscale in lunar volcanic glasses we have developed another approach to estimating the oxygen fugacity of mare basalts. The ability to estimate oxygen fugacities for mare basalts and to extend these observations to the lunar mantle is limited using bulk analysis techniques based on buffering assemblages or the valence state of iron. These limitations are due to reequilibration of mineral assemblages at subsolidus conditions, deviations of mineral compositions from thermodynamic ideality, size requirements, and the limits of the iron valence at very low fO{sub 2}. Still, these approaches have been helpful and indicate that mare basalts crystallized at fO{sub 2} between the iron-wuestite buffer (IW) and the ilmenite breakdown reaction (ilmenite = rutile + iron). It has also been inferred from these estimates that the lunar mantle is also highly reduced lying at conditions below IW. Generally, these data cannot be used to determine if the mare basalts become increasingly reduced during transport from their mantle source and eruption at the lunar surface and if there are differences in fO{sub 2} among mare basalts or mantle sources. One promising approach to determining the fO2 of mare basalts is using the mean valence of vanadium (2+, 3+, 4+, 5+) determined on spots of a few micrometers in diameter using synchrotron x-ray absorption fine structure (XAFS) spectroscopy. The average valence state of V in basaltic glasses is a function of fO{sub 2}, temperature, V coordination, and melt composition. Here, we report the initial results of this approach applied to lunar pyroclastic glasses.

  13. Oxygen Fugacity of Mare Basalts and the Lunar Mantle Application of a New Microscale Oxybarometer Based on the Valence State of Vanadium

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Karner, J.; Papike, J. J.; Sutton, S. R.

    2004-01-01

    The ability to estimate oxygen fugacities for mare basalts and to extend these observations to the lunar mantle is limited using bulk analysis techniques based on buffering assemblages or the valence state of iron. These limitations are due to reequilibration of mineral assemblages at subsolidus conditions, deviations of mineral compositions from thermodynamic ideality, size requirements, and the limits of the iron valence at very low fO2. Still, these approaches have been helpful and indicate that mare basalts crystallized at fO2 between the iron-w stite buffer (IW) and the ilmenite breakdown reaction (ilmenite = rutile + iron). It has also been inferred from these estimates that the lunar mantle is also highly reduced lying at conditions below IW. Generally, these data cannot be used to determine if the mare basalts become increasingly reduced during transport from their mantle source and eruption at the lunar surface and if there are differences in fO2 among mare basalts or mantle sources. One promising approach to determining the fO2 of mare basalts is using the mean valence of vanadium (2+, 3+, 4+, 5+) determined on spots of a few micrometers in diameter using synchrotron x-ray absorption fine structure (XAFS) spectroscopy. The average valence state of V in basaltic glasses is a function of fO2, temperature, V coordination, and melt composition. Here, we report the initial results of this approach applied to lunar pyroclastic glasses.

  14. MHD performance calculations with oxygen enrichment

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Staiger, P. J.; Seikel, G. R.

    1979-01-01

    The impact of oxygen enrichment of the combustion air on the generator and overall plant performance was studied for the ECAS-scale MHD/steam plants. A channel optimization technique is described and the results of generator performance calculations using this technique are presented. Performance maps were generated to assess the impact of various generator parameters. Directly and separately preheated plant performance with varying O2 enrichment was calculated. The optimal level of enrichment was a function of plant type and preheat temperature. The sensitivity of overall plant performance to critical channel assumptions and oxygen plant performance characteristics was also examined.

  15. Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.

    2000-01-01

    Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.

  16. Comparative Planetary Mineralogy: V/(Cr+Al) Systematics in Chromites as an Indicator of Relative Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Kamer, J. M.; Shearer, C. K.

    2004-01-01

    As our contribution to the new "Oxygen in the Solar System" initiative of the Lunar and Planetary Institute and the NASA Cosmochemistry Program, we have been developing oxygen barometers based largely on behavior of V which can occur in four valence states V2+, V3+, V4+, and V5+, and record at least 8 orders of magnitude of fO2. Our first efforts in measuring these valence proportions were by XANES techniques in basaltic glasses from Earth, Moon, and Mars. We now address the behavior of V valence states in chromite in basalts from Earth, Moon, and Mars. We have been looking for a "V in chromite oxybarometer" that works with data collected by the electron microprobe and thus is readily accessible to a large segment of the planetary materials community. This paper describes very early results that will be refined over the next two years.

  17. Laboratory study of vitrinite maturation rate as a function of temperature, time, starting material, aqueous fluid pressure, and oxygen fugacity — corroboration of prior work

    NASA Astrophysics Data System (ADS)

    Ferreiro Mählmann, R.; Ernst, W. G.

    2003-04-01

    Kinetic investigations were performed on disaggregated samples of angiosperm and gymnosperm xylite (mainly pure huminite fragments) at 2.0 kbar aqueous fluid pressure and oxygen fugacities defined by hematite-magnetite and magnetite + quartz-fayalite buffers. Individual experiments lasted from 5 to 204 days. The rates of vitrinite reflectance (VR) increase were evaluated at 200, 250, 300, and 400 ^oC isotherms; experimentally determined, approximately steady-state values for the mean %R_r are 0.54, 0.74, 1.10, and 2.25, respectively. For geological lengths of time, appropriate values of %R_r = K_0t0.076 (where K_0 is a function of temperature, and t is in days). The overall activation energy describing the kinetics of devolatilization reactions responsible for increase in VR measured in our experiments is 21.8 ± 0.3 kJ/mol. Combined with earlier rate studies conducted by Dalla Torre et al. (1997) we conclude that the rate of vitrinite maturation is virtually unaffected by oxidation state, "wet" versus "dry" conditions, and nature of the starting lignitic material (conifers, hardwood). To a small extent, elevated lithostatic pressure retards the rate of increase in VR. Different, nonsystematic trends are observed for the resinite-exudatinite-bituminite present in the lignite material and in low temperature and short runs. Strong disequilibrium was recognized in short runs of the 200 and 250 ^oC isotherms. These new run data demonstrate that VR is chiefly a function of temperature and time. In support of earlier field, theoretical, and laboratory studies, for all but geologically insignificant time intervals, vitrinite reflectance is an appropriate proxy for host-rock burial temperature. Reference: Dalla Torre, M., Ferreiro Mählmann, R. and Ernst, W.G. (1997): Geochimica Cosmochimica Acta, 61/14, 2921-2928.

  18. Oxygen Toxicity Calculations by Erik C. Baker, P.E.

    E-print Network

    Haase, Markus

    1 Oxygen Toxicity Calculations by Erik C. Baker, P.E. Management of exposure to oxygen toxicity myself using the good ole' FORTRAN programming language, I found that incorporating oxygen toxicity for others. Background Two oxygen toxicity parameters are typically "tracked" in technical diving

  19. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2015-08-01

    In order to assess the role of sulfide in controlling the ore metal budgets and fractionation during magmatic genesis and differentiation, the partition coefficients (D) of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide liquid (SL), monosulfide solid solution (MSS), and basaltic to rhyolitic melts (SM) were determined at 900-1200 °C, 0.5-1.5 GPa, and oxygen fugacity (fO2) ranging from ?FMQ-2 to FMQ+3, in a piston-cylinder apparatus. The DSL/SM values range from 0.4 to 2 for V, 0.5 to 3 for Mn, 80 to 580 for Co, 2300 to 18,000 for Ni, 800 to 4600 for Cu, 1 to 11 for Zn, 20 to 180 for As, 4 to 230 for Mo, 450 to 1600 for Ag, 5 to 24 for Sn, 10 to 80 for Sb, 0.03 to 0.16 for W, 2000 to 29,000 for Au, 24 to 170 for Pb, and 830 to 11,000 for Bi; whereas the DMSS/SM values range from 0.04 to 10 for V, 0.5 to 10 for Mn, 70 to 2500 for Co, 650 to 18,000 for Ni, 280 to 42,000 for Cu, 0.1 to 80 for Zn, 0.2 to 30 for As, 1 to 820 for Mo, 20 to 500 for Ag, 0.2 to 220 for Sn, 0.1 to 40 for Sb, 0.01 to 24 for W, 10 to 2000 for Au, 0.03 to 6 for Pb, and 1 to 350 for Bi. Both DMSS/SM and DSL/SM values generally increase with decreasing temperature or decreasing FeOtot content in silicate melt, except for Mo, DMSS/SM and DSL/SM of which show a clear decrease with decreasing temperature. At given temperature and FeOtot content, high oxygen fugacity appears to lead to a significant decrease in DMSS/SM of Au, Bi, Mo, and potentially As. The partitioning data obtained experimentally in this study and previous studies were fitted to an empirical equation that expresses the DMSS/SM and/or DSL/SM of a given element as a function of temperature, oxygen fugacity, and FeOtot content of the silicate melt: log (DSL/SMorDMSS/SM = d + a · 10, 000 / T + b · (?FMQ) + c · log (FeOmelt) in which T is temperature in K, FeOmelt denotes wt% FeOtot in silicate melt, and ?FMQ denotes log fO2 relative to the fayalite-magnetite-quartz (FMQ) oxygen buffer. The application of this equation to natural samples of basaltic to rhyolitic composition yields DMSS/SM and DSL/SM values that agree with the measured values within ±0.5 log units for most of the elements, indicating the validity of the application of this equation to natural systems. Our partitioning data imply that sulfide liquid saturation in low-temperature intermediate to felsic melts causes a strong depletion in Cu, Au, Bi, and potentially Ag in the silicate melt, whereas MSS saturation may cause a depletion in Cu and potentially Au. Other elements including W, Zn, As, Mo, Sn, Sb, and Pb are much less or not affected by the saturation of sulfide liquid or MSS. These results place important constrains on the potential of magmas in forming porphyry-type ore deposits and the origin of the observed variability in metal ratios in porphyry-type ore deposits.

  20. A New Spinel-Olivine Oxybarometer: Near-Liquidus Partitioning of V between Olivine-Melt, Spinel-Melt, and Spinel-Olivine in Martian Basalt Composition Y980459 as a Function of Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Le, L.; Burger, P. V.; Shearer, C. K.; Bell, A. S.; Jones, J.

    2013-01-01

    Our research on valence state partitioning began in 2005 with a review of Cr, Fe, Ti, and V partitioning among crystallographic sites in olivine, pyroxene, and spinel [1]. That paper was followed by several on QUE94201 melt composition and specifically on Cr, V, and Eu partitioning between pyroxene and melt [2-5]. This paper represents the continuation of our examination of the partitioning of multivalent V between olivine, spinel, and melt in martian olivine-phyric basalts of Y980459 composition [6, 7]. Here we introduce a new, potentially powerful oxybarometer, V partitioning between spinel and olivine, which can be used when no melt is preserved in the meteorite. The bulk composition of QUE94201 was ideal for our study of martian pyroxene-phyric basalts and specifically the partitioning between pyroxene-melt for Cr, V, and Eu. Likewise, bulk composition Y980459 is ideal for the study of martian olivine-phyric basalts and specifically for olivine-melt, spinel-melt, and spinel-olivine partitioning of V as a function of oxygen fugacity.

  1. Fugacity of H2O from 0° to 350°C at the liquid-vapor equilibrium and at 1 atmosphere

    USGS Publications Warehouse

    Hass, John L., Jr.

    1970-01-01

    The fugacity and fugacity coefficient of H2O at the liquid-vapor equilibrium, the fugacity and the Gibbs free energy of formation of H2O at 1 atm (1.01325 bars) total pressure have been calculated from published data on the physical and thermodynamic properties of H2O and are presented at ten-degree intervals from 0° to 350°C.

  2. The effects of sulfur, silicon, water, and oxygen fugacity on solubility and metal-silicate partitioning of carbon at 3 GPa and 1600 °C - Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles

    NASA Astrophysics Data System (ADS)

    Li, Y.; Dasgupta, R.; Tsuno, K.

    2014-12-01

    The partition coefficient of carbon between Fe-rich alloy melt and silicate melt, and solubility of C-O-H volatiles in reduced silicate melts are key to understand the origin and distribution of carbon in different planetary reservoirs and subsequent evolution of volatiles in magma oceans (MO) and silicate mantles. In this study, three sets of graphite-saturated experiments have been performed at 3 GPa and 1600 °C to investigate the effects of oxygen fugacity (fO2), sulfur, silicon, and water on the dissolution and partitioning of carbon between Fe-rich alloy melt and silicate melt. The results show that the presence of 0-5 wt% sulfur in alloy melt does not have considerable effect on carbon solubility (~5.6 wt%) in alloy melt, whereas the presence of 0-10 wt% silicon decreases it from ~5.6 wt% to 1.8 wt%. Carbon solubility (11-192 ppm) in silicate melt is strongly controlled by fO2 and the bulk water content. Decreasing fO2 from IW-0.6 to IW-4.7 or increasing bulk water content from 0.07 to 0.55 wt% results in significant increase of carbon solubility in silicate melt. Raman and FTIR spectroscopy of silicate glasses show that the carbon species is mostly methane, confirmed by the positive correlation between carbon and non-hydroxyl hydrogen in silicate melt. The decreases from 4600 to 180 with decreasing fO2 or increasing bulk water in silicate melt. In addition, increasing Si in metallic alloy melt also decreases . Our results show that fO2 and silicate melt bulk water contents play an important role in the fractionation of carbon in planetary MO. A reduced, hydrous MO may have led to a considerable fraction of carbon retained in the silicate mantle, whereas an oxidized, dry MO may have lost almost its entire carbon to the core. If delivery of bulk Earth carbon predominantly occurred after >90% of accretion, i.e., in a relatively oxidized MO (IW-2 to IW-1), then with applicable >1000, most carbon would also enter the segregating core. Finally, the predominance of methane in reduced silicate melt with fO2 below IW-1 also indicates that degassing of a hydrous, solidifying MO may have created a reduced early atmosphere, and degassing from lunar and Martian mantle may have released much more methane than carbon dioxide.

  3. Hard hexagon partition function for complex fugacity

    E-print Network

    M. Assis; J. L. Jacobsen; I. Jensen; J-M. Maillard; B. M. McCoy

    2013-09-21

    We study the analyticity of the partition function of the hard hexagon model in the complex fugacity plane by computing zeros and transfer matrix eigenvalues for large finite size systems. We find that the partition function per site computed by Baxter in the thermodynamic limit for positive real values of the fugacity is not sufficient to describe the analyticity in the full complex fugacity plane. We also obtain a new algebraic equation for the low density partition function per site.

  4. Fugacity and concentration gradients in a gravity field

    NASA Technical Reports Server (NTRS)

    May, C. E.

    1986-01-01

    Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.

  5. A liquid oxygen calculator for fasted channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review of scientific literature concerning channel catfish Ictalurus punctatus respiration resulted in development of a Microsoft Excel© spreadsheet for estimating the volume of oxygen consumed by a given fasted channel catfish biomass. Entry of ten variables into the spreadsheet provides estimate...

  6. Supporting material calculated ocean time series for 1500-1995.doc Calculated Baltic Sea temperature, ice, salinity and oxygen concentrations

    E-print Network

    Omstedt, Anders

    Supporting material calculated ocean time series for 1500-1995.doc 2009-09-10 Calculated Baltic Sea References Gustafsson, E.O., and A., Omstedt (2009). Sensitivity of Baltic Sea deep water salinity and oxygen (2009). Salinity and hypoxia in the Baltic Sea since AD 1500, submitted. Hansson, D., Eriksson, C

  7. Computer program for calculating pressure-broadened Raman spectra for molecular nitrogen and oxygen

    NASA Technical Reports Server (NTRS)

    Fralick, G. C.

    1976-01-01

    A computer program is given for calculating the rotational Raman spectrum for molecular nitrogen and oxygen. Provision is made for pressure broadening. Several sample calculations at various pressures are shown. The relative heights of some of the lines are affected by pressure broadening.

  8. Atomic oxygen flux and fluence calculation for Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Bourassa, Roger J.; Gillis, James R.

    1991-01-01

    The LDEF mission was to study the effects of the space environment on various materials over an extended period of time. One of the important factors for materials degradation in low earth orbit is the atomic oxygen fluxes and fluences experienced by the materials. These fluxes and fluences are a function of orbital parameters, solar and geomagnetic activity, and material surface orientation. Calculations of atomic oxygen fluences and fluxes for the LDEF mission are summarized. Included are descriptions of LDEF orbital parameters, solar and geomagnetic data, computer code FLUXAV, which was used to perform calculations of fluxes and fluences, along with a discussion of the calculated fluxes and fluences.

  9. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  10. A search for the quantum-chemical methods of germanium- oxygen geometric structure calculation

    NASA Astrophysics Data System (ADS)

    Gavalyan, M. Yu; Turovtsev, V. V.; Kaplunov, I. A.

    2015-10-01

    The methods of density functional theory (DFT in Kohn-Shem formalism) currently play the role of main instruments of quantum chemistry. The examination of the oxygen atoms behavior in germanium requires preliminary calibration of the functionals for less resourceintensive problems. With this end calibration of the germanium exchange and correlational functionals was made for the finite calculation of such parameters as oscillation frequencies, dipole moment, full electron energy. A correlation was found between the calculated values of Ge-O bond lengths and harmonic oscillation frequency. The functionals for further study of the oxygen behaviour in crystalline germanium were determined.

  11. Experimental determination of coexisting iron titanium oxides in the systems FeTiAlO, FeTiAlMgO, FeTiAlMnO, and FeTiAlMgMnO at 800 and 900°C, 1 4 kbar, and relatively high oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Evans, Bernard W.; Scaillet, Bruno; Kuehner, Scott M.

    2006-08-01

    A synthetic, low-melting rhyolite composition containing TiO2 and iron oxide, with further separate additions of MgO, MnO, and MgO + MnO, was used in hydrothermal experiments to crystallize Ilm-Hem and Usp-Mt solid solutions at 800 and 900°C under redox conditions slightly below nickel nickel oxide (NNO) to ? 3 log_{10} f_{{{text{O}}2}} units above the NNO oxygen buffer. These experiments provide calibration of the FeTi-oxide thermometer + oxygen barometer at conditions of temperature and oxygen fugacity poorly covered by previous equilibrium experiments. Isotherms for our data in Roozeboom diagrams of projected %usp vs. %ilm show a change in slope at ? 60% ilm, consistent with the second-order transition from FeTi-ordered Ilm to FeTi-disordered Ilm-Hem. This feature of the system accounts for some, but not all, of the differences from earlier thermodynamic calibrations of the thermobarometer. In rhyolite containing 1.0 wt.% MgO, 0.8 wt.% MnO, or MgO + MnO, Usp-Mt crystallized with up to 14% of aluminate components, and Ilm-Hem crystallized with up to 13% geikielite component and 17% pyrophanite component. Relative to the FeTiAlO system, these components displace the ferrite components in Usp-Mt, and the hematite component in Ilm-Hem. As a result, projected contents of ulvöspinel and ilmenite are increased. These changes are attributed to increased non-ideality along joins from end-member hematite and magnetite to their respective Mg- and Mn-bearing titanate and aluminate end-members. The compositional shifts are most pronounced in Ilm-Hem in the range Ilm50 80, a solvus region where the chemical potentials of the hematite and ilmenite components are nearly independent of composition. The solvus gap widens with addition of Mg and even further with Mn. The Bacon Hirschmann correlation of Mg/Mn in Usp-Mt and coexisting Ilm-Hem is displaced toward increasing Mg/Mn in ilmenite with passage from ordered ilmenite to disordered hematite. Orthopyroxene and biotite crystallized in experiments with added MgO and MgO + MnO; their X Fe varies with log_{10} f_{{{text{O}}2}} and T consistent with equilibria among ferrosilite, annite, and ferrite components, and the chemical potentials of SiO2 and orthoclase in the liquid. Experimental equilibration rates increased in the order: Opx < Bt < Ilm-Hem < Usp-Mag.

  12. Retarded oxygen diffusion in heavily phosphorus-doped Czochralski silicon: experiments and first-principles calculations.

    PubMed

    Gao, Chao; Wang, Zhenhui; Liang, Xingbo; Tian, Daxi; Liu, Hongyan; Ma, Xiangyang; Yang, Deren

    2012-12-12

    The effect of heavy phosphorus (P) doping on oxygen diffusion in Czochralski (Cz) silicon has been experimentally and theoretically investigated. It is experimentally found that the oxygen diffusion in heavily P-doped Cz silicon is retarded, with a diffusion activation energy which is ?0.12 eV larger than that of its lightly P-doped counterpart. First-principles calculations suggest that the P-O complexes in the -P-Si-O-Si- configuration can form in heavily P-doped Cz silicon, leading to the trapping of interstitial oxygen (O(i)) atoms at the twelve equivalent second-nearest neighbors of the P atoms. Furthermore, the calculated increase of the oxygen diffusion activation energy, taking account of the trapping effect of such P-O complexes, is in accordance with the experimental result. This indicates that the retarded oxygen diffusion in the heavily P-doped Cz silicon can be ascribed to the trapping of O(i) atoms associated with the formation of the aforementioned P-O complexes. PMID:23160172

  13. First Principles Calculations of Oxygen Adsorption on the UN(001) Surface

    SciTech Connect

    Zhukovskii, Yuri F.; Bocharov, Dmitry; Kotomin, Eugene Alexej; Evarestov, Robert; Bandura, A. V.

    2009-01-01

    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (001) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(001) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.

  14. First principles calculations of oxygen adsorption on the UN(0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Zhukovskii, Yu. F.; Bocharov, D.; Kotomin, E. A.; Evarestov, R. A.; Bandura, A. V.

    2009-01-01

    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (0 0 1) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(0 0 1) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.

  15. Similarity criteria in calculations of the energy characteristics of a cw oxygen - iodine laser

    SciTech Connect

    Mezhenin, A V; Azyazov, V N

    2012-12-31

    The calculated and experimental data on the energy efficiency of a cw oxygen - iodine laser (OIL) are analysed based on two similarity criteria, namely, on the ratio of the residence time of the gas mixture in the resonator to the characteristic time of extraction of the energy stored in singlet oxygen td and on the gain-to-loss ratio {Pi}. It is shown that the simplified two-level laser model satisfactorily predicts the output characteristics of OILs with a stable resonator at {tau}{sub d} {<=} 7. Efficient energy extraction from the OIL active medium is achieved in the case of {tau}{sub d} = 5 - 7, {Pi} = 4 - 8. (lasers)

  16. Fugacity and Reheating of Primordial Neutrinos

    E-print Network

    Birrell, Jeremiah; Chen, Pisin; Rafelski, Johann

    2013-01-01

    We report a deviation from chemical equilibrium in the primordial neutrino distribution that arises naturally before BBN as the electron mass $m_e$ becomes an important scale. The cause is a drop in the deceleration parameter of the universe when $T\\simeq m_e$ combined with the distinct neutrino freeze-out temperatures that satisfy the condition $T_c > m_e > T_k$, where $T_c$ is the neutrino chemical freeze-out temperature and $T_k$ that for the kinetic freeze-out. This effect is described by a primordial neutrino fugacity $\\Upsilon_\

  17. Uncertainties in the thermodynamics of basalt-oxygen and basalt-water reactions

    SciTech Connect

    Schweitzer, D.G.; Davis, M.S.

    1983-08-01

    A knowledge of basalt-oxygen equilibria and basalt-water equilibria are required to predict the performance of a high-level waste package in a basalt repository. In this report we have evaluated uncertainties in these equilibria using thermodynamic data from two sources, the JANAF Thermochemical Tables (1971) and from Kubaschewski (1974). Our analysis indicates that the uncertainties in the basic thermodynamic data lead to 30 orders of magnitude in uncertainty in the oxygen fugacity for the magnetite-hematite reaction (10/sup -57/ to 10/sup -86/ atm) and about 15 orders of magnitude uncertainty in the hydrogen equilibrium pressure (10/sup -12/ to 10/sup +3/ atm). A vast volume of literature exists on reactions involving magnetite and hematite in water at temperatures pertinent to basalt repositories (50/sup 0/ to 350/sup 0/C). These data show that Fe/sub 3/O/sub 4/ and Fe/sub 2/O/sub 3/ can coexist in water with oxygen fugacities from about 10/sup -4/ to 1 rather than the calculated oxygen fugacities of approx. 10/sup -60/ to 10/sup -30/ assumed in the past. 5 references.

  18. Linear optical properties of defective KDP with oxygen vacancy: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhao, Qian-Qian; Wang, Xiao-Chun; Chen, Jun; Ju, Xin

    2015-07-01

    The linear optical properties of potassium dihydrogen phosphate (KDP) with oxygen vacancy are investigated with first-principles density functional theory calculations. We use Heyd-Scuseria-Ernzerhof (HSE06) functional to calculate the linear optical properties because of its accuracy in the band gap calculation. Compared with the perfect KDP, we found that due to the defect states located at the band gap, the defective KDP with oxygen vacancy has new optical adsorption within the energy region from 4.8 eV to 7.0 eV (the corresponding wavelength region is from 258 nm to 177 nm). As a result, the oxygen vacancy can decrease the damage threshold of KDP crystal. It may give a direction to the KDP production for laser system. Project supported by the National Natural Science Foundation of China (Grant No. 11474123), the Natural Science Foundation of Jilin Province, China (Grant No. 20130101011JC), and the Fundamental Research Funds for Central Universities of China.

  19. Local-density-functional calculations of the vacancy-oxygen center in Ge

    NASA Astrophysics Data System (ADS)

    Carvalho, A.; Jones, R.; Coutinho, J.; Torres, V. J. B.; Öberg, S.; Alsina, J. M. Campanera; Shaw, M.; Briddon, P. R.

    2007-03-01

    We carry out a comprehensive density-functional study of the vacancy-oxygen (VO) center in germanium using large H-terminated Ge clusters. The importance of a nonlinear core correction to account for the involvement of the 3d electrons in Ge-O bonds is discussed. We calculate the electrical levels and the vibrational modes of VO0 , VO- , and VO= finding close agreement with experiment. We also explore the reorientation, migration, and dissociation mechanisms of neutral and negatively charged VO and compare the calculated energy barriers with experimental data. We conclude that the defect is likely to anneal through both mechanisms.

  20. Partitioning of Eu between augite and a highly spiked martian basalt composition as a function of oxygen fugacity (IW-1 to QFM): Determination of Eu[superscript 2+]/Eu[superscript 3+] ratios by XANES

    SciTech Connect

    Karner, J.M.; Papike, J.J.; Sutton, S.R.; Burger, P.V.; Shearer, C.K.; Le, L.; Newville, M.; Choi, Y.

    2010-03-16

    We have determined D{sub Eu} between augite and melt in samples that crystallized from a highly spiked martian basalt composition at four f{sub O{sub 2}} conditions. D{sub Eu} augite/melt shows a steady increase with f{sub O{sub 2}} from 0.086 at IW-1 to 0.274 at IW+3.5. This increase is because Eu{sup 3+} is more compatible than Eu{sup 2+} in the pyroxene structure; thus increasing f{sub O{sub 2}} leads to greater Eu{sup 3+}/Eu{sup 2+} in the melt and more Eu (total) can partition into the crystallizing pyroxene. This interpretation is supported by direct determinations of Eu valence state by XANES, which show a steady increase of Eu{sup 3+}/Eu{sup 2+} with increasing f{sub O{sub 2}} in both pyroxene (0.38 to 14.6) and glass (0.20 to 12.6) in the samples. Also, pyroxene Eu{sup 3+}/Eu{sup 2+} is higher than that of adjacent glass in all the samples, which verifies that Eu{sup 3+} is more compatible than Eu{sup 2+} in the pyroxene structure. Combining partitioning data with XANES data allows for the calculation of specific valence state D-values for augite/melt where D{sub Eu{sup 3+}} = 0.28 and D{sub Eu{sup 2+}} = 0.07.

  1. Electronic Structure Calculations of an Oxygen Vacancy in KH2PO4

    SciTech Connect

    Liu, C S; Hou, C J; Kioussis, N; Demos, S; Radousky, H

    2005-02-18

    We present first-principles total-energy density-functional theory electronic structure calculations for the neutral and charge states of an oxygen vacancy in KH{sub 2}PO{sub 4} (KDP). Even though the overall DOS profiles for the defective KDP are quite similar to those of the perfect KDP, the oxygen vacancy in the neutral and +1 charge states induces defect states in the band gap. For the neutral oxygen vacancy, the gap states are occupied by two electrons. The difference between the integral of the total density of states (DOS) and the sum of the DOS projected on the atoms of 0.98 |e|, indicates that one of the two electrons resulting from the removal of the oxygen atom is trapped in the vacancy, while the other tends to delocalize in the neighboring atoms. For the +1 charge oxygen vacancy, the addition of the hole reduces the occupation of the filled gap-states in the neutral case from two to one electron and produces new empty states in the gap. The new empty gap states are very close to the highest occupied states, leading to a dramatic decrease of the band gap. The difference between the integral of the total DOS and the sum of the DOS projected on the atoms is 0.56 |e|, which implies that more than 56% of the redundant electron is trapped in the oxygen vacancy, and 44% spreads over the neighboring atoms. In sharp contrast, no defect states appear in the energy gap for the +2 charge O vacancy. Thus, the addition of the two holes completely compensates the two redundant electrons, and removes in turn the occupied gap states in the neutral case.

  2. Time efficient way to calculate oxygen transfer areas and power input in cylindrical disposable shaken bioreactors.

    PubMed

    Klöckner, Wolf; Lattermann, Clemens; Pursche, Franz; Büchs, Jochen; Werner, Sören; Eibl, Dieter

    2014-01-01

    Disposable orbitally shaken bioreactors are a promising alternative to stirred or wave agitated systems for mammalian and plant cell cultivation, because they provide a homogeneous and well-defined liquid distribution together with a simple and cost-efficient design. Cultivation conditions in the surface-aerated bioreactors are mainly affected by the size of the volumetric oxygen transfer area (a) and the volumetric power input (P?VL ) that both result from the liquid distribution during shaking. Since Computational Fluid Dynamics (CFD)-commonly applied to simulate the liquid distribution in such bioreactors-needs high computing power, this technique is poorly suited to investigate the influence of many different operating conditions in various scales. Thus, the aim of this paper is to introduce a new mathematical model for calculating the values of a and P?VL for liquids with water-like viscosities. The model equations were derived from the balance of centrifugal and gravitational forces exerted during shaking. A good agreement was found among calculated values for a and P?VL , CFD simulation values and empirical results. The newly proposed model enables a time efficient way to calculate the oxygen transfer areas and power input for various shaking frequencies, filling volumes and shaking and reactor diameters. All these parameters can be calculated fast and with little computing power. PMID:25138595

  3. Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisiae

    E-print Network

    Jeffrey M. Dick

    2008-12-01

    [abridged] Background: The distribution of chemical species in an open system at metastable equilibrium can be expressed as a function of environmental variables which can include temperature, oxidation-reduction potential and others. Calculations of metastable equilibrium for various model systems were used to characterize chemical transformations among proteins and groups of proteins found in different compartments of yeast cells. Results: With increasing oxygen fugacity, the relative metastability fields of model proteins for major subcellular compartments go as mitochondrion, endoplasmic reticulum, cytoplasm, nucleus. In a metastable equilibrium setting at relatively high oxygen fugacity, proteins making up actin are predominant, but those constituting the microtubule occur with a low chemical activity. A reaction sequence involving the microtubule and spindle pole proteins was predicted by combining the known intercompartmental interactions with a hypothetical program of oxygen fugacity changes in the local environment. In further calculations, the most-abundant proteins within compartments generally occur in relative abundances that only weakly correspond to a metastable equilibrium distribution. However, physiological populations of proteins that form complexes often show an overall positive or negative correlation with the relative abundances of proteins in metastable assemblages. Conclusions: This study explored the outlines of a thermodynamic description of chemical transformations among interacting proteins in yeast cells. The results suggest that these methods can be used to measure the degree of departure of a natural biochemical process or population from a local minimum in Gibbs energy.

  4. Understanding Iron-based catalysts with efficient Oxygen reduction activity from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Hafiz, Hasnain; Barbiellini, B.; Jia, Q.; Tylus, U.; Strickland, K.; Bansil, A.; Mukerjee, S.

    2015-03-01

    Catalysts based on Fe/N/C clusters can support the oxygen-reduction reaction (ORR) without the use of expensive metals such as platinum. These systems can also prevent some poisonous species to block the active sites from the reactant. We have performed spin-polarized calculations on various Fe/N/C fragments using the Vienna Ab initio Simulation Package (VASP) code. Some results are compared to similar calculations obtained with the Gaussian code. We investigate the partial density of states (PDOS) of the 3d orbitals near the Fermi level and calculate the binding energies of several ligands. Correlations of the binding energies with the 3d electronic PDOS's are used to propose electronic descriptors of the ORR associated with the 3d states of Fe. We also suggest a structural model for the most active site with a ferrous ion (Fe2+) in the high spin state or the so-called Doublet 3 (D3).

  5. Density functional theory calculations on oxygen adsorption on the Cu2O surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohu; Zhang, Xuemei; Tian, Xinxin; Wang, Shengguang; Feng, Gang

    2015-01-01

    In order to understand various surface properties such as corrosion and potential catalytic activity of Cu2O surfaces in the presence of environmental gases, we report here spin-polarized density functional theory calculations of the adsorptions of atomic and molecular oxygen on three surface Cu2O facets. Atomic oxygen adsorbs at the hollow site formed with copper atoms of Cu2O(111), while its adsorption on the Cu2O(110) and Cu2O(100) induces surface reconstruction. Molecular oxygen adsorbs on one coordinated unsaturated surface copper atom and two coordinated saturated copper atoms of Cu2O(111), on the top of two surface copper atoms of Cu2O(110), and on four surface copper atoms on Cu2O(100). It was found that atomic O and molecular O2 adsorption on the Cu2O(100) surface is stronger than on the Cu2O(111) surface. Atomic O and molecular O2 adsorption on the surface of Cu2O(111) induces magnetism. This is different from other systems previously known to exhibit point defect ferromagnetism. On all three surfaces, dissociative adsorption was found to be energetically favorable.

  6. The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 °C: Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Dasgupta, Rajdeep; Tsuno, Kyusei

    2015-04-01

    The partition coefficient of carbon between Fe-rich alloy melt and silicate melt, D C metal /silicate and solubility of C-O-H volatiles in reduced silicate melts are key parameters that need to be quantified in order to constrain the budget and origin of carbon in different planetary reservoirs and subsequent evolution of volatiles in magma oceans (MO) and silicate mantles. In this study, three sets of graphite-saturated experiments have been performed at 3 GPa and 1600 °C to investigate the effects of oxygen fugacity (fO2), sulfur, silicon, and water on the dissolution and partitioning of carbon between Fe-rich alloy melt and silicate melt. The results show that the presence of 0-5 wt% sulfur in alloy melt does not have considerable effect on carbon solubility (?5.6 wt%) in alloy melt, determined by electron microprobe, whereas the presence of 0-10 wt% silicon decreases the carbon solubility from ?5.6 wt% to 1.8 wt%. Carbon solubility (11-192 ppm) in silicate melt, determined by SIMS, is strongly controlled by fO2 and the bulk water content. Decreasing log ? fO2 from IW-0.6 to IW-4.7 or increasing bulk water content from 0.07 to 0.55 wt% results in significant increase of carbon solubility in silicate melt. Raman and FTIR spectroscopic analyses of silicate glasses show that the carbon species is mostly methane, which is further confirmed by the strong, positive correlation between the non-carbonate carbon and non-hydroxyl hydrogen in silicate melt. The D C metal /silicate ranging from 180 to 4600 decreases with decreasing fO2 or increasing bulk water in silicate melt. In addition, increasing Si in alloy melt also decreases D C metal /silicate . Our results demonstrate that fO2 and bulk water contents in silicate melt play an important role in determining the fractionation of carbon in planetary MO. A reduced, hydrous MO may have led to a considerable fraction of carbon retained in the silicate mantle, whereas an oxidized, dry MO may have lost almost its entire carbon into the core. If delivery of bulk Earth carbon predominantly occurred after >90% of accretion, i.e., in a relatively oxidized MO (IW-2 to IW-1), then with applicable D C metal /silicate > 1000, most early Earth carbon would also enter the segregating core. Finally, the predominance of methane in reduced silicate melt with fO2 below IW-1 also indicates that degassing of a hydrous, solidifying MO may have created a reduced early atmosphere, and degassing from lunar and Martian mantle may have released much more methane than carbon dioxide.

  7. The oxygen status algorithm: a computer program for calculating and displaying pH and blood gas data.

    PubMed

    Siggaard-Andersen, O; Siggaard-Andersen, M

    1990-01-01

    Input parameters for the program are the arterial pH, pCO2, and pO2 (measured by a blood gas analyzer), oxygen saturation, carboxy-, met-, and total hemoglobin (measured by a multi-wavelength spectrometer), supplemented by patient age, sex, temperature, inspired oxygen fraction, fraction of fetal hemoglobin, and ambient pressure. Output parameters are the inspired and alveolar oxygen partial pressures, pH,pCO2 and pO2 referring to the actual patient temperature, estimated shunt fraction, half-saturation tension, estimated 2,3-diphosphoglycerate concentration, oxygen content and oxygen capacity, extracellular base excess, and plasma bicarbonate concentration. Three parameters related to the blood oxygen availability are calculated: the oxygen extraction tension, concentration of extractable oxygen, and oxygen compensation factor. Calculations of the 'reverse' type may also be performed so that the effect of therapeutic measures on the oxygen status or the acid-base status can be predicted. The user may choose among several different units of measurement and two different conventions for symbols. The results are presented in a data display screen comprising all quantities together with age, sex, and temperature adjusted reference values. The program generates a 'laboratory diagnosis' of the oxygen status and the acid-base status and three graphs illustrating the oxygen status and the acid-base status of the patient: the oxygen graph, the acid-base chart and the blood gas map. A printed summary in one A4 page including a graphical display can be produced with an Epson or HP Laser compatible printer. The program is primarily intended for routine laboratories with a blood gas analyzer combined with a multi-wavelength spectrometer. Calculating the derived quantities may enhance the usefulness of the analyzers and improve patient care. The program may also be used as a teaching aid in acid-base and respiratory physiology. The program requires an IBM PC, XT, AT or similar compatible computer running under DOS version 2.11 or later. A VGA color monitor is preferred, but the program also supports EGA, CGA, and Hercules monitors. The program will be freely available at the cost of a discette and mailing expenses by courtesy of Radiometer Medical A/S, Emdrupvej 72, DK-2400 Copenhagen NV, Denmark (valid through 1991). A simplified algorithm for a programmable pocket calculator avoiding iterative calculations is given as an Appendix. PMID:2128561

  8. First-principles diffusion-barrier calculation for atomic oxygen on Pt(111)

    NASA Astrophysics Data System (ADS)

    Bogicevic, Alexander; Strömquist, Johan; Lundqvist, Bengt I.

    1998-02-01

    An inconsistency is pointed out in adsorption energy values for O diffusion on Pt(111) in three recent studies: (A) the scanning tunneling microscope (STM)-deduced value of 0.43 eV for the diffusion barrier [J. Wintterlin, R. Schuster, and G. Ertl, Phys. Rev. Lett. 77, 123 (1996)]; (B) the calculated fcc-hcp adsorption-energy difference [P. J. Fiebelman, E. Stefanie, and M. Thomas, ibid.77, 2257 (1997)]; and (C) the STM-identified metastability of O in hcp sites [B. C. Stipe et al., ibid.78, 4410 (1997)]. Using accurate first-principles density-functional methods we obtain full agreement with (B) and (C) and a diffusion barrier of 0.58 eV, consistent with a reinterpretation of the raw data in (A). We further report on oxygen-induced surface buckling.

  9. Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two- Plus Three-Nucleon Interactions

    E-print Network

    H. Hergert; S. Binder; A. Calci; J. Langhammer; R. Roth

    2013-06-12

    We formulate the In-Medium Similarity Renormalization Group (IM-SRG) for open-shell nuclei using a multi-reference formalism based on a generalized Wick theorem introduced in quantum chemistry. The resulting multi-reference IM-SRG (MR-IM-SRG) is used to perform the first ab initio study of even oxygen isotopes with chiral NN and 3N Hamiltonians, from the proton to the neutron drip lines. We obtain an excellent reproduction of experimental ground-state energies with quantified uncertainties, which is validated by results from the Importance-Truncated No-Core Shell Model and the Coupled Cluster method. The agreement between conceptually different many-body approaches and experiment highlights the predictive power of current chiral two- and three-nucleon interactions, and establishes the MR-IM-SRG as a promising new tool for ab initio calculations of medium-mass nuclei far from shell closures.

  10. The Galactic chemical evolution of oxygen inferred from 3D non-LTE spectral-line-formation calculations

    NASA Astrophysics Data System (ADS)

    Amarsi, A. M.; Asplund, M.; Collet, R.; Leenaarts, J.

    2015-11-01

    We revisit the Galactic chemical evolution of oxygen, addressing the systematic errors inherent in classical determinations of the oxygen abundance that arise from the use of one-dimensional (1D) hydrostatic model atmospheres and from the assumption of local thermodynamic equilibrium (LTE). We perform detailed 3D non-LTE radiative-transfer calculations for atomic oxygen lines across a grid of 3D hydrodynamic STAGGER model atmospheres for dwarfs and subgiants. We apply our grid of predicted line strengths of the [O I] 630 nm and O I 777 nm lines using accurate stellar parameters from the literature. We infer a steep decay in [O/Fe] for [Fe/H] ? -1.0, a plateau [O/Fe] ? 0.5 down to [Fe/H] ? -2.5, and an increasing trend for [Fe/H] ? -2.5. Our 3D non-LTE calculations yield overall concordant results from the two oxygen abundance diagnostics.

  11. The Galactic chemical evolution of oxygen inferred from 3D non-LTE spectral line formation calculations

    E-print Network

    Amarsi, A M; Collet, R; Leenaarts, J

    2015-01-01

    We revisit the Galactic chemical evolution of oxygen, addressing the systematic errors inherent in classical determinations of the oxygen abundance that arise from the use of one dimensional hydrostatic (1D) model atmospheres and from the assumption of local thermodynamic equilibrium (LTE). We perform detailed 3D non-LTE radiative transfer calculations for atomic oxygen lines across a grid of 3D hydrodynamic stag- ger model atmospheres for dwarfs and subgiants. We apply our grid of predicted line strengths of the [OI] 630 nm and OI 777 nm lines using accurate stellar parameters from the literature. We infer a steep decay in [O/Fe] for [Fe/H] $\\gtrsim$ -1.0, a plateau [O/Fe] $\\approx$ 0.5 down to [Fe/H] $\\approx$ -2.5 and an increasing trend for [Fe/H] $\\lesssim$ -2.5. Our 3D non-LTE calculations yield overall concordant results from the two oxygen abundance diagnostics.

  12. Thin-Film Solid-Phase Extraction To Measure Fugacities of Organic

    E-print Network

    Gobas, Frank

    Thin-Film Solid-Phase Extraction To Measure Fugacities of Organic Chemicals with Low Volatility to measure the chemical's fugacity rather than its concentration. However, simple methods to do this are rare. This paper presents a novel yet simple method to measure fugacities of a range of poorly volatile hydrophobic

  13. OH in Rutile: an Oxygen and Water Barometer

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Manning, C. E.; Antignano, A.; Tropper, P.

    2005-12-01

    Dehydration of the subducting lithosphere induces oxidation and partial melting in the mantle wedge above subduction zones, and storage of water in the form of hydroxyl in high-pressure mineral phases may be an important mechanism for transfer of water to the mantle. It is therefore important to quantify water content of fluids and oxygen fugacity in subduction zones, but these variables can be difficult to measure or infer in many rocks. This study investigates the possibility of determining oxygen fugacity or water activity based on OH concentration measurements in rutile. The solubility of OH in pure rutile has been determined using rutile grains from aqueous fluid solubility experiments (Tropper and Manning 2005, Am Min, 90, 502). In pure rutile, H+ is stoichiometrically incorporated into the structure via reduction of Ti4+ to Ti3+, resulting in a change in color from pale yellow to deep blue. Synthetic rutile crystals were equilibrated in pure H2O or a H2O-NaCl solution at 1-2 GPa and 600-1100°C. The runs were unbuffered with respect to oxygen fugacity but were close to the NNO buffer (Newton and Manning 2005, J Petr, 46, 701). Rutile OH concentrations were determined using FTIR spectroscopy and the calibration of Maldener (2001, Min Pet, 71, 21). At a constant pressure of 1 GPa, OH concentrations of rutile in equilibrium with pure H2O increase exponentially from 600 to 1100°C. The data are fit with the equation [OH] = 17.7exp(4.00×10-3T) (R=0.998), where [OH] is in ppm H2O wt. and T is in °C. Increasing pressure from 1 to 2 GPa at 1100°C results in an increase in OH solubility from 1540 to 2220 ppm H2O. OH solubility in rutile decreases from 2220 to 1290 ppm H2O by lowering the water activity of the fluid from 1 to 0.49 at P = 2 GPa and T = 1100°C. Using the solubility data and the exchange reaction, Ti3+O(OH) + O2 = Ti4+O2 + <calculate ?H = -29.2 kJ/mol, ?S = -6.54 J/mol, and ?V = 0.80 cm3/mol for this reaction. Preliminary models indicate that OH in rutile is an effective barometer for water activity and may be a particularly sensitive indicator of oxygen fugacity for systems in which pressure and temperature of formation are constrained.

  14. K-alpha X-rays from cosmic ray oxygen. [Detection and calculation of equilibrium charge fractions

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Boldt, E. A.

    1975-01-01

    Equilibrium charge fractions are calculated for subrelativistic cosmic ray oxygen ions in the interstellar medium. These are used to determine the expected flux of K-alpha rays arising from atomic processes for a number of different postulated interstellar oxygen spectra. Relating these results to the diffuse X-ray background measured at the appropriate energy level suggests an observable line feature. If the flux of low energy cosmic ray oxygen is sufficiently large, K-alpha X-ray line emission from these nuclei will comprise a significant fraction of the total diffuse flux at approximately 0.6 keV. A satellite borne detector with a resolution greater than 30 percent could observe this feature if the subrelativistic interstellar cosmic ray oxygen spectrum is as large as certain theoretical estimates expressed in the text.

  15. Environmental capacity of chemical oxygen demand in the Bohai Sea: modeling and calculation

    NASA Astrophysics Data System (ADS)

    Zhao, Xixi; Wang, Xiulin; Shi, Xiaoyong; Li, Keqiang; Ding, Dongsheng

    2011-01-01

    A three-dimensional advection-diffusion model coupled with the degradation process is established for describing the transport of chemical oxygen demand (COD). Comparison of the simulated distribution of COD at the surface in the Bohai Sea in August, 2001 with field observations, shows that the model simulates the dataset reasonably well. The Laizhou Bay, Bohai Bay, and Liaodong Bay were contaminated heavily near shore. Based on the optimal discharge flux method, the Environmental Capacity (EC) and allocated capacities of COD in the Bohai Sea are calculated. For seawater of Grades I to IV of the Chinese National Standard, the ECs of COD in the Bohai Sea were 77×104 t/a, 116×104 t/a, 154×104 t/a and 193×104 t/a, respectively. The Huanghe (Yellow) River pollutant discharge accounted for the largest percentage of COD at 14.3%, followed by that of from the Liugu River (11.5%), and other nine local rivers below 10%. The COD level in 2005 was worse than that of Grade II seawater and was beyond the environmental capacity. In average, 35% COD reduction is called to meet the standard of Grade I seawater.

  16. A Graphical Representation for the Fugacity of a Pure Substance

    ERIC Educational Resources Information Center

    Book, Neil L.; Sitton, Oliver C.

    2010-01-01

    The thermodynamic equations used to define and compute the fugacity of a pure substance are depicted as processes on a semi-logarithmic plot of pressure vs. molar Gibbs energy (PG diagram) with isotherms for the substance behaving as an ideal gas superimposed. The PG diagram clearly demonstrates the physical basis for the definitions and the…

  17. RELATIVISTIC CALCULATION OF TRANSITION PROBABILITIES FOR 557.7 nm AND 297.2 nm EMISSION LINES IN OXYGEN

    SciTech Connect

    Chantler, C. T.; Nguyen, T. V. B.; Lowe, J. A.; Grant, I. P.

    2013-05-20

    The 557.7 nm green line and the 297.2 nm ultraviolet line in oxygen have been studied extensively due to their importance in astrophysics and atmospheric science. Despite the enormous effort devoted to these two prominent transition lines over 30 years, and in fact going back to 1934, the ratio of their transition probabilities remains a subject of major discrepancies amongst various theoretical calculations for many decades. Moreover, theoretical results are inconsistent with available laboratory results, as well as recent spacecraft measurements of Earth's airglow. This work presents new relativistic theoretical calculations of the transition probabilities of these two photoemission lines from neutral oxygen using the multi-configuration Dirac-Hartree-Fock method. Our calculations were performed in both length and velocity gauges in order to check for accuracy and consistency, with agreement to 8%. Whilst remaining a challenging computation, these results directly bear upon interpretations of plasma processes and ionization regimes in the universe.

  18. Hydrothermal hydration of Martian crust: illustration via geochemical model calculations

    NASA Technical Reports Server (NTRS)

    Griffith, L. L.; Shock, E. L.

    1997-01-01

    If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential.

  19. Hydrothermal hydration of Martian crust: illustration via geochemical model calculations.

    PubMed

    Griffith, L L; Shock, E L

    1997-04-25

    If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential. PMID:11541456

  20. A fugacity-based indoor residential pesticide fate model

    SciTech Connect

    Bennett, Deborah H.; Furtaw, Edward J.; McKone, Thomas E.

    2002-06-01

    Dermal and non-dietary pathways are potentially significant exposure pathways to pesticides used in residences. Exposure pathways include dermal contact with residues on surfaces, ingestion from hand- and object-to-mouth activities, and absorption of pesticides into food. A limited amount of data has been collected on pesticide concentrations in various residential compartments following an application. But models are needed to interpret this data and make predictions about other pesticides based on chemical properties. In this paper, we propose a mass-balance compartment model based on fugacity principles. We include air (both gas phase and aerosols), carpet, smooth flooring, and walls as model compartments. Pesticide concentrations on furniture and toys, and in food, are being added to the model as data becomes available. We determine the compartmental fugacity capacity and mass transfer-rate coefficient for wallboard as an example. We also present the framework and equations needed for a dynamic mass-balance model.

  1. Singlet oxygen generation in PUVA therapy studied using electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Serrano-Pérez, Juan José; Olaso-González, Gloria; Merchán, Manuela; Serrano-Andrés, Luis

    2009-06-01

    The ability of furocoumarins to participate in the PUVA (Psoralen + UV-A) therapy against skin disorders and some types of cancer, is analyzed on quantum chemical grounds. The efficiency of the process relies on its capability to populate its lowest triplet excited state, and then either form adducts with thymine which interfere DNA replication or transfer its energy, generating singlet molecular oxygen damaging the cell membrane in photoactivated tissues. By determining the spin-orbit couplings, shown to be the key property, in the intersystem crossing yielding the triplet state of the furocoumarin, the electronic couplings in the triplet-triplet energy transfer process producing the singlet oxygen, and the reaction rates and lifetimes, the efficiency in the phototherapeutic action of the furocoumarin family is predicted as: khellin < 5-methoxypsoralen (5-MOP) < 8-methoxypsoralen (8-MOP) < psoralen < 4,5?,8-trimethylpsoralen (TMP) < 3-carbethoxypsoralen (3-CPS), the latter being the most efficient photosensitizer and singlet oxygen generator.

  2. Calculation of TiO2 Surface and Subsurface Oxygen Vacancy by the Screened Exchange Functional

    E-print Network

    Li, Hongfei; Guo, Yuzheng; Robertson, John

    2015-07-20

    of Conducting Nanofilaments in TiO2 Resistive Switching Memory. Nature Nanotech 2010, 5, 148-153. 5 Yim, C. M.; Pang, C. L.; Thornton, G. Oxygen Vacancy Origin of the Surface Band-Gap State of TiO2 (110). Phys. Rev. Lett. 2010, 104, 036806 1-4. 6 Schaub...

  3. Computation of decompression schedules for single inert gas-oxygen dives using a hand-held programmable calculator.

    PubMed

    Ranade, A; Peterson, R E

    1980-08-01

    An algorithm for on-site computation with a hand-held programmable calculator (TI-59, Texas Instruments) of single inert-gas decompression schedules is described. This program is based on Workman's 'M-value' method. It can compute decompression schedules with changes in the oxygen content of the breathing mixture and extension of stay at any decompression stop. The features of the program that enable calculation of atypical dive profiles, along with the portability of small calculators, would make such an algorithm suitable for on-site applications. However, since dive profiles generated by the program have not yet been tested, divers are warned not to generate schedules until their safety has been established by field tests. PMID:6257447

  4. Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: The case of oxygen vacancies in metal oxides

    NASA Astrophysics Data System (ADS)

    Gerosa, Matteo; Bottani, Carlo Enrico; Caramella, Lucia; Onida, Giovanni; Di Valentin, Cristiana; Pacchioni, Gianfranco

    2015-10-01

    We investigate the behavior of oxygen vacancies in three different metal-oxide semiconductors (rutile and anatase TiO2, monoclinic WO3, and tetragonal ZrO2) using a recently proposed hybrid density-functional method in which the fraction of exact exchange is material-dependent but obtained ab initio in a self-consistent scheme. In particular, we calculate charge-transition levels relative to the oxygen-vacancy defect and compare computed optical and thermal excitation/emission energies with the available experimental results, shedding light on the underlying excitation mechanisms and related materials properties. We find that this novel approach is able to reproduce not only ground-state properties and band structures of perfect bulk oxide materials but also provides results consistent with the optical and electrical behavior observed in the corresponding substoichiometric defective systems.

  5. Comparative oxygen barometry in granulites, Bamble sector, SE Norway

    SciTech Connect

    Harlov, D.E. )

    1992-07-01

    Oxygen fugacities have been estimated for the high-grade portion of the Bamble granulite facies terrane, SE Norway, using both titaniferous magnetite-ilmenite and orthopyroxene-titaniferous magnetite-quartz oxygen barometers. The two oxygen barometers show good agreement, for samples indicating high titaniferous magnetite-ilmenite temperatures whereas agreement is poor for low-temperature samples. Oxygen fugacities estimated from titaniferous magnetite-ilmenite are considerably lower than those estimated from orthopyroxene-titaniferous magnetite-quartz. This discrepancy increases with a decrease in temperature, which appears to reflect preferential resetting of the hematite content in the ilmenite grains, without much alteration of the more numerous titaniferous magnetite or orthopyroxene grains. The mean temperature for non-reset samples, 795 {plus minus} 60C (1{sigma}), agrees well with temperatures obtained from garnet-orthopyroxene K{sub D} exchange thermometry in the same region, 785 {plus minus} 60C (1{sigma}). The non-reset oxygen fugacities also agree well with an independent study of the Bamble granulites by Cameron. The QUIlP equilibrium (Quartz-Ulvospinel-Ilmenite-Pyroxene) is used to project self-consistent equilibrium temperatures and oxygen fugacities for samples reset due to hematite loss from the ilmenite grains. These projected temperatures and oxygen fugacities agree reasonably well with non-reset samples. The mean projected temperature is 830 {plus minus} 40C (1{sigma}). This agreement strongly supports the conclusion that low titaniferous magnetite-ilmenite temperatures (down to 485C) and accompanying low-oxygen fugacities are the result of hematite loss from the ilmenite grains at some time after granulite-facies metamorphism.

  6. “SIGMELTS”: A web portal for electrical conductivity calculations in geosciences

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Le-Trong, E.

    2011-09-01

    Electrical conductivity measurements in the laboratory are critical for interpreting geoelectric and magnetotelluric profiles of the Earth's crust and mantle. In order to facilitate access to the current database on electrical conductivity of geomaterials, we have developed a freely available web application (SIGMELTS) dedicated to the calculation of electrical properties. Based on a compilation of previous studies, SIGMELTS computes the electrical conductivity of silicate melts, carbonatites, minerals, fluids, and mantle materials as a function of different parameters, such as composition, temperature, pressure, water content, and oxygen fugacity. Calculations on two-phase mixtures are also implemented using existing mixing models for different geometries. An illustration of the use of SIGMELTS is provided, in which calculations are applied to the subduction zone-related volcanic zone in the Central Andes. Along with petrological considerations, field and laboratory electrical data allow discrimination between the different hypotheses regarding the formation and rise from depth of melts and fluids and quantification of their storage conditions.

  7. Mean field theory of effective spin models as a baryon fugacity expansion

    E-print Network

    Jeff Greensite; Kim Splittorff

    2012-06-06

    The free energy of effective spin or "Polyakov line" models with a chemical potential, based on the U(N) group, does not depend on the chemical potential. In a mean field-inspired expansion, we show how the condition of unit determinant, taking U(N) to SU(N), reintroduces the chemical potential, and allows us to express the free energy, as a function of mean field variational parameters, in terms of an expansion in the baryon (rather than the quark) fugacity at each lattice site. We solve the SU(3) mean field equations numerically to determine the phase diagram and compute observables. We also calculate the first corrections to the leading order mean field results, and find that these can significantly shift the endpoint of a line of first order transitions. The problem of deriving an effective spin model from full QCD is discussed.

  8. Workshop on Oxygen in the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in Lunar Metal Grains: Solar, Lunar or Terrestrial Origin? 22) Isotopic Zoning in the Inner Solar System; 23) Redox Conditions on Small Bodies; 24) Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update; 25) Mantle Redox Evolution and the Rise of Atmospheric O2; 26) Variation of Kd for Fe-Mg Exchange Between Olivine and Melt for Compositions Ranging from Alkaline Basalt to Rhyolite; 27) Determining the Partial Pressure of Oxygen (PO,) in Solutions on Mars; 28) The Influence of Oxygen Environment on Kinetic Properties of Silicate Rocks and Minerals; 29) Redox Evolution of Magmatic Systems; 30) The Constancy of Upper Mantlefo, Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric 0 2; 31) Nitrogen Solubility in Basaltic Melt. Effects of Oxygen Fugacity, Melt Composition and Gas Speciation; 32) Oxygen Isotope Anomalies in the Atmospheres of Earth and Mars; 33) The Effect of Oxygen Fugacity on Interdiffusion of Iron and Magnesium in Magnesiowiistite 34) The Calibration of the Pyroxene Eu-Oxybarometer for the Martian Meteorites; 35) The Europium Oxybarometer: Power and Pitfalls; 36) Oxygen Fugacity of the Martian Mantle from PigeoniteMelt Partitioning of Samarium, Europium and Gadolinium; 37) Oxidation-Reduction Processes on the Moon: Experimental Verification of Graphite Oxidation in the Apollo 17 Orange Glasses; 38) Oxygen and Core Formation in the Earth; 39) Geologic Record of the Atmospheric Sulfur Chemistry Before the Oxygenation of the Early Earth s Atmosphere; 40) Comparative Planetary Mineralogy: V/(CrCAl) Systematics in Chromite as an Indicator of Relative Oxygen Fugacity; 41) How Well do Sulfur Isotopes Constrain Oxygen Abundance in the Ancient Atmospheres? 42) Experimental Constraints on the Oxygen Isotope (O-18/ O-16) Fractionation in the Ice vapor and Adsorbant vapor Systems of CO2 at Conditions Relevant to the Surface of Mars; 43) Micro-XANES Measurements on Experimental Spinels andhe Oxidation State of Vanadium in Spinel-Melt Pairs; 44) Testing the Magma Ocean Hypothesis Using

  9. Comparison of Oxygen Gauche Effects in Poly(Oxyethylene) and Poly(ethylene terephtylene) Based on Quantum Chemistry Calculations

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    The so-called oxygen gauche effect in poly(oxyethylene) (POE) and its model molecules such as 1,2-dimethoxyethane (DME) and diglyme (CH3OC2H4OC2H4OCH3) is manifested in the preference for gauche C-C bond conformations over trans. This has also been observed for poly(ethylene terephthalate) (PET). Our previous quantum chemistry calculations demonstrated that the large C-C gauche population in DME is due, in part, to a low-lying tg +/- g+ conformer that exhibits a substantial 1,5 CH ... O attraction. New calculations will be described that demonstrate the accuracy of the original quantum chemistry calculations. In addition, an extension of this work to model molecules for PET will be presented. It is seen that the C-C gauche preference is much stronger in 1,2 diacetoxyethane than in DME. In addition, there exist low-lying tg +/- g+/- and g+/-g+/-g+/- conformers that exhibit 1,5 CH ... O attractions involving the carbonyl oxygens. It is expected that the -O-C-C-O- torsional properties will be quite different in these two polymers. The quantum chemistry results are used to parameterize rotational isomeric states models (RIS) and force fields for molecular dynamics simulations of these polymers.

  10. Calculation of singlet oxygen formation from one photon absorbing photosensitizers used in PDT

    NASA Astrophysics Data System (ADS)

    Potasek, M.; Parilov, Evgueni; Beeson, K.

    2013-03-01

    Advances in biophotonic medicine require new information on photodynamic mechanisms. In photodynamic therapy (PDT), a photosensitizer (PS) is injected into the body and accumulates at higher concentrations in diseased tissue compared to normal tissue. The PS absorbs light from a light source and generates excited-state triplet states of the PS. The excited triplet states of the PS can then react with ground state molecular oxygen to form excited singlet - state oxygen or form other highly reactive species. The reactive species react with living cells, resulting in cel l death. This treatment is used in many forms of cancer including those in the prostrate, head and neck, lungs, bladder, esophagus and certain skin cancers. We developed a novel numerical method to model the photophysical and photochemical processes in the PS and the subsequent energy transfer to O2, improving the understanding of these processes at a molecular level. Our numerical method simulates light propagation and photo-physics in PS using methods that build on techniques previously developed for optical communications and nonlinear optics applications.

  11. Oxygen 1s x-ray absorption of tetravalent titanium oxides: A comparison with single-particle calculations

    NASA Astrophysics Data System (ADS)

    de Groot, F. M. F.; Faber, J.; Michiels, J. J. M.; Czyzyk, M. T.; Abbate, M.; Fuggle, J. C.

    1993-07-01

    The oxygen 1s x-ray-absorption spectra of SrTiO3 and TiO2, in both the rutile and anatase crystal structure, are analyzed using the oxygen p-projected density of states of ground-state band-structure calculations. Good agreement is found and it is concluded that multielectron effects, transition matrix elements, and the core-hole potential present only small, largely undetectable, influences on the spectral shape. From the site- and symmetry-projected density of states the rutile peaks could be assigned to the 3d band (4-8 eV), antibonding oxygen 2p states (10-18 eV), and the titanium 4sp band (20-25 eV). For anatase the titanium 4sp band is shifted to lower energy by about 5 eV, which can be related to the lower density of anatase. From differences in the crystal structure it is argued that the core-hole potential is considerably more effective in perovskite SrTiO3 than in both TiO2 crystal structures. This is in accordance with the experimental findings.

  12. Impact of tensile strain on the oxygen vacancy migration in SrTiO3: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    AL-Hamadany, Raied; Goss, J. P.; Briddon, P. R.; Mojarad, Shahin A.; O'Neill, A. G.; Rayson, M. J.

    2013-06-01

    Strontium titanate is a promising dielectric material for device applications including capacitors and gate dielectrics. However, oxygen vacancies, which are inevitable donor defects mobile under bias at room temperature, lead to undesirable leakage current in SrTiO3 thin films. Epitaxially grown SrTiO3 on lattice mismatched substrates leads to strained SrTiO3, inducing structural phase transitions from a cubosymmetric non-ferroelectric geometry to tetragonal and orthorhombic structures, depending upon the sign of the strain. In this study, density functional calculations have been performed to determine the impact of isotropic biaxial tensile strain in a (001) plane upon the phase of SrTiO3 and the activation energy for the migration of oxygen vacancies in such strained SrTiO3. The phase transition of the host material yields anisotropy in oxygen vacancy diffusion for diffusion within and between planes parallel to the strain. We found a general reduction in the barrier for diffusion within and normal to the plane of tensile strain. The inter-plane diffusion barrier reduces up to 25% at high values of strain. The variation in the barrier corresponding to in-plane diffusion is smaller in comparison to inter-plane diffusion. Finally, we reflect upon how the interplay between lattice strain with native defects plays a crucial role in the conduction mechanism of thin film, strained SrTiO3.

  13. Control of the water fugacity at high pressures and temperatures: Applications to the incorporation mechanisms of water in olivine

    E-print Network

    Control of the water fugacity at high pressures and temperatures: Applications to the incorporation t A new method is developed to control water fugacity at a fixed pressure and temperature. We use two temperatures. Ó 2011 Elsevier B.V. All rights reserved. 1. Introduction The water fugacity, fH2O (or

  14. Electrical conductivity in oxygen-deficient phases of tantalum pentoxide from first-principles calculations

    SciTech Connect

    Bondi, Robert J. Desjarlais, Michael P.; Thompson, Aidan P.; Brennecka, Geoff L.; Marinella, Matthew J.

    2013-11-28

    We apply first-principles density-functional theory (DFT) calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula to predict electrical conductivity in Ta{sub 2}O{sub x} (0???x???5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (V{sub O}{sup n}; n?=?0,1+,2+). In the crystalline phase, our DFT calculations suggest that V{sub O}{sup 0} prefers equatorial O sites, while V{sub O}{sup 1+} and V{sub O}{sup 2+} are energetically preferred in the O cap sites of TaO{sub 7} polyhedra. Our calculations of DC conductivity at 300?K agree well with experimental measurements taken on Ta{sub 2}O{sub x} thin films (0.18???x???4.72) and bulk Ta{sub 2}O{sub 5} powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta{sub 2}O{sub 5} electronic structure provide further theoretical basis to substantiate V{sub O}{sup 0} as a donor dopant in Ta{sub 2}O{sub 5}. Furthermore, this dopant-like behavior is specific to the neutral case and not observed in either the 1+ or 2+ oxidation states, which suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for V{sub O}{sup n} in Ta{sub 2}O{sub 5}.

  15. Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.

    SciTech Connect

    Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

    2013-09-01

    Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0x5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

  16. Calculated volatilization rates of fuel oxygenate compounds and other gasoline-related compounds from rivers and streams

    USGS Publications Warehouse

    Pankow, J.F.; Rathbun, R.E.; Zogorski, J.S.

    1996-01-01

    Large amounts of the 'fuel-oxygenate' compound methyl-tert-butyl ether (MTBE) are currently being used in gasoline to reduce carbon monoxide and ozone in urban air and to boost fuel octane. Because MTBE can be transported to surface waters in various ways, established theory was used to calculate half-lives for MTBE volatilizing from flowing surface waters. Similar calculations were made for benzene as a representative of the 'BTEX' group of compounds (benzene, toluene, ethyl benzene, and the xylenes), and for tert-butyl alcohol (TBA). The calculations were made as a function of the mean flow velocity u (m/day), the mean flow depth h (m), the ambient temperature, and the wind speed. In deep, slow-moving flows, MTBE volatilizes at rates which are similar to those for the BTEX compounds. In shallow, fast-moving flows, MTBE volatilizes more slowly than benzene, though in such flows both MTBE and benzene volatilize quickly enough that these differences may often not have much practical significance. TBA was found to be essentially nonvolatile from water.

  17. Optimizing the calculation of DM,CO and VC via the single breath single oxygen tension DLCO/NO method.

    PubMed

    Coffman, Kirsten E; Taylor, Bryan J; Carlson, Alex R; Wentz, Robert J; Johnson, Bruce D

    2016-01-15

    Alveolar-capillary membrane conductance (DM,CO) and pulmonary-capillary blood volume (VC) are calculated via lung diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO) using the single breath, single oxygen tension (single-FiO2) method. However, two calculation parameters, the reaction rate of carbon monoxide with blood (?CO) and the DM,NO/DM,CO ratio (?-ratio), are controversial. This study systematically determined optimal ?CO and ?-ratio values to be used in the single-FiO2 method that yielded the most similar DM,CO and VC values compared to the 'gold-standard' multiple-FiO2 method. Eleven healthy subjects performed single breath DLCO/DLNO maneuvers at rest and during exercise. DM,CO and VC were calculated via the single-FiO2 and multiple-FiO2 methods by implementing seven ?CO equations and a range of previously reported ?-ratios. The RP ?CO equation (Reeves, R.B., Park, H.K., 1992. Respiration Physiology 88 1-21) and an ?-ratio of 4.0-4.4 yielded DM,CO and VC values that were most similar between methods. The RP ?CO equation and an experimental ?-ratio should be used in future studies. PMID:26521031

  18. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    NASA Technical Reports Server (NTRS)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  19. Electrochemical measurements and thermodynamic calculations of redox equilibria in pallasite meteorites - Implications for the eucrite parent body

    NASA Astrophysics Data System (ADS)

    Righter, K.; Arculus, R. J.; Delano, J. W.; Paslick, C.

    1990-06-01

    The intrinsic oxygen fugacity (IOF) of olivine separates from the Salta, Springwater, and Eagle Station pallasites was measured between 850 and 1150 C using oxygen-specific solid zirconia electrolytes at 100,000 Pa. Thermodynamic calculations of redox equilibria involving equalibrium pallasite assemblages are in good agreement with the experimental results and provide a lower limit to pallasite redox stability; others involving disequilibrium assemblages, suggest that pallasites experienced localized, late-stage oxidation and reduction effects. Consideration of the redox buffer metal-olivine-orthopyroxene utilizing calculated Eucrite Parent Body (EPB) mantle phase compositions indicates that small redox gradients may have existed in the EPB. Such gradients may have produced strong compositional variation within the EPB. In addition, there is apparently significant redox heterogeneity in the source area of Eagle Station Trio pallasites and Bocaiuva iron meteorites.

  20. Probabilistic fugacity analysis of Lake Pontchartrain pollution after Hurricane Katrina.

    PubMed

    Gokgoz-Kilic, Sinem; Aral, Mustafa M

    2008-08-01

    After Hurricane Katrina passed through the US Gulf Coast in August 2005, floodwaters covering New Orleans were pumped into Lake Pontchartrain as part of the rehabilitation process in order to make the city habitable again. The long-term consequences of this environmentally critical decision were difficult to assess at the time and were left to observation. In the aftermath of these natural disasters, and in cases of emergency, the proactive use of screening level models may prove to be an important factor in making appropriate decisions to identify cost effective and environmentally friendly mitigation solutions. In this paper, we propose such a model and demonstrate its use through the application of several hypothetical scenarios to examine the likely response of Lake Pontchartrain to the contaminant loading that were possibly in the New Orleans floodwaters. For this purpose, an unsteady-state fugacity model was developed in order to examine the environmental effects of contaminants with different physicochemical characteristics on Lake Pontchartrain. The three representative contaminants selected for this purpose are benzene, atrazine, and polychlorinated biphenyls (PCBs). The proposed approach yields continuous fugacity values for contaminants in the water, air, and sediment compartments of the lake system which are analogous to concentrations. Since contaminant data for the floodwaters are limited, an uncertainty analysis was also performed in this study. The effects of uncertainty in the model parameters were investigated through Monte Carlo analysis. Results indicate that the acceptable recovery of Lake Pontchartrain will require a long period of time. The computed time range for the levels of the three contaminants considered in this study to decrease to maximum contaminant levels (MCLs) is about 1 year to 68 years. The model can be implemented to assess the possible extent of damage inflicted by any storm event on the natural water resources of Southern Louisiana or similar environments elsewhere. Furthermore, the model developed can be used as a useful decision-making tool for planning and remediation in similar emergency situations by examining various potential contamination scenarios and their consequences. PMID:17462815

  1. Oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives by nitrous oxide via selective oxygen atom transfer reactions: insights from quantum chemistry calculations.

    PubMed

    Xie, Hujun; Liu, Chengcheng; Yuan, Ying; Zhou, Tao; Fan, Ting; Lei, Qunfang; Fang, Wenjun

    2016-01-01

    The mechanisms for the oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives (Cp* = ?(5)-C5Me5) by nitrous oxide via selective oxygen atom transfer reactions have been systematically studied by means of density functional theory (DFT) calculations. On the basis of the calculations, we investigated the original mechanism proposed by Hillhouse and co-workers for the activation of N2O. The calculations showed that the complex with an initial O-coordination of N2O to the coordinatively unsaturated Hf center is not a local minimum. Then we proposed a new reaction mechanism to investigate how N2O is activated and why N2O selectively oxidize phenyl and hydride ligands of . Frontier molecular orbital theory analysis indicates that N2O is activated by nucleophilic attack by the phenyl or hydride ligand. Present calculations provide new insights into the activation of N2O involving the direct oxygen atom transfer from nitrous oxide to metal-ligand bonds instead of the generally observed oxygen abstraction reaction to generate metal-oxo species. PMID:26660046

  2. Utilizing Polymer-Coated Vials to Illustrate the Fugacity and Bioavailability of Chlorinated Pesticide Residues in Contaminated Soils

    ERIC Educational Resources Information Center

    Andrade, Natasha A.; McConnell, Laura L.; Torrents, Alba; Hapeman, Cathleen J.

    2013-01-01

    Fugacity and bioavailability can be used to facilitate students' understanding of potential environmental risks associated with toxic chemicals and, therefore, should be incorporated in environmental chemistry and science laboratories. Although the concept of concentration is easy to grasp, fugacity and bioavailability can be challenging…

  3. Prediction of the Dependence of the Fuel Cell Oxygen Reduction Reactions on Operating Voltage from DFT Calculations

    E-print Network

    Goddard III, William A.

    Prediction of the Dependence of the Fuel Cell Oxygen Reduction Reactions on Operating Voltage from reduction reaction (ORR) in a proton exchange membrane fuel cell, we developed a sys- tematic way to handle on the operating electrochemical potential for the Pt-catalyzed fuel cell. This method is used to estimate

  4. Oxygen Fugacity of the Martian Mantle from Pigeonite/Melt Partitioning of Samarium, Europium and Gadolinium

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Jnes, J. H.; Shearer, C.

    2004-01-01

    This study is part of an ongoing effort to calibrate the pyroxene/melt REE oxybarometer for conditions relevant to the martian meteorites. These efforts have been motivated by reports of redox variations among the shergottites . We have conducted experiments on martian composition pigeonite/melt rare earth element partitioning as a function of fO2.

  5. Oxygen Fugacity of the Martian Mantle from Pigeonite/Melt Partitioning of Samarium, Europium and Gadolinium

    NASA Technical Reports Server (NTRS)

    Musselwhite, S.; Jones, J. H.; Shearer, C.

    2004-01-01

    This study is part of an ongoing effort to calibrate the pyroxene/melt Eu oxybarometer for conditions relevant to the martian meteorites. There is fairly good agreement between a determinations using equilibria between Fe-Ti oxides and the estimates from Eu anomalies in shergottite augites in tenns of which meteorites are more or less oxidized. The Eu calibration was for angrite composition pyroxenes which are rather extreme. However, application of a calibration for martian composition augites 113 does not significantly reduce the discrepancy between the two methods. One possible reason for this discrepancy is that augites are non-liquidus. The use of pigeonite rather than augite as the oxy-barometer phase is considered. We have conducted experiments on martian composition pigeonite/melt REE partitioning as a function of fO2.

  6. Oxygen Fugacity of the Martian Mantle From Pyroxene/Melt Partitioning of REE

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Jones, J. H.

    2003-01-01

    This study is part of an ongoing effort to calibrate the pyroxene/melt REE oxybarometer for conditions relevant to the martian meteorites. Redox variations have been reported among the shergottites. Wadhwa used the Eu and Gd augite/melt partitioning experiments of McKay, designed for the LEW86010 angrite, to infer a range of fo2 for the shergottites. Others inferred fo2 using equilibria between Fe-Ti oxides. There is fairly good agreement between the Fe-Ti oxide determinations and the estimates from Eu anomalies in terms of which meteorites are more or less oxidized. The Eu anomaly technique and the Fe-Ti oxide technique both essentially show the same trend, with Shergotty and Zagami being the most oxidized and QUE94201 and DaG 476 being the most reduced. Thus, the variation in fo2 appears to be both real and substantive. However, although the redox trends indicated by the two techniques are similar, there is as much as two log unit offset between the results of three researchers. One explanation for this offset is that the Eu calibration used for the shergottites was actually designed for the LEW86010 angrite, a silica-undersaturated basalt whose pyroxene (diopside) compositions are rather extreme. To correct this, experiments have been conducted on the redox relationship of Eu partitioning relative to Sm and Gd for pyroxene/melt compositions more relevant to Martian meteorites. We report here preliminary results for experiments on pigeonite/melt partitioning as a function of fO2.

  7. Use of Physicochemical Parameters to Assess the Environmental Fate of Organic Pollutants: The Fugacity Model

    ERIC Educational Resources Information Center

    Domenech, Xavier; Ayllon, Jose Antonio; Peral, Jose

    2006-01-01

    The environmental fate and behavior of different organic pollutants based on the qualitative analysis of thermodynamic and kinetic data is presented. The Fugacity model allows the use of different partition constants in an easy way, to determine the distribution of chemical between different phases in equilibrium of an environmental system.

  8. Fugacity and activity analysis of the bioaccumulation and environmental risks of decamethylcyclopentasiloxane (D5).

    PubMed

    Gobas, Frank A P C; Xu, Shihe; Kozerski, Gary; Powell, David E; Woodburn, Kent B; Mackay, Don; Fairbrother, Anne

    2015-12-01

    As part of an initiative to evaluate commercial chemicals for their effects on human and environmental health, Canada recently evaluated decamethylcyclopentasiloxane (D5; CAS no. 541-02-06), a high-volume production chemical used in many personal care products. The evaluation illustrated the challenges encountered in environmental risk assessments and the need for the development of better tools to increase the weight of evidence in environmental risk assessments. The present study presents a new risk analysis method that applies thermodynamic principles of fugacity and activity to express the results of field monitoring and laboratory bioaccumulation and toxicity studies in a comprehensive risk analysis that can support risk assessments. Fugacity and activity ratios of D5 derived from bioaccumulation measures indicate that D5 does not biomagnify in food webs, likely because of biotransformation. The fugacity and activity analysis further demonstrates that reported no-observed-effect concentrations of D5 normally cannot occur in the environment. Observed fugacities and activities in the environment are, without exception, far below those corresponding with no observed effects, in many cases by several orders of magnitude. This analysis supports the conclusion of the Canadian Board of Review and the Minister of the Environment that D5 does not pose a danger to the environment. The present study further illustrates some of the limitations of a persistence-bioaccumulation-toxicity-type criteria-based risk assessment approach and discusses the merits of the fugacity and activity approach to increase the weight of evidence and consistency in environmental risk assessments of commercial chemicals. Environ Toxicol Chem 2015;34:2723-2731. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:26211424

  9. Workshop on Oxygen in Asteroids and Meteorites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Constraints on the detection of solar nebula's oxidation state through asteroid observation. Oxidation/Reduction Processes in Primitive Achondrites. Low-Temperature Chemical Processing on Asteroids. On the Formation Location of Asteroids and Meteorites. The Spectral Properties of Angritic Basalts. Correlation Between Chemical and Oxygen Isotopic Compositions in Chondrites. Effect of In-Situ Aqueous Alteration on Thermal Model Heat Budgets. Oxidation-Reduction in Meteorites: The Case of High-Ni Irons. Ureilite Atmospherics: Coming up for Air on a Parent Body. High Temperature Effects Including Oxygen Fugacity, in Pre-Planetary and Planetary Meteorites and Asteroids. Oxygen Isotopic Variation of Asteroidal Materials. High-Temperature Chemical Processing on Asteroids: An Oxygen Isotope Perspective. Oxygen Isotopes and Origin of Opaque Assemblages from the Ningqiang Carbonaceous Chondrite. Water Distribution in the Asteroid Belt. Comparative Planetary Mineralogy: V Systematics in Planetary Pyroxenes and fo 2 Estimates for Basalts from Vesta.

  10. Size and structure effects of PtN (N = 12 - 13) clusters for the oxygen reduction reaction: First-principles calculations.

    PubMed

    Rodríguez-Kessler, P L; Rodríguez-Domínguez, A R

    2015-11-14

    Size and structure effects on the oxygen reduction reaction on PtN clusters with N =?12-13 atoms have been investigated using periodic density functional theory calculations with the generalized gradient approximation. To describe the catalytic activity, we calculated the O and OH adsorption energies on the cluster surface. The oxygen binding on the 3-fold hollow sites on stable Pt12-13 cluster models resulted more favorable for the reaction with O, compared with the Pt13(Ih) and Pt55(Ih) icosahedral particles, in which O binds strongly. However, the rate-limiting step resulted in the removal of the OH species due to strong adsorptions on the vertex sites, reducing the utility of the catalyst surface. On the other hand, the active sites of Pt12-13 clusters have been localized on the edge sites. In particular, the OH adsorption on a bilayer Pt12 cluster is the closest to the optimal target; with 0.0-0.2 eV weaker than the Pt(111) surface. However, more progress is necessary to activate the vertex sites of the clusters. The d-band center of PtN clusters shows that the structural dependence plays a decisive factor in the cluster reactivity. PMID:26567667

  11. Size and structure effects of PtN (N = 12 - 13) clusters for the oxygen reduction reaction: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Rodríguez-Kessler, P. L.; Rodríguez-Domínguez, A. R.

    2015-11-01

    Size and structure effects on the oxygen reduction reaction on PtN clusters with N = 12-13 atoms have been investigated using periodic density functional theory calculations with the generalized gradient approximation. To describe the catalytic activity, we calculated the O and OH adsorption energies on the cluster surface. The oxygen binding on the 3-fold hollow sites on stable Pt12-13 cluster models resulted more favorable for the reaction with O, compared with the Pt13(Ih) and Pt55(Ih) icosahedral particles, in which O binds strongly. However, the rate-limiting step resulted in the removal of the OH species due to strong adsorptions on the vertex sites, reducing the utility of the catalyst surface. On the other hand, the active sites of Pt12-13 clusters have been localized on the edge sites. In particular, the OH adsorption on a bilayer Pt12 cluster is the closest to the optimal target; with 0.0-0.2 eV weaker than the Pt(111) surface. However, more progress is necessary to activate the vertex sites of the clusters. The d-band center of PtN clusters shows that the structural dependence plays a decisive factor in the cluster reactivity.

  12. Estimating long-term contaminant inventory in and flux from soils in a regional fugacity model

    SciTech Connect

    McKone, T.E.; Maddalena, R.L.; Hsieh, D.P.H.

    1994-12-31

    Regional fugacity models are used in the United States, Canada, and Europe to assess the fate and effects of chemical emissions to multiple environmental media, i.e. air, water, and soil. Because soil is not a well-mixed compartment such as air or surface water, the boundary-layer approach for developing mass transfer coefficients (D values) from soil to air is not always easily applicable to soil. In this paper the authors develop a general compartment model for soils that is both compatible with the simple compartment structure of regional fugacity models and more accurate in its ability to mimic the more complex analytical transport models for contaminant fate in soil. This is done by using three soil layers to represent the region between the soil surface and the top of the saturated zone and by developing a regression model that uses effective soil diffusion coefficients to estimate the chemical-specific diffusion depth in each of these soil layers. The diffusion depth is estimated using an optimized regression of the box model results against the results of analytical simulations. The authors assess how well this revised soil-compartment model performs against the analytical model that it was trained to mimic. The authors also assess how the results of this model compare to those of other regional fugacity models.

  13. The Critical Fugacity for Surface Adsorption of Self-Avoiding Walks on the Honeycomb Lattice is

    NASA Astrophysics Data System (ADS)

    Beaton, Nicholas R.; Bousquet-Mélou, Mireille; de Gier, Jan; Duminil-Copin, Hugo; Guttmann, Anthony J.

    2014-03-01

    In 2010, Duminil-Copin and Smirnov proved a long-standing conjecture of Nienhuis, made in 1982, that the growth constant of self-avoiding walks on the hexagonal (a.k.a. honeycomb) lattice is . A key identity used in that proof was later generalised by Smirnov so as to apply to a general O( n) loop model with (the case n = 0 corresponding to self-avoiding walks). We modify this model by restricting to a half-plane and introducing a surface fugacity y associated with boundary sites (also called surface sites), and obtain a generalisation of Smirnov's identity. The critical value of the surface fugacity was conjectured by Batchelor and Yung in 1995 to be . This value plays a crucial role in our generalized identity, just as the value of the growth constant did in Smirnov's identity. For the case n = 0, corresponding to self-avoiding walks interacting with a surface, we prove the conjectured value of the critical surface fugacity. A crucial part of the proof involves demonstrating that the generating function of self-avoiding bridges of height T, taken at its critical point 1/ ?, tends to 0 as T increases, as predicted from SLE theory.

  14. Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum-copper alloy: Experiment and density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Sun, Junzhe; Shi, Jun; Xu, Junling; Chen, Xiaoting; Zhang, Zhonghua; Peng, Zhangquan

    2015-04-01

    Novel ultrafine nanoporous Pt-Cu alloy with a Pt:Cu stoichiometric ratio of 3:1 (np-Pt3Cu) has been prepared by mechanical alloying and subsequent two-step chemical dealloying. The obtained np-Pt3Cu has uniform and bicontinuous ligament(metal)-channel(void) structure with the ligament size of 3.3 ± 0.7 nm. To explore its potential application in energy conversion reactions, the np-Pt3Cu alloy has been examined as electrocatalyst for the operating reactions in direct methanol fuel cells (DMFCs). Compared with the commercial JM Pt/C, a benchmark catalyst extensively used in fuel cell research, the np-Pt3Cu alloy demonstrates better performance in both the methanol electro-oxidation and oxygen reduction reactions in acidic medium. Theoretical calculations reveal that the electronic structure of Pt has been modified with the shift of Pt d-band center due to alloying with Cu, which can decrease CO poisoning and enhance the methanol oxidation and oxygen reduction reaction activities.

  15. Predicting PCB concentrations in cow milk: validation of a fugacity model in high-mountain pasture conditions.

    PubMed

    Tremolada, Paolo; Guazzoni, Niccolò; Parolini, Marco; Rossaro, Bruno; Bignazzi, Marta Maria; Binelli, Andrea

    2014-07-15

    A fugacity model reported in the literature was applied to a high-altitude pasture in the Italian Alps. The model takes into account three compartments (digestive tract, blood and fat tissues) in unsteady-state conditions using food as the contamination source. Disregarding biotransformation inside cow tissues, the predicted concentrations of 14 polychlorinated biphenyls (PCBs) in milk were in good agreement with the observed data, especially for congeners known for their resistance to biotransformation (e.g., CB-138 and 153). In contrast, the predicted concentrations were clearly overestimated for congeners with high biotransformation susceptibilities. Therefore data measured in milk and faeces were used to calculate the first-order-biotransformation rate constants in dairy cows. The PCB absorption efficiency observed for pasture conditions was lower than that observed in the cowshed. The final version of the model included biotransformation and observed PCB absorption and was able to predict PCB concentrations in cow milk with mean differences between the predicted and measured data below ± 20% for most congeners. PMID:24802270

  16. Fugacity based modeling for pollutant fate and transport during floods. Preliminary results

    NASA Astrophysics Data System (ADS)

    Deda, M.; Fiorini, M.; Massabo, M.; Rudari, R.

    2010-09-01

    Fugacity based modeling for pollutant fate and transport during floods. Preliminary results Miranda Deda, Mattia Fiorini, Marco Massabò, Roberto Rudari One of the concerns that arises during floods is whether the wide-spreading of chemical contamination is associated with the flooding. Many potential sources of toxics releases during floods exists in cities or rural area; hydrocarbons fuel storage system, distribution facilities, commercial chemical storage, sewerage system are only few examples. When inundated homes and vehicles can also be source of toxics contaminants such as gasoline/diesel, detergents and sewage. Hazardous substances released into the environment are transported and dispersed in complex environmental systems that include air, plant, soil, water and sediment. Effective environmental models demand holistic modelling of the transport and transformation of the materials in the multimedia arena. Among these models, fugacity-based models are distribution based models incorporating all environmental compartments and are based on steady-state fluxes of pollutants across compartment interfaces (Mackay "Multimedia Environmental Models" 2001). They satisfy the primary objective of environmental chemistry which is to forecast the concentrations of pollutants in the environments with respect to space and time variables. Multimedia fugacity based-models has been used to assess contaminant distribution at very different spatial and temporal scales. The applications range from contaminant leaching to groundwater, runoff to surface water, partitioning in lakes and streams, distribution at regional and even global scale. We developped a two-dimensional fugacity based model for fate and transport of chemicals during floods. The model has three modules: the first module estimates toxins emission rates during floods; the second modules is the hydrodynamic model that simulates the water flood and the third module simulate the dynamic distribution of chemicals in the domain during and after the flood. The chemical emissions rate are estimated based on land use and population for three different classes of contaminants; the classes are representative of contaminants released from agricultural sources, sewage disposal and industrial/commercial emissions. The module for source estimation provides the spatial distribution of the potential emissions rates in the area. Emission rates are forcing input for the third simulation module whenever the pertinent area is inundated. The second module simulates the flood dynamics by using a parabolic approximation of the two dimensional shallow water equation. The model is properly developed in order to utilize simplified initial and boundary conditions, such as flooding points and flooding voulmes or satellite derived DTMs and land use . Thanks to its computational efficiency it is possible to run several simulations in order to adjust initial and boundary conditions, which are partly unknown, to satellite delineation of the flooded areas which are used as constrain for the 2D dynamic simulation. In this way the result is a dynamically consistent flooded map enriched with important information about hydraulic forcing parameters (i.e. hydraulic depths, flow velocities at every temporal step). The third module simulates the two-dimensional spatial distribution of pollutants concentration in all the environmental media. The mass balance equation for the chemicals is here derived in term of chemical fugacity instead the classical molar concentration. The advatage of the fugacity instead of concentration is that, since fugacity is continuous among phase interfaces and concentration is not, it renders the analysis of contaminat transfer between the phases easier. The two dimensional - depth averaged- mass balance equation is solved numerically by a finite volume tecnique over a rectangular regular grid. The model has been applied to the inundation of SHKODRA region in Albania during the January- February 2010. This inundation was produced by two rivers: DRINI and BUNA. The flooded

  17. Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters

    NASA Technical Reports Server (NTRS)

    Strangman, Gary; Franceschini, Maria Angela; Boas, David A.; Sutton, J. P. (Principal Investigator)

    2003-01-01

    Near-infrared spectroscopy (NIRS) can be used to noninvasively measure changes in the concentrations of oxy- and deoxyhemoglobin in tissue. We have previously shown that while global changes can be reliably measured, focal changes can produce erroneous estimates of concentration changes (NeuroImage 13 (2001), 76). Here, we describe four separate sources for systematic error in the calculation of focal hemoglobin changes from NIRS data and use experimental methods and Monte Carlo simulations to examine the importance and mitigation methods of each. The sources of error are: (1). the absolute magnitudes and relative differences in pathlength factors as a function of wavelength, (2). the location and spatial extent of the absorption change with respect to the optical probe, (3). possible differences in the spatial distribution of hemoglobin species, and (4). the potential for simultaneous monitoring of multiple regions of activation. We found wavelength selection and optode placement to be important variables in minimizing such errors, and our findings indicate that appropriate experimental procedures could reduce each of these errors to a small fraction (<10%) of the observed concentration changes.

  18. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  19. Scaling of Gene Expression with Transcription-Factor Fugacity

    NASA Astrophysics Data System (ADS)

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2014-12-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  20. Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Hwa; Urban, Alexander; Ceder, Gerbrand

    2015-09-01

    Transition-metal (TM) oxides play an increasingly important role in technology today, including applications such as catalysis, solar energy harvesting, and energy storage. In many of these applications, the details of their electronic structure near the Fermi level are critically important for their properties. We propose a first-principles-based computational methodology for the accurate prediction of oxygen charge transfer in TM oxides and lithium TM (Li-TM) oxides. To obtain accurate electronic structures, the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional is adopted, and the amount of exact Hartree-Fock exchange (mixing parameter) is adjusted to reproduce reference band gaps. We show that the HSE06 functional with optimal mixing parameter yields not only improved electronic densities of states, but also better energetics (Li-intercalation voltages) for LiCo O2 and LiNi O2 as compared to the generalized gradient approximation (GGA), Hubbard U corrected GGA (GGA +U ), and standard HSE06. We find that the optimal mixing parameters for TM oxides are system specific and correlate with the covalency (ionicity) of the TM species. The strong covalent (ionic) nature of TM-O bonding leads to lower (higher) optimal mixing parameters. We find that optimized HSE06 functionals predict stronger hybridization of the Co 3 d and O 2 p orbitals as compared to GGA, resulting in a greater contribution from oxygen states to charge compensation upon delithiation in LiCo O2 . We also find that the band gaps of Li-TM oxides increase linearly with the mixing parameter, enabling the straightforward determination of optimal mixing parameters based on GGA (? =0.0 ) and HSE06 (? =0.25 ) calculations. Our results also show that G0W0@GGA +U band gaps of TM oxides (M O ,M =Mn ,Co ,Ni ) and LiCo O2 agree well with experimental references, suggesting that G0W0 calculations can be used as a reference for the calibration of the mixing parameter in cases when no experimental band gap has been reported.

  1. Calculating specific denitrification rates in pre-denitrification by assessing the influence of dissolved oxygen, sludge loading and mixed-liquor recycle.

    PubMed

    Raboni, Massimo; Torretta, Vincenzo; Viotti, Paolo; Urbini, Giordano

    2014-01-01

    This article presents the results of an experimental study on the correlation among the specific denitrification rate (SDNR), the dissolved oxygen concentration (DO), the F:M ratio (F:M) and the mixed-liquor (ML) recycle in the pre-denitrification reactors fed by domestic sewage. The experimental curves reveal a 28.8-32.0% reduction in the SDNR at 20 degrees C (SDNR(20 degrees C)) with DO equal to 0.1 mgO2 L(-1) and F:M in the range 0.2-0.4 kgBOD5 kgMLVSS(-1) d(-1). The SDNR reduction increases to 50.0-55.9% with DO = 0.3 mgO2 L(-1). A mathematical correlation of these results and an equation for calculating SDNR(20 degrees C) as function of the F:M as well as the average DO and BOD5 in the total flow rate fed in the denitrification stage are proposed. The conducted experience gives useful suggestions for practical usage, in particular regarding the denitrification reactor design, and represents a good starting point for future applications with the aim to optimize the biological process in domestic sewage treatment plants. PMID:25145214

  2. JSC systems using solid ceramic oxygen electrolyte cells to measure oxygen fugacites in gas-mixing systems

    NASA Technical Reports Server (NTRS)

    Williams, R. J.; Mullins, O.

    1981-01-01

    Details are given for the construction and operation of a 101.3 KN/sq meter (1 atmosphere) redox control system. A solid ceramic oxygen electrolyte cell is used to monitor the oxygen fugacity in the furnace. The system consists of a vertical quench gas mixing furnace with heads designed for mounting the electrolyte cell and with facilities for inserting and removing the samples, a simplified version of a gas mixing apparatus, and devices for experiments under controlled rates of change of temperature. A thermogravimetric analysis system employing these techniques of redox control and measurement is also described. The calibration and maintenance of the system are discussed.

  3. Utilizing polymer-coated vials to illustrate the fugacity and bioavailability of chlorinated pesticide residues in contaminated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fugacity and bioavailability concepts can be challenging topics to communicate effectively in the timeframe of an academic laboratory course setting. In this experiment, students observe partitioning of the residues over time into an artificial biological matrix. The three compounds utilized are o...

  4. Thermodynamics of Si(OH)4 in the vapor phase of water: Henry’s and vapor-liquid distribution constants, fugacity and cross virial coefficients

    NASA Astrophysics Data System (ADS)

    Plyasunov, Andrey V.

    2012-01-01

    The fugacity coefficients of Si(OH)4 are evaluated from solubilities of solid phases of SiO2 in the vapor phase of water. The virial equation of state, truncated at the third virial coefficient, is employed to describe the fugacity coefficients of Si(OH)4. The temperature dependencies of the second, B12, and the third, C112, cross virial coefficients for H2O-Si(OH)4 interactions are approximated by empirical relations. It is found that silica-water interactions in the vapor phase are significantly more non-ideal compared to water-water interactions. Knowledge of B12 and C112 allows calculation of solubilities of quartz (Q) and amorphous silica (AS) in steam up to the density of 200 kg m-3 in satisfactory agreement with available data, and should provide reasonable solubility values at temperatures where no experimental results exist. The calculated values of the solubility of Q and AS in saturated vapor up to the critical temperature of water, Tc, are tabulated. The partial molar properties of dilute solutes close to the critical point of water are governed by the Krichevskii parameter, the value of which for Si(OH)4 is evaluated from available data (mainly vapor-liquid distribution constants for silica) to be equal to -187 ± 10 MPa. The knowledge of the thermodynamic properties of Si(OH)4 in the ideal gas state and in the state of the standard solution in liquid water allows calculating Henry’s constant, kH, for Si(OH)4 up to 623.15 K at water saturation pressure P1?. The theoretically-based equation, containing the Krichevskii parameter, allows extrapolating kH values all the way toward the critical temperature of water. This, in turn, makes possible calculation of the solubility of quartz and amorphous silica in liquid water at P1? at all temperatures up to Tc. The presented results should be useful for modeling solid-liquid-vapor, solid-vapor and liquid-vapor equilibria in the H2O-SiO2 system at steam densities up to 200 kg m-3.

  5. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, II

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Special Session: Oxygen in the Solar System, II, included the following reports:Evolution of Oxygen Isotopes in the Solar Nebula; Disequilibrium Melting of Refractory Inclusions: A Mechanism for High-Temperature Oxygen; Isotope Exchange in the Solar Nebula; Oxygen Isotopic Compositions of the Al-rich Chondrules in the CR Carbonaceous Chondrites: Evidence for a Genetic Link to Ca-Al-rich Inclusions and for Oxygen Isotope Exchange During Chondrule Melting; Nebular Formation of Fayalitic Olivine: Ineffectiveness of Dust Enrichment; Water in Terrestrial Planets: Always an Oxidant?; Oxygen Barometry of Basaltic Glasses Based on Vanadium Valence Determination Using Synchrotron MicroXANES; A New Oxygen Barometer for Solar System Basaltic Glasses Based on Vanadium Valence; The Relationship Between Clinopyroxene Fe3+ Content and Oxygen Fugacity ; and Olivine-Silicate Melt Partitioning of Iridium.

  6. Oxygen defects in phosphorene.

    PubMed

    Ziletti, A; Carvalho, A; Campbell, D K; Coker, D F; Castro Neto, A H

    2015-01-30

    Surface reactions with oxygen are a fundamental cause of the degradation of phosphorene. Using first-principles calculations, we show that for each oxygen atom adsorbed onto phosphorene there is an energy release of about 2 eV. Although the most stable oxygen adsorbed forms are electrically inactive and lead only to minor distortions of the lattice, there are low energy metastable forms which introduce deep donor and/or acceptor levels in the gap. We also propose a mechanism for phosphorene oxidation involving reactive dangling oxygen atoms and we suggest that dangling oxygen atoms increase the hydrophilicity of phosphorene. PMID:25679901

  7. Oxygen Therapy

    MedlinePLUS

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  8. Applying the Ce-in-zircon oxygen geobarometer to diverse silicic magmatic systems

    NASA Astrophysics Data System (ADS)

    Claiborne, L. L.; Miller, C. F.

    2012-12-01

    Zircon provides information on age, temperature, and composition of the magma from which it grew. In systems such as Mount St. Helens, where zircon is not coeval with the rest of the crystal cargo, it provides the only accessible record of the extended history of the magmatic system, including cycles of intrusion, crystallization and rejuvenation beneath an active volcano (Claiborne et al., 2010). The rare earth elements, which are present in measureable quantities in zircon, provide information about the composition of the magma from which zircon grew. Unique among the generally trivalent rare earth elements, cerium can exist as either trivalent or tetravalent, depending on the oxidation state of the magma. The tetravalent ion is highly compatible in zircon, in the site that usually hosts tetravalent zirconium, and so the amount of Cerium in zircon relative (relative to what would be expected of trivalent Ce) depends the oxidation state of the magma from which it grew. Trail et al. (2011) proposed a calibration based on experimental data that uses the Ce anomaly in zircon as a direct proxy for magma oxidation (fugacity), describing the relationship between Ce in zircon and magma oxygen fugacity as ln(Ce/Ce*)D = (0.1156±0.0050)xln(fO2)+(13860±708)/T-(6.125±0.484). For systems like Mount St. Helens, where the major minerals record only events in the hundreds to thousands of years leading to eruption, (including the Fe-Ti oxides traditionally relied upon for records of oxidation state of the magmas), this presents a novel approach for understanding more extended histories of oxidation of magmas in the tens and hundreds of thousands of years of magmatism at a volcanic center. This calibration also promises to help us better constrain conditions of crystallization in intrusive portions of volcanic systems, as well as plutonic bodes. We apply this new oxygen geobarometer to natural volcanic and plutonic zircons from a variety of tectonic settings, and compare to existing indicators of oxidation state for each system, as available. Zircons included this study are from Mount St. Helens (?NNO +1.5 log units; Smith, 1984), the Peach Spring Tuff and Spirit Mountain Batholith (sphene-bearing, silicic, Miocene-aged rocks from the Colorado River Extensional Corridor), Alid Volcano in Eritrea, and rhyolites and granites from Iceland. Median log fO2 for these systems, calculated from the Cerium anomaly in zircons following Trail et al. (2011) using temperatures from Ti-in-zircon thermometry (Ferry and Watson, 2007) are as follows: Alid -12 bars (?NNO +3 log units) at 750 degrees C; Iceland -11 bars (?NNO +3 log units) at 800 degrees C; Mount St. Helens -8.6 bars (?NNO +6 log units) at 750 degrees C; Peach Spring Tuff -3.4 (?NNO +10 log units) at 830 degrees C. While ubiquitous sphene in the Spirit Mountain granites suggest relatively high fO2, calculations based on the cerium anomaly in zircon suggest median log fO2 of >0 at 770 degrees C, which is certainly erroneous. While median values for our natural zircons are, for the most part, above expected fugacities for each system when compared with other indicators, and extreme values for each system are almost certainly erroneous, many are within expected values for terrestrial magmas and they vary relative to one another as might be expected given the magma types and tectonic settings.

  9. Valence State Partitioning of Cr and V Between Pyroxene - Melt: Estimates of Oxygen Fugacity for Martian Basalt QUE 94201

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Papike, J. J.; Shearer, C. K.; McKay, G.; Le, L.; Burger, P.

    2007-01-01

    Several studies, using different oxybarometers, have suggested that the variation of fO2 in martian basalts spans about 3 log units from approx. IW-1 to IW+2. The relatively oxidized basalts (e.g., pyroxene-phyric Shergotty) are enriched in incompatible elements, while the relatively reduced basalts (e.g., olivine-phyric Y980459) are depleted in incompatible elements. A popular interpretation of the above observations is that the martian mantle contains two reservoirs; 1) oxidized and enriched, and 2) reduced and depleted. The basalts are thus thought to represent mixing between these two reservoirs. Recently, Shearer et al. determined the fO2 of primitive olivine-phyric basalt Y980459 to be IW+0.9 using the partitioning of V between olivine and melt. In applying this technique to other basalts, Shearer et al. concluded that the martian mantle shergottite source was depleted and varied only slightly in fO2 (IW to IW+1). Thus the more oxidized, enriched basalts had assimilated a crustal component on their path to the martian surface. In this study we attempt to address the above debate on martian mantle fO2 using the partitioning of Cr and V into pyroxene in pyroxene-phyric basalt QUE 94201.

  10. Experimental investigation of the influence of oxygen fugacity on the source depths for high titanium lunar ultramafic magmas

    E-print Network

    Skemer, Philip

    titanium lunar ultramafic magmas Michael J. Krawczynski , Timothy L. Grove MIT, 77 Massachusetts Avenue pristine ultramafic high titanium glass compo- sitions from the Moon. The investigated compositions, and TiO2 content. Ó 2011 Elsevier Ltd. All rights reserved. 1. INTRODUCTION The lunar high-titanium

  11. Explosive volcanism and the graphite-oxygen fugacity buffer on the parent asteroid(s) of the ureilite meteorites

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Kallemeyn, Gregory W.

    1992-01-01

    A new model of the production of the uniformly low plagioclase and Al contents of ureilites is proposed. It is argued that those contents are consequences of widespread explosive volcanism during the evolution of the parent asteroid(s). It is noted that the great abundance of graphite on the ureilite asteroid(s) made them ideal sites for explosive volcanism driven by oxidation of graphite in partial melts ascending within the asteroid(s).

  12. Effect of Cooling Rate and Oxygen Fugacity on the Crystallization of the Queen Alexandra Range 94201 Martian Melt Composition

    NASA Technical Reports Server (NTRS)

    Koizumi, E.; Mikouchi, T.; McKay, G.; Schwandt, C.; Monkawa, A.; Miyamoto, M.

    2002-01-01

    Although many basaltic shergottites have been recently found in north African deserts, QUE94201 basaltic shergottite (QUE) is still important because of its particular mineralogical and petrological features. This meteorite is thought to represent its parent melt composition [1 -3] and to crystallize under most reduced condition in this group [1,4]. We performed experimental study by using the synthetic glass that has the same composition as the bulk of QUE. After homogenization for 48 hours at 1300 C, isothermal and cooling experiments were done under various conditions (e.g. temperature, cooling rates, and redox states). Our goals are (1) to verify that QUE really represents its parent melt composition, (2) to estimate a cooling rate of this meteorite, (3) to clarify the crystallization sequences of present minerals, and (4) to verity that this meteorite really crystallized under reduced condition.

  13. The Effects of Oxygen Fugacity on the Crystallization Sequence and Cr Partitioning of an Analog Y-98 Liquid

    NASA Technical Reports Server (NTRS)

    Bell, A. S.; Burger, P. V.; Le, Loan; Papike, J. J.; Jones, J.; Shearer, C. K.

    2013-01-01

    Interpreting the relationship between "enriched" olivine-phyric shergottites (e.g. NWA 1068/1110) and the "enriched" pyroxene-plagioclase shergottites (e.g. Shergotty, Los Angeles) is problematic. Symes et al. [1] and Shearer et al. [2]) proposed that the basaltic magma that crystallized to produce olivine-phyric shergottite NWA 1068/1110 could produce pyroxene-plagioclase shergottites with additional fractional crystallization. However, additional observations indicate that the relationship among the enriched shergottites may be more complex [1-3]. For example, Herd [3] concluded that some portion of the olivine megacrysts in this meteorite was xenocrystic in origin, seemingly derived from more reduced basaltic liquids. This conclusion may imply that a variety of complex processes such as magma mixing, entrainment, and assimilation may play important roles in the petrologic history of these meteorites. It is therefore possible that these processes have obscured the petrogenetic linkages between the enriched olivine-phyric shergottites and the pyroxene-plagioclase shergottites. As a first order step in attempting to unravel these petrologic complexities, this study focuses upon exploring the effect of fO2 on the crystallization history for an analog primitive shergottite liquid composition (Y98). Results from this work will provide a basis for reconstructing the record of fO2 in shergottites, its effect on both mineral chemistries and valence state partitioning, and a means for examining the role of crystallization on the petrologic linkages between olivine-phyric and pyroxene-plagioclase shergottites. A companion abstract [4] explores the behavior of V over this range of fO2.

  14. Ferric iron content of ferropericlase as a function of composition, oxygen fugacity, temperature and pressure: Implications for redox conditions during

    E-print Network

    and pressure: Implications for redox conditions during diamond formation in the lower mantle Kazuhiko Otsuka a ferropericlase diffusion lower mantle diamond a b s t r a c t We investigated the ferric iron (Fe3þ stability limit of diamond in mantle peridotite at the top of the lower mantle at adiabatic or slightly

  15. Chromium Oxidation State in Planetary Basalts: Oxygen Fugacity Indicator and Critical Variable for Cr-Spinel Stability

    NASA Technical Reports Server (NTRS)

    Bell, A. S.; Burger, P. V.; Le, Loan; Papike, J. J.; Jone, J.; Shearer, C. K.

    2014-01-01

    Cr is a ubiquitous and relatively abundant minor element in basaltic, planetary magmas. At the reduced oxidation states (

  16. Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, HongDi

    2015-03-01

    Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO2 >> CH4 that are indicative of high fO2. In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH4 >> CO2 that are indicative of low fO2. The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21-0.79 wt.%). The ?13CvPDB values of the whole rocks (-23.1 to -25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The ?13CvPDB values of CH4 (-28.2 to -36.0 ‰) and CO2 (-6.8 to -20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their ?13CCO2-CH4 values (8.2-25.0 ‰) at elevated temperatures (294-830 °C) suggesting a significant contribution of thermogenic CH4. Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from logfO2 > FMQ + 1 in the magma stage, to logfO2 < FMQ as a consequence of country rocks assimilation-contamination, to logfO2 > FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its fO2 such that exsolved fluids contained abundant CH4 and deposited a reduced assemblage of minerals.

  17. First-principles calculations of clean Au(110) surfaces and chemisorption of atomic oxygen M. Landmann, E. Rauls, and W. G. Schmidt

    E-print Network

    Schmidt, Wolf Gero

    nanometer-sized gold particle catalysts can be highly active in the field of low-temperature carbon mon as "catalytically dead."1 On the other hand, interest in gold catalysis has been fueled by findings that supported was shown to be very active low-temperature catalysts.5 This raises the question of how the oxygen molecule

  18. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  19. Stable Yang-Lee zeros in truncated fugacity series from net-baryon number multiplicity distribution

    E-print Network

    Kenji Morita; Atsushi Nakamura

    2015-11-10

    We investigate Yang-Lee zeros of grand partition functions as truncated fugacity polynomials of which coefficients are given by the canonical partition functions $Z(T,V,N)$ up to $N \\leq N_{\\text{max}}$. Such a partition function can be inevitably obtained from the net-baryon number multiplicity distribution in relativistic heavy ion collisions, where the number of the event beyond $N_{\\text{max}}$ has insufficient statistics, as well as canonical approaches in lattice QCD. We use a chiral random matrix model as a solvable model for chiral phase transition in QCD and show that the closest edge of the distribution to real chemical potential axis is stable against cutting the tail of the multiplicity distribution. The similar behavior is also found in lattice QCD at finite temperature for Roberge-Weiss transition. In contrast, such a stability is found to be absent in the Skellam distribution which does not have phase transition. We compare the number of $N_{\\text{max}}$ to obtain the stable Yang-Lee zeros with those of critical higher order cumulants.

  20. Stable Yang-Lee zeros in truncated fugacity series from net-baryon number multiplicity distribution

    E-print Network

    Morita, Kenji

    2015-01-01

    We investigate Yang-Lee zeros of grand partition functions as truncated fugacity polynomials of which coefficients are given by the canonical partition functions $Z(T,V,N)$ up to $N \\leq N_{\\text{max}}$. Such a partition function can be inevitably obtained from the net-baryon number multiplicity distribution in relativistic heavy ion collisions, where the number of the event beyond $N_{\\text{max}}$ has insufficient statistics, as well as canonical approaches in lattice QCD. We use a chiral random matrix model as a solvable model for chiral phase transition in QCD and show that the closest edge of the distribution to real chemical potential axis is stable against cutting the tail of the multiplicity distribution. The similar behavior is also found in lattice QCD at finite temperature for Roberge-Weiss transition. In contrast, such a stability is found to be absent in the Skellam distribution which does not have phase transition. We compare the number of $N_{\\text{max}}$ to obtain the stable Yang-Lee zeros with...

  1. A fugacity approach for assessing the bioaccumulation of hydrophobic organic compounds from estuarine sediment.

    PubMed

    Golding, Christopher J; Gobas, Frank A P C; Birch, Gavin F

    2008-05-01

    The bioavailability of four sediment-spiked hydrophobic organic contaminants (HOCs; chrysene, benzo[a]pyrene, chlordane, and Aroclor 1254) was investigated by comparing bioaccumulation by the amphipod Corophium colo with uptake into a thin film of ethylene/vinyl acetate (EVA) copolymer. The EVA thin film is a solid-phase extraction medium previously identified as effective at measuring the bioavailable contaminant fraction in sediment. The present study presents the results of 11 separate treatments in which chemical uptake into EVA closely matched uptake into lipid over 10 d. For all compounds, the concentration in EVA was a good approximation for the concentration in lipid, suggesting that this medium would be an appropriate biomimetic medium for assessing the bioaccumulation of HOCs during risk assessment of contaminated sediment. For chrysene and benzo[a]pyrene, limitations on bioaccumulation and toxicity because of low aqueous solubility were observed. The fugacity of the compounds in lipid (flip) and in the EVA thin film (fEVA) also was determined. The ratio of flip to fEVA was greater than one for all chemicals, indicating that all chemicals biomagnified over the duration of the exposure and demonstrating the potential for EVA thin-film extraction to assess trophic transfer of HOCs. PMID:18419194

  2. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3

    SciTech Connect

    Wolery, T.J.

    1992-09-14

    EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desired electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.

  3. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  4. Oxygen analyzer

    DOEpatents

    Benner, William H. (Danville, CA)

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  5. Precipitates/Salts Model Sensitivity Calculation

    SciTech Connect

    P. Mariner

    2001-12-20

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO{sub 2}) on the chemical evolution of water in the drift.

  6. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  7. Structure of the Active Platinum Cluster and Reaction Pathway of the Selective Synthesis of Phenol from Benzene and Oxygen Regulated with Ammonia on a Platinum Cluster/?-Zeolite Catalyst Studied by DFT Calculations.

    PubMed

    Sasaki, Takehiko; Tada, Mizuki; Wang, Linsheng; Malwadkar, Sachin; Iwasawa, Yasuhiro

    2015-10-01

    DFT calculations were used to investigate the structure of the active Pt cluster and the catalytic reaction pathway for the selective synthesis of phenol from benzene and molecular oxygen regulated with ammonia on a Pt cluster/?-zeolite catalyst that was reported to be active for the selective hydroxylation of benzene only in the coexistence of ammonia. It was found that Pt5-Pt6 clusters were active for the direct synthesis of phenol, and they provided the reaction sites for bond rearrangements among ammonia, oxygen, and benzene; furthermore, the coexistence of ammonia was crucial for the selective oxidation of benzene to phenol, as it suppressed benzene combustion to CO2 and promoted the selective synthesis of phenol. It was further found that water coexisting in the system also played a significant role in desorbing phenol on the Pt cluster surface, which resulted in promotion of the overall selective synthesis of phenol. The energy diagram for the reaction sequences and the structures of the transition states were obtained, which indicated the origin of the Pt/? catalysis. PMID:26179978

  8. Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Molnar, Melissa

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.

  9. Simplified Two-Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydorgen/Oxygen

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.

  10. SIGMELTS: A Web-portal for Electrical Conductivity Calculations in Geosciences

    NASA Astrophysics Data System (ADS)

    Le Trong, E.; Pommier, A.

    2010-12-01

    We present a freely available and easy-to-use web application called SIGMELTS allowing the calculation of the electrical conductivity of geomaterials at relevant conditions for the Earth’s crust and mantle. By compiling previous results of electrical measurements in laboratory, this software enables to discriminate between the effect of different parameters on the bulk conductivity of silicate melts, carbonatites, fluids, minerals and mantle materials, such as the temperature (T), the pressure (P), the composition, the water content, the oxygen fugacity (fO2) and the crystal content. Different existing geometrical models are proposed to calculate the bulk conductivity of a two-phase mixture. Based on the electrical conductivity value of a mantle anomaly, an application has also been developed to determine the corresponding melt fraction at defined conditions (T, P, composition). This web application aims at improving the accessibility to laboratory data in order to precise the interpretation of MT profiles. Although there are examples of where the laboratory data have been used to interpret field data, there are also many instances where there are disconnects between those interpreting field MT data and the laboratory results. SIGMELTS also underlines that new electrical measurements in laboratory are needed to enlarge the present electrical database, particularly at high pressure conditions. An illustration of the use of SIGMELTS will be presented, in which calculations are applied to subduction zone related volcanic zone in the Central Andes. Along with petrological considerations, field and laboratory electrical data allow discrimination between the different hypotheses regarding the formation and rise from depth of melts and fluids and to quantify their storage conditions.

  11. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  12. Oxygen Therapy

    MedlinePLUS

    ... not smoke near oxygen, or keep oxygen near open flames, or other sources of heat or flames Doctor’s Office Telephone: The ATS Patient Information Series is a public service of the American Thoracic Society and its journal, the AJRCCM. The information appearing ...

  13. Evaluating potential non-point source loading of PAHs from contaminated soils: a fugacity-based modeling approach.

    PubMed

    Luo, Xiaolin; Zheng, Yi; Lin, Zhongrong; Wu, Bin; Han, Feng; Tian, Yong; Zhang, Wei; Wang, Xuejun

    2015-01-01

    Soils contaminated by Polycyclic Aromatic Hydrocarbons (PAHs) are subject to significant non-point source (NPS) pollution during rainfall events. Recent studies revealed that the classic enrichment ratio (ER) approach may not be applicable to PAHs. This study developed a model to estimate the ER of PAHs which innovatively applies the fugacity concept. The ER model has been validated with experimental data, which suggested that the transport of PAHs not only depends on their physicochemical properties, but on the sediment composition and how the composition evolves during the event. The modeling uncertainty was systematically examined, and found to be highly compound-dependent. Based on the ER model, a strategy was proposed to practically evaluate the potential NPS loading of PAHs in watersheds with heterogeneous soils. The study results have important implications to modeling and managing the NPS pollution of PAHs (or other chemicals alike) at a watershed scale. PMID:25282126

  14. A New Oxygen Barometer for Solar System Basaltic Glasses Based on Vanadium Valence

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Sutton, S. R.; Papike, S. R.; Delaney, J. S.; Shearer, C. K.; Newville, M.; Eng, P.; Rivers, M.; Dyar, M. D.

    2004-01-01

    The determination of oxidation conditions for basaltic magmas derived by the melting of planetary mantles is critical to our understanding of the nature and evolution of planetary interiors. Yet, these determinations are compromised in terrestrial and especially extraterrestrial basalts by our analytical and computational methods for estimating oxygen fugacity (fO2). For example, mineralogical barometers (1, 2) can be reduced in effectiveness by subsolidus re-equilibration of mineral assemblages, inversion of mineralogical data to melt characteristics, and deviations of the natural mineral compositions from ideal thermodynamic parameters.

  15. Oxygen therapy and intraocular oxygenation.

    PubMed Central

    Jampol, L M

    1987-01-01

    When delivered to the corneal surface of rabbits or monkeys, 100% oxygen can significantly increase the pO2 in the aqueous humor. Under hyperbaric conditions (two atmospheres), an observed rise in the aqueous pO2 in rabbits breathing room air can be increased further by exposing the rabbit cornea to 100% oxygen. The high oxygen levels under hyperbaric conditions are mediated by intravascular and transcorneal delivery of oxygen. The increase in the pO2 levels in the aqueous can prevent sickling of intracameral human erythrocytes containing sickle hemoglobin. Thus, oxygen therapy transcorneally or systemically could potentially be used to treat a sickle cell hyphema. The exposure of rabbit eyes to 100% oxygen at the corneal surface is followed by autoregulation (constriction) of the iris vasculature. We could demonstrate no constriction in the eyes of two normal human volunteers or of four patients with chronic stable rubeosis iridis. Preretinal vitreous pO2 levels can be significantly raised by exposing monkeys to hyperbaric 100% oxygen. This procedure may be of value in treating acute, reversible ischemic inner retinal diseases. Transcorneal or vascular delivery of oxygen to the eye under normobaric or hyperbaric conditions may be effective in treating ischemic diseases of the anterior segment, such as anterior segment necrosis or rubeosis iridis, or ischemic inner retinal diseases. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 B FIGURE 5 C FIGURE 5 A FIGURE 6 PMID:3447339

  16. Oxygen safety

    MedlinePLUS

    ... Toys with electric motors Electric baseboard or space heaters Wood stoves or fireplaces Electric blankets Hairdryers, electric ... catch fire away from your oxygen. This includes cleaning products that contain oil, grease, alcohol, or other ...

  17. The Natural History of Oxygen

    PubMed Central

    Dole, Malcolm

    1965-01-01

    The nuclear reactions occurring in the cores of stars which are believed to produce the element oxygen are first described. Evidence for the absence of free oxygen in the early atmosphere of the earth is reviewed. Mechanisms of creation of atmospheric oxygen by photochemical processes are then discussed in detail. Uncertainty regarding the rate of diffusion of water vapor through the cold trap at 70 km altitude in calculating the rate of the photochemical production of oxygen is avoided by using data for the concentration of hydrogen atoms at 90 km obtained from the Meinel OH absorption bands. It is estimated that the present atmospheric oxygen content could have been produced five to ten times during the earth's history. It is shown that the isotopic composition of atmospheric oxygen is not that of photosynthetic oxygen. The fractionation of oxygen isotopes by organic respiration and oxidation occurs in a direction to enhance the O18 content of the atmosphere and compensates for the O18 dilution resulting from photosynthetic oxygen. Thus, an oxygen isotope cycle exists in nature. PMID:5859927

  18. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis.

    PubMed

    Ward, Lewis M; Kirschvink, Joseph L; Fischer, Woodward W

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it. PMID:26286084

  19. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, Lewis M.; Kirschvink, Joseph L.; Fischer, Woodward W.

    2015-08-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis—autotrophic growth by splitting water with sunlight—by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  20. Oxygen-Concentrating Cell

    NASA Technical Reports Server (NTRS)

    Buehler, K.

    1986-01-01

    High-purity oxygen produced from breathing air or from propellantgrade oxygen in oxygen-concentrating cell. Operating economics of concentrator attractive: Energy consumption about 4 Wh per liter of oxygen, slightly lower than conventional electrochemical oxygen extractors.

  1. Retinal oxygen extraction in humans

    PubMed Central

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-01-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3?±?9.0??l/min during baseline and decreased to 18.7?±?4.2??l/min during 100% oxygen breathing (P?oxygen extraction from 2.33?±?0.51??l(O2)/min to 0.88?±?0.14??l(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy. PMID:26503332

  2. Retinal oxygen extraction in humans

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-10-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3?±?9.0??l/min during baseline and decreased to 18.7?±?4.2??l/min during 100% oxygen breathing (P?oxygen extraction from 2.33?±?0.51??l(O2)/min to 0.88?±?0.14??l(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy.

  3. Spatial Distribution, Air-Water Fugacity Ratios and Source Apportionment of Polychlorinated Biphenyls in the Lower Great Lakes Basin.

    PubMed

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2015-12-01

    Polychlorinated biphenyls (PCBs) continue to be contaminants of concern across the Great Lakes. It is unclear whether current concentrations are driven by ongoing primary emissions from their original uses, or whether ambient PCBs are dominated by their environmental cycling. Freely dissolved PCBs in air and water were measured using polyethylene passive samplers across Lakes Erie and Ontario during summer and fall, 2011, to investigate their spatial distribution, determine and apportion their sources and to asses their air-water exchange gradients. Average gaseous and freely dissolved ?29 PCB concentrations ranged from 5.0 to 160 pg/m(3) and 2.0 to 55 pg/L respectively. Gaseous concentrations were significantly correlated (R(2) = 0.80) with the urban area within a 3-20 km radius. Fugacity ratios indicated that the majority of PCBs are volatilizing from the water thus acting as a secondary source for the atmosphere. Dissolved PCBs were probably linked to PCB emissions from contaminated sites and areas of concern. Positive matrix factorization indicated that although volatilized Aroclors (gaseous PCBs) and unaltered Aroclors (dissolved PCBs) dominate in some samples, ongoing non-Aroclor sources such as paints/pigments (PCB 11) and coal/wood combustion showed significant contributions across the lower Great Lakes. Accordingly, control strategies should give further attention to PCBs emitted from current use sources. PMID:25915412

  4. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    PubMed Central

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 ?M, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ?2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ?500 million years while the oxygen level in the Earth’s atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 ?M, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ?40 ?m or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. PMID:24806920

  5. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  6. Impact of physical processes on the seasonal distribution of the fugacity of CO2 in the western tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Lefèvre, Nathalie; Urbano, Domingos F.; Gallois, Francis; Diverrès, Denis

    2014-02-01

    The fugacity of CO2 (fCO2) has been measured underway during three quasi-synoptic cruises in the western tropical Atlantic in March/April 2009 and July/August 2010 in the region 6°S-15°N, 52°W-24°W. The distribution of fCO2 is related to the main features of the ocean circulation. Temperature exerts a dominant control on the distribution of fCO2 in March/April whereas salinity plays an important role in July/August due to the more developed North Equatorial Countercurrent (NECC) carrying Amazon water and to the high precipitation associated with the presence of the Intertropical Convergence Zone (ITCZ). The main surface currents are characterized by different fCO2. Overall, the NECC carries less saline waters with lower fCO2 compared to the South Equatorial Current (SEC). The North Equatorial Current (NEC) is usually characterized by CO2 undersaturation in winter and supersaturation in summer. Using empirical fCO2-SST-SSS relationships, two seasonal maps of fCO2 are constructed for March 2009 and July 2010. The region is a sink of CO2 of 0.40 mmol m-2d-1 in March, explained by the winter cooling in the northern hemisphere, whereas it is a source of CO2 of 1.32 mmol m-2d-1 in July. The equatorial region is a source of CO2 throughout the year due to the upwelling supplying CO2-rich waters to the surface. However, the evolution of fCO2 over time, determined from all the available cruises in a small area, 1°S-1°N, 32°W-28°W, suggests that the source of CO2 has decreased in February-March from 1983 to 2011 or has remained constant in October-November from 1991 to 2010.

  7. Feldspathic granulite 79215 - Limitations on T-fo2 conditions and time of metamorphism. [temperature-oxygen fugacity relationship in annealed lunar polymict beccia

    NASA Technical Reports Server (NTRS)

    Mcgee, J. J.; Bence, A. E.; Eichhorn, G.; Schaeffer, O. A.

    1978-01-01

    Feldspathic granulite 79215, an annealed polymict breccia which has a bulk composition between anorthositic gabbro and gabbroic anorthosite, contains numerous oxide complexes in the matrix. An Ar-39-Ar-40 stepwise heating experiment gives a well-defined plateau corresponding to an age of 4.03 + or - 0.02 AE. The polmict character of this breccia and the variability of the complexes suggest that they formed as a consequence of reactions between spinel-rich clasts and matrix under the high-T low-P conditions of an ejecta blanket. The duration of annealing is estimated to have been less than 10 million yr; the absence of a KREEP component may indicate an inhomogeneous distribution of this component at the lunar surface at 4.0 AE.

  8. Phase relations of a simulated lunar basalt as a function of oxygen fugacity, and their bearing on the petrogenesis of the Apollo 11 basalts

    USGS Publications Warehouse

    Tuthill, R.L.; Sato, M.

    1970-01-01

    A glass of Apollo 11 basalt composition crystallizing at 1 atm at low f{hook}02 showed the following crystallization sequence; ferropseudobrookite at 1210??C, olivine at 1200??C, ilmenite and plagioclase at 1140??C, clinopyroxene at 1113??C. Ferropseudobrookite and olivine have a reaction relation to the melt. This sequence agrees with that assumed on textural grounds for some Apollo 11 basalts. It also indicates that the Apollo 11 basalts cannot have been modified by low-pressure fractionation. ?? 1970.

  9. Relationships between oxygen fugacity and metasomatism in the Kaapvaal subcratonic mantle, represented by garnet peridotite xenoliths in the Wesselton kimberlite, South Africa

    NASA Astrophysics Data System (ADS)

    Hanger, Brendan J.; Yaxley, Gregory M.; Berry, Andrew J.; Kamenetsky, Vadim S.

    2015-01-01

    A suite of 12 peridotite xenoliths from the Wesselton kimberlite was studied and found to sample the subcratonic lithospheric mantle over a pressure range from 3.6 to 4.7 GPa and a temperature range of 880 to 1120 °C. Major, minor and trace element compositions indicate that both metasomatised and un-metasomatised samples are present over this pressure range. Fe3 +/? Fe in garnet from four xenoliths was determined using Fe K-edge XANES spectroscopy, enabling the redox state of the sampled subcratonic mantle to be determined for three garnet bearing samples. ?logfO2[FMQ] varied from 0 to - 3.3 over the sampled pressure interval, with the un-metasomatised samples falling within the global trend of decreasing ?logfO2[FMQ] with increasing depth. Superimposed on this was an oxidation trend, at higher pressures (? 4.5 GPa), with ?logfO2 increasing by 1.5 to 2 units in the metasomatically enriched samples, indicating a clear link between metasomatism and oxidation. One potential source of this oxidation is a carbonated silicate melt, which will increase in carbonate content as ?logfO2 increases. Mantle minerals affected by such a melt have the potential to shift from the field of diamond stability into that of carbonate, threatening the stability of diamond.

  10. Mineralogy, Petrology and Oxygen Fugacity of the LaPaz Icefield Lunar Basaltic Meteorites and the Origin of Evolved Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Collins, S. J.; Righter, K.; Brandon, A. D.

    2005-01-01

    LAP 02205 is a 1.2 kg lunar mare basalt meteorite found in the Lap Paz ice field of Antarctica in 2002 [1]. Four similar meteorites were also found within the same region [1] and all five have a combined mass of 1.9 kg (LAP 02224, LAP 02226, LAP 02436 and LAP 03632, hereafter called the LAP meteorites). The LAP meteorites all contain a similar texture, mineral assemblage, and composition. A lunar origin for these samples comes from O isotopic data for LAP 02205 [1], Fe/Mn ratios of pyroxenes [1-5], and the presence of distinct lunar mineralogy such as Fe metal and baddeleyite. The LAP meteorites may represent an area of the Moon, which has never been sampled by Apollo missions, or by other lunar meteorites. The data from this study will be used to compare the LAP meteorites to Apollo mare basalts and lunar basaltic meteorites, and will ultimately help to constrain their origin.

  11. Oxygen Fugacity of the Upper Mantle of Mars. Evidence from the Partitioning Behavior of Vanadium in Y980459 (Y98) and other Olivine-Phyric Shergottites

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; McKay, G. A.; Papike, J. J.; Karner, J.

    2006-01-01

    Using partitioning behavior of V between olivine and basaltic liquid precisely calibrated for martian basalts, we determined the redox state of primitive (olivine-rich, high Mg#) martian basalts near their liquidus. The combination of oxidation state and incompatible element characteristics determined from early olivine indicates that correlations between fO2 and other geochemical characteristics observed in many martian basalts is also a fundamental characteristic of these primitive magmas. However, our data does not exhibit the range of fO2 observed in these previous studies.. We conclude that the fO2 for the martian upper mantle is approximately IW+1 and is incompatible-element depleted. It seems most likely (although clearly open to interpretation) that these mantle-derived magmas assimilated a more oxidizing (>IW+3), incompatible-element enriched, lower crustal component as they ponded at the base of the martian crust.

  12. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis

    E-print Network

    Konhauser, Kurt

    Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis Stefan V. Lalondea,1. We calculate that oxygenic photosynthesis in these milli- meter-thick ecosystems provides sufficient photosynthesis | Great Oxidation Event | oxidative weathering | Precambrian Aremarkably coherent ensemble

  13. Is the Neoproterozoic oxygen burst a supercontinent legacy?

    NASA Astrophysics Data System (ADS)

    Macouin, Melina; Roques, Damien; Rousse, Sonia; Ganne, Jerome; Denele, Yoann; Trindade, Ricardo

    2015-09-01

    The Neoproterozoic (1000-542 Myr ago) witnessed the dawn of Earth as we know it with modern-style plate tectonics, high levels of O2 in atmosphere and oceans and a thriving fauna. Yet, the processes leading to the fully oxygenation of the external envelopes, its exact timing and its link with the inner workings of the planet remain poorly understood. In some ways, it is a "chicken and egg" question: did the Neoproterozoic Oxygenation Event (NOE) cause life blooming, low-latitudes glaciations and perturbations in geochemical cycles or is it a consequence of these phenomena? Here, we suggest that the NOE may have been triggered by multi-million years oxic volcanic emissions along a protracted period at the end of the Neoproterozoic when continents were assembled in the Rodinia supercontinent. We report a very oxidized magma source at the upper mantle beneath a ring of subducting margins around Rodinia, and detail here the evidence at the margin of the Arabian shield. We investigate the 780 Ma Biotite and Pink granites and associated rocks of the Socotra Island with rock magnetic and petrographic methods. Magnetic susceptibility and isothermal remanent magnetization acquisitions show that, in these granites, both magnetite and hematite are present. Hematite subdivides magnetite grains into small grains. Magnetite and hematite are found to be primary, and formed at the early magmatic evolution of the granite at very high oxygen fugacity. Massive degassing of these oxidized magmas would reduce the sink for oxygen, and consequently contribute to its rise in the atmosphere with a net O2 flux of at least 2.25 x 107 Tmol. Our conceptual model provides a deep Earth link to the NOE and implies the oxygenation burst has occurred earlier than previously envisaged, paving the way for later changes in the outer envelopes of the planet epitomized on the extreme Neoproterozoic glaciations and the appearance of the first animals.

  14. Is the Neoproterozoic oxygen burst a supercontinent legacy?

    NASA Astrophysics Data System (ADS)

    Macouin, Melina; Roques, Damien; Rousse, Sonia; Ganne, Jerome; Denele, Yoann; Trindade, Ricardo

    2015-09-01

    The Neoproterozoic (1000–542 Myr ago) witnessed the dawn of Earth as we know it with modern-style plate tectonics, high levels of O2 in atmosphere and oceans and a thriving fauna. Yet, the processes leading to the fully oxygenation of the external envelopes, its exact timing and its link with the inner workings of the planet remain poorly understood. In some ways, it is a "chicken and egg" question: did the Neoproterozoic Oxygenation Event (NOE) cause life blooming, low-latitudes glaciations and perturbations in geochemical cycles or is it a consequence of these phenomena? Here, we suggest that the NOE may have been triggered by multi-million years oxic volcanic emissions along a protracted period at the end of the Neoproterozoic when continents were assembled in the Rodinia supercontinent. We report a very oxidized magma source at the upper mantle beneath a ring of subducting margins around Rodinia, and detail here the evidence at the margin of the Arabian shield. We investigate the 780 Ma Biotite and Pink granites and associated rocks of the Socotra Island with rock magnetic and petrographic methods. Magnetic susceptibility and isothermal remanent magnetization acquisitions show that, in these granites, both magnetite and hematite are present. Hematite subdivides magnetite grains into small grains. Magnetite and hematite are found to be primary, and formed at the early magmatic evolution of the granite at very high oxygen fugacity. Massive degassing of these oxidized magmas would reduce the sink for oxygen, and consequently contribute to its rise in the atmosphere with a net O2 flux of at least 2.25 x 107 Tmol. Our conceptual model provides a deep Earth link to the NOE and implies the oxygenation burst has occurred earlier than previously envisaged, paving the way for later changes in the outer envelopes of the planet epitomized on the extreme Neoproterozoic glaciations and the appearance of the first animals.

  15. Hyperbaric oxygen therapy

    MedlinePLUS

    Hyperbaric oxygen therapy uses a special pressure chamber to increase the amount of oxygen in the blood. ... outpatient centers. The air pressure inside a hyperbaric oxygen chamber is about two and a half times ...

  16. THE INDOOR FUGACITY MODEL

    EPA Science Inventory

    Dermal and non-dietary pathways are potentially significant exposure pathways to pesticides used in the home. The exposure pathways include dermal contact through the hands and skin, ingestion from hand to mouth activities, ingestion through contact with toys and other items, ...

  17. Electron-impact excitation of neutral oxygen

    E-print Network

    P. S. Barklem

    2006-09-25

    Aims: To calculate transition rates from ground and excited states in neutral oxygen atoms due to electron collisions for non-LTE modelling of oxygen in late-type stellar atmospheres, thus enabling reliable interpretation of oxygen lines in stellar spectra. Methods: A 38-state R-matrix calculation in LS-coupling has been performed. Basis orbitals from the literature (Thomas et al.) are adopted, and a large set of configurations are included to obtain good representations of the target wavefunctions. Rate coefficients are calculated by averaging over a Maxwellian velocity distribution. Results: Estimates for the cross sections and rate coefficients are presented for transitions between the seven lowest LS states of neutral oxygen. The cross sections for excitation from the ground state compare well with existing experimental and recent theoretical results.

  18. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  19. EFFICIENT OXYGEN SEPARATION MEMBRANE

    E-print Network

    Mucina, Ladislav

    EFFICIENT OXYGEN SEPARATION MEMBRANE Summary of technology Oxygen can be separated from air using a uniquely structured ceramic ion transport membrane for oxygen separation thatshowsremarkablyhighflux separated oxygen from air at a rate of 11.3 ml/min.cm2 at 1,000 °C, which is considerably

  20. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  1. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  2. 40 CFR 86.143-96 - Calculations; evaporative emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...contains at least 25% oxygenated compounds by volume, measure the concentration of oxygenated compounds directly using a photoacoustic analyzer specified in 40 CFR 1065.269 or using impingers as described in 40 CFR 1065.805(f). Calculate...

  3. Steady state oxygen surface content in oxygen sputtered silicon at impact energy of 5 keV per atom

    NASA Astrophysics Data System (ADS)

    Serrano, J. J.; Blanco, J. M.; Guzmán, B.; De Witte, H.; Vandervorst, W.

    2001-11-01

    A method is presented for the calculation of the oxygen surface concentration in steady state when sputtering silicon and silicon oxides with oxygen ions. The case of sputtering with 5 keV oxygen atoms as a function of incidence angle has been studied. Measurements of erosion rates under the mentioned sputtering conditions, including oxygen and noble gases as primary ions, with and without oxygen flooding, are the input data. The dependence of the component sputtering yield of silicon on the oxygen surface concentration is also obtained, as well as the preferential sputtering ratio. These quantities, from the point of view of the calculation work frame, depend on the degree of oxygen supersaturation (oxygen atomic fraction >2/3) at the surface in normal incidence. The possibility of supersaturation is a result of our assumptions and its level can be estimated within a narrow range.

  4. A new oxygen barometer for solar system basaltic glasses based on vanadium valence

    SciTech Connect

    Karner, J.M.; Sutton, S.R.; Papike, J.J.; Delaney, J.S.; Shearer, C.K.; Newville, M.; Eng, P.; Rivers, M.; Dyar, M.D.

    2004-05-10

    An oxybarometer based on vanadium valence and applicable to basaltic glasses covers eight orders of magnitude in oxygen fugacity. The determination of oxidation conditions for basaltic magmas derived by the melting of planetary mantles is critical to our understanding of the nature and evolution of planetary interiors. Yet, these determinations are compromised in terrestrial and especially extraterrestrial basalts by our analytical and computational methods for estimating oxygen fugacity (fO{sub 2}). For example, mineralogical barometers (1, 2) can be reduced in effectiveness by subsolidus re-equilibration of mineral assemblages, inversion of mineralogical data to melt characteristics, and deviations of the natural mineral compositions from ideal thermodynamic parameters. Likewise, techniques to estimate fO{sub 2} based on the valence state of Fe (i.e. Fe{sup 3+}/Fe{sup 2+}) are ineffective for materials that crystallized at or below the IW buffer, and only contain Fe{sup 2+} and Fe{sup 0} (3). For these reasons, we have developed an oxybarometer based on the valence state of vanadium in basaltic glasses. This oxybarometer has enormous potential because (1) V valence is measured in basaltic glasses that have been quenched at near liquidus temperatures, thereby recording magmatic fO{sub 2} conditions, and (2) V is a multivalent element, existing as V{sup 2+}, V{sup 3+}, V{sup 4+}, and V{sup 5+}, thus allowing for applicability over a range of redox conditions from the most reduced materials in the solar system, (e.g. calcium aluminum rich inclusions in chondritic meteorites [4]) to the most oxidized terrestrial magmas (this work).

  5. Bolus calculators.

    PubMed

    Schmidt, Signe; Nørgaard, Kirsten

    2014-09-01

    Matching meal insulin to carbohydrate intake, blood glucose, and activity level is recommended in type 1 diabetes management. Calculating an appropriate insulin bolus size several times per day is, however, challenging and resource demanding. Accordingly, there is a need for bolus calculators to support patients in insulin treatment decisions. Currently, bolus calculators are available integrated in insulin pumps, as stand-alone devices and in the form of software applications that can be downloaded to, for example, smartphones. Functionality and complexity of bolus calculators vary greatly, and the few handfuls of published bolus calculator studies are heterogeneous with regard to study design, intervention, duration, and outcome measures. Furthermore, many factors unrelated to the specific device affect outcomes from bolus calculator use and therefore bolus calculator study comparisons should be conducted cautiously. Despite these reservations, there seems to be increasing evidence that bolus calculators may improve glycemic control and treatment satisfaction in patients who use the devices actively and as intended. PMID:24876436

  6. Calcium Calculator

    MedlinePLUS

    ... Germany - Greece - Guatemala - Hong Kong - Hungary - Iceland - India - Indonesia - Iran, Islamic Republic of - Iraq - Ireland - Israel - Italy - ... Calculator Printer friendly Email Share Tweet Like The development of this calcium calculator was supported by Also ...

  7. The story of oxygen.

    PubMed

    Heffner, John E

    2013-01-01

    The history of oxygen from discovery to clinical application for patients with chronic lung disease represents a long and storied journey. Within a relatively short period, early investigators not only discovered oxygen but also recognized its importance to life and its role in respiration. The application of oxygen to chronic lung disease, however, took several centuries. In the modern era, physiologists pursued the chemical nature of oxygen and its physiologic interaction with cellular metabolism and gas transport. It took brazen clinicians, however, to pursue oxygen as a therapeutic resource for patients with chronic lung disease because of the concern in the 20th century of the risks of oxygen toxicity. Application of ambulatory oxygen devices allowed landmark investigations of the long-term effects of continuous oxygen that established its safety and efficacy. Although now well established for hypoxic patients, many questions remain regarding the benefits of oxygen for varying severity and types of chronic lung disease. PMID:23271817

  8. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  9. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  10. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  11. Anemia and Oxygen Delivery.

    PubMed

    Bliss, Stuart

    2015-09-01

    Clinical assessment of tissue oxygenation is challenging. Anemia reflects a decreased oxygen carrying capacity of the blood and its significance in the perioperative setting relates largely to the associated risk of insufficient oxygen delivery and cellular hypoxia. Until meaningful clinical measures of tissue oxygenation are available in veterinary practice, clinicians must rely on evaluation of a patient's hemodynamic and ventilatory performance, along with biochemical and hemogasometric measurements. Blood transfusion is used commonly for treatment of perioperative anemia, and may improve tissue oxygenation by normalizing the rheologic properties of blood and enhancing perfusion, independent of increases in oxygen carrying capacity. PMID:26033442

  12. The origin and evolution of atmospheric oxygen

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1988-01-01

    This paper discusses the chemical processes involved in the evolution of the earth's atmospheric oxygen and ozone, as well as the sources, sinks, and transfer rates of oxygen in the present atmosphere. Special attention is given the evolution of atmospheric O3 as a function of the buildup of O2, with the results of calculations presented as the vertical profiles of O3, in terms of the present atmospheric level (PAL) oxygen values. Calculations show that the total O3 column density that is approximately half of the present level was reached when atmospheric oxygen level reached 0.1 PAL. At this level of ozone, the biological shielding of the earth's surface from the UV radiation is believed to have been achieved.

  13. Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates

    SciTech Connect

    Zhao, Y.; Xu, Q.; Cheah, S.

    2013-01-01

    Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

  14. Home Oxygen Therapy

    MedlinePLUS

    ... and you breathe it in, just like the compressed oxygen in the older steel cylinders. An important ... about 50 pounds, that separates oxygen from the air by removing nitrogen. Since air is a mixture ...

  15. Biogeochemistry: Oxygen burrowed away

    NASA Astrophysics Data System (ADS)

    Meysman, Filip J. R.

    2014-09-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  16. Using oxygen at home

    MedlinePLUS

    ... up tank of oxygen gas in case your power goes out. Portable, battery-operated concentrators are also ... use oxygen in your home. They will restore power sooner to your house or neighborhood if the ...

  17. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H. (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM)

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  18. Atomic oxygen exposure of LDEF experiment trays

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.

    1992-01-01

    Atomic oxygen exposures were determined analytically for rows, longerons, and end bays of the Long Duration Exposure Facility (LDEF). The calculations are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation on atomic oxygen flux. Results incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the 6-year flight of the spacecraft. To facilitate use of the data, both detailed tabulations and summary charts for atomic oxygen fluences are presented.

  19. Making Liquid Oxygen

    E-print Network

    French, M M J

    2010-01-01

    In this article I explain in detail a method for making small amounts of liquid oxygen in the classroom if there is no access to a cylinder of compressed oxygen gas. I also discuss two methods for identifying the fact that it is liquid oxygen as opposed to liquid nitrogen.

  20. [Domiciliary oxygen therapy].

    PubMed

    Abdel Kafi, S

    2010-09-01

    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist. PMID:21089403

  1. Oxygen boost pump study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An oxygen boost pump is described which can be used to charge the high pressure oxygen tank in the extravehicular activity equipment from spacecraft supply. The only interface with the spacecraft is the +06 6.205 Pa supply line. The breadboard study results and oxygen tank survey are summarized and the results of the flight-type prototype design and analysis are presented.

  2. Medical Oxygen Safety

    MedlinePLUS

    ... to the air a patient uses to breath. Fire needs oxygen to burn. If a fire should start in an oxygen-enriched area, the ... Homes where medical oxygen is used need specific fire safety rules to keep people safe from fire ...

  3. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors

    NASA Technical Reports Server (NTRS)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David

    2010-01-01

    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  4. Variability in oxygen and nutrients in South Pacific Antarctic Intermediate Water

    E-print Network

    Russell, Joellen

    to oxygen is incorrect. The initial oxygen concentration of AAIW is shown to be undersaturated-interglacial transitions and into the future. Traditionally, the change in the concentration of oxygen along an isopycnal and is calculated from the difference between the measured oxygen concentration and the saturated concentration

  5. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section...following classes of items: (i) Stationary oxygen equipment (including stationary concentrators) and oxygen contents (stationary and...

  6. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section...following classes of items: (i) Stationary oxygen equipment (including stationary concentrators) and oxygen contents (stationary and...

  7. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Oxygen and oxygen equipment. 414.226 Section...following classes of items: (i) Stationary oxygen equipment (including stationary concentrators) and oxygen contents (stationary and...

  8. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section...following classes of items: (i) Stationary oxygen equipment (including stationary concentrators) and oxygen contents (stationary and...

  9. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section...following classes of items: (i) Stationary oxygen equipment (including stationary concentrators) and oxygen contents (stationary and...

  10. Oxygen configurations in silica

    SciTech Connect

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-07-15

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O{sub 2} bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society.

  11. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  12. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W. (Downers Grove, IL)

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  13. Singlet oxygen in photosensitization.

    PubMed

    Moan, Johan; Juzenas, Petras

    2006-01-01

    Oxygen is a ubiquitous element and a vitally important substance for life on the Earth, and especially for human life. Living organisms need oxygen for most, if not all, of their cellular functions. On the other hand, oxygen can produce metabolites that are toxic and potentially lethal to the same cells. Being reactive and chemically unstable reactive oxygen species (ROS) are the most important metabolites that initiate reduction and oxidation (redox) reactions under physiological conditions. Oxygen in its excited singlet state (1O2) is probably the most important intermediate in such reactions. Since the discovery of oxygen by Joseph Priestley in 1775 it has been recognized that oxygen can be both beneficial and harmful to life. PMID:16566709

  14. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  15. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  16. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... only (gaseous or liquid tanks). (iii) Oxygen generating portable equipment only. (iv) Stationary oxygen... stationary oxygen equipment that requires delivery of gaseous or liquid oxygen contents; or (ii) Rents stationary oxygen equipment that requires delivery of gaseous or liquid oxygen contents after the period...

  17. An ab initio study of oxygen on strained graphene.

    PubMed

    Nguyen, Manh-Thuong

    2013-10-01

    Graphene under strain exhibits new fascinating properties. In this work, I show that lattice strain introduced by uniform expansion of unit cells can strongly modify the chemical properties of graphene. By employing density functional theory calculations I found that strain enhances the bonding between atomic oxygen and graphene. Strain also increases the diffusion energy barrier of atomic oxygen on graphene; however, it reduces the activation energy for oxygen migrating through the graphene sheet. Strong stability enhancement of atomic oxygen on graphene induced by strain would also change molecular oxygen dissociation reactions from endothermic to exothermic. PMID:23945352

  18. MEMS Calculator

    National Institute of Standards and Technology Data Gateway

    SRD 166 MEMS Calculator (Web, free access)   This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  19. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature adjusted to 60 degrees Fahrenheit. (b) The percentage of oxygen by weight contained in a gasoline... gasoline is subject. (d) Per-gallon oxygen content shall be determined based upon the weight percent oxygen... content associated with a batch of gasoline (in percent-gallons) is calculated by multiplying the...

  20. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature adjusted to 60 degrees Fahrenheit. (b) The percentage of oxygen by weight contained in a gasoline... gasoline is subject. (d) Per-gallon oxygen content shall be determined based upon the weight percent oxygen... content associated with a batch of gasoline (in percent-gallons) is calculated by multiplying the...

  1. Competing strain effects in reactivity of LaCoO3 with oxygen

    E-print Network

    Kushima, Akihiro

    Planar strain effects on oxygen-vacancy formation and oxygen adsorption on LaCoO[subscript 3] are shown to manifest through competing mechanisms. Through first-principles calculations, we demonstrate that these unit processes ...

  2. Assessment of Industry-Induced Urban Human Health Risks Related to Benzo[a]pyrenebased on a Multimedia Fugacity Model: Case Study of Nanjing, China.

    PubMed

    Xu, Linyu; Song, Huimin; Wang, Yan; Yin, Hao

    2015-06-01

    Large amounts of organic pollutants emitted from industries have accumulated and caused serious human health risks, especially in urban areas with rapid industrialization. This paper focused on the carcinogen benzo[a]pyrene (BaP) from industrial effluent and gaseous emissions, and established a multi-pathway exposure model based on a Level IV multimedia fugacity model to analyze the human health risks in a city that has undergone rapid industrialization. In this study, GIS tools combined with land-use data was introduced to analyze smaller spatial scales so as to enhance the spatial resolution of the results. An uncertainty analysis using a Monte Carlo simulation was also conducted to illustrate the rationale of the probabilistic assessment mode rather than deterministic assessment. Finally, the results of the case study in Nanjing, China indicated the annual average human cancer risk induced by local industrial emissions during 2002-2008 (lowest at 1.99x10(-6) in 2008 and highest at 3.34x10(-6) in 2004), which was lower than the USEPA prescriptive level (1x10(-6)-1x10(-4)) but cannot be neglected in the long term. The study results could not only instruct the BaP health risk management but also help future health risk prediction and control. PMID:26035663

  3. Assessment of Industry-Induced Urban Human Health Risks Related to Benzo[a]pyrene based on a Multimedia Fugacity Model: Case Study of Nanjing, China

    PubMed Central

    Xu, Linyu; Song, Huimin; Wang, Yan; Yin, Hao

    2015-01-01

    Large amounts of organic pollutants emitted from industries have accumulated and caused serious human health risks, especially in urban areas with rapid industrialization. This paper focused on the carcinogen benzo[a]pyrene (BaP) from industrial effluent and gaseous emissions, and established a multi-pathway exposure model based on a Level IV multimedia fugacity model to analyze the human health risks in a city that has undergone rapid industrialization. In this study, GIS tools combined with land-use data was introduced to analyze smaller spatial scales so as to enhance the spatial resolution of the results. An uncertainty analysis using a Monte Carlo simulation was also conducted to illustrate the rationale of the probabilistic assessment mode rather than deterministic assessment. Finally, the results of the case study in Nanjing, China indicated the annual average human cancer risk induced by local industrial emissions during 2002–2008 (lowest at 1.99×10–6 in 2008 and highest at 3.34×10–6 in 2004), which was lower than the USEPA prescriptive level (1×10–6–1×10–4) but cannot be neglected in the long term.The study results could not only instruct the BaP health risk management but also help future health risk prediction and control. PMID:26035663

  4. Integrated turbomachine oxygen plant

    SciTech Connect

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  5. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  6. Oxygen ion conducting materials

    DOEpatents

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  7. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  8. Rockets using Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Busemann, Adolf

    1947-01-01

    It is my task to discuss rocket propulsion using liquid oxygen and my treatment must be highly condensed for the ideas and experiments pertaining to this classic type of rocket are so numerous that one could occupy a whole morning with a detailed presentation. First, with regard to oxygen itself as compared with competing oxygen carriers, it is known that the liquid state of oxygen, in spite of the low boiling point, is more advantageous than the gaseous form of oxygen in pressure tanks, therefore only liquid oxygen need be compared with the oxygen carriers. The advantages of liquid oxygen are absolute purity and unlimited availability at relatively small cost in energy. The disadvantages are those arising from the impossibility of absolute isolation from heat; consequently, allowance must always be made for a certain degree of vaporization and only vented vessels can be used for storage and transportation. This necessity alone eliminates many fields of application, for example, at the front lines. In addition, liquid oxygen has a lower specific weight than other oxygen carriers, therefore many accessories become relatively larger and heavier in the case of an oxygen rocket, for example, the supply tanks and the pumps. The advantages thus become effective only in those cases where definitely scheduled operation and a large ground organization are possible and when the flight requires a great concentration of energy relative to weight. With the aim of brevity, a diagram of an oxygen rocket will be presented and the problem of various component parts that receive particularly thorough investigation in this classic case but which are also often applicable to other rocket types will be referred to.

  9. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  10. A portable oxygen generator.

    PubMed

    Hall, L W; Kellagher, R E; Fleet, K J

    1986-05-01

    The use of a portable generator which liberates oxygen from hydrogen peroxide solutions has been investigated in veterinary anaesthesia to assess its potential as an alternative to conventional oxygen supplies both in emergency situations and in the event of failure of cylinder systems. The reliability of the supply appears to be good and the operation of the generator simple, making it suitable for a number of potential uses. It should compare favourably with oxygen concentrator devices used for similar purposes. PMID:3728910

  11. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(?) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1?), oxygen atom removal and ozone formation. It is shown that the process O3(? ? 2) + O2(a1?) ? 2O2 + O is the main O2(a1?) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1?) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  12. New sources for the hot oxygen geocorona

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Hickey, M. P.; Torr, D. G.

    1994-01-01

    This paper investigates new sources of thermospheric non thermal (hot) oxygen due to exothermic reactions involving numerous minor (ion and neutral) and metastable species. Numerical calculations are performed for low altitude, daytime, winter conditions, with moderately high solar activity and low magnetic activity. Under these conditions we find that the quenching of metastable species are a significant source of hot oxygen, with kinetic energy production rates a factor of ten higher than those due to previously considered O2(+) and NO(+) dissociative recombination reactions. Some of the most significant new sources of hot oxygen are reactions involving quenching of O(+)((sup 2)D), O((sup 1)D), N((sup 2)D), O(+)((sup 2)P) and vibrationally excited N2 by atomic oxygen.

  13. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  14. Silicon in Mars' Core: A Prediction Based on Mars Model Using Nitrogen and Oxygen Isotopes in SNC Meteorites

    NASA Technical Reports Server (NTRS)

    Mohapatra, R. K.; Murty, S. V. S.

    2002-01-01

    Chemical and (oxygen) isotopic compositions of SNC meteorites have been used by a number of workers to infer the nature of precursor materials for the accretion of Mars. The idea that chondritic materials played a key role in the formation of Mars has been the central assumption in these works. Wanke and Dreibus have proposed a mixture of two types of chondritic materials, differing in oxygen fugacity but having CI type bulk chemical composition for the nonvolatile elements, for Mars' precursor. But a number of studies based on high pressure and temperature melting experiments do not favor a CI type bulk planet composition for Mars, as it predicts a bulk planet Fe/Si ratio much higher than that reported from the recent Pathfinder data. Oxygen forms the bulk of Mars (approximately 40% by wt.) and might provide clues to the type of materials that formed Mars. But models based on the oxygen isotopic compositions of SNC meteorites predict three different mixtures of precursor materials for Mars: 90% H + 10% CM, 85% H + 11% CV + 4% CI and 45% EH + 55% H. As each of these models has been shown to be consistent with the bulk geophysical properties (such as mean density, and moment of inertia factor) of Mars, the nature of the material that accreted to form Mars remains ambiguous.

  15. Effects of oxygen concentration on atmospheric-pressure pulsed dielectric barrier discharges in argon/oxygen mixture

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Tan, Zhenyu; Liu, Yadi; Pan, Guangsheng; Wang, Xiaolong

    2015-09-01

    In this work, the effects of oxygen concentration on the atmospheric-pressure argon/oxygen pulsed dielectric barrier discharges (DBDs) have been numerically investigated based on a 1-D fluid model. The effects of oxygen concentration in the range below 5% on the important discharge properties of the argon/oxygen pulsed DBDs are systematically calculated and analyzed. The present work presents the following significant observations. The discharge current density still presents, in spite of oxygen addition, the form of two bipolar pulses in one period of the applied voltage, as occurred in pure noble gases. Especially, oxygen admixture affects basically only the first discharge, and the resultant characteristics are that the peak value of the current density reduces and the peak position moves in the direction of the time, when increasing oxygen concentration. Increasing oxygen admixture significantly raises both the breakdown voltage of the second discharge and the averaged electron temperature not only in the pulse duration but also in the time interval between the applied voltage pulses. The averaged dissipated power density reaches its maximum as the oxygen concentration is 3%. Also, increasing oxygen admixture effectively enhances the averaged particle densities of O+, O2(1?g), and O3, but obviously reduces those of electron, Ar+, O, and O(1D). Under the considered oxygen concentrations, O2 + and O3 - are the dominated oxygen-related charged species.

  16. 40 CFR 1065.850 - Calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Calculations. 1065.850 Section 1065.850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.850 Calculations. Use the...

  17. 40 CFR 1065.850 - Calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Calculations. 1065.850 Section 1065.850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.850 Calculations. Use the...

  18. 40 CFR 1065.850 - Calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Calculations. 1065.850 Section 1065.850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.850 Calculations. Use the...

  19. 40 CFR 1065.850 - Calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Calculations. 1065.850 Section 1065.850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.850 Calculations. Use the...

  20. Aircrew oxygen system

    NASA Technical Reports Server (NTRS)

    Babinsky, A. D.; Kiraly, R. J.; Wynveen, R. A.

    1972-01-01

    Closed-loop rebreather system which includes pilot provides oxygen for use in aircraft by safe, reliable method of low weight and size and reduces expense of ground equipment. Water electrolysis generated oxygen is fed into rebreather loop which allows nitrogen elimination and water and carbon dioxide removal.

  1. Oxygen sensitive paper

    NASA Technical Reports Server (NTRS)

    Whidby, J. F.

    1973-01-01

    Paper is impregnated with mixture of methylene blue and ethylenediaminetetraacetic acid. Methylene blue is photo-reduced to leuco-form. Paper is kept isolated from oxygen until ready for use. Paper can be reused by photo-reduction after oxygen exposure.

  2. An improved program to calculate intrapulmonary shunting.

    PubMed

    Siegel, D; Ramanathan, S; Chalon, J; Turndorf, H

    1979-06-01

    A computer program was developed to calculate intrapulmonary venous admixture on a Texas Instruments TI 59 programmable calculator. The program incorporates the following characteristics: 1) a correction for saturated water vapor pressure which varies with body temperature; 2) a mathematical model of the standard oxyhemoglobin dissociation curve; and 3) correction factors for shifts of the dissociation curve due to variations in pH and carbon dioxide tension. It also corrects oxygen tensions obtained at electrode temperature to those at patient temperature, and calculates variations of the Bunsen solubility coefficient of oxygen in blood with body temperature. PMID:446063

  3. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  4. Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors.

    PubMed

    Rols, J L; Condoret, J S; Fonade, C; Goma, G

    1990-02-20

    Limitations of oxygen transfer in fermentation can be solved using auxiliary liquids immiscible in the aqueous phase. The liquids (called oxygen-vectors) used in this study were hydrocarbon (n-dodecane) and perfluorocarbon (forane F66E) in which oxygen is highly soluble (54.9 mg/L in n-dodecane and 118 mg/L in forane F66E at 35 degrees C in contact with air at atmospheric pressure). It has been demonstrated that the use of n-dodecane emulsion in a culture of Aerobacter aerogenes enabled a 3. 5-fold increase of the volumetric oxygen transfer coefficient(k(L)a) calculated on a per-liter aqueous phase basis. The droplet size of the vector played a crucial role in the phenomena. When a static contact between gas bubble and vector droplet was established in water, the vector covered the bubble, in agreement with positive values of the spreading coefficient for these fluids. The determination of the oxygen transfer coefficients (k(L)) in a reactor with a definite interfacial area enabled the main resistance to be located in the boundary layer of the waterside either for a gas-water or a vector-water interface. Because oxygen consumption by weakly hydrophobic cells can only occur in the aqueous phase, the oxygen transfer is achieved according to the following pathway: gas-vector-water-cell. Finally, a mechanism for oxygen transfer within this four-phased system is proposed. PMID:18592535

  5. Calculation Software

    NASA Technical Reports Server (NTRS)

    1994-01-01

    MathSoft Plus 5.0 is a calculation software package for electrical engineers and computer scientists who need advanced math functionality. It incorporates SmartMath, an expert system that determines a strategy for solving difficult mathematical problems. SmartMath was the result of the integration into Mathcad of CLIPS, a NASA-developed shell for creating expert systems. By using CLIPS, MathSoft, Inc. was able to save the time and money involved in writing the original program.

  6. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or transmitted to a receiving station on Earth. By comparison of the short-circuit currents from the fluence-measuring photodiode and the reference photodiode, one can compute the accumulated atomic oxygen fluence arriving in the direction that the fluence monitor is pointing. The device produces a signal that is linear with atomic oxygen fluence using a material whose atomic oxygen erosion yield has been measured over a period of several years in low-Earth orbit.

  7. Oxygen foreshock of Mars

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Lundin, R.; Frahm, R. A.; Sauvaud, J.-A.; Holmström, M.; Barabash, S.

    2015-12-01

    Mars Express (MEX) has operated for more than 10 years in the environment of Mars, providing solar wind ion observations from the Analyzer of Space Plasmas and Energetic Atoms experiment's Ion Mass Analyser (IMA). On 21 September 2008, MEX/IMA detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock and this distribution was observed continuously up to more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. This is the first time that a substantial amount of planetary oxygen is observed upstream of the bow shock. Although rare, this is not the only IMA observation of foreshock-like oxygen: oxygen ions are sometimes observed for a short period of time (<5 min) inside the foreshock region. These observations suggest a new escape channel for planetary ions through the acceleration in the bow shock-magnetosheath region.

  8. WBGT Calculator

    Energy Science and Technology Software Center (ESTSC)

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulatemore »the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.« less

  9. Magnetism in Lithium–Oxygen Discharge Product

    SciTech Connect

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13

    Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  10. Magnetism in lithium-oxygen discharge product.

    PubMed

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A; Du, Peng; Assary, Rajeev S; Greeley, Jeffrey; Ferguson, Glen A; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A; Amine, Kahlil

    2013-07-01

    Nonaqueous lithium-oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium-oxygen batteries. We demonstrate that the major discharge product formed in the lithium-oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium-oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide-type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules. PMID:23670967

  11. The Role of Dissolved Oxygen in Hard Clam Aquaculture1 Kerry Weber, Elise Hoover, Leslie Sturmer, and Shirley Baker2

    E-print Network

    Florida, University of

    the brown-black iodine color disappears. The concentration of dissolved oxygen can be calculated fromFA152 The Role of Dissolved Oxygen in Hard Clam Aquaculture1 Kerry Weber, Elise Hoover, Leslie. Larry Arrington, Dean What Is Dissolved Oxygen? Oxygen is a chemical element and a major component (21

  12. Electrochemical oxygen concentrator as an oxygen compressor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.

  13. Who Needs Oxygen Therapy?

    MedlinePLUS

    ... tor), or through a tube in the nose. Chronic Diseases and Conditions Long-term home oxygen therapy might ... treat some diseases and conditions, such as: COPD (chronic obstructive pulmonary disease). This is a progressive disease in which damage ...

  14. Oxygen and Biological Evolution.

    ERIC Educational Resources Information Center

    Baugh, Mark A.

    1990-01-01

    Discussed is the evolution of aerobic organisms from anaerobic organisms and the accompanying biochemistry that developed to motivate and enable this evolution. Uses of oxygen by aerobic organisms are described. (CW)

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-07-01

    In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  16. High Selectivity Oxygen Delignification

    SciTech Connect

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  17. Oxygenated Derivatives of Hydrocarbons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  18. Fluorescence quantum yield of verteporfin is independent of oxygen

    NASA Astrophysics Data System (ADS)

    Monahan, Tim; Jiang, Shudong; Pogue, Brian

    2008-02-01

    Photodynamic therapy dosimetery and treatment planning is affected by the concentration of photosensitizer in a given tissue, and these values are often estimated based on measurements of fluorescence in the region to be treated. Some studies with benzoporphyrin derivate monoacid ring a (BPD-MA) showed a significant increase in fluorescence quantum yield with deoxygenation of the solution, indicating a possible oxygen sensitive switch in intersystem crossing or reverse intersystem crossing. The experiments done in this paper show that at oxygenation levels found in vivo the variation in fluorescence quantum yield of liposomal BPD-MA (verteporfin) is negligible for changes in solution oxygenation. The results from all of the experiments show that it is not necessary to measure the oxygenation of tissues when calculating the concentration of verteporfin from fluorescence measurements, so that dosimetry calculations based upon photosensitizer levels would not be affected by the tissue oxygenation. This greatly simplifies the dosimetry process with verteporfin.

  19. Oxygen chemistry of shocked interstellar clouds. III - Sulfur and oxygen species in dense clouds

    NASA Technical Reports Server (NTRS)

    Leen, T. M.; Graff, M. M.

    1988-01-01

    The chemical evolution of oxygen and sulfur species in shocked dense clouds is studied. Reaction rate constants for several important neutral reactions are examined, and revised values are suggested. The one-fluid magnetohydrodynamic shock structure and postshock chemical evolution are calculated for shocks of velocity v(s) = 10 km/s through clouds of initial number density n(0) = 100,000/cu cm and of molecule/atom ratios H2/H = 10, 1000, and 100,000 with most sulfur contained initially in molecules SO2 and SO. Abundances of SO2, SO, CS, and OCS remain near their preshock values, except in clouds containing substantial amounts of atomic hydrogen, where significant destruction of sulfur-oxygen species occurs. Abundances of shock-enhanced molecules HS and H2O are sensitive to the molecule/atom ratio. Nonthermal oxygen-hydrogen chemistry has a minor effect on oxygen-sulfur molecules in the case H2/H = 10.

  20. Atmospheric odd oxygen production due to the photodissociation of ordinary and isotopic molecular oxygen

    NASA Technical Reports Server (NTRS)

    Omidvar, K.; Frederick, J. E.

    1987-01-01

    Line-by-line calculations are performed to determine the contributions of the Schumann-Runge bands of ordinary and isotopic oxygen to the photodissociation of these molecules at different altitudes. The contributions to the dissociation rates of the satellite lines and of the first and higher vibrational states of the initial molecular states are found to be insignificant. At 70 km, (O-16)(O-18) is found to produce 10 times as much odd oxygen as would be produced if the isotope did not have selective absorption, and 6 percent of the odd oxygen produced is due to this isotope. It is noted that the excess odd oxygen produced is not enough to explain the excess quantity of ozone observed in the atmosphere, which cannot be accounted for in photochemical models. Comparison with previous results is made.

  1. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Casalongue, Hernan Sanchez; Kaya, Sarp; Viswanathan, Venkatasubramanian; Miller, Daniel J.; Friebel, Daniel; Hansen, Heine A.; Nørskov, Jens K.; Nilsson, Anders; Ogasawara, Hirohito

    2013-12-01

    The performance of polymer electrolyte membrane fuel cells is limited by the reduction at the cathode of various oxygenated intermediates in the four-electron pathway of the oxygen reduction reaction. Here we use ambient pressure X-ray photoelectron spectroscopy, and directly probe the correlation between the adsorbed species on the surface and the electrochemical potential. We demonstrate that, during the oxygen reduction reaction, hydroxyl intermediates on the cathode surface occur in several configurations with significantly different structures and reactivities. In particular, we find that near the open-circuit potential, non-hydrated hydroxyl is the dominant surface species. On the basis of density functional theory calculations, we show that the removal of hydration enhances the reactivity of oxygen species. Tuning the hydration of hydroxyl near the triple phase boundary will be crucial for designing more active fuel cell cathodes.

  2. Role of Geometric Relaxation in Oxygen Binding to Metal Nanoparticles.

    PubMed

    Lu, Chun-Yaung; Henkelman, Graeme

    2011-06-01

    Better oxygen reduction catalysts are needed to improve the efficiency and lower the cost of fuel cells. Metal nanoparticles are good candidates because their catalytic properties can differ from bulk metals. Using density functional theory calculations, we studied the geometric relaxation of metal nanoparticles upon oxygen binding. Because bound oxygen species are intermediates in the oxygen reduction reaction, the binding of oxygen can be correlated to catalytic activity. Our results show that Pt and Au are unique in that they exhibit a larger structural deformation than other metals, which is pronounced for particles with fewer than 100 atoms. The structural deformation induced by atomic oxygen binding stabilizes the oxidized state and thus reduces the catalytic activity of Pt-based random alloys. We show that the catalytic activity of Pt can be improved by forming alloys with less deformable metals. PMID:26295416

  3. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... contents (stationary and portable). (ii) Portable equipment only (gaseous or liquid tanks). (iii) Oxygen... equipment that requires delivery of gaseous or liquid oxygen contents; or (ii) Rents stationary oxygen equipment that requires delivery of gaseous or liquid oxygen contents after the period of continuous use...

  4. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... contents (stationary and portable). (ii) Portable equipment only (gaseous or liquid tanks). (iii) Oxygen... equipment that requires delivery of gaseous or liquid oxygen contents; or (ii) Rents stationary oxygen equipment that requires delivery of gaseous or liquid oxygen contents after the period of continuous use...

  5. Dissolved Oxygen a practical guide to dissolved oxygen measurements

    E-print Network

    Serianni, Anthony S.

    ..............................................................................................5 YsI optical Dissolved oxygen Instruments ............................................6 optical sensing element............................................................................7 How

  6. Lunar oxygen production by pyrolysis of regolith

    NASA Technical Reports Server (NTRS)

    Senior, Constance L.

    1991-01-01

    Oxygen represents one of the most desirable products of lunar mining and manufacturing. Among the many processes which have been proposed for oxygen production, pyrolysis stands out as one which is uncomplicated and easy to bootstrap. Pyrolysis or vapor-phase reduction involves heating regolith to temperatures sufficient to allow partial decomposition and vaporization. Some metal oxides give up oxygen upon heating, either in the gas phase to form reduced gaseous species or in the condensed phase to form a metallic phase. Based on preliminary experiments and equilibrium calculations, the temperatures needed for pyrolysis are expected to be in the range of 2000 to 2200 K, giving total gas pressures of 0.001 to 0.1 torr. Bulk regolith can be used as a feedstock without beneficiation with concentrated solar radiation supplying most of energy needed. Further, selective condensation of metal-containing species from the gas phase may yield metallic iron and silicon as byproducts.

  7. Program developed for CO{sub 2} system calculations

    SciTech Connect

    Lewis, E.; Wallace, D.; Allison, L.J.

    1998-02-01

    The program CO2SYS performs calculations relating parameters of the carbon dioxide (CO{sub 2}) system in seawater and freshwater. The program uses two of the four measurable parameters of the CO{sub 2} system [total alkalinity (TA), total inorganic CO{sub 2} (TCO{sub 2}), pH, and either fugacity (fCO{sub 2}) or partial pressure of CO{sub 2} (pCO{sub 2})] to calculate the other two parameters at a set of input conditions (temperature and pressure) and a set of output conditions chosen by the user. It replaces and extends the programs CO2SYSTM.EXE, FCO2TCO2.EXE, PHTCO2.EXE, and CO2BTCH.EXE, which were released in May 1995. It may be run in single-input mode or batch-input mode and has a variety of options for the various constants and parameters used. An on-screen information section is available that includes documentation on various topics relevant to the program. This program may be run on any 80 x 86 computer equipped with the DOS operating system by simply typing CO2SYS at the prompt after loading the executable file CO2SYS.EXE.

  8. Influence of ortho-substitution homolog group on polychlorobiphenyl bioaccumulation factors and fugacity ratios in plankton and zebra mussels (Dreissena polymorpha)

    SciTech Connect

    Willman, E.J.; Manchester-Neesvig, J.B.; Agrell, C.; Armstrong, D.E.

    1999-07-01

    The accumulation of a set of non- and mono-ortho (coplanar) PCB congeners in aquatic ecosystems is of interest due to their dioxin-like toxicities. Chemical properties (octanol-water partition coefficients) suggest that the coplanar congeners may accumulate in organisms to a greater extent than homologs with greater ortho substitution. The authors analyzed a set of 65 PCB congeners with zero to four ortho-chlorines from seven homolog groups in water, suspended particulate matter, and zebra mussels from Green Bay, Wisconsin, USA, on four dates throughout the ice-free season. The suspended particulate matter was separated by size and characterized as phytoplankton or zooplankton using diagnostic carotenoid pigments and light microscopy. Median bioconcentration factors (BCFs) for accumulation from water by phytoplankton and bioaccumulation factors (BAFs) for accumulation from water plus food by zooplankton and zebra mussels ranged from 1 x 10{sup 4} to 1 x 10{sup 6} and were generally the greatest for the tetra- to heptachlorobiphenyls. The average coplanar congener BCFs and BAFs for accumulation from water by phytoplankton, zooplankton, and zebra mussels for the tri-, tetra-, and pentachlorobiphenyls were 54% larger than corresponding values for their homologs. Biomagnification factors (BMFs) of the tetra-, penta-, and hexachlorobiphenyls between zooplankton and zebra mussels and their food source, phytoplankton, typically ranged between 1 and 10, but the average coplanar congener BMFs were 25% less than values for their corresponding homologs. The tendency for coplanar congeners to accumulate to a lesser extent between trophic levels was not as large as their tendency to accumulate from water to a greater extent. Based on accumulation factors, the authors conclude that the dioxin-like tetra- and pentachlorobiphenyls generally accumulate in the phytoplankton, zooplankton, and zebra mussels of the Green Bay ecosystem to a greater extent than other congeners. Fugacity ratios suggest that, in phytoplankton and zooplankton, homolog concentrations were below equilibrium with water throughout the field season, particularly for the more chlorinated groups, but that concentrations in zebra mussels were at or above equilibrium with water.

  9. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  10. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C. (2529 Lee St., Woodridge, IL 60517); Poeppel, Roger B. (67 Stephanie La., Glen Ellyn, IL 60137); Easler, Timothy E. (564 N. Pinecrest, Bolingbrook, IL 60439); Dees, Dennis W. (6224 Middaugh Ave., Downers Grove, IL 60517)

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  11. Interactions of Oxygen and Hydrogen on Pd(111) surface

    SciTech Connect

    Demchenko, D.O.; Sacha, G.M.; Salmeron, M.; Wang, L.-W.

    2008-06-25

    The coadsorption and interactions of oxygen and hydrogen on Pd(1 1 1) was studied by scanning tunneling microscopy and density functional theory calculations. In the absence of hydrogen oxygen forms a (2 x 2) ordered structure. Coadsorption of hydrogen leads to a structural transformation from (2 x 2) to a ({radical}3 x {radical}3)R30 degree structure. In addition to this transformation, hydrogen enhances the mobility of oxygen. To explain these observations, the interaction of oxygen and hydrogen on Pd(1 1 1) was studied within the density functional theory. In agreement with the experiment the calculations find a total energy minimum for the oxygen (2 x 2) structure. The interaction between H and O atoms was found to be repulsive and short ranged, leading to a compression of the O islands from (2 x 2) to ({radical}3 x {radical}3)R30 degree ordered structure at high H coverage. The computed energy barriers for the oxygen diffusion were found to be reduced due to the coadsorption of hydrogen, in agreement with the experimentally observed enhancement of oxygen mobility. The calculations also support the finding that at low temperatures the water formation reaction does not occur on Pd(1 1 1).

  12. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  13. Acute use of oxygen therapy

    PubMed Central

    Pilcher, Janine; Beasley, Richard

    2015-01-01

    Summary A major change is needed in the entrenched culture of routinely administering high-concentration oxygen to acutely ill patients regardless of need. Oxygen is a drug that should be prescribed for specific indications. There should be a documented target range for oxygen saturation, and regular monitoring of the patient’s response. There are risks from unrelieved hypoxaemia due to insufficient oxygen therapy, and from provoked hyperoxaemia due to excessive oxygen therapy. Oxygen therapy should therefore be titrated so that the saturation is within a range that avoids these risks. If oxygen requirements are increasing, the clinician should review the patient and consider transfer to a higher level of care. If oxygen requirements are decreasing, consider reducing or discontinuing oxygen therapy.

  14. Oxidation-Reduction Calculations in the Biochemistry Course

    ERIC Educational Resources Information Center

    Feinman, Richard D.

    2004-01-01

    Redox calculations have the potential to reinforce important concepts in bioenergetics. The intermediacy of the NAD[superscript +]/NADH couple in the oxidation of food by oxygen, for example, can be brought out by such calculations. In practice, students have great difficulty and, even when adept at the calculations, frequently do not understand…

  15. Randomised trial of ambulatory oxygen in oxygen-dependent COPD.

    PubMed

    Lacasse, Y; Lecours, R; Pelletier, C; Bégin, R; Maltais, F

    2005-06-01

    Long-term oxygen therapy may limit a patient's ability to remain active and may be detrimental to the rehabilitation process. This study aimed to determine the effect of ambulatory oxygen on quality of life and exercise capacity in patients with chronic obstructive pulmonary disease fulfilling the usual criteria of long-term oxygen therapy. In a 1-yr, randomised, three-period, crossover trial, 24 patients (mean age 68 yrs; mean arterial partial pressure of oxygen at rest 7.1 kPa (53 mmHg)) were allocated to one of the six possible sequences generated by three interventions: 1) standard therapy (home oxygen therapy with an oxygen concentrator only); 2) standard therapy plus as-needed ambulatory oxygen; and 3) standard therapy plus ambulatory compressed air. The comparison of ambulatory oxygen versus ambulatory compressed air was double blind. The main outcomes were quality of life (Chronic Respiratory Questionnaire), exercise tolerance (6-min walk test) and daily duration of exposure to oxygen therapy. The trial was stopped prematurely after an interim analysis. On average, the patients used few ambulatory cylinders (7.5 oxygen cylinders versus 7.4 compressed air cylinders over a 3-month study period). Ambulatory oxygen had no effect on any of the outcomes. In conclusion, the current results do not support the widespread provision of ambulatory oxygen to patients with oxygen-dependent chronic obstructive pulmonary disease. PMID:15929958

  16. Spacecraft oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1974-01-01

    Recovery system is comprised of three integrated subsystems: electrochemical carbon dioxide concentrator which removes carbon dioxide from atmosphere, Sabatier reactor in which carbon dioxide is reduced with hydrogen to form methane and water, and static-feed water electrolysis cell to recover oxygen from water.

  17. FUEL OXYGENATES HEALTH ISSUES

    EPA Science Inventory

    Oxygenates (e.g., methyl tertiary butyl ether [MTBE], ethanol) are required in certain areas of the United States by the 1990 Clean Air Act Amendments. MTBE and ethanol have also been used to increase octane ratings in U.S. gasoline since the 1970s. In 1996 alone, 10 billion Kg...

  18. The Oxygen Flask Method

    ERIC Educational Resources Information Center

    Boulton, L. H.

    1973-01-01

    Discusses application of Schoniger's method of quantitative organic elemental analysis in teaching of qualitative analysis of the halogens, nitrogen, sulphur, and phosphorus. Indicates that the oxygen flask method is safe and suitable for both high school and college courses because of simple apparatus requirements. (CC)

  19. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, Paul (Acton, MA)

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  20. The Oxygen Cycle.

    ERIC Educational Resources Information Center

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  1. Wildlife monitoring, modeling, and fugacity

    SciTech Connect

    Clark, T.; Clark, K.; Paterson, S.; Mackay, D.; Norstrom, R.J. )

    1988-02-01

    Observations of wildlife populations and their state of health have played a key role in identifying situations in which chemical contaminants have reached unacceptable concentrations in the environment. The reproductive failure of several species - including the peregrine falcon (Falco peregrinus), the double crested cormorant (Phalocrocorax auritus), the brown pelican (Pelicanus occidentalis), and the osprey (Pandion haliaetus) - has been attributed to organochlorine contamination. As the mine canary can warn of the presence of a poisonous gas in a coal mine, wildlife populations can act as sentinels for excessive chemical contamination. This blunt and often tragic exploitation of wildlife as a sentinel is, to be sure, an extreme example of the more subtle and far-reaching issue of the extent to which wildlife tissues can be used to indicate general levels of environmental contamination and provide guidance to the scientific and regulatory communities about the state of the environment.

  2. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  3. In-situ measurement of oxygen concentration under high pressure and the application to oxygen permeation through polymer films

    NASA Astrophysics Data System (ADS)

    Sterr, Julia; Rötzer, Katharina; Weck, Kathrin; Wirth, Andreas Leonhard Karl; Fleckenstein, Benedikt Stefan; Langowski, Horst-Christian

    2015-09-01

    Up until now, gas permeation through polymers under high pressure has not been able to be measured continuously. The combination of a special high pressure cell and a commercially available fluorescence-based oxygen measurement system allows in-situ monitoring of oxygen permeation through a polymer sample under pressure in an aqueous environment. The principle of the oxygen sensor is based on dynamic fluorescence quenching and measurement of the fluorescence decay time. It was observed that the decay time increases non-linearly with the applied pressure, and hence, the displayed oxygen concentration has to be corrected. This deviation between the measured and the real concentration depends not only on the pressure but also on the absolute oxygen concentration in the water. To obtain a calibration curve, tests were performed in the pressure range between 1 and 2000 bars and initial oxygen concentrations in the range between 40 and 280 ?mol/l. The polynomial calibration curve was of the fourth order, describing the raw data with a coefficient of determination R2 > 0.99. The effective oxygen permeation through polymeric samples can be calculated with this function. A pressure hysteresis test was undertaken but no hysteresis was found. No temperature dependence of the oxygen sensor signal was observed in the range between 20 °C and 30 °C. This study presents for the first time data showing the oxygen permeation rates through a polyethylene film in the pressure range between 1 and 2000 bars at 23 °C.

  4. Assessing hafnium on hafnia as an oxygen getter

    SciTech Connect

    O'Hara, Andrew; Demkov, Alexander A.; Bersuker, Gennadi

    2014-05-14

    Hafnium dioxide or hafnia is a wide band gap dielectric used in a range of electronic applications from field effect transistors to resistive memory. In many of these applications, it is important to maintain control over oxygen stoichiometry, which can be realized in practice by using a metal layer, specifically hafnium, to getter oxygen from the adjacent dielectric. In this paper, we employ density functional theory to study the thermodynamic stability of an interface between (100)-oriented monoclinic hafnia and hafnium metal. The nudged elastic band method is used to calculate the energy barrier for migration of oxygen from the oxide to the metal. Our investigation shows that the presence of hafnium lowers the formation energy of oxygen vacancies in hafnia, but more importantly the oxidation of hafnium through the migration of oxygen from hafnia is favored energetically.

  5. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones I: Oxygen consumption rates and critical oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Trueblood, Lloyd A.; Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91?molg-1h-1 at 10°C and 12.62?molg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.

  6. Ancient Oceans Had Less Oxygen

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    The amount of dissolved oxygen in the oceans in the mid-Proterozoic period has evolutionary implications since essential trace metals are redox sensitive. The findings suggest that there is global lack of oxygen in seawater.

  7. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  8. SINGLET OXYGEN IN NATURAL WATERS

    EPA Science Inventory

    Singlet oxygen is a reactive, electronically excited form of molecular oxygen that rapidly oxidizes a wide variety of organic substances, such as the polycyclic aromatics in petroleum hydrocarbon and the amino acids, histidine, tryptophan, and methionine. Studies of water samples...

  9. Oxygen in demand: How oxygen has shaped vertebrate physiology.

    PubMed

    Dzal, Yvonne A; Jenkin, Sarah E M; Lague, Sabine L; Reichert, Michelle N; York, Julia M; Pamenter, Matthew E

    2015-08-01

    In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite of adaptations that maintain cellular oxygen content across vertebrate taxa, which underscores the value of the comparative approach to the study of physiological systems. PMID:25698654

  10. Effect of surface strain on oxygen adsorption on Zr (0001) surface

    SciTech Connect

    Wang, Xing; Khafizov, Marat; Szlufarska, Izabela

    2014-02-01

    The effect of surface strain on oxygen adsorption on Zr (0 0 0 1) surface is investigated by density functional theory (DFT) calculations. It is demonstrated that both surface strain and interactions between oxygen adsorbates influence the adsorption process. Oxygen binding to zirconium becomes stronger as the strain changes from compressive to tensile. When oxygen coverage is low and the oxygen interactions are negligible, surface face-centered cubic sites are the most stable for O binding. At high coverage and under compression, octahedral sites between second and third Zr layers become most favorable because the interactions between adsorbates are weakened by positive charge screening. Calculations with both single-layer adsorption model and multiple-layer adsorption model demonstrate that compressive strain at the Zr/oxide interface will provide a thermodynamic driving force for oxygen to incorporate from the surface into the bulk of Zr, while binding oxygen to the Zr surface will be easier when tensile strain is applied.

  11. Interpreting benthic oxygen levels in mudrocks: a new approach

    SciTech Connect

    Wignall, P.B.; Myers, K.J.

    1988-05-01

    Quantified paleoecology and gamma-ray spectrometry have been applied in the analysis of the Kimmeridge Clay, a highly organic-rich British Jurassic mudrock. Decreasing benthic oxygen trends are reflected in decreasing species richness and dominance-diversity values. Similarly, the degree of fragmentation of the benthos reflects the benthic energy levels and covaries with benthic oxygen. The calculation of authigenic uranium values from data gathered by gamma-ray spectrometry shows enrichment in more oxygen-deficient environments. The good correlation between the independently derived paleoecological and authigenic U data indicates the importance of these techniques in environmental analysis of marine petroleum source rocks.

  12. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E. (Kensington, CA)

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  13. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  14. Adipose tissue oxygenation

    PubMed Central

    Hodson, Leanne

    2014-01-01

    With the increasing prevalence of obesity there is a concomitant increase in white adipose tissue dysfunction, with the tissue moving toward a proinflammatory phenotype. Adipose tissue hypoxia has been proposed as a key underlying mechanism triggering tissue dysfunction but data from human, in vivo studies, to support this hypothesis is limited. Human adipose tissue oxygenation has been investigated by direct assessment of tissue oxygen tension (pO2) or by expression of hypoxia-sensitive genes/protein in lean and obese subjects but findings are inconsistent. An obvious read-out of hypoxia is the effect on intermediary metabolism, and we have investigated the functional consequences, in terms of a “metabolic signature” of human adipose tissue hypoxia in vivo. Here, we discuss the different approaches used and the importance of integrative physiological techniques to try and elucidate what defines adipose tissue hypoxia in humans. PMID:24575375

  15. Integrated oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Davenport, Ronald J.

    1993-01-01

    Life Systems has conceptualized an innovative Integrated Oxygen Recovery System (IORS) applicable to advanced mission air revitalization. The IORS provides the capability to electrochemically generate metabolic oxygen (O2) and recover O2 from the space habitat atmosphere via a carbon dioxide (CO2) reduction process within a single assembly. To achieve this capability, the IORS utilizes a Solid Metal Cathode (SMC) water electrolysis unit that simultaneously serves as the Sabatier CO2 reduction reactor. The IORS enables two major life support systems currently baselined in closed loop air revitalization systems to be combined into one smaller, less complex system. This concept reduces fluidic and electrical interface requirements and eliminates a hydrogen (H2) interface. Life Systems is performing an evaluation of the IORS process directed at demonstrating performance and quantifying key physical characteristics including power, weight, and volume. Technical progress achieved during the first two months of the program is summarized.

  16. Investigation of oxygen point defects in cubic ZrO2 by density functional theory

    SciTech Connect

    Liu, Bin; Xiao, Haiyan; Zhang, Yanwen; Aidhy, Dilpuneet S; Weber, William J

    2014-01-01

    The energetics of formation and migration of the oxygen vacancy and interstitial in cubic ZrO2 are investigated by density functional theory calculations. In an O-rich environment, the negatively charged oxygen interstitial is the most dominant defect whereas, the positively charged oxygen vacancy is the most dominant defect under O-poor conditions. Oxygen interstitial migration occurs by the interstitialcy and the direct interstitial mechanisms, with calculated migration energy barriers of 2.94 eV and 2.15 eV, respectively. For the oxygen vacancy, diffusion is preferred along the <100> direction, and the calculated energy barriers are 0.26 eV for , 0.27 eV for and 0.54 eV for . These results indicate that oxygen diffusivity is higher through the vacancy-migration mechanism.

  17. Oxygen abundances in the most oxygen-rich spiral galaxies

    E-print Network

    L. S. Pilyugin; T. X. Thuan; J. M. Vilchez

    2006-01-06

    Oxygen abundances in the spiral galaxies expected to be richest in oxygen are estimated. The new abundance determinations are based on the recently discovered ff-relation between auroral and nebular oxygen line fluxes in HII regions. We find that the maximum gas-phase oxygen abundance in the central regions of spiral galaxies is 12+log(O/H)~8.75. This value is significantly lower than the previously accepted value. The central oxygen abundance in the Milky Way is similar to that in other large spirals.

  18. Fuel cell oxygen electrode

    DOEpatents

    Shanks, Howard R. (Ames, IA); Bevolo, Albert J. (Ames, IA); Danielson, Gordon C. (Ames, IA); Weber, Michael F. (Wichita, KS)

    1980-11-04

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

  19. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  20. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  1. How Does Oxygen Therapy Work?

    MedlinePLUS

    ... or as a concentrated form taken from the air. Compressed oxygen gas is stored under pressure in metal ... that the storage units need less space than compressed or concentrated ... other gases in the air and store only oxygen. Oxygen concentrators come in ...

  2. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  3. Atmospheric Oxygen Photoabsorption

    NASA Technical Reports Server (NTRS)

    Slanger, Tom G.

    1996-01-01

    The work conducted on this grant was devoted to various aspects of the photophysics and photochemistry of the oxygen molecule. Predissociation linewidths were measured for several vibrational levels in the O2(B3 Sigma(sub u)(sup -)) state, providing good agreement with other groups working on this important problem. Extensive measurements were made on the loss kinetics of vibrationally excited oxygen, where levels between v = 5 and v = 22 were investigated. Cavity ring-down spectroscopy was used to measure oscillator strengths in the oxygen Herzberg bands. The great sensitivity of this technique made it possible to extend the known absorption bands to the dissociation limit as well as providing many new absorption lines that seem to be associated with new O2 transitions. The literature concerning the Herzberg band strengths was evaluated in light of our new measurements, and we made recommendations for the appropriate Herzberg continuum cross sections to be used in stratospheric chemistry. The transition probabilities for all three Herzberg band systems were re-evaluated, and we are recommending a new set of values.

  4. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    NASA Technical Reports Server (NTRS)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  5. Extreme ultraviolet spectra of highly ionized oxygen and fluorine

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Griffin, P. M.; Haselton, H. H.; Laubert, R.; Mowat, J. R.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.

    1974-01-01

    The foil-excitation method has been used to study the extreme ultraviolet spectra of highly ionized oxygen and fluorine. Several previously unreported lines in heliumlike fluorine are reported and other newly reported lines in heliumlike oxygen have been measured to higher accuracy. Included in the measurements are certain heliumlike oxygen transitions of significance in interpretation of solar-flare spectral observations. The wavelength determinations are usually in good agreement with calculated results which includes relativistic corrections, but discrepancies arise when nonrelativistic calculations are used. A comparison of the present results and those recently obtained by theta-pinch and laser-induced plasma sources is made for both heliumlike and lithiumlike ions; a few discrepancies occur, with results in most cases in better agreement with relativistically corrected calculations. Certain unidentified lines in the spectra may be attributable to radiative transitions between quartet states of lithiumlike ions.

  6. Oxygen Transport Membranes

    SciTech Connect

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

  7. The Rate of Photorespiration as Measured by Means of Oxygen Uptake and Its Respiratory Quotient

    PubMed Central

    Samish, Yochai B.

    1971-01-01

    Oxygen recycling inside photosynthesizing leaves was found to amount to less than 0.3% of the oxygen consumed by photorespiration under natural conditions, provided the influence of buildup of oxygen released by photosynthesis into the external air was taken into consideration. When this is related to the amounts of photorespired CO2, which had been previously found to be reabsorbed by photosynthesis, it appears that previous respiratory quotients reported for photorespiration were underestimated. For the same reason the photosynthetic quotient was overestimated. Actually, quotients of photorespiration and of photosynthesis approach the more normal range of respiratory quotients int the dark. The oxygen recycling was calculated according to an electrical analogue to oxygen flow. The determination of photorespiration, when measured by oxygen uptake, can be more accurate than that by CO2 measurement. However, recycling of oxygen occurs in larger amounts at lower oxygen and higher CO2 concentrations, as well as under conditions of high resistance to transpiration. PMID:16657795

  8. Atomic Oxygen Recombination at Surface Defects on Reconstructed (0001) ?-Quartz Exposed to Atomic and Molecular Oxygen

    SciTech Connect

    Meana-Paneda, Ruben; Paukku, Yuliya Y.; Duanmu, Kaining; Norman, Paul; Schwartzentruber, Thomas E.; Truhlar, Donald G.

    2015-04-30

    The surface chemistry of silica is strongly affected by the nature of chemically active sites (or defects) occurring on the surface. Here, we employ quantum mechanical electronic structure calculations to study an uncoordinated silicon defect, a non-bridging oxygen defect, and a peroxyl defect on the reconstructed (0001) surface of ?-quartz. We characterized the spin states and energies of the defects, and calculated the reaction profiles for atomic oxygen recombination at the defects. We elucidated the diradical character by analyzing the low-lying excited states using multireference wave function methods. We show that the diradical defects consist of weakly coupled doublet radicals, and the atomic oxygen recombination can take place through a barrierless process at defects. We have delineated the recombination mechanism and computed the formation energy of the peroxyl and non-bridging oxygen defects. We found that key recombination reaction paths are barrierless. In addition, we characterize the electronically excited states that may play a role in the chemical and physical processes that occur during recombination on these surface defect sites.

  9. Oxygen supplies in disaster management.

    PubMed

    Blakeman, Thomas C; Branson, Richard D

    2013-01-01

    Mass casualty events and disasters, both natural and human-generated, occur frequently around the world and can generate scores of injured or ill victims in need of resources. Of the available medical supplies, oxygen remains the critical consumable resource in disaster management. Strategic management of oxygen supplies in disaster scenarios remains a priority. Hospitals have large supplies of liquid oxygen and a supply of compressed gas oxygen cylinders that allow several days of reserve, but a large influx of patients from a disaster can strain these resources. Most backup liquid oxygen supplies are attached to the main liquid system and supply line. In the event of damage to the main system, the reserve supply is rendered useless. The Strategic National Stockpile supplies medications, medical supplies, and equipment to disaster areas, but it does not supply oxygen. Contracted vendors can deliver oxygen to alternate care facilities in disaster areas, in the form of concentrators, compressed gas cylinders, and liquid oxygen. Planning for oxygen needs following a disaster still presents a substantial challenge, but alternate care facilities have proven to be valuable in relieving pressure from the mass influx of patients into hospitals, especially for those on home oxygen who require only an electrical source to power their oxygen concentrator. PMID:23271827

  10. Increase in whole-body peripheral vascular resistance during three hours of air or oxygen prebreathing

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.; Conkin, J.; Dierlam, J. J.; Stanford, J., Jr.; Riddle, J. R.

    1984-01-01

    Male and female subjects prebreathed air or 100% oxygen through a mask for 3.0 hours while comfortably reclined. Blood pressures, heart rate, and cardiac output were collected before and after the prebreathe. Peripheral vascular resistance (PVR) was calculated from these parameters and increased by 29% during oxygen prebreathing and 15% during air prebreathing. The oxygen contributed substantially to the increase in PVR. Diastolic blood pressure increased by 18% during the oxygen prebreathe while stystolic blood pressure showed no change under either procedure. The increase in PVR during air prebreathing was attributed to procedural stress common to air and oxygen prebreathing.

  11. HENRY'S LAW CALCULATOR

    EPA Science Inventory

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  12. Fires and Burns Involving Home Medical Oxygen

    MedlinePLUS

    ... nfpa.org Fires and Burns Involving Home Medical Oxygen The air is normally 21% oxygen. Oxygen is not flammable, but fire needs it to burn. ¾ When more oxygen is present, any fire that starts will burn ...

  13. 46 CFR 197.452 - Oxygen cleaning.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Oxygen cleaning. 197.452 Section 197...of Diving Equipment § 197.452 Oxygen cleaning. The diving supervisor shall ensure that equipment used with oxygen or oxygen mixtures greater than...

  14. 46 CFR 197.452 - Oxygen cleaning.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Oxygen cleaning. 197.452 Section 197...of Diving Equipment § 197.452 Oxygen cleaning. The diving supervisor shall ensure that equipment used with oxygen or oxygen mixtures greater than...

  15. 46 CFR 197.452 - Oxygen cleaning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Oxygen cleaning. 197.452 Section 197...of Diving Equipment § 197.452 Oxygen cleaning. The diving supervisor shall ensure that equipment used with oxygen or oxygen mixtures greater than...

  16. 46 CFR 197.452 - Oxygen cleaning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Oxygen cleaning. 197.452 Section 197...of Diving Equipment § 197.452 Oxygen cleaning. The diving supervisor shall ensure that equipment used with oxygen or oxygen mixtures greater than...

  17. 46 CFR 197.452 - Oxygen cleaning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Oxygen cleaning. 197.452 Section 197...of Diving Equipment § 197.452 Oxygen cleaning. The diving supervisor shall ensure that equipment used with oxygen or oxygen mixtures greater than...

  18. Vibrationally Resolved Electron Attachment to Oxygen Clusters

    SciTech Connect

    Matejcik, S.; Kiendler, A.; Stampfli, P.; Stamatovic, A.; Maerk, T.D.

    1996-10-01

    Highly monochromiatized electrons (with 30meV FWHM) are used in a crossed beam experiment to investigate electron attachment to oxygen clusters (O{sub 2}){sub {ital n}} at electron energies from approximately 0 to 2eV.At energies close to zero, the attachment cross section for the reaction (O{sub 2}){sub {ital n}}+{ital e}{r_arrow}O{sub 2}{sup {minus}} rises strongly with decreasing electron energy compatible with {ital s}-wave electron capture to (O{sub 2}){sub {ital n}}. Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for by model calculations. {copyright} {ital 1996 The American Physical Society.}

  19. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

  20. Water Broadening of Oxygen

    NASA Astrophysics Data System (ADS)

    Drouin, Brian J.; Payne, Vivienne; Mlawer, Eli

    2013-06-01

    A need for precise air-mass retrievals utilizing the near-infrared O_2 A-band has motivated measurements of the water-broadening in oxygen. Experimental challenges have resulted in very little water broadened oxygen data, especially in the near-infrared where pressure broadened linewidth must compete with the relatively large thermal linewidth. Existing water broadening data^a for the O_2 A-band is of insufficient precision for application to the atmospheric data. Because of the nature of scattering processes, it is believed that broadening parameters for O_2 from one spectral region may be transferable to other spectral regions - so we investigated the O_2 60 GHz magnetic dipole Q branch which is also used prominently in remote sensing. Atmospheric retrievals of air-mass and temperature that use the 60 GHz magnetic dipole Q branch incorporate a water-broadening parameter that is scaled to self-broadened values, but there is only high temperature data that directly supports this hypothesis.^b We present precise O_2-H_2O broadening measurements for the magnetic dipole Q-branch and the pure-rotational band, measured at room temperature with a Zeeman-modulated absorption cell and a frequency-multiplier spectrometer. Here we will describe the apparatus and the measurement analysis. Inter-comparisons of these and other O_2 broadening data sets confirm the expectation of only minor band-to-band scaling of pressure broadening. The measurement provides a basis for fundamental parameterization of retrieval codes for the long-wavelength atmospheric measurements. Finally, we encourage the application of these measurements for retrievals of air-mass via remote sensing of the oxygen A-band. ^a E.M. Vess et al. J. Phys. Chem. A 116, 4069-4073 (2012). ^b G. Fanjoux et al. J. Chem. Phys. 101(2) 1061-1071 (1994).

  1. Spacecraft oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1973-01-01

    A system which uses an electrochemical carbon dioxide concentrator to remove carbon dioxide from the cabin atmosphere and a Sabatier reactor to reduce carbon dioxide with hydrogen to form methane and water is described. Oxygen is recovered from water by means of a static-feed water electrolysis system. The hydrogen thus generated is reused in the carbon dioxide concentrator. The methane is a system byproduct. The CO2 removal reactions and the implementation of the CO2 concentration concept are discussed, and test results are examined.

  2. Oxygen implanter for simox

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Benveniste, V.; Ryding, G.; Douglas-Hamilton, D. H.; Reed, M.; Gagne, G.; Armstrong, A.; Mack, M.

    1985-01-01

    Interest in silicon or) insulator (SOI) technology has led to the development of several alternatives to silicon on sapphire. One of the most promising techniques makes use of an ion implanter to form a buried oxide layer directly in the silicon substrate. To have useful single crystalline silicon on top of the oxide layer, it is necessary to do the implant at high wafer temperatures and rely on solid phase epitaxy to maintain surface structure. A high current, 160 keV, Nova ion implanter has been adapted to provide the ability to perform oxygen implants at elevated temperatures. The operator is free to choose any temperature in the range between 400°C and 600°C. The system then preheats the wafers to the selected temperature before the implant begins. A novel technique for providing both heating and cooling capability to the end station is employed. An infrared signal from the wafers is monitored by a room temperature lead salt detector. This signal is then used by a servo-loop to control the heating of the end station and to maintain the wafer temperature to within ± 20°C during the implant. High doses of the type necessary to form a silicon dioxide buried layer require long lived, high current oxygen sources. An oxygen source has been specially developed, which provides as much as 10 mA of ion current. At a 6 mA output, source lifetimes in excess of 40 hours have been achieved. The implanter uses a specifically designed high temperature disk, which holds ten wafers, each of four inch diameter. A variety of implant angles lying between 0° and 15° is available. The beam is scanned mechanically and an electron flood gun can be used to prevent wafer charging. Special thermal barriers have been employed to protect the apparatus from extreme temperatures and to make the heating sequence more efficient and more rapid. Every effort has been made to avoid contamination of the implant. The implant disk, for example, is overcoated with silicon monoxide. Silicon apertures have also been designed for the machine. The implanter has been used to do a high current oxygen implant with a dose of 1.25 × 10 18/cm 2, at a temperature of 570°C. Preliminary analysis of the results is very promising.

  3. Playful calculation : tangible coding for visual calculation

    E-print Network

    Ham, Derek (Derek Allen)

    2015-01-01

    Play and calculation are often considered to be at odds. Play embraces the wildness of youth, imagination, and a sense of freedom. Calculation, to most, represents rigor, mechanistic behavior, and following inflexible ...

  4. Copper Proteins and Oxygen

    PubMed Central

    Frieden, Earl; Osaki, Shigemasa; Kobayashi, Hiroshi

    1965-01-01

    A comprehensive survey of the interaction of the copper proteins and oxygen is presented including a correlation of structure, function, and other properties of the known copper oxidases and of hemocyanin. The origin of their blue color and the structure of copper complexes and copper proteins are related to the oxidation state of copper ion and relevant electronic transitions probably arising from the formation of charge transfer complexes. The oxygen reactions of hemocyanin, ceruloplasmin, and cytochrome oxidase show half-saturation values far below the other Cu enzymes. The formation of hydrogen peroxide as a reaction product is associated with the presence of one Cu atom per oxidase molecule or catalytic system. Water is the corresponding product of the other Cu oxidases with four or more Cu atoms per molecule, except for monoamine oxidase. Mechanisms for the oxidase action of the two and four electron transfer Cu oxidases and tyrosinase are proposed. These reactions account for the number, the oxidation-reduction potential, and the oxidation state of Cu in the resting enzyme, the cyclical change from Cu(II) to Cu(I), the diatomic nature of O2, the sequence of the oxidation and reduction reactions, and other salient features. The catalytic reactions involved in the oxidation of ascorbic acid by plant ascorbate oxidase, ceruloplasmin, and Cu(II) are compared. Finally the substrate specificity, inhibitory control, and the detailed mechanism of the oxidase activity of ceruloplasmin are summarized. PMID:4285728

  5. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  6. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  7. Hyperthermal atomic oxygen generator

    NASA Technical Reports Server (NTRS)

    Khandelwal, Govind S.; Wu, Dongchuan

    1990-01-01

    Characterization of the transport properties of oxygen through silver was continued. Specifically, experiments measuring the transport through Ag(111), Ag(110), Ag(100) single crystals and through Ag0.05 Zr alloy were completed. In addition, experiments using glow discharge excitation of oxygen to assist in the transport were completed. It was found that the permeability through the different orientations of single crystal Ag was the same, but significant differences existed in the diffusivity. The experimental ratio of diffusivities, however, was in reasonable agreement with theoretical estimates. Since the solubilities of orientations must be the same, this suggests some problems with the assumption K = DS. The glow discharge experiments show that there is a substantial increase in transport (factor of six) when the upstream pressure is dissociated to some fraction of atoms (which have a much higher sticking coefficient). These results indicate that there is a significant surface limitation because of dissociative adsorption of the molecules. Experiments with the Ag0.05 Zr alloy and its high-grain boundary and defect density show a permeability of greater than a factor of two over ordinary polycrystalline Ag, but it is unclear as to whether this is because of enhanced transport through these defects or whether the Zr and defects on the surface increased the sticking coefficient and therefore the transport.

  8. Guide for Oxygen Compatibility Assessments on Oxygen Components and Systems

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Shoffstall, Michael S.; Stoltzfus, Joel M.

    2007-01-01

    Understanding and preventing fire hazards is necessary when designing, maintaining, and operating oxygen systems. Ignition risks can be minimized by controlling heat sources and using materials that will not ignite or will not support burning in the end-use environment. Because certain materials are more susceptible to ignition in oxygen-enriched environments, a compatibility assessment should be performed before the component is introduced into an oxygen system. This document provides an overview of oxygen fire hazards and procedures that are consistent with the latest versions of American Society for Testing and Materials (ASTM) Standards G63 (1999) and G94 (2005) to address fire hazards associated with oxygen systems. This document supersedes the previous edition, NASA Technical Memorandum 104823, Guide for Oxygen Hazards Analyses on Components and Systems (1996). The step-by-step oxygen compatibility assessment method described herein (see Section 4) enables oxygen-system designers, system engineers, and facility managers to determine areas of concern with respect to oxygen compatibility and, ultimately, prevent damage to a system or injury to personnel.

  9. High Selectivity Oxygen Delignification

    SciTech Connect

    Arthur J. Ragauskas Lucian A. Lucia Hasan Jameel

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

  10. Functional Oxygen Sensitivity of Astrocytes

    PubMed Central

    Angelova, Plamena R.; Kasymov, Vitaliy; Christie, Isabel; Sheikhbahaei, Shahriar; Turovsky, Egor; Marina, Nephtali; Korsak, Alla; Zwicker, Jennifer; Teschemacher, Anja G.; Ackland, Gareth L.; Funk, Gregory D.; Kasparov, Sergey; Abramov, Andrey Y.

    2015-01-01

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2. Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca2+]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca2+ from the intracellular stores. Hypoxia-induced [Ca2+]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. SIGNIFICANCE STATEMENT Most, if not all, animal cells possess mechanisms that allow them to detect decreases in oxygen availability leading to slow-timescale, adaptive changes in gene expression and cell physiology. To date, only two types of mammalian cells have been demonstrated to be specialized for rapid functional oxygen sensing: glomus cells of the carotid body (peripheral respiratory chemoreceptors) that stimulate breathing when oxygenation of the arterial blood decreases; and pulmonary arterial smooth muscle cells responsible for hypoxic pulmonary vasoconstriction to limit perfusion of poorly ventilated regions of the lungs. Results of the present study suggest that there is another specialized oxygen-sensitive cell type in the body, the astrocyte, that is tuned for rapid detection of physiological changes in brain oxygenation. PMID:26203141

  11. Functional Oxygen Sensitivity of Astrocytes.

    PubMed

    Angelova, Plamena R; Kasymov, Vitaliy; Christie, Isabel; Sheikhbahaei, Shahriar; Turovsky, Egor; Marina, Nephtali; Korsak, Alla; Zwicker, Jennifer; Teschemacher, Anja G; Ackland, Gareth L; Funk, Gregory D; Kasparov, Sergey; Abramov, Andrey Y; Gourine, Alexander V

    2015-07-22

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to detect decreases in oxygen availability leading to slow-timescale, adaptive changes in gene expression and cell physiology. To date, only two types of mammalian cells have been demonstrated to be specialized for rapid functional oxygen sensing: glomus cells of the carotid body (peripheral respiratory chemoreceptors) that stimulate breathing when oxygenation of the arterial blood decreases; and pulmonary arterial smooth muscle cells responsible for hypoxic pulmonary vasoconstriction to limit perfusion of poorly ventilated regions of the lungs. Results of the present study suggest that there is another specialized oxygen-sensitive cell type in the body, the astrocyte, that is tuned for rapid detection of physiological changes in brain oxygenation. PMID:26203141

  12. Microdistribution of oxygen in silicon

    NASA Technical Reports Server (NTRS)

    Murgai, A.; Chi, J. Y.; Gatos, H. C.

    1980-01-01

    The microdistribution of oxygen in Czochralskii-grown, p-type silicon crystals was determined by using the SEM in the EBIC mode in conjunction with spreading resistance measurements. When the conductivity remained p-type, bands of contrast were observed in the EBIC image which corresponded to maxima in resistivity. When at the oxygen concentration maxima the oxygen donor concentration exceeded the p-type dopant concentration, an inversion of the conductivity occurred. It resulted in the formation of p-n junctions in a striated configuration and the local inversion of the EBIC image contrast. By heat-treating silicon at 1000 C prior to the activation of oxygen donors, some silicon-oxygen micro-precipitates were observed in the EBIC image within the striated oxygen concentration maxima.

  13. Oxygen abundance in the Sloan Digital Sky Survey

    E-print Network

    F. Shi; X. Kong; F. Z. Cheng

    2006-03-10

    We present two samples of $\\hii$ galaxies from the Sloan Digital Sky Survey (SDSS) spectroscopic observations data release 3. The electron temperatures($T_e$) of 225 galaxies are calculated with the photoionized $\\hii$ model and $T_e$ of 3997 galaxies are calculated with an empirical method. The oxygen abundances from the $T_e$ methods of the two samples are determined reliably. The oxygen abundances from a strong line metallicity indicator, such as $R_{23}$, $P$, $N2$, and $O3N2$, are also calculated. We compared oxygen abundances of $\\hii$ galaxies obtained with the $T_e$ method, $R_{23}$ method, $P$ method, $N2$ method, and $O3N2$method. The oxygen abundances derived with the $T_e$ method are systematically lower by $\\sim$0.2 dex than those derived with the $R_{23}$ method, consistent with previous studies based on $\\hii$ region samples. No clear offset for oxygen abundance was found between $T_e$ metallicity and $P$, $N2$ and $O3N2$ metallicity. When we studied the relation between N/O and O/H, we found that in the metallicity regime of $\\zoh > 7.95$, the large scatter of the relation can be explained by the contribution of small mass stars to the production of nitrogen. In the high metallicity regime, $\\zoh > 8.2$, nitrogen is primarily a secondary element produced by stars of all masses.

  14. Oxygen-reducing catalyst layer

    DOEpatents

    O'Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O'Neill, David G. (Lake Elmo, MN)

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  15. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

  17. Model calculations of nuclear data for biologically-important elements

    SciTech Connect

    Chadwick, M.B.; Blann, M.; Reffo, G.; Young, P.G.

    1994-05-01

    We describe calculations of neutron-induced reactions on carbon and oxygen for incident energies up to 70 MeV, the relevant clinical energy in radiation neutron therapy. Our calculations using the FKK-GNASH, GNASH, and ALICE codes are compared with experimental measurements, and their usefulness for modeling reactions on biologically-important elements is assessed.

  18. Issues of oxygen excess in the crust and upper mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Balashov, Y. A.; Martynov, E. V.

    2012-04-01

    Application of a new geochemical buffer, 'CeB' - Ce+4/Ce+3 for zircons, is promising for oxygen fugacity (FO2) estimation in crust and mantle. Absence of Ce+4 and Eu+2-enriched zircons are typical of the lower lithosphere. Reducing setting dominate in mantle rocks. Subduction adds oxidized substance for lithosphere into deeper mantle (Balashov ea, 2011-2012). The zircons in upper lithosphere are oxidized. Peridotites minerals show increased H2O and OH- preserves to 150-160 km at ?FMQ -1.4 - -0.1 (Babushkina et al, 2009) comparable with CeB 2.2 - 3.9. Increasing oceanic mass in the geological time controls water efflux and oxidation of upper the lithosphere. Oxygen source in crust and upper mantle is the most important, yet outstanding issues in geochemistry of Earth's upper shells. Oxygen excess in atmosphere correlating with long-term emergence and evolution of Earth's biosphere is an approach reflected in the schemes of cycle- and phase-wise biosphere evolution (Dobretsov et al, 2006; Sorokhtin et al, 2010). The both schemes demonstrate ideas for oxygen evolution of atmosphere, but are not confirmed by geochronology. Applying these outlines an actual picture FO2 evolution. Precambrian granitoids, detrital zircons and upper mantle lithosphere have similar CeB. The initial data include Australian Hadean and Archaean detrital zircons (Peck et al, 2001), CeB: 27.1 -1.96, and Eu+2/Eu+3: 0.015-0.12 (Balashov, Skublov, 2011). Greenland tonalities (3813 Ma) and granodiorite (3638 Ma) (Whitehouse, Kamber, 2002) CeB: 34 - 0.5. In oldest crust rocks dominated zircons with generation under high and heterogeneous FO2. Zircons in younger mantle-crustal rocks of S. American subduction zones (Ballard et al, 2002; Hoskin et al, 2000, etc.) show the same. Upper mantle lithosphere and crust represent continuously interacted with oxygen. If Progressively oxygen increase from Hadean to modern state (Dobretsov ea, 2006; Sorokhtin ea, 2010), contradicts with actual Archaean data. We believe in correlation of biosphere evolution with cyclic mantle and crustal magma activation (Balashov, Glaznev, 2006) reflecting variation of atmospheric volatiles. This corresponds to abrupt sulphur excess due to volcanogenic activation at the peak of the evolution fatally affected the biosphere state. However, volcanogenic epochs are relatively short-term not to contradict the synthesis of oxygen by the biosphere between them. This should ultimately result in significant oxygen heterogeneity in various rock types. Existence of a wide range of Ce+4/Ce+3 in all the surface systems of the Earth, and upper sequence of the mantle lithosphere is related to constant existence of exactly this heterogeneity. Alongside, various types of geological processes in the crust and mantle should have influence, or even define variation stages in the evolution of the biosphere itself. And, this has already been noted. Another constant oxygen source along the whole interval of the Earth's history should be considered solar wind. The continuous flow of the whole range of elements, which portion in the discharge of H, C, O, and other elements to the atmosphere in a proportion close to the composition of 1 (Anders, Grevesse, 1989), may be regarded as a quite competitive option with other sources of oxygen at the Earth's surface.

  19. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-04-01

    This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  20. Oxygen diffusion barrier coating

    NASA Technical Reports Server (NTRS)

    Unnam, Jalaiah (inventor); Clark, Ronald K. (inventor)

    1987-01-01

    A method for coating a titanium panel or foil with aluminum and amorphous silicon to provide an oxygen barrier abrogating oxidation of the substrate metal is developed. The process is accomplished with known inexpensive procedures common in materials research laboratories, i.e., electron beam deposition and sputtering. The procedures are conductive to treating foil gage titanium and result in submicron layers which virtually add no weight to the titanium. There are no costly heating steps. The coatings blend with the substrate titanium until separate mechanical properties are subsumed by those of the substrate without cracking or spallation. This method appreciably increases the ability of titanium to mechanically perform in high thermal environments such as those witnessed on structures of space vehicles during re-entry

  1. Tissue oxygen measurement system

    NASA Technical Reports Server (NTRS)

    Soller, Babs R. (Inventor)

    2004-01-01

    A device and method in accordance with the invention for determining the oxygen partial pressure (PO.sub.2) of a tissue by irradiating the tissue with optical radiation such that the light is emitted from the tissue, and by collecting the reflected or transmitted light from the tissue to form an optical spectrum. A spectral processor determines the PO.sub.2 level in tissue by processing this spectrum with a previously-constructed spectral calibration model. The tissue may, for example, be disposed underneath a covering tissue, such as skin, of a patient, and the tissue illuminated and light collected through the skin. Alternatively, direct tissue illumination and collection may be effected with a hand-held or endoscopic probe. A preferred system also determines pH from the same spectrum, and the processor may determine critical conditions and issue warnings based on parameter values.

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-12-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  3. Guide for Oxygen Compatibility Assessments on Oxygen Components and Systems

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Shoffstall, Michael S.; Stoltzfus, Joel M.

    2007-01-01

    A viewgraph presentation evaluating the compatibility of oxygen components and systems is shown. The topics include: 1) Application; 2) Gaining Wide Subscription; 3) Approach; 4) Establish Worst-Case Operating Conditions; 5) Assess Materials Flammability; 6) Evaluate Ignition Mechanisms; 7) Evaluate Kindling Chain; 8) Determine Reaction Affect; 9) Document Results; 10) Example of Documentation; and 11) Oxygen Compatibility Assessment Team.

  4. The ancient oxygen exosphere of Mars - Implications for atmosphere evolution

    NASA Technical Reports Server (NTRS)

    Zhang, M. H. G.; Luhmann, J. G.; Bougher, S. W.; Nagy, A. F.

    1993-01-01

    The paper considers absorption of oxygen (atoms and ions) by the surface as a mechanism for the early Martian atmosphere escape, due to the effect of high EUV flux of the ancient sun. Hot oxygen exosphere densities in ancient atmosphere and ionosphere are calculated for different EUV fluxes and the escape fluxes associated with these exposures. Using these densities, the ion production rate above the ionopause is calculated for different epochs including photoionization, charge exchange, and solar wind electron impact. It is found that, when the inferred high solar EUV fluxes of the past are taken into account, oxygen equivalent to that in several tens of meters of water, planet-wide, should have escaped Martian atmosphere to space over the last 3 Gyr.

  5. The chemical effects of auroral oxygen precipitation at Jupiter

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Eisenhower, G. M.

    1992-01-01

    A numerical model of the auroral ionosphere and thermosphere of Jupiter, which includes odd oxygen species, is presented. Density profiles of neutral species O, OH, and H2O and the ion species H2(+), H3(+), H(+), H2O(+), H3O(+), O(+), and OH(+) are calculated. The total neutral odd oxygen density is found to be about 10 exp 5/cu cm near the auroral ionosphere peak. The major ionospheric ion, H(+) reacts rapidly with both O and H2O and the presence of these species in the model calculations significantly reduces the H(+) density and thus the electron density. The chemical lifetime against reaction of H(+) with odd oxygen is about 1000 s near the peak, whereas the radiative recombination lifetime is roughly 10,000 s.

  6. Processes controlling mid-water column oxygen minima over the Texas-Louisiana shelf

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Hetland, Robert D.; DiMarco, Steven F.; Fennel, Katja

    2015-04-01

    We investigate distributions of dissolved oxygen over the Texas-Louisiana shelf using spatially highly resolved observations in combination with a regional circulation model with simple oxygen dynamics. The observations were collected using a towed, undulating CTD during the Mechanisms Controlling Hypoxia (MCH) program. Mid-water oxygen minimum layers (dissolved oxygen lower than 3.2 mL L-1) were detected in many transects. These oxygen minimum layers are connected with the bottom boundary layer and follow the pycnocline seaward as a tongue of low oxygen into the mid-water column. T-S diagrams highlighting the low oxygen minima in both observations and simulations imply direct connections between low-oxygen bottom water and the oxygen minimum layer. The dynamics of these oxygen minimum layers in the mid-water column are examined using a three-dimensional hydrodynamic model, based on the Regional Ocean Modeling System (ROMS). Convergence within the bottom boundary layer relative to density surfaces is calculated, results show that there is a convergence in the bottom boundary layer at the location where the pycnocline intersects the bottom. Buoyancy advection forced by bottom Ekman transport creates this convergent flow, and the corresponding low-oxygen intrusion. Similar intrusions of near-bottom water into the pycnocline are observed in other regions. The presence of hypoxia within the bottom boundary layer in the northern Gulf of Mexico creates a unique situation in which these intrusions are also associated with low dissolved oxygen.

  7. Initial Subsurface Incorporation of Oxygen into Ru(0001): A Density Functional Theory Study.

    PubMed

    Cai, Jian-Qiu; Luo, Hai-Jun; Tao, Xiang-Ming; Tan, Ming-Qiu

    2015-12-01

    The adsorption and diffusion of oxygen on Ru(0001) surfaces as a function of coverage are systematically investigated by using density functional theory. A high incorporation barrier of low-coverage adsorbed oxygen into the subsurface is discovered. Calculations show that the adsorption of additional on-surface oxygen can lower the penetration barrier dramatically. The minimum penetration barrier obtained is 1.81?eV for a path starting with oxygen in mixed on-surface hcp and fcc sites at an oxygen coverage of 0.75?ML, which should be regarded as close to 1?ML. Energy diagrams show that oxygen-diffusion barriers on the surface and in the subsurface are much lower than the penetration barrier. Oxygen diffusion on the surface is an indispensable step for its initial incorporation into the subsurface. PMID:26456012

  8. Measurements of eddy correlation oxygen fluxes in shallow freshwaters: Towards routine applications and analysis

    NASA Astrophysics Data System (ADS)

    McGinnis, Daniel F.; Berg, Peter; Brand, Andreas; Lorrai, Claudia; Edmonds, Theresa J.; Wüest, Alfred

    2008-02-01

    Benthic fluxes of dissolved oxygen are measured in a shallow reservoir using the eddy correlation technique. Flux variations depict the diurnal production-consumption cycle, with daytime oxygen release following the solar radiation trend. The average nighttime uptake of -40 +/- 11 mmol m-2 d-1 is in excellent agreement with the rate of -35 +/- 3 mmol m-2 d-1 derived from sediment oxygen microprofiles. Separating large-scale advective and turbulent fluctuations is a crucial and uncertain component of the flux computation and the largest source of error. To compensate for the 2.25 s oxygen sensor response time, the oxygen flux calculations are corrected by only ~5% using a first-order spectral enhancement. This work demonstrates that only a slightly faster oxygen sensor would be needed to resolve the entire flux spectrum. The 18 hours of data are the first measurements obtained in a freshwater reservoir that capture the diurnal oxygen production-consumption cycle.

  9. Solar-wind interactions with the moon - Role of oxygen ions

    NASA Technical Reports Server (NTRS)

    Mukherjee, N. R.

    1979-01-01

    The role of oxygen ions in the solar-wind interactions with the lunar surface due to tenuous atmosphere and magnetic field is examined. The interaction results in an absorption of the solar-wind corpuscles producing no upstream bowshock but a cavity downstream, and the oxygen ionic species undergo a set of reactions with the lunar minerals and the solar-wind derived trapped gases. The oxygen concentrations in the lunar surface material and the solar-wind species flux are discussed, noting that for the contributions of oxygen from the lunar surface grains to the atmosphere, the diffusion coefficients of oxygen atom and molecules should be known. The coefficients are calculated by using the apparent lifetimes of oxygen in the lunar material, and the atmospheric concentration of oxygen atoms and molecules near the lunar surface were compared with the Apollo 17 lunar orbital data.

  10. Singlet oxygen dosimetry modeling for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Liang, Xing; Wang, Ken Kang-hsin; Zhu, Timothy C.

    2012-02-01

    Photodynamic therapy (PDT) is an important treatment modality for cancer and other localized diseases. In addition to PDT dose, singlet oxygen (1O2) concentration is used as an explicit PDT dosimetry quantity, because 1O2 is the major cytotoxic agent in photodynamic therapy, and the reaction between 1O2 and tumor tissues/cells determines the treatment efficacy. 1O2 concentration can be obtained by the PDT model, which includes diffusion equation for the light transport in tissue and macroscopic kinetic equations for the generation of the singlet oxygen. This model was implemented using finite-element method (FEM) by COMSOL. In the kinetic equations, 5 photo-physiological parameters were determined explicitly to predict the generation of 1O2. The singlet oxygen concentration profile was calculated iteratively by comparing the model with the measurements based on mice experiments, to obtain the apparent reacted 1O2concentration as an explicit PDT dosimetry quantity. Two photosensitizers including Photofrin and BPD Verteporfin, were tested using this model to determine their photo-physiological parameters and the reacted 1O2 concentrations.

  11. Angular distribution of photoelectrons from atomic oxygen, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Manson, S. T.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distribution of photoelectrons from atomic oxygen is investigated using Hartree-Fock (HF) wave functions. The correct formulation is used to compare HS and HF results. Agreement between these results is good and the HS calculations have been extended to atomic nitrogen and carbon as well.

  12. Novel Membranes and Processes for Oxygen Enrichment

    SciTech Connect

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a Bloom baffle burner at GTI. The results are positive and confirm that oxygen-enriched combustion can be carried out without producing higher levels of NOx than normal air firing, if lancing of combustion air is used and the excess air levels are controlled. A simple economic study shows that the membrane processes can produce O{sub 2} at less than $40/ton EPO{sub 2} and an energy cost of 1.1-1.5 MMBtu/ton EPO{sub 2}, which are very favorable compared with conventional technologies such as cryogenics and vacuum pressure swing adsorption processes. The benefits of integrated membrane processes/combustion process trains have been evaluated, and show good savings in process costs and energy consumption, as well as reduced CO{sub 2} emissions. For example, if air containing 30% oxygen is used in natural gas furnaces, the net natural gas savings are an estimated 18% at a burner temperature of 2,500 F, and 32% at a burner temperature of 3,000 F. With a 20% market penetration of membrane-based oxygen-enriched combustion in all combustion processes by 2020, the energy savings would be 414-736 TBtu/y in the U.S. The comparable net cost savings are estimated at $1.2-2.1 billion per year by 2020, calculated as the value of fuel savings subtracted from the cost of oxygen production. The fuel savings of 18%-32% by the membrane/oxygen-enriched combustion corresponds to an 18%-32% reduction in CO{sub 2} emissions, or 23-40 MM ton/y less CO{sub 2} from natural gas-fired furnaces by 2020. In summary, results from this project (Concept Definition phase) are highly promising and clearly demonstrate that membrane processes can produce oxygen-enriched air in a low cost manner that will lower operating costs and energy consumption in industrial combustion processes. Future work will focus on proof-of-concept bench-scale demonstration in the laboratory.

  13. ANALYTICAL METHODS FOR FUEL OXYGENATES

    EPA Science Inventory

    MTBE (and potentially any other oxygenate) may be present at any petroleum UST site, whether the release is new or old, virtually anywhere in the United States. Consequently, it is prudent to analyze samples for the entire suite of oxygenates as identified in this protocol (i.e....

  14. Hydrogen passivation and activation of oxygen complexes in silicon S. N. Rashkeev,a)

    E-print Network

    Pantelides, Sokrates T.

    Hydrogen passivation and activation of oxygen complexes in silicon S. N. Rashkeev,a) M. Di Ventra-principles calculations in terms of which we describe the role of hydrogen in passivating or activating oxygen complexes activity of the cluster. Furthermore, the addition of a hydrogen atom in the core structure of thermal

  15. Monte Carlo simulation of electron detachment properties for {{\\text{O}_{2}^{{}}}^{-}} ions in oxygen and oxygen:nitrogen mixtures

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. A.; Aleksandrov, N. L.

    2015-06-01

    Electron detachment properties of {{\\text{O}2{}}-} ions in pure oxygen and oxygen:nitrogen mixtures have been studied by a Monte Carlo technique for the reduced electric fields up to 350?Td (1?Td = 10-17?V·cm2). Swarm parameters were calculated for unexcited and vibrationally excited \\text{O}{{{}2}-} ions taking into account vibrational transfer and relaxation, charge transfer and electron detachment. The cross sections for vibrational transfer and relaxation in collisions between {{\\text{O}2{}}-} ions and O2 molecules were calculated on the basis of the statistical approach that had been successfully used in our previous work to simulate the effect of vibrational excitation and the effect of electric field on electron detachment. Good agreement between the calculated detachment rate and available measurements in oxygen were obtained over a wide range of reduced electric fields without using adjusted parameters. The method was used to calculate detachment rates in air and in some other oxygen:nitrogen mixtures and to study the effect of gas temperature on electron detachment.

  16. Oxygen detection using evanescent fields

    DOEpatents

    Duan, Yixiang (Los Alamos, NM); Cao, Weenqing (Los Alamos, NM)

    2007-08-28

    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

  17. Method for Trace Oxygen Detection

    NASA Technical Reports Server (NTRS)

    Man, Kim Fung (Inventor); Boumsellek, Said (Inventor); Chutjian, Ara (Inventor)

    1997-01-01

    Trace levels of molecular oxygen are measured by introducing a gas containing the molecular oxygen into a target zone, and impacting the molecular oxygen in the target zone with electrons at the O(-) resonant energy level for dissociative electron attachment to produce O(-) ions. Preferably, the electrons have an energy of about 4 to about 10 eV. The amount of O(-) ions produced is measured, and is correlated with the molecular oxygen content in the target zone. The technique is effective for measuring levels of oxygen below 50 ppb. and even less than 1 ppb. The amount of O(-) can be measured in a quadrupole mass analyzer. Best results are obtained when the electrons have an energy of about 6 to about 8 eV. and preferably about 6.8 eV. The method can be used for other species by selecting the appropriate electron energy level.

  18. Oxygen Generation Assembly Technology Development

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert; Cloud, Dale

    1999-01-01

    Hamilton Standard Space Systems International (HSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop an Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The International Space Station Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range above ambient to support future utilization. Initially, the hydrogen will be vented overboard to space vacuum. This paper describes the OGA integration into the ISS Node 3. It details the development history supporting the design and describes the OGA System characteristics and its physical layout.

  19. Research on rechargeable oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Giner, J.; Malachesky, P. A.; Holleck, G.

    1971-01-01

    Studies were carried out on a number of factors which may influence the behavior of the platinum electrocatalyst of oxygen electrodes for use in rechargeable metal-oxygen batteries or hydrogen-oxygen fuel cells. The effects of pretreatments for various potentials and added ionic species, which could be present in such systems, were studied with reguard to: (1) the state of surface oxidation, (2) platinum dissolution, (3) the kinetics of oxygen evolution and reduction (including the role of hydrogen peroxide), and (4) changes in porous electrode structure. These studies were carried out on smooth platinum, platinized platinum, and Teflon-bonded platinum black electrodes in carefully purified electrolyte solutions. The main factors which appear to affect rechargeable oxygen electrode performance and life are: (1) the buildup of a refractory anodic layer on extended cycling, and (2) the dissolution of platinum.

  20. [Relations of oligotrophic bacteria to oxygen].

    PubMed

    Slabova, O I; Nikitin, D I

    2005-01-01

    Polluted air and the derived photochemical smog are the sources of free radicals in the atmosphere. Organic peroxides present in the smog mediate formation of peroxide radical. Oxygen species are formed by purely physical mechanisms, for instance, energy consumption converts molecular oxygen to an excited singlet state. Six active oxygen species are known: ozone, atomic oxygen, perhydroxyl, superoxide, and singlet oxygen. Singlet oxygen is the most harmful oxygen product for living cells, while hydrogen peroxide is the least harmful. Molecular oxygen is hardly toxic for prokaryotes due to an efficient protection of microbial cells by specific enzymes. This work experimentally confirms the harmlessness of molecular oxygen. PMID:16240761

  1. Calculate and Plot Complex Potential

    Energy Science and Technology Software Center (ESTSC)

    1998-05-05

    SOLUPLOT is a program designed to calculate and plot complex potential, pH diagrams and log oxygen activity, pH diagrams for aqueous chemical syatems, considering speciation of ligands, from free energy and thermodynamic activity data. These diagrams, commonly referred to as Eh-pH and ao2-pH diagrams, respectively, define areas of predominance in Eh-pH diagrams or ao2-pH space for chemical species of a chemical system at equilibrium. Over an area of predominance, one predominant species is at greatermore »activity than the other species of the system considered. The diagram axes, pH (a measure of hydrogen ion activity) and either Eh or log ao2 (measures of a tendency toward either oxidation or reduction) , are paremeters commonly applied in describing the chemistry of aqueous systems.« less

  2. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  3. Distillation Calculations with a Programmable Calculator.

    ERIC Educational Resources Information Center

    Walker, Charles A.; Halpern, Bret L.

    1983-01-01

    Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…

  4. Waiting ages for atmospheric oxygen: A titration hourglass and the oxidation of the solid Earth. (Invited)

    NASA Astrophysics Data System (ADS)

    Catling, D. C.; Claire, M.; Zahnle, K. J.

    2013-12-01

    Atmospheric O2 increased from less than 1 ppm to 0.2-2% at 2.45-2.22 Ga in the Great Oxidation Event (GOE). A minority opinion is that the GOE happened close to the time when oxygenic photosynthesis originated but evidence from the concentration of redox-sensitive elements in shales and their isotopes, as well as the setting and morphology of stromatolites supports the consensus view that oxygenic photosynthesis had originated by 2.8-2.7 Ga. Models show that O2 can be consumed rapidly by reductants in the Archean so that the air can remain anoxic even after photosynthesis began pumping out O2. Why did the world ultimately shift away from this balance? What conditions were needed to oxygenate the atmosphere in addition to oxygenic photosynthesis? A general principle is that a shift to an oxic environment from a reducing one requires net export of reductant. In planetary science, for example, the oxidation of the surfaces and atmospheres of other planets or satellites is universally attributed to the escape of hydrogen to space. Hydrogen escape explains the redness of Mars, several characteristics of the atmosphere of Venus, and the presence of tenuous O2 atmospheres on Ganymede, Europa, Rhea and Dione. For the Earth's rise of oxygen, many ideas focus on a decline in mantle or seafloor reductant fluxes (driven by internal geologic evolution) to the point where these fluxes were surpassed by biogenic oxygen fluxes. But for such a shift (without a role for hydrogen escape), the surface still has to export net reductant to the mantle. Such net export depends on the ratio of subducted ferric iron versus reduced carbon during the Archean, which remains poorly constrained. Over a decade ago, we proposed that rapid escape of hydrogen to space from the pre-GOE atmosphere would have gradually oxidized the Earth's surface and crust, accompanied by falling levels of atmospheric CH4 [1]. The idea is that Earth underwent a redox titration. A point would be reached where O2 became more stable than competing reducing gases, such as CH4 and H2. In this scheme, the delay in the rise of oxygen by several hundred million years is the time it takes to oxidize the outer portions of the solid Earth to the point when the atmosphere flipped redox state. We also speculate that hydrogen escape may be associated with continental growth. As the Archean continents grew, they would have accumulated excess oxygen in their minerals at the tempo of hydrogen escape. The ferric oxide concentration in average continents is an order of magnitude greater than in the mantle. Continental growth supplied reducing power to the surface environment that became intertwined with the carbon cycle and photosynthesis. Thus, 'granitoid' material may be a consequence of increased oxygen fugacity in weathered subducted materials (cf. ref. 2). If so, continents are, in part, a response to surface oxidation rather than vice versa. Moreover, continental growth would necessarily slow once hydrogen escape rates were throttled by the GOE. [1] Catling et al. (2001) Science 293, 839 [2] Jagoutz (2013) Terra Nova 25, 95

  5. Biogeochemical Modeling of the Second Rise of Atmospheric Oxygen

    NASA Astrophysics Data System (ADS)

    Smith, M.; Catling, D. C.; Claire, M.

    2014-12-01

    The second rise of atmospheric oxygen (~600 Ma) marked an increase of atmospheric pO2 from a poorly constrained value of 0.1% < pO2 < 10% of present atmospheric level (PAL) in the early and mid Proterozoic to >10%PAL1. The event is important because it ushered in the modern era of animal life. To understand the evolution of Earth's habitability, it is therefore key to understand the cause of this 2nd rise. Here, we quantitatively examine possible causes for the 2nd rise of oxygen. We use a biogeochemical box model2 originally developed to calculate the oxygen evolution before and after the 1st rise of oxygen (~2.4 Ga). The Claire et al. (2006) model calculates the evolution of atmospheric oxygen and methane given production and loss fluxes associated with the oxygen, carbon, and iron cycles. Because the model was unable to drive pO2 to end-Proterozoic levels, the authors suggested that another buffer, such as sulfur, is needed to explain the 2nd rise of oxygen. The sulfur and oxygen cycles are tied through various biogeochemical interactions; therefore, once sulfur (as sulfate) began to accumulate in Proterozoic oceans, it likely began to heavily influence the oxygen cycle. We have added a sulfur biogeochemical cycle to this model, enabling exploration of mechanisms that buffer pO2 at intermediate levels in the Proterozoic and fail to do so in the Phanerozoic. Preliminary results show evolution of oxygen and methane that are consistent with geologic proxies. However, the model-generated 2nd rise of oxygen is dependent upon sulfur fluxes that have uncertain magnitudes, so we will present the sensitivity of our results to model assumptions while constraining scenarios for the 2nd rise of atmospheric O2. In the future, we will also integrate isotopic fractionation effects, which will allow comparison with isotopic data from sedimentary sulfides, carbonates, and organic carbon. 1Canfield, C., 2014, Treatise on Geochemistry, 197 2Claire, M.W., et al., 2006, Geobiology, 4, 239

  6. Instabilities in a capacitively coupled oxygen plasma

    SciTech Connect

    Küllig, C. Wegner, Th. Meichsner, J.

    2015-04-15

    Periodic fluctuations in the frequency range from 0.3 to 3?kHz were experimentally investigated in capacitively coupled radio frequency (13.56 MHz) oxygen plasma. The Gaussian beam microwave interferometry directly provides the line integrated electron density fluctuations. A system of two Langmuir probes measured the floating potential spatially (axial, radial) and temporally resolved. Hence, the floating potential fluctuation development is mapped within the discharge volume and provides a kind of discharge breathing and no wave propagation. Finally, it was measured the optical emission pattern of atomic oxygen during the fluctuation as well as the RF phase resolved optical emission intensity at selected phase position of the fluctuation by an intensified charge-coupled device camera. The deduced excitation rate pattern reveals the RF sheath dynamics and electron heating mechanisms, which is changing between low and high electronegativity during a fluctuation cycle. A perturbation calculation was taken into account using a global model with 15 elementary collision processes in the balance equations for the charged plasma species (O{sub 2}{sup +},?e,?O{sup ?},?O{sub 2}{sup ?}) and a harmonic perturbation. The calculated frequencies agree with the experimentally observed frequencies. Whereby, the electron attachment/detachment processes are important for the generation of this instability.

  7. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  9. Feasibility Analysis of Liquefying Oxygen Generated from Water Electrolysis Units on Lunar Surface

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.

    2009-01-01

    Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared.

  10. Spatiotemporal Oxygen Sensing Using Dual Emissive Boron Dye–Polylactide Nanofibers

    PubMed Central

    2015-01-01

    Oxygenation in tissue scaffolds continues to be a limiting factor in regenerative medicine despite efforts to induce neovascularization or to use oxygen-generating materials. Unfortunately, many established methods to measure oxygen concentration, such as using electrodes, require mechanical disturbance of the tissue structure. To address the need for scaffold-based oxygen concentration monitoring, a single-component, self-referenced oxygen sensor was made into nanofibers. Electrospinning process parameters were tuned to produce a biomaterial scaffold with specific morphological features. The ratio of an oxygen sensitive phosphorescence signal to an oxygen insensitive fluorescence signal was calculated at each image pixel to determine an oxygenation value. A single component boron dye–polymer conjugate was chosen for additional investigation due to improved resistance to degradation in aqueous media compared to a boron dye polymer blend. Standardization curves show that in fully supplemented media, the fibers are responsive to dissolved oxygen concentrations less than 15 ppm. Spatial (millimeters) and temporal (minutes) ratiometric gradients were observed in vitro radiating outward from the center of a dense adherent cell grouping on scaffolds. Sensor activation in ischemia and cell transplant models in vivo show oxygenation decreases on the scale of minutes. The nanofiber construct offers a robust approach to biomaterial scaffold oxygen sensing. PMID:25426706

  11. A clinical evaluation of the Terumo Capiox SX18R hollow fiber oxygenator.

    PubMed

    Dekkers, P A; Lawson, D S; Smigla, G R; Shearer, I R

    1995-09-01

    The Terumo Capiox SX18R is a commercially available, low prime, reverse phase, hollow fiber membrane oxygenator. The oxygenator consists of a 1.8 m2 microporous polypropylene hollow fiber bundle, a 2200 cm2 tubular stainless steel heat exchanger, and an open hard shell venous reservoir with integral cardiotomy filter. The Terumo Capiox SX18R oxygenator was evaluated to determine its clinical oxygenating performance. Blood samples were drawn from 25 patients yielding 114 data points. The following parameters were recorded: blood flow, cardiac index, gas flow, gas to blood flow ratio, and oxygen fraction. Samples were assayed for hematocrit, hemoglobin, arterial and venous blood gas values, and venous oxygen saturation. The data and assay results were used to calculate arterial, venous, and membrane gas oxygen content, oxygen transfer, shunt fraction, and oxygen diffusion capacity. The Terumo Capiox SX18R oxygenator performed adequately with sufficient oxygen transfer reserve and carbon dioxide clearance under a variety of clinical conditions for the tested population. PMID:10155360

  12. Evidence for oxygen enrichment in Galactic planetary nebulae

    NASA Astrophysics Data System (ADS)

    Peimbert, Manuel; Delgado-Inglada, Gloria; Rodríguez, Mónica; Stasinska, Grazyna; Morisset, Christophe

    2015-08-01

    The oxygen abundance in planetary nebulae (PNe) is traditionally used as a proxy of the interstellar medium metallicity at the time the PN progenitor stars were born. However, the nucleosynthesis processes occurring in AGB stars can alter the initial abundance of oxygen in the outer layers of the star that are ejected as a PN. Since these changes are more efficient at low metallicities, it is generally assumed that the abundance of oxygen is not significantly altered in PNe located at environments where the metallicity is close to solar or higher, such as the solar neighborhood or the Galactic bulge.We present here our recent analysis of a group of 20 Galactic PNe belonging to the bulge, the halo and the solar neighborhood. These objects have high quality optical and infrared spectra that allow us to calculate reliable chemical abundances and to classify them as objects with either carbon-rich or oxygen-rich dust. We find that all but one of the PNe with carbon-rich dust show evidence of oxygen self enrichment even at near-solar metallicities. Our study indicates that oxygen is not always a reliable indicator of the original metallicity; other elements, such as chlorine and argon, should be used instead.

  13. 29 CFR 1910.104 - Oxygen.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Oxygen. 1910.104 Section 1910.104...Hazardous Materials § 1910.104 Oxygen. (a) Scope. This section applies to the installation of bulk oxygen systems on industrial and...

  14. 46 CFR 154.1360 - Oxygen analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Oxygen analyzer. 154.1360 Section 154...Equipment Instrumentation § 154.1360 Oxygen analyzer. The vessel must have a portable analyzer that measures oxygen levels in an inert...

  15. 78 FR 5707 - Lavatory Oxygen Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ...121-362] RIN 2120-AK14 Lavatory Oxygen Systems AGENCY: Federal Aviation Administration...related to the provisioning of supplemental oxygen inside lavatories. This action is necessitated...mandates actions that restore supplemental oxygen to lavatories. DATES: This final...

  16. 46 CFR 154.1360 - Oxygen analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Oxygen analyzer. 154.1360 Section 154...Equipment Instrumentation § 154.1360 Oxygen analyzer. The vessel must have a portable analyzer that measures oxygen levels in an inert...

  17. 29 CFR 1910.104 - Oxygen.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Oxygen. 1910.104 Section 1910.104...Hazardous Materials § 1910.104 Oxygen. (a) Scope. This section applies to the installation of bulk oxygen systems on industrial and...

  18. 29 CFR 1910.104 - Oxygen.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Oxygen. 1910.104 Section 1910.104...Hazardous Materials § 1910.104 Oxygen. (a) Scope. This section applies to the installation of bulk oxygen systems on industrial and...

  19. 46 CFR 154.1360 - Oxygen analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Oxygen analyzer. 154.1360 Section 154...Equipment Instrumentation § 154.1360 Oxygen analyzer. The vessel must have a portable analyzer that measures oxygen levels in an inert...

  20. 29 CFR 1910.104 - Oxygen.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Oxygen. 1910.104 Section 1910.104...Hazardous Materials § 1910.104 Oxygen. (a) Scope. This section applies to the installation of bulk oxygen systems on industrial and...

  1. 29 CFR 1910.104 - Oxygen.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Oxygen. 1910.104 Section 1910.104...Hazardous Materials § 1910.104 Oxygen. (a) Scope. This section applies to the installation of bulk oxygen systems on industrial and...

  2. 46 CFR 154.1360 - Oxygen analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Oxygen analyzer. 154.1360 Section 154...Equipment Instrumentation § 154.1360 Oxygen analyzer. The vessel must have a portable analyzer that measures oxygen levels in an inert...

  3. 46 CFR 154.1360 - Oxygen analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Oxygen analyzer. 154.1360 Section 154...Equipment Instrumentation § 154.1360 Oxygen analyzer. The vessel must have a portable analyzer that measures oxygen levels in an inert...

  4. Explosions in uncertain hydrogen-oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Urzay, Javier; Kseib, Nicolas; Davidson, David F.; Iaccarino, Gianluca; Hanson, Ron K.

    2012-11-01

    Uncontrolled residuals abound in combustors as a result of complex chemistry. The question to answer here is: How can we give a measure of the explosive tendency of a gaseous mixture when the initial composition is not known with absolute certainty? This study addresses the influences of uncertain amounts of residual radical impurities, namely H, O, OH and HO2 radicals, on the calculation and experimental determination of autoignition times in H2-O2 mixtures. To illustrate this point, shock-tube data is obtained in which the presence of residual radicals is evidenced by i) the detection of trace amounts of OH radicals in initial oxygen-argon mixtures and ii) the need of shortening the autoignition times calculated after integrations of the conservation equations when matching with experimental kinetics data. Regime diagrams of autoignition catalyzed by impurities above and below crossover are proposed, thereby summarizing the potential effects of residual dirt in shock-tube experiments and calculations. An experimentally-inspired model based on Bayesian inference is proposed for the uncertainty in the H-atom impurities in shock tubes. Monte-Carlo calculations of the conservation equations are performed using this model to assess the induced variabilities in the autoignition time.

  5. Scalable chemical oxygen - iodine laser

    SciTech Connect

    Adamenkov, A A; Bakshin, V V; Vyskubenko, B A; Efremov, V I; Il'in, S P; Ilyushin, Yurii N; Kolobyanin, Yu V; Kudryashov, E A; Troshkin, M V

    2011-12-31

    The problem of scaling chemical oxygen - iodine lasers (COILs) is discussed. The results of experimental study of a twisted-aerosol singlet oxygen generator meeting the COIL scalability requirements are presented. The energy characteristics of a supersonic COIL with singlet oxygen and iodine mixing in parallel flows are also experimentally studied. The output power of {approx}7.5 kW, corresponding to a specific power of 230 W cm{sup -2}, is achieved. The maximum chemical efficiency of the COIL is {approx}30%.

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  7. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  8. PRIMARY RESEARCH PAPER Water column oxygen demand and sediment oxygen flux

    E-print Network

    Mallin, Michael

    PRIMARY RESEARCH PAPER Water column oxygen demand and sediment oxygen flux: patterns of oxygen dissolved oxygen (DO) levels often occur during summer in tidal creeks along the southeastern coast of the USA. We analyzed rates of oxygen loss as water-column biochemical oxygen demand (BOD5) and sediment

  9. Oxygenates vs. synthesis gas

    SciTech Connect

    Kamil Klier; Richard G. Herman; Alessandra Beretta; Maria A. Burcham; Qun Sun; Yeping Cai; Biswanath Roy

    1999-04-01

    Methanol synthesis from H{sub 2}/CO has been carried out at 7.6 MPa over zirconia-supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO{sub 2} were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO{sub 2} addition, water injection, reaction temperature, and H{sub 2}/C0 ratio have been investigated. Both CO{sub 2} addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether. Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO{sub 2} via the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface. The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr{sub 2}O{sub 3} catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr{sub 2}O{sub 3} catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H{sub 2}/CO synthesis gas mixtures. While the conversion of CO to C{sub 2+} oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C{sub 1}-C{sub 3} alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double-bed system that provides the feedstock for the synthesis of high octane and high cetane ethers, where the isobutanol productivity was as high as 139 g/kg cat/hr. Higher alcohol synthesis has been investigated over a Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst at temperatures higher (up to 703K) than those previously utilized, and no sintering of the catalyst was observed during the short-term testing. However, the higher reaction temperatures led to lower CO conversion levels and lower yield of alcohols, especially of methanol, because of equilibrium limitations. With the double catalyst bed configuration, the effect of pressure in the range of 7.6--12.4 MPa on catalyst activity and selectivity was studied. The upper bed was composed of the copper-based catalyst at 598K, and the lower bed consisted of a copper-free Cs-ZnO/Cr{sub 2}O{sub 3} catalyst at a high temperature of 678K. High pressure was found to increase CO conversion to oxygenated products, although the increase in isobutanol productivity did not keep pace with that of methanol. It was also shown that the Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst could be utilized to advantage as the second-bed catalyst at 613--643K instead of the previously used copper-free Cs-ZnO/ Cr{sub 2}O{sub 3} catalyst at higher temperature, With double Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalysts, high space time yields of up to 202 g/kg cat/hr, with high selectivity to isobutanol, were achieved.

  10. Suppression of boron-oxygen defects in Czochralski silicon by carbon co-doping

    NASA Astrophysics Data System (ADS)

    Wu, Yichao; Yu, Xuegong; He, Hang; Chen, Peng; Yang, Deren

    2015-03-01

    We have investigated the influence of carbon co-doping on the formation of boron-oxygen defects in Czochralski silicon. It is found that carbon can effectively suppress the formation of boron-oxygen defects. Based on our experiments and first-principle theoretical calculations, it is believed that this effect is attributed to the formation of more energetically favorable carbon-oxygen complexes. Moreover, the diffusion of oxygen dimers in carbon co-doped silicon also becomes more difficult. All these phenomena should be associated with the tensile stress field induced by carbon doping in silicon.

  11. Reactivity of graphene and hexagonal boron nitride in-plane heterostructures with oxygen: a DFT study.

    PubMed

    Nguyen, Manh-Thuong

    2014-08-01

    A density-functional study has been undertaken to investigate the chemical properties of in-plane heterostructures of graphene and hexagonal boron nitride. The interactions of armchair and zigzag linking edges with oxygen are looked at in detail. The results of the calculations indicate that the linking edges are highly reactive to oxygen atoms and predict that oxygen molecules can accordingly be adsorbed dissociatively. Furthermore, because oxygen atoms cooperatively interact with the heterostructures, the process can lead to opening of the linking edges, thus splitting the two materials. PMID:24862336

  12. Suppression of boron-oxygen defects in Czochralski silicon by carbon co-doping

    SciTech Connect

    Wu, Yichao; Yu, Xuegong He, Hang; Chen, Peng; Yang, Deren

    2015-03-09

    We have investigated the influence of carbon co-doping on the formation of boron-oxygen defects in Czochralski silicon. It is found that carbon can effectively suppress the formation of boron-oxygen defects. Based on our experiments and first-principle theoretical calculations, it is believed that this effect is attributed to the formation of more energetically favorable carbon-oxygen complexes. Moreover, the diffusion of oxygen dimers in carbon co-doped silicon also becomes more difficult. All these phenomena should be associated with the tensile stress field induced by carbon doping in silicon.

  13. Evaluating oxygen and oxygen minimum zones in global biogeochemical models

    NASA Astrophysics Data System (ADS)

    Oschlies, Andreas; Kriest, Iris; Koeve, Wolfgang; Duteil, Olaf; Schartau, Markus

    2015-04-01

    Global biogeochemical ocean models are used to predict the future evolution of so-called oxygen minimum zones (OMZ), and the associated environmental and possible socio-economic impacts. Different models give different results and vary largely in their biogeochemical, physical and numerical setup. In order to assess the ability of the models to describe the present state as a necessary condition for skillful predictions into the future, they are usually compared against observed distributions of oxygen and other variables, such as thickness of oxygen minimum zones, nutrients, tracers for circulation and/or water mass age. We here examine different metrics for skill evaluation particularly of model representations of oxygen (and OMZs), for a wide range of global biogeochemical models. Among the metrics considered are Taylor plots, volume distributions of oxygen, volume of OMZ, preformed oxygen, and metrics that combine various diagnostic biogeochemical tracers. We finally investigate the impact these metrics may have for the ``choice'' of any best model, and discuss their applicability for different research or societal questions.

  14. Systemic oxygen extraction during exercise at high altitude

    PubMed Central

    Martin, D. S.; Cobb, A.; Meale, P.; Mitchell, K.; Edsell, M.; Mythen, M. G.; Grocott, M. P. W.; Adams, Tom; Biseker, Lindsay; Booth, Adam; Burdall, Oliver; Cobb, Alexandra; Cumpstey, Andrew; Dauncey, Steve; Edsell, Mark; Farrant, James; Feelisch, Martin; Fernandez, Bernadette; Firth, Oliver; Gilbert, Edward; Grant, Daniel; Grocott, Michael; Hennis, Phil; Jackson, Laura; Jenner, Will; van der Kaaij, Jildou; Khosravi, Maryam; Kortekaas, Edith; Levett, Denny; Mahomed, Zeyn; Martin, Daniel; Meale, Paula; Milledge, Jim; Mitchell, Kay; Mole, Damian; Moses, Oliver; Mythen, Michael; Rigat, Fabio; O'Doherty, Alasdair; Salam, Alex; Sanborn, Matt; Sheperdigian, Adam; Shrubb, Fiona; Simpson, Jo; Talbot, Nick; Wandrag, Liesel; Wijesingha, Savini; Williamson, Wilby; Woolley, Tom; Yow, Heng

    2015-01-01

    Background Classic teaching suggests that diminished availability of oxygen leads to increased tissue oxygen extraction yet evidence to support this notion in the context of hypoxaemia, as opposed to anaemia or cardiac failure, is limited. Methods At 75 m above sea level, and after 7–8 days of acclimatization to 4559 m, systemic oxygen extraction [C(a?v)O2] was calculated in five participants at rest and at peak exercise. Absolute [C(a?v)O2] was calculated by subtracting central venous oxygen content (CcvO2) from arterial oxygen content (CaO2) in blood sampled from central venous and peripheral arterial catheters, respectively. Oxygen uptake (V?O2) was determined from expired gas analysis during exercise. Results Ascent to altitude resulted in significant hypoxaemia; median (range) SpO2 87.1 (82.5–90.7)% and PaO2 6.6 (5.7–6.8) kPa. While absolute C(a?v)O2 was reduced at maximum exercise at 4559 m [83.9 (67.5–120.9) ml litre?1 vs 99.6 (88.0–151.3) ml litre?1 at 75 m, P=0.043], there was no change in oxygen extraction ratio (OER) [C(a?v)O2/CaO2] between the two altitudes [0.52 (0.48–0.71) at 4559 m and 0.53 (0.49–0.73) at 75 m, P=0.500]. Comparison of C(a?v)O2 at peak V?O2 at 4559 m and the equivalent V?O2 at sea level for each participant also revealed no significant difference [83.9 (67.5–120.9) ml litre1 vs 81.2 (73.0–120.7) ml litre?1, respectively, P=0.225]. Conclusion In acclimatized individuals at 4559 m, there was a decline in maximum absolute C(a?v)O2 during exercise but no alteration in OER calculated using central venous oxygen measurements. This suggests that oxygen extraction may have become limited after exposure to 7–8 days of hypoxaemia. PMID:25501722

  15. Oxygen segregation at coherent grain boundaries of cubic boron nitride

    NASA Astrophysics Data System (ADS)

    Chen, Chunlin; Lv, Shuhui; Wang, Zhongchang; Saito, Mitsuhiro; Shibata, Naoya; Taniguchi, Takashi; Ikuhara, Yuichi

    2013-03-01

    Segregation of even a trace amount of impurities to grain boundaries (GBs) can often modify properties of polycrystalline materials. Here, we demonstrate, by a combined study of advanced transmission electron microscopy with atomistic first-principles calculations to two coherent ?9 and ?3 GBs of cubic boron nitride (BN), that the two GBs are inclined to trap oxygen, which induces notable electronic states at Fermi level in the forbidden band gap of bulk BN and lowers the GB adhesion energies significantly. Such GB weakening by oxygen segregation is attributed to the lessened charge transfer between grains and more ionic bonding nature at GB.

  16. Numerical modeling of anisotropic fiber bundle behavior in oxygenators.

    PubMed

    Bhavsar, Sonya S; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2011-11-01

    Prediction of flow patterns through oxygenator fiber bundles can allow shape optimization so that efficient gas exchange occurs with minimal thrombus formation and hemolysis. Computational fluid dynamics (CFD) simulations can be used to predict three-dimensional flow velocities and flow distribution from spatially dependent variables and they allow estimations of erythrocyte residence time within the fiber bundle. This study builds upon previous work to develop an accurate numerical model for oxygenators, which would allow for accelerated iterations in oxygenator shape and diffuser plate design optimization. Hollow fiber flow channels were developed to permit experimental calculation of fluid permeability in two directions: main flow along the hollow fiber and perpendicular to the hollow fibers. Commercial software was used to develop three-dimensional CFD models of the experimental flow channels and an anisotropic porous media model for oxygenators from these experimental results. The oxygenator model was used to predict pressure loss throughout the device, visualize blood distribution within the fiber bundle, and estimate erythrocyte residence time within the bundle. Experimental flow channels measurements produced a streamwise permeability of 1.143e(-8) m(2) and transverse permeability of 2.385e(-9) m(2) . These permeabilities, coupled with previous work with volume porosity, were used to develop the numerical model of anisotropic behavior through porous fiber bundles, which indicated a more uniform flow field throughout the oxygenator. Incorporation of known anisotropic fiber bundle behavior in previous numerical models more accurately represents fluid behavior through an oxygenator fiber bundle. CFD coupled with experimental validation can produce a powerful tool for oxygenator design and development. PMID:21973082

  17. The Martian Hot Oxygen Corona at Ancient times

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Combi, M. R.; Tenishev, V.; Bougher, S. W.; Dong, C.; Pawlowski, D. J.

    2014-12-01

    The evaluation of the global atomic oxygen loss rate and its changes over geologic time is necessary for a better understanding of the evolution of the Martian atmosphere. The recent surface geomorphological evidence suggests that water has played a key role in forming the present atmospheric environment. Throughout the planet's history, the inventory of water has been affected in part by changing solar radiation and solar wind conditions. In this study, we investigate the evolution of the oxygen atom inventory by simulating the hot oxygen corona for solar conditions appropriate to about 2.5 Gyr ago (about 3 times the current solar EUV flux). Dissociative recombination of O2+ion is assumed to remain as the dominant source of hot atomic oxygen at ancient times. To describe ancient Mars, we present the 3D self-consistent simulations of the Martian hot oxygen corona by one-way coupling our Adaptive Mesh Particle Simulator (AMPS) with the ancient thermosphere and ionosphere as simulated by the 3D Mars Global Ionosphere Thermosphere Model (M-GITM), a newly developed atmospheric model. The structure and composition of the Martian upper atmosphere and the hot oxygen corona during early solar conditions are compared with those at the current epoch to study the evolution of the macroscopic parameters and their effects on the hot oxygen corona. The coupled framework provides the density and escape probabilities of hot oxygen and estimates the global atmospheric loss rates for the conditions considered. These results are also being used as input into calculations of the global solar wind interaction with Mars' atmosphere, ionosphere and exosphere.

  18. Electro-oxidation of water on hematite: Effects of surface termination and oxygen vacancies investigated by first-principles

    NASA Astrophysics Data System (ADS)

    Hellman, Anders; Iandolo, Beniamino; Wickman, Björn; Grönbeck, Henrik; Baltrusaitis, Jonas

    2015-10-01

    The oxygen evolution reaction on hydroxyl- and oxygen-terminated hematite was investigated using first-principle calculations within a theoretical electrochemical framework. Both pristine hematite and hematite containing oxygen vacancies were considered. The onset potential was determined to be 1.79 V and 2.09 V vs. the reversible hydrogen electrode (RHE) for the pristine hydroxyl- and oxygen-terminated hematite, respectively. The presence of oxygen vacancies in the hematite surface resulted in pronounced shifts of the onset potential to 3.09 V and 1.83 V, respectively. Electrochemical oxidation measurements conducted on thin-film hematite anodes, resulted in a measured onset potential of 1.66 V vs. RHE. Furthermore, the threshold potential between the hydroxyl- and oxygen-terminated hematite was determined as a function of pH. The results indicate that electrochemical water oxidation on hematite occurs on the oxygen-terminated hematite, containing oxygen vacancies.

  19. Dilute Oxygen Combustion Phase IV Final Report

    SciTech Connect

    Riley, M.F.

    2003-04-30

    Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the cost of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations are critical. DOC technology will continue to have a highly competitive role in retrofit applications requiring increases in furnace productivity.

  20. Solid State oxygen Sensor Development

    NASA Technical Reports Server (NTRS)

    Cheung, Jeffery T.; Johnson, Scott R.

    1994-01-01

    To anticipate future long-duration mission needs for life support sensors, we explored the feasibility of using thin-film metal-oxide semiconductors. The objective of this task was to develop gas sensors for life support applications which would be suitable for long-duration missions. Metal oxides, such as ZnO, SnO2, and TiO2 have been shown to react with oxygen molecules. Oxygen lowers the metal oxide's electrical resistance. Critical to the performance is the application of the oxide in a thin film on an inert substrate: the thinner the film, the more readily the oxygen penetration and hence the more rapid and sensitive the sensor. Metal oxides are not limited to oxygen detection, rather, oxides offer detection and quantification applications to the complete range of gases of interest, not only for life support systems, but for propellants as well.

  1. Oxygen Meters: Some Practical Considerations.

    ERIC Educational Resources Information Center

    Richardson, J.

    1981-01-01

    Although a complete oxygen meter is an expensive piece of equipment, homemade circuitry can be a suitable substitute if science teachers are aware of the limitations of the apparatus as well as of certain techniques for effective use. (PB)

  2. Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass

    NASA Astrophysics Data System (ADS)

    Webb, Elizabeth A.; Longstaffe, Fred J.

    2002-06-01

    Samples of Calamovilfa longifolia were collected from across the North American prairies to investigate the relationship between the oxygen-isotope composition of biogenic silica (phytoliths) deposited in this grass and relative humidity, temperature, and the oxygen-18 enrichment of soil water relative to local precipitation. The ? 18O values of silica in nontranspiring tissues were controlled by soil-water composition and temperature, whereas the oxygen-18 content of silica formed in leaf and inflorescence tissues was enriched further by transpiration. Accurate calculation of growing temperature was possible only when the oxygen-isotope compositions of both stem silica and soil water were known. However, the oxygen-isotope values of stem phytoliths can be used to calculate the variation in the isotopic composition of soil water across a North American temperature gradient. As plant organic matter decays and phytoliths are transferred to the soil, the temperature and soil-water signals carried by the oxygen-isotope composition of silica from nontranspiring tissues can be masked by the oxygen-18 enrichment of phytoliths from transpiring tissues. However, the overall oxygen-isotope composition of a soil-phytolith assemblage can be related to temperature using an empirical relationship based on temperature and the difference between soil-phytolith and estimated soil-water oxygen-isotope compositions.

  3. Oxygen therapy in palliative care.

    PubMed

    Fardy, H John

    2016-01-01

    Breathlessness in advanced disease is a common problem, with the majority of people experiencing breathlessness in the weeks before death. The thrust of the new British Thoracic Society guidelines for home oxygen in adults is that oxygen therapy for home use is most useful in chronic hypoxaemia. However, clinicians make individual clinical decisions, cognisant of the guidelines but ultimately determined by what relieves the symptoms of the individual most effectively. PMID:26741911

  4. Oxygen chemisorption on copper (110)

    NASA Astrophysics Data System (ADS)

    Mundenar, J. M.; Baddorf, A. P.; Plummer, E. W.; Sneddon, L. G.; Didio, R. A.; Zehner, D. M.

    1987-09-01

    High resolution electron energy loss spectroscopy (EELS) and angle-resolved ultra-violet photoelectron spectroscopy (UPS) have been used: (1) to study a surface phonon of Cu(110) as a function of oxygen coverage, (2) to identify oxygen adsorption site(s) in the p(2×1)O, c(6×2)O, and disordered oxygen overlayer (formed by O 2 exposure at 100 K), and (3) to determine whether molecular adsorption or dissociation of O 2 followed by atomic adsorption occurs after oxygen exposure at 100 K. With EELS, a continuous shift in energy of the surface phonon as a function of oxygen exposure at 300 K is observed. Our EELS data for the p(2×1)O overlayer support previous reports of a single long-bridge adsorption site, while indicating two sites are populated in the c(6×2)O overlayer: a long-bridge site and a four-coordinated site. The long-bridge site is populated at all coverages while the four-coordinated sites is occupied only after high exposures (?2×10 4 L) at room temperature, or after exposures >2 L at low temperature (100 K). For both conditions the oxygen coverages are greater than 0.5 monolayer. Also, EELS and complementary UPS data clearly show that oxygen adsorbs dissociatively on Cu(110) after O 2 exposure at 100 K. At this temperature, LEED results indicate that the oxygen atoms are adsorbed without long-range order; however, local adsorption sites, which are similar to those in the c(6×2)O surface, are observed.

  5. Oxygen and Early Animal Evolution

    NASA Astrophysics Data System (ADS)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  6. Sulfur and oxygen isotopic systematics of the 1982 eruptions of El Chichón Volcano, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Rye, R. O.; Luhr, J. F.; Wasserman, M. D.

    1984-12-01

    Thermometers based on sulfur and oxygen isotopic compositions of anhydrite, pyrrhotite, titanomagnetite, and plagioclase crystals from fresh pumices of the 1982 eruptions of El Chichón Volcano indicate a pre-eruption temperature of 810 ± 40°C, confirming textural evidence that the anhydrite precipitated directly from the melt. The isotopic composition of sulfate leached from fresh ashfall samples shows it to be a mixture of anhydrite microphenocrysts and adsorbed sulfate derived from oxidized sulfur (SO 2) in the eruption plume. The leachate data show no evidence for rapid oxidation of significant amounts of H 2S in the eruption cloud even though the fugacity ratio of H 2S/SO 2 in the gas phase of the magma was >400. This may indicate kinetic inhibition of H 2S to SO 2 conversion in the eruption cloud. Prior to eruption, the magma contained an estimated 2.6 wt. % sulfur (as SO 3). The estimated ? 34S of the bulk magma is 5.8‰. Such a high value may reflect assimilation of 34S-enriched evaporites or the prior loss of 34S-depleted H 2S to a fluid or gas phase during formation of a small prophyry-type hydrothermal system or ore deposit. In either case, the original magma must have been very sulfur rich. It is likely that the initial high sulfur content of the magma and at least some of its 34S enrichment reflects involvement of subducted volcanogenic massive sulfides deposits during Benioff-zone partial melting. Isotopic data on mineralized, accidental lithic fragments support the possible development of a porphyry-type system at El Chichón.

  7. Sulfur and oxygen isotopic systematics of the 1982 eruptions of El Chichón Volcano, Chiapas, Mexico

    USGS Publications Warehouse

    Rye, R.O.; Luhr, J.F.; Wasserman, M.D.

    1984-01-01

    Thermometers based on sulfur and oxygen isotopic compositions of anhydrite, pyrrhotite, titanomagnetite, and plagioclase crystals from fresh pumices of the 1982 eruptions of El Chichón Volcano indicate a pre-eruption temperature of 810 ± 40°C, confirming textural evidence that the anhydrite precipitated directly from the melt. The isotopic composition of sulfate leached from fresh ashfall samples shows it to be a mixture of anhydrite microphenocrysts and adsorbed sulfate derived from oxidized sulfur (SO2) in the eruption plume. The leachate data show no evidence for rapid oxidation of significant amounts of H2S in the eruption cloud even though the fugacity ratio of H2S/SO2 in the gas phase of the magma was >400. This may indicate kinetic inhibition of H2S to SO2 conversion in the eruption cloud. Prior to eruption, the magma contained an estimated 2.6 wt. % sulfur (as SO3). The estimated ? 34S of the bulk magma is 5.8‰. Such a high value may reflect assimilation of 34S-enriched evaporites or the prior loss of 34S-depleted H2S to a fluid or gas phase during formation of a small prophyry-type hydrothermal system or ore deposit. In either case, the original magma must have been very sulfur rich. It is likely that the initial high sulfur content of the magma and at least some of its 34S enrichment reflects involvement of subducted volcanogenic massive sulfides deposits during Benioff-zone partial melting. Isotopic data on mineralized, accidental lithic fragments support the possible development of a porphyry-type system at El Chichón.

  8. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    PubMed

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics. PMID:17461557

  9. USE OF A PROGRAMMABLE CALCULATOR IN CARDIOPULMONARY PERFUSION

    PubMed Central

    Mills, J. David; Tallent, Jerome H.

    1978-01-01

    This study describes a hand-held, battery-powered, programmable instrument (Calculator Model SR-52) that can be taken directly into the operating room by cardiopulmonary perfusionists. Three programs are described in detail: 1) Cardiopulmonary perfusion parameters and estimated blood volume; 2) blood gas parameters and saturations, with temperature corrections; and 3) cardiopulmonary oxygen transfer and oxygenator efficiency. This inexpensive calculator allows perfusion personnel to manipulate easily-derived data into values which heretofore have required elaborate nomograms or special slide rules—or were not available within a reasonable computational time. PMID:15216068

  10. USE OF A PROGRAMMABLE CALCULATOR IN CARDIOPULMONARY PERFUSION.

    PubMed

    Mills, J David; Tallent, Jerome H.

    1978-06-01

    This study describes a hand-held, battery-powered, programmable instrument (Calculator Model SR-52) that can be taken directly into the operating room by cardiopulmonary perfusionists. Three programs are described in detail: 1) Cardiopulmonary perfusion parameters and estimated blood volume; 2) blood gas parameters and saturations, with temperature corrections; and 3) cardiopulmonary oxygen transfer and oxygenator efficiency. This inexpensive calculator allows perfusion personnel to manipulate easily-derived data into values which heretofore have required elaborate nomograms or special slide rules-or were not available within a reasonable computational time. PMID:15216068

  11. In situ global method for measurement of oxygen demand and mass transfer

    SciTech Connect

    Klasson, K.T.; Lundbaeck, K.M.O.; Clausen, E.C.; Gaddy, J.L.

    1997-05-01

    Two aerobic microorganisms, Saccharomycopsis lipolytica and Brevibacterium lactofermentum, have been used in a study of mass transfer and oxygen uptake from a global perspective using a closed gas system. Oxygen concentrations in the gas and liquid were followed using oxygen electrodes, and the results allowed for easy calculation of in situ oxygen transport. The cell yields on oxygen for S. lipolytica and B. lactofermentum were 1.01 and 1.53 g/g respectively. The mass transfer coefficient was estimated as 10 h{sup {minus}1} at 500 rpm for both fermentations. The advantages with this method are noticeable since the use of model systems may be avoided, and the in situ measurements of oxygen demand assure reliable data for scale-up.

  12. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  13. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction.

    PubMed

    Pei, Dan-Ni; Gong, Li; Zhang, Ai-Yong; Zhang, Xing; Chen, Jie-Jie; Mu, Yang; Yu, Han-Qing

    2015-01-01

    The cathodic material plays an essential role in oxygen reduction reaction for energy conversion and storage systems. Titanium dioxide, as a semiconductor material, is usually not recognized as an efficient oxygen reduction electrocatalyst owning to its low conductivity and poor reactivity. Here we demonstrate that nano-structured titanium dioxide, self-doped by oxygen vacancies and selectively exposed with the high-energy {001} facets, exhibits a surprisingly competitive oxygen reduction activity, excellent durability and superior tolerance to methanol. Combining the electrochemical tests with density-functional calculations, we elucidate the defect-centred oxygen reduction reaction mechanism for the superiority of the reductive {001}-TiO2-x nanocrystals. Our findings may provide an opportunity to develop a simple, efficient, cost-effective and promising catalyst for oxygen reduction reaction in energy conversion and storage technologies. PMID:26493365

  14. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction

    NASA Astrophysics Data System (ADS)

    Pei, Dan-Ni; Gong, Li; Zhang, Ai-Yong; Zhang, Xing; Chen, Jie-Jie; Mu, Yang; Yu, Han-Qing

    2015-10-01

    The cathodic material plays an essential role in oxygen reduction reaction for energy conversion and storage systems. Titanium dioxide, as a semiconductor material, is usually not recognized as an efficient oxygen reduction electrocatalyst owning to its low conductivity and poor reactivity. Here we demonstrate that nano-structured titanium dioxide, self-doped by oxygen vacancies and selectively exposed with the high-energy {001} facets, exhibits a surprisingly competitive oxygen reduction activity, excellent durability and superior tolerance to methanol. Combining the electrochemical tests with density-functional calculations, we elucidate the defect-centred oxygen reduction reaction mechanism for the superiority of the reductive {001}-TiO2-x nanocrystals. Our findings may provide an opportunity to develop a simple, efficient, cost-effective and promising catalyst for oxygen reduction reaction in energy conversion and storage technologies.

  15. Thermodynamic calculations and analysis of the deoxidation of special alloys by strong deoxidizers and carbon in vacuum

    NASA Astrophysics Data System (ADS)

    Sisev, A. A.; Paderin, S. N.; Troyanov, K. V.

    2015-06-01

    The thermodynamic calculations of the equilibrium activities of oxygen with deoxidizers Al, Ca, Mg, Ti, La, and Ce are performed from the compositions of metal samples taken during melting of special alloys in a vacuum induction furnace. The emf was measured simultaneously with sampling during the immersion of an oxygen sensor into a liquid metal. The results of calculations of the equilibrium oxygen activities with each deoxidizer are compared to the oxygen activities calculated by the measured values of emf and the temperature metal.

  16. Evaluation of thermodynamics of solute oxygen in ternary liquid alloys

    SciTech Connect

    Reddy, S.R.; Reddy, R.G.

    1996-10-01

    The Margules equation is used for interpreting excess Gibbs energy of several ternary systems. An expression for the activity coefficient of a dilute solute, 2(oxygen), in a binary solvent 1--3 is derived. It is used to calculate the logarithmic activity coefficient of oxygen in Pb-O-Cu, Pb-O-Bi, Ag-O-Sn, Pb-O-Sn and Ag-O-Pb metallic systems. Self interaction parameter of the solute is derived from the partial Gibbs energy of solute using constant compositional path. The derived equation is used successfully to deduce the self-interaction parameter of oxygen in Pb-O-Cu and Pb-O-Bi metallic systems. The predicted thermodynamic parameter data i.e. activity coefficient and self-interaction parameters are in an excellent agreement with the experimental data and also the predictions are far more accurate than the predictions made by other models.

  17. Oxygen isotope corrections for online ?34S analysis

    USGS Publications Warehouse

    Fry, B.; Silva, S.R.; Kendall, C.; Anderson, R.K.

    2002-01-01

    Elemental analyzers have been successfully coupled to stable-isotope-ratio mass spectrometers for online measurements of the ?34S isotopic composition of plants, animals and soils. We found that the online technology for automated ?34S isotopic determinations did not yield reproducible oxygen isotopic compositions in the SO2 produced, and as a result calculated ?34S values were often 1–3‰ too high versus their correct values, particularly for plant and animal samples with high C/S ratio. Here we provide empirical and analytical methods for correcting the S isotope values for oxygen isotope variations, and further detail a new SO2-SiO2 buffering method that minimizes detrimental oxygen isotope variations in SO2.

  18. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili

    2004-01-01

    We have investigated the impact of hot metastable oxygen atoms on the product yields and rate coefficients of atmospheric reactions involving O( (sup 1)D). The contribution of the metastable oxygen atoms to the thermal balance of the terrestrial atmosphere between 50 and 200 km has been determined. We found that the presence of hot O((sup l)D) atoms in the mesosphere and lower thermosphere significantly increases the production rate of the rotationally-vibrationally excited NO molecules. The computed yield of the NO molecules in N2O+ O((sup 1)D) atmospheric collisions, involving non-Maxwellian distributions of the metastable oxygen atoms, is more than two times larger than the NO-yield at a thermal equilibrium. The calculated non-equilibrium rate and yield functions are important for ozone and nitrous oxide modeling in the stratosphere, mesosphere and lower thermosphere.

  19. Alternative Methods of the Thermospheric Atomic Oxygen Density Determination

    NASA Technical Reports Server (NTRS)

    Bennett. Adam C.; Omidvar, Kazem; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Atomic oxygen density in the upper thermosphere (approximately 300 km) can be calculated using ground based incoherent scatter radar and Fabry-Perot interferometer measurements. Burnside et al. [1991] was the first to try this method, but Buonsanto et al. provided an extensive treatment of the method in 1997. This paper further examines the method using 46 nights of data collected over six years and the latest information on the oxygen collision frequency. The method is compared with the MSIS-86 atomic oxygen prediction values, which are based upon in situ rocket born and satellite measurements from the 70's to the mid-80's In general, the method supports the MSIS-86 model, but indicates several areas of discrepancy. Furthermore, no direct correlation is found between the geomagnetic conditions and the difference between the method and MSIS-86 predictions.

  20. Alternative Method for the Thermospheric Atomic Oxygen Density Determination

    NASA Technical Reports Server (NTRS)

    Bennett, A. C.; Omidvar, K.; Atlas, Robert (Technical Monitor)

    2001-01-01

    Atomic oxygen density in the upper thermosphere (approximately 300 km) can be calculated using ground based incoherent scatter radar and Fabry-Perot interferometer measurements. Burnside et al. was the first to try this method, but Buonsanto et al. provided an extensive treatment of the method in 1997. This paper further examines the method using 46 nights of data collected over six years and the latest information on the oxygen collision frequency. The method is compared with the MSIS (Mass Spectrometer Incoherent Scatter)-86 atomic oxygen prediction values, which are based upon in situ rocket born and satellite measurements from the 70s to the mid-80s. In general, the method supports the MSIS-86 model, but indicates several areas of discrepancy. Furthermore, no direct correlation is found between the geomagnetic conditions and the difference between the method and MSIS-86 predictions.

  1. Acceleration of Oxygen ions by Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Liang, H.; Ashour-Abdalla, M.; Lapenta, G.; Walker, R. J.

    2014-12-01

    Spacecraft observations in the magnetotail show that O+ ions can dominate the pressure and density during storm-time substorms. In this study, we use a 2D version of an implicit Particle-in-Cell simulation (iPIC3D) in the presence of H+ and O+ ions to investigate O+ heating and bulk acceleration processes during collisionless reconnection. In the simulations, a 2D Harris current sheet without a guide field is used for the initial condition. Open boundary conditions are used. Considering O+/H+ = 1:1, we compare the diffusion regions for H+ and O+ and analyze the energy gains of O+ at different locations with respect to the inflow and outflow boundaries, the X-point, the separatrices and dipolarization fronts (DFs). We also calculate the field energy variation and O+ velocity distribution functions at these locations to investigate the heating and acceleration process. The results show that the diffusion regions are not limited near the X-point, but also extend along the separatrices up to 10s of dH (H+ inertial length) away from the X-point. The proton diffusion region along a separatrix is about ~24 dH and that of oxygen is about ~40 dH. Strongly positive J·E is shown near the DF for both species, while there is a weakly negative J·E at the slightly upstream of DF for protons, which does not appear for oxygen. Proton heating is mainly near the X-point and downstream of the separatrices, while oxygen heating extends into the inflow and outflow regions near the X-point and concentrates in the region slightly upstream of the DF. The study of the ion acceleration by reconnection is one of the scientific objectives of the Energetic Particle Detector (EPD) onboard the upcoming Magnetospheric Multiscale (MMS) mission and these results are directly related to the expected observations by MMS.

  2. Clinical evaluation of contemporary oxygenators.

    PubMed

    Stanzel, Roger Dp; Henderson, Mark

    2016-01-01

    Advances in cardiopulmonary bypass equipment have played a critical role in improving outcomes for cardiac surgery patients. Recent advancements include reduced priming volumes, biocompatible coatings and gaseous microemboli handling, as well as the incorporation of an arterial filter into the oxygenator.The purpose of this study was to conduct a comprehensive clinical evaluation of adult oxygenators on the market. Oxygenators assessed included the Sorin Synthesis(®) (n = 30), the Sorin Inspire 6F(®) (n = 10) and Inspire 8F(®) (n = 30), the Terumo FX15(®) (n = 13) and FX25(®) (n = 30), the Maquet Quadrox-i(®) (n = 30) and the Medtronic Fusion(®) (n = 30). Parameters assessed included functional prime volumes, gas exchange, pressure gradients and the effects on patient hematology.The Synthesis had the largest functional prime volume (1426 ml), the FX15 the lowest (956 ml). The Inspire 6F, 8F and Fusion had the greatest O2 transfer. The Sorin oxygenators required the lowest sweep gas flows to obtain a PaCO2 of 40 mmHg. The Sorin oxygenators had the largest pressure gradients. While no differences were observed for hemoglobin and platelet levels post cross-clamp removal, the Sorin Synthesis and Inspire 8F had the largest increases in white blood cell (WBC) counts (122% and 141% of baseline, respectively) and neutrophils (162% and 185% of baseline, respectively).The data demonstrate that no single product is superior in all aspects. The choice of ideal oxygenator depends on the aspect(s) of oxygenator performance the perfusion team believes most clinically acceptable based on available data. PMID:26407816

  3. Contribution to the study of the pseudobinary Zr1Nb-Oxygen phase diagram by local oxygen measurements of Zr1Nb fuel cladding after high temperature oxidation

    NASA Astrophysics Data System (ADS)

    Négyesi, M.; Burda, J.; Klou?ek, V.; Lorin?ík, J.; Sopoušek, J.; Kabátová, J.; Novotný, L.; Linhart, S.; Chmela, T.; Siegl, J.; Vrtílková, V.

    2012-01-01

    This work is concerned with measurement of oxygen concentrations and construction of the pseudobinary Zr1Nb-O phase diagram, acceptable for diffusion models predicting the oxidation behavior of Zr1Nb fuel cladding during thermal transients such as LOCA. Oxygen concentrations were measured in existing phases in the wall of Zr1Nb nuclear fuel cladding tubes after the high-temperature oxidation. The oxygen concentrations at the ?/? + ? phase boundary in the ?-Zr(O) layer have been determined using WDS method. Oxygen concentrations in the prior ?-Zr were measured using two experimental methods (SIMS and TEA). Consequently, the ceiling of the oxygen concentration in ?-Zr has been assessed based on the results of SIMS, TEA, and microhardness measurements. Eventually, the experimental results were compared to the pseudobinary Zr1Nb-O phase diagram, calculated using CALPHAD software, with satisfactory agreement. The effect of hydrogen was also examined.

  4. EVALUATING AN INNOVATIVE OXYGEN SENSOR FOR REMOTE SUBSURFACE OXYGEN MEASUREMENTS

    SciTech Connect

    Millings, M; Brian Riha, B; Warren Hyde, W; Karen Vangelas, K; Brian02 Looney, B

    2006-10-12

    Oxygen is a primary indicator of whether anaerobic reductive dechlorination and similar redox based processes contribute to natural attenuation remedies at chlorinated solvent contaminated sites. Thus, oxygen is a viable indicator parameter for documenting that a system is being sustained in an anaerobic condition. A team of researchers investigated the adaptation of an optical sensor that was developed for oceanographic applications. The optical sensor, because of its design and operating principle, has potential for extended deployment and sensitivity at the low oxygen levels relevant to natural attenuation. The results of the research indicate this tool will be useful for in situ long-term monitoring applications, but that the traditional characterization tools continue to be appropriate for characterization activities.

  5. 49 CFR 172.530 - OXYGEN placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false OXYGEN placard. 172.530 Section 172.530... SECURITY PLANS Placarding § 172.530 OXYGEN placard. (a) Except for size and color, the OXYGEN placard must... background color on the OXYGEN placard must be yellow. The symbol, text, class number and inner border...

  6. 21 CFR 868.5580 - Oxygen mask.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b)...

  7. 49 CFR 172.530 - OXYGEN placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false OXYGEN placard. 172.530 Section 172.530... SECURITY PLANS Placarding § 172.530 OXYGEN placard. (a) Except for size and color, the OXYGEN placard must... background color on the OXYGEN placard must be yellow. The symbol, text, class number and inner border...

  8. 21 CFR 868.5580 - Oxygen mask.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b)...

  9. 46 CFR 197.326 - Oxygen safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with oxygen or oxygen mixtures greater than 40 percent by volume must be designed for such use. (b)...

  10. 46 CFR 197.326 - Oxygen safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with oxygen or oxygen mixtures greater than 40 percent by volume must be designed for such use. (b)...

  11. Make Liquid Oxygen in Your Class

    ERIC Educational Resources Information Center

    French, M. M. J.; Hibbert, Michael

    2010-01-01

    Oxygen is one of the component gases of air at room temperature, making up around 20% of the atmosphere. But can oxygen be liquified? This article details a method for making small amounts of liquid oxygen in the classroom if there is no access to a cylinder of compressed oxygen gas, and two methods for identifying the fact that it is liquid…

  12. PERSPECTIVES The prediction of hypolimnetic oxygen profiles

    E-print Network

    Livingstone, David M.

    oxygen consumption) and inversely proportional to the difference between the oxygen concentration at the end of spring turnover and the reduction in oxygen concentration owing to the volume sink (water reduction in the oxygen concentration at the end of spring turnover could suffice to bring about a sudden

  13. 49 CFR 172.530 - OXYGEN placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false OXYGEN placard. 172.530 Section 172.530... SECURITY PLANS Placarding § 172.530 OXYGEN placard. (a) Except for size and color, the OXYGEN placard must... background color on the OXYGEN placard must be yellow. The symbol, text, class number and inner border...

  14. 46 CFR 197.326 - Oxygen safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with oxygen or oxygen mixtures greater than 40 percent by volume must be designed for such use. (b)...

  15. 21 CFR 868.5580 - Oxygen mask.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b)...

  16. 49 CFR 172.530 - OXYGEN placard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false OXYGEN placard. 172.530 Section 172.530... SECURITY PLANS Placarding § 172.530 OXYGEN placard. (a) Except for size and color, the OXYGEN placard must... background color on the OXYGEN placard must be yellow. The symbol, text, class number and inner border...

  17. 21 CFR 868.5580 - Oxygen mask.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b)...

  18. 21 CFR 868.5580 - Oxygen mask.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b)...

  19. 46 CFR 197.326 - Oxygen safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with oxygen or oxygen mixtures greater than 40 percent by volume must be designed for such use. (b)...

  20. 46 CFR 197.326 - Oxygen safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with oxygen or oxygen mixtures greater than 40 percent by volume must be designed for such use. (b)...

  1. OXYGEN ADSORPTION ON NITROGEN CONTAINING CARBON SURFACES

    E-print Network

    Truong, Thanh N.

    OXYGEN ADSORPTION ON NITROGEN CONTAINING CARBON SURFACES Alejandro Montoya, Jorge O. Gil, Fanor-rich site of the carbon basal plane of graphite and then, it dissociates into oxygen atoms.1,2 Oxygen atoms at the edge of the carbon surface can form covalent bonds with oxygen. These sites can chemisorb

  2. 49 CFR 172.530 - OXYGEN placard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false OXYGEN placard. 172.530 Section 172.530... SECURITY PLANS Placarding § 172.530 OXYGEN placard. (a) Except for size and color, the OXYGEN placard must... background color on the OXYGEN placard must be yellow. The symbol, text, class number and inner border...

  3. BIOGEOCHEMISTRY Timescales of Oxygenation Following the Evolution

    E-print Network

    Fischer, Woodward

    BIOGEOCHEMISTRY Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis Lewis innovations in the history of life was the invention of oxygenic photosynthesis--autotrophic growth photosynthesis ulti- mately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether

  4. Oxygen distribution for the oxidation of metallic bath components in the oxidation period during the heat of 08Kh18N10T steel in a 20-t arc furnace

    NASA Astrophysics Data System (ADS)

    Muruev, S. V.; Shil'nikov, E. V.; Paderin, S. N.

    2015-06-01

    The stabilization of introduction of oxygen into a furnace during the oxidation period in all heats of 08Kh18N10T steel by automatic maintaining the gas pressure in an oxygen line at a level of 14 atm and the use of an oxygen meter make it possible to determine the actual oxygen flow rate; to calculate this flow rate for each experimental heat; to estimate the degree of oxygen assimilation for oxidation reactions as a function of the carbon concentration in a metal at the end of the oxidation period of heat; and to calculate oxygen distribution for the oxidation of C, Si, Mn, and Cr in a metallic solution. The results of measuring emf with oxygen sensors at the beginning, middle, and end of the oxidation period for experimental heats are used to calculate the actual oxygen activities in the metal. In all experimental heats, the oxygen activity increases with decreasing carbon concentration.

  5. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    NASA Technical Reports Server (NTRS)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  6. Instrument for the measurement of retinal vessel oxygen saturation

    NASA Astrophysics Data System (ADS)

    Drewes, Jonathan J.; Smith, Matthew H.; Denninghoff, Kurt R.; Hillman, Lloyd W.

    1999-06-01

    Retinal vessel oxygen saturation has been suggested as a parameter for monitoring a wide range of conditions including occult blood los and a variety of ophthalmic diseases. We have developed an Eye Oximeter (EOX), that noninvasively measures the oxygen saturation of the blood in individual large retinal vessels using scanning lasers. 1D vessel extinction profiles are obtained at four wavelengths (629, 678, 821 and 899 nm), and the vessel transmittances computed. The oxygen saturation of blood within the vessel is then calculated from the transmittance data. We have performed an in vitro experiment on human blood which demonstrates the calibration of the EOX measurements and validates our oximetry equations. Retinal vessel oxygen saturation was measured in a human subject and found to be 65%O2Sat and 101 - 102%O2Sat in the veins and arteries on the optic disk. Irregularities in the background measured away from the optic disk resulted in a large variance in the calculated saturation when compared to measurements made on the disk.

  7. Oxygen electrode reaction in molten carbonate fuel cells

    SciTech Connect

    Appleby, A.J.; White, R.E.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  8. Study of the reaction of atomic oxygen with aerosols

    NASA Technical Reports Server (NTRS)

    Akers, F. I.; Wightman, J. P.

    1975-01-01

    The rate of disappearance of atomic oxygen was measured at several pressures in a fast flow pyrex reactor system with its walls treated with (NH4)2SO4 (s), H2SO4 (l), and NH4CL (s). Atomic oxygen, P-3 was generated by dissociation of pure, low pressure oxygen in a microwave discharge. Concentrations of atomic oxygen were measured at several stations in the reactor system using chemiluminescent titration with NO2. Recombination efficiencies calculated from experimentally determined wall recombination rate constants are in good agreement with reported values for clean Pyrex and an H2SO4 coated wall. The recombination efficiency for (NH4)2SO4, results in a slightly lower value than for H2S04. A rapid exothermic reaction between atomic oxygen and the NH4Cl wall coating prevented recombination efficiency determination for this coating. The results show that the technique is highly useful for wall recombination measurements and as a means of extrapolating to the case of free stream aerosol-gas interactions.

  9. Materials International Space Station Experiment-6 (MISSE-6) Atomic Oxygen Fluence Monitor Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; Waters, Deborah L.

    2010-01-01

    An atomic oxygen fluence monitor was flown as part of the Materials International Space Station Experiment-6 (MISSE-6). The monitor was designed to measure the accumulation of atomic oxygen fluence with time as it impinged upon the ram surface of the MISSE 6B Passive Experiment Container (PEC). This was an active experiment for which data was to be stored on a battery-powered data logger for post-flight retrieval and analysis. The atomic oxygen fluence measurement was accomplished by allowing atomic oxygen to erode two opposing wedges of pyrolytic graphite that partially covered a photodiode. As the wedges of pyrolytic graphite erode, the area of the photodiode that is illuminated by the Sun increases. The short circuit current, which is proportional to the area of illumination, was to be measured and recorded as a function of time. The short circuit current from a different photodiode, which was oriented in the same direction and had an unobstructed view of the Sun, was also to be recorded as a reference current. The ratio of the two separate recorded currents should bear a linear relationship with the accumulated atomic oxygen fluence and be independent of the intensity of solar illumination. Ground hyperthermal atomic oxygen exposure facilities were used to evaluate the linearity of the ratio of short circuit current to the atomic oxygen fluence. In flight, the current measurement circuitry failed to operate properly, thus the overall atomic oxygen mission fluence could only be estimated based on the physical erosion of the pyrolytic graphite wedges. The atomic oxygen fluence was calculated based on the knowledge of the space atomic oxygen erosion yield of pyrolytic graphite measured from samples on the MISSE 2. The atomic oxygen fluence monitor, the expected result and comparison of mission atomic oxygen fluence based on the erosion of the pyrolytic graphite and Kapton H atomic oxygen fluence witness samples are presented in this paper.

  10. Oxygen diffusion in cuprate superconductors

    SciTech Connect

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.

  11. Search For Oxygen in Cool DQ White Dwarf Atmospheres

    E-print Network

    M. Kilic; D. E. Winget; T. von Hippel; D. F. Lester; D. Saumon

    2002-09-15

    We report new infrared spectroscopic observations of cool DQ white dwarfs by using Coolspec on the 2.7m Harlan-Smith Telescope. DQs have helium-rich atmospheres with traces of molecular carbon thought to be the result of convective dredge-up from their C/O interiors. Recent model calculations predict that oxygen should also be present in DQ atmospheres in detectable amounts. Our synthetic spectra calculations for He-rich white dwarfs with traces of C and O indicate that CO should be easily detected in the cool DQ atmospheres if present in the expected amounts. Determination of the oxygen abundance in the atmosphere will reveal the C/O ratio at the core/envelope boundary, constraining the important and uncertain ^{12}C(alpha,gamma)^{16}O reaction rate.

  12. Oxygen Gas Phase Abundance Revisited

    E-print Network

    M. K. André; C. M. Oliveira; J. C. Howk; R. Ferlet; J. -M. Désert; G. Hébrard; S. Lacour; A. Lecavelier des Étangs; A. Vidal-Madjar; H. W. Moos

    2003-03-26

    We present new measurements of the interstellar gas-phase oxygen abundance along the sight lines towards 19 early-type galactic stars at an average distance of 2.6 kpc. We derive O {\\small I} column densities from {\\it HST}/STIS observations of the weak 1355 \\AA intersystem transition. We derive total hydrogen column densities [N(H {\\small I})+2N(H$_2$)] using {\\it HST}/STIS observations of \\lya and {\\it FUSE} observations of molecular hydrogen. The molecular hydrogen content of these sight lines ranges from f(H$_2$) = 2N(H$_2$)/[N(H {\\small I})+2N(H$_2$)] = 0.03 to 0.47. The average $$ of 6.3$\\times10^{21}$ cm$^{-2}$ mag$^{-1}$ with a standard deviation of 15% is consistent with previous surveys. The mean oxygen abundance along these sight lines, which probe a wide range of galactic environments in the distant ISM, is 10$^6$ \\oh = $408 \\pm 13$ (1 $\\sigma$ in the mean). %$({\\rm O/H})_{gas} = 408 \\pm 14$(1 $\\sigma$). We see no evidence for decreasing gas-phase oxygen abundance with increasing molecular hydrogen fraction and the relative constancy of \\oh suggests that the component of dust containing the oxygen is not readily destroyed. We estimate that, if 60% of the dust grains are resilient against destruction by shocks, the distant interstellar total oxygen abundance can be reconciliated with the solar value derived from the most recent measurements %by Holweger and by Allende Prieto, Lambert & Asplund: of 10$^6$ \\oh$_\\odot$ = 517 $\\pm$ 58 (1 $\\sigma$). We note that the smaller oxygen abundances derived for the interstellar gas within 500 pc %by Meyer, Cardelli & Jura or from nearby B star surveys are consistent with a local elemental deficit.

  13. Comparison of an oxygen concentrator and wall oxygen in the assessment of patients undergoing long term oxygen therapy assessment.

    PubMed

    Bolton, C E; Annandale, J A; Ebden, P

    2006-01-01

    Long term oxygen therapy (LTOT) is a recognised management option for hypoxaemic patients with chronic respiratory disease. Formal assessment is required which is usually conducted in the hospital and performed on piped oxygen to ensure correction of the hypoxaemia. However, an oxygen concentrator is the standard oxygen source for the patient at home who requires LTOT. The oxygen concentration delivered is lower from a concentrator than piped oxygen. Here, we present a study of ten hypoxaemic patients using both delivery sources in a cross-over design. The partial pressure of oxygen was lower in patients when receiving oxygen from a concentrator, p < 0.05. This encourages the Clinician to consider formal assessments on an oxygen concentrator in order to ensure that the hypoxaemia will be corrected when they are prescribed a concentrator for home use. PMID:16509177

  14. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    ERIC Educational Resources Information Center

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  15. Effects of Oxygen Transport on the Areal Hypolimnetic Oxygen Deficit

    NASA Astrophysics Data System (ADS)

    Stauffer, Robert E.

    1987-10-01

    Using a modified flux gradient technique, transmetalimnetic oxygen transport was evaluated in Lakes Mendota and Delavan, two eutrophic Wisconsin basins featuring moderate depth (17 < zmax < 25 m), good wind exposure, and classic clinograde oxygen profiles. The biweekly fluxes intensified between mid-May and late July 1972, mainly on account of seasonal steepening of the metalimnetic O2 gradients. Fluxes also increased sharply during windy intervals characterized by accelerated transmetalimnetic heat fluxes. The fluxes across the lower epilimnetic boundary exceed those across the lower metalimnetic boundary; this differential is consistent with the metalimnion's role as an oxidation zone in these turbid lakes. The vertical fluxes are a large but variable (over time) fraction of the net areal oxygen deficit in both lakes, thus complicating statistical analysis of seasonal and intergenerational trends in lake productivity using the areal hypolimnetic oxygen deficit method. Even after correcting for the effects of O2 transport, the deficit in Lake Mendota exceeds that in Delavan following the onset of hypolimnetic anoxia in the shallower lake. This difference likely results, in part, from transmetalimnetic fluxes of reducing substances (CH4, NH3, etc.) into the epilimnion.

  16. Multiphase flow calculation software

    DOEpatents

    Fincke, James R. (Idaho Falls, ID)

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  17. Waste Package Lifting Calculation

    SciTech Connect

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  18. Pilot Plant Makes Oxygen Difluoride

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F.; Lawton, Emil A.

    1989-01-01

    Pilot plant makes oxygen difluoride highly-energetic, space-storable oxidizer not made commercially. Designed to handle reactants, product, and byproduct, most of which highly reactive, corrosive, and toxic. Oxygen difluoride evolves continuously from reactor containing potassium hydroxide in water at 10 degree C. Collection tanks alternated; one filled while other drained to storage cylinder. Excess OF2 and F2 dissipated in combustion of charcoal in burn barrel. Toxic byproduct, potassium fluoride, reacted with calcium hydroxide to form nontoxic calcium fluoride and to regenerate potassium hydroxide. Equipment processes toxic, difficult-to-make substance efficiently and safely.

  19. Monatomic Oxygen Makes Materials Biocompatible

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn; Koontz, Steven L.

    1993-01-01

    Treatment with monatomic oxygen activates surfaces of biomedical and biotechnical materials without adversely affecting properties of bulk and without introducing toxic or otherwise dangerous solvent residues. Treatment used to create carpetlike texture increasing surface area and encouraging cells to adhere and grow. On silicone tubing for vascular implants, carpet surface improves acceptance by body. On polymer beads and vessels, surface increases effectiveness of growing, storing, and separating cell cultures. Monatomic oxygen relatively abundant in upper atmosphere of Earth, thus treatments carried out on Space Shuttle missions. Alternatively, one of several high-energy neutral-beam devices used in terrestrial laboratories.

  20. A lithium oxygen secondary battery

    NASA Technical Reports Server (NTRS)

    Semkow, Krystyna W.; Sammells, Anthony F.

    1987-01-01

    Some recent work on a lithium-oxygen secondary battery is reported in which stabilized zirconia oxygen vacancy conducting solid electrolytes were used for the effective separation of respective half-cell reactions. The electroactive material consisted of alloys possessing the general composition Li(x)FeSi2 immersed in a ternary molten salt comprising LiF, LiCl, and Li2O. The manufacture of the cell is described, and discharge-current voltage curves for partially charged cells are shown and discussed. A galvanostatic IR free-changing curve and an IR-free charge-discharge curve are also shown.

  1. High Temperature Sorbents for Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  2. Evaluation of worn SSME low pressure liquid oxygen turbopump bearing

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Kannel, J. W.

    1978-01-01

    The larger of two ball bearings used to support the rotor of the low pressure liquid oxygen turbopump in each of the shuttle main engines was analyzed to identify the cause of severe internal wear. The actual operating loads were calculated along with their direction and length of time at each load based on the size and location of the race contact paths. It is suggested that the engine component design be modified to reduce bearing stress and enhance lubrication.

  3. A molecular dynamics study of oxygen ion diffusion in A-site ordered perovskite PrBaCo(2)O(5.5): data mining the oxygen trajectories.

    PubMed

    Chen, Chi; Chen, Dengjie; Ciucci, Francesco

    2015-03-28

    Molecular dynamics (MD) simulations have been widely used to study oxygen ion diffusion in crystals. In the data analysis, one typically calculates the mean squared displacements to obtain the self-diffusion coefficients. Further information extraction for each individual atom poses significant challenges due to the lack of general methods. In this work, oxygen ion diffusion in A-site ordered perovskite PrBaCo2O5.5 is studied using MD simulations and the oxygen migration is analyzed by k-means clustering, a machine learning algorithm. The clustering analysis allows the tracking of each individual oxygen jump along with its corresponding location, i.e., oxygen site in BaO, PrO0.5 and CoO2 layers. Therefore it increases the understanding of the factors influencing oxygen diffusion. For example, it is found that the oxygen occupation fraction in the PrO0.5 layers increases with temperature, while in the CoO2 layers it decreases with temperature. Additionally, the activation enthalpies of oxygen jumps from CoO2 to CoO2, CoO2 to PrO0.5 and PrO0.5 to CoO2 are 0.22 eV, 0.54 eV and 0.34 eV, respectively, exhibiting anisotropic characteristics. Furthermore, the dwell times of oxygen atoms suggest that they are highly mobile in PrO0.5 layers. Combining the analysis of activation enthalpies and dwell times, it is suggested that the oxygen transport is fast within the CoO2 layers while the PrO0.5 layers work as oxygen vacancy reservoirs. PMID:25716049

  4. CRYOGENICS GAS LAW CALCULATION (REQUIRED FOR USE OF LIQUID NITROGEN IN EXPERIMENTS)

    E-print Network

    Prodiæ, Aleksandar

    CRYOGENICS ­ GAS LAW CALCULATION (REQUIRED FOR USE OF LIQUID NITROGEN IN EXPERIMENTS) Worst-case Scenario in Oxygen depletion by liquid nitrogen spill: the entire contents of the Dewar or storage tank

  5. Oxygen flux into the aberrant cornea.

    PubMed

    Kwok, L S

    1986-04-01

    Polarographic oxygen sensors placed on the postsurgical human cornea indicate subnormal oxygen uptake rates. Given the nature of the method of measurement (due to Hill and Fatt), this implies that epithelial oxygen consumption rate is reduced post-surgically. However, other studies using the Rasson-Fatt method report no difference in corneal oxygen uptake through a thick soft contact lens after unilateral surgery. Application of a recently described three-layer computer model of corneal oxygen distribution suggests that the difference between normal and postsurgical corneal oxygen flux is greater at high precorneal oxygen tensions (the measurement area of the Hill-Fatt method). In contrast, the difference is small at low precorneal oxygen tensions, which would tend to confound efforts to detect a difference in postsurgical corneal oxygen uptake using the Rasson-Fatt method. This probably explains the null results reported previously. PMID:3518468

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the Archimedes method. The bulk density was 5.029 and 5.57 g/cc for LSFT and dual phase membranes, respectively. The microstructure of the dual phase membrane was analyzed using SEM. It is evident from the micrograph that the microstructure is composed of dual phases. The dense circular regions are enclosed by the less dense, continuous phase which accommodates most of the pores. The pores are normally aggregated and found clustered along the dense regions where as the dense regions do not have pores. Upon closer observation of the micrograph it is revealed that the dense region has a clear circular cleavage or crack as their boundary. The circular cleavage clearly encompasses a dense region and which consists of no pore or any flaw that is visible. The size distribution of the dense, discontinuous regions is varying from 5 to 20 {micro}m with a D{sub 50} of 15 {micro}m. The grain size distribution was estimated from the micrographs using image analysis and a unimodal distribution of grains was observed with an average grain size of 1.99 {micro}m. The chemical compositions of the membranes were analyzed using EDS analysis and no other impurities were observed. The XRD analysis was carried out for the membranes and the phase purity was confirmed. The fracture toughness of LSFT membranes at room temperature has to be calculated using the Vickers indentation method. An electrochemical cell has been designed and built for measurements of the ionic conductivity by the use of blocking electrodes. Preliminary measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Modifications to the apparatus to improve the data quality have been completed. Electron microscopy studies of the origin of the slow kinetics on reduction of ferrites have been initiated. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradient

  7. Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker.

    PubMed

    Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold

    2015-01-01

    Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7?±?17.8%) and oxygen extraction (34.6?±?24.1%; p?oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p?oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758

  8. Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker

    PubMed Central

    Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold

    2015-01-01

    Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7?±?17.8%) and oxygen extraction (34.6?±?24.1%; p?oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p?oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758

  9. Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia

    NASA Technical Reports Server (NTRS)

    Good, Brian

    2011-01-01

    Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.

  10. OXYGEN AERATION AT NEWTOWN CREEK

    EPA Science Inventory

    A successful initial feasibility investigation of oxygen aeration at the 0.11-cu m/sec (2.5-mgd) municipal wastewater treatment plant in Batavia, New York, prompted a larger demonstration at New York City's 13.6-cu m/sec (310-mgd) Newtown Creek Plant. A 34-mo evaluation was perfo...

  11. Integrated-Optic Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Mendoza, Edgar A.; Lieberman, Robert A.

    2004-01-01

    Compact optical oxygen sensors with self-calibration capabilities are undergoing development. A sensor of this type features a single-chip, integrated-optic design implemented by photolithographic fabrication of optical waveguides in a photosensitive porous glass. The porosity serves as both a matrix for retention of an oxygen-sensitive fluorescent indicator chemical and a medium for diffusion of oxygen to the chemical from the ambient air to be monitored. Each sensor includes at least one such waveguide exposed to the atmosphere and at least one covered with metal for isolation from the atmosphere. The covered one serves as a reference channel. In operation, the concentration of oxygen is deduced from the intensity and lifetime of the fluorescence in the exposed channel, with the help of calibration data acquired via the reference channel. Because the sensory chemical is placed directly in and throughout the cross section of the light path, approximately 99 percent of the light in the waveguide is available for interaction with the chemical, in contradistinction to only about 1 percent of the light in an optical sensor that utilizes evanescentwave coupling. Hence, a sensor of this type is significantly more sensitive.

  12. Advances in atomic oxygen simulation

    NASA Technical Reports Server (NTRS)

    Froechtenigt, Joseph F.; Bareiss, Lyle E.

    1990-01-01

    Atomic oxygen (AO) present in the atmosphere at orbital altitudes of 200 to 700 km has been shown to degrade various exposed materials on Shuttle flights. The relative velocity of the AO with the spacecraft, together with the AO density, combine to yield an environment consisting of a 5 eV beam energy with a flux of 10(exp 14) to 10(exp 15) oxygen atoms/sq cm/s. An AO ion beam apparatus that produces flux levels and energy similar to that encountered by spacecraft in low Earth orbit (LEO) has been in existence since 1987. Test data was obtained from the interaction of the AO ion beam with materials used in space applications (carbon, silver, kapton) and with several special coatings of interest deposited on various surfaces. The ultimate design goal of the AO beam simulation device is to produce neutral AO at sufficient flux levels to replicate on-orbit conditions. A newly acquired mass spectrometer with energy discrimination has allowed 5 eV neutral oxygen atoms to be separated and detected from the background of thermal oxygen atoms of approx 0.2 eV. Neutralization of the AO ion beam at 5 eV was shown at the Martin Marietta AO facility.

  13. Safety data sheet Oxygen, compressed.

    E-print Network

    Wikswo, John

    Safety data sheet Oxygen, compressed. Creation date : 27.01.2005 Version : 1.3 GB / E SDS No.3. Details of the supplier of the safety data sheet Company identification BOC, Priestley Road, Worsley376 In case of fire: Stop leak if safe to do so. Precautionary Statement Storage P403 Store in a well

  14. DISSOLVED OXYGEN DIURNAL FLUX STUDY

    EPA Science Inventory

    Stream monitoring study of a 24 Western Corn Belt Plains streams designed to assess any correlation of nutrient loads and the level of dissolved oxygen in wadeable streams and any subsequent affect on aquatic life. Study currently being conducted under a cooperative agreement be...

  15. Sea surface water temperatures over the period 18841983 reconstructed from oxygen isotope ratios of a bivalve mollusk

    E-print Network

    Schöne, Bernd R.

    of a bivalve mollusk shell (Arctica islandica, southern North Sea) Bernd R. Schfnea,*, Antuane´ D. Freyre­1983 calculated from oxygen isotope ratios (d18 Oaragonite) of Arctica islandica (L.), a bivalve mollusk shell Elsevier B.V. All rights reserved. Keywords: Sea surface temperature; Bivalve; Oxygen isotopes; Increment

  16. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    PubMed Central

    Del Castillo, Luis F.; da Silva, Ana R. Ferreira; Hernández, Saul I.; Aguilella, M.; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2014-01-01

    Purpose We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2) obtained from in vivo estimation previously reported by other authors.1 Methods Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2) are considered at the interface cornea-tears film. Conclusion Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. PMID:25649636

  17. Assessments for oxygen therapy in COPD: are we under correcting arterial oxygen tensions?

    PubMed

    Dheda, K; Lim, K; Ollivere, B; Leftley, J; Lampe, F C; Salisbury, A; Dilworth, J P; Rajakulasingam, R K; Rajakulasingum, R K

    2004-12-01

    There is little data about the use of different oxygen sources during assessment for long-term oxygen therapy (LTOT) and how this impacts upon blood oxygen tensions and prescribed flow rates. Patients with chronic obstructive pulmonary disease (COPD), n=30, had assessments for LTOT using both an oxygen-concentrator and piped hospital oxygen (wall-oxygen) as supply sources. In addition, a random survey of 64 hospitals was conducted to determine what source of oxygen supply was used during assessments. Wall-oxygen was used by 89% of hospitals to perform assessments. During assessments, the median oxygen flow required to achieve an arterial oxygen tension (Pa,O2) >8 kPa was significantly greater for an oxygen-concentrator than for wall-oxygen, with a median difference (range) in flow of 1 (0-3) L. This difference was most likely in those with an forced expiratory volume <30% of predicted. At an oxygen flow of 1 L.min(-1), the mean P(a,O2) using an oxygen-concentrator was significantly lower than that of the wall-oxygen value, with a difference of 1.32+/-1.19 kPa (mean+/-SD). The common practice of using wall-oxygen to perform assessments significantly underestimates the required oxygen-concentrator flow rate. This may have implications for the long-term effect of domiciliary oxygen therapy. PMID:15572538

  18. Experimental thermal conductivity, thermal diffusivity, and specific heat values for mixtures of nitrogen, oxygen, and argon

    NASA Technical Reports Server (NTRS)

    Perkins, R. A.; Cieszkiewicz, M. T.

    1991-01-01

    Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.

  19. Dose Calculation Spreadsheet

    Energy Science and Technology Software Center (ESTSC)

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses atmore »various downwind distances as specified by the user.« less

  20. A lenslet-based device for measuring oxygen saturation in the retina

    NASA Astrophysics Data System (ADS)

    Ramella-Roman, Jessica C.; Kandimalla, H.; Dinga, R.; Nabili, A.; Mathews, Scott A.; Nguyen, Q. D.

    2007-02-01

    Diabetic retinopathy (DR) is a complication of diabetes affecting up to 80% of all diabetic patients. DR can lead to blindness and reduced quality of life. Some authors have hypothesized that changes in the flow dynamics associated with DR as well as changes in retinal oxygenation can lead to macular edema. Measurements of oxygen saturation in the retina could help understand the real mechanisms behind this condition. We present a novel spectroscopic imaging device to measure oxygen saturation in the retina. Our system uses a lenslet array to spatially and spectrocopically divide a fundus image. A three wavelengths algorithm is used to calculate oxygen saturation in small vessels. Only wavelengths in the 500 - 580 nm range are considered in order to minimize the wavelength dependence of the scattering from erythrocytes. Preliminary testing on healthy subjects showed values of oxygen saturation comparable to the one reported in the literature.