Science.gov

Sample records for calculated oxygen fugacity

  1. Armalcolite - An oxygen fugacity indicator

    NASA Technical Reports Server (NTRS)

    Stanin, F. T.; Taylor, L. A.

    1980-01-01

    Lunar armaloclites, (Fe, Mg)Ti2O5, contain appreciable amounts of Ti(3+) (less than 1 to 17% of Ti mole fraction). This is a function of the oxygen fugacity occurring at the time of its formation, with lower fugacities being reflected in higher Ti(3+) contents. Controlled cooling-rate and isothermal experimentation on synthetic analog and natural specimens of 70017 and 74275 have been used to calibrate an oxygen geobarometer. Most lunar rocks have followed crystallization paths in oxygen fugacity/T space such that the prevailing oxygen fugacity can be represented by a curve near parallel to the I/W buffer curve. The oxygen fugacity estimates derived from Ti(3+) considerations of armalcolites range from the iron/wustite curve to about 1.5 log units below.

  2. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    NASA Technical Reports Server (NTRS)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  3. Oxygen fugacity constraints on the southern African lithosphere

    NASA Astrophysics Data System (ADS)

    Daniels, Leon R. M.; Gurney, John J.

    1991-07-01

    Oxygen fugacities are calculated for olivinespinel orthopyroxene assemblages recovered from diamonds and the concentrate of the Dokolwayo kimberlite, Swaziland. In addition thermobarometric oxygen fugacities are obtained for chrome spinel-garnet peridotites and diamonds from several other southern African kimberlites. The southern African lithosphere appears to be laterally homogeneous with respect to oxygen fugacity. Vertically the oxygen fugacity of the lithospheric upper mantle decreases with an increase in pressure. Locally, oxygen fugacities calculated for Dokolwayo mineral assemblages are indicative of an upper mantle characterised by diverse redox conditions within the range FMQ-IW. Reduced oxygen fugacities, calculated for the majority of the Dokolwayo samples, suggest that CH4 may be the dominant carbon volatile species in the lower lithosphere. These reduced conditions also suggest that the Dokolwayo kimberlite is unlikely to be a product of redox melting, but may be the product of a thermal anomaly. Calculated equilibrium temperatures for olivine-spinel pairs from Dokolwayo diamonds and concentrate indicate that the upper mantle in the vicinity of Dokolwayo was characterised by cool subsolidus conditions.

  4. System Controls and Measures Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    Williams, R. J.

    1982-01-01

    System developed at Johnson Space Center controls and measures oxygen fugacity in high-temperature chemical research. A ceramic-electrolyte cell is the sensing element. All hardware needed to control gas flow and temperature and to measure cell electromotive force is included. An analytic balance allows in situ thermogravimetric sample analysis.

  5. Oxygen fugacities directly measured in magmatic gases

    USGS Publications Warehouse

    Sato, M.; Wright, T.L.

    1966-01-01

    An electrochemical device was used to measure the fugacity of oxygen (fO2) in holes drilled through the crust of Makaopuhi lava lake, Kilauea Volcano, Hawaii. Results obtained within 6 months of the lake formation show that log fO2 normally varies linearly with the reciprocal of the absolute temperature, and that chemical changes occurring in the cooling tholeiitic basalt are reflected in the fO2 values measured in the holes.

  6. Microprobe and oxygen fugacity study of armalcolite

    NASA Technical Reports Server (NTRS)

    Friel, J. J.

    1976-01-01

    The stability of synthetic armalcolite was determined as a function of oxygen fugacity with particular regard to the oxidation state of iron and titanium. The equilibrium pseudobrookite (armalcolite) composition was measured at 1200 C under various conditions of oxidation typical of the lunar environment. These data, when compared with published descriptions of mare basalts, provide information about the conditions of crystallization of armalcolite-bearing lunar rocks. Some information about the crystal chemistry of armalcolite was obtained from X-ray diffraction and electron microprobe analyses of synthetic armalcolite and Zr-armalcolite. Further data were gathered from a comparison of the Mossbauer spectra of a phase pure stoichiometric armalcolite and one containing appreciable amounts of trivalent titanium.

  7. The oxidation state of europium as an indicator of oxygen fugacity. [lunar and terrestrial rocks, achondritic meteorites

    NASA Technical Reports Server (NTRS)

    Drake, M. J.

    1975-01-01

    Empirical oxygen barometers based on Eu(2+)/Eu(3+) ratios in plagioclase feldspar and magmatic liquid were developed using Philpott's (1970) approach and the experimental data of Drake (1972). Oxygen fugacities calculated on the basis of Eu(2+)/Eu(3+) ratios for terrestrial basalts cluster tightly around 10 to the negative seventh power. Oxygen fugacities for Apollo 11 and 12 lunar ferrobasalts cluster tightly around 10 to the negative 12.7 power. Calculated oxygen fugacities for achondritic meteorites are lower than for lunar samples by several orders of magnitude.

  8. The color of meteoritic hibonite - an indicator of oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Ihinger, P. D.; Stolper, E.

    1986-05-01

    Hibonites similar in composition to those found in Ca-Al-rich inclusions change color from blue, to green, to orange, to nearly colorless as oxygen fugacity is increased at high temperature from below the iron-wustite buffer up to air. The development of the blue color is correlated with the growth of an absorption band at 715 nm in the optical spectra of the hibonites as the oxygen fugacity is reduced. The growth of this band is attributed to the increasing concentration of Ti(3+) in these hibonites with decreasing oxygen fugacity. The blue hibonites in meteorites reflect equilibration under reducing conditions based on the intensity of 715 nm band, it is estimated that the hibonite in the Blue Angel inclusion indicates an oxygen fugacity four to five orders of magnitude more oxidizing than that expected in the early solar nebula. This may be due to formation in an anomalously oxidizing region of the nebula or to oxidation during cooling or later alteration. The orange hibonites in Allende reflect oxygen fugacities approximately ten or more orders of magnitude more oxidizing than the expected primitive nebula; this color probably indicates alteration of initially more reduced (blue?) hibonites. The colorless hibonite in the HAL inclusion reflects highly oxidizing conditions and/or its low Ti content.

  9. Oxygen Fugacity of Basalts From Earth and Mars: Implications for Oxidation States of Terrestrial Planet Interiors

    NASA Astrophysics Data System (ADS)

    Herd, C.

    2004-12-01

    The oxidation state of a planetary interior plays an important role in the partitioning of elements between the planet's core and mantle, the geophysical properties of the mantle, the phase equilibria of igneous rocks, and the speciation of gases in the planet's atmosphere. Determining the oxidation state of the interior of the Moon, Mars, and differentiated asteroids is difficult, because planetary samples are dominated by basaltic igneous rocks. Direct mantle samples, such as mantle xenoliths and diamond inclusions, as benefit studies on Earth, are lacking. The oxidation state of these planets' interiors is inferred from the oxygen fugacity recorded in the basaltic samples. Basalts from Mars (martian meteorites) record oxygen fugacity ranging from near the IW buffer to 3 log units above ( QFM), by several methods. The range of igneous rocks on Earth overlaps, but ranges up to 7 log units above IW, with the most oxidized samples derived from island arcs. Studies of the relationship between the oxidation state of a basalt and that of its mantle source on the Earth provide potentially important contributions to the interpretation of martian basalt oxygen fugacity and the inferred oxidation state of the martian interior. Thermodynamic considerations of ferrous-ferric mineral equilibria in the spinel and garnet facies of the Earth's mantle dictate that the oxygen fugacity should decrease, relative to the QFM buffer, with increasing pressure. Ballhaus (1995) calculated a decrease of 0.6 log unit per GPa increase, assuming a constant bulk composition. In contrast, C-H-O equilibria have isopleths of opposing slope, such that fluid composition will be dominated by more reduced species (e.g., methane) at greater depths. Ballhaus and Frost (1994) argue that C-H-O buffering influences upwelling asthenosphere, particularly by the presence of graphite, and that the oxygen fugacity of a basalt at the surface depends on the depth at which first melting occurs. This depth is where the melt is separated from graphite, becomes buffered by ferrous-ferric equilibria, and undergoes a concomitant increase in relative oxygen fugacity with decreasing pressure. Thus they argue that OIB have higher oxygen fugacity relative to MORB because the former experience first melting at greater depth than the latter. Although the details of this model are debated, such as the relative role of C-H-O fluids and the assumption of constant bulk mantle composition, it is interesting to consider its application to the petrogenesis of basalts on Mars. Assuming a constant depth of first melting of 90 km on the Earth and Mars, at the same relative oxygen fugacity, and ferrous-ferric buffering subsequent to melting, the oxygen fugacity of each erupted basalt will be different, because of the different pressure-depth relationships on each planet. A depth of 90 km on Mars is equal to 1 GPa; therefore the expected increase in oxygen fugacity is only 0.6 log units. On Earth, the increase would be 2 log units ( 3 GPa). The dominant control on martian basalt oxygen fugacity appears to be the oxidation state of mantle sources, which may be inherited from the crystallization of a martian magma ocean at 4.5 Ga (e.g., Herd 2003; Borg and Draper 2003). This difference between basalts from the Earth and those from Mars may reflect a fundamental difference in planetary evolution; specifically, the preservation of "redox reservoirs" on Mars due to a lack of vigorous mantle convection. The corollary is that the oxidation state of the Earth's interior has been fundamentally altered from its initial state, by plate tectonics or other processes.

  10. Oxygen Fugacity Recorded by Xenoliths from Pacific Oceanic Islands

    NASA Astrophysics Data System (ADS)

    Wall, K.; Davis, F. A.; Cottrell, E.

    2014-12-01

    Oxygen fugacity (fO2) plays a vital role in determining mineral stability and depth of melting in the mantle. Several studies have used the spinel peridotite oxybarometer to estimate fO2; yet few data exist from ocean islands, despite the importance of fO2 to understanding ocean island basalt petrogenesis (Herzberg and Asimow, 2008). We report fO2 recorded by peridotite xenoliths from three ocean islands: Savai'i (average fO2 = QFM -1.4 to +0.9), Tahiti (QFM +0.6 to +0.7) and Tubuai (QFM -1.1 to +0.2). We calculate fO2 using methods and standards from Wood and Virgo (1989) and Wood (RiMG, 1990). Oxygen fugacities span a similar range to those reported for El Hierro, Oahu, and Tahiti by Ballhaus (1993): more reduced than arc peridotites, but more oxidized than abyssal peridotites. Spinels in several of the xenoliths are heterogeneous and record a range of apparent fO2 at the mm scale. We propose two distinct mechanisms for introducing fO2 heterogeneity: melt refertilization (Tubuai) and diffusive reequilibration (Savai'i and Tubuai). Spinels in one Tubuai sample record increasing fO2 from QFM-0.6 in the xenolith interior to +1.1 at the basalt interface. Apparent fO2 recorded by these spinels correlate with TiO2, an indicator of melt refertilization (Pearce et al., 2000). We suggest that spinels from the xenolith interior record the relatively low fO2 conditions of the lithospheric mantle, while host basalt has oxidized near-interface spinels. Uniformly high TiO2, fO2, and low olivine Mg# in Tahitian xenoliths from this study may indicate that refertilization has reset the fO2 recorded by these rocks. Closed-system diffusive reequilibration, caused by changes in temperature, can also change the fO2 recorded by a peridotite. In samples from Savai'i and Tubuai with multiple spinel habits, fine intergrowth spinels and the rims of large, equant spinels record higher apparent fO2 and lower Al2O3 than cores of large grains. Canil and O'Neill (1996) suggest that the MgAl2O4 component in spinel dissolves into pyroxenes as a function of increasing temperature, leaving a lower modal proportion of Fe3+-rich spinel. Because we find no evidence for melt refertilization, we suggest that thermal interaction with a plume caused subsolidus, partial reequilibration that increased the fO2 recorded by these peridotites prior to eruption.

  11. Oxygen isotope diffusion and zoning in diopside: The importance of water fugacity during cooling

    SciTech Connect

    Edwards, K.J.; Valley, J.W.

    1998-07-01

    The oxygen isotope ratio of diopside correlates with crystal size in many high grade marbles, permitting the intracrystalline self-diffusion rate of oxygen in diopside to be empirically evaluated. Small (75--300 {micro}m) and large (1.2--1.5 mm) diopside grains were analyzed in bulk for their oxygen isotope ratios by laser extraction. Cooling histories were calculated using the Fast Grain Boundary diffusion model, assuming equilibrium at peak metamorphic temperatures (700--800 C), slow cooling of 1.5--4 C/Ma, and experimentally determined diffusion coefficients for oxygen in minerals. Measurements and calculations to predict differences in {delta}{sup 18}O between large and small diopside grains lead to the following conclusions. (1) Natural diopsides in this study exhibit variations in oxygen isotope ratios between grains of different size, which are related to the peak temperature, cooling rate, and water fugacity during cooling. Diffusion distances are properly modeled by the size of an entire grain; there is no evidence for subdomains. (2) In slowly cooled high grade metamorphic terrains, water fugacity can be highly variable from rock to rock during cooling. For many rocks, water fugacity is the most important constraint on the degree of oxygen isotope retrograde exchange.

  12. The Relationship Between Clinopyroxene Fe3+ Content and Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    McCanta, M. C.; Rutherford, M. J.; Dyar, M. J.; Delaney, J. S.

    2004-01-01

    The intrinsic oxygen fugacity (fO2) imposed on a magma has the ability to influence the crystallization sequence of the melt, as well as the composition of the resulting minerals. fO2 is an easily controlled parameter in the lab, either through gas-mixing equilibria or with a solid-state buffer assemblage. In nature, the fO2 of a closed system is imposed on the system internally through multivalent equilibria involving the phenocryst-melt assemblage. This results in a characteristic oxidation state. The physical parameter used to quantify oxidation state is oxygen fugacity. Iron is the only major rock forming element in basaltic melts to exist in multiple valence states and, therefore, it is commonly used to assess fO2. Traditional methods to quantify fO2 utilize the ferric content of glasses or coexisting Fe-Ti oxides. However, many rocks, such as the Martian meteorites, do not contain the necessary phases or have oxides which have suffered reequilibration, thereby rendering them unmeasureable by current techniques. For these rocks, new methods, utilizing other phases are needed. Mafic minerals have Fe(3+)/SigmaFe ratios that are a function of two factors: 1) crystal chemistry and 2) their intrinsic fO2 during crystallization. Olivine and orthopyroxene, for example, have steric constraints on the extent to which Fe(3+) can be incorporated in their structures, and may not record changes in magmatic fO2 in a way that can easily be measured. The chemistry of clinopyroxene, however, allows for extensive incorporation of Fe(3+) in its crystal structure, making it a potentially useful oxybarometer. To date, there have been few, if any, systematic experimental studies of the variation of the Fe(3+)/SigmaFe ratio as a function of fO2 in clinopyroxene. This study seeks to address this lack of data.

  13. Control and monitoring of oxygen fugacity in piston cylinder experiments

    NASA Astrophysics Data System (ADS)

    Matjuschkin, Vladimir; Brooker, Richard A.; Tattitch, Brian; Blundy, Jon D.; Stamper, Charlotte C.

    2015-01-01

    We present a newly developed capsule design that resolves some common problems associated with the monitoring and control of oxygen fugacity ( fO2) in high-pressure piston cylinder experiments. The new fO2 control assembly consists of an AuPd outer capsule enclosing two inner capsules: one of AuPd capsule containing the experimental charge (including some water), and the other of Pt containing a solid oxygen buffer plus water. The inner capsules are separated by crushable alumina. The outer capsule is surrounded by a Pyrex sleeve to simultaneously minimise hydrogen loss from the cell and carbon infiltration from the graphite furnace. Controlled fO2 experiments using this cell design were carried out at 1.0 GPa and 1,000 C. We used NiPd, CoPd and (Ni, Mg)O fO2 sensors, whose pressure sensitivity is well calibrated, to monitor the redox states achieved in experiments buffered by Re-ReO2, Ni-NiO and Co-CoO, respectively. Results for the fO2 sensors are in good agreement with the intended fO2 established by the buffer, demonstrating excellent control for durations of 24-48 h, with uncertainties less than 0.3 log bar units of fO2.

  14. Dependence of dislocation creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle

    NASA Astrophysics Data System (ADS)

    Keefner, J. W.; Mackwell, S. J.; Kohlstedt, D. L.; Heidelbach, F.

    2011-05-01

    Significant variations in flow behavior are known to exist both vertically and laterally in Earth's upper mantle. The sources of such variation may be thermal, compositional, or reflect differences in the chemical activity of components, such as oxygen, silica, and water. We report on the effects of oxygen fugacity on dislocation creep of dunite, with a view to understanding potential strength heterogeneity in the mantle. Although room pressure experiments on single crystals of olivine have shown a clear dependence of creep rate on oxygen fugacity, no prior deformation study of polycrystalline olivine-rich rocks has demonstrated such a dependency under high-pressure conditions. In this study we performed a series of dry creep experiments on a natural dunite under carefully controlled thermochemical conditions, including oxygen fugacity. The samples, cored from coarse-grained heim dunite with a grain size of 0.9 mm, were deformed under triaxial compression at oxygen fugacities fixed by either the iron/wstite or the nickel/nickel oxide solid state buffers, temperatures between 1150 and 1277C, and differential stresses up to 300 MPa. The results of a global fit to all experimental data indicate a power law dependence of creep rate on oxygen fugacity, with an oxygen fugacity exponent of m = 0.20 0.01, n = 3.6 0.1, A = 102.60.3 s-1 MPa-3.6 Pa-0.2, and an activation energy for creep of 449 7 kJ/mol. This activation energy is significantly less than the commonly used value of 535 kJ/mol because the earlier experiments made no corrections for the effects of oxygen fugacity. When applied to planetary interiors, an increase in oxygen fugacity by a factor of 103.5, from the iron/wstite to the fayalite-magnetite-quartz buffers, will result in a factor of 5 decrease in viscosity.

  15. Oxygen fugacity control in piston-cylinder experiments: a re-evaluation

    NASA Astrophysics Data System (ADS)

    Jakobsson, Sigurdur; Blundy, Jon; Moore, Gordon

    2014-06-01

    Jakobsson (Contrib Miner Petrol 164(3):397-407, 2012) investigated a double capsule assembly for use in piston-cylinder experiments that would allow hydrous, high-temperature, and high-pressure experiments to be conducted under controlled oxygen fugacity conditions. Using a platinum outer capsule containing a metal oxide oxygen buffer (Ni-NiO or Co-CoO) and H2O, with an inner gold-palladium capsule containing hydrous melt, this study was able to compare the oxygen fugacity imposed by the outer capsule oxygen buffer with an oxygen fugacity estimated by the AuPdFe ternary system calibrated by Barr and Grove (Contrib Miner Petrol 160(5):631-643, 2010). H2O loss or gain, as well as iron loss to the capsule walls and carbon contamination, is often observed in piston-cylinder experiments and often go unexplained. Only a few have attempted to actually quantify various aspects of these changes (Brooker et al. in Am Miner 83(9-10):985-994, 1998; Truckenbrodt and Johannes in Am Miner 84:1333-1335, 1999). It was one of the goals of Jakobsson (Contrib Miner Petrol 164(3):397-407, 2012) to address these issues by using and testing the AuPdFe solution model of Barr and Grove (Contrib Miner Petrol 160(5):631-643, 2010), as well as to constrain the oxygen fugacity of the inner capsule. The oxygen fugacities of the analyzed melts were assumed to be equal to those of the solid Ni-NiO and Co-CoO buffers, which is incorrect since the melts are all undersaturated in H2O and the oxygen fugacities should therefore be lower than that of the buffer by 2 log.

  16. The effect of oxygen fugacity on the solubility of carbon-oxygen fluids in basaltic melt

    NASA Technical Reports Server (NTRS)

    Pawley, Alison R.; Holloway, John R.; Mcmillan, Paul F.

    1992-01-01

    The solubility of CO2-CO fluids in a midocean ridge basalt have been measured at 1200 C, 500-1500 bar, and oxygen fugacities between NNO and NNO-4. In agreement with results of previous studies, the results reported here imply that, at least at low pressures, CO2 dissolves in basaltic melt only in the form of carbonate groups. The dissolution reaction is heterogeneous, with CO2 molecules in the fluid reacting directly with reactive oxygens in the melt to produce CO3(2-). CO, on the other hand, is insoluble, dissolving neither as carbon, molecular CO, nor CO3(2-). It is shown that, for a given pressure and temperature, the concentration of dissolved carbon-bearing species in basaltic melt in equilibrium with a carbon-oxygen fluid is proportional to the mole fraction of CO2 in the fluid, which is a function of fO2. At low pressures CO2 solubility is a linear function of CO2 fugacity at constant temperatures.

  17. The effect of the oxygen fugacity on carbon speciation in the Earths mantle

    NASA Astrophysics Data System (ADS)

    Stagno, V.; Frost, D. J.; McCammon, C. A.

    2009-12-01

    The mantle is the largest identified reservoir for carbon on Earth, but the residence time of carbon in the mantle and its release depends crucially on the conditions under which it is stable within melts or fluids, compared with conditions under which it forms solid phases. At a given pressure and temperature the stability of carbonate- bearing minerals and melts (carbonatites and kimberlites) relative to graphite/diamond depends on the oxygen fugacity. In this study, the oxygen fugacities buffered by equilibria involving both elemental carbon (graphite or diamond) and carbonate (minerals or melts) were determined in simplified Fe-Ca-Mg-Si-O-C model peridotite at pressures between 2.5 and 25 GPa and temperatures at and above the carbonated peridotite solidus (1100-1600C). Oxygen fugacities were measured using an Ir-Fe alloy as a sliding redox sensor. The results show that as the carbonate peridotite solidus is crossed at various pressures, the increasing SiO2 content of the melt with temperature decreases the activity of the carbonate component which, in turn, drives the equilibrium oxygen fugacity down compared to the extrapolation of carbon/carbonate equilibrium from previous studies. There is evidence from mantle xenoliths that the effect of pressure on ferric/ferrous equilibria involving major mantle minerals drives the oxygen fugacity down with increasing depth. In order to infer the carbon speciation with depth, we compare our measurements of the oxygen fugacity of carbon/carbonate equilibria with the expected oxygen fugacity of the mantle. Beneath mid-ocean ridges, the relative oxygen fugacity of peridotitic rocks should increase with decreasing depth. In this scenario it is possible that diamond and graphite are stable at depth, but become oxidized as a result of decompression on the ferric/ferrous equilibria of a garnet peridotite along the adiabat. Only once graphite or diamonds are oxidized can the resulting carbonate produce small degree carbonate-rich melts with dramatic implications for the trace element signature and physical properties of erupted MORBs. In addition, we performed experiments in Fe-Ca-Mg-Al-Si-O-C system to determine the Fe3+ content of garnet at an oxygen fugacity buffered by the carbon-carbonate equilibria. The ferric iron contents of the garnet in the run products were determined by 57Mssbauer spectroscopy. The results from these experiments allow the redox conditions for carbon and carbonate stability to be compared directly to the Fe3+/Fetot ratio on mantle rocks. Our results imply that: (1) most of the upper mantle and transition zone are in the diamond stability field and carbonates can melt in a fertile peridotite only at depths less than 100 km. Melting at greater depths likely occurs in mantle that is more oxidised (i.e. contains more Fe3+) than the most oxidised garnet peridotite samples; (2) measurements of Fe3+/Fetot ratios of garnets in equilibrium with graphite and carbonate are slightly inconsistent with the predictions of previously published oxythermobarometers; (3) the effect of pressure on the carbonate/carbon buffer indicates that the diamond stability field may not persist deep into the lower mantle with carbonates being the stable host of carbon.

  18. The speciation of carbon in the Earth's mantle as a function of oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Stagno, Vincenzo; Frost, Daniel J.; McCammon, Catherine

    2010-05-01

    The residence time of carbon in the mantle depends crucially on the conditions under which it is stable within melts or fluids, compared with conditions under which it forms solid phases. At a given pressure and temperature the stability of carbonate- bearing minerals and melts (carbonatites and kimberlites) relative to graphite/diamond depends on oxygen fugacity. In this study, the oxygen fugacity buffered by equilibria involving both elemental carbon (graphite or diamond) and carbonate (minerals or melts) were determined in a simplified Fe-Ca-Mg-Si-O-C model peridotite composition at pressures between 2.5 and 25 GPa and temperatures at and above the carbonated peridotite solidus (1100-1600C). Oxygen fugacities were measured using iridium-iron alloy as a sliding redox sensor. Above the carbonate peridotite solidus the silicate component of the melt increases with increasing temperature. The results show that this dilution of the carbonate melt with increasing temperature drives the equilibrium oxygen fugacity down compared to the extrapolation of carbon/carbonate equilibrium from previous studies. In addition we have performed experiments in the Fe-Ca-Mg-Al-Si-O-C system to determine the Fe3+ content of garnet at an oxygen fugacity buffered by the carbon-carbonate equilibria in a peridotite assemblage. The ferric iron contents of the garnet in the run products were determined by 57Moessbauer spectroscopy. The results from these experiments allow the redox conditions of carbon and carbonate stability to be compared directly to the expected Fe3+/Fetot ratios of mantle rocks. Further experiments were performed at pressures compatible with the Earth's mid lower mantle (approximately 50 GPa) and 1600-1700 C using sintered diamond anvils. Such runs allowed us to estimate the likely redox conditions occurring in the lower mantle at which elemental carbon (diamond) might be equilibrated with carbonate, ferropericlase and a metal phase. Our results imply that: (1) in up-welling mantle beneath mid-ocean ridges, the relative oxygen fugacity of peridotitic rocks will increase on decompression. Diamond and then graphite are the dominant C-bearing phases at depth, but become oxidized by ferric Fe in garnet as a result of decompression. Only once graphite is oxidized, which will occur at relatively shallow depths, can small degree carbonate-rich melts form; (2) measurements of Fe3+/?Fe ratios of garnets in equilibrium with graphite and carbonate are inconsistent with extrapolations of previously published oxythermobarometers; (3) the effect of pressure on the carbonate/carbon buffer indicates that the diamond stability field may not persist deep into the lower mantle, with carbonates being the stable host for carbon, probably in equilibrium with Fe-Ni carbide.

  19. Technical Update: Johnson Space Center system using a solid electrolytic cell in a remote location to measure oxygen fugacities in CO/CO2 controlled-atmosphere furnaces

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Williams, R. J.; Le, L.; Wagstaff, J.; Lofgren, G.; Lanier, A.; Carter, W.; Roshko, A.

    1993-01-01

    Details are given for the design and application of a (one atmosphere) redox-control system. This system differs from that given in NASA Technical Memorandum 58234 in that it uses a single solid-electrolytic cell in a remote location to measure the oxygen fugacities of multiple CO/CO2 controlled-atmosphere furnaces. This remote measurement extends the range of sample-furnace conditions that can be measured using a solid-electrolytic cell, and cuts costs by extending the life of the sensors and by minimizing the number of sensors in use. The system consists of a reference furnace and an exhaust-gas manifold. The reference furnace is designed according to the redox control system of NASA Technical Memorandum 58234, and any number of CO/CO2 controlled-atmosphere furnaces can be attached to the exhaust-gas manifold. Using the manifold, the exhaust gas from individual CO/CO2 controlled atmosphere furnaces can be diverted through the reference furnace, where a solid-electrolyte cell is used to read the ambient oxygen fugacity. The oxygen fugacity measured in the reference furnace can then be used to calculate the oxygen fugacity in the individual CO/CO2 controlled-atmosphere furnace. A BASIC computer program was developed to expedite this calculation.

  20. Platinum Partitioning at Low Oxygen Fugacity: Implications for Core Formation Processes

    NASA Technical Reports Server (NTRS)

    Medard, E.; Martin, A. M.; Righter, K.; Lanziroti, A.; Newville, M.

    2016-01-01

    Highly siderophile elements (HSE = Au, Re, and the Pt-group elements) are tracers of silicate / metal interactions during planetary processes. Since most core-formation models involve some state of equilibrium between liquid silicate and liquid metal, understanding the partioning of highly siderophile elements (HSE) between silicate and metallic melts is a key issue for models of core / mantle equilibria and for core formation scenarios. However, partitioning models for HSE are still inaccurate due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variable like temperature, pressure, and oxygen fugacity. In this abstract, we describe a self-consistent set of experiments aimed at determining the valence of platinum, one of the HSE, in silicate melts. This is a key information required to parameterize the evolution of platinum partitioning with oxygen fugacity.

  1. Iron isotope fractionation in mantle minerals and the effects of partial melting and oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; McCammon, C.; Peslier, A. H.; Halliday, A. N.; Levasseur, S.; Teutsch, N.; Burg, J.

    2004-12-01

    The oxygen fugacity of the mantle exerts a fundamental influence on mantle melting, volatile speciation and the development of the Earth's atmosphere. As changes in mantle oxidation state are generally reflected in the ferric iron contents of mantle minerals, the iron isotope signatures of mantle rocks should provide information about spatial and secular changes in mantle oxidation state. However, the exact nature of the processes governing iron isotope fractionation in igneous rocks remains poorly understood, limiting the use of iron isotopes as a proxy. We have investigated the relationships between Fe isotope fractionation, oxygen fugacity, melting and metasomatism with a combined MC-ICPMS Fe isotope and Mssbauer spectroscopy study of spinels and silicate minerals from mantle xenoliths and massif samples originating from different tectonic settings. There exist large variations in the iron isotope compositions of olivines, pyroxenes and spinels. Clear correlations exist between the ? 57/54Fe values of coexisting minerals, implying equilibrium isotope fractionation. Spinel ? 57/54Fe values correlate negatively with relative oxygen fugacity, spinel Fe3+/? Fe and Cr number; clinopyroxene ? 57/54Fe values correlate negatively with clinopyroxene MgO content and Cr number. There do not appear to be strong relationships between the ? 57/54Fe values of the minerals and chemical or isotopic indices of metasomatism. Taken together these observations imply that variations in the iron isotopic compositions of mantle rocks and minerals are largely a function of melting coupled with changes in mantle oxidation state.

  2. Armalcolite stability as a function of pressure and oxygen fugacity. [in lunar mare rocks

    NASA Technical Reports Server (NTRS)

    Friel, J. J.; Harker, R. I.; Ulmer, G. C.

    1977-01-01

    High-pressure experiments in a piston-cylinder apparatus with silver-palladium containers were conducted to study the stability of synthetic armalcolite, (Fe,Mg)Ti2O5, as a function of pressures up to 15 kbar at 1000, 1100, and 1200 C. Three armalcolite compositions were used, each with an initial Fe/(Fe + Mg) ratio of 0.5. Composition I contained no zirconium, whereas compositions II and III were prepared with 4% and 10% by weight ZrO2. Difference in stability due to the presence or absence of Zr in these synthetic armalcolites is discussed. 4 wt% ZrO2 appears to saturate armalcolite at 1200 C and 1 atm. Zirconium is found to reduce armalcolite stability, but this effect is not great. The stability of armalcolite as a function of oxygen fugacity is determined thermogravimetrically at 1200 C and 1 atm. Knowledge of the range of oxygen fugacity at which armalcolite is stable and of the equilibrium oxide mineral assemblages outside this range provides important information about lunar cooling histories in terms of oxygen fugacity.

  3. Oxygen fugacity dependence of Ni, Co, Mn, Cr, V, and Si partitioning between liquid metal and magnesiowstite at 9-18 GPa and 2200C

    NASA Astrophysics Data System (ADS)

    Gessmann, C. K.; Rubie, D. C.; McCammon, C. A.

    1999-06-01

    The oxidation states of Ni, Co, Mn, Cr, V and Si in magnesiowstite have been determined in metal-oxide distribution experiments using a multi anvil apparatus at 9 and 18 GPa and 2200C as a function of oxygen fugacity. Despite limitations to control oxygen fugacity by applying conventional buffering methods in high pressure experiments, a wide range of redox-conditions (3 log bar units) has been imposed to the metal-oxide partitioning experiments by varying the Si/O ratio of the starting material. The oxygen fugacity was calculated according to the Fe-FeO equilibrium between the run products. The ability to impose different oxygen fugacities by varying the starting material is confirmed by the large variation of element partitioning coefficients obtained at constant pressure and temperature. The calculated valences at both pressures investigated are divalent for Co, Mn, V and 4+ for Si. The results for Cr (2.5+) and Ni (1.5+) indicate non-ideal mixing of Ni and Cr in at least one of the product phases. Because the application of 1 bar activity coefficients for Ni and Cr in metal alloys does not change these valences, non-ideal mixing in magnesiowstite or significantly larger non-ideal mixing properties of Ni and Cr in metal alloys at high pressure are likely to be responsible for the apparent valences. Omitting such non-ideal mixing properties when extrapolating high-pressure element partitioning data may be significant. The elements Cr, V and Mn become siderophile (D Mmet/ox > 1) at 9-18 GPa and 2200C at oxygen fugacities below IW-2.7 to IW-3.7. Considering, in addition, the influence of temperature, the depletion of Cr, Mn and V in the Earth's mantle may be due, at least partly, to siderophile behavior at high pressure and temperature.

  4. Tracing Oxygen Fugacity in Asteroids and Meteorites Through Olivine Composition

    NASA Technical Reports Server (NTRS)

    Sunshine, J. M.; Bus, S. J.; Burbine, T. H.; McCoy, T. J.

    2005-01-01

    Olivine absorptions are known to dominate telescopic spectra of several asteroids. Among the meteorite collection, three groups (excluding Martian meteorites), the pallasites, brachinites, and R group chondrites are plausible analogs to olivine-rich asteroids in that they are dominated by olivine. These meteorite groups have distinct petrologic origins. The primitive achondrite brachinites (which include both depleted and undeleted subgroups) are products of relatively minor differentiation and evolved in oxidizing environments. R chondrites are also thought to have formed in high oxygen states, but are closely related to ordinary chondrites (yet with their own distinct compositions and oxygen isotopic signatures). In contrast, pallasites, widely thought to be mantle components from much more evolved bodies, formed in more reducing environments. Petrologic indicators that are identifiable in spectral data must be used in order to infer the petrologic history of asteroids from surveys of their actual population. As discussed below, olivine composition (e.g. Fa#) can provide key constraints in exploring the origin and significance of olivine dominated asteroids.

  5. Using vanadium in spinel as a sensor of oxygen fugacity in meteorites: Applications to Mars, Vesta, and other asteroids.

    SciTech Connect

    Righter, K.; Sutton, S.; Danielson, L.; Pando, K.; Le, L.; Newville, M.

    2009-03-23

    Some meteorites do not contain mineral assemblages required to apply traditional oxy-barometers. Here we introduce a technique using vanadium X-ray absorption features in spinels to characterize the oxygen fugacity of meteoritic dunites, pyroxenites, and chondrites. Igneous and metamorphic rocks commonly contain a mineral assemblage that allows oxygen fugacity to be calculated or constrained such as FeTi oxides, olivine-opx-spinel, or some other oxybarometer. Some rocks, however, contain a limited mineral assemblage and do not provide constraints on fO{sub 2} using mineral equilibria. Good examples of the latter are orthopyroxenites or dunites, such as diogenites, ALH 84001, chassignites, or brachinites. In fact it is no surprise that the fO{sub 2} of many of these samples is not well known, other than being 'reduced' and below the metal saturation value. In order to bridge this gap in our understanding, we have initiated a study of V in chromites in natural meteorite samples. Because the V pre-edge peak intensity and energy in chromites varies with fO{sub 2}, and this has been calibrated over a large fO{sub 2} range, we can apply this relation to rocks for which we otherwise have no fO{sub 2} constraints.

  6. High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers

    SciTech Connect

    Campbell, Andrew J; Danielson, Lisa; Righter, Kevin; Seagle, Christopher T; Wang, Yanbin; Prakapenka, Vitali B

    2009-09-25

    The chemical potential of oxygen in natural and experimental samples is commonly reported relative to a specific oxygen fugacity (fO{sub 2}) buffer. These buffers are precisely known at 1 bar, but under high pressures corresponding to the conditions of the deep Earth, oxygen fugacity buffers are poorly calibrated. Reference (1 bar) fO{sub 2} buffers can be integrated to high pressure conditions by integrating the difference in volume between the solid phases, provided that their equations of state are known. In this work, the equations of state and volume difference between the metal-oxide pairs Fe-FeO and Ni-NiO were measured using synchrotron X-ray diffraction in a multi-anvil press and laser heated diamond anvil cells. The results were used to construct high pressure fO{sub 2} buffer curves for these systems. The difference between the Fe-FeO and Ni-NiO buffers is observed to decrease significantly, by several log units, over 80 GPa. The results can be used to improve interpretation of high pressure experiments, specifically Fe-Ni exchange between metallic and oxide phases.

  7. Crystal-chemistry of amphiboles: implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica.

    NASA Astrophysics Data System (ADS)

    Bonadiman, Costanza; Nazzareni, Sabrina; Coltorti, Massimo; Comodi, Paola; Giuli, Gabriele; Faccini, Barbara

    2013-04-01

    Amphibole is the hydrous metasomatic phase in spinel-bearing peridotites from Baker Rocks (Northern Victoria Land, Antartica). It occurs both as disseminated or veins in the spinel lherzolites. Both types derive from a continuous reaction between metasomatic melts and the pristine paragenesis of the continental lithospheric mantle beneath the Northern Victoria Land. In order to determine the effective role of water circulation during the metasomatic process and amphibole formation, six amphiboles were fully characterised. The accurate determination of the site population and dehydrogenation of these amphiboles was carried out through Single-Crystal X-ray diffraction, electron micropoble analyses (EMPA) and secondary ion mass spectroscopy (SIMS) on the same single crystal. The Fe3+/(Fe3+ + Fe2+)ratio was determined by X-ray Absorption Near Edge Spectrocopy (XANES) on amphibole powder. The measured (from SIMS) degree of dehydrogenation (O(3)O2-) is in the range 0.79-1.07 and in agreement with the calculated (from the M(1)-M(3) distance) values. The dehydrogenation is primary and ascribed to the Ti-oxy component of the amphibole, as suggested by the site populations; the post-crystallisation H loss is negligible. The aH2O of the Baker Rocks mantle lithosphere was calculated from the dehydration equilibrium among end-member components assuming that amphiboles are in equilibrium with the anhydrous peridotitic phases. The aH2O ranges from 0.0126 to 0.0545; a difference up to 60The oxygen fugacity of the Baker Rocks mantle xenoliths calculated on the anhydrous equilibria olivine-clinopyroxene-orthopyroxene-spinel is between -1.98 and -0.30 log units, below the fayalite-magnetite-quartz (FMQ) buffer. These results compare well with those obtained from the dissociation constant of water, which reflects the oxygen fugacity of the amphibole formation (Dlog fO2 between -2.5 and -0.6 log units). The metasomatic process is able to stabilize amphibole in an environment of low water activity and low redox conditions. Amphibole acts as the main H acceptor among the peridotite minerals and it may prevent fluid circulation and contribute to buffer the oxygen fugacity.The important issue of this study is that amphibole within the lithospheric mantle not always means high water activity and oxidizing conditions.

  8. A system using solid ceramic oxygen electrolyte cells to measure oxygen fugacities in gas-mixing systems

    NASA Technical Reports Server (NTRS)

    Williams, R. J.; Mullins, O.

    1976-01-01

    Details are given for the construction and operation of a 101.3 kN/sq m (1 atmosphere) redox control system. A solid ceramic oxygen electrolyte cell is used to monitor the oxygen fugacity in the furnace. The system consists of a vertical quench, gas mixing furnace with heads designed for mounting the electrolyte cell and with facilities for inserting and removing the samples. The system also contains the high input impedance electronics necessary for measurements, a simplified version of a gas mixing apparatus, and devices for experiments under controlled rates of change relative to temperature and redox state. The calibration and maintenance of the system are discussed.

  9. SNC Oxygen Fugacity Recorded in Pyroxenes and its Implications for the Oxidation State of the Martian Interior: An Experimental and Analytical Study

    NASA Technical Reports Server (NTRS)

    McCanta, M. C.; Rutherford, M. J.

    2003-01-01

    Knowledge of the oxidation state of a magma is critical as it is one of the parameters which controls the nature and composition of the resulting crystals. In terrestrial magmatic systems, oxygen fugacity (fo2) is known to vary by over nine orders of magnitude. With variations of this magnitude, understanding the compositional differences, phase changes, and crystallization sequence variations, caused by the magma fo2, is essential in deciphering the origin of all igneous rocks. Magmatic oxidation state is of great importance in that it reflects the degree of oxidation of the source region and can provide insight into magmatic processes, such as metasomatism, degassing, and assimilation, which may have changed them. Carmichael [1991] argues that most magmas are unlikely to have their redox states altered from those of their source region. This assumption allows for estimation of the oxidation state of planetary interiors. Conversely, it is known that the fo2 of the magma can be affected by other processes, which occur outside of the source region and therefore, the oxidation state may record those too. Processes which could overprint source region fugacities include melt dehydrogenation or other volatile loss, water or melt infiltration, or assimilation of oxidized or reduced wallrock. Understanding which of these processes is responsible for the redox state of a magma can provide crucial information regarding igneous processes and other forces active in the region. The composition of the SNC basalts and their widely varying proposed oxidation states raise some interesting questions. Do the SNC meteorites have an oxidized or reduced signature? What was the oxygen fugacity of the SNC source region at the time of melt generation? Is the fugacity calculated for the various SNC samples the fugacity of the magma source region or was it overprinted by later events? Are there different oxidation states in the Martian interior or a single one? This proposal seeks to address all of these questions.

  10. Sulfur Speciation and Oxygen Fugacity in Primitive Magmas From the Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Vigouroux, N.; Wallace, P. J.; Johnson, E. R.

    2007-12-01

    Sulfur dissolves in silicate melts in both reduced (S-2) and oxidized (S+6) forms, and the ratio of species depends on the oxygen fugacity of the melt. The more oxidized the magma, the more sulfur is disolved as sulfate and the higher the overall S solubility (e.g., Luhr, 1990). We have measured the speciation of S in olivine- hosted melt inclusions from 11 mafic cinder cones and 1 maar in the Trans-Mexican Volcanic Belt using the S Kα wavelength shift method (Carroll and Rutherford, 1988). Four of the cinder cones are from the Colima Graben and are high-Mg silica-undersaturated potassic rocks. The other cinder cones are from the Michoacan- Guanajuato Volcanic Field (MGVF) and include calc-alkaline high-Mg basalts and basaltic andesites. The maar, also in the MGVF, erupted alkali basalt. A basaltic andesite from the Colima Graben was also analyzed due to its transitional chemical composition between the potassic magmas and the MGVF calc-alkaline magmas. For the calc-alkaline melt inclusions, S+6 accounts for 65-90% of total dissolved S. Similarly, the potassic and basaltic andesite melt inclusions have 60-90% and 78-94% of total S as S+6 respectively. In contrast the alkali basalt melt inclusions have lower values, with 50-60% of total S dissolved as S+6. Some cinder cones exhibit nearly the entire range of melt S speciation whereas others have restricted ranges, but there does not appear to be a correlation between melt degassing (based on H2O contents of the melt inclusions) and either oxygen fugacity or S speciation. Based on the average value of melt inclusions from each cone and the relationship of S speciation to oxygen fugacity (Wallace and Carmichael, 1994), the calc-alkaline cinder cones, including the basaltic andesite, have oxygen fugacity values of NNO+0.9 to +1.3. The potassic cinder cones have similar values of NNO+0.9 to +1.3. The alkali basalt averages NNO+0.5. The values have 1 standard deviation uncertainties of ±0.2 log units for the calc-alkaline basalts, ±0.4 for the potassic cones, ±0.5 for the basaltic andesite and ±0.08 for the alkali basalt, which emphasizes the distinction of the alkali basalt with respect to the other magma types. The potassic and calc-alkaline magmas appear to have similar oxygen fugacities that are distinctly higher than the alkali basalt. This distinction cannot be explained by compositional differences but appears to be related to the mantle source of the magmas and the presence or absence of a subduction derived H2O-rich component.

  11. Oxygen fugacity profile of the oceanic upper mantle and the depth of redox melting beneath ridges

    NASA Astrophysics Data System (ADS)

    Davis, F. A.; Cottrell, E.

    2014-12-01

    Oxygen fugacity (fO2) of a mantle mineral assemblage, controlled primarily by Fe redox chemistry, sets the depth of the diamond to carbonated melt reaction (DCO3). Near-surface fO2 recorded by primitive MORB glasses and abyssal peridotites anchor the fO2 profile of the mantle at depth. If the fO2-depth relationship of the mantle is known, then the depth of the DCO3 can be predicted. Alternatively, if the DCO3 can be detected geophysically, then its depth can be used to infer physical and chemical characteristics of upwelling mantle. We present an expanded version of a model of the fO2-depth profile of adiabatically upwelling mantle first presented by Stagno et al. (2013), kindly provided by D. Frost. The model uses a chemical mass balance and empirical fits to experimental data to calculate compositions and modes of mantle minerals at specified P, T, and bulk Fe3+/?Fe. We added P and T dependences to the partitioning of Al and Ca to better simulate the mineralogical changes in peridotite at depth and included majorite component in garnet to increase the depth range of the model. We calculate fO2 from the mineral assemblages using the grt-ol-opx oxybarometer (Stagno et al., 2013). The onset of carbonated melting occurs at the intersection of a Fe3+/?Fe isopleth with the DCO3. Upwelling mantle is tied to the DCO3 until all native C is oxidized to form carbonated melts by reduction of Fe3+ to Fe2+. The depth of intersection of a parcel of mantle with the DCO3 is a function of bulk Fe3+/?Fe, potential temperature, and bulk composition. We predict that fertile mantle (PUM) along a 1400 C adiabat, with 50 ppm bulk C, and Fe3+/?Fe = 0.05 after C oxidation begins redox melting at a depth of 250 km. The model contextualizes observations of MORB redox chemistry. Because fertile peridotite is richer in Al2O3, the Fe2O3-bearing components of garnet are diluted leading to lower fO2 at a given depth compared to refractory mantle under the same conditions. This may indicate that the negativecorrelation observed between enrichment and fO2 at ridges (Cottrell and Kelley, 2013) is a consequence of the increased fertility of remixing recycled crust into the mantle. Addition of reduced C to the mantle during subduction can also explain this observation. Geophysical detection of the depth of the DCO3 may resolve these hypotheses.

  12. The oxygen fugacity of olivine-phyric martian basalts and the components within the mantle and crust of Mars

    NASA Astrophysics Data System (ADS)

    Herd, C. D. K.

    2003-12-01

    The oxygen fugacity of olivine-phyric martian basalts is estimated using olivine-pyroxene- spinel equilibria, supported by detailed petrography. Results are plotted, along with previous oxygen fugacity estimates, against La/Yb, which is used as a proxy for long-term incompatible-element depletion or enrichment in martian basalt reservoirs. In general, the correlation between oxygen fugacity and La/Yb observed by Herd et al. (2002a) holds for the olivine-phyric basalts. The implications of the correlation are re-evaluated in light of work by Borg et al. (Forthcoming), which indicates that the variations in radiogenic isotopic composition can be modeled by mixing of mantle sources established by 4.5 Ga through crystallization of a magma ocean in lieu of assimilation of crustal material. The results demonstrate that the crust-like component, interpreted as trapped liquid in a magma ocean cumulate pile, must be oxidized to explain the oxygen fugacity of the martian basalts. Consequently, the pre-eruptive water contents of the more oxidized basalts are expected to be higher, although water is not called upon as the cause of the oxidation. Unmixing of mantle components provides an important context for the interpretation of oxygen isotopes, demonstrated here, and of samples returned from the martian surface.

  13. Nitrogen solubility in basaltic melt. Part I. Effect of oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Libourel, G.; Marty, B.; Humbert, F.

    2003-11-01

    The role of the oxygen fugacity on the incorporation of nitrogen in basaltic magmas has been investigated using one atmosphere high temperature equilibration of tholeiitic-like compositions under controlled nitrogen and oxygen partial pressures in the [C-N-O] system. Nitrogen was extracted with a CO 2 laser under high vacuum and analyzed by static mass spectrometry. Over a redox range of 18 oxygen fugacity log units, this study shows that the incorporation of nitrogen in silicate melts follows two different behaviors. For log fO 2 values between -0.7 and -10.7 (the latter corresponding to IW - 1.3), nitrogen dissolves as a N 2 molecule into cavities of the silicate network (physical solubility). Nitrogen presents a constant solubility (Henry's) coefficient of 2.21 0.53 10 -9 mol g -1 atm -1 at 1425C, identical within uncertainties to the solubility of argon. Further decrease in the oxygen fugacity (log fO 2 between -10.7 and -18 corresponding to the range from IW - 1.3 to IW - 8.3) results in a drastic increase of the solubility of nitrogen by up to 5 orders of magnitude as nitrogen becomes chemically bounded with atoms of the silicate melt network (chemical solubility). The present results strongly suggest that under reducing conditions nitrogen dissolves in silicate melts as N 3- species rather than as CN - cyanide radicals. The nitrogen content of a tholeiitic magma equilibrated with N 2 is computed from thermochemical processing of our data set as [N 2] (mol N 2 g -1) = (2.21 0.53) 10 -9 P N 2+f O 2-3/4 (2.13 0.11) 10 -17 P N 21/2 High nitrogen contents in primitive meteorites, especially in glass inclusions encapsulated in magnesian olivine of chondrites, are unlikely to result from nitrogen dissolution from the solar nebula gas, unless the pressure of the latter is underestimated by several orders of magnitude. Significant amounts of nitrogen, comparable to those estimated for the present-day mantle, could have been incorporated in the early Earth by dissolution in a magma ocean, under fO 2 conditions relevant to those prevailing during metal segregation. The present results also imply that the N 2/Ar ratio of tholeiitic basalts (e.g., MORBs) is not fractionated during magma generation and degassing, allowing to use argon as a geochemical proxy for nitrogen. It is probable that mantle nitrogen was degassed at rates and fluxes comparable to that of argon, as the oxygen fugacity of the mantle was unlikely to have been below IW from Archean to Present. Therefore, fractionation between nitrogen and argon in the Earth-atmosphere system is more probably the result of recycling rather than of mantle-derived magma degassing.

  14. Magma Ocean Depth and Oxygen Fugacity in the Early Earth—Implications for Biochemistry

    NASA Astrophysics Data System (ADS)

    Righter, Kevin

    2015-09-01

    A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.

  15. Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.

    PubMed

    Righter, Kevin

    2015-09-01

    A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history. PMID:26037825

  16. Measured oxygen fugacities of the Angra dos Reis achondrite as a function of temperature

    USGS Publications Warehouse

    Brett, R.; Stephen, Huebner J.; Sato, M.

    1977-01-01

    Measurements of the oxygen fugacity (f{hook}O2) as a function of temperature (T) were made on an interior bulk sample of the cumulate achondrite, Angra dos Reis. Data clustered between the f{hook}O2-T relationship of the iron-wu??stite assemblage and 1.2 log atm units above iron-wu??stite. Interpretation of the data indicates that, throughout most of the cooling history of the meteorite, f{hook}O2 values were defined by equilibria involving iron-bearing species at values close to the f{hook}O2 of the assemblage iron-wu??stite. Measured f{hook}O2 data are compatible with crystallization and cooling at pressures greater than 50 bars. ?? 1977.

  17. Crystal chemistry of amphiboles: implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Bonadiman, C.; Nazzareni, S.; Coltorti, M.; Comodi, P.; Giuli, G.; Faccini, B.

    2014-03-01

    Amphibole is the hydrous metasomatic phase in spinel-bearing mantle xenoliths from Baker Rocks, Northern Victoria Land, Antarctica. It occurs in veins or in disseminated form in spinel lherzolites. Both types derive from reaction between metasomatic melts and the pristine paragenesis of the continental lithospheric mantle beneath Northern Victoria Land. To determine the effective role of water circulation during the metasomatic process and amphibole formation, six amphibole samples were fully characterized. Accurate determination of the site population and the state of dehydrogenation in each of these amphiboles was carried out using single-crystal X-ray diffraction, electron microprobe and secondary ion mass spectroscopy on the same single crystal. The Fe3+/ΣFe ratio was determined by X-ray absorption near edge spectroscopy on amphibole powder. The degree of dehydrogenation determined by SIMS is 0.870-0.994 O3(O2-) a.p.f.u., primary and ascribed to the Ti-oxy component of the amphibole, as indicated by atom site populations; post-crystallization H loss is negligible. Estimates of aH2O (0.014-0.054) were determined from the dehydration equilibrium among end-member components assuming that amphiboles are in equilibrium with the anhydrous peridotitic phases. A difference up to 58 % in determination of aH2O can be introduced if the chemical formula of the amphiboles is calculated based on 23 O a.p.f.u. without knowing the effective amount of dehydrogenation. The oxygen fugacity of the Baker Rocks amphibole-bearing mantle xenoliths calculated based upon the dissociation constant of water (by oxy-amphibole equilibrium) is between -2.52 and -1.32 log units below the fayalite-magnetite-quartz (FMQ) buffer. These results are systematically lower and in a narrow range of values relative to those obtained from anhydrous olivine-orthopyroxene-spinel equilibria ( fO2 between -1.98 and -0.30 log units). A comparative evaluation of the two methods suggests that when amphibole is present in mantle peridotites, the application of oxy-amphibole equilibrium is preferred, because ol-opx-sp oxy-calibrations are not "sensitive" enough in recording the effects (if any) of amphibole in the peridotite matrix. Amphibole acts as the main H acceptor among the peridotite minerals and may prevent fluid circulation and buffer oxygen fugacity. The important conclusion of this study is that amphibole within the lithospheric mantle does not always means high water activity and oxidizing conditions.

  18. Fe3+ partitioning during basalt differentiation on Mars: insights into the oxygen fugacity of the shergottite mantle source(s).

    NASA Astrophysics Data System (ADS)

    Medard, E.; Martin, A. M.; Collinet, M.; Righter, K.; Grove, T. L.; Newville, M.; Lanzirotti, A.

    2014-12-01

    The partitioning of Fe3+ between silicate melts and minerals is a key parameter to understand magmatic processes, as it is directly linked to oxygen fugacity (fO2). fO2 is, a priori, not a constant during magmatic processes, and its evolution depends on the compatibility of Fe3+. We have experimentally determined the partition coefficients of Fe3+ between augite, pigeonite, and silicate melt, and use them to constrain the fO2of the martian mantle and of differentiated martian basalts. A series of experiments on various martian basaltic compositions were performed under controlled fO2 in one-atmosphere gas-mixing furnaces. Fe3+/Fetotal ratios in silicate melts and pyroxenes were determined using synchrotron Fe K-edge XANES on the 13 IDE beamline at APS (Argonne). Fe3+ mineral/melt partition coefficients (DFe3+) for augite and pigeonite were obtained with a relative uncertainty of 10-15 %. Both are constant over a wide range of oxygen fugacity (FMQ-2.5 to FMQ+2.0). DFe3+ for augite and pigeonite are broadly consistent with previous data by [1], but DFe3+ for augite is significantly higher (by a factor of 2) than the indirect determinations of [2]. Since augites in [2] are extremely poor in iron compared to ours (0.18 wt% vs 13 wt% FeO), this strongly suggests that DFe3+ varies with Mg#, indicating that Fe3+is more compatible than previously thought in terrestrial mantle pyroxenes (3 wt% FeO) as well. Crystallization paths for shergottite parental melts have been calculated using the MELTS software, combined with our partition coefficients. fO2 in the residual melts is calculated from the models of [3] and [4]. It stays relatively constant at high temperatures, but increases very strongly during the latest stages of crystallization. These results explain the large range of fO2 determined in enriched shergottites. In order to estimate the fO2 of the martian mantle, only the highest temperature phases in the most primitive martian samples should be used. The most primitive shergottites record a mantle fO2 around FMQ-2.5, consistent with the lowest fO2estimated for surface basalts [5]. [1] McCanta et al. (2004) Am Min 89:1685-1693; [2] Mallmann and O'Neill (2009) J Petrol 50:1765-1794; [3] Righter et al. (2013) Am Min 98:616-628; [4] Kress and Carmichael (1991) CMP 108:82-92; [5] Schmidt ME et al. (2014) EPSL 384:198-208.

  19. Spinels and oxygen fugacity in olivine-phyric and lherzolitic shergottites

    NASA Astrophysics Data System (ADS)

    Goodrich, C. A.; Herd, C. D. K.; Taylor, L. A.

    2003-12-01

    We examine the occurrences, textures, and compositional patterns of spinels in the olivine- phyric shergottites Sayh al Uhaymir (SaU) 005, lithology A of Elephant Moraine A79001 (EET-A), Dhofar 019, and Northwest Africa (NWA) 1110, as well as the lherzolitic shergottite Allan Hills (ALH) A77005, in order to identify spinel-olivine-pyroxene assemblages for the determination of oxygen fugacity (using the oxybarometer of Wood [1991]) at several stages of crystallization. In all of these basaltic martian rocks, chromite was the earliest phase and crystallized along a trend of strict Cr-Al variation. Spinel (chromite) crystallization was terminated by the appearance of pyroxene but resumed later with the appearance of ulvospinel. Ulvospinel formed overgrowths on early chromites (except those shielded as inclusions in olivine or pyroxene), retaining the evidence of the spinel stability gap in the form of a sharp core/rim boundary (except in ALH A77005, where subsolidus reequilibration diffused this boundary). Secondary effects seen in chromites include reaction with melt before ulvospinel overgrowth, reaction with melt inclusions, reaction with olivine hosts (in ALH A77005), and exsolution of ulvospinel or ilmenite. All chromites experienced subsolidus Fe/Mg reequilibration. Spinel-olivine-pyroxene assemblages representing the earliest stages of crystallization in each rock essentially consist of the highest-Cr#, lowest-fe# chromites not showing secondary effects plus the most magnesian olivine and equilibrium low-Ca pyroxene. Assemblages representing the onset of ulvospinel crystallization consist of the lowest-Ti ulvospinel, the most magnesian olivine in which ulvospinel occurs as inclusions, and equilibrium low-Ca pyroxene. The results show that, for early crystallization conditions, oxygen fugacity (fO2) increases from SaU 005 and Dhofar 019 (~QFM -3.8), to EET-A (QFM -2.8) and ALH A77005 (QFM -2.6), to NWA 1110 (QFM -1.7). Estimates for later conditions indicate that in SaU 005 and Dhofar 019 oxidation state did not change during crystallization. In EET-A, there was an increase in fO2 that may have been due to mixing of reduced material with a more oxidized magma. In NWA 1110, there was a dramatic increase, indicating a non-buffered system, possibly related to its high oxidation state. Differences in fO2 among shergottites are not primarily due to igneous fractionation but, rather, to derivation from (and possibly mixing of) different reservoirs.

  20. Viscosity of carbonate-rich melts under different oxygen fugacity conditions

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Hess, Kai-Uwe; Cimarelli, Corrado; Dingwell, Donald B.

    2015-04-01

    Viscosity is a fundamental property of many materials and its changes affects the fluid dynamics of natural system as well as industrial processes. The mobility of carbonatitic melts, which are carbonate-rich and very fluid melts, has attracted renewed interest in both earth science and industry. In fact, these melts are considered the main transport agent of carbon from the mantle to the crust and may be intimately linked to the generation of kimberlites. At the same time lithium, potassium and sodium carbonate are used as electrolytes in molten carbonate fuel cells which operate at high temperatures (~650° C) for the production of electricity without CO2 emissions. Accurate measurement of the transport property (i.e. viscosity) of carbonatitic melts is a priority in order to understand the carbonatite mobility and reaction rates. Additionally, obtaining accurate viscosity measurements of such low viscosity melts is however an experimental challenge due to volatility, very low torques and chemical melt instability in the viscometer. To overcome these limitations we have customized a Modular Compact Rheometer (MCR 502 from Anton Paar) ad hoc equipped with 2 narrow gap concentric-cylinder geometries of steel and Pt-Au. The rheometer is characterized by an air-bearing-supported synchronous motor with torque ranging between 0.01 μNm and 230 mNm (resolution of 0.1 nNm), achieving very low viscosity measurements in the order of mPa s, temperatures up to 1000° C and shear rates ranging between 1 and 100 sec-1. These experimental conditions well match the temperature-viscosity-shear rate window relevant for carbonate melts. Here we present the calibration of the rheometer and the results of a rheological characterization study on a series of very low viscous synthetic and natural carbonatitic melts at different oxygen fugacity (air and CO2 saturated atmosphere). Viscosity measurements on carbonate melts have been performed in the temperature range between ~650 and 1000° C. Measured values range between ~2 and 20 mPa sec. The results point out that the viscosity of synthetic samples is inversely related to the cations radius, being Li2CO3 melt the more viscous. Viscosity measurements on natural samples (carbonatitic lava from Lengai volcano, Tanzania), reveal a higher viscosity (~1000 mPa s) and a dramatic higher activation energy than the synthetic samples. Our results have been compared with literature data in order to determine the effect of chemical composition and oxygen fugacity conditions on the liquid viscosity of carbonatitic melts.

  1. Temperature and Oxygen Fugacity Constraints on CK and R Chondrites and Implications for Water and Oxidation in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Righter, K.; Neff, K. E.

    2007-01-01

    Recent chondritic meteorite finds in Antarctica have included CB, CH, CK and R chondrites, the latter two of which are among the most oxidized materials found in meteorite collections. In this study we present petrographic and mineralogic data for a suite of CK and R chondrites, and compare to previous studies of CK and R, as well as some CV chondrites. In particular we focus on the opaque minerals magnetite, chromite, sulfides, and metal as well as unusual silicates hornblende, biotite, and plagioclase. Several mineral thermometers and oxy-barometers are utilized to calculate temperatures and oxygen fugacities for these unusual meteorites compared to other more common chondrite groups. R and CK chondrites show lower equilibrium temperatures than ordinary chondrites, even though they are at similar petrologic grades (e.g., thermal type 6). Oxygen fugacity calculated for CV and R chondrites ranges from values near the iron-wustite (IW) oxygen buffer to near the fayalite-magnetite-quartz (FMQ) buffer. In comparison, the fO2 recorded by ilmenite-magnetite pairs from CK chondrites are much higher, from FMQ+3.1 to FMQ+5.2. The latter values are the highest recorded for materials in meteorites, and place some constraints on the formation conditions of these magnetite-bearing chondrites. Differences between mineralogic and O isotopic compositions of CK and R chondrites suggest two different oxidation mechanisms, which may be due to high and low water: rock ratios during metamorphism, or to different fluid compositions, or both.

  2. Temperature and oxygen fugacity constraints on CK and R chondrites and implications for water and oxidation in the early solar system

    NASA Astrophysics Data System (ADS)

    Righter, K.; Neff, K. E.

    Recent chondritic meteorite finds in Antarctica have included CB, CH, CK and R chondrites, the latter two of which are among the most oxidized materials found in meteorite collections. In this study we present petrographic and mineralogic data for a suite of CK and R chondrites, and compare to previous CK and R chondrites, as well as some CV. In particular we focus on the opaque minerals - magnetite, chromite, sulfides, and metal - as well as unusual silicates - hornblende, biotite, and plagioclase. Several mineral thermometers and oxy-barometers are utilized to calculate temperatures and oxygen fugacities for these unusual meteorites compared to other more common chondrite groups. R and CK chondrites show lower equilibrium temperatures than ordinary chondrites, even though they are at similar petrologic grades (e.g., thermal type 6). Oxygen fugacity calculated for CV and R chondrites ranges from values near the iron-wustite (IW) oxygen buffer to near the fayalite-magnetite-quartz (FMQ) buffer. In comparison, the fO 2 recorded by ilmenite-magnetite pairs from CK chondrites are much higher, from FMQ + 2 to FMQ + 4.5. The latter values are the highest recorded for materials in meteorites, and place some constraints on the formation conditions of these magnetite-bearing chondrites. Differences between mineralogic and O isotopic compositions of CK and R chondrites suggest two different oxidation mechanisms, which may be due to high and low water:rock ratios during metamorphism, or to different fluid compositions, or both.

  3. Oxidation state of vanadium in glass and olivine from terrestrial and Martian basalts: Implications for oxygen fugacity estimates

    SciTech Connect

    Karner, J.M.; Sutton, S.R.; Papike, J.J.; Shearer, C.K.; Newville, M.

    2005-04-22

    Several studies have demonstrated the usefulness of synchrotron micro x-ray absorption near-edge structure ({mu}-XANES or SmX) spectroscopy in determining the oxidation state of elements in planetary materials. Delaney et al. used SmX to investigate the oxidation states of Fe, Cr, and V in extraterrestrial samples, and they later determined the oxidation state of V in experimental glasses as a function of oxygen fugacity. More recently, Sutton et al. studied the oxidation state of V in meteoritic fassaite and also in synthetic pyroxene. This report discusses our first results using SmX spectroscopy to determine the oxidation state of V in olivine and glass from a terrestrial ocean floor (OF) basalt and a martian basaltic shergottite meteorite, Dar Al Gani 476. The goal of this and future studies is to use V (and Cr, Fe) valence states to determine the oxygen fugacity of basalts from different planetary bodies.

  4. Towards a predicted mineralogy of the interior of Mercury using low oxygen fugacity experiments on a CB chondrite composition

    NASA Astrophysics Data System (ADS)

    Knibbe, J. S.; Van Westrenen, W.

    2013-12-01

    The MESSENGER mission is revolutionizing our knowledge of both the surface composition and mineralogy of Mercury, and of its current general interior structure. Detailed petrological models of the interior evolution of Mercury are hampered by the near-complete absence of high-pressure experiments using Mercury-relevant compositions and oxygen fugacities. As a result, current models for the mineralogy of the silicate mantle and crust of Mercury vary widely. For example, using the same assumed CB chondritic bulk composition, model x predicts that the mineral phase a is stable in the upper z kilometers of Mercury, while model y predicts that a is absent, whereas phase c is stable. As a first step towards providing a complete experimental framework to support evolutionary models for Mercury, we are determining the phase relations of a CB chondrite bulk composition at high pressure, high temperature and very low oxygen fugacity. Initially, we have performed experiments in the pressure range 1-2.5 GPa, and temperature range 1300-1500 degree Celsius, using a piston cylinder press. To assess the effect of oxygen fugacity on phase relations, we have compared samples that contained only the CB bulk composition with samples containing 50 wt% Fe83Si17 metal powder. The samples were analyzed with the use of an electron microprobe. Experiments concluded by the time of the meeting include data on partially molten systems, related to modeling what the effects of a global magma ocean early in Mercurian history would be.

  5. Oxygen Fugacity at High Pressure: Equations of State of Metal-Oxide Pairs

    NASA Technical Reports Server (NTRS)

    Campbell A. J.; Danielson, L.; Righter, K.; Wang, Y.; Davidson, G.; Wang, Y.

    2006-01-01

    Oxygen fugacity (fO2) varies by orders of magnitude in nature, and can induce profound changes in the chemical state of a substance, and also in the chemical equilibrium of multicomponent systems. One prominent area in high pressure geochemistry, in which fO2 is widely recognized as a principal controlling factor, is that of metal-silicate partitioning of siderophile trace elements (e.g., [1]). Numerous experiments have shown that high pressures and temperatures can significantly affect metal/silicate partitioning of siderophile and moderately siderophile elements. Parameterization of these experimental results over P, T, X, and fO2 can allow the observed siderophile element composition of the mantle to be associated with particular thermodynamic conditions [2]. However, this is best done only if quantitative control exists over each thermodynamic variable relevant to the experiments. The fO2 values for many of these partitioning experiments were determined relative to a particular metal-oxide buffer (e.g., Fe-FeO (IW), Ni-NiO (NNO), Co-CoO, Re-ReO2 (RRO)), but the parameterization of all experimental results is weakened by the fact that the pressure-induced relative changes between these buffer systems are imprecisely known.

  6. Using Vanadium in Spinel as a Sensor of Oxygen Fugacity in Meteorites: Applications to Mars, Vesta, and Other Asteroids

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S.; Danielson, L.; Le, L.; Newville, M.; Pando, K.

    2009-01-01

    Igneous and metamorphic rocks commonly contain a mineral assemblage that allows oxygen fugacity to be calculated or constrained such as FeTi oxides, olivine-opx-spinel, or some other oxybarometer [1]. Some rocks, however, contain a limited mineral assemblage and do not provide constraints on fO2 using mineral equilibria. Good examples of the latter are orthopyroxenites or dunites, such as diogenites, ALH 84001, chassignites, or brachinites. In fact it is no surprise that the fO2 of many of these samples is not well known, other than being "reduced" and below the metal saturation value. In order to bridge this gap in our understanding, we have initiated a study of V in chromites in natural meteorite samples. Because the V pre-edge peak intensity and energy in chromites varies with fO2 (Fig. 1) [2], and this has been calibrated over a large fO 2 range, we can apply this relation to rocks for which we otherwise have no fO2 constraints.

  7. Hydration of mantle olivine under variable water and oxygen fugacity conditions: a combined SIMS and FTIR study

    NASA Astrophysics Data System (ADS)

    Gaetani, G. A.; O'Leary, J. A.; Koga, K. T.; Hauri, E. H.; Rose-Koga, E. F.

    2012-12-01

    Trace concentrations of H+ dissolved in peridotite strongly affect both its rheology and solidus. Olivine comprises ~70% of a peridotite mode and is capable of incorporating substantial H+ at upper mantle conditions. Recently, Grant et al. (2007) conducted olivine hydration experiments to determine the influence of oxygen fugacity on H+ incorporation. FTIR analyses of their run products show that absorption bands at 3325 and 3355 cm-1 (Group II bands of Bai and Kohlstedt (1993)) are sensitive to oxygen fugacity and, therefore, likely correspond to Fe3+-bearing point defects. New olivine hydration experiments were conducted to quantify H+ concentration changes associated with these defects. SIMS was used to quantify the H+ concentration and FTIR analyses were used to monitor changes in point defect populations. Our results agree with those of Grant et al. (2007) that Group II absorption bands are sensitive to fO2, but SIMS analyses indicate that changing oxygen fugacity from Fe-Fe1-XO to Ni-NiO at constant P, T and olivine composition only increases the concentration of H+ by ~50%. Olivine hydration experiments were conducted at 1.0, 1.5, or 2.0 GPa and 1200 C using a piston cylinder device. Oxygen fugacity was controlled at the Fe-Fe1-XO, Fe1-XO-Fe3O4, or Ni-NiO buffer. Mixed H2O-CO2 experiments were used to resolve the influence of P from that of H2O fugacity. Starting materials, fabricated from large single crystals of San Carlos olivine (Fo88-91), were pressure-sealed in either a Fe0 or Ni0 capsule. The H+ concentration of run products were measured using a Cameca 6F ion microprobe and the protocols of Koga et al. (2003). Total infrared absorption spectra were determined by a combined polarized absorption spectra taken at three orthogonal orientation, roughly parallel to crystallographic orientation. Spectra were taken on single crystal olivines shaped as parallelapipeds with several 100s of micron thicknesses. Results from our experiments confirm that H2O fugacity is the dominant influence on the solubility of H+ in mantle olivine. Increasing the fugacity of oxygen produces a modest increase in H+ solubility despite a significant increase in Group II absorption bands. Increasing pressure or Al3+ produce modest decreases. The negative dependence on Al3+ concentration is thought to reflect changing SiO2 activity. The solubility of H+ is insensitive to the Fe/Mg ratio of the olivine over the compositional range explored in our experiments. References. Grant et al. (2007) Earth Planet Sci Lett 261:217-229; Bai and Kohlstedt (1993) Phys Chem Minerals 19:460-471; Koga et al. (2003) Geochem, Geophys, Geosys doi: 10.1029/2002GC000378.

  8. Fugacity Examples

    ERIC Educational Resources Information Center

    David, Carl W.

    2004-01-01

    Equations related to the computation of fugacity of nonideal gases is presented, with special emphasize on a nontraditional equation of State's fugacity and the van der Waals fugacity. It is seen that both the equations include long-range attractive forces and short-range repulsive forces and thus have similar behaviour.

  9. The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle

    SciTech Connect

    E Cottrell; K Kelley

    2011-12-31

    Micro-analytical determination of Fe{sup 3+}/{Sigma}Fe ratios in mid-ocean ridge basalt (MORB) glasses using micro X-ray absorption near edge structure ({mu}-XANES) spectroscopy reveals a substantially more oxidized upper mantle than determined by previous studies. Here, we show that global MORBs yield average Fe{sup 3+}/{Sigma}Fe ratios of 0.16 {+-} 0.01 (n = 103), which trace back to primary MORB melts equilibrated at the conditions of the quartz-fayalite-magnetite (QFM) buffer. Our results necessitate an upward revision of the Fe{sup 3+}/{Sigma}Fe ratios of MORBs, mantle oxygen fugacity, and the ferric iron content of the mantle relative to previous wet chemical determinations. We show that only 0.01 (absolute, or < 10%) of the difference between Fe{sup 3+}/{Sigma}Fe ratios determined by micro-colorimety and XANES can be attributed to the Moessbauer-based XANES calibration. The difference must instead derive from a bias between micro-colorimetry performed on experimental vs. natural basalts. Co-variations of Fe{sup 3+}/{Sigma}Fe ratios in global MORB with indices of low-pressure fractional crystallization are consistent with Fe{sup 3+} behaving incompatibly in shallow MORB magma chambers. MORB Fe{sup 3+}/{Sigma}Fe ratios do not, however, vary with indices of the extent of mantle melting (e.g., Na{sub 2}O(8)) or water concentration. We offer two hypotheses to explain these observations: The bulk partition coefficient of Fe{sup 3+} may be higher during peridotite melting than previously thought, and may vary with temperature, or redox exchange between sulfide and sulfate species could buffer mantle melting at {approx} QFM. Both explanations, in combination with the measured MORB Fe{sup 3+}/{Sigma}Fe ratios, point to a fertile MORB source with greater than 0.3 wt.% Fe{sub 2}O{sub 3}.

  10. Magnesium and titanium partitioning between anorthite and Type B CAI liquid: Dependence on oxygen fugacity and liquid composition

    NASA Astrophysics Data System (ADS)

    Peters, Mark T.; Shaffer, Elizabeth E.; Burnett, Donald S.; Kim, Soon Sam

    1995-07-01

    Experiments were conducted in air and at low oxygen fugacity (fO2) to evaluate Mg and Ti partitioning between anorthite and liquid (DMg and DTi in a synthetic composition similar to that of a Type B Ca, AI-rich inclusion (CAI). The starting material showed a range of compositions, which allowed assessment of the composition dependence of DMg and DTi in this system. Additional experiments using a homogeneous split of the same material investigated the effect of oxygen fugacity on the partitioning of Ti3+ and Ti4+ between anorthite and liquid. The low foe charges were purple, consistent with the presence of significant amounts of Ti3+.This was verified by electron spin resonance (ESR) spectra, and quantitative estimates of Ti3+ contents were obtained using ESR. The Ti and Mg partition coefficients in the air run using the homogeneous starting material are similar (0.034 and 0.036, respectively) and consistent with those determined in other studies. However, DTi at low fO2 is slightly greater than DT; in the air experiments. Using Ti3+/total Ti from the ESR measurements, DTi3+ is calculated to be about 0.040. The range of compositions reveal a clustering of DMg and DTi within charges, but a wide range of Ds between charges of different composition. A well-defined inverse correlation exists between DMg and DTi. This variation is not due to temperature-dependence, but is instead due to the dependence of DMg and DTi on liquid composition (Si and Al in particular). DMg correlates positively with Si content and negatively with Al content, while DTi shows the opposite correlations. The results of these experiments have interesting implications for the petrogenesis of Type B CAIs and for substitution mechanisms of Mg, Ti4+, and Ti3+ into anorthite. Crystallization models for Type B CAIs permit certain predictions concerning trace element systematics in plagioclase. The Mg and Ti systematics are best explained by a fractional crystallization model where plagioclase crystallizes very late (>95% crystallization), and DTi3+. is equal to DTi4+. The results from our experiments support this model for the relative partitioning of Ti4+ and Ti3+ between plagioclase and liquid. In addition, the dependence of DMg, and DTi on the Si content of a Type B CAI liquid helps explain systematics expected during late-stage crystallization of plagioclase. The composition dependence of DMg and DTi also allows assessment of substitution mechanisms in anorthite using a crystallization reaction approach. Using these methods, a plausible mechanism for Mg involves substitution for tetrahedral A1 by the reaction Mg2+ + Si4+ = 2AI3+, consistent with that proposed by previous workers. The systematics are also consistent with Ti4+ and Ti3+ substitution for tetrahedral Si4+ by the reactions 2Al3+ + Ti4+ = Ca2+ + 2Si4+ and Al3+ + Ti3+ = Ca2+ + Si4+, respectively.

  11. Phase Relations of Peridotite at 21-24 GPa and Variable Oxygen Fugacity: Implications for the 660 km Discontinuity

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.; Frost, D. J.; Walter, M. J.; McCammon, C.; Nakamura, E.

    2001-12-01

    Experiments to determine the liquidus to solidus phase relations were performed on different peridotite model compositions: a pyrolite doped with trace elements, an undoped KLB-1 composition, and a primitive mantle composition (PM-1) made from a 9:1 mixture of natural lherzolite and andesite. The pyrolite and KLB-1 compositions, prepared as oxide mixes, were contained in Re-capsules, whereas the PM-1 composition was contained in C-capsules. The experiments were carried out using multianvil presses with 10/4 mm and 18/8 mm octahedral pressure cell configurations with cylindrical LaCrO3 heaters and axial W-Re thermocouples. Massive Re-containers with double sample holes allowed two compositions to be run simultaneously at identical conditions in some of the experiments. Both the thermal gradient and the oxygen fugacity are lower in the thick-walled diamond capsules relative to the Re-capsules. Within experimental uncertainties, the phase relations of the KLB-1 and pyrolite compositions in Re-capsules are identical in the 21-24 GPa range. The crystallization sequence is garnet-ferropericlase-Ca-perovskite (ga-fp-cpv) at 21 GPa, ga-fp-perovskite (pv)-cpv at 22 GPa, and fp-pv-ga-cpv at 23-24 GPa. The solidus is approximately coincident with the appearance of cpv. Ringwoodite is replaced by ga at near-solidus conditions at 21-22 GPa. The near-liquidus and near-solidus fp have Mg/(Mg+Fe) ratios of about 0.92 and 0.85, respectively, with compositions largely independent of pressure in the 21-24 GPa range. Whereas the majoritic ga formulas have cation sums of 8.00, assuming 12 oxygen atoms and no ferric Fe, the pv formulas have cation sums exceeding 8.00, possibly resulting from the presence of ferric iron. Mssbauer spectroscopy of a 23 GPa run product gives Fe3+/total Fe ratios of 0.19 in the quenched melt and 0.28 in the bulk solid assemblage, indicating that the perovskites are dominated by ferric iron. Addition of 1% metallic iron to the starting material in a 23 GPa experiment changed the crystallization sequence from fp-pv-ga to fp-ga-pv, indicating a relative destabilization of perovskite at reduced oxygen fugacity. Experiments on the PM-1 composition in C-capsules resulted in the crystallization sequence ga-fp-pv and fp-ga-pv at about 23 and 24 GPa, respectively. The relative stabilization of ga at the expense of pv in C-capsule experiments on PM-1 may be partly related to the slightly higher contents of Si, Al, and Ca in the PM-1 starting material. Based on the identical phase relations of the pyrolite and KLB-1 compositions and the overall similarity between the pyrolite and PM-1 compositions, the destabilization of pv is mainly due to the lower oxygen fugacity imposed by the C-capsule. The depth to the 660 km discontinuity may vary laterally as a function of the oxygen fugacity, with relatively oxidized regions resulting in a shallowing of the discontinuity. This effect may reduce the depression of the discontinuity in areas of cold subducted slabs. The replacement of ringwoodite by ga at high subsolidus temperatures implies that the high-T pv-forming reaction has positive dp/dT-slope, and hot plumes may consequently accelerate through the boundary. Such an acceleration would be enhanced or reduced, depending on whether the plume has lower or higher oxygen fugacity than the ambient mantle.

  12. The effect of water activity and oxygen fugacity on the phase relations and oxidation state of Fe in parental ferrobasaltic magma of Skaergaard

    NASA Astrophysics Data System (ADS)

    Botcharnikov, R.; Koepke, J.; Holtz, F.; McCammon, C.

    2003-04-01

    Phase relations and differentiation in the ferrobasaltic (FeO*=13wt%) system "SC1", an assumed parental liquid of the Skaergaard layered intrusion, have been investigated experimentally at dry conditions (1 atm) [1, 2]. However, the Skaergaard magma is believed to contain water. The present study investigates the role of water and fO2 on the phase relations and differentiation of the "SC1" ferrobasaltic system. The crystallization experiments have been performed in an internally heated pressure vessel equipped with a rapid quench facility and Shaw-membrane to determine the prevailing oxygen fugacity within the sample capsule [3]. To prevent the Fe-loss into the capsule material and ensure the desired conditions inside the capsule, the AuPd capsules were presaturated with iron and starting glasses were preequilibrated at the expected fO2 of the run. Water activity was varied by changing the H2O/CO2 ratio in the fluid phase. The first results of the experiments at P=200 MPa, T=1200-1000C, various oxygen fugacities (logfO2=FMQ+4 to FMQ-1) and water activities (0 to 1) show that water influences not only the liquidus temperatures and temperature interval of mineral crystallization but also the sequence of crystallizing minerals; when compared with the dry system. Since water solubility strongly depends on pressure in the pressure range of 200-300 MPa, corresponding to the storage conditions of Skaergaard magma, the aH2O of hydrous magma may change significantly as a result of convection. Thus, convection has the potential to produce significant differences in stability and proportions of the prevailing minerals. This, in turn, may contribute to the formation of complex layering of the Skaergaard intrusion. The Moessbauer analysis of the quenched glasses shows that the Fe3+ / Sum Fe ratio of the silicate melt is a positive function of the water activity and has a linear dependence on water mole fraction in the system at 1200C. The decrease of Fe3+ / Sum Fe ratio of the water-bearing melt with decreasing oxygen fugacity is more pronounced than that calculated for dry melts after [4]. [1] Toplis MJ &Carroll MR, J. Petrol., 36, 1137-1170, 1995. [2] Lattard D &Partsch GM, Eur. J. Mineral., 13, 467-478, 2001. [3] Berndt J et al., Am. Mineral., 87, 1717-1726, 2002. [4] Kress VC &Carmichael ISE, Contr.Min.Petrol., 108, 82-92, 1991.

  13. Diffusive Re-equilibration of Volatiles and Oxygen Fugacity in Olivine-Hosted Melt Inclusions: Experiments and Numerical Models

    NASA Astrophysics Data System (ADS)

    Bucholz, C. E.; Gaetani, G. A.; Behn, M. D.

    2011-12-01

    Determining the pre-eruptive volatile contents of magmas is of critical importance to understanding their generation and evolution. Mineral-hosted melt inclusions can provide information on the pre-eruptive H2O content of the magma as the host mineral shields the interior melt inclusion from decompression that the exterior magma undergoes as it ascends through the crust [1]. Consequently, melt inclusions have been widely used to provide pre-eruptive water contents (eg. [2]). Yet, there is strong evidence of rapid changes to H2O via proton diffusion through the olivine host crystal [3] that are not limited by redox reactions within the melt inclusion [4]. To quantify the extent to which H2O and other volatiles are faithfully recorded in olivine-hosted melt inclusions, we have combined experiments with numerical models to investigate the processes controlling diffusive re-equilibration of water and oxygen fugacity in an olivine-hosted melt inclusion. Dehydration experiments were performed on olivines from the 1999 Cerro Negro Volcano (Nicaragua) eruption. Melt inclusions with initially high water contents (~3.6 0.6 wt. % H2O) were held at 1 atm and 1100C at the Ni-NiO buffer for 4 to 72 hours. All run products were analyzed by SIMS on the Cameca 1280 ion microprobe at WHOI for H2O, CO2, SO2, F, and Cl. Using COMSOL Multiphysics finite-element modeling software we modeled the diffusive re-equilibration of water, oxygen fugacity, and other volatiles. To interpret our experimental results we used the geometry of the olivines and melt inclusions from the experiments in the numerical models. Our work confirms that the mechanism for loss or gain of H2O from an olivine-hosted melt inclusion is lattice diffusion of protons. Results from XANES analyses on previous dehydration experiments at 1250 C indicate that H loss occurs through a process decoupled from fO2 re-equilibration. Re-equilibration of fO2 occurs independently via diffusion of point defects on timescales comparable to proton diffusion. Our numerical model is the first to incorporate this point-defect mediated re-equilibration mechanism. Furthermore, the ability to model not only water contents, but also the oxygen fugacity and multiple volatile species is a powerful tool to assess the degree, temperature, and duration of diffusive re-equilibration that a melt inclusion has undergone and the integrity of its composition in yielding estimates of pre-eruptive volatile contents.

  14. Single grain estimations of oxygen fugacity in subcratonic mantle lithosphere using compositions of Ilmenite, Chromite , Garnet and Pyroxenes.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, I.

    2012-04-01

    Calculated oxygen fugacity conditions for ilmenites and chromites were obtained using the monomineral version of the Taylor (1998) oxygen barometers with the calculation of Fe#Ol according to (Ashchepkov et al., 2010). The monomineral version of the Gar- Ol- Opx method (Gudmundsson & Wood, 1995) was obtained using the regression between FO2 and Fe3 in garnet and additional correlation to P and T. F5=Fe#Gar/FeGar; Fo2= 2030.2*Ff5**3-1061.4*F5**2+190.89*F5-12.644 Fo2 = (Fo2-0.01*P (kbar)+(ToC-500)/(3500 -05.)*0.9 The obtained values wee regression and the new Cpx method constructed by the cross correlations of the Fe3+ in Cpx with the oxygen fugacity values obtained for garnets were used for the additional characterization of the mantle SCLM section. The statistical between regression obtained from the work (Gudmundsson, Wood , 1995) and corrections for the temperature and pressure justified by the comparisons obtained with the Ol- Sp and Ilm- Ol oxybarometers (Taylor et al., 1998) allow to estimate the FO2 (? log QMF) by following simple equations: For clinopyroxene the cross calibration allow to receive the following regression. Fo2=-186.71*Fe3**2+48.617*Fe3 - 2.3262; Fo2 = Fo2+(T0-500)/3500-0.01*P Fo2 = (Fo2-0.01*P (kbar)+(ToC-500)/3500 -05.)*0.7 For clinopyroxene the cross calibration allow to receive the following regression. Fo2=-186.71*Fe3**2+48.617*Fe3 - 2.3262; Fo2 = Fo2+(T0-500)/3500-0.01*P Fo2=(Fo2-0.5)*0.8 For the orthopyroxene the correlating with the CPx parameter was calculated as following The Fe3'Opx was corrected as Fe3Opx-0.03;Fo2=23.882*Fe3'Opx*(Fe1*15)**2-1.8805 Fo2= Fo2+((T0-400)/1000)*(Fe1*20)-0.0175*P; Fo2=(Fo2*(Fe1*15)**2-0.9*P/70)*0.9 Fo2=(Fo2-0.5)*0.9 Despite on the rather low resolution of the Fe3+ EPMA estimates statistically the determined parameters are rather useful and mark major levels in the SCLM beneath Siberian and other cratons. The rise of FO2 is marked in the three major intervals - in the lithosphere base near the base of lithosphere marking cumulates and shearing peridotites. Near the boundary of the upper and lower mantle at 40 kbar marking so called pyroxenite layer and within basaltic trap - cresponding to the level of water bearing malt interaction , Despite there several layer corresponding to the mantle layering and levels of polybaric hydraulic shearing coused by the protokimberlite melt intrusion. The garnets commonly give some additional trends of joined rising of Fo2 and decreasing of the pressures. There amount in the lower part of the mantle columns is reaching 5-6 units. They are very often correlating with the values determined for the Cpx but later are generally more oxidized. The diamond bearing associations including eclogites are commonly less oxidized belonging to the diamond stability field found by (McCammon et al ., 2001) . Sometimes these values are as low as -5.5 log u. ? log QMF. Interesting feature the upper part of the SCLM is sometimes less oxidized then pyroxenite lens and even lower part of SCLM. The trends of the ilmenites commonly are just marking the line of diamong stability in DSCLM od became higher and (even SCLM) in the upper part . The Ti- bearing spinel are commonly marking slightly lower values then ilmenites while Ti-less chromites are commonly less oxidized marking major units in mantle layering. RBRF grant 11-05-00060.

  15. Intrinsic oxygen fugacity measurements on seven chondrites, a pallasite, and a tektite and the redox state of meteorite parent bodies

    USGS Publications Warehouse

    Brett, R.; Sato, M.

    1984-01-01

    Intrinsic oxygen-fugacity (fO2) measurements were made on five ordinary chondrites, a carbonaceous chondrite, an enstatite chondrite, a pallasite, and a tektite. Results are of the form of linear log fO2 - 1 T plots. Except for the enstatite chondrite, measured results agree well with calculated estimates by others. The tektite produced fO2 values well below the range measured for terrestrial and lunar rocks. The lowpressure atmospheric regime that is reported to follow large terrestrial explosions, coupled with a very high temperature, could produce glass with fO2 in the range measured. The meteorite Salta (pallasite) has low fO2 and lies close to Hvittis (E6). Unlike the other samples, results for Salta do not parallel the iron-wu??stite buffer, but are close to the fayalite-quartz-iron buffer in slope. Minor reduction by graphite appears to have taken place during metamorphism of ordinary chondrites. fO2 values of unequilibrated chondrites show large scatter during early heating suggesting that the constituent phases were exposed to a range of fO2 conditions. The samples equilibrated with respect to fO2 in relatively short time on heating. Equilibration with respect to fO2 in ordinary chondrites takes place between grades 3 and 4 of metamorphism. Application of P - T - fO2 relations in the system C-CO-CO2 indicates that the ordinary chondrites were metamorphosed at pressures of 3-20 bars, as it appears that they lay on the graphite surface. A steep positive thermal gradient in a meteorite parent body lying at the graphite surface will produce thin reduced exterior, an oxidized near-surface layer, and an interior that is increasingly reduced with depth; a shallow thermal gradient will produce the reverse. A body heated by accretion on the outside will have a reduced exterior and oxidized interior. Meteorites from the same parent body clearly are not required to have similar redox states. ?? 1984.

  16. An Experimental Study of Eu/Gd Partitioning Between a Shergottite Melt and Pigeonite: Implications for the Oxygen Fugacity of the Martian Interior

    NASA Technical Reports Server (NTRS)

    McCanta, M. C.; Rutherford, M. J.; Jones, J. H.

    2002-01-01

    We experimentally investigated the partitioning behavior of Eu/Gd between a synthetic shergottite melt and pigeonite as a function of oxygen fugacity. This has implications for the oxidation state of the source region of the martian meteorites. Additional information is contained in the original extended abstract.

  17. The effect of oxygen fugacity on the partitioning of nickel and cobalt between olivine, silicate melt, and metal

    NASA Technical Reports Server (NTRS)

    Ehlers, Karin; Grove, Timothy L.; Sisson, Thomas W.; Recca, Steven I.; Zervas, Deborah A.

    1992-01-01

    The effect of oxygen fugacity, f(O2), on the partitioning behavior of Ni and Co between olivine, silicate melt, and metal was investigated in the CaO-MgO-Al2O3-SiO2-FeO-Na2O system, an analogue of a chondrule composition from an ordinary chondrite. The conditions were 1350 C and 1 atm, with values of f(O2) varying between 10 exp -5.5 and 10 exp -12.6 atm (i.e., the f(O2) range relevant for crystal/liquid processes in terrestrial planets and meteorite parent bodies). Results of chemical analysis showed that the values of the Ni and Co partitioning coefficients begin to decrease at values of f(O2) that are about 3.9 log units below the nickel-nickel oxide and cobalt-cobalt oxide buffers, respectively, near the metal saturation for the chondrule analogue composition.

  18. Ultra-oxidized rocks in subduction mlanges? Decoupling between oxygen fugacity and oxygen availability in a Mn-rich metasomatic environment

    NASA Astrophysics Data System (ADS)

    Tumiati, Simone; Godard, Gaston; Martin, Silvana; Malaspina, Nadia; Poli, Stefano

    2015-06-01

    The manganese ore of Praborna (Italian Western Alps) is embedded within a metasedimentary sequence belonging to a subduction mlange equilibrated at high-pressure (HP) conditions (ca. 2 GPa) during the Alpine orogenesis. The pervasive veining of the ore and the growth of "pegmatoid" HP minerals suggest that these Mn-rich rocks strongly interacted with slab-derived fluids during HP metamorphism. These rocks are in textural and chemical equilibrium with the veins and in contact with sulphide- and magnetite-bearing metabasites at the bottom of the sequence. They contain braunite (Mn2+Mn3+6SiO12), quartz, pyroxmangite (Mn2+SiO3), and minor hematite, omphacite, piemontite and spessartine-rich garnet. Sulphides are absent in the Mn-rich rocks, whereas sulphates (barite, celestine) occur together with As- and Sb-oxides and silicates. This rock association provides an excellent natural laboratory to constrain the redox conditions in subducting oceanic slab mlanges at HP and fluid-present conditions. Similarly to Fe-bearing minerals, Mn oxides and silicates can be regarded as natural redox-sensors. A thermodynamic dataset for these Mn-bearing minerals is built, using literature data as well as new thermal expansion parameters for braunite aud pyrolusite, derived from experiments. Based on this dataset and the observed assemblages at Praborna, thermodynamic calculations show that these mlange rocks are characterised by ultra-oxidized conditions (?FMQ up to + 12.7) if the chemical potential of oxygen (or the oxygen fugacity fO2) is accounted for. On the other hand, if the molar quantity of oxygen is used as the independent state variable to quantify the bulk oxidation state, the ore appears only moderately oxidized and comparable to typical subduction-slab mafic eclogites. Such an apparent contradiction may happen in rock systems whenever oxygen is improperly considered as a perfectly mobile component. In the Earth's mantle, redox reactions take place mainly between solid oxides and silicates, because O2 is a negligible species in the fluid phase. Therefore, the description of the redox conditions of most petrological systems requires the introduction of an extensive variable, namely the oxygen molar quantity (nO2). As a consequence, the oxygen chemical potential, and thus fO2, becomes a dependent state variable, not univocally indicative of the redox conditions of the entire rock column of a subduction zone, from the dehydrating oceanic crust to the overlying mantle wedge. On a more general basis, the comparison of fO2 retrieved from different bulk compositions and different phase assemblages is sometimes challenging and should be undertaken with care. From the study of mlange rocks at Praborna, the distribution of oxygen at subduction zones could be modelled as an oxidation gradient, grading from a maximum in the subducted altered oceanic crust to a minimum in the overlying peridotites of the mantle hanging-wall.

  19. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Burnham, Antony D.; Berry, Andrew J.

    2012-10-01

    The partitioning of P, Sc, Ti, Sr, Y, Nb, the rare earth elements (REE), Hf, Ta, Th and U between zircon and a synthetic andesitic melt was determined as a function of oxygen fugacity (fO2) over a range of fourteen log units, from QFM-8 to QFM+6 (where QFM is the quartz-fayalite-magnetite oxygen buffer) at 1300 C and 1 atm, using SIMS and LA-ICP-MS. The partition coefficients of Ce and Eu were found to vary systematically with fO2, relative to those of the other REE, producing Ce and Eu anomalies similar to those that are characteristic of natural igneous zircon. These anomalies coexist at terrestrial fO2s and were used to quantify Eu3+/(Eu2+ + Eu3+) and Ce4+/(Ce3+ + Ce4+) in the melt. The partition coefficients of the redox invariant trivalent cations are in excellent agreement with lattice strain theory. The values of DREE are related to those determined for natural samples by the expected dependence on temperature. The incorporation of REE3+ in zircon was independent of the presence of P. DU/DTh was found to vary systematically with fO2 indicating the presence of U4+, U5+ and U6+ in the melt at terrestrial conditions. DTi was independent of fO2 despite an expectation of significant Ti3+ in the most reduced experiments.

  20. Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Sutton, S. R.; Papike, J. J.; Shearer, C. K.; Jones, J. H.; Newville, M.

    2004-01-01

    We have been developing an oxygen barometer based on the valence state of V (V(2+), V(3+), V(4+), and V(5+)) in solar system basaltic glasses. The V valence is determined by synchrotron micro x-ray absorption near edge structure (XANES), which uses x-ray absorption associated with core-electronic transitions (absorption edges) to reveal a pre-edge peak whose intensity is directly proportional to the valence state of an element. XANES has advantages over other techniques that determine elemental valence because measurements can be made non-destructively in air and in situ on conventional thin sections at a micrometer spatial resolution with elemental sensitivities of approx. 100 ppm. Recent results show that fO2 values derived from the V valence technique are consistent with fO2 estimates determined by other techniques for materials that crystallized above the IW buffer. The fO2's determined by V valence (IW-3.8 to IW-2) for the lunar pyroclastic glasses, however, are on the order of 1 to 2.8 log units below previous estimates. Furthermore, the calculated fO2's decrease with increasing TiO2 contents from the A17 VLT to the A17 Orange glasses. In order to investigate these results further, we have synthesized lunar green and orange glasses and examined them by XANES.

  1. Genesis of high-Mg andesites through shallow fractionation of primitive arc basalts at elevated oxygen fugacities

    NASA Astrophysics Data System (ADS)

    Zellmer, G. F.; Shellnutt, J. G.

    2009-12-01

    The petrogenesis of high-Mg andesites has been linked to a variety of processes, including partial melting of hydrous mantle peridotite, re-equilibration of partial melts of the subducting slab with the mantle wedge, and assimilation of lower crustal cumulates into dacitic melts. Yet none of these processes can explain the recently identified association of adakitic andesites, many of which are high-Mg andesites, with regions of elevated surface heat flux that are likely related to unusually shallow magma ponding levels in the upper crust (Zellmer, 2009). Using MELTS modeling, we demonstrate here that at high oxygen fugacities (NNO+2, which based on whole-rock Fe3+/Fe2+ ratios is appropriate for the Western and Central Aleutians, the Trans-Mexican Volcanic Belt, and the Setouchi Volcanic Belt), shallow crustal pressures (0.7 kbar), and initial H2O contents between 0.5 and 4 wt%, iron-magnesium spinel will be fractionated from primitive arc basalts, producing andesitic residual melts with elevated Mg#. Subsequent assimilation of a few percent of autocrystic mafic phases makes typical high-Mg andesites with forsteritic olivines. Orthopyroxenes in equilibrium with these melts are Cr-rich due to increased uptake of Cr into orthopyroxene (Dopx/lq?25) at lower temperatures (?1130C) and elevated oxygen fugacities (NNO+2). While arc magmas with high initial H2O contents will undergo early degassing induced crystallization and viscous stagnation, lower primary melt H2O contents will result in delayed crystallization and shallower magma ponding levels, accounting for elevated surface heat flux. Our findings are therefore consistent with the location of many high-Mg andesites in areas of high surface heat flux, and challenge the commonly accepted notion that these compositions are particularly hydrous primary melts generated in equilibrium with mantle peridotite. Reference: Zellmer G.F. (2009) Petrogenesis of Sr-rich adakitic rocks at volcanic arcs: insights from global variations of eruptive style with plate convergence rates and surface heat flux. Journal of the Geological Society 166, 725-734. DOI:10.1144/0016-76492008-0721

  2. Copper Partitioning between Amphibole and Silicate Melts: the Effects of Temperature, Melt Compositions, Oxygen Fugacity and Water Concentrations

    NASA Astrophysics Data System (ADS)

    Hsu, Y. J.; Zajacz, Z.; Ulmer, P.; Heinrich, C. A.

    2014-12-01

    Porphyry copper deposits commonly occur in arc-related settings where ore-metals are transported by magmas from the mantle wedge to shallow depths, and subsequently partition into the exsolving volatile phase. The partitioning of Cu between crystallizing silicate, oxide and sulfide minerals, sulfide melts and magmatic volatiles will determine the efficiency of Cu transfer into the magmatic-hydrothermal system. Understanding the Cu partitioning behavior between crystallizing mineral phases and silicate melt during crystallization fractionation is therefore fundamentally important. Among the crystallizing phases, amphibole is stable across a wide pressure (P) - temperature (T) range in hydrous arc magmas. Therefore, if the partition coefficients of Cu between amphibole and silicate melts are well constrained, the measured variation of Cu concentrations in natural amphibole crystals can be used to reconstruct the evolution of the Cu concentration in the silicate melt. In this study, a series of experiments were conducted by piston cylinder apparatus over a wide range of melt compositions (andesitic to rhyolitic) to determine the amphibole/melt partition coefficient of Cu. The experiments were run at T = 740 - 990 C, P = 0.7 GPa, and oxygen fugacity (fO2) between NNO +0.75 and NNO +2. The metal activities were imposed by using Au97Cu3 and Au92Cu8 alloy capsules. The apparent Cu solubilities in both the silicate melt and amphibole phases decrease with decreasing temperature. The Cu concentrations in a dacite melt increase approximately by factor of 3 while fO2 increases from NNO +0.75 to NNO +2. However, the amphibole/melt partition coefficient of Cu remains nearly constant at a value of 0.067 0.013 (1 ?), indicating that the partitioning of Cu is not significantly affected by melt composition, fO2 and water concentrations. Therefore, determination of Cu concentrations in amphiboles may be a suitable tool to monitor the evolution of the Cu budget of ore-related magma reservoirs during magma evolution in porphyry cooper systems. In addition, our results showed that Cu is always incompatible in amphibole; therefore, occasionally measured high Cu concentrations in amphibole are likely an artifact of the presence of submicroscopic sulfide inclusions.

  3. Roles of magmatic oxygen fugacity and water content in generating signatures of continental crust in the Alaska-Aleutian arc

    NASA Astrophysics Data System (ADS)

    Kelley, K. A.; Cottrell, E.; Brounce, M. N.; Gentes, Z.

    2014-12-01

    Early depletion of Fe during magmatic differentiation is a characteristic of many arc magmas, and this may drive them towards the bulk composition of continental crust. In the Alaska-Aleutian arc, magmas are strongly Fe-depleted both in the east, where the arc sits atop pre-existing continental crust, and in the west, where the system is oceanic but convergence is highly oblique. Primary basaltic arc magmas may achieve early Fe depletion through a combination of high magmatic H2O, which delays silicate saturation, and high oxygen fugacity (fO2), which promotes early onset of Fe-oxide crystallization. Alternatively, low-Fe, high Mg# magmas may emerge directly from the arc mantle, possibly due to slab melting, driving mixing with Fe-rich basaltic magmas. Yet, the relative importance of H2O, fO2, and magmatic bulk composition in generating Fe-depletion is not clearly resolved. Here, we present new measurements of the oxidation state of Fe (Fe3+/?Fe ratio; a proxy for magmatic fO2), in combination with major element and volatile data, of olivine-hosted melt inclusions from four Alaska-Aleutian arc volcanoes (Okmok, Seguam, Korovin, Augustine), acquired using XANES spectroscopy. We use the Tholeiitic Index (THI) of Zimmer et al., 2010 to quantify the behavior of Fe in each volcano magma series (<1 is Fe-depleted, >1 is Fe-enriched). These volcanoes span a range of THI, from 0.9-0.65. The Fe3+/?Fe ratios of Aleutian basalts, corrected for fractional crystallization to 6 wt.% MgO (i.e., Fe3+/?Fe6.0) range from 0.22-0.31 and correlate strongly with THI (r2>0.99), such that more Fe-depleted magmas contain a greater proportion of oxidized Fe. The maximum dissolved H2O contents of basaltic melt inclusions from these volcanoes also strongly correlate with THI (r2>0.96), and with measured Fe3+/?Fe ratios (although H2O is not the direct cause of oxidation). These links point to a slab-derived origin of both H2O and oxidation and thus relate slab fluxes to the Fe-depletion trends of arc magmas. These correlations also illustrate the difficulty of separating the effects of H2O and fO2 on arc magmatic differentiation, as the two are challenging to isolate in nature. Analysis of experimental data, however, suggest that fO2 exhibits stronger control than H2O on the relative appearance of spinel and silicates on the liquidus.

  4. Experimental study of trace element partitioning between enstatite and melt in enstatite chondrites at low oxygen fugacities and 5 GPa

    NASA Astrophysics Data System (ADS)

    Cartier, Camille; Hammouda, Tahar; Doucelance, Rgis; Boyet, Maud; Devidal, Jean-Luc; Moine, Bertrand

    2014-04-01

    In order to investigate the influence of very reducing conditions, we report enstatite-melt trace element partition coefficients (D) obtained on enstatite chondrite material at 5 GPa and under oxygen fugacities (fO2) ranging between 0.8 and 8.2 log units below the iron-wustite (IW) buffer. Experiments were conducted in a multianvil apparatus between 1580 and 1850 C, using doped (Sc, V, REE, HFSE, U, Th) starting materials. We used a two-site lattice strain model and a Monte-Carlo-type approach to model experimentally determined partition coefficient data. The model can fit our partitioning data, i.e. trace elements repartition in enstatite, which provides evidence for the attainment of equilibrium in our experiments. The precision on the lattice strain model parameters obtained from modelling does not enable determination of the influence of intensive parameters on crystal chemical partitioning, within our range of conditions (fO2, P, T, composition). We document the effect of variable oxygen fugacity on the partitioning of multivalent elements. Cr and V, which are trivalent in the pyroxene at around IW - 1 are reduced to 2+ state with increasingly reducing conditions, thus affecting their partition coefficients. In our range of redox conditions Ti is always present as a mixture between 4+ and 3+ states. However the Ti3+-Ti4+ ratio increases strongly with increasingly reducing conditions. Moreover in highly reducing conditions, Nb and Ta, that usually are pentavalent in magmatic systems, appear to be reduced to lower valence species, which may be Nb2+ and Ta3+. We propose a new proxy for fO2 based on D(Cr)/D(V). Our new data extend the redox range covered by previous studies and allows this proxy to be used in the whole range of redox conditions of the solar system objects. We selected trace-element literature data of six chondrules on the criterion of their equilibrium. Applying the proxy to opx-matrix systems, we estimated that three type I chondrules have equilibrated at IW - 7 1, one type I chondrule at IW - 4 1, and two type II chondrules at IW + 3 1. This first accurate estimation of enstatite-melt fO2 for type I chondrules is very close to CAI values. Find the best-fit for trivalent elements. We set the r0M1 (3+) range to 0.55-0.75 , based on visual observations of the datapoints. For the other variables we have set boundary values beyond which the solutions would be unacceptable. For example, r0M2 (3+) has to be larger than r0M1 (3+). Finally we restricted the D0 range as follow: 0.2 r0(3+) > r0(4+) (see van Westrenen et al., 2000, for explanation), together with visual observation of our experimental data. D0 ranges: 1 < D0M1(2+) < 100; D0M2 (3+) < D0M2(2+) < 100 ; 0.01 < D0M1(4+) < 0.1 ; 0.0001 < D0M2(4+) < 0.01. These ranges are based on visual observation of our experimental data.

  5. The Mineralogical Record of Oxygen Fugacity Variation and Alteration in Northwest Africa 8159: Evidence for Interaction Between a Mantle Derived Martian Basalt and a Crustal Component(s)

    NASA Technical Reports Server (NTRS)

    Shearer, Charles K.; Burger, Paul V.; Bell, Aaron S.; McCubbin, Francis M.; Agee, Carl; Simon, Justin I.; Papike, James J.

    2015-01-01

    A prominent geochemical feature of basaltic magmatism on Mars is the large range in initial Sr isotopic ratios (approx. 0.702 - 0.724) and initial epsilon-Nd values (approx. -10 to greater than +50). Within this range, the shergottites fall into three discreet subgroups. These subgroups have distinct bulk rock REE patterns, mineral chemistries (i.e. phosphate REE patterns, Ni, Co, V in olivine), oxygen fugacity of crystallization, and stable isotopes, such as O. In contrast, nakhlites and chassignites have depleted epsilon-Nd values (greater than or equal to +15), have REE patterns that are light REE enriched, and appear to have crystallized near the FMQ buffer. The characteristics of these various martian basalts have been linked to different reservoirs in the martian crust and mantle, and their interactions during the petrogenesis of these magmas. These observations pose interesting interpretive challenges to our understanding of the conditions of the martian mantle (e.g. oxygen fugacity) and the interaction of mantle derived magmas with the martian crust and surface. Martian meteorite NWA 8159 is a unique fine-grained augite basalt derived from a highly depleted mantle source as reflected in its initial epsilon-Nd value, contains a pronounced light REE depleted pattern, and crystallized presumably under very oxidizing conditions. Although considerably older than both shergottites and nahklites, it has been petrogenetically linked to both styles of martian magmatism. These unique characteristics of NWA 8159 may provide an additional perspective for deciphering the petrogenesis of martian basalts and the nature of the crust of Mars.

  6. The W-W02 Oxygen Fugacity Buffer at High Pressures and Temperatures: Implications for f02 Buffering and Metal-silicate Partitioning

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Campbell, A. J.; Danielson, L.; Righter, K.

    2013-01-01

    Oxygen fugacity (fO2) controls multivalent phase equilibria and partitioning of redox-sensitive elements, and it is important to understand this thermodynamic parameter in experimental and natural systems. The coexistence of a metal and its oxide at equilibrium constitutes an oxygen buffer which can be used to control or calculate fO2 in high pressure experiments. Application of 1-bar buffers to high pressure conditions can lead to inaccuracies in fO2 calculations because of unconstrained pressure dependencies. Extending fO2 buffers to pressures and temperatures corresponding to the Earth's deep interior requires precise determinations of the difference in volume (Delta) V) between the buffer phases. Synchrotron x-ray diffraction data were obtained using diamond anvil cells (DAC) and a multi anvil press (MAP) to measure unit cell volumes of W and WO2 at pressures and temperatures up to 70 GPa and 2300 K. These data were fitted to Birch-Murnaghan 3rd-order thermal equations of state using a thermal pressure approach; parameters for W are KT = 306 GPa, KT' = 4.06, and aKT = 0.00417 GPa K-1. Two structural phase transitions were observed for WO2 at 4 and 32 GPa with structures in P21/c, Pnma and C2/c space groups. Equations of state were fitted for these phases over their respective pressure ranges yielding the parameters KT = 190, 213, 300 GPa, KT' = 4.24, 5.17, 4 (fixed), and aKT = 0.00506, 0.00419, 0.00467 GPa K-1 for the P21/c, Pnma and C2/c phases, respectively. The W-WO2 buffer (WWO) was extended to high pressure by inverting the W and WO2 equations of state to obtain phase volumes at discrete pressures (1-bar to 100 GPa, 1 GPa increments) along isotherms (300 to 3000K, 100 K increments). The slope of the absolute fO2 of the WWO buffer is positive with increasing temperature up to approximately 70 GPa and is negative above this pressure. The slope is positive along isotherms from 1000 to 3000K with increasing pressure up to at least 100 GPa. The WWO buffer is at a higher fO2 than the IW buffer at pressures lower than 40 GPa, and the magnitude of this difference decreases at higher pressures. This qualitatively indicates an increasingly lithophile character for W at higher pressures. The WWO buffer was quantitatively applied to W metal-silicate partitioning by using the WWO-IW buffer difference in combination with literature data on W metal-silicate partitioning to model the exchange coefficient (KD) for the Fe-W exchange reaction. This approach captures the pressure dependence of W metal-silicate partitioning using the WWO-IW buffer difference and models the activities of the components in the silicate and metallic phases using an expression of the Gibbs excess energy of mixing. Calculation of KD along a peridotite liquidus predicts a decrease in W siderophility at higher pressures that supports the qualitative behavior predicted by the WWO-IW buffer difference, and agrees with findings of others. Comparing the competing effects of temperature and pressure on W metal-silicate partitioning, our results indicate that pressure exerts a greater effect.

  7. Genesis of high-Mg andesites (HMA) through shallow fractionation of primitive arc basalts at elevated oxygen fugacities (and low initial water contents)

    NASA Astrophysics Data System (ADS)

    Zellmer, Georg; Shellnutt, Gregory

    2010-05-01

    The petrogenesis of high-Mg andesites has been linked to a variety of processes, including partial melting of hydrous mantle peridotite, re-equilibration of partial melts of the subducting slab with the mantle wedge, and assimilation of lower crustal cumulates into dacitic melts. Yet none of these processes can explain the recently identified association of adakitic andesites, many of which are high-Mg andesites, with regions of elevated surface heat flux that are related to unusually shallow magma ponding levels in the upper crust (Zellmer, 2009). Using MELTS modeling, we demonstrate here that at elevated oxygen fugacities (NNO+2, which based on whole-rock Fe3+/Fe2+ ratios is appropriate for the Western and Central Aleutians, the Trans-Mexican Volcanic Belt, and the Setouchi Volcanic Belt), shallow crustal pressures (0.7 kbar), and initial H2O contents between 0.5 and 4 wt%, iron-magnesium spinel will be fractionated from primitive arc basalts, producing andesitic residual melts with elevated Mg#. Subsequent assimilation of a few percent of autocrystic mafic phases makes typical high-Mg andesites with forsteritic olivines. Orthopyroxenes in equilibrium with these melts are Cr-rich due to increased uptake of Cr into orthopyroxene (Dopx-lq ?25) at lower temperatures (?1130 C) and elevated oxygen fugacities (NNO+2). While arc magmas with high initial H2O contents will undergo early degassing induced crystallization and viscous stagnation, lower primary melt H2O contents will result in delayed crystallization and shallower magma ponding levels, accounting for elevated surface heat flux. Our findings are therefore consistent with the location of many high-Mg andesites in areas of high surface heat flux, and challenge the commonly accepted notion that these compositions are particularly hydrous primary melts generated in equilibrium with mantle peridotite. Reference: Zellmer G.F. (2009) Petrogenesis of Sr-rich adakitic rocks at volcanic arcs: insights from global variations of eruptive style with plate convergence rates and surface heat flux. Journal of the Geological Society 166, 725-734. DOI:10.1144/0016-76492008-0721

  8. Oxygen Fugacity of Mare Basalts and the Lunar Mantle Application of a New Microscale Oxybarometer Based on the Valence State of Vanadium

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Karner, J.; Papike, J. J.; Sutton, S. R.

    2004-01-01

    The ability to estimate oxygen fugacities for mare basalts and to extend these observations to the lunar mantle is limited using bulk analysis techniques based on buffering assemblages or the valence state of iron. These limitations are due to reequilibration of mineral assemblages at subsolidus conditions, deviations of mineral compositions from thermodynamic ideality, size requirements, and the limits of the iron valence at very low fO2. Still, these approaches have been helpful and indicate that mare basalts crystallized at fO2 between the iron-w stite buffer (IW) and the ilmenite breakdown reaction (ilmenite = rutile + iron). It has also been inferred from these estimates that the lunar mantle is also highly reduced lying at conditions below IW. Generally, these data cannot be used to determine if the mare basalts become increasingly reduced during transport from their mantle source and eruption at the lunar surface and if there are differences in fO2 among mare basalts or mantle sources. One promising approach to determining the fO2 of mare basalts is using the mean valence of vanadium (2+, 3+, 4+, 5+) determined on spots of a few micrometers in diameter using synchrotron x-ray absorption fine structure (XAFS) spectroscopy. The average valence state of V in basaltic glasses is a function of fO2, temperature, V coordination, and melt composition. Here, we report the initial results of this approach applied to lunar pyroclastic glasses.

  9. Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.

    2000-01-01

    Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.

  10. Computer program for calculation of oxygen uptake

    NASA Technical Reports Server (NTRS)

    Castle, B. L.; Castle, G.; Greenleaf, J. E.

    1979-01-01

    A description and operational precedures are presented for a computer program, written in Super Basic, that calculates oxygen uptake, carbon dioxide production, and related ventilation parameters. Program features include: (1) the option of entering slope and intercept values of calibration curves for the O2 and CO2 and analyzers; (2) calculation of expired water vapor pressure; and (3) the option of entering inspured O2 and CO2 concentrations. The program is easily adaptable for programmable laboratory calculators.

  11. Comparative Planetary Mineralogy: V/(Cr+Al) Systematics in Chromites as an Indicator of Relative Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Kamer, J. M.; Shearer, C. K.

    2004-01-01

    As our contribution to the new "Oxygen in the Solar System" initiative of the Lunar and Planetary Institute and the NASA Cosmochemistry Program, we have been developing oxygen barometers based largely on behavior of V which can occur in four valence states V2+, V3+, V4+, and V5+, and record at least 8 orders of magnitude of fO2. Our first efforts in measuring these valence proportions were by XANES techniques in basaltic glasses from Earth, Moon, and Mars. We now address the behavior of V valence states in chromite in basalts from Earth, Moon, and Mars. We have been looking for a "V in chromite oxybarometer" that works with data collected by the electron microprobe and thus is readily accessible to a large segment of the planetary materials community. This paper describes very early results that will be refined over the next two years.

  12. Lateral variation in oxygen fugacity and halogen contents in early Cretaceous magmas in Jiaodong area, East China: Implication for triggers of the destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Long; He, Peng-Li; Wang, Xue; Zhong, Jun-Wei; Xu, Yi-Gang

    2016-04-01

    Pacific subduction has been suggested as the trigger of the destruction of the North China Craton, but evidence for it remains ambiguous. To further investigate this issue, we studied Wulian pyroxene monzonite (123 ± 1 Ma) in the west and Rushan gabbro-diorite (115 ± 1 Ma) in the east of the Sulu orogen, East China. The rocks of both locations are characterized by low TiO2 but high SiO2 and K2O, fractionated REE patterns with notable negative Ta-Nb-Ti anomalies, and by high initial 87Sr/86Sr ratios and strongly negative εNd (t) and εHf (t) values. These geochemical and isotopic characteristics can be interpreted to be formed by partial melting of enriched lithosphere mantle refertilized by recycled crustal materials that were associated with the Sulu orogeny. Oxygen fugacities of the Rushan gabbro-diorites, estimated based on magnetite-ilmenite equilibration, are significantly higher than those of Wulian pyroxene monzonite. This lateral difference is mirrored by lower F and F/Cl but higher Cl in biotite in the Rushan gabbro-diorite compared to Wulian pyroxene monzonite. All these data suggest a spatially heterogeneous Cretaceous mantle source in terms of halogens and water contents beneath the Sulu orogen, which was most likely caused by the subduction processes of the Pacific plate. H2O-rich fluid in the mantle beneath the east of the Sulu orogen closer to the mantle wedge was prominently from early dehydration of subducted slab at shallow depth, while F-bearing fluid to further west was released by dehydrated deeper slab or stagnant oceanic slab within the mantle transition zone.

  13. Laboratory study of vitrinite maturation rate as a function of temperature, time, starting material, aqueous fluid pressure, and oxygen fugacity corroboration of prior work

    NASA Astrophysics Data System (ADS)

    Ferreiro Mhlmann, R.; Ernst, W. G.

    2003-04-01

    Kinetic investigations were performed on disaggregated samples of angiosperm and gymnosperm xylite (mainly pure huminite fragments) at 2.0 kbar aqueous fluid pressure and oxygen fugacities defined by hematite-magnetite and magnetite + quartz-fayalite buffers. Individual experiments lasted from 5 to 204 days. The rates of vitrinite reflectance (VR) increase were evaluated at 200, 250, 300, and 400 ^oC isotherms; experimentally determined, approximately steady-state values for the mean %R_r are 0.54, 0.74, 1.10, and 2.25, respectively. For geological lengths of time, appropriate values of %R_r = K_0t0.076 (where K_0 is a function of temperature, and t is in days). The overall activation energy describing the kinetics of devolatilization reactions responsible for increase in VR measured in our experiments is 21.8 0.3 kJ/mol. Combined with earlier rate studies conducted by Dalla Torre et al. (1997) we conclude that the rate of vitrinite maturation is virtually unaffected by oxidation state, "wet" versus "dry" conditions, and nature of the starting lignitic material (conifers, hardwood). To a small extent, elevated lithostatic pressure retards the rate of increase in VR. Different, nonsystematic trends are observed for the resinite-exudatinite-bituminite present in the lignite material and in low temperature and short runs. Strong disequilibrium was recognized in short runs of the 200 and 250 ^oC isotherms. These new run data demonstrate that VR is chiefly a function of temperature and time. In support of earlier field, theoretical, and laboratory studies, for all but geologically insignificant time intervals, vitrinite reflectance is an appropriate proxy for host-rock burial temperature. Reference: Dalla Torre, M., Ferreiro Mhlmann, R. and Ernst, W.G. (1997): Geochimica Cosmochimica Acta, 61/14, 2921-2928.

  14. Systematic iron isotope variations in mantle rocks and minerals: The effects of partial melting and oxygen fugacity [rapid communication

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Peslier, A. H.; McCammon, C.; Halliday, A. N.; Levasseur, S.; Teutsch, N.; Burg, J.-P.

    2005-06-01

    Iron isotopic compositions potentially provide a powerful new tracer of planetary formation and differentiation processes and of secular and spatial changes in mantle oxidation state. However, the processes governing iron isotope fractionation in igneous rocks remain poorly understood. Here we show that there are significant variations in the iron isotope compositions ( ?57/54Fe) of mantle rocks (0.9) and minerals (olivines 0.6, clinopyroxenes 0.9 and orthopyroxenes 0.8), with spinels showing the greatest total variation of 1.7. Positive linear functional relationships with slopes that are, within error, equal to unity are found between the ?57/54Fe values of coexisting orthopyroxene, clinopyroxene and olivine, strongly suggesting that the ?57/54Fe values of these minerals reflect intra-sample mineral-mineral isotopic equilibrium. Positive correlations between the ?57/54Fe values of silicate minerals and spinels also exist, although they are more scattered, which could be caused by late disturbance of mineral-spinel isotopic equilibrium. Bulk-rock, clinopyroxene and spinel ?57/54Fe values correlate with chemical indices of both melt extraction and oxidation. Iron isotope fractionation during spinel-facies partial melting is investigated using simple models, which demonstrate that the maximum expected fractionation between melt and residue will be 0.5, with the residue becoming isotopically light relative to the melt and to the initial source region. Hence melt extraction, in combination with significant changes in mantle oxidation state, may be an explanation for Fe isotopic variations in mantle peridotites. Metasomatism of the sub-arc mantle by iron-rich silicate melts originating from the subducting slab may also explain the light bulk-sample ?57/54Fe values of some arc peridotites (- 0.2 to - 0.6), but mass-balance calculations require these metasomatic agents to have extreme ?57/54Fe values (e.g. - 3.0). The large differences in the ?57/54Fe values of garnet and spinel facies rocks are likely to be caused by the contrasting behaviour of Fe 3+ during melting in the spinel and garnet facies. However, there is little difference in the ?57/54Fe values of MORB and OIB, despite the fact that OIB are considered, on the basis of incompatible element abundances, to arise dominantly by melting in the garnet stability field. Given that iron is a relatively compatible element, the similarities in the ?57/54Fe values of MORB and OIB provide strong evidence that MORB and OIB are both dominated by melting in the spinel facies.

  15. The Influence of PH and Oxygen Fugacity on the Hydrothermal Transport of Pb and Zn by Carboxylate Complexes.

    NASA Astrophysics Data System (ADS)

    Giordano, T. H.

    2001-12-01

    A chemical model was developed to evaluate the influence of log ? pH conditions on Pb and Zn complexation by acetate and malonate in 100oC basinal brines with bulk chemical compositions similar to diagenetic ore fluids and modern petroleum-field brines of moderate salinity (TDS = 180 g L-1). In the model composite brine, acetate with a concentration of 7,700 mg L-1 (0.13 m) represents the major monocarboxylate ligands detected in basinal brines, while malonate with a concentration of 300 mg L-1 (0.0029m) represents the dominant dicarboxylate ligands. Total Pb and Zn concentrations (constrained by galena and sphalerite solubility, respectively) and Pb and Zn speciation were calculated as a function of log and pH for the model composite fluid. The 1.0 and 10 ppm isopleths of total Pb and total Zn in carboxylate (acetate + malonate) complexes illustrate that the ore fluid of Giordano (1994) for red-bed related base metal deposits and Anderson?s (1975) Mississippi Valley-type ore fluid are potentially capable of transporting sufficient amounts of Pb and Zn in the form of carboxylate complexes to form economic deposits of Pb and Zn. Both of these fluids are oxidized, have very low total reduced sulfur, and have pHs in the range 5.5 to 6.5. On the other hand, the reduced ore fluid models of Sverjensky (1984) (projected to 100oC) and Giordano and Barnes (1981), both for Mississippi Valley ? type deposits, can at best transport amounts of Pb and Zn as carboxylate complexes that are many orders of magnitude below the 1 to 10 ppm minimum required to form economic deposits. The speciation results show that the log - pH conditions most favorable for carboxylate complexation are the same conditions under which chloride complexation dominates Pb and Zn speciation. Furthermore, the results show that basinal brines and related ore fluids characterized by temperatures near 100oC, high oxidation states (i.e., low total reduced sulfur), and high but reasonable concentrations of carboxylate anions can mobilize up to 3 percent of the total Pb and up to 1.3 percent of the total Zn as carboxylate complexes. These percentages, under the most favorable conditions, correspond to approximately 1 to 100 ppm of those metals in solution; concentrations that are adequate to form economic deposits of these metals. However, the field evidence from modern petroleum-field brines suggests that these optimal conditions, at 100oC, for carboxylate complexation are rarely met.

  16. Calculations of scattering by (de-)oxygenated whole blood

    NASA Astrophysics Data System (ADS)

    Faber, Dirk J.; Aalders, Maurice C. G.; Mik, Egbert G.; Hooper, Brett A.; van Leeuwen, Ton G.

    2004-06-01

    We report on the scattering properties of oxygenated and de-oxygenated whole blood from 250-1000 nm. We determined the complex refractive index of oxygenated and de-oxygenated hemoglobin using Kramers Kronig analysis and Optical Coherence Tomography measurements. Combining these data with Mie theory, the scattering properties of oxygenated and deoxygenated whole blood were calculated. The results show strong oxygen saturation dependent scattering effects, which should be taken into account in data analysis of optical oxymetry.

  17. A liquid oxygen calculator for fasted channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An interactive liquid oxygen (LOX) calculator for fasted channel catfish confined in grading nets or in live haul tanks has been developed, using Microsoft Visual Studio 2005. The calculator is based on results of scientific experiments on channel catfish metabolism, and estimates oxygen consumptio...

  18. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2015-08-01

    In order to assess the role of sulfide in controlling the ore metal budgets and fractionation during magmatic genesis and differentiation, the partition coefficients (D) of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide liquid (SL), monosulfide solid solution (MSS), and basaltic to rhyolitic melts (SM) were determined at 900-1200 °C, 0.5-1.5 GPa, and oxygen fugacity (fO2) ranging from ∼FMQ-2 to FMQ+3, in a piston-cylinder apparatus. The DSL/SM values range from 0.4 to 2 for V, 0.5 to 3 for Mn, 80 to 580 for Co, 2300 to 18,000 for Ni, 800 to 4600 for Cu, 1 to 11 for Zn, 20 to 180 for As, 4 to 230 for Mo, 450 to 1600 for Ag, 5 to 24 for Sn, 10 to 80 for Sb, 0.03 to 0.16 for W, 2000 to 29,000 for Au, 24 to 170 for Pb, and 830 to 11,000 for Bi; whereas the DMSS/SM values range from 0.04 to 10 for V, 0.5 to 10 for Mn, 70 to 2500 for Co, 650 to 18,000 for Ni, 280 to 42,000 for Cu, 0.1 to 80 for Zn, 0.2 to 30 for As, 1 to 820 for Mo, 20 to 500 for Ag, 0.2 to 220 for Sn, 0.1 to 40 for Sb, 0.01 to 24 for W, 10 to 2000 for Au, 0.03 to 6 for Pb, and 1 to 350 for Bi. Both DMSS/SM and DSL/SM values generally increase with decreasing temperature or decreasing FeOtot content in silicate melt, except for Mo, DMSS/SM and DSL/SM of which show a clear decrease with decreasing temperature. At given temperature and FeOtot content, high oxygen fugacity appears to lead to a significant decrease in DMSS/SM of Au, Bi, Mo, and potentially As. The partitioning data obtained experimentally in this study and previous studies were fitted to an empirical equation that expresses the DMSS/SM and/or DSL/SM of a given element as a function of temperature, oxygen fugacity, and FeOtot content of the silicate melt: log (DSL/SMorDMSS/SM = d + a · 10, 000 / T + b · (ΔFMQ) + c · log (FeOmelt) in which T is temperature in K, FeOmelt denotes wt% FeOtot in silicate melt, and ΔFMQ denotes log fO2 relative to the fayalite-magnetite-quartz (FMQ) oxygen buffer. The application of this equation to natural samples of basaltic to rhyolitic composition yields DMSS/SM and DSL/SM values that agree with the measured values within ±0.5 log units for most of the elements, indicating the validity of the application of this equation to natural systems. Our partitioning data imply that sulfide liquid saturation in low-temperature intermediate to felsic melts causes a strong depletion in Cu, Au, Bi, and potentially Ag in the silicate melt, whereas MSS saturation may cause a depletion in Cu and potentially Au. Other elements including W, Zn, As, Mo, Sn, Sb, and Pb are much less or not affected by the saturation of sulfide liquid or MSS. These results place important constrains on the potential of magmas in forming porphyry-type ore deposits and the origin of the observed variability in metal ratios in porphyry-type ore deposits.

  19. A New Spinel-Olivine Oxybarometer: Near-Liquidus Partitioning of V between Olivine-Melt, Spinel-Melt, and Spinel-Olivine in Martian Basalt Composition Y980459 as a Function of Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Le, L.; Burger, P. V.; Shearer, C. K.; Bell, A. S.; Jones, J.

    2013-01-01

    Our research on valence state partitioning began in 2005 with a review of Cr, Fe, Ti, and V partitioning among crystallographic sites in olivine, pyroxene, and spinel [1]. That paper was followed by several on QUE94201 melt composition and specifically on Cr, V, and Eu partitioning between pyroxene and melt [2-5]. This paper represents the continuation of our examination of the partitioning of multivalent V between olivine, spinel, and melt in martian olivine-phyric basalts of Y980459 composition [6, 7]. Here we introduce a new, potentially powerful oxybarometer, V partitioning between spinel and olivine, which can be used when no melt is preserved in the meteorite. The bulk composition of QUE94201 was ideal for our study of martian pyroxene-phyric basalts and specifically the partitioning between pyroxene-melt for Cr, V, and Eu. Likewise, bulk composition Y980459 is ideal for the study of martian olivine-phyric basalts and specifically for olivine-melt, spinel-melt, and spinel-olivine partitioning of V as a function of oxygen fugacity.

  20. Polarizability calculations on water, hydrogen, oxygen, and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Nir, S.; Adams, S.; Rein, R.

    1973-01-01

    A semiclassical model of damped oscillators is used as a basis for the calculation of the dispersion of the refractive index, polarizability, and dielectric permeability in water, hydrogen, and oxygen in liquid and gaseous states, and in gaseous carbon dioxide. The absorption coefficient and the imaginary part of the refractive index are also calculated at corresponding wavelengths. A good agreement is obtained between the observed and calculated values of refractive indices, and between those of absorption coefficients in the region of absorption bands. The calculated values of oscillator strengths and damping factors are also discussed. The value of the polarizability of liquid water was about 2.8 times that of previous calculations.

  1. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100C: the influence of pH and oxygen fugacity

    PubMed Central

    Giordano, Thomas H

    2002-01-01

    It is well established through field observations, experiments, and chemical models that oxidation (redox) state and pH exert a strong influence on the speciation of dissolved components and the solubility of minerals in hydrothermal fluids. log pH diagrams were used to depict the influence of oxygen fugacity and pH on monocarboxylate- and dicarboxylate-transport of Pb and Zn in low-temperature (100C) hydrothermal ore fluids that are related to diagenetic processes in deep sedimentary basins, and allow a first-order comparison of Pb and Zn transport among proposed model fluids for Mississippi Valley-type (MVT) and red-bed related base metal (RBRBM) deposits in terms of their approximate pH and conditions. To construct these diagrams, total Pb and Zn concentrations and Pb and Zn speciation were calculated as a function of log and pH for a composite ore-brine with concentrations of major elements, total sulfur, and total carbonate that approximate the composition of MVT and RBRBM model ore fluids and modern basinal brines. In addition to acetate and malonate complexation, complexes involving the ligands Cl-, HS-, H2S, and OH- were included in the model of calculated total metal concentration and metal speciation. Also, in the model, Zn and Pb are competing with the common-rock forming metals Ca, Mg, Na, Fe, and Al for the same ligands. Calculated total Pb concentration and calculated total Zn concentration are constrained by galena and sphalerite solubility, respectively. Isopleths, in log pH space, of the concentration of Pb and concentration of Zn in carboxylate (acetate + malonate) complexes illustrate that the oxidized model fluids of T. H. Giordano (in Organic Acids in Geological Processes, ed. E. D. Pittman and M. D. Lewan, Springer-Verlag, New York, 1994, pp. 319354) and G. M. Anderson (Econ. Geol., 1975, 70, 937942) are capable of transporting sufficient amounts of Pb (up to 10 ppm) and Zn (up to 100 ppm) in the form of carboxylate complexes to form economic deposits of these metals. On the other hand, the reduced ore fluid models of D. A. Sverjensky (Econ. Geol., 1984, 79, 2337) and T. H. Giordano and H. L. Barnes (Econ. Geol., 1981, 76, 22002211) can at best transport amounts of Pb and Zn, as carboxylate complexes, that are many orders of magnitude below the 1 to 10 ppm minimum required to form economic deposits. Lead and zinc speciation (mol% of total Pb or Zn) in the model ore fluid was calculated at specific log pH conditions along the 100, 0.01, and 0.001 ppm total Pb and total Zn isopleths. Along the 100 ppm isopleth conditions are oxidized (?SO4 >> ?H2S) with Pb and Zn predominantly in the form of chloride complexes under acid to mildly alkaline conditions (pH from 3 to approximately 7.5), while hydroxide complexes dominate Pb and Zn speciation under more alkaline conditions. Sulfide complexes are insignificant under these oxidized conditions. For more reduced conditions along the 0.01 and 0.001 ppm isopleths chloride complexes dominate Pb and Zn speciation in the SO42- field and near the SO42--reduced sulfur boundary from pH = 4 to approximately 7.5, while hydroxide complexes dominate Pb and Zn speciation under alkaline conditions above pH = 7.5 in the SO42- field. In the most reduced fluids (?H2S >> ?SO4) along the 0.01 and 0.001 isopleths, sulfide complexes account for almost 100% of the Pb and Zn in the model fluid. Acetate (monocarboxylate) complexation is significant only under conditions of chloride and hydroxide complex dominance and its effect is maximized in the pH range 5 to 7, where it complexes 2 to 2.6% of the total Pb and 1 to 1.25% of the total Zn. Malonate (dicarboxylate) complexes are insignificant along all isopleths. The speciation results from this study show that deep formation waters characterized by temperatures near 100C, high oxidation states and ?H2S < 0.03 mg L-1 ( < 10-6), high chlorinities (~ 100000 mg L-1), and high but reasonable concentrations of carboxylate anions can mobilize up to 3% of the total Pb and up to 1.3% of the total Zn as carboxylate complexes. Furthermore, these percentages, under the most favorable conditions, correspond to approximately 1 to 100 ppm of these metals in solution; concentrations that are adequate to form economic deposits of these metals. However, the field evidence suggests that all of these optimum conditions for carboxylate complexation are rarely met at the same time. A comparison of the composite ore fluid compositions from this study and modern brine data shows that the ore brines, corresponding to log pH conditions based on the Anderson (1975) and Giordano (1994) model fluids, are similar in many respects to modern, high trace-metal petroleum-field brines. The principal differences between modern high trace-metal brines and the composite ore fluids of Anderson (1975) and Giordano (1994) relate to their carboxylate anion content. The reported concentrations of monocarboxylate anions (?monocbx) and dicarboxylate anions (Edicbx) in high trace-metal petroleum-field brines (< 1 to 300 mg L-1 and < 1 mg L-1, respectively) are significantly lower than the concentrations assumed in the modelled brines of this study (?monocbx = 7 700 mg L-1 and ?dicbx = 300 mg L-1). There are also major differences in the corresponding total chloride to carboxylate ratio (?mCl/?mcbx) and monocarboxylate to dicarboxylate ratio (?mmonocbx/?mdicbx). Modern high trace-metal brines have much higher ?mCl/?mcbx values and, therefore, the contribution of carboxylate complexes to the total Pb and Zn content in these modern brines is likely to be significantly less than the 1 to 3 percent for the composite ore fluids of Anderson (1975) and Giordano (1994). The composite ore-brine based on the Giordano and Barnes (1981) MVT ore fluid is comparable to the high salinity (> 170 000 mg L-1 TDS) subset of modern brines characterized by low trace-metal content and high total reduced sulfur (?H2S). A comparison of the Sverjensky (1984) composite ore-brine with modern petroleum-field brines in terms of ?H2S and Zn content, reveals that this ore fluid corresponds to a "border-type" brine, between modern high trace-metal brines and those with low trace-metal content and high ?H2S. A brine of this type is characterized by values of ?H2S, ?Zn, and/or ?Pb within or near the 1 to 10 mg L-1 range. Based on brine-composition data from numerous references cited in this paper, border-type brines do exist but are rare. The model results and field evidence presented in this study are consistent with other chemical simulation studies of carboxylate complexation in modern petroleum-field brines. Thus, it appears that carboxylate complexation plays a minor, if not insignificant, role as a transport mechanism for Pb and Zn in high salinity NaCl and NaCaCl basinal brines and related ore fluids.

  2. Fugacity ratio estimations for high-melting rigid aromatic compounds.

    PubMed

    Van Noort, Paul C M

    2004-07-01

    Prediction of the environmental fate of organic compounds requires knowledge of their tendency to stay in the gas and water phase. Vapor pressure and aqueous solubility are commonly used descriptors for these processes. Depending on the type of distribution process, values for either the pure solid state or the (subcooled) liquid state have to be used. Values for the (subcooled) liquid state can be calculated from those for the solid state, and vice versa, using the fugacity ratio. Fugacity ratios are usually calculated from the entropy of fusion and the melting point. For polycyclic aromatic hydrocarbons, chlorobenzenes, chlorodibenzofuranes, and chlorodibenzo(p)dioxins, fugacity ratios calculated using experimental entropies of fusion were systematically less than those obtained from a thermodynamically more rigorous approach using heat capacity data. The deviation was more than 1 order of magnitude at the highest melting point. The use of a universal value for the entropy of fusion of 56 J/molK resulted in either over or underestimation by up to more than 1 order of magnitude. A simple correction factor, based on the melting point only, was derived. This correction factor allowed the fugacity ratios to be estimated from experimental entropies of fusion and melting point with an accuracy better than 0.1-0.2 log units. PMID:15109874

  3. The effects of sulfur, silicon, water, and oxygen fugacity on solubility and metal-silicate partitioning of carbon at 3 GPa and 1600 C - Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles

    NASA Astrophysics Data System (ADS)

    Li, Y.; Dasgupta, R.; Tsuno, K.

    2014-12-01

    The partition coefficient of carbon between Fe-rich alloy melt and silicate melt, and solubility of C-O-H volatiles in reduced silicate melts are key to understand the origin and distribution of carbon in different planetary reservoirs and subsequent evolution of volatiles in magma oceans (MO) and silicate mantles. In this study, three sets of graphite-saturated experiments have been performed at 3 GPa and 1600 C to investigate the effects of oxygen fugacity (fO2), sulfur, silicon, and water on the dissolution and partitioning of carbon between Fe-rich alloy melt and silicate melt. The results show that the presence of 0-5 wt% sulfur in alloy melt does not have considerable effect on carbon solubility (~5.6 wt%) in alloy melt, whereas the presence of 0-10 wt% silicon decreases it from ~5.6 wt% to 1.8 wt%. Carbon solubility (11-192 ppm) in silicate melt is strongly controlled by fO2 and the bulk water content. Decreasing fO2 from IW-0.6 to IW-4.7 or increasing bulk water content from 0.07 to 0.55 wt% results in significant increase of carbon solubility in silicate melt. Raman and FTIR spectroscopy of silicate glasses show that the carbon species is mostly methane, confirmed by the positive correlation between carbon and non-hydroxyl hydrogen in silicate melt. The decreases from 4600 to 180 with decreasing fO2 or increasing bulk water in silicate melt. In addition, increasing Si in metallic alloy melt also decreases . Our results show that fO2 and silicate melt bulk water contents play an important role in the fractionation of carbon in planetary MO. A reduced, hydrous MO may have led to a considerable fraction of carbon retained in the silicate mantle, whereas an oxidized, dry MO may have lost almost its entire carbon to the core. If delivery of bulk Earth carbon predominantly occurred after >90% of accretion, i.e., in a relatively oxidized MO (IW-2 to IW-1), then with applicable >1000, most carbon would also enter the segregating core. Finally, the predominance of methane in reduced silicate melt with fO2 below IW-1 also indicates that degassing of a hydrous, solidifying MO may have created a reduced early atmosphere, and degassing from lunar and Martian mantle may have released much more methane than carbon dioxide.

  4. Fugacity and concentration gradients in a gravity field

    NASA Technical Reports Server (NTRS)

    May, C. E.

    1986-01-01

    Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.

  5. Quantum mechanical scattering calculations for collisions of oxygen + hydrogen ion and oxygen ion + hydrogen

    NASA Astrophysics Data System (ADS)

    Spirko, Jeffery A.

    2001-10-01

    Thermal energy collisions of oxygen atoms with protons (O + H +) may lead to fine-structure excitation of the oxygen or to charge exchange (O+ + H). The reverse process, oxygen-ion collisions with hydrogen, is also possible. Detailed quantum mechanical calculations of these processes are presented here. Cross sections and rate constants for a wide range of energies and temperatures are reported. The first stage of the work was the determination of appropriate potential curves and coupling terms for the OH+ molecule. Large scale electronic structure calculations for the lowest 3? - states are performed using the GAMESS computer code. A large CI wave function is calculated based on single and double excitations from a CASSCF reference space. The block diagonalization method is implemented to determine ``diabatic'' potential curves for the 3? - symmetry; these curves contain the important charge exchange coupling terms. The other necessary potentials, the A 3? and 1 5?- curves, were taken from the literature. The second stage was the solution of the quantum mechanical equations of nuclear motion using coupled channel theory. Cross sections for charge exchange and fine structure excitation are reported. For several transitions, mechanisms based on curve crossings are proposed. The analysis indicates that the scattering cross sections are sensitive to the form of the molecular potentials for the internuclear distances of 10-15 a0. The only point of comparison with experiment is for rate constants for charge exchange, averaged over fine structure levels. The present results lie within the large error bars of the limited experimental data.

  6. Fugacity of H2O from 0° to 350°C at the liquid-vapor equilibrium and at 1 atmosphere

    USGS Publications Warehouse

    Hass, John L., Jr.

    1970-01-01

    The fugacity and fugacity coefficient of H2O at the liquid-vapor equilibrium, the fugacity and the Gibbs free energy of formation of H2O at 1 atm (1.01325 bars) total pressure have been calculated from published data on the physical and thermodynamic properties of H2O and are presented at ten-degree intervals from 0° to 350°C.

  7. Fugacity and Reheating of Primordial Neutrinos

    NASA Astrophysics Data System (ADS)

    Birrell, Jeremiah; Yang, Cheng-Tao; Chen, Pisin; Rafelski, Johann

    2013-12-01

    We clarify in a quantitative way the impact that distinct chemical Tc and kinetic Tk freeze-out temperatures have on the reduction of the neutrino fugacity ?? below equilibrium, i.e. ??<1, and the increase of the neutrino temperature T? via partial reheating. We establish the connection between ?? and Tk via the modified reheating relation T?(??)/T?, where T? is the temperature of the background radiation. Our results demonstrate that one must introduce the chemical nonequilibrium parameter, i.e. the fugacity, ??, as an additional standard cosmological model parameter in the evaluation of CMB fluctuations as its value allows measurement of Tk.

  8. A liquid oxygen calculator for fasted channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review of scientific literature concerning channel catfish Ictalurus punctatus respiration resulted in development of a Microsoft Excel© spreadsheet for estimating the volume of oxygen consumed by a given fasted channel catfish biomass. Entry of ten variables into the spreadsheet provides estimate...

  9. Semi-empirical estimation of organic compound fugacity ratios at environmentally relevant system temperatures.

    PubMed

    van Noort, Paul C M

    2009-06-01

    Fugacity ratios of organic compounds are used to calculate (subcooled) liquid properties, such as solubility or vapour pressure, from solid properties and vice versa. They can be calculated from the entropy of fusion, the melting temperature, and heat capacity data for the solid and the liquid. For many organic compounds, values for the fusion entropy are lacking. Heat capacity data are even scarcer. In the present study, semi-empirical compound class specific equations were derived to estimate fugacity ratios from molecular weight and melting temperature for polycyclic aromatic hydrocarbons and polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans. These equations estimate fugacity ratios with an average standard error of about 0.05 log units. In addition, for compounds with known fusion entropy values, a general semi-empirical correction equation based on molecular weight and melting temperature was derived for estimation of the contribution of heat capacity differences to the fugacity ratio. This equation estimates the heat capacity contribution correction factor with an average standard error of 0.02 log units for polycyclic aromatic hydrocarbons, polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans. PMID:19304312

  10. Atomic oxygen flux and fluence calculation for Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Bourassa, Roger J.; Gillis, James R.

    1991-01-01

    The LDEF mission was to study the effects of the space environment on various materials over an extended period of time. One of the important factors for materials degradation in low earth orbit is the atomic oxygen fluxes and fluences experienced by the materials. These fluxes and fluences are a function of orbital parameters, solar and geomagnetic activity, and material surface orientation. Calculations of atomic oxygen fluences and fluxes for the LDEF mission are summarized. Included are descriptions of LDEF orbital parameters, solar and geomagnetic data, computer code FLUXAV, which was used to perform calculations of fluxes and fluences, along with a discussion of the calculated fluxes and fluences.

  11. Fixed-fugacity option for the EQ6 geochemical reaction path code

    SciTech Connect

    Delany, J.M.; Wolery, T.J.

    1984-12-20

    EQ3/6 is a software package used to model aqueous geochemical systems. The EQ6 code allows reaction paths of dynamic systems to be calculated. This report describes a new option for the EQ6 computer program that permits the fugacity of any gas in the EQ6 data base to be set to a fixed value. This capability permits simulation of the effect of rapid chemical exchange with a large external gas reservoir by allowing the user to fix the fugacities of selected gas species. Geochemical environments such as groundwater systems open to the atmosphere (e.g., the unsaturated zone), natural aqueous systems that form closed systems at depth, and experimental systems that use controlled atmospheres can be modeled. Two of the principal geochemical weathering agents, CO{sub 2} and O{sub 2}, are the most likely gas species for which this type of exchange may be important. An example of the effect of constant CO{sub 2} fugacity on both open and closed systems is shown for the case of albite dissolution (NaAlSi{sub 3}O{sub 8}) in distilled water. This example demonstrates that the effects of imposed fugacities on geochemical systems can be considerable. This computer code is used in the Nevada Nuclear Waste Storage Investigations Project. 15 refs., 8 figs.

  12. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  13. Experimental determination of coexisting iron titanium oxides in the systems FeTiAlO, FeTiAlMgO, FeTiAlMnO, and FeTiAlMgMnO at 800 and 900C, 1 4 kbar, and relatively high oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Evans, Bernard W.; Scaillet, Bruno; Kuehner, Scott M.

    2006-08-01

    A synthetic, low-melting rhyolite composition containing TiO2 and iron oxide, with further separate additions of MgO, MnO, and MgO + MnO, was used in hydrothermal experiments to crystallize Ilm-Hem and Usp-Mt solid solutions at 800 and 900C under redox conditions slightly below nickel nickel oxide (NNO) to ? 3 log_{10} f_{{{text{O}}2}} units above the NNO oxygen buffer. These experiments provide calibration of the FeTi-oxide thermometer + oxygen barometer at conditions of temperature and oxygen fugacity poorly covered by previous equilibrium experiments. Isotherms for our data in Roozeboom diagrams of projected %usp vs. %ilm show a change in slope at ? 60% ilm, consistent with the second-order transition from FeTi-ordered Ilm to FeTi-disordered Ilm-Hem. This feature of the system accounts for some, but not all, of the differences from earlier thermodynamic calibrations of the thermobarometer. In rhyolite containing 1.0 wt.% MgO, 0.8 wt.% MnO, or MgO + MnO, Usp-Mt crystallized with up to 14% of aluminate components, and Ilm-Hem crystallized with up to 13% geikielite component and 17% pyrophanite component. Relative to the FeTiAlO system, these components displace the ferrite components in Usp-Mt, and the hematite component in Ilm-Hem. As a result, projected contents of ulvspinel and ilmenite are increased. These changes are attributed to increased non-ideality along joins from end-member hematite and magnetite to their respective Mg- and Mn-bearing titanate and aluminate end-members. The compositional shifts are most pronounced in Ilm-Hem in the range Ilm50 80, a solvus region where the chemical potentials of the hematite and ilmenite components are nearly independent of composition. The solvus gap widens with addition of Mg and even further with Mn. The Bacon Hirschmann correlation of Mg/Mn in Usp-Mt and coexisting Ilm-Hem is displaced toward increasing Mg/Mn in ilmenite with passage from ordered ilmenite to disordered hematite. Orthopyroxene and biotite crystallized in experiments with added MgO and MgO + MnO; their X Fe varies with log_{10} f_{{{text{O}}2}} and T consistent with equilibria among ferrosilite, annite, and ferrite components, and the chemical potentials of SiO2 and orthoclase in the liquid. Experimental equilibration rates increased in the order: Opx < Bt < Ilm-Hem < Usp-Mag.

  14. Bedside calculation of hemodynamic parameters with a hand held programmable calculator. Part II: Programs for hemodynamic and oxygen transport parameters computation.

    PubMed

    Laurent, M

    1980-01-01

    Two programs calculating oxygen transport parameters and hemodynamic values respectively are described. They may be used indifferently with HP 67 or HP 97 Hewlett Packard calculators. (Acta anaesth. belg., 1980, 31, 53-59). PMID:7457044

  15. Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    NASA Astrophysics Data System (ADS)

    Kaiser, J.

    2011-04-01

    Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences directly. The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple oxygen measurements below the mixed layer can be used to derive gross production. In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state. I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to be re-measured. Because of these uncertainties, all calculation parameters should always be fully documented and the measured isotope ratio differences as well as the oxygen supersaturation should be permanently archived, so that improved measurements of the calculation parameters can be used to retrospectively improve production rates.

  16. First Principles Calculations of Oxygen Adsorption on the UN(001) Surface

    SciTech Connect

    Zhukovskii, Yuri F.; Bocharov, Dmitry; Kotomin, Eugene Alexej; Evarestov, Robert; Bandura, A. V.

    2009-01-01

    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (001) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(001) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.

  17. Similarity criteria in calculations of the energy characteristics of a cw oxygen - iodine laser

    SciTech Connect

    Mezhenin, A V; Azyazov, V N

    2012-12-31

    The calculated and experimental data on the energy efficiency of a cw oxygen - iodine laser (OIL) are analysed based on two similarity criteria, namely, on the ratio of the residence time of the gas mixture in the resonator to the characteristic time of extraction of the energy stored in singlet oxygen td and on the gain-to-loss ratio {Pi}. It is shown that the simplified two-level laser model satisfactorily predicts the output characteristics of OILs with a stable resonator at {tau}{sub d} {<=} 7. Efficient energy extraction from the OIL active medium is achieved in the case of {tau}{sub d} = 5 - 7, {Pi} = 4 - 8. (lasers)

  18. Partitioning of Eu between augite and a highly spiked martian basalt composition as a function of oxygen fugacity (IW-1 to QFM): Determination of Eu[superscript 2+]/Eu[superscript 3+] ratios by XANES

    SciTech Connect

    Karner, J.M.; Papike, J.J.; Sutton, S.R.; Burger, P.V.; Shearer, C.K.; Le, L.; Newville, M.; Choi, Y.

    2010-03-16

    We have determined D{sub Eu} between augite and melt in samples that crystallized from a highly spiked martian basalt composition at four f{sub O{sub 2}} conditions. D{sub Eu} augite/melt shows a steady increase with f{sub O{sub 2}} from 0.086 at IW-1 to 0.274 at IW+3.5. This increase is because Eu{sup 3+} is more compatible than Eu{sup 2+} in the pyroxene structure; thus increasing f{sub O{sub 2}} leads to greater Eu{sup 3+}/Eu{sup 2+} in the melt and more Eu (total) can partition into the crystallizing pyroxene. This interpretation is supported by direct determinations of Eu valence state by XANES, which show a steady increase of Eu{sup 3+}/Eu{sup 2+} with increasing f{sub O{sub 2}} in both pyroxene (0.38 to 14.6) and glass (0.20 to 12.6) in the samples. Also, pyroxene Eu{sup 3+}/Eu{sup 2+} is higher than that of adjacent glass in all the samples, which verifies that Eu{sup 3+} is more compatible than Eu{sup 2+} in the pyroxene structure. Combining partitioning data with XANES data allows for the calculation of specific valence state D-values for augite/melt where D{sub Eu{sup 3+}} = 0.28 and D{sub Eu{sup 2+}} = 0.07.

  19. Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    NASA Astrophysics Data System (ADS)

    Kaiser, J.

    2011-07-01

    Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences (delta values) directly. I call this the "dual delta method". The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple isotope measurements below the mixed layer can be used to derive gross production. In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state. I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to be re-measured. Because of these uncertainties, all calculation parameters should always be fully documented and the measured relative isotope ratio differences as well as the oxygen supersaturation should be permanently archived, so that improved measurements of the calculation parameters can be used to retrospectively improve production rates.

  20. Uncertainties in the thermodynamics of basalt-oxygen and basalt-water reactions

    SciTech Connect

    Schweitzer, D.G.; Davis, M.S.

    1983-08-01

    A knowledge of basalt-oxygen equilibria and basalt-water equilibria are required to predict the performance of a high-level waste package in a basalt repository. In this report we have evaluated uncertainties in these equilibria using thermodynamic data from two sources, the JANAF Thermochemical Tables (1971) and from Kubaschewski (1974). Our analysis indicates that the uncertainties in the basic thermodynamic data lead to 30 orders of magnitude in uncertainty in the oxygen fugacity for the magnetite-hematite reaction (10/sup -57/ to 10/sup -86/ atm) and about 15 orders of magnitude uncertainty in the hydrogen equilibrium pressure (10/sup -12/ to 10/sup +3/ atm). A vast volume of literature exists on reactions involving magnetite and hematite in water at temperatures pertinent to basalt repositories (50/sup 0/ to 350/sup 0/C). These data show that Fe/sub 3/O/sub 4/ and Fe/sub 2/O/sub 3/ can coexist in water with oxygen fugacities from about 10/sup -4/ to 1 rather than the calculated oxygen fugacities of approx. 10/sup -60/ to 10/sup -30/ assumed in the past. 5 references.

  1. Local-density-functional calculations of the vacancy-oxygen center in Ge

    NASA Astrophysics Data System (ADS)

    Carvalho, A.; Jones, R.; Coutinho, J.; Torres, V. J. B.; berg, S.; Alsina, J. M. Campanera; Shaw, M.; Briddon, P. R.

    2007-03-01

    We carry out a comprehensive density-functional study of the vacancy-oxygen (VO) center in germanium using large H-terminated Ge clusters. The importance of a nonlinear core correction to account for the involvement of the 3d electrons in Ge-O bonds is discussed. We calculate the electrical levels and the vibrational modes of VO0 , VO- , and VO= finding close agreement with experiment. We also explore the reorientation, migration, and dissociation mechanisms of neutral and negatively charged VO and compare the calculated energy barriers with experimental data. We conclude that the defect is likely to anneal through both mechanisms.

  2. Linear optical properties of defective KDP with oxygen vacancy: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhao, Qian-Qian; Wang, Xiao-Chun; Chen, Jun; Ju, Xin

    2015-07-01

    The linear optical properties of potassium dihydrogen phosphate (KDP) with oxygen vacancy are investigated with first-principles density functional theory calculations. We use Heyd-Scuseria-Ernzerhof (HSE06) functional to calculate the linear optical properties because of its accuracy in the band gap calculation. Compared with the perfect KDP, we found that due to the defect states located at the band gap, the defective KDP with oxygen vacancy has new optical adsorption within the energy region from 4.8 eV to 7.0 eV (the corresponding wavelength region is from 258 nm to 177 nm). As a result, the oxygen vacancy can decrease the damage threshold of KDP crystal. It may give a direction to the KDP production for laser system. Project supported by the National Natural Science Foundation of China (Grant No. 11474123), the Natural Science Foundation of Jilin Province, China (Grant No. 20130101011JC), and the Fundamental Research Funds for Central Universities of China.

  3. Electronic Structure Calculations of an Oxygen Vacancy in KH2PO4

    SciTech Connect

    Liu, C S; Hou, C J; Kioussis, N; Demos, S; Radousky, H

    2005-02-18

    We present first-principles total-energy density-functional theory electronic structure calculations for the neutral and charge states of an oxygen vacancy in KH{sub 2}PO{sub 4} (KDP). Even though the overall DOS profiles for the defective KDP are quite similar to those of the perfect KDP, the oxygen vacancy in the neutral and +1 charge states induces defect states in the band gap. For the neutral oxygen vacancy, the gap states are occupied by two electrons. The difference between the integral of the total density of states (DOS) and the sum of the DOS projected on the atoms of 0.98 |e|, indicates that one of the two electrons resulting from the removal of the oxygen atom is trapped in the vacancy, while the other tends to delocalize in the neighboring atoms. For the +1 charge oxygen vacancy, the addition of the hole reduces the occupation of the filled gap-states in the neutral case from two to one electron and produces new empty states in the gap. The new empty gap states are very close to the highest occupied states, leading to a dramatic decrease of the band gap. The difference between the integral of the total DOS and the sum of the DOS projected on the atoms is 0.56 |e|, which implies that more than 56% of the redundant electron is trapped in the oxygen vacancy, and 44% spreads over the neighboring atoms. In sharp contrast, no defect states appear in the energy gap for the +2 charge O vacancy. Thus, the addition of the two holes completely compensates the two redundant electrons, and removes in turn the occupied gap states in the neutral case.

  4. Time efficient way to calculate oxygen transfer areas and power input in cylindrical disposable shaken bioreactors.

    PubMed

    Klckner, Wolf; Lattermann, Clemens; Pursche, Franz; Bchs, Jochen; Werner, Sren; Eibl, Dieter

    2014-01-01

    Disposable orbitally shaken bioreactors are a promising alternative to stirred or wave agitated systems for mammalian and plant cell cultivation, because they provide a homogeneous and well-defined liquid distribution together with a simple and cost-efficient design. Cultivation conditions in the surface-aerated bioreactors are mainly affected by the size of the volumetric oxygen transfer area (a) and the volumetric power input (P?VL ) that both result from the liquid distribution during shaking. Since Computational Fluid Dynamics (CFD)-commonly applied to simulate the liquid distribution in such bioreactors-needs high computing power, this technique is poorly suited to investigate the influence of many different operating conditions in various scales. Thus, the aim of this paper is to introduce a new mathematical model for calculating the values of a and P?VL for liquids with water-like viscosities. The model equations were derived from the balance of centrifugal and gravitational forces exerted during shaking. A good agreement was found among calculated values for a and P?VL , CFD simulation values and empirical results. The newly proposed model enables a time efficient way to calculate the oxygen transfer areas and power input for various shaking frequencies, filling volumes and shaking and reactor diameters. All these parameters can be calculated fast and with little computing power. PMID:25138595

  5. Method to obtain the high contrast images of blood vessel for oxygen saturation calculation

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Yi; Chen, Yi-Ju; Chang, Han-Chao; Huang, Kuo-Cheng

    2013-06-01

    The skin illuminated of two lights at different wavelength can be applied to detect the oxygen saturation of human blood. Due to the absorption coefficient of oxy- (HbO2) and deoxy- (Hb) hemoglobin are different at the wavelength 660 nm and 890 nm, the transmitted and reflected light within the skin can be used to compute the oxygen saturation image of skin. However, the intensities of skin images illuminated by a 20 mW NIR-LED are too low to determine the position of blood vessel when acquired by the color CCD camera. In order to improve the disadvantages, a mono camera was used and the irradiated distance and angle between LED light and test hand were adjusted to acquire the higher resolution and contrast blood vessel images for the oxygen saturation calculation. In the experiment, we developed the suitable angle to irradiate NIR light is at 75 degrees because the reflected and scattered effect could be generated significantly from both vertical and horizontal direction. In addition, the best contrast vessel images can be obtained when the shutter time is set at 44.030 ms and the irradiated distance was at the range 140-160 mm due to the intensity ratio between tissue and vessel region is the highest and the intensities of image would not be saturated or become too low when these two parameters were adjusted slightly. In future, the proposed parameters and results can be applied to the oxygen saturation measurement in the clinical diagnosis.

  6. Understanding Iron-based catalysts with efficient Oxygen reduction activity from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Hafiz, Hasnain; Barbiellini, B.; Jia, Q.; Tylus, U.; Strickland, K.; Bansil, A.; Mukerjee, S.

    2015-03-01

    Catalysts based on Fe/N/C clusters can support the oxygen-reduction reaction (ORR) without the use of expensive metals such as platinum. These systems can also prevent some poisonous species to block the active sites from the reactant. We have performed spin-polarized calculations on various Fe/N/C fragments using the Vienna Ab initio Simulation Package (VASP) code. Some results are compared to similar calculations obtained with the Gaussian code. We investigate the partial density of states (PDOS) of the 3d orbitals near the Fermi level and calculate the binding energies of several ligands. Correlations of the binding energies with the 3d electronic PDOS's are used to propose electronic descriptors of the ORR associated with the 3d states of Fe. We also suggest a structural model for the most active site with a ferrous ion (Fe2+) in the high spin state or the so-called Doublet 3 (D3).

  7. Mass-Independent Fractionation of Oxygen Isotope in Earth Wind: First Principle Calculations for Photodissociation

    NASA Astrophysics Data System (ADS)

    Yamada, A.; Nanbu, S.; Kasai, Y.; Ozima, M.

    2009-12-01

    Mass-independently fractionated oxygen isotope were reported on metal particles extracted from Apollo lunar soils [1, 2], but these origins are still unknown. Since the substantial fraction of Earth-escaping O+ flux (Earth Wind, EW hereafter), comparable to the amount of the anomalous oxygen implanted on the metal particles, could reach the lunar surface [3], Ozima et al. [4] suggested that EW may be responsible to the anomalous oxygen. The purpose is to test this EW hypothesiss, we study oxygen isotopic ratios of O+ at the upper atmosphere. From quantum chemical calculations of photo-dissociation of O2, we show the results in mass-independent isotopic fractionation of oxygen, thereby in conformity with the EW hypothesis. First principles reaction dynamics simulations were performed to compute the photolysis rate for the B3?u- ? X3?g- electronic transition, for Schumann-Runge band. With the assumption of the Born-Oppenheimer approximation, we performed the wave-packet dynamics for the nuclei-motion in the potential energy curves determined by the first step calculation. Quantum chemical program package [5] was used for the first step calculation, and the quantum dynamics was carried out by our own program package. Assuming the quantum yield of the corresponding photolysis is unity, the photo-absorption cross section can be correlated with the photolysis rate. Therefore, following the time dependent approach, the autocorrelation function (A(t) = ) was numerically computed by the second step calculation. Finally, the theoretical spectrum as a function of wavelength of excitation light was estimated by the Fourier transform of the autocorrelation function A(t) [6]. Calculated absorption cross sections for C16O showed similar wavelength dependence with experiment [7], although the absolute magnitude was yet to be calibrated for a quantitative comparison. Assuming Boltzmann distribution at 1200 K, we estimated enrichment factors defined as ??(?)/?16(?) - 1 (i = 17, 18) using the above calculated cross sections. Assuming SMOW for the initial oxygen isotopic composition, the isotopic ratios of O atom dissociated from O2 are ?17O = 5.62, ?18O = 3.53, ?17O = 3.8, suggesting large mass-independent isotopic fractionation in photo-dissociation of CiO. Numerical values of isotopic fractionation (e.g. ?17O) can be obtained by solving photochemical reaction equations in the thermosphere conditions (>100 km) with the above estimated dissociation rates, where effective O+ pickup is likely to take place. We are currently working on the latter problem with hopes that this would test the EW hypothesis. References: [1] Ireland et al., 2006, Nature, 440:776. [2] Hashizume & Chaussidon, 2009, GCA, 73:3038. [3] Seki et al., 2001, Science, 291:1939. [4] Ozima et al., 2008, PNAS, 105:17654. [5] Werner & Knowles, http://www.molpro.net. [6] Heller, 1978, J. Chem. Phys., 68:2066. [7] Ackermann et al., 1970, Planet. Space Sci., 18:1639.

  8. Oxygen- and hydroxyl-edge termination of silicene nanoribbons studied by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liu, Zhong-Li; Gu, Yanhong; Zhang, Weiying; Tan, Yonggang

    2016-05-01

    The geometrical structures and electronic properties of the armchair- and zigzag-edge silicene nanoribbons (SiNRs), terminated with oxygen and hydroxyl (ZSiNR-O, ZSiNR-OH, ASiNR-O, ASiNR-OH), have been investigated by using the first-principles method. It is found that the silicene edges are rippled upon the oxygen termination. On one edge of ZSiNR-O, the neighboring Si-O bonds move concordantly right (left) from the silicene plane, while on one edge of ASiNR-O, the neighboring Si-O bonds respectively move right and left to result in larger rippled amplitudes. Comparably, the influence of OH-termination on the silicene edge is small, inducing smaller rippled edges. The electronic structure calculations show that the px electrons of oxygen on the rippled edges of ZSiNR-O sp3 hybridize with the edge Si atoms, forming one more bands. The band gaps of the ASiNR-O and ASiNR-OH also obey the three-family behavior, due to the quantum confinement and the crucial effect of the edges. For ASiNR-OH, by taking account of the new atom chains formed by the hydrogen bonds of the neighboring OHs, the band gaps follow the same hierarchy of ?3 p >?3 p - 1 >?3 p - 2 with those of ASiNR-Os.

  9. [Preliminary study of calculating cerebral arterial blood oxygen saturation using MRI].

    PubMed

    Nakada, K; Yoshida, D; Kohsaki, S; Fukumoto, M; Morio, K; Yasunami, H; Tawa, M; Yoshida, S

    2000-01-01

    To assess whether cerebral arterial blood oxygen saturation (SaO2) can be calculated by EPI, we examined the relationship between peripheral SaO2 and T2+ signal intensity (SI) changes in the brain in three normal subjects, using 1.5 Tesla MRI. To decrease SaO2, hypoxia was induced by 100% helium-gas inhalation (60 sec). SI declined as SaO2 decreased during helium inhalation, while rapid recovery of SI to the baseline was noted with recovery from hypoxia. The differential effective transverse relaxation rate was closely correlated with SaO2 (r > 0.94). Consequently, using MRI, we were able to calculate arterial SaO2. PMID:10689889

  10. Comparison of calculated with measured oxygen consumption in children undergoing cardiac catheterization.

    PubMed

    Schmitz, Achim; Kretschmar, Oliver; Knirsch, Walter; Woitzek, Katja; Balmer, Christian; Tomaske, Maren; Bauersfeld, Urs; Weiss, Markus

    2008-11-01

    Our objective was to compare calculated (LaFarge) with measured oxygen consumption (VO(2)) using the AS/3 TM Compact Airway Module M-CAiOVX (Datex-Ohmeda, Helsinki, Finland; AS/3 TM) in children without cardiac shunts in a prospective, observational study. VO(2) was determined at the end of the routine diagnostic and/or interventional catheterization. VO(2 )was calculated according to the formula of LaFarge and Miettinen for each child and compared with the measured VO(2). Data were compared using simple regression and Bland Altman analysis. Fifty-two children aged from 0.5 to 16 years (median, 6.9 years) and weighing 3.4 to 59.4 kg (median, 22.9 kg) were investigated. Calculated VO(2 )values ranged from 59.0 to 230.8 ml/min, and measured VO(2) values from 62.7 to 282.2 ml/min. Comparison of calculated versus measured VO(2) values revealed a significant correlation (r = 0.90, p < 0.0001). Bias and precision were 8.9 and 48.3 ml/min, respectively (95% limits of agreement: -39.4 to 57.2 ml/min). Comparison of calculated VO(2) in children older than 3 years (n = 41), as restricted to the formula, with measured VO(2), revealed a slightly reduced correlation (r = 0.86, p < 0.0001). Bias and precision were 10.0 and 52.5 ml/min, respectively (95% limits of agreement: -42.4 to 62.5 ml/min). We conclude that calculation of VO(2) by the LaFarge formula does not provide reliable values compared to measured values. In clinical routine, measured rather than calculated VO(2) values should be used for the estimation of cardiac output and related variables. PMID:18592299

  11. The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 °C: Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Dasgupta, Rajdeep; Tsuno, Kyusei

    2015-04-01

    The partition coefficient of carbon between Fe-rich alloy melt and silicate melt, D C metal /silicate and solubility of C-O-H volatiles in reduced silicate melts are key parameters that need to be quantified in order to constrain the budget and origin of carbon in different planetary reservoirs and subsequent evolution of volatiles in magma oceans (MO) and silicate mantles. In this study, three sets of graphite-saturated experiments have been performed at 3 GPa and 1600 °C to investigate the effects of oxygen fugacity (fO2), sulfur, silicon, and water on the dissolution and partitioning of carbon between Fe-rich alloy melt and silicate melt. The results show that the presence of 0-5 wt% sulfur in alloy melt does not have considerable effect on carbon solubility (∼5.6 wt%) in alloy melt, determined by electron microprobe, whereas the presence of 0-10 wt% silicon decreases the carbon solubility from ∼5.6 wt% to 1.8 wt%. Carbon solubility (11-192 ppm) in silicate melt, determined by SIMS, is strongly controlled by fO2 and the bulk water content. Decreasing log ⁡ fO2 from IW-0.6 to IW-4.7 or increasing bulk water content from 0.07 to 0.55 wt% results in significant increase of carbon solubility in silicate melt. Raman and FTIR spectroscopic analyses of silicate glasses show that the carbon species is mostly methane, which is further confirmed by the strong, positive correlation between the non-carbonate carbon and non-hydroxyl hydrogen in silicate melt. The D C metal /silicate ranging from 180 to 4600 decreases with decreasing fO2 or increasing bulk water in silicate melt. In addition, increasing Si in alloy melt also decreases D C metal /silicate . Our results demonstrate that fO2 and bulk water contents in silicate melt play an important role in determining the fractionation of carbon in planetary MO. A reduced, hydrous MO may have led to a considerable fraction of carbon retained in the silicate mantle, whereas an oxidized, dry MO may have lost almost its entire carbon into the core. If delivery of bulk Earth carbon predominantly occurred after >90% of accretion, i.e., in a relatively oxidized MO (IW-2 to IW-1), then with applicable D C metal /silicate > 1000, most early Earth carbon would also enter the segregating core. Finally, the predominance of methane in reduced silicate melt with fO2 below IW-1 also indicates that degassing of a hydrous, solidifying MO may have created a reduced early atmosphere, and degassing from lunar and Martian mantle may have released much more methane than carbon dioxide.

  12. Generalized quark number susceptibilities from fugacity expansion at finite chemical potential for Nf=2 Wilson fermions

    NASA Astrophysics Data System (ADS)

    Gattringer, Christof; Schadler, Hans-Peter

    2015-04-01

    Generalized susceptibilities of the net quark number have been proposed to be good probes for the transitions in the QCD phase diagram and for the search of a possible critical end point. In this article we explore a new strategy for computing quark number susceptibilities from lattice QCD via an expansion in the fugacity parameter e? ?. All quark number related bulk observables are particularly easy to access in this approach, and we present results for generalized quark number susceptibilities up to fourth order. Ratios of these quantities are studied and compared with model calculations for the high- and low-temperature regions up to a chemical potential of ? ? ?1.0 .

  13. First-principles diffusion-barrier calculation for atomic oxygen on Pt(111)

    NASA Astrophysics Data System (ADS)

    Bogicevic, Alexander; Strmquist, Johan; Lundqvist, Bengt I.

    1998-02-01

    An inconsistency is pointed out in adsorption energy values for O diffusion on Pt(111) in three recent studies: (A) the scanning tunneling microscope (STM)-deduced value of 0.43 eV for the diffusion barrier [J. Wintterlin, R. Schuster, and G. Ertl, Phys. Rev. Lett. 77, 123 (1996)]; (B) the calculated fcc-hcp adsorption-energy difference [P. J. Fiebelman, E. Stefanie, and M. Thomas, ibid.77, 2257 (1997)]; and (C) the STM-identified metastability of O in hcp sites [B. C. Stipe et al., ibid.78, 4410 (1997)]. Using accurate first-principles density-functional methods we obtain full agreement with (B) and (C) and a diffusion barrier of 0.58 eV, consistent with a reinterpretation of the raw data in (A). We further report on oxygen-induced surface buckling.

  14. The oxygen status algorithm: a computer program for calculating and displaying pH and blood gas data.

    PubMed

    Siggaard-Andersen, O; Siggaard-Andersen, M

    1990-01-01

    Input parameters for the program are the arterial pH, pCO2, and pO2 (measured by a blood gas analyzer), oxygen saturation, carboxy-, met-, and total hemoglobin (measured by a multi-wavelength spectrometer), supplemented by patient age, sex, temperature, inspired oxygen fraction, fraction of fetal hemoglobin, and ambient pressure. Output parameters are the inspired and alveolar oxygen partial pressures, pH,pCO2 and pO2 referring to the actual patient temperature, estimated shunt fraction, half-saturation tension, estimated 2,3-diphosphoglycerate concentration, oxygen content and oxygen capacity, extracellular base excess, and plasma bicarbonate concentration. Three parameters related to the blood oxygen availability are calculated: the oxygen extraction tension, concentration of extractable oxygen, and oxygen compensation factor. Calculations of the 'reverse' type may also be performed so that the effect of therapeutic measures on the oxygen status or the acid-base status can be predicted. The user may choose among several different units of measurement and two different conventions for symbols. The results are presented in a data display screen comprising all quantities together with age, sex, and temperature adjusted reference values. The program generates a 'laboratory diagnosis' of the oxygen status and the acid-base status and three graphs illustrating the oxygen status and the acid-base status of the patient: the oxygen graph, the acid-base chart and the blood gas map. A printed summary in one A4 page including a graphical display can be produced with an Epson or HP Laser compatible printer. The program is primarily intended for routine laboratories with a blood gas analyzer combined with a multi-wavelength spectrometer. Calculating the derived quantities may enhance the usefulness of the analyzers and improve patient care. The program may also be used as a teaching aid in acid-base and respiratory physiology. The program requires an IBM PC, XT, AT or similar compatible computer running under DOS version 2.11 or later. A VGA color monitor is preferred, but the program also supports EGA, CGA, and Hercules monitors. The program will be freely available at the cost of a discette and mailing expenses by courtesy of Radiometer Medical A/S, Emdrupvej 72, DK-2400 Copenhagen NV, Denmark (valid through 1991). A simplified algorithm for a programmable pocket calculator avoiding iterative calculations is given as an Appendix. PMID:2128561

  15. A Graphical Representation for the Fugacity of a Pure Substance

    ERIC Educational Resources Information Center

    Book, Neil L.; Sitton, Oliver C.

    2010-01-01

    The thermodynamic equations used to define and compute the fugacity of a pure substance are depicted as processes on a semi-logarithmic plot of pressure vs. molar Gibbs energy (PG diagram) with isotherms for the substance behaving as an ideal gas superimposed. The PG diagram clearly demonstrates the physical basis for the definitions and the

  16. A Graphical Representation for the Fugacity of a Pure Substance

    ERIC Educational Resources Information Center

    Book, Neil L.; Sitton, Oliver C.

    2010-01-01

    The thermodynamic equations used to define and compute the fugacity of a pure substance are depicted as processes on a semi-logarithmic plot of pressure vs. molar Gibbs energy (PG diagram) with isotherms for the substance behaving as an ideal gas superimposed. The PG diagram clearly demonstrates the physical basis for the definitions and the…

  17. Comment on "Consistent calculation of aquatic gross production from oxygen triple isotope measurements" by Kaiser (2011)

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.

    2011-07-01

    Kaiser (2011) has introduced an improved method for calculating gross productivity from the triple isotopic composition of dissolved oxygen in aquatic systems. His equation avoids approximations of previous methodologies, and also accounts for additional physical processes such as kinetic fractionation during invasion and evasion at the air-sea interface. However, when comparing his new approach to previous methods, Kaiser inconsistently defines the biological end-member with the result of overestimating the degree to which the various approaches of previous studies diverge. In particular, for his base case, Kaiser assigns a 17O excess to the product of photosynthesis that is too low, resulting in his result being ~30 % too high when compared to previous equations. When this is corrected, I find that Kaiser's equations are consistent with all previous study methodologies within about 20 % for realistic conditions of metabolic balance (f) and gross productivity (g). A methodological bias of 20 % is of similar magnitude to current uncertainty in the wind-speed dependence of the air-sea gas transfer velocity, k, which directly impacts calculated gross productivity rates as well. While previous results could and should be revisited and corrected using the proposed improved equations, the magnitude of such corrections may be much less than implied by Kaiser.

  18. The Galactic chemical evolution of oxygen inferred from 3D non-LTE spectral-line-formation calculations

    NASA Astrophysics Data System (ADS)

    Amarsi, A. M.; Asplund, M.; Collet, R.; Leenaarts, J.

    2015-11-01

    We revisit the Galactic chemical evolution of oxygen, addressing the systematic errors inherent in classical determinations of the oxygen abundance that arise from the use of one-dimensional (1D) hydrostatic model atmospheres and from the assumption of local thermodynamic equilibrium (LTE). We perform detailed 3D non-LTE radiative-transfer calculations for atomic oxygen lines across a grid of 3D hydrodynamic STAGGER model atmospheres for dwarfs and subgiants. We apply our grid of predicted line strengths of the [O I] 630 nm and O I 777 nm lines using accurate stellar parameters from the literature. We infer a steep decay in [O/Fe] for [Fe/H] ? -1.0, a plateau [O/Fe] ? 0.5 down to [Fe/H] ? -2.5, and an increasing trend for [Fe/H] ? -2.5. Our 3D non-LTE calculations yield overall concordant results from the two oxygen abundance diagnostics.

  19. First-principles calculations of oxygen vacancy formation and metallic behavior at a ?-MnO2 grain boundary.

    PubMed

    Dawson, James A; Chen, Hungru; Tanaka, Isao

    2015-01-28

    Nanostructured MnO2 is renowned for its excellent energy storage capability and high catalytic activity. While the electronic and structural properties of MnO2 surfaces have received significant attention, the properties of the grain boundaries (GBs) and their contribution to the electrochemical performance of the material remains unknown. Through density functional theory (DFT) calculations, the structure and electronic properties of the ?-MnO2 ? 5(210)/[001] GB are studied. Our calculations show this low energy GB has a significantly reduced band gap compared to the pristine material and that the formation of oxygen vacancies produces spin-polarized states that further reduce the band gap. Calculated formation energies of oxygen vacancy defects and Mn reduction at the GB core are all lower than the equivalent bulk value and in some cases lower than values recently calculated for ?-MnO2 surfaces. Oxygen vacancy formation is also shown to produce a metallic behavior at the GB with defect charge distributed over a number of oxygen and manganese sites. The low energies of oxygen defect formation and the potential creation of conductive GB pathways are likely to be important to the electrochemical performance of ?-MnO2. PMID:25559707

  20. K-alpha X-rays from cosmic ray oxygen. [Detection and calculation of equilibrium charge fractions

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Boldt, E. A.

    1975-01-01

    Equilibrium charge fractions are calculated for subrelativistic cosmic ray oxygen ions in the interstellar medium. These are used to determine the expected flux of K-alpha rays arising from atomic processes for a number of different postulated interstellar oxygen spectra. Relating these results to the diffuse X-ray background measured at the appropriate energy level suggests an observable line feature. If the flux of low energy cosmic ray oxygen is sufficiently large, K-alpha X-ray line emission from these nuclei will comprise a significant fraction of the total diffuse flux at approximately 0.6 keV. A satellite borne detector with a resolution greater than 30 percent could observe this feature if the subrelativistic interstellar cosmic ray oxygen spectrum is as large as certain theoretical estimates expressed in the text.

  1. A fugacity-based indoor residential pesticide fate model

    SciTech Connect

    Bennett, Deborah H.; Furtaw, Edward J.; McKone, Thomas E.

    2002-06-01

    Dermal and non-dietary pathways are potentially significant exposure pathways to pesticides used in residences. Exposure pathways include dermal contact with residues on surfaces, ingestion from hand- and object-to-mouth activities, and absorption of pesticides into food. A limited amount of data has been collected on pesticide concentrations in various residential compartments following an application. But models are needed to interpret this data and make predictions about other pesticides based on chemical properties. In this paper, we propose a mass-balance compartment model based on fugacity principles. We include air (both gas phase and aerosols), carpet, smooth flooring, and walls as model compartments. Pesticide concentrations on furniture and toys, and in food, are being added to the model as data becomes available. We determine the compartmental fugacity capacity and mass transfer-rate coefficient for wallboard as an example. We also present the framework and equations needed for a dynamic mass-balance model.

  2. Hydrothermal hydration of Martian crust: illustration via geochemical model calculations.

    PubMed

    Griffith, L L; Shock, E L

    1997-04-25

    If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential. PMID:11541456

  3. Hydrothermal hydration of Martian crust: illustration via geochemical model calculations

    NASA Technical Reports Server (NTRS)

    Griffith, L. L.; Shock, E. L.

    1997-01-01

    If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential.

  4. RELATIVISTIC CALCULATION OF TRANSITION PROBABILITIES FOR 557.7 nm AND 297.2 nm EMISSION LINES IN OXYGEN

    SciTech Connect

    Chantler, C. T.; Nguyen, T. V. B.; Lowe, J. A.; Grant, I. P.

    2013-05-20

    The 557.7 nm green line and the 297.2 nm ultraviolet line in oxygen have been studied extensively due to their importance in astrophysics and atmospheric science. Despite the enormous effort devoted to these two prominent transition lines over 30 years, and in fact going back to 1934, the ratio of their transition probabilities remains a subject of major discrepancies amongst various theoretical calculations for many decades. Moreover, theoretical results are inconsistent with available laboratory results, as well as recent spacecraft measurements of Earth's airglow. This work presents new relativistic theoretical calculations of the transition probabilities of these two photoemission lines from neutral oxygen using the multi-configuration Dirac-Hartree-Fock method. Our calculations were performed in both length and velocity gauges in order to check for accuracy and consistency, with agreement to 8%. Whilst remaining a challenging computation, these results directly bear upon interpretations of plasma processes and ionization regimes in the universe.

  5. The Influence of Oxygen Environment on Kinetic Properties of Minerals

    NASA Astrophysics Data System (ADS)

    Kohlstedt, D. L.; Hier-Majumder, S.

    2004-12-01

    In this presentation, we review experimental determinations of the influence of oxygen environment on the physical properties of olivine. Kinetic properties of solids such as electrical conductivity and viscosity that are often functions of ionic diffusivity depend on the oxygen fugacity. Ionic diffusivity in solids can be expressed as the product of point defect concentration and point defect diffusivity. While thermogravimetry experiments reveal a pronounced dependence of point defect concentration on oxygen fugacity, electrical conductivity and thermogravimetry point defect relaxation experiments yield the point defect mobility. Results from these two types of experiments on olivine demonstrate that the power law dependence of ionic diffusivity on oxygen fugacity arises from the oxygen fugacity dependence of the point defect concentration alone. We also discuss experimental determination of the influence of oxygen environment on dislocation structures (i.e., deformation mechanisms) of olivine. Results from creep tests on single crystals of olivine indicate that for crystals compressed along a direction 45 {o} to the [100] and [001] crystallographic directions, the deformation mechanism changed from glide or cross slip of screw dislocations to the motion of near-edge dislocations as the oxygen fugacity was increased from 10-11 to 10-3 atm.

  6. Effects of oxygen vacancy on 3d transition-metal doped anatase TiO2: First principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Ya Fei; Li, Can; Lu, Song; Yan, Li Jin; Gong, Yin Yan; Niu, Leng Yuan; Liu, Xin Juan

    2016-03-01

    In this work, systematic study of the formation energy, crystalline and electronic structures of 3d transition metal (Sc, V, Cr, Mn, Fe, Co and Ni) doped anatase TiO2 specimens with and without oxygen vacancy has been carried out by the first principles calculations. The impurity states located at the band gaps enhance the visible light absorption, and the oxygen vacancy result in the EF move into the CB for some doped systems, which induce the Ti3+ ions and promote the separation of photogenerated carriers. Doping and oxygen vacancy can change the hybrid strength and MP value of TMsbnd O bonding which has the approximately linearly with the band gap.

  7. Oxygen potential of diamond formation in the lower mantle

    NASA Astrophysics Data System (ADS)

    Ryabchikov, I. D.; Kaminsky, F. V.

    2013-02-01

    Thermodynamic calculations have shown that when a metallic phase arising due to ferroan ion disproportionation is contained in lower-mantle rocks, carbon occurs as iron carbide and the oxygen fugacity corresponds to the equilibrium of ferropericlase with Fe-Ni alloy. The typical values of oxygen fugacity in zones of diamond formation in the lower mantle lie between the iron-wstite buffer and six logarithmic units above this level. The processes that proceed in the lower mantle give rise to variation of f_{O_2 } within several orders of magnitude above the elevated f_{O_2 } values, which are necessary for the formation of diamond, as compared with a common level typical of the lower mantle. The mechanisms responsible for redox differentiation in the lower mantle comprise the subduction of oxidized crustal material, mechanical separation of metallic phase and silicate-oxide mineral assemblage enriched in ferric ions, as well as transfer of fused silicate material presumably enriched in Fe3+ through the mantle.

  8. Lunar and Planetary Science XXXV: Oxygen in the Solar System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Oxygen in the Solar System" contained the following reports: Oxygen Isotopes in Lunar Metal Grains: A Natural Genesis Experiment; Determining Possible Building Blocks of the Earth and Mars; and Oxygen Fugacity of the Martian Mantle from Pigeonite/Melt Partitioning of Samarium.

  9. Hydrothermal Stability of Adenine Under Controlled Fugacities of N2, CO2 and H2

    NASA Astrophysics Data System (ADS)

    Franiatte, Michael; Richard, Laurent; Elie, Marcel; Nguyen-Trung, Chinh; Perfetti, Erwan; Larowe, Douglas E.

    2008-04-01

    An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300C under fugacities of CO2, N2 and H2 supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.

  10. Singlet oxygen generation in PUVA therapy studied using electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Serrano-Prez, Juan Jos; Olaso-Gonzlez, Gloria; Merchn, Manuela; Serrano-Andrs, Luis

    2009-06-01

    The ability of furocoumarins to participate in the PUVA (Psoralen + UV-A) therapy against skin disorders and some types of cancer, is analyzed on quantum chemical grounds. The efficiency of the process relies on its capability to populate its lowest triplet excited state, and then either form adducts with thymine which interfere DNA replication or transfer its energy, generating singlet molecular oxygen damaging the cell membrane in photoactivated tissues. By determining the spin-orbit couplings, shown to be the key property, in the intersystem crossing yielding the triplet state of the furocoumarin, the electronic couplings in the triplet-triplet energy transfer process producing the singlet oxygen, and the reaction rates and lifetimes, the efficiency in the phototherapeutic action of the furocoumarin family is predicted as: khellin < 5-methoxypsoralen (5-MOP) < 8-methoxypsoralen (8-MOP) < psoralen < 4,5?,8-trimethylpsoralen (TMP) < 3-carbethoxypsoralen (3-CPS), the latter being the most efficient photosensitizer and singlet oxygen generator.

  11. First-principles calculation on oxygen ion migration in alkaline-earth doped La2GeO5.

    PubMed

    Linh, Tran Phan Thuy; Sakaue, Mamoru; Meñez Aspera, Susan; Alaydrus, Musa; Wungu, Triati Dewi Kencana; Linh, Nguyen Hoang; Kasai, Hideaki; Mohri, Takahiro; Ishihara, Tatsumi

    2014-06-25

    By using first-principles calculations based on the density functional theory, we investigated the doping effects of alkaline-earth metals (Ba, Sr and Ca) in monoclinic lanthanum germanate La2GeO5 on its oxygen ion conduction. Although the lattice parameters of the doped systems changed due to the ionic radii mismatch, the crystal structures remained monoclinic. The contribution of each atomic orbital to electronic densities of states was evaluated from the partial densities of states and partial charge densities. It was confirmed that the materials behaved as ionic crystals comprising of cations of La and dopants and anions of oxygen and covalently formed GeO4. The doping effect on the activation barrier for oxygen hopping to the most stable oxygen vacancy site was investigated by the climbing-image nudged elastic band method. By tracing the charge density change during the hopping, it was confirmed that the oxygen motion is governed by covalent interactions. The obtained activation barriers showed excellent quantitative agreements with an experiment for the Ca- and Sr-doped systems in low temperatures as well as the qualitative trend, including the Ba-doped system. PMID:24888249

  12. First-principles calculations of the diffusion of atomic oxygen in nickel: thermal expansion contribution.

    PubMed

    Megchiche, E H; Amarouche, M; Mijoule, C

    2007-07-25

    Within the framework of density functional theory using the projector augmented-wave (PAW) method, we present some energetic properties of atomic oxygen interstitials in crystalline Ni, i.e.the insertion and activation energies of the O diffusion. Concerning the activation energy, two pathways for the migration process are studied. The charge transfer process between atomic oxygen and nickel atoms is analysed in the interstitial sites. We find that the interstitial octahedral site (O site) is lower in energy than the tetrahedral site (T site). The most favourable pathway for the migration between two octahedral sites corresponds to an intermediate metastable state located in a tetrahedral site. Concerning the charge transfers we find that the atomic oxygen ionizes as O(-) and that the electron migrates essentially from the Ni nearest neighbours of atomic oxygen. In addition, the thermal expansion contribution through the dilatation of the solid is studied. When the thermal expansion is introduced, we show that the insertion process is stabilized and that the tetrahedral insertion energy becomes nearly equal to the octahedral ones. However, the activation energy decreases with the dilatation. Taking into account the thermal expansion effects, our results are consistent with the more reliable experimental data. PMID:21483072

  13. Predicting Polycyclic Aromatic Hydrocarbon Bioavailability to Mammals from Incidentally Ingested Soils Using Partitioning and Fugacity.

    PubMed

    James, Kyle; Peters, Rachel E; Cave, Mark R; Wickstrom, Mark; Lamb, Eric G; Siciliano, Steven D

    2016-02-01

    Soil and dust ingestion is one of the major human exposure pathways to contaminated soil; however, pollutant transfer from ingested substances to humans cannot currently be confidently predicted. Soil polycyclic aromatic hydrocarbon (PAH) bioavailability is likely dependent upon properties linked to chemical potential and partitioning such as fugacity, fugacity capacity, soil organic carbon, and partitioning to simulated intestinal fluids. We estimated the oral PAH bioavailability of 19 historically contaminated soils fed to juvenile swine. Between soils, PAH blood content, with the exception of benzo(a)pyrene, was not linked to fugacity. In contrast, between individual PAHs, using partitioning explained PAH blood content (area under the curve = 0.47 log fugacity + 0.34, r(2) = 0.68, p < 0.005, n = 14). Soil fugacity capacity predicts PAH soil concentration with an average slope of 0.30 (μg PAH g(-1) soil) Pa(-1) and r(2)'s of 0.61-0.73. Because PAH blood content was independent of soil concentration, soil fugacity correlated to PAH bioavailability via soil fugacity's link to soil concentration. In conclusion, we can use fugacity to explain PAH uptake from a soil into blood. However, something other than partitioning is critical to explain the differences in PAH uptake into blood between soils. PMID:26741299

  14. SIGMELTS: A web portal for electrical conductivity calculations in geosciences

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Le-Trong, E.

    2011-09-01

    Electrical conductivity measurements in the laboratory are critical for interpreting geoelectric and magnetotelluric profiles of the Earth's crust and mantle. In order to facilitate access to the current database on electrical conductivity of geomaterials, we have developed a freely available web application (SIGMELTS) dedicated to the calculation of electrical properties. Based on a compilation of previous studies, SIGMELTS computes the electrical conductivity of silicate melts, carbonatites, minerals, fluids, and mantle materials as a function of different parameters, such as composition, temperature, pressure, water content, and oxygen fugacity. Calculations on two-phase mixtures are also implemented using existing mixing models for different geometries. An illustration of the use of SIGMELTS is provided, in which calculations are applied to the subduction zone-related volcanic zone in the Central Andes. Along with petrological considerations, field and laboratory electrical data allow discrimination between the different hypotheses regarding the formation and rise from depth of melts and fluids and quantification of their storage conditions.

  15. Hydrogen component fugacities in binary mixtures with methane and propane

    SciTech Connect

    Bruno, T.J.; Ely, J.F.; Hume, G.L.

    1986-09-01

    The fugacity coefficients of hydrogen in binary mixtures with methane and propane were measured using a physical equilibrium technique. This technique involves the use of an experimental chamber which is divided into two regions by a semipermeable membrane. Hydrogen can penetrate and pass through the membrane, while the other component (in this case, methane or propane) cannot. At equilibrium, pure hydrogen will permeate into one ''compartment'' of the chamber, while the binary mixture occupies the other compartment. Thus, the pressure of pure hydrogen on one side approaches the partial pressure of hydrogen in the mixture on the other side of the membrane. This allows a direct measurement of the hydrogen component fugacity at a given mixture mole fraction. In this study, results are reported for measurements made on the hydrogen+propane binary at 80 degrees C (353 K) and 130 degrees C (403 K) and the hydrogen+methane binary at 80 degrees C (353 K). All measurements were performed with a total mixture pressure of 3.45 MPa. The experimental results are compared with predictions from the Redlich-Kwong, Peng-Robinson, and extended corresponding-states models.

  16. Computation of decompression schedules for single inert gas-oxygen dives using a hand-held programmable calculator.

    PubMed

    Ranade, A; Peterson, R E

    1980-08-01

    An algorithm for on-site computation with a hand-held programmable calculator (TI-59, Texas Instruments) of single inert-gas decompression schedules is described. This program is based on Workman's 'M-value' method. It can compute decompression schedules with changes in the oxygen content of the breathing mixture and extension of stay at any decompression stop. The features of the program that enable calculation of atypical dive profiles, along with the portability of small calculators, would make such an algorithm suitable for on-site applications. However, since dive profiles generated by the program have not yet been tested, divers are warned not to generate schedules until their safety has been established by field tests. PMID:6257447

  17. The Mineralogy, Geochemistry, and Redox State of Multivalent Cations During the Crystallization of Primitive Shergottitic Liquids at Various (f)O2. Insights into the (f)O2 Fugacity of the Martian Mantle and Crustal Influences on Redox Conditions of Martian Magmas.

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Bell, A. S.; Burger, P. V.; Papike, J. J.; Jones, J.; Le, L.; Muttik, N.

    2016-01-01

    The (f)O2 [oxygen fugacity] of crystallization for martian basalts has been estimated in various studies to range from IW-1 to QFM+4 [1-3]. A striking geochemical feature of the shergottites is the large range in initial Sr isotopic ratios and initial epsilon(sup Nd) values. Studies by observed that within the shergottite group the (f)O2 [oxygen fugacity] of crystallization is highly correlated with these chemical and isotopic characteristics with depleted shergottites generally crystallizing at reduced conditions and enriched shergottites crystallizing under more oxidizing conditions. More recent work has shown that (f)O2 [oxygen fugacity] changed during the crystallization of these magmas from one order of magnitude in Y980459 (Y98) to several orders of magnitude in Larkman Nunatak 06319. These real or apparent variations within single shergottitic magmas have been attributed to mixing of a xenocrystic olivine component, volatile loss-water disassociation, auto-oxidation during crystallization of mafic phases, and assimilation of an oxidizing crustal component (e.g. sulfate). In contrast to the shergottites, augite basalts such as NWA 8159 are highly depleted yet appear to be highly oxidized (e.g. QFM+4). As a first step in attempting to unravel petrologic complexities that influence (f)O2 [oxygen fugacity] in martian magmas, this study explores the effect of (f)O2 [oxygen fugacity] on the liquid line of descent (LLD) for a primitive shergottite liquid composition (Y98). The results of this study will provide a fundamental basis for reconstructing the record of (f)O2 [oxygen fugacity] in shergottites and other martian basalts, its effect on both mineral chemistries and valence state partitioning, and a means for examining the role of crystallization (and other more complex processes) on the petrologic linkages between olivine-phyric and pyroxene-plagioclase shergottites.

  18. Strain-induced phase and oxygen-vacancy stability in ionic interfaces from first-principles calculations

    DOE PAGESBeta

    Aidhy, Dilpuneet S; Liu, Bin; Zhang, Yanwen; Weber, William J

    2014-01-01

    Understanding interfacial chemistry is becoming crucial in materials design for heterointerfaces. Using density functional theory, we elucidate the effect of strained interfaces on phase and oxygen-vacancy stability for CeO2 | ZrO2, ThO2 | ZrO2 and CeO2 | ThO2 interfaces. The calculations show that ZrO2 transforms from cubic fluorite to the orthorhombic columbite under tensile strain providing evidence of a previous experimental speculation of an unrecognized ZrO2 phase. We also show that oxygen vacancies could be preferably stabilized on either side of the interface by manipulating strain. We predict that they are stable in tensile-strain, and unstable in compressivestrained materials.

  19. An oxygen barometer for rutile-ilmenite assemblages: oxidation state of metasomatic agents in the mantle

    NASA Astrophysics Data System (ADS)

    Zhao, Donggao; Essene, Eric J.; Zhang, Youxue

    1999-03-01

    Oxygen fugacity has been calculated for rutile-ilmenite assemblages from the reaction 2Fe 2O 3 (in ilmenite) + 4TiO 2 (rutile) = 4FeTiO 3 (in ilmenite) + O 2. The equation log fO 2=22.59-25925/ T-3.09log T+0.0016535 P+48.836 P/ T-4log aIlmFeTiO 3+2log aIlmFe 2O 3+4log aRutTiO 2, where T is in kelvin and P is in kbar, was derived from available thermodynamic data. The hypothetical end-member rutile-ilmenite reaction is located between the magnetite-hematite and Ni-NiO (NNO) buffers. The rutile-ilmenite oxygen barometer has been applied to ilmenite-bearing assemblages in mantle xenoliths from kimberlites, including the metasomatic MARID (mica-amphibole-rutile-ilmenite-diopside) suite and a MORID (mica-orthopyroxene-rutile-ilmenite-diopside) vein, along with rutile-ilmenite assemblages in eclogites and in Granny Smith diopside megacrysts. The oxygen fugacities of MARID and MORID lie around the NNO buffer and are comparable to those in metasomatized spinel lherzolites. Most MARID and MORID assemblages yield a more oxidizing fO 2 than the EMOD (enstatite-magnesite-olivine-diamond) buffer, such that MARID and MORID fluid or melt would tend to destroy diamond or graphite by oxidation.

  20. Calculation of singlet oxygen formation from one photon absorbing photosensitizers used in PDT

    NASA Astrophysics Data System (ADS)

    Potasek, M.; Parilov, Evgueni; Beeson, K.

    2013-03-01

    Advances in biophotonic medicine require new information on photodynamic mechanisms. In photodynamic therapy (PDT), a photosensitizer (PS) is injected into the body and accumulates at higher concentrations in diseased tissue compared to normal tissue. The PS absorbs light from a light source and generates excited-state triplet states of the PS. The excited triplet states of the PS can then react with ground state molecular oxygen to form excited singlet - state oxygen or form other highly reactive species. The reactive species react with living cells, resulting in cel l death. This treatment is used in many forms of cancer including those in the prostrate, head and neck, lungs, bladder, esophagus and certain skin cancers. We developed a novel numerical method to model the photophysical and photochemical processes in the PS and the subsequent energy transfer to O2, improving the understanding of these processes at a molecular level. Our numerical method simulates light propagation and photo-physics in PS using methods that build on techniques previously developed for optical communications and nonlinear optics applications.

  1. Comparison of Oxygen Gauche Effects in Poly(Oxyethylene) and Poly(ethylene terephtylene) Based on Quantum Chemistry Calculations

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    The so-called oxygen gauche effect in poly(oxyethylene) (POE) and its model molecules such as 1,2-dimethoxyethane (DME) and diglyme (CH3OC2H4OC2H4OCH3) is manifested in the preference for gauche C-C bond conformations over trans. This has also been observed for poly(ethylene terephthalate) (PET). Our previous quantum chemistry calculations demonstrated that the large C-C gauche population in DME is due, in part, to a low-lying tg +/- g+ conformer that exhibits a substantial 1,5 CH ... O attraction. New calculations will be described that demonstrate the accuracy of the original quantum chemistry calculations. In addition, an extension of this work to model molecules for PET will be presented. It is seen that the C-C gauche preference is much stronger in 1,2 diacetoxyethane than in DME. In addition, there exist low-lying tg +/- g+/- and g+/-g+/-g+/- conformers that exhibit 1,5 CH ... O attractions involving the carbonyl oxygens. It is expected that the -O-C-C-O- torsional properties will be quite different in these two polymers. The quantum chemistry results are used to parameterize rotational isomeric states models (RIS) and force fields for molecular dynamics simulations of these polymers.

  2. Comparative oxygen barometry in granulites, Bamble sector, SE Norway

    SciTech Connect

    Harlov, D.E. )

    1992-07-01

    Oxygen fugacities have been estimated for the high-grade portion of the Bamble granulite facies terrane, SE Norway, using both titaniferous magnetite-ilmenite and orthopyroxene-titaniferous magnetite-quartz oxygen barometers. The two oxygen barometers show good agreement, for samples indicating high titaniferous magnetite-ilmenite temperatures whereas agreement is poor for low-temperature samples. Oxygen fugacities estimated from titaniferous magnetite-ilmenite are considerably lower than those estimated from orthopyroxene-titaniferous magnetite-quartz. This discrepancy increases with a decrease in temperature, which appears to reflect preferential resetting of the hematite content in the ilmenite grains, without much alteration of the more numerous titaniferous magnetite or orthopyroxene grains. The mean temperature for non-reset samples, 795 {plus minus} 60C (1{sigma}), agrees well with temperatures obtained from garnet-orthopyroxene K{sub D} exchange thermometry in the same region, 785 {plus minus} 60C (1{sigma}). The non-reset oxygen fugacities also agree well with an independent study of the Bamble granulites by Cameron. The QUIlP equilibrium (Quartz-Ulvospinel-Ilmenite-Pyroxene) is used to project self-consistent equilibrium temperatures and oxygen fugacities for samples reset due to hematite loss from the ilmenite grains. These projected temperatures and oxygen fugacities agree reasonably well with non-reset samples. The mean projected temperature is 830 {plus minus} 40C (1{sigma}). This agreement strongly supports the conclusion that low titaniferous magnetite-ilmenite temperatures (down to 485C) and accompanying low-oxygen fugacities are the result of hematite loss from the ilmenite grains at some time after granulite-facies metamorphism.

  3. Thermal desorption of molecular oxygen from SnO2 (110) surface: Insights from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Golovanov, Viacheslav; Golovanova, Viktoria; Rantala, Tapio T.

    2016-02-01

    First-principles density functional theory calculations in the generalized gradient approximation, with plane wave basis set and pseudopotentials, have been used to investigate the desorption pathways of molecular oxygen species adsorbed on the SnO2 (110) surface. Energetics of the thermodynamically favored precursors is studied in dependence on the surface charge provided either by surface defects or by donor type impurities from the near-surface region. The resonant desorption modes of O2 molecules are examined in the framework of ab initio atomic thermodynamics and relationship of these results to experimental observations is discussed.

  4. Confinement effects for ionic carriers in SrTiO3 ultrathin films: first-principles calculations of oxygen vacancies.

    PubMed

    Kotomin, E A; Alexandrov, V; Gryaznov, D; Evarestov, R A; Maier, J

    2011-01-21

    One-dimensional confinement effects are modelled within the hybrid HF-DFT LCAO approach considering neutral and single-charged oxygen vacancies in SrTiO(3) ultrathin films. The calculations reveal that confinement effects are surprisingly short-range in this partly covalent perovskite; already for film thickness of 2-3 nm (and we believe, similar size nanoparticles) only the surface-plane defect properties differ from those in the bulk. This includes a pronounced decrease of the defect formation energy (by ∼1 eV), a much deeper defect band level and a noticeable change in the electronic density redistribution at the near-surface vacancy site with respect to that in the bulk. The results also show that the size effect pertains to the interactions between the oxygen vacancy and two neighboring titanium atoms and orientation (parallel or perpendicular to the surface) of the Ti-V(O)-Ti complex. In particular, we predict considerable oxygen vacancy segregation towards the surface. PMID:21116562

  5. Oxygen 1s x-ray absorption of tetravalent titanium oxides: A comparison with single-particle calculations

    NASA Astrophysics Data System (ADS)

    de Groot, F. M. F.; Faber, J.; Michiels, J. J. M.; Czyzyk, M. T.; Abbate, M.; Fuggle, J. C.

    1993-07-01

    The oxygen 1s x-ray-absorption spectra of SrTiO3 and TiO2, in both the rutile and anatase crystal structure, are analyzed using the oxygen p-projected density of states of ground-state band-structure calculations. Good agreement is found and it is concluded that multielectron effects, transition matrix elements, and the core-hole potential present only small, largely undetectable, influences on the spectral shape. From the site- and symmetry-projected density of states the rutile peaks could be assigned to the 3d band (4-8 eV), antibonding oxygen 2p states (10-18 eV), and the titanium 4sp band (20-25 eV). For anatase the titanium 4sp band is shifted to lower energy by about 5 eV, which can be related to the lower density of anatase. From differences in the crystal structure it is argued that the core-hole potential is considerably more effective in perovskite SrTiO3 than in both TiO2 crystal structures. This is in accordance with the experimental findings.

  6. Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.

    SciTech Connect

    Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

    2013-09-01

    Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0x5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

  7. Gamow shell-model calculations of drip-line oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Tsukiyama, K.; Hjorth-Jensen, M.; Hagen, G.

    2009-11-01

    We employ the Gamow shell model (GSM) to describe low-lying states of the oxygen isotopes O24 and O25. The many-body Schrdinger equation is solved starting from a two-body Hamiltonian defined by a renormalized low-momentum nucleon-nucleon (NN) interaction and a spherical Berggren basis. The Berggren basis treats bound, resonant, and continuum states on an equal footing and is therefore an appropriate representation of loosely bound and unbound nuclear states near threshold. We show that the inclusion of continuum effects has a significant effect on the low-lying 1+ and 2+ excited states in O24. On the other hand, we find that a correct description of binding energy systematics of the ground states is driven by the proper treatment and inclusion of many-body correlation effects. This is supported by the fact that we get O25 unstable with respect to O24 in both oscillator and Berggren representations starting from a O22 core. Furthermore, we show that the structure of these loosely bound or unbound isotopes is strongly influenced by the 1S0 component of the NN interaction. This has important consequences for our understanding of nuclear stability.

  8. Optimizing the calculation of DM,CO and VC via the single breath single oxygen tension DLCO/NO method.

    PubMed

    Coffman, Kirsten E; Taylor, Bryan J; Carlson, Alex R; Wentz, Robert J; Johnson, Bruce D

    2016-01-15

    Alveolar-capillary membrane conductance (DM,CO) and pulmonary-capillary blood volume (VC) are calculated via lung diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO) using the single breath, single oxygen tension (single-FiO2) method. However, two calculation parameters, the reaction rate of carbon monoxide with blood (?CO) and the DM,NO/DM,CO ratio (?-ratio), are controversial. This study systematically determined optimal ?CO and ?-ratio values to be used in the single-FiO2 method that yielded the most similar DM,CO and VC values compared to the 'gold-standard' multiple-FiO2 method. Eleven healthy subjects performed single breath DLCO/DLNO maneuvers at rest and during exercise. DM,CO and VC were calculated via the single-FiO2 and multiple-FiO2 methods by implementing seven ?CO equations and a range of previously reported ?-ratios. The RP ?CO equation (Reeves, R.B., Park, H.K., 1992. Respiration Physiology 88 1-21) and an ?-ratio of 4.0-4.4 yielded DM,CO and VC values that were most similar between methods. The RP ?CO equation and an experimental ?-ratio should be used in future studies. PMID:26521031

  9. Calculated volatilization rates of fuel oxygenate compounds and other gasoline-related compounds from rivers and streams

    USGS Publications Warehouse

    Pankow, J.F.; Rathbun, R.E.; Zogorski, J.S.

    1996-01-01

    Large amounts of the 'fuel-oxygenate' compound methyl-tert-butyl ether (MTBE) are currently being used in gasoline to reduce carbon monoxide and ozone in urban air and to boost fuel octane. Because MTBE can be transported to surface waters in various ways, established theory was used to calculate half-lives for MTBE volatilizing from flowing surface waters. Similar calculations were made for benzene as a representative of the 'BTEX' group of compounds (benzene, toluene, ethyl benzene, and the xylenes), and for tert-butyl alcohol (TBA). The calculations were made as a function of the mean flow velocity u (m/day), the mean flow depth h (m), the ambient temperature, and the wind speed. In deep, slow-moving flows, MTBE volatilizes at rates which are similar to those for the BTEX compounds. In shallow, fast-moving flows, MTBE volatilizes more slowly than benzene, though in such flows both MTBE and benzene volatilize quickly enough that these differences may often not have much practical significance. TBA was found to be essentially nonvolatile from water.

  10. Real-space calculation of the effects of oxygen and boron impurities on cohesion in nickel aluminides

    NASA Astrophysics Data System (ADS)

    Djajaputra, D.; Cooper, B. R.

    2001-03-01

    Understanding the physical factors which determine the strength of intermetallic alloys is an important problem for technology as well as for the science involved. In nickel aluminides some impurity atoms, e.g. boron, act as a cohesion enhancer which can improve the cohesion substantially; while some other atoms, e.g. oxygen, can destroy the cohesion, even when present in minute concentration. It is thus important to study the interaction between a single atomic impurity and its local intermetallic environment. We have studied this problem by using a combination of ab-initio and real-space (tight-binding) methods. We use a full-potential linear muffin-tin orbital (FP-LMTO) method to obtain an accurate set of tight-binding parameters which are then used as input parameters for a real-space computation using Haydock's local Green's function (recursion) method (Solid State Physics 35, 216--294, 1980). This combined method allows us to escape the limitation of the ab-initio supercell method and focus on the interaction of the single impurity atom with its nickel-aluminide environment. We will present the results of our calculation using this method for oxygen and boron impurities in NiAl and Ni_3Al.

  11. Lipid Extraction and the Fugacity of Stable Isotope Values

    NASA Astrophysics Data System (ADS)

    Padula, V.; Causey, D.; Wolf, N.; Welker, J. M.

    2013-12-01

    Stable isotope analysis of blood, feathers, and other tissues are often used to infer migration patterns, diet composition and trophic status of seabirds. Tissues contain variable amounts of lipids that are depleted in the heavy carbon isotope (13C) and may introduce a bias in these values. There is evidence that lipid extraction may affect other stable isotope ratios, such as ?15N. Consequently, correction factors need to be applied to appropriately interpret ?13C and ?15N values for individual species and tissue type. In this study, we collected seven species of seabirds from the Near Islands, the western most group of islands in the Aleutian Island archipelago. We sampled kidney, liver, heart and muscle samples from each bird and after freeze drying, individual tissue samples were divided into two subsamples. We left one subsample unaltered and extracted lipids from the other subsample using a 2:1 chloroform-methanol solution. We found that the change in ?13C values after lipid extraction (??13C) varied widely among categories (eg., species, tissue type) from 0 - 4 , while ??15N values ranged from 0 to 2. Notably, within category variation was nonsignificant and the ?? values were linear against the covariant C:N ratio of the isotopic data, which allows us to use arithmetic corrections for categorical values. Our data strongly indicate that the effects of lipid extraction on stable isotopic values, while linear within category, vary widely by species, tissue, geographic area, year of collection, and isotope. Fugacity is usually employed as a thermodynamic quantity related to the chemical potential or activity that characterizes the escaping tendency from a phase (eg. Mackay & Paterson 1982). Here we use fugacity in the earlier, broader sense of fleeting, transitory, or instable states (eg., S. Johnson 1751), and its measure may be approximated by the higher order variance of ??13C and ??15N among data categories. Clearly, understanding the nature of variation and the physiological processes responsible for stable isotope values from biological tissues are critical for their interpretation. Change in carbon and nitrogen stable isotopes (??C13, ??15N) after lipid extraction for Tufted Puffins (Fratercula cirrhata) collected July 2010 at Attu Island, Aleutians.

  12. Comment on: "Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements" by Kaiser (2011)

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.

    2011-10-01

    Kaiser (2011) has introduced an improved method for calculating gross productivity from the triple isotopic composition of dissolved oxygen in aquatic systems. His equation avoids approximations of previous methodologies, and also accounts for additional physical processes such as kinetic fractionation during invasion and evasion at the air-sea interface. However, when comparing his new approach to previous methods, Kaiser inconsistently defines the biological end-member with the result of overestimating the degree to which the various approaches of previous studies diverge. In particular, for his base case, Kaiser assigns a 17O excess to the product of photosynthesis (17?P) that is too low, resulting in his result being ~30 % too high when compared to previous equations. When this is corrected, I find that Kaiser's equations are consistent with all previous study methodologies within about 20 % for realistic conditions of metabolic balance (f) and gross productivity (g). A methodological bias of 20 % is of similar magnitude to current uncertainty in the wind-speed dependence of the air-sea gas transfer velocity, k, which directly impacts calculated gross productivity rates as well. While previous results could and should be revisited and corrected using the proposed improved equations, the magnitude of such corrections may be much less than implied by Kaiser.

  13. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    NASA Technical Reports Server (NTRS)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  14. Electrochemical measurements and thermodynamic calculations of redox equilibria in pallasite meteorites - Implications for the eucrite parent body

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Arculus, Richard J.; Paslick, Cassi; Delano, John W.

    1990-01-01

    The intrinsic oxygen fugacity (IOF) of olivine separates from the Salta, Springwater, and Eagle Station pallasites was measured between 850 and 1150 C using oxygen-specific solid zirconia electrolytes at 100,000 Pa. Thermodynamic calculations of redox equilibria involving equalibrium pallasite assemblages are in good agreement with the experimental results and provide a lower limit to pallasite redox stability; others involving disequilibrium assemblages, suggest that pallasites experienced localized, late-stage oxidation and reduction effects. Consideration of the redox buffer metal-olivine-orthopyroxene utilizing calculated Eucrite Parent Body (EPB) mantle phase compositions indicates that small redox gradients may have existed in the EPB. Such gradients may have produced strong compositional variation within the EPB. In addition, there is apparently significant redox heterogeneity in the source area of Eagle Station Trio pallasites and Bocaiuva iron meteorites.

  15. Electrochemical measurements and thermodynamic calculations of redox equilibria in pallasite meteorites - Implications for the eucrite parent body

    NASA Astrophysics Data System (ADS)

    Righter, K.; Arculus, R. J.; Delano, J. W.; Paslick, C.

    1990-06-01

    The intrinsic oxygen fugacity (IOF) of olivine separates from the Salta, Springwater, and Eagle Station pallasites was measured between 850 and 1150 C using oxygen-specific solid zirconia electrolytes at 100,000 Pa. Thermodynamic calculations of redox equilibria involving equalibrium pallasite assemblages are in good agreement with the experimental results and provide a lower limit to pallasite redox stability; others involving disequilibrium assemblages, suggest that pallasites experienced localized, late-stage oxidation and reduction effects. Consideration of the redox buffer metal-olivine-orthopyroxene utilizing calculated Eucrite Parent Body (EPB) mantle phase compositions indicates that small redox gradients may have existed in the EPB. Such gradients may have produced strong compositional variation within the EPB. In addition, there is apparently significant redox heterogeneity in the source area of Eagle Station Trio pallasites and Bocaiuva iron meteorites.

  16. A Compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100 1600C

    NASA Astrophysics Data System (ADS)

    Holland, Tim; Powell, Roger

    1991-12-01

    We present a simple virial-type extension to the modified Redlich-Kwong (MRK) equation for calculation of the volumes and fugacities of H2O and CO2 over the pressure range 0.001 50 kbar and 100 to 1400C (H2O) and 100 to 1600C (CO2). This extension has been designed to: (a) compensate for the tendency of the MRK equation to overestimate volumes at high pressures, and (b) accommodate the volume behaviour of coexisting gas and liquid phases along the saturation curve. The equation developed for CO2 may be used to derive volumes and fugacities of CO, H2, CH4, N2, O2 and other gases which conform to the corresponding states principle. For H2O the measured volumes of Burnham et al. are significantly higher in the range 4 10 kbar than those presented by other workers. For CO2 the volume behaviour at high pressures derived from published MRK equations are very different (larger volumes, steeper ( ?P/ ?T)V, and hence larger fugacities) from the virial-type equations of Saxena and Fei. Our CORK equation for CO2 yields fugacities which are in closer agreement with the available high pressure experimental decarbonation reactions.

  17. Workshop on Oxygen in the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in Lunar Metal Grains: Solar, Lunar or Terrestrial Origin? 22) Isotopic Zoning in the Inner Solar System; 23) Redox Conditions on Small Bodies; 24) Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update; 25) Mantle Redox Evolution and the Rise of Atmospheric O2; 26) Variation of Kd for Fe-Mg Exchange Between Olivine and Melt for Compositions Ranging from Alkaline Basalt to Rhyolite; 27) Determining the Partial Pressure of Oxygen (PO,) in Solutions on Mars; 28) The Influence of Oxygen Environment on Kinetic Properties of Silicate Rocks and Minerals; 29) Redox Evolution of Magmatic Systems; 30) The Constancy of Upper Mantlefo, Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric 0 2; 31) Nitrogen Solubility in Basaltic Melt. Effects of Oxygen Fugacity, Melt Composition and Gas Speciation; 32) Oxygen Isotope Anomalies in the Atmospheres of Earth and Mars; 33) The Effect of Oxygen Fugacity on Interdiffusion of Iron and Magnesium in Magnesiowiistite 34) The Calibration of the Pyroxene Eu-Oxybarometer for the Martian Meteorites; 35) The Europium Oxybarometer: Power and Pitfalls; 36) Oxygen Fugacity of the Martian Mantle from PigeoniteMelt Partitioning of Samarium, Europium and Gadolinium; 37) Oxidation-Reduction Processes on the Moon: Experimental Verification of Graphite Oxidation in the Apollo 17 Orange Glasses; 38) Oxygen and Core Formation in the Earth; 39) Geologic Record of the Atmospheric Sulfur Chemistry Before the Oxygenation of the Early Earth s Atmosphere; 40) Comparative Planetary Mineralogy: V/(CrCAl) Systematics in Chromite as an Indicator of Relative Oxygen Fugacity; 41) How Well do Sulfur Isotopes Constrain Oxygen Abundance in the Ancient Atmospheres? 42) Experimental Constraints on the Oxygen Isotope (O-18/ O-16) Fractionation in the Ice vapor and Adsorbant vapor Systems of CO2 at Conditions Relevant to the Surface of Mars; 43) Micro-XANES Measurements on Experimental Spinels andhe Oxidation State of Vanadium in Spinel-Melt Pairs; 44) Testing the Magma Ocean Hypothesis Using Metal-Silicate Partitioning of Te, Se and S; 45) Solubility of Oxygen in Liquid Iron at High Pressure and Consequences for the Early Differentiation of Earth and Mars Metallic Liquid Segregation in Planetesimals; 46) Oxygen Fugacity of Lunar Basalts and the Lunar Mantle. Range of fo2 and the Effectiveness of Oxybarometers; 47) Thermodynamic Study of Dissociation Processes of Molecular Oxygen in Vapor over Oxide Compounds; 48) Oxygen Profile of a Thermo-Haliophilic Community in the Badwater Salt Flat; 49) Oxygen Barometry Using Synchrotron MicroXANES of Vanadium; 50) Mass-Independent Isotopic Fractionation of Sulfur from Sulfides in the Huronian Supergroup, Canada; 51) Mass Independent Isotopes and Applications to Planetary Atmospheres; 52) Electrical Conductivity, Oxygen Fugacity, and Mantle Materials; 53) Crustal Evolution and Maturation on Earth: Oxygen Isotope Evidence; 54) The Oxygen Isotope Composition of the Moon: Implications for Planet Formation; 55) Oxygen Isotope Composition of Eucrites and Implications for the Formation of Crust on the HED Parent Body; and 56) The Role of Water in Determining the Oxygen Isotopic Composition of Planets.

  18. (001) SrTiO3 | (001) MgO interface and oxygen-vacancy stability from first-principles calculations.

    PubMed

    Aidhy, Dilpuneet S; Zhang, Yanwen; Weber, William J

    2014-09-10

    In-depth understanding of interfacial atomistic structures is required to design heterointerfaces with controlled functionalities. Using density functional theory calculations, we investigate the interfacial structure of (001) SrTiO3 | (001) MgO, and characterize the stable interface structure. Among the four types of possible interface structures, we show that the TiO2-terminated SrTiO3 containing electrostatically attractive Mg-O and Ti-O ion-ion interactions forms the most stable interface. We also show that oxygen vacancies can be preferentially stabilized across the interface via manipulating interfacial strain. We elucidate that oxygen vacancies are most stable in the tensile-strain material, and unstable in compressive strain material. This stability is explained from equation-of-state analysis using a single crystal, where the oxygen vacancy shows a larger volume than the oxygen ion, thus explaining its stability under tensile-strained conditions. PMID:25137404

  19. Taylor- and fugacity expansion for the effective center model of QCD at finite density

    NASA Astrophysics Data System (ADS)

    Grünwald, E.; Delgado, Y.; Gattringer, C.

    Using the effective center model of QCD we test series expansions for finite chemical potential $\\mu$. In particular we study two variants of Taylor expansion as well as the fugacity series. The effective center model has a dual representation where the sign problem is absent and reliable Monte Carlo simulations are possible at arbitrary $\\mu$. We use the results from the dual simulation as reference data to assess the Taylor- and fugacity series approaches. We find that for most of parameter space fugacity expansion is the best (but also numerically most expensive) choice for reproducing the dual simulation results, while conventional Taylor expansion is reliable only for very small $\\mu$. We also discuss the results of a modified Taylor expansion in $e^{\\pm \\mu} - 1 $ which at the same numerical effort clearly outperforms the conventional Taylor series.

  20. Utilizing Polymer-Coated Vials to Illustrate the Fugacity and Bioavailability of Chlorinated Pesticide Residues in Contaminated Soils

    ERIC Educational Resources Information Center

    Andrade, Natasha A.; McConnell, Laura L.; Torrents, Alba; Hapeman, Cathleen J.

    2013-01-01

    Fugacity and bioavailability can be used to facilitate students' understanding of potential environmental risks associated with toxic chemicals and, therefore, should be incorporated in environmental chemistry and science laboratories. Although the concept of concentration is easy to grasp, fugacity and bioavailability can be challenging…

  1. Utilizing Polymer-Coated Vials to Illustrate the Fugacity and Bioavailability of Chlorinated Pesticide Residues in Contaminated Soils

    ERIC Educational Resources Information Center

    Andrade, Natasha A.; McConnell, Laura L.; Torrents, Alba; Hapeman, Cathleen J.

    2013-01-01

    Fugacity and bioavailability can be used to facilitate students' understanding of potential environmental risks associated with toxic chemicals and, therefore, should be incorporated in environmental chemistry and science laboratories. Although the concept of concentration is easy to grasp, fugacity and bioavailability can be challenging

  2. Screening nitrogen-rich bases and oxygen-rich acids by theoretical calculations for forming highly stable salts.

    PubMed

    Zhang, Xueli; Gong, Xuedong

    2014-08-01

    Nitrogen-rich heterocyclic bases and oxygen-rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4-amino-1,2,4-trizole (A), 1-amino-1,2,4-trizole (B), and 5-aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2 )2 (II), HClO4 (III), and HC(NO2 )3 (IV), are studied using DFT calculations at the B97-D/6-311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative ?r Gm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3 (-) >N(NO2 )2 (-) >ClO4 (-) >C(NO2 )3 (-) , and C(+) >B(+) >A(+) . In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen-bond energy (EH,tot ) leads to a higher melting point. The order of cations and anions on charge transfer (q), second-order perturbation energy (E2 ), and binding energy (Eb ) are the same to that of EH,tot , so larger q leads to larger E2 , Eb , and EH,tot . All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5-aminotetrazole and HClO4 are the preferred base and acid, respectively. PMID:24782247

  3. Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations.

    PubMed

    He, Xingfeng; Mo, Yifei

    2015-07-21

    We perform a first principles computational study of designing the Na0.5Bi0.5TiO3 (NBT) perovskite material to increase its oxygen ionic conductivity. In agreement with the previous experiments, our computation results confirm fast oxygen ionic diffusion and good stability of the NBT material. The oxygen diffusion mechanisms in this new material were systematically investigated, and the effects of local atomistic configurations and dopants on oxygen diffusion were revealed. Novel doping strategies focusing on the Na/Bi sublattice were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm(-1) at 900 K compared to the previous Mg doped compositions. This study demonstrated the advantages of first principles calculations in understanding the fundamental structure-property relationship and in accelerating the materials design of the ionic conductor materials. PMID:26098541

  4. Oxygen barometry of basaltic glasses based on vanadium valence determinations using synchrotron microXANES

    SciTech Connect

    Sutton, S.R.; Karner, J.M.; Papike, J.J.; Delaney, J.S.; Shearer, C.K.; Newville, M.; Eng, P.; Rivers, M.; Dyar, M.D.

    2004-10-27

    We describe here a new, non-destructive method for valence determinations of vanadium and oxygen fugacity estimates for basaltic glasses with spatial resolution of a few micrometers using synchrotron x-ray absorption near edge structure (XANES) spectroscopy. A promising proxy for oxygen fugacity is the valence of vanadium because it a large number of valence states in nature (2+, 3+, 4+ and 5+) and is ubiquitous in earth and planetary materials . We describe here a new, non-destructive method for valence determinations of vanadium and oxygen fugacity estimates for basaltic glasses with spatial resolution of a few micrometers using synchrotron x-ray absorption near edge structure (XANES) spectroscopy. Details of this method and applications to martian, lunar and terrestrial glasses are described and also in accompanying abstracts.

  5. Calculation of oxygen diffusion in plutonium oxide films during the high-temperature oxidation of plutonium-1 weight percent gallium in 500 torr of air

    SciTech Connect

    Stakebake, J.L.

    1988-05-27

    Oxygen self-diffusion in PuO/sub 1.995/ was calculated from rate constants obtained for the parabolic oxidation of the Pu-1 wt % Ga alloy in 500-torr dry air between 250 and 480/degree/C. The activation energy for oxygen vacancy diffusion in the n-type PuO/sub 2-x/ is 22.6 kcal/mole. Results from this investigation are compared with other reported results, and possible explanation for the difference in results is discussed. 21 refs., 5 figs., 1 tab.

  6. Oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives by nitrous oxide via selective oxygen atom transfer reactions: insights from quantum chemistry calculations.

    PubMed

    Xie, Hujun; Liu, Chengcheng; Yuan, Ying; Zhou, Tao; Fan, Ting; Lei, Qunfang; Fang, Wenjun

    2016-01-01

    The mechanisms for the oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives (Cp* = ?(5)-C5Me5) by nitrous oxide via selective oxygen atom transfer reactions have been systematically studied by means of density functional theory (DFT) calculations. On the basis of the calculations, we investigated the original mechanism proposed by Hillhouse and co-workers for the activation of N2O. The calculations showed that the complex with an initial O-coordination of N2O to the coordinatively unsaturated Hf center is not a local minimum. Then we proposed a new reaction mechanism to investigate how N2O is activated and why N2O selectively oxidize phenyl and hydride ligands of . Frontier molecular orbital theory analysis indicates that N2O is activated by nucleophilic attack by the phenyl or hydride ligand. Present calculations provide new insights into the activation of N2O involving the direct oxygen atom transfer from nitrous oxide to metal-ligand bonds instead of the generally observed oxygen abstraction reaction to generate metal-oxo species. PMID:26660046

  7. Use of Physicochemical Parameters to Assess the Environmental Fate of Organic Pollutants: The Fugacity Model

    ERIC Educational Resources Information Center

    Domenech, Xavier; Ayllon, Jose Antonio; Peral, Jose

    2006-01-01

    The environmental fate and behavior of different organic pollutants based on the qualitative analysis of thermodynamic and kinetic data is presented. The Fugacity model allows the use of different partition constants in an easy way, to determine the distribution of chemical between different phases in equilibrium of an environmental system.

  8. Oxygen Fugacity of the Martian Mantle from Pigeonite/Melt Partitioning of Samarium, Europium and Gadolinium

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Jnes, J. H.; Shearer, C.

    2004-01-01

    This study is part of an ongoing effort to calibrate the pyroxene/melt REE oxybarometer for conditions relevant to the martian meteorites. These efforts have been motivated by reports of redox variations among the shergottites . We have conducted experiments on martian composition pigeonite/melt rare earth element partitioning as a function of fO2.

  9. Oxygen Fugacity of the Martian Mantle from Pigeonite/Melt Partitioning of Samarium, Europium and Gadolinium

    NASA Technical Reports Server (NTRS)

    Musselwhite, S.; Jones, J. H.; Shearer, C.

    2004-01-01

    This study is part of an ongoing effort to calibrate the pyroxene/melt Eu oxybarometer for conditions relevant to the martian meteorites. There is fairly good agreement between a determinations using equilibria between Fe-Ti oxides and the estimates from Eu anomalies in shergottite augites in tenns of which meteorites are more or less oxidized. The Eu calibration was for angrite composition pyroxenes which are rather extreme. However, application of a calibration for martian composition augites 113 does not significantly reduce the discrepancy between the two methods. One possible reason for this discrepancy is that augites are non-liquidus. The use of pigeonite rather than augite as the oxy-barometer phase is considered. We have conducted experiments on martian composition pigeonite/melt REE partitioning as a function of fO2.

  10. Studies of the Effects of Oxygen Fugacity on Diffusion in Pyroxenes

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2002-05-01

    Over the past several years, we have explored the dependence of fO2 on diffusion in natural Fe-bearing pyroxenes, with emphasis on investigation of Pb diffusion. In these studies (Cherniak, 1998; 2001) we have found a positive dependence on fO2 for diffusion in both clinopyroxene and orthopyroxene. The dependencies can be described with values of m ranging from 0.14 to 0.20 (for D proportional to (fO2)m), similar to the value of +3/16 for m for diffusion controlled by cation vacancies, estimated from point defect models for diopside (Jaoul and Raterron, 1994), where the majority point defects are Mg and Si vacancies and Fe+3. We continue this work with a synthetic, Fe-free diopside (Sneeringer et al., 1984) to explore whether defects due to the presence of Fe do indeed exert a significant influence over transport properties under differing fO2. Experiments were conducted in a manner similar to that for our earlier work, using a double silica glass capsule assembly. Sources of diffusant consisted of mixtures of PbS powder and ground synthetic diopside, with Pb diffusional uptake profiles measured by Rutherford Backscattering (RBS). The results for Pb diffusion in the synthetic diopside yield the following Arrhenius relation, over the temperature range 850-1050C, buffered at QFM: DPb = 4.6x10-7 exp(- 364 +/- 43 kJ mol-1/RT) m2sec2 These diffusivities are slower than those for natural diopside, but the activation energy for diffusion is similar to that determined for several other pyroxenes (350-390 kJ/mol, Cherniak, 2001). Interestingly, there appears to be little effect of fO2 on Pb diffusivities in synthetic Fe-free diopside, as experiments run with IW and MH buffers yield similar results to experiments run at QFM. We are currently exploring the effects of fO2 on diffusion of other elements in a range of pyroxene compositions, and will also present a progress report of this work. Cherniak D.J. (1998) Chem. Geol. 150, 105-117; Cherniak D.J. (2001) Chem. Geol. 177, 381-397; Jaoul O., P. Raterron (1994) JGR 99, 9423-9439; Sneeringer M., S.R. Hart, N.Shimizu (1984) GCA 48, 1589-1608.

  11. Oxygen Fugacity of the Martian Mantle From Pyroxene/Melt Partitioning of REE

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Jones, J. H.

    2003-01-01

    This study is part of an ongoing effort to calibrate the pyroxene/melt REE oxybarometer for conditions relevant to the martian meteorites. Redox variations have been reported among the shergottites. Wadhwa used the Eu and Gd augite/melt partitioning experiments of McKay, designed for the LEW86010 angrite, to infer a range of fo2 for the shergottites. Others inferred fo2 using equilibria between Fe-Ti oxides. There is fairly good agreement between the Fe-Ti oxide determinations and the estimates from Eu anomalies in terms of which meteorites are more or less oxidized. The Eu anomaly technique and the Fe-Ti oxide technique both essentially show the same trend, with Shergotty and Zagami being the most oxidized and QUE94201 and DaG 476 being the most reduced. Thus, the variation in fo2 appears to be both real and substantive. However, although the redox trends indicated by the two techniques are similar, there is as much as two log unit offset between the results of three researchers. One explanation for this offset is that the Eu calibration used for the shergottites was actually designed for the LEW86010 angrite, a silica-undersaturated basalt whose pyroxene (diopside) compositions are rather extreme. To correct this, experiments have been conducted on the redox relationship of Eu partitioning relative to Sm and Gd for pyroxene/melt compositions more relevant to Martian meteorites. We report here preliminary results for experiments on pigeonite/melt partitioning as a function of fO2.

  12. Fugacity and activity analysis of the bioaccumulation and environmental risks of decamethylcyclopentasiloxane (D5).

    PubMed

    Gobas, Frank A P C; Xu, Shihe; Kozerski, Gary; Powell, David E; Woodburn, Kent B; Mackay, Don; Fairbrother, Anne

    2015-12-01

    As part of an initiative to evaluate commercial chemicals for their effects on human and environmental health, Canada recently evaluated decamethylcyclopentasiloxane (D5; CAS no. 541-02-06), a high-volume production chemical used in many personal care products. The evaluation illustrated the challenges encountered in environmental risk assessments and the need for the development of better tools to increase the weight of evidence in environmental risk assessments. The present study presents a new risk analysis method that applies thermodynamic principles of fugacity and activity to express the results of field monitoring and laboratory bioaccumulation and toxicity studies in a comprehensive risk analysis that can support risk assessments. Fugacity and activity ratios of D5 derived from bioaccumulation measures indicate that D5 does not biomagnify in food webs, likely because of biotransformation. The fugacity and activity analysis further demonstrates that reported no-observed-effect concentrations of D5 normally cannot occur in the environment. Observed fugacities and activities in the environment are, without exception, far below those corresponding with no observed effects, in many cases by several orders of magnitude. This analysis supports the conclusion of the Canadian Board of Review and the Minister of the Environment that D5 does not pose a danger to the environment. The present study further illustrates some of the limitations of a persistence-bioaccumulation-toxicity-type criteria-based risk assessment approach and discusses the merits of the fugacity and activity approach to increase the weight of evidence and consistency in environmental risk assessments of commercial chemicals. PMID:26211424

  13. Oxygen adsorbates on the Si(111)41-In metallic atomic wire: Scanning tunneling microscopy and density-functional theory calculations

    NASA Astrophysics Data System (ADS)

    Oh, Deok Mahn; Wippermann, S.; Schmidt, W. G.; Yeom, Han Woong

    2014-10-01

    The Si(111)41-In surface is composed of metallic atomic wires, which undergo a transition into a charge density wave phase at a transition temperature (Tc) of 125 K. This Tc was reported recently to substantially increase upon the oxygen adsorption, for which the underlying mechanism is not understood. We investigate the structures of oxygen adsorbates on the Si(111)41-In surface by scanning tunneling microscopy (STM) and density-functional theory calculations. We identify three distinct atomic-scale structures induced by the oxygen adsorption with high-resolution STM topography. The calculations find two energetically favorable adsorption sites on and between In zigzag chains, respectively. In conjunction with an additional adsorption configuration, where O is buried underneath the In chain, three stable structures are thus identified that reproduce very well the characteristic bias-dependent STM images. Experimentally, a switching between two specific adsorption structures is observed and is consistent with the structure models proposed. The structural distortions and the charge transfer of In atomic wires around the adsorbates are also characterized. This work provides a solid basis for the microscopic understanding of the intriguing oxygen impurity effect on the phase transition.

  14. Diurnal variability in the oceanic carbon dioxide system and oxygen in the Southern Ocean surface water

    NASA Astrophysics Data System (ADS)

    Fransson, Agneta; Chierici, Melissa; Anderson, Leif G.

    2004-11-01

    During the SWEDARP cruise to the Atlantic sector of the Southern Ocean 1997/1998 six 24-hour stations were occupied in the areas of the Spring Ice Edge (SIE1, SIE2 and SIE3), the Winter Ice Edge (WIE), and the Antarctic Polar Front (APF1 and APF2). Samples were taken at the surface (2 m) every second hour and analyzed for total dissolved inorganic carbon, total alkalinity, pH and dissolved oxygen. By the use of wind speed measurements, calculated fugacity of carbon dioxide, fCO 2, and oxygen concentrations in the surface water, sea-air fluxes of carbon dioxide (CO 2) and oxygen were calculated. These fluxes and the diurnal change in the chemical properties are discussed in relation to changes in biological activity. The fluctuations in wind speed showed a larger impact on the variability of the calculated fluxes than the fluctuations in surface water fCO 2 or oxygen saturation. The calculated fluxes and the variability also showed large differences depending on how the wind speed was used, instantaneously or averaged over 24 hours. The calculated sea-air CO 2 fluxes using instantaneous wind speed varied between -0.012 and -0.11 mmol m -2 h -1 in the SIE1, -0.0073 and -0.30 mmol m -2 h -1 in the WIE and -0.043 and -1.65 mmol m -2 h -1 in the APF2. The mean values of sea-air CO 2 fluxes were calculated to -0.0460.044, -0.100.094 and -0.520.64 mmol m -2 h -1 for the SIE1, WIE and the APF2, respectively. The mean values of sea-air oxygen fluxes were calculated to 0.0720.073, -0.120.54 and 1.41.3 mmol m -2 h -1 for the corresponding regions.

  15. Calculation of hydrogen and oxygen uptake in fuel rod cladding during severe accidents using the integral diffusion method -- Final Design Report

    SciTech Connect

    Siefken, L.J.

    1999-05-01

    Final designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. A description is given of the implementation of the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5/MOD3.3 code.

  16. Calculation of Hydrogen and Oxygen Uptake in Fuel Rod Cladding During Severe Accidents Using the Integral Diffusion Method - Final Design Report

    SciTech Connect

    Siefken, Larry James

    1999-06-01

    Final designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. A description is given of the implementation of the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5/MOD3.3 code.

  17. Differing effects of water fugacity deformation of quartzites and milky quartz single crystals

    NASA Astrophysics Data System (ADS)

    Holyoke, C. W.; Kronenberg, A. K.

    2010-12-01

    Previous studies of quartzite deformation by dislocation creep have documented a strong dependence of mechanical properties on pressure, which has been interpreted as a relationship between strain rate and water fugacity (Kronenberg and Tullis, 1984; Kohlstedt et al., 1995; Chernak et al. 2009). However, natural milky quartz single crystals deformed by basal slip can be water-weakened over a wide range of pressure (and water fugacities), with strengths that appear to depend on total water content at a fixed water fugacity. The difference of behavior between these two is perplexing since infrared spectra collected from quartzites and milky quartz single crystals indicate that they have the same forms of intragranular water and microstructures indicate the same slip system is activated. The only difference between these materials is that quartzites include populations of grains of all orientations, separated by grain boundaries. In order to resolve this discrepancy we have performed deformation experiments on a natural quartzite (Black Hills quartzite) and natural milky quartz single crystals oriented for easy slip on the basal slip system at identical conditions (800C, strain rate = 10-6/s) with no added water. During each experiment cores of each material, which have a fixed water content, were subjected to pressure stepping; an initial deformation step was performed at 1.5 GPa, then the sample was unloaded and one or more deformation steps were performed at lower pressures (as low as 0.6 GPa) prior to returning to 1.5 GPa for a final deformation step. The strength of quartzite increases dramatically at lower pressure and lower water fugacity, but strength decreases again returning to high pressure during the final deformation step. The strength of milky quartz single crystals increases as well, but by far less than observed for quartzites. The water fugacity exponents (m) of the quartzite and single crystals are 1.9 and 0.8, respectively, (assuming power law creep with n=4). The exponent for Black Hills quartzite is consistent with previous studies for quartzites, while the exponent (m nearly 1.0) for single crystals is more readily understood in terms of point defects and their influence on deformation. Microstructures in the quartzites include wavy grain boundaries and undulatory extinction, indicating deformation by climb-accommodated dislocation creep and the onset of bulge recrystallization. Microstructures observed in the single crystals include deformation bands perpendicular to elongate zones of undulatory extinction, with no recrystallization, indicating deformation by climb-accommodated dislocation creep. These results indicate that much of the effect of increasing water fugacity on quartzite rheology is due to enhanced recovery near grain boundaries facilitated by grain boundary migration.

  18. First Principles Calculations of Oxygen Vacancy Formation and Migration in Ba1?xSrxCo1?yFeyO3?? Perovskites

    SciTech Connect

    Merkle, Rotraut; Mastrikov, Yuri; Kotomin, Eugene Alexej; Kukla, Maija M.; Maier, Joachim

    2011-12-28

    Based on first principles DFT calculations, we analyze oxygen vacancy formation and migration energies as a function of chemical composition in complex multicomponent (Ba,Sr)(Co,Fe)O3?? perovskites which are candidate materials for SOFC cathodes and permeation membranes. The atomic relaxation, electronic charge redistribution and energies of the transition states of oxygen migration are compared for several perovskites to elucidate the atomistic reason for the exceptionally low migration barrier in Ba0.5Sr0.5Co0.8Fe0.2O3?? that was previously determined experimentally. The critical comparison of Ba1?xSrxCo1?yFeyO3?? perovskites with different cation compositions and arrangements shows that in addition to the geometric constraints the electronic structure plays a considerable role for the height of the oxygen migration barrier in these materials. These findings help understand advantages and limitations of the fast oxygen permeation and exchange properties of Ba0.5Sr0.5Co0.8Fe0.2O3??.

  19. Are the carbon monoxide complexes of Cp(2)M (M = Ca, Eu, or Yb) carbon or oxygen bonded? An answer from DFT calculations.

    PubMed

    Maron, L; Perrin, L; Eisenstein, O; Andersen, R A

    2002-05-22

    DFT calculations have been performed on the CO adducts of the bivalent lanthanides, Cp(2)M(CO)(x), where M is Eu or Yb and x is 1 or 2, the alkaline earth metallocene Cp(2)Ca(CO), and the methylisocyanide adducts of Yb. The calculated nu(CO) values are in agreement with experiment for Cp(2)M(CO) when M is Ca or Eu, but in striking disagreement when the CO is bound to the metal by way of the carbon atom in CO in the case of Yb. The calculated nu(CO) values for M = Yb are brought into agreement with experiment when the CO is allowed to bond to Cp(2)Yb by way of the oxygen atom. PMID:12010015

  20. Different doping from apical and planar oxygen vacancies in Ba2CuO4-? and La2CuO4-?: First-principles band structure calculations

    NASA Astrophysics Data System (ADS)

    Jarlborg, T.; Barbiellini, B.; Markiewicz, R. S.; Bansil, A.

    2012-12-01

    First-principles band structure calculations for large supercells of Ba2CuO4-? and La2CuO4-? with different distributions and concentrations of oxygen vacancies show that the effective doping on copper sites strongly depends on where the vacancy is located. A vacancy within the Cu layer produces a weak doping effect while a vacancy located at an apical oxygen site acts as a stronger electron dopant on the copper layers and gradually brings the electronic structure close to that of La2-xSrxCuO4. These effects are robust and only depend marginally on lattice distortions. Our results show that deoxygenation can reduce the effect of traditional La/Sr or La/Nd substitutions. Our study clearly identifies location of the dopant in the crystal structure as an important factor in doping of the cuprate planes.

  1. Optical noninvasive calculation of hemoglobin components concentrations and fractional oxygen saturation using a ring-scattering pulse oximeter

    NASA Astrophysics Data System (ADS)

    Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus

    2004-06-01

    The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0e-?.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.

  2. Quaternary ammonium room-temperature ionic liquid including an oxygen atom in side chain/lithium salt binary electrolytes: ab initio molecular orbital calculations of interactions between ions.

    PubMed

    Tsuzuki, Seiji; Hayamizu, Kikuko; Seki, Shiro; Ohno, Yasutaka; Kobayashi, Yo; Miyashiro, Hajime

    2008-08-14

    Interactions of the lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) complex with N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium (DEME), 1-ethyl-3-methylimidazolium (EMIM) cations, neutral diethylether (DEE), and the DEMETFSA complex were studied by ab initio molecular orbital calculations. An interaction energy potential calculated for the DEME cation with the LiTFSA complex has a minimum when the Li atom has contact with the oxygen atom of DEME cation, while potentials for the EMIM cation with the LiTFSA complex are always repulsive. The MP2/6-311G**//HF/6-311G** level interaction energy calculated for the DEME cation with the LiTFSA complex was -18.4 kcal/mol. The interaction energy for the neutral DEE with the LiTFSA complex was larger (-21.1 kcal/mol). The interaction energy for the DEMETFSA complex with LiTFSA complex is greater (-23.2 kcal/mol). The electrostatic and induction interactions are the major source of the attraction in the two systems. The substantial attraction between the DEME cation and the LiTFSA complex suggests that the interaction between the Li cation and the oxygen atom of DEME cation plays important roles in determining the mobility of the Li cation in DEME-based room temperature ionic liquids. PMID:18636771

  3. Estimating long-term contaminant inventory in and flux from soils in a regional fugacity model

    SciTech Connect

    McKone, T.E.; Maddalena, R.L.; Hsieh, D.P.H.

    1994-12-31

    Regional fugacity models are used in the United States, Canada, and Europe to assess the fate and effects of chemical emissions to multiple environmental media, i.e. air, water, and soil. Because soil is not a well-mixed compartment such as air or surface water, the boundary-layer approach for developing mass transfer coefficients (D values) from soil to air is not always easily applicable to soil. In this paper the authors develop a general compartment model for soils that is both compatible with the simple compartment structure of regional fugacity models and more accurate in its ability to mimic the more complex analytical transport models for contaminant fate in soil. This is done by using three soil layers to represent the region between the soil surface and the top of the saturated zone and by developing a regression model that uses effective soil diffusion coefficients to estimate the chemical-specific diffusion depth in each of these soil layers. The diffusion depth is estimated using an optimized regression of the box model results against the results of analytical simulations. The authors assess how well this revised soil-compartment model performs against the analytical model that it was trained to mimic. The authors also assess how the results of this model compare to those of other regional fugacity models.

  4. First-principles embedded-cluster calculations of the neutral and charged oxygen vacancy at the rutile TiO2(110) surface

    NASA Astrophysics Data System (ADS)

    Berger, Daniel; Oberhofer, Harald; Reuter, Karsten

    2015-08-01

    We perform full-potential screened-hybrid density-functional theory calculations to compare the thermodynamic stability of neutral and charged states of the surface oxygen vacancy at the rutile TiO2(110) surface. Solid-state (QM/MM) embedded-cluster calculations are employed to account for the strong TiO2 polarization response to the charged defect states. Similarly to the situation for the bulk O vacancy, the +2 charge state VO2 + is found to be energetically by far the most stable. Only for Fermi-level positions very close to the conduction band, small polarons may at best be trapped by the charged vacancy. The large decrease in the VO2 + formation energy with decreasing Fermi-level position indicates strongly enhanced surface O vacancy concentrations for p -doped samples.

  5. Size and structure effects of PtN (N = 12 - 13) clusters for the oxygen reduction reaction: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Rodrguez-Kessler, P. L.; Rodrguez-Domnguez, A. R.

    2015-11-01

    Size and structure effects on the oxygen reduction reaction on PtN clusters with N = 12-13 atoms have been investigated using periodic density functional theory calculations with the generalized gradient approximation. To describe the catalytic activity, we calculated the O and OH adsorption energies on the cluster surface. The oxygen binding on the 3-fold hollow sites on stable Pt12-13 cluster models resulted more favorable for the reaction with O, compared with the Pt13(Ih) and Pt55(Ih) icosahedral particles, in which O binds strongly. However, the rate-limiting step resulted in the removal of the OH species due to strong adsorptions on the vertex sites, reducing the utility of the catalyst surface. On the other hand, the active sites of Pt12-13 clusters have been localized on the edge sites. In particular, the OH adsorption on a bilayer Pt12 cluster is the closest to the optimal target; with 0.0-0.2 eV weaker than the Pt(111) surface. However, more progress is necessary to activate the vertex sites of the clusters. The d-band center of PtN clusters shows that the structural dependence plays a decisive factor in the cluster reactivity.

  6. Size and structure effects of PtN (N = 12 - 13) clusters for the oxygen reduction reaction: First-principles calculations.

    PubMed

    Rodrguez-Kessler, P L; Rodrguez-Domnguez, A R

    2015-11-14

    Size and structure effects on the oxygen reduction reaction on PtN clusters with N =?12-13 atoms have been investigated using periodic density functional theory calculations with the generalized gradient approximation. To describe the catalytic activity, we calculated the O and OH adsorption energies on the cluster surface. The oxygen binding on the 3-fold hollow sites on stable Pt12-13 cluster models resulted more favorable for the reaction with O, compared with the Pt13(Ih) and Pt55(Ih) icosahedral particles, in which O binds strongly. However, the rate-limiting step resulted in the removal of the OH species due to strong adsorptions on the vertex sites, reducing the utility of the catalyst surface. On the other hand, the active sites of Pt12-13 clusters have been localized on the edge sites. In particular, the OH adsorption on a bilayer Pt12 cluster is the closest to the optimal target; with 0.0-0.2 eV weaker than the Pt(111) surface. However, more progress is necessary to activate the vertex sites of the clusters. The d-band center of PtN clusters shows that the structural dependence plays a decisive factor in the cluster reactivity. PMID:26567667

  7. Characterization of the Sr(2+)- and Cd(2+)-Substituted Oxygen-Evolving Complex of Photosystem II by Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Pitari, Fabio; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo

    2015-09-29

    The Mn4CaO5 cluster in the oxygen-evolving complex is the catalytic core of the Photosystem II (PSII) enzyme, responsible for the water splitting reaction in oxygenic photosynthesis. The role of the redox-inactive ion in the cluster has not yet been fully clarified, although several experimental data are available on Ca2+-depleted and Ca2+-substituted PSII complexes, indicating Sr2+-substituted PSII as the only modification that preserves oxygen evolution. In this work, we investigated the structural and electronic properties of the PSII catalytic core with Ca2+ replaced with Sr2+ and Cd2+ in the S2 state of the Kok?Joliot cycle by means of density functional theory and ab initio molecular dynamics based on a quantum mechanics/ molecular mechanics approach. Our calculations do not reveal significant differences between the substituted and wild-type systems in terms of geometries, thermodynamics, and kinetics of two previously identified intermediate states along the S2 to S3 transition, namely, the open cubane S2 A and closed cubane S2 B conformers. Conversely, our calculations show different pKa values for the water molecule bound to the three investigated heterocations. Specifically, for Cd-substituted PSII, the pKa value is 5.3 units smaller than the respective value in wild type Ca-PSII. On the basis of our results, we conclude that, assuming all the cations sharing the same binding site, the induced difference in the acidity of the binding pocket might influence the hydrogen bonding network and the redox levels to prevent the further evolution of the cycle toward the S3 state. PMID:26346422

  8. Stability of oxygen point defects in UO2 by first-principles DFT+U calculations: Occupation matrix control and Jahn-Teller distortion

    NASA Astrophysics Data System (ADS)

    Dorado, Boris; Jomard, Grald; Freyss, Michel; Bertolus, Marjorie

    2010-07-01

    Point-defect formation energies in uranium dioxide UO2 are still a matter of debate due to the significant discrepancies between the various studies published in the literature. These discrepancies stem from the density functional theory (DFT)+U approximation that creates multiple energy minima and complexifies the search for the ground state. We report here DFT+U values of the formation energies for the single oxygen interstitial and vacancy in UO2 , both in the fluorite and the Jahn-Teller distorted structures, using a scheme developed on bulk UO2 [B. Dorado, B. Amadon, M. Freyss, and M. Bertolus, Phys. Rev. B 79, 235125 (2009)10.1103/PhysRevB.79.235125] and based on occupation matrix control. We first investigate the Jahn-Teller distortion in UO2 in the noncollinear antiferromagnetic order and we show that the distortion stabilizes the system by 50meV/UO2 compared to the fluorite structure. Moreover, it is found that the oxygen atoms are displaced in the ?111? directions, in agreement with experiments. For the bulk fluorite structure, we show that the use of the Dudarev approach of the DFT+U without occupation matrix control systematically yields the first metastable state, located 45meV/UO2 above the ground state. As a result, all previously published point-defect formation energies are largely underestimated. We then use the occupation matrix control scheme to calculate the formation energies of the single oxygen interstitial and vacancy in UO2 . We confirm that this scheme always allows one to reach the lowest energy states and therefore yields reliable formation energies. Finally, we compare our values with those obtained in previous studies and show that the discrepancies observed stem from the calculations of defective supercells which have reached different metastable states.

  9. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  10. Scaling of Gene Expression with Transcription-Factor Fugacity

    NASA Astrophysics Data System (ADS)

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2014-12-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  11. Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations

    NASA Astrophysics Data System (ADS)

    Mun Wong, Kin; Alay-e-Abbas, S. M.; Fang, Yaoguo; Shaukat, A.; Lei, Yong

    2013-07-01

    A qualitative approach using room-temperature confocal microscopy is employed to investigate the spatial distribution of shallow and deep oxygen vacancy (VO) concentrations on the polar (0001) and non-polar (1010) surfaces of zinc oxide (ZnO) nanowires (NWs). Using the spectral intensity variation of the confocal photoluminescence of the green emission at different spatial locations on the surface, the VO concentrations of an individual ZnO NW can be obtained. The green emission at different spatial locations on the ZnO NW polar (0001) and non-polar (1010) surfaces is found to have maximum intensity near the NW edges, decreasing to a minimum near the NW center. First-principles calculations using simple supercell-slab (SS) models are employed to approximate/model the defects on the ZnO NW (1010) and (0001) surfaces. These calculations give increased insight into the physical mechanism behind the green emission spectral intensity and the characteristics of an individual ZnO NW. The highly accurate density functional theory (DFT)-based full-potential linearized augmented plane-wave plus local orbitals (FP-LAPW + lo) method is used to compute the defect formation energy (DFE) of the SSs. Previously, using these SS models, it was demonstrated through the FP-LAPW + lo method that in the presence of oxygen vacancies at the (0001) surface, the phase transformation of the SSs in the graphite-like structure to the wurtzite lattice structure will occur even if the thickness of the graphite-like SSs are equal to or less than 4 atomic graphite-like layers [Wong et al., J. Appl. Phys. 113, 014304 (2013)]. The spatial profile of the neutral VO DFEs from the DFT calculations along the ZnO [0001] and [1010] directions is found to reasonably explain the spatial profile of the measured confocal luminescence intensity on these surfaces, leading to the conclusion that the green emission spectra of the NWs likely originate from neutral oxygen vacancies. Another significant result is that the variation in the calculated DFE along the ZnO [0001] and [1010] directions shows different behaviors owing to the non-polar and polar nature of these SSs. These results are important for tuning and understanding the variations in the optical response of ZnO NW-based devices in different geometric configurations.

  12. Workshop on Oxygen in Asteroids and Meteorites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Constraints on the detection of solar nebula's oxidation state through asteroid observation. Oxidation/Reduction Processes in Primitive Achondrites. Low-Temperature Chemical Processing on Asteroids. On the Formation Location of Asteroids and Meteorites. The Spectral Properties of Angritic Basalts. Correlation Between Chemical and Oxygen Isotopic Compositions in Chondrites. Effect of In-Situ Aqueous Alteration on Thermal Model Heat Budgets. Oxidation-Reduction in Meteorites: The Case of High-Ni Irons. Ureilite Atmospherics: Coming up for Air on a Parent Body. High Temperature Effects Including Oxygen Fugacity, in Pre-Planetary and Planetary Meteorites and Asteroids. Oxygen Isotopic Variation of Asteroidal Materials. High-Temperature Chemical Processing on Asteroids: An Oxygen Isotope Perspective. Oxygen Isotopes and Origin of Opaque Assemblages from the Ningqiang Carbonaceous Chondrite. Water Distribution in the Asteroid Belt. Comparative Planetary Mineralogy: V Systematics in Planetary Pyroxenes and fo 2 Estimates for Basalts from Vesta.

  13. A model-free method for mass spectrometer response correction. [for oxygen consumption and cardiac output calculation

    NASA Technical Reports Server (NTRS)

    Shykoff, Barbara E.; Swanson, Harvey T.

    1987-01-01

    A new method for correction of mass spectrometer output signals is described. Response-time distortion is reduced independently of any model of mass spectrometer behavior. The delay of the system is found first from the cross-correlation function of a step change and its response. A two-sided time-domain digital correction filter (deconvolution filter) is generated next from the same step response data using a regression procedure. Other data are corrected using the filter and delay. The mean squared error between a step response and a step is reduced considerably more after the use of a deconvolution filter than after the application of a second-order model correction. O2 consumption and CO2 production values calculated from data corrupted by a simulated dynamic process return to near the uncorrupted values after correction. Although a clean step response or the ensemble average of several responses contaminated with noise is needed for the generation of the filter, random noise of magnitude not above 0.5 percent added to the response to be corrected does not impair the correction severely.

  14. Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters

    NASA Technical Reports Server (NTRS)

    Strangman, Gary; Franceschini, Maria Angela; Boas, David A.; Sutton, J. P. (Principal Investigator)

    2003-01-01

    Near-infrared spectroscopy (NIRS) can be used to noninvasively measure changes in the concentrations of oxy- and deoxyhemoglobin in tissue. We have previously shown that while global changes can be reliably measured, focal changes can produce erroneous estimates of concentration changes (NeuroImage 13 (2001), 76). Here, we describe four separate sources for systematic error in the calculation of focal hemoglobin changes from NIRS data and use experimental methods and Monte Carlo simulations to examine the importance and mitigation methods of each. The sources of error are: (1). the absolute magnitudes and relative differences in pathlength factors as a function of wavelength, (2). the location and spatial extent of the absorption change with respect to the optical probe, (3). possible differences in the spatial distribution of hemoglobin species, and (4). the potential for simultaneous monitoring of multiple regions of activation. We found wavelength selection and optode placement to be important variables in minimizing such errors, and our findings indicate that appropriate experimental procedures could reduce each of these errors to a small fraction (<10%) of the observed concentration changes.

  15. Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum-copper alloy: Experiment and density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Sun, Junzhe; Shi, Jun; Xu, Junling; Chen, Xiaoting; Zhang, Zhonghua; Peng, Zhangquan

    2015-04-01

    Novel ultrafine nanoporous Pt-Cu alloy with a Pt:Cu stoichiometric ratio of 3:1 (np-Pt3Cu) has been prepared by mechanical alloying and subsequent two-step chemical dealloying. The obtained np-Pt3Cu has uniform and bicontinuous ligament(metal)-channel(void) structure with the ligament size of 3.3 0.7 nm. To explore its potential application in energy conversion reactions, the np-Pt3Cu alloy has been examined as electrocatalyst for the operating reactions in direct methanol fuel cells (DMFCs). Compared with the commercial JM Pt/C, a benchmark catalyst extensively used in fuel cell research, the np-Pt3Cu alloy demonstrates better performance in both the methanol electro-oxidation and oxygen reduction reactions in acidic medium. Theoretical calculations reveal that the electronic structure of Pt has been modified with the shift of Pt d-band center due to alloying with Cu, which can decrease CO poisoning and enhance the methanol oxidation and oxygen reduction reaction activities.

  16. Pathways analysis of 13 priority substances for PSL2 assessment using fugacity modeling

    SciTech Connect

    Cureton, P.M.; Lloyd, K.; Mackay, D.; Southwood, J.

    1995-12-31

    The Canadian Environmental Protection Act (CEPA) requires the Ministers of the Environment and of Health to establish a Priority Substances List (PSL), that identifies substances to be assessed on a priority basis to determine whether they pose a significant risk to the health of Canadians or to the environment. The second Priority Substances List was released in December 1995 and consists of 25 substances which must be assessed. One of the preliminary steps in assessing these substances is an evaluation of the predicted behavior and fate of the substance in the Canadian environment. Pathways analysis using multimedia fugacity models provided information on the likely environmental partitioning and transformation characteristics. Following a critical evaluation of the physical-chemical values required for the model, Level 1, 2 and 3 fugacity modeling was done on the following 13 PSL2 substances: acetaldehyde, acrylonitrile, butylbenzylphthalate (BBP), carbon disulfide, N,N-Dimethylformamide (DMF), and ethylene oxide, formaldehyde, hexachlorobutadiene, 2-methoxy ethanol, 2-ethoxy ethanol, 2-butoxy ethanol, nitrosodimethylamine (NDMA), and phenol. CHEMCAN was also run using emission rates for appropriate region of Canada. The results of the model results will be discussed in light of problem formulation for ecological risk assessment of these priority substances.

  17. Fugacity based modeling for pollutant fate and transport during floods. Preliminary results

    NASA Astrophysics Data System (ADS)

    Deda, M.; Fiorini, M.; Massabo, M.; Rudari, R.

    2010-09-01

    Fugacity based modeling for pollutant fate and transport during floods. Preliminary results Miranda Deda, Mattia Fiorini, Marco Massabò, Roberto Rudari One of the concerns that arises during floods is whether the wide-spreading of chemical contamination is associated with the flooding. Many potential sources of toxics releases during floods exists in cities or rural area; hydrocarbons fuel storage system, distribution facilities, commercial chemical storage, sewerage system are only few examples. When inundated homes and vehicles can also be source of toxics contaminants such as gasoline/diesel, detergents and sewage. Hazardous substances released into the environment are transported and dispersed in complex environmental systems that include air, plant, soil, water and sediment. Effective environmental models demand holistic modelling of the transport and transformation of the materials in the multimedia arena. Among these models, fugacity-based models are distribution based models incorporating all environmental compartments and are based on steady-state fluxes of pollutants across compartment interfaces (Mackay "Multimedia Environmental Models" 2001). They satisfy the primary objective of environmental chemistry which is to forecast the concentrations of pollutants in the environments with respect to space and time variables. Multimedia fugacity based-models has been used to assess contaminant distribution at very different spatial and temporal scales. The applications range from contaminant leaching to groundwater, runoff to surface water, partitioning in lakes and streams, distribution at regional and even global scale. We developped a two-dimensional fugacity based model for fate and transport of chemicals during floods. The model has three modules: the first module estimates toxins emission rates during floods; the second modules is the hydrodynamic model that simulates the water flood and the third module simulate the dynamic distribution of chemicals in the domain during and after the flood. The chemical emissions rate are estimated based on land use and population for three different classes of contaminants; the classes are representative of contaminants released from agricultural sources, sewage disposal and industrial/commercial emissions. The module for source estimation provides the spatial distribution of the potential emissions rates in the area. Emission rates are forcing input for the third simulation module whenever the pertinent area is inundated. The second module simulates the flood dynamics by using a parabolic approximation of the two dimensional shallow water equation. The model is properly developed in order to utilize simplified initial and boundary conditions, such as flooding points and flooding voulmes or satellite derived DTMs and land use . Thanks to its computational efficiency it is possible to run several simulations in order to adjust initial and boundary conditions, which are partly unknown, to satellite delineation of the flooded areas which are used as constrain for the 2D dynamic simulation. In this way the result is a dynamically consistent flooded map enriched with important information about hydraulic forcing parameters (i.e. hydraulic depths, flow velocities at every temporal step). The third module simulates the two-dimensional spatial distribution of pollutants concentration in all the environmental media. The mass balance equation for the chemicals is here derived in term of chemical fugacity instead the classical molar concentration. The advatage of the fugacity instead of concentration is that, since fugacity is continuous among phase interfaces and concentration is not, it renders the analysis of contaminat transfer between the phases easier. The two dimensional - depth averaged- mass balance equation is solved numerically by a finite volume tecnique over a rectangular regular grid. The model has been applied to the inundation of SHKODRA region in Albania during the January- February 2010. This inundation was produced by two rivers: DRINI and BUNA. The flooded area was about 11.400 hectare including the urban and agriculture areas, almost 7.000 persons was evacuates, and 3.600 homes were under the water and the maximum depth of water was about 1 - 4 m. This flood was the largest occurred in recent centuries in Albania, and caused incalculable damage to the population and environment. The preliminary results of the model application to the case study is presented; the model allows to estimate the extend of the contaminated areas and the location of the most probable contaminates zones after the flood; furhermore the model can simulate the time for natural restoration. All this infomartion, that are relevant for the post emergency phase, are higly affected by uncertainty; thus a sensitivity analysis of the model has been carried out. The analysys focused on the sensitivity to emission rates, contaminat source location, dynamic of the water flood and mass transport parameters.

  18. A fugacity based continuous and dynamic fate and transport model for river networks and its application to Altamaha River.

    PubMed

    Kilic, Sinem Gokgoz; Aral, Mustafa M

    2009-06-01

    In this paper, a continuous and dynamic fugacity-based contaminant fate and transport model is developed. The dynamic interactions among all phases in the physical domain are addressed through the use of the fugacity approach instead of the use of concentration as the unknown variable. The full form of Saint Venant equations is used in order to solve for the hydrodynamic conditions in the river network. Then a fugacity-based advection-dispersion equation is modeled to examine the fate and transport of contaminants in the river network for all phases. The fugacity-based, dynamic and continuous contaminant fate and transport model developed here is applied to Altamaha River in Georgia, USA to demonstrate its use in environmental exposure analysis. Altamaha River is the largest river system east of Mississippi which offers habitat for many species, including about 100 rare endangered species, along its 140 mile course. Polychlorinated biphenyls (PCBs), a highly hydrophobic and toxic chemical ubiquitous in nature, and atrazine, the most commonly-used agricultural pesticide are modeled as contaminants in this demonstration. Through this approach the concentration distribution of PCBs and atrazine in the water column of Altamaha River as well as the sediments can be obtained with relative ease, which is an improvement over concentration based analysis of phase distribution of contaminants. PMID:19321188

  19. Utilizing polymer-coated vials to illustrate the fugacity and bioavailability of chlorinated pesticide residues in contaminated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fugacity and bioavailability concepts can be challenging topics to communicate effectively in the timeframe of an academic laboratory course setting. In this experiment, students observe partitioning of the residues over time into an artificial biological matrix. The three compounds utilized are o...

  20. Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Hwa; Urban, Alexander; Ceder, Gerbrand

    2015-09-01

    Transition-metal (TM) oxides play an increasingly important role in technology today, including applications such as catalysis, solar energy harvesting, and energy storage. In many of these applications, the details of their electronic structure near the Fermi level are critically important for their properties. We propose a first-principles-based computational methodology for the accurate prediction of oxygen charge transfer in TM oxides and lithium TM (Li-TM) oxides. To obtain accurate electronic structures, the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional is adopted, and the amount of exact Hartree-Fock exchange (mixing parameter) is adjusted to reproduce reference band gaps. We show that the HSE06 functional with optimal mixing parameter yields not only improved electronic densities of states, but also better energetics (Li-intercalation voltages) for LiCo O2 and LiNi O2 as compared to the generalized gradient approximation (GGA), Hubbard U corrected GGA (GGA +U ), and standard HSE06. We find that the optimal mixing parameters for TM oxides are system specific and correlate with the covalency (ionicity) of the TM species. The strong covalent (ionic) nature of TM-O bonding leads to lower (higher) optimal mixing parameters. We find that optimized HSE06 functionals predict stronger hybridization of the Co 3 d and O 2 p orbitals as compared to GGA, resulting in a greater contribution from oxygen states to charge compensation upon delithiation in LiCo O2 . We also find that the band gaps of Li-TM oxides increase linearly with the mixing parameter, enabling the straightforward determination of optimal mixing parameters based on GGA (α =0.0 ) and HSE06 (α =0.25 ) calculations. Our results also show that G0W0@GGA +U band gaps of TM oxides (M O ,M =Mn ,Co ,Ni ) and LiCo O2 agree well with experimental references, suggesting that G0W0 calculations can be used as a reference for the calibration of the mixing parameter in cases when no experimental band gap has been reported.

  1. Thermodynamics of Si(OH)4 in the vapor phase of water: Henrys and vapor-liquid distribution constants, fugacity and cross virial coefficients

    NASA Astrophysics Data System (ADS)

    Plyasunov, Andrey V.

    2012-01-01

    The fugacity coefficients of Si(OH)4 are evaluated from solubilities of solid phases of SiO2 in the vapor phase of water. The virial equation of state, truncated at the third virial coefficient, is employed to describe the fugacity coefficients of Si(OH)4. The temperature dependencies of the second, B12, and the third, C112, cross virial coefficients for H2O-Si(OH)4 interactions are approximated by empirical relations. It is found that silica-water interactions in the vapor phase are significantly more non-ideal compared to water-water interactions. Knowledge of B12 and C112 allows calculation of solubilities of quartz (Q) and amorphous silica (AS) in steam up to the density of 200 kg m-3 in satisfactory agreement with available data, and should provide reasonable solubility values at temperatures where no experimental results exist. The calculated values of the solubility of Q and AS in saturated vapor up to the critical temperature of water, Tc, are tabulated. The partial molar properties of dilute solutes close to the critical point of water are governed by the Krichevskii parameter, the value of which for Si(OH)4 is evaluated from available data (mainly vapor-liquid distribution constants for silica) to be equal to -187 10 MPa. The knowledge of the thermodynamic properties of Si(OH)4 in the ideal gas state and in the state of the standard solution in liquid water allows calculating Henrys constant, kH, for Si(OH)4 up to 623.15 K at water saturation pressure P1?. The theoretically-based equation, containing the Krichevskii parameter, allows extrapolating kH values all the way toward the critical temperature of water. This, in turn, makes possible calculation of the solubility of quartz and amorphous silica in liquid water at P1? at all temperatures up to Tc. The presented results should be useful for modeling solid-liquid-vapor, solid-vapor and liquid-vapor equilibria in the H2O-SiO2 system at steam densities up to 200 kg m-3.

  2. Investigations of the air/plant partitioning of semivolatile organic compounds using a fugacity meter

    SciTech Connect

    Tolls, J.; McLachlan, M.S.

    1994-12-31

    A solid phase fugacity meter was used to investigate the transport kinetics and steady-state partitioning of semivolatile organic compounds between the gas phase and leaves of Lolium multiflorum (Welsh ray grass). The grass air partition coefficients determined for grass concentrations ranging over several orders of magnitude were in good agreement with each other for each compound. The average partition coefficients correlated well with the octanol/air partition coefficients. The kinetic behavior was described using a two-compartment model consisting of a small surface compartment and a large interior reservoir compartment. The results of this study support the hypothesis that vegetation plays an important role in the fate of lipophilic organic compounds in the terrestrial environment.

  3. Deriving Algorithms for the Remote Sensing of Carbon Dioxide Fugacity at the Ocean Surface

    NASA Astrophysics Data System (ADS)

    Minnett, P. J.; Wickramaratna, K.; Kubat, M.

    2010-12-01

    As concentrations of carbon dioxide in the atmosphere continue to rise, the capacity of the ocean to act as a carbon dioxide sink is of critical importance as it is the major sink of anthropogenic carbon dioxide. Uncertainties in our ability to quantify the role of the oceans in the carbon cycle, especially in computing the gas fluxes between atmosphere and ocean on global scales, leads directly to uncertainty in predicting the response of the of the climate system to increasing levels of carbon dioxide in the atmosphere. Here we report on a study to improve the accuracy of the retrievals of surface fugacity from earth observation satellites. A large data set of in situ measurements from equipment on the Royal Caribbean Cruise Lines ship Explorer of the Seas in the Caribbean Sea and western tropical Atlantic Ocean the relationship between the carbon dioxide concentration and variables measurable from space is explored using advanced computational techniques to improve on prior results derived by linear regression. Using natural selection as a conceptual model, the Genetic Algorithm approach maintains a population of “tentative” solutions that are subjected to “survival of the fittest” tests and to operators that implement mutation and recombination (mutual exchange of the “genetic information”). In our implementation, each specimen in the population represents one formula, expressed by a tree-like data structure. The fitness function that quantifies the individual's survival chances is defined as the mean square error scored by the given formula on the training data. We demonstrate in this case study that not only can the accuracy of satellite retrievals of surface fugacity of carbon dioxide be improved by using algorithms based on the information content of the data sets, but also the regions in which individual algorithms are applicable can also be determined. These regions align with the underlying dynamical oceanographic features. This approach can be applied to measurements taken elsewhere in the oceans, and of variables other than carbon dioxide.

  4. JSC systems using solid ceramic oxygen electrolyte cells to measure oxygen fugacites in gas-mixing systems

    NASA Technical Reports Server (NTRS)

    Williams, R. J.; Mullins, O.

    1981-01-01

    Details are given for the construction and operation of a 101.3 KN/sq meter (1 atmosphere) redox control system. A solid ceramic oxygen electrolyte cell is used to monitor the oxygen fugacity in the furnace. The system consists of a vertical quench gas mixing furnace with heads designed for mounting the electrolyte cell and with facilities for inserting and removing the samples, a simplified version of a gas mixing apparatus, and devices for experiments under controlled rates of change of temperature. A thermogravimetric analysis system employing these techniques of redox control and measurement is also described. The calibration and maintenance of the system are discussed.

  5. Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, HongDi

    2015-12-01

    Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO2 >> CH4 that are indicative of high fO2. In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH4 >> CO2 that are indicative of low fO2. The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21-0.79 wt.%). The δ13CvPDB values of the whole rocks (-23.1 to -25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ13CvPDB values of CH4 (-28.2 to -36.0 ‰) and CO2 (-6.8 to -20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ13CCO2-CH4 values (8.2-25.0 ‰) at elevated temperatures (294-830 °C) suggesting a significant contribution of thermogenic CH4. Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log fO2 > FMQ + 1 in the magma stage, to log fO2 < FMQ as a consequence of country rocks assimilation-contamination, to log fO2 > FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its fO2 such that exsolved fluids contained abundant CH4 and deposited a reduced assemblage of minerals.

  6. Effect of Cooling Rate and Oxygen Fugacity on the Crystallization of the Queen Alexandra Range 94201 Martian Melt Composition

    NASA Technical Reports Server (NTRS)

    Koizumi, E.; Mikouchi, T.; McKay, G.; Schwandt, C.; Monkawa, A.; Miyamoto, M.

    2002-01-01

    Although many basaltic shergottites have been recently found in north African deserts, QUE94201 basaltic shergottite (QUE) is still important because of its particular mineralogical and petrological features. This meteorite is thought to represent its parent melt composition [1 -3] and to crystallize under most reduced condition in this group [1,4]. We performed experimental study by using the synthetic glass that has the same composition as the bulk of QUE. After homogenization for 48 hours at 1300 C, isothermal and cooling experiments were done under various conditions (e.g. temperature, cooling rates, and redox states). Our goals are (1) to verify that QUE really represents its parent melt composition, (2) to estimate a cooling rate of this meteorite, (3) to clarify the crystallization sequences of present minerals, and (4) to verity that this meteorite really crystallized under reduced condition.

  7. Experimental determination of trace element partition coefficients between spinel and silicate melt: the influence of chemical composition and oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Wijbrans, C. H.; Klemme, S.; Berndt, J.; Vollmer, C.

    2015-04-01

    We present new experimentally determined trace element partition coefficients between spinel and silicate melt. The experiments were performed at atmospheric pressure and at temperatures between 1220 and 1450 °C. To study the effect of redox conditions on trace element partitioning, we performed experiments under different redox conditions, with fO2 ranging from log -12 to log -0.7. The effect of different spinel compositions is also investigated. Our results show that spinel of all compositions readily incorporates the transition metals Ni, Co and Ga and the corresponding partition coefficients are >1. D Ni,Co,Ga are not significantly affected by changing melt composition, crystal composition or redox conditions. However, the multivalent trace elements V and Mo show a strong effect of redox conditions on their partitioning behavior with D V and D Mo highest at very reducing conditions and considerably lower at more oxidizing conditions. Partition coefficients for the high field strength elements Ti, Zr, Hf, Nb, and Ta and the elements Sc and Lu strongly depend on crystal composition, with D Ti and D Sc >1 for very Fe3+- or Cr-rich (and Al-poor) spinels, but one to two orders of magnitude lower in systems with Al-rich spinels. We present some examples on how our data may be used to reconstruct redox conditions of spinel formation. We also present some results on the partitioning of Pt and Rh between spinel and melt. D Rh depends strongly on redox conditions, while D Pt is not significantly affected.

  8. Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, HongDi

    2015-03-01

    Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO2 >> CH4 that are indicative of high fO2. In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH4 >> CO2 that are indicative of low fO2. The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21-0.79 wt.%). The ?13CvPDB values of the whole rocks (-23.1 to -25.8 ) in the wall rocks suggest a sedimentary organic carbon source. The ?13CvPDB values of CH4 (-28.2 to -36.0 ) and CO2 (-6.8 to -20.0 ) in fluid inclusions require an organic source of external carbon and equilibration of their ?13CCO2-CH4 values (8.2-25.0 ) at elevated temperatures (294-830 C) suggesting a significant contribution of thermogenic CH4. Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from logfO2 > FMQ + 1 in the magma stage, to logfO2 < FMQ as a consequence of country rocks assimilation-contamination, to logfO2 > FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its fO2 such that exsolved fluids contained abundant CH4 and deposited a reduced assemblage of minerals.

  9. Chromium Oxidation State in Planetary Basalts: Oxygen Fugacity Indicator and Critical Variable for Cr-Spinel Stability

    NASA Technical Reports Server (NTRS)

    Bell, A. S.; Burger, P. V.; Le, Loan; Papike, J. J.; Jone, J.; Shearer, C. K.

    2014-01-01

    Cr is a ubiquitous and relatively abundant minor element in basaltic, planetary magmas. At the reduced oxidation states (

  10. Valence State Partitioning of Cr and V Between Pyroxene - Melt: Estimates of Oxygen Fugacity for Martian Basalt QUE 94201

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Papike, J. J.; Shearer, C. K.; McKay, G.; Le, L.; Burger, P.

    2007-01-01

    Several studies, using different oxybarometers, have suggested that the variation of fO2 in martian basalts spans about 3 log units from approx. IW-1 to IW+2. The relatively oxidized basalts (e.g., pyroxene-phyric Shergotty) are enriched in incompatible elements, while the relatively reduced basalts (e.g., olivine-phyric Y980459) are depleted in incompatible elements. A popular interpretation of the above observations is that the martian mantle contains two reservoirs; 1) oxidized and enriched, and 2) reduced and depleted. The basalts are thus thought to represent mixing between these two reservoirs. Recently, Shearer et al. determined the fO2 of primitive olivine-phyric basalt Y980459 to be IW+0.9 using the partitioning of V between olivine and melt. In applying this technique to other basalts, Shearer et al. concluded that the martian mantle shergottite source was depleted and varied only slightly in fO2 (IW to IW+1). Thus the more oxidized, enriched basalts had assimilated a crustal component on their path to the martian surface. In this study we attempt to address the above debate on martian mantle fO2 using the partitioning of Cr and V into pyroxene in pyroxene-phyric basalt QUE 94201.

  11. Siderophile Trace Elements in ALH 84001 and Other Achondrites: A Temporal Increase of Oxygen Fugacity in the Martian Mantle?

    NASA Astrophysics Data System (ADS)

    Warren, P. H.; Kallemeyn, G. W.

    1995-09-01

    We have employed neutron activation, including radiochemical NAA, to investigate SNC/martian meteorites ALH 77005, ALH 84001 and LEW 88516, along with 15 eucrites. Our data for 10 manifestly monomict eucrites confirm previous indications [e.g., 1] that compositionally pristine eucrites are generally extremely siderophile-poor, although for several of the most extremely siderophile-depleted eucrites we find slight enhancements in Re/Os (Figure). Our RNAA data are the first for highly siderophile elements in polymict eucrites, and show a broad similarity with lunar polymict breccias. In general, our data (e.g., Ga/Al = 4.3x10^-4) confirm SNC affinity [2] for ALH84001. However, siderophile concentrations are, by SNC standards, extraordinarily low: Ni = 5.8 micrograms/g and (in pg/g) Au = 9.4, Ir = 80, Os = 10.2, and Re = 1.66+/-0.25(1-s); Ge (1080 ng/g) is typical for SNCs. Like terrestrial basalts [1], other SNCs have relatively constant Re, ranging from 28 (Lafayette [3]) to 102 pg/g (ALH 77005) among seven analyzed meteorites of various types, in which Os ranges from <2.3 to 4400 pg/g. A plot of Os vs. Re/Os (Figure) shows that ALH 84001 has 23x lower Re than expected for a young SNC of similar Os content. On Earth, Re generally behaves as a mildly incompatible element, whereas Os behaves as a strongly compatible element. A plausible explanation for this divergence [1] is that Re is more prone to enter higher oxidation states, such as Re^4+, which would tend to behave like W^4+. This model is consistent with the Os-like behavior of Re in the highly reduced lunar and eucritic environments, and Birck and Allegre [1] interpret the typically intermediate Re contents of SNCs as suggestive of origin from a mantle source region at intermediate fO(sub)2 (they also considered, but rejected, an implausible "contamination" model). Extended to ALH 84001, this model implies that the mantle source was at a substantially (roughly 1.7 log(sub)10 units) lower fO2 than the analogous sources of the younger SNCs. Conceivably ALH84001 siderophiles were altered by metasomatic processes [cf. 2]. However, near-surface processing on a heavily cratered body would generally tend to add siderophile material, rather than remove it. Also, Treiman [4] argues that alteration took place strictly at low temperatures. Another possible objection is that unlike eucrites and lunar basalts, ALH84001 is rich in Fe^3+ [2]. However, if the parent magma encountered even a small proportion of water in the upper crust of Mars, the final fO(sub)2 would be substantially raised. Many authors have proposed that the terrestrial planets in general, and Mars in particular, were originally very dry, implying low fO(sub)2, and that only late in accretion history did substantial proportions of oxidizing volatiles accrete as a "veneer". Possibly when ALH84001 formed, 4.50+/-0.13 Ga [5], oxidation had not yet altered the primordial, low fO(sub)2 nature of its mantle source region. It is also conceivable that large portions of the martian mantle never reached fO(sub)2 as high as inferred for the younger SNCs (possibly derived from a single crater). In any case, the siderophile-depletion pattern of ALH 84001 is unique among SNCs. References: [1] Birck J. L. and All gre C. J. (1994) EPSL, 124, 139-148. [2] Mittlefehldt D. W. (1994) Meteoritics, 29, 214-221. [3] Treiman A. H. et al. (1986) GCA, 50, 1071-1091. [4] Treiman A. H. (1995) Meteoritics, 30, 294-302. [5] Nyquist L. E. et al. (1995) LPS, XXVI, 1065-1066.

  12. Explosive volcanism and the graphite-oxygen fugacity buffer on the parent asteroid(s) of the ureilite meteorites

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Kallemeyn, Gregory W.

    1992-01-01

    A new model of the production of the uniformly low plagioclase and Al contents of ureilites is proposed. It is argued that those contents are consequences of widespread explosive volcanism during the evolution of the parent asteroid(s). It is noted that the great abundance of graphite on the ureilite asteroid(s) made them ideal sites for explosive volcanism driven by oxidation of graphite in partial melts ascending within the asteroid(s).

  13. The Effects of Oxygen Fugacity on the Crystallization Sequence and Cr Partitioning of an Analog Y-98 Liquid

    NASA Technical Reports Server (NTRS)

    Bell, A. S.; Burger, P. V.; Le, Loan; Papike, J. J.; Jones, J.; Shearer, C. K.

    2013-01-01

    Interpreting the relationship between "enriched" olivine-phyric shergottites (e.g. NWA 1068/1110) and the "enriched" pyroxene-plagioclase shergottites (e.g. Shergotty, Los Angeles) is problematic. Symes et al. [1] and Shearer et al. [2]) proposed that the basaltic magma that crystallized to produce olivine-phyric shergottite NWA 1068/1110 could produce pyroxene-plagioclase shergottites with additional fractional crystallization. However, additional observations indicate that the relationship among the enriched shergottites may be more complex [1-3]. For example, Herd [3] concluded that some portion of the olivine megacrysts in this meteorite was xenocrystic in origin, seemingly derived from more reduced basaltic liquids. This conclusion may imply that a variety of complex processes such as magma mixing, entrainment, and assimilation may play important roles in the petrologic history of these meteorites. It is therefore possible that these processes have obscured the petrogenetic linkages between the enriched olivine-phyric shergottites and the pyroxene-plagioclase shergottites. As a first order step in attempting to unravel these petrologic complexities, this study focuses upon exploring the effect of fO2 on the crystallization history for an analog primitive shergottite liquid composition (Y98). Results from this work will provide a basis for reconstructing the record of fO2 in shergottites, its effect on both mineral chemistries and valence state partitioning, and a means for examining the role of crystallization on the petrologic linkages between olivine-phyric and pyroxene-plagioclase shergottites. A companion abstract [4] explores the behavior of V over this range of fO2.

  14. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, II

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Special Session: Oxygen in the Solar System, II, included the following reports:Evolution of Oxygen Isotopes in the Solar Nebula; Disequilibrium Melting of Refractory Inclusions: A Mechanism for High-Temperature Oxygen; Isotope Exchange in the Solar Nebula; Oxygen Isotopic Compositions of the Al-rich Chondrules in the CR Carbonaceous Chondrites: Evidence for a Genetic Link to Ca-Al-rich Inclusions and for Oxygen Isotope Exchange During Chondrule Melting; Nebular Formation of Fayalitic Olivine: Ineffectiveness of Dust Enrichment; Water in Terrestrial Planets: Always an Oxidant?; Oxygen Barometry of Basaltic Glasses Based on Vanadium Valence Determination Using Synchrotron MicroXANES; A New Oxygen Barometer for Solar System Basaltic Glasses Based on Vanadium Valence; The Relationship Between Clinopyroxene Fe3+ Content and Oxygen Fugacity ; and Olivine-Silicate Melt Partitioning of Iridium.

  15. Applying the Ce-in-zircon oxygen geobarometer to diverse silicic magmatic systems

    NASA Astrophysics Data System (ADS)

    Claiborne, L. L.; Miller, C. F.

    2012-12-01

    Zircon provides information on age, temperature, and composition of the magma from which it grew. In systems such as Mount St. Helens, where zircon is not coeval with the rest of the crystal cargo, it provides the only accessible record of the extended history of the magmatic system, including cycles of intrusion, crystallization and rejuvenation beneath an active volcano (Claiborne et al., 2010). The rare earth elements, which are present in measureable quantities in zircon, provide information about the composition of the magma from which zircon grew. Unique among the generally trivalent rare earth elements, cerium can exist as either trivalent or tetravalent, depending on the oxidation state of the magma. The tetravalent ion is highly compatible in zircon, in the site that usually hosts tetravalent zirconium, and so the amount of Cerium in zircon relative (relative to what would be expected of trivalent Ce) depends the oxidation state of the magma from which it grew. Trail et al. (2011) proposed a calibration based on experimental data that uses the Ce anomaly in zircon as a direct proxy for magma oxidation (fugacity), describing the relationship between Ce in zircon and magma oxygen fugacity as ln(Ce/Ce*)D = (0.1156±0.0050)xln(fO2)+(13860±708)/T-(6.125±0.484). For systems like Mount St. Helens, where the major minerals record only events in the hundreds to thousands of years leading to eruption, (including the Fe-Ti oxides traditionally relied upon for records of oxidation state of the magmas), this presents a novel approach for understanding more extended histories of oxidation of magmas in the tens and hundreds of thousands of years of magmatism at a volcanic center. This calibration also promises to help us better constrain conditions of crystallization in intrusive portions of volcanic systems, as well as plutonic bodes. We apply this new oxygen geobarometer to natural volcanic and plutonic zircons from a variety of tectonic settings, and compare to existing indicators of oxidation state for each system, as available. Zircons included this study are from Mount St. Helens (ΔNNO +1.5 log units; Smith, 1984), the Peach Spring Tuff and Spirit Mountain Batholith (sphene-bearing, silicic, Miocene-aged rocks from the Colorado River Extensional Corridor), Alid Volcano in Eritrea, and rhyolites and granites from Iceland. Median log fO2 for these systems, calculated from the Cerium anomaly in zircons following Trail et al. (2011) using temperatures from Ti-in-zircon thermometry (Ferry and Watson, 2007) are as follows: Alid -12 bars (ΔNNO +3 log units) at 750 degrees C; Iceland -11 bars (ΔNNO +3 log units) at 800 degrees C; Mount St. Helens -8.6 bars (ΔNNO +6 log units) at 750 degrees C; Peach Spring Tuff -3.4 (ΔNNO +10 log units) at 830 degrees C. While ubiquitous sphene in the Spirit Mountain granites suggest relatively high fO2, calculations based on the cerium anomaly in zircon suggest median log fO2 of >0 at 770 degrees C, which is certainly erroneous. While median values for our natural zircons are, for the most part, above expected fugacities for each system when compared with other indicators, and extreme values for each system are almost certainly erroneous, many are within expected values for terrestrial magmas and they vary relative to one another as might be expected given the magma types and tectonic settings.

  16. The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.

    2015-07-01

    Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1 1 grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1 1 grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.

  17. Oxygen Therapy

    MedlinePLUS

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  18. Exploring haem-based alternatives for oxygen reduction catalysis in fuel cellsa status report of our first principles calculations

    NASA Astrophysics Data System (ADS)

    Dy, E. S.; Roman, T. A.; Kubota, Y.; Miyamoto, K.; Kasai, H.

    2007-11-01

    For hydrogen fuel cells to become commercially viable, an alternative catalyst to platinum surfaces that is both efficient and affordable must be discovered. We consider haem and haem derivatives as potentials substitutes. In this paper, we discuss the oxygen reduction reaction on both the platinum surface and on haem. We then introduce our suggestions based on density-functional studies on how to improve haem's oxygen-reduction capabilities, which can be summarized as follows: inducing the singlet state, inducing side-on interaction, mimicking cytochrome c oxidase by adding a copper-imidazole complex, using platinum deposited on tin porphyrin instead of haem, and using oxomolybdenum porphyrin instead of haem. We shall focus on the last three methods because of their experimental practicability.

  19. Oxygen Defects in Phosphorene

    NASA Astrophysics Data System (ADS)

    Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Castro Neto, A. H.

    2015-01-01

    Surface reactions with oxygen are a fundamental cause of the degradation of phosphorene. Using first-principles calculations, we show that for each oxygen atom adsorbed onto phosphorene there is an energy release of about 2 eV. Although the most stable oxygen adsorbed forms are electrically inactive and lead only to minor distortions of the lattice, there are low energy metastable forms which introduce deep donor and/or acceptor levels in the gap. We also propose a mechanism for phosphorene oxidation involving reactive dangling oxygen atoms and we suggest that dangling oxygen atoms increase the hydrophilicity of phosphorene.

  20. Oxygen defects in phosphorene.

    PubMed

    Ziletti, A; Carvalho, A; Campbell, D K; Coker, D F; Castro Neto, A H

    2015-01-30

    Surface reactions with oxygen are a fundamental cause of the degradation of phosphorene. Using first-principles calculations, we show that for each oxygen atom adsorbed onto phosphorene there is an energy release of about 2eV. Although the most stable oxygen adsorbed forms are electrically inactive and lead only to minor distortions of the lattice, there are low energy metastable forms which introduce deep donor and/or acceptor levels in the gap. We also propose a mechanism for phosphorene oxidation involving reactive dangling oxygen atoms and we suggest that dangling oxygen atoms increase the hydrophilicity of phosphorene. PMID:25679901

  1. First principles calculation on the magnetic, optical properties and oxygen vacancy effect of CexY3-xFe5O12

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Xie, Jianliang; Deng, Longjiang; Bi, Lei

    2015-02-01

    We report a first principles study on the magnetic and optical properties of Ce substituted yttrium iron garnet (CexY3-xFe5O12) (Ce:YIG) (x = 0.125, 0.25, 0.5, and 1.0). Using density functional theory with Hubbard-U corrections, we demonstrate that Ce3+-Fe3+(tetrahedral) charge transfer is the dominating mechanism of enhanced near infrared absorption in Ce:YIG. In particular, oxygen vacancies are found to be able to stabilize Ce3+ from converting to Ce4+, at the same time reduce two neighboring Fe3+ to Fe2+ which occupy both the octahedral and tetrahedral sites. The formation enthalpy of Ce4+-Fe2+ state is strongly dependent on the distance from the Ce ion to the oxygen vacancy, which is closely related to the local lattice distortion around the Ce ion. This result provides theoretical insight for developing high figure of merit magneto-optical materials for nonreciprocal photonic applications.

  2. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3

    SciTech Connect

    Wolery, T.J.

    1992-09-14

    EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desired electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.

  3. A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength.

    PubMed

    Hales, Patrick W; Kirkham, Fenella J; Clark, Christopher A

    2016-02-01

    Many MRI techniques require prior knowledge of the T1-relaxation time of blood (T1bl). An assumed/fixed value is often used; however, T1bl is sensitive to magnetic field (B0), haematocrit (Hct), and oxygen saturation (Y). We aimed to combine data from previous invitro measurements into a mathematical model, to estimate T1bl as a function of B0, Hct, and Y. The model was shown to predict T1bl from invivo studies with a good accuracy (87?ms). This model allows for improved estimation of T1bl between 1.5-7.0?T while accounting for variations in Hct and Y, leading to improved accuracy of MRI-derived perfusion measurements. PMID:26661147

  4. Oxygen Therapy

    MedlinePLUS

    ... their chronic illness will need to continue their oxygen therapy. Some patients may need to use extra oxygen ... condition improves. You should never reduce or stop oxygen therapy on your own. Talk with your health care ...

  5. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  6. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  7. Simplified Two-Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydorgen/Oxygen

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.

  8. Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Molnar, Melissa

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.

  9. Evaluating potential non-point source loading of PAHs from contaminated soils: a fugacity-based modeling approach.

    PubMed

    Luo, Xiaolin; Zheng, Yi; Lin, Zhongrong; Wu, Bin; Han, Feng; Tian, Yong; Zhang, Wei; Wang, Xuejun

    2015-01-01

    Soils contaminated by Polycyclic Aromatic Hydrocarbons (PAHs) are subject to significant non-point source (NPS) pollution during rainfall events. Recent studies revealed that the classic enrichment ratio (ER) approach may not be applicable to PAHs. This study developed a model to estimate the ER of PAHs which innovatively applies the fugacity concept. The ER model has been validated with experimental data, which suggested that the transport of PAHs not only depends on their physicochemical properties, but on the sediment composition and how the composition evolves during the event. The modeling uncertainty was systematically examined, and found to be highly compound-dependent. Based on the ER model, a strategy was proposed to practically evaluate the potential NPS loading of PAHs in watersheds with heterogeneous soils. The study results have important implications to modeling and managing the NPS pollution of PAHs (or other chemicals alike) at a watershed scale. PMID:25282126

  10. SIGMELTS: A Web-portal for Electrical Conductivity Calculations in Geosciences

    NASA Astrophysics Data System (ADS)

    Le Trong, E.; Pommier, A.

    2010-12-01

    We present a freely available and easy-to-use web application called SIGMELTS allowing the calculation of the electrical conductivity of geomaterials at relevant conditions for the Earths crust and mantle. By compiling previous results of electrical measurements in laboratory, this software enables to discriminate between the effect of different parameters on the bulk conductivity of silicate melts, carbonatites, fluids, minerals and mantle materials, such as the temperature (T), the pressure (P), the composition, the water content, the oxygen fugacity (fO2) and the crystal content. Different existing geometrical models are proposed to calculate the bulk conductivity of a two-phase mixture. Based on the electrical conductivity value of a mantle anomaly, an application has also been developed to determine the corresponding melt fraction at defined conditions (T, P, composition). This web application aims at improving the accessibility to laboratory data in order to precise the interpretation of MT profiles. Although there are examples of where the laboratory data have been used to interpret field data, there are also many instances where there are disconnects between those interpreting field MT data and the laboratory results. SIGMELTS also underlines that new electrical measurements in laboratory are needed to enlarge the present electrical database, particularly at high pressure conditions. An illustration of the use of SIGMELTS will be presented, in which calculations are applied to subduction zone related volcanic zone in the Central Andes. Along with petrological considerations, field and laboratory electrical data allow discrimination between the different hypotheses regarding the formation and rise from depth of melts and fluids and to quantify their storage conditions.

  11. Mantle Water Fugacity is the Dominant Factor in Total Strength and Stability/Mobility of Continental Lithosphere

    NASA Astrophysics Data System (ADS)

    Lowry, A. R.; Schutt, D.; Perez-Gussinye, M.; Ma, X.; Berry, M. A.; Ravat, D.

    2014-12-01

    More than half a century after the plate tectonic revolution, the physical mechanism that distinguishes tectonically active plate boundaries from stable continental interiors remains nebulous. Rock flow strength and mass density variations both contribute to stress, so both are certain to be important, but these depend ambiguously on rock lithology, temperature, and concentrations of water. High seismic velocities observed to great depths often are interpreted as evidence that geothermal variations dominate patterns of lithospheric strength. However, mantle seismic velocities are sensitive to flow-induced anelastic attenuation as well as to temperature. A more ductile mantle will propagate waves more slowly regardless of whether low viscosity is a consequence of high temperature or of high water fugacity, complicating interpretations of seismic velocity in the absence of other constraints. Here we use EarthScope's USArray seismic data to independently constrain crustal thickness, bulk crustal lithology and Moho temperature of the lithosphere, and magnetic bottom measurements to refine the crustal geotherm. Strength models based on these quantities are then compared to integral measurements of western U.S. isostatic strength expressed as effective elastic thickness, Te. We show that mantle water is the primary factor that distinguishes stable lithosphere of North America's cratonic interior from actively deforming zones in the western U.S. Cordillera. Seismic and magnetic constraints on temperature and lithology variations can be reconciled with integral strength measurements only if water fugacity within the lithospheric column is permitted to vary from near-saturation in deforming, mobile lithosphere to nearly completely dry in the stable cratonic interior.

  12. Escape of Oxygen from Mars: Monte Carlo Calculations Using Energy Dependent Cross Sections and including both O(3P) and O(1D) as energetic O atoms

    NASA Astrophysics Data System (ADS)

    Fox, J. L.; Hac, A. B.

    2013-12-01

    We report here escape fluxes of O from Mars, computed using a one-dimensional Monte Carlo code that has been described previously. We follow the energetic O atoms from their altitude of origin from collision to collision in spherical geometry until the O atoms reach the top altitude of the atmosphere, with an energy that is equal to or greater than the escape energy or their energy decreases below an energy that is less than the escape energy by an amount that will be determined in this research. The source of energetic O atoms is assumed to be dissociative recombination of O2+, which produces energetic O(3P) and O(1D). We use energy-dependent elastic cross sections for the interactions of O(3P) and O(1D) with 12 background species. We include in the calculations the excitation of O(3P) to the O(1D) state by collisions with energetic O atoms, and quenching of O(1D) by background O atoms; the latter two processes are inelastic, and take energy out of the system, or add it to the system, respectively.

  13. Structure of the Active Platinum Cluster and Reaction Pathway of the Selective Synthesis of Phenol from Benzene and Oxygen Regulated with Ammonia on a Platinum Cluster/?-Zeolite Catalyst Studied by DFT Calculations.

    PubMed

    Sasaki, Takehiko; Tada, Mizuki; Wang, Linsheng; Malwadkar, Sachin; Iwasawa, Yasuhiro

    2015-10-01

    DFT calculations were used to investigate the structure of the active Pt cluster and the catalytic reaction pathway for the selective synthesis of phenol from benzene and molecular oxygen regulated with ammonia on a Pt cluster/?-zeolite catalyst that was reported to be active for the selective hydroxylation of benzene only in the coexistence of ammonia. It was found that Pt5-Pt6 clusters were active for the direct synthesis of phenol, and they provided the reaction sites for bond rearrangements among ammonia, oxygen, and benzene; furthermore, the coexistence of ammonia was crucial for the selective oxidation of benzene to phenol, as it suppressed benzene combustion to CO2 and promoted the selective synthesis of phenol. It was further found that water coexisting in the system also played a significant role in desorbing phenol on the Pt cluster surface, which resulted in promotion of the overall selective synthesis of phenol. The energy diagram for the reaction sequences and the structures of the transition states were obtained, which indicated the origin of the Pt/? catalysis. PMID:26179978

  14. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  15. Oxygen safety

    MedlinePLUS

    ... oven. Watch out for splattering grease. It can catch fire. Keep children with oxygen away from the ... freely under the bed. Keep liquids that may catch fire away from your oxygen. This includes cleaning ...

  16. [Apneic oxygenation].

    PubMed

    Alekseev, A V; Vyzhigina, M A; Parshin, V D; Fedorov, D S

    2013-01-01

    Recent technological advances in thoracic and tracheal surgery make the anaesthesiologist use different respiratory techniques during the operation. Apneic oxygenation is a one of alternative techniques. This method is relatively easy in use, does not require special expensive equipment and is the only possible technique in several clinical situations when other respiratory methods are undesirable or cannot be used. However there is no enough information about apneic oxygenation in Russian. This article reviews publications about apneic oxygenation. The review deals with experiments on diffusion respiration in animals, physiological changes during apneic oxygenation in man and defines clinical cases when apneic oxygenation can be used. PMID:24624863

  17. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  18. Oxygen analyzer

    NASA Astrophysics Data System (ADS)

    Benner, W. H.

    1984-05-01

    An oxygen analyzer is described which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135 C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135 C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  19. A New Oxygen Barometer for Solar System Basaltic Glasses Based on Vanadium Valence

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Sutton, S. R.; Papike, S. R.; Delaney, J. S.; Shearer, C. K.; Newville, M.; Eng, P.; Rivers, M.; Dyar, M. D.

    2004-01-01

    The determination of oxidation conditions for basaltic magmas derived by the melting of planetary mantles is critical to our understanding of the nature and evolution of planetary interiors. Yet, these determinations are compromised in terrestrial and especially extraterrestrial basalts by our analytical and computational methods for estimating oxygen fugacity (fO2). For example, mineralogical barometers (1, 2) can be reduced in effectiveness by subsolidus re-equilibration of mineral assemblages, inversion of mineralogical data to melt characteristics, and deviations of the natural mineral compositions from ideal thermodynamic parameters.

  20. In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil.

    PubMed

    Juhasz, Albert L; Weber, John; Stevenson, Gavin; Slee, Daniel; Gancarz, Dorota; Rofe, Allan; Smith, Euan

    2014-03-01

    In this study, PAH bioavailability was assessed in creosote-contaminated soil following bioremediation in order to determine potential human health exposure to residual PAHs from incidental soil ingestion. Following 1,000 days of enhanced natural attenuation (ENA), a residual PAH concentration of 871 8 mg kg(-1) (?16 USEPA priority PAHs in the <250 ?m soil particle size fraction) was present in the soil. However, when bioavailability was assessed to elucidate potential human exposure using an in vivo mouse model, the upper-bound estimates of PAH absolute bioavailability were in excess of 65% irrespective of the molecular weight of the PAH. These results indicate that a significant proportion of the residual PAH fraction following ENA may be available for absorption following soil ingestion. In contrast, when PAH bioavailability was estimated/predicted using an in vitro surrogate assay (FOREhST assay) and fugacity modelling, PAH bioavailability was up to 2000 times lower compared to measured in vivo values depending on the methodology used. PMID:24368196

  1. Response of sea surface fugacity of CO2 to the SAM shift south of Tasmania: Regional differences

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Gao, Libao; Cai, Wei-Jun; Yu, Weidong; Wei, Meng

    2015-05-01

    Using observational data collected south of Tasmania during 14 austral summer cruises during 1993-2011, we examined the response of sea surface fugacity of carbon dioxide (fCO2) to the Southern Annular Mode (SAM) shift, which occurred around 2000. In the southern part of the Southern Ocean (SO) or the Polar Zone (PZ) and the Polar Frontal Zone (PFZ), fCO2 increased faster at the sea surface than in the atmosphere before the SAM shift, but not after the shift. In the northern part of the SO or the Subantarctic Zone (SAZ), however, surface fCO2 increased faster than atmospheric fCO2 both before and after the shift. The SAM shift had an important influence on the surface fCO2 trend in the PZ and PFZ but not in the SAZ, which we attribute to differences in regional oceanographic processes (upwelling versus nonupwelling). The SAM shift may have reversed the negative trend of SO CO2 uptake.

  2. Spatial Distribution, Air-Water Fugacity Ratios and Source Apportionment of Polychlorinated Biphenyls in the Lower Great Lakes Basin.

    PubMed

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2015-12-01

    Polychlorinated biphenyls (PCBs) continue to be contaminants of concern across the Great Lakes. It is unclear whether current concentrations are driven by ongoing primary emissions from their original uses, or whether ambient PCBs are dominated by their environmental cycling. Freely dissolved PCBs in air and water were measured using polyethylene passive samplers across Lakes Erie and Ontario during summer and fall, 2011, to investigate their spatial distribution, determine and apportion their sources and to asses their air-water exchange gradients. Average gaseous and freely dissolved ?29 PCB concentrations ranged from 5.0 to 160 pg/m(3) and 2.0 to 55 pg/L respectively. Gaseous concentrations were significantly correlated (R(2) = 0.80) with the urban area within a 3-20 km radius. Fugacity ratios indicated that the majority of PCBs are volatilizing from the water thus acting as a secondary source for the atmosphere. Dissolved PCBs were probably linked to PCB emissions from contaminated sites and areas of concern. Positive matrix factorization indicated that although volatilized Aroclors (gaseous PCBs) and unaltered Aroclors (dissolved PCBs) dominate in some samples, ongoing non-Aroclor sources such as paints/pigments (PCB 11) and coal/wood combustion showed significant contributions across the lower Great Lakes. Accordingly, control strategies should give further attention to PCBs emitted from current use sources. PMID:25915412

  3. Transport properties of oxygen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.

    1983-01-01

    Tables of viscosity, thermal conductivity, and thermal diffusivity of oxygen as a function of temperature and pressure from the triple point to 320 K and at pressures to 100 MPa are presented. Auxiliary tables in engineering units are also given. Viscosity and thermal conductivity are calculated from published correlations. Density and specific heat at constant pressure, required to calculate thermal diffusivity, are obtained from an equation of state. The Prandtl number can be obtained quite easily from the values tabulated.

  4. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  5. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that

  6. Oxygen and iron production by electrolytic smelting of lunar soil

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    1989-01-01

    Previous work has shown that Fe(sup 0) and O2 can be derived by electrolysis from silicate smelt of a composition typical of lunar soils (Lindstrom and Haskin 1979). In the present study, the goal is to refine further the conditions necessary to optimize production and to determine efficiencies of production (how much product is derived for a given current) and purity of products. These depend on several factors, including potential imposed between electrodes, configuration and surface area of the electrodes, composition of the electrolyzed silicate melt, and oxygen fugacity. Experiments were designed to measure the dependence on these variables of three parameters that must be known before production by electrolysis can be optimized. These parameters are: Limiting Current; Actual Current; and Efficiencies of Production.

  7. Influence of oxygen vacancy on the electronic structure of CaCu3Ti4O12 and its deep-level vacancy trap states by first-principle calculation

    NASA Astrophysics Data System (ADS)

    Xiao, H. B.; Yang, C. P.; Huang, C.; Xu, L. F.; Shi, D. W.; Marchenkov, V. V.; Medvedeva, I. V.; Brner, K.

    2012-03-01

    The electronic structure, formation energy, and transition energy levels of intrinsic defects have been studied using the density-functional method within the generalized gradient approximation for neutral and charged oxygen vacancy in CaCu3Ti4O12 (CCTO). It is found that oxygen vacancies with different charge states can be formed in CCTO under both oxygen-rich and poor conditions for nonequilibrium and higher-energy sintering processes; especially, a lower formation energy is obtained for poor oxygen environment. The charge transition level (0/1+) of the oxygen vacancy in CCTO is located at 0.53 eV below the conduction-band edge. The (1+/2+) transition occurs at 1.06 eV below the conduction-band edge. Oxygen vacancies of Vo1+ and Vo2+ are positive stable charge states in most gap regions and can act as a moderately deep donor for Vo1+ and a borderline deep for Vo2+, respectively. The polarization and dielectric constant are considerably enhanced by oxygen vacancy dipoles, due to the off-center Ti and Cu ions in CCTO.

  8. Feldspathic granulite 79215 - Limitations on T-fo2 conditions and time of metamorphism. [temperature-oxygen fugacity relationship in annealed lunar polymict beccia

    NASA Technical Reports Server (NTRS)

    Mcgee, J. J.; Bence, A. E.; Eichhorn, G.; Schaeffer, O. A.

    1978-01-01

    Feldspathic granulite 79215, an annealed polymict breccia which has a bulk composition between anorthositic gabbro and gabbroic anorthosite, contains numerous oxide complexes in the matrix. An Ar-39-Ar-40 stepwise heating experiment gives a well-defined plateau corresponding to an age of 4.03 + or - 0.02 AE. The polmict character of this breccia and the variability of the complexes suggest that they formed as a consequence of reactions between spinel-rich clasts and matrix under the high-T low-P conditions of an ejecta blanket. The duration of annealing is estimated to have been less than 10 million yr; the absence of a KREEP component may indicate an inhomogeneous distribution of this component at the lunar surface at 4.0 AE.

  9. Relationships between oxygen fugacity and metasomatism in the Kaapvaal subcratonic mantle, represented by garnet peridotite xenoliths in the Wesselton kimberlite, South Africa

    NASA Astrophysics Data System (ADS)

    Hanger, Brendan J.; Yaxley, Gregory M.; Berry, Andrew J.; Kamenetsky, Vadim S.

    2015-01-01

    A suite of 12 peridotite xenoliths from the Wesselton kimberlite was studied and found to sample the subcratonic lithospheric mantle over a pressure range from 3.6 to 4.7 GPa and a temperature range of 880 to 1120 °C. Major, minor and trace element compositions indicate that both metasomatised and un-metasomatised samples are present over this pressure range. Fe3 +/∑ Fe in garnet from four xenoliths was determined using Fe K-edge XANES spectroscopy, enabling the redox state of the sampled subcratonic mantle to be determined for three garnet bearing samples. ΔlogfO2[FMQ] varied from 0 to - 3.3 over the sampled pressure interval, with the un-metasomatised samples falling within the global trend of decreasing ΔlogfO2[FMQ] with increasing depth. Superimposed on this was an oxidation trend, at higher pressures (≥ 4.5 GPa), with ΔlogfO2 increasing by 1.5 to 2 units in the metasomatically enriched samples, indicating a clear link between metasomatism and oxidation. One potential source of this oxidation is a carbonated silicate melt, which will increase in carbonate content as ΔlogfO2 increases. Mantle minerals affected by such a melt have the potential to shift from the field of diamond stability into that of carbonate, threatening the stability of diamond.

  10. Oxygen Fugacity of the Upper Mantle of Mars. Evidence from the Partitioning Behavior of Vanadium in Y980459 (Y98) and other Olivine-Phyric Shergottites

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; McKay, G. A.; Papike, J. J.; Karner, J.

    2006-01-01

    Using partitioning behavior of V between olivine and basaltic liquid precisely calibrated for martian basalts, we determined the redox state of primitive (olivine-rich, high Mg#) martian basalts near their liquidus. The combination of oxidation state and incompatible element characteristics determined from early olivine indicates that correlations between fO2 and other geochemical characteristics observed in many martian basalts is also a fundamental characteristic of these primitive magmas. However, our data does not exhibit the range of fO2 observed in these previous studies.. We conclude that the fO2 for the martian upper mantle is approximately IW+1 and is incompatible-element depleted. It seems most likely (although clearly open to interpretation) that these mantle-derived magmas assimilated a more oxidizing (>IW+3), incompatible-element enriched, lower crustal component as they ponded at the base of the martian crust.

  11. Mineralogy, Petrology and Oxygen Fugacity of the LaPaz Icefield Lunar Basaltic Meteorites and the Origin of Evolved Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Collins, S. J.; Righter, K.; Brandon, A. D.

    2005-01-01

    LAP 02205 is a 1.2 kg lunar mare basalt meteorite found in the Lap Paz ice field of Antarctica in 2002 [1]. Four similar meteorites were also found within the same region [1] and all five have a combined mass of 1.9 kg (LAP 02224, LAP 02226, LAP 02436 and LAP 03632, hereafter called the LAP meteorites). The LAP meteorites all contain a similar texture, mineral assemblage, and composition. A lunar origin for these samples comes from O isotopic data for LAP 02205 [1], Fe/Mn ratios of pyroxenes [1-5], and the presence of distinct lunar mineralogy such as Fe metal and baddeleyite. The LAP meteorites may represent an area of the Moon, which has never been sampled by Apollo missions, or by other lunar meteorites. The data from this study will be used to compare the LAP meteorites to Apollo mare basalts and lunar basaltic meteorites, and will ultimately help to constrain their origin.

  12. Phase relations of a simulated lunar basalt as a function of oxygen fugacity, and their bearing on the petrogenesis of the Apollo 11 basalts

    USGS Publications Warehouse

    Tuthill, R.L.; Sato, M.

    1970-01-01

    A glass of Apollo 11 basalt composition crystallizing at 1 atm at low f{hook}02 showed the following crystallization sequence; ferropseudobrookite at 1210??C, olivine at 1200??C, ilmenite and plagioclase at 1140??C, clinopyroxene at 1113??C. Ferropseudobrookite and olivine have a reaction relation to the melt. This sequence agrees with that assumed on textural grounds for some Apollo 11 basalts. It also indicates that the Apollo 11 basalts cannot have been modified by low-pressure fractionation. ?? 1970.

  13. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, Lewis M.; Kirschvink, Joseph L.; Fischer, Woodward W.

    2015-08-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesisautotrophic growth by splitting water with sunlightby Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  14. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis.

    PubMed

    Ward, Lewis M; Kirschvink, Joseph L; Fischer, Woodward W

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it. PMID:26286084

  15. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, Lewis M.; Kirschvink, Joseph L.; Fischer, Woodward W.

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis—autotrophic growth by splitting water with sunlight—by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  16. Determination of Oxygen Self-Diffusion in Akermanite, Anorthite, Diopside, and Spinel: Implications for Oxygen Isotopic Anomalies and the Thermal Histories of Ca-Al-rich Inclusions

    NASA Astrophysics Data System (ADS)

    Ryerson, F. J.; McKeegan, K. D.

    1993-07-01

    Oxygen self-diffusion coefficients have been measured for three natural clinopyroxenes (diopside end member), a natural anorthite, a synthetic magnesium aluminate spinel, and a synthetic akermanite over oxygen fugacities ranging from the NNO to IW buffers. The experiments employed a gas-solid isotopic exchange technique utilizing 99% ^18O-enriched COCO2 gas mixtures to control both the oxygen fugacity and the isotopic composition of the exchange reservoir. Diffusion profiles of the ^18O tracer were obtained by in-depth analysis with an ion microprobe. The experimental results yield Arrhenius relations that appear here in the hard copy. At a given temperature, oxygen diffuses about 100 times more slowly in diopside than indicated by previous bulk-exchange experiments [1]. Our data for anorthite, spinel, and akermanite agree well with prior results obtained by gas-solid isotopic exchange and depth profiling methods [2-4]. Since these other experiments were conducted at different oxygen fugacities, this agreement indicates that diffusion of oxygen in these nominally iron-free minerals is not greatly affected by fO2 in the range between pure oxygen and the iron-wustite buffer. The oxygen diffusion data are used to evaluate the effects of three different types of therrnal histories upon the oxygen isotopic compositions of minerals found in Type B calciumaluminum-rich inclusions (CAIBs): (1) gas-solid exchange during isothermal heating, (2) gassolid exchange due to instantaneous heating followed by cooling at different rates, and (3) isotopic exchange with a gaseous reservoir during partial melting and recrystallization. With the assumptions that the mineral compositions within a CAIB were uniformly enriched in ^16O prior to any thermal processing, that effective diffusion dimensions may be estimated from observed grain sizes, and that diffusion in diopside is similar to that in fassaite, all the above scenarios fail to reproduce either the relative oxygen isotopic anomalies observed in CAIBs and/or yield improbably long or unrealistically intense thermal histories relative to both current theoretical models of nebular evolution and inferences from other isotopic systems. The failure of these simple models, coupled with recent observations of "disturbed" Mg isotopic abundances and petrographic features in anorthite and melilite indicative of alteration and recrystallization [5,6], suggests that the oxygen isotopic compositions of these phases may have also been modified by alteration and recrystallization during multiple melting events. Because the modal abundance of spinel remains relatively constant for plausible melting scenarios and its relatively sluggish diffusion kinetics prevent substantial equilibration, Mg-Al spinel is a reliable indicator of the oxygen isotopic composition of precursor material that formed CAIBs. References: [1] Connolly C. and Muehlenbachs K. (1988) GCA, 52, 1585-1592. [2] Elphick S. C. et al. (1988) Contrib. Mineral. Petrol., 100, 490-495. [3] Reddy K. P. and Cooper A. R. (1981) J. Am. Ceram. Soc., 64, 368-371. [4] Yunmoto H. et al. (1989) GCA, 53, 2387-2394. [5] Podosek F. A. et al. (1991) GCA, 55, 1083-1110. [6] MacPherson G. J. and Davis A. M. (1993) GCA, 57, 231-243.

  17. Retinal oxygen extraction in humans

    PubMed Central

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-01-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy. PMID:26503332

  18. Retinal oxygen extraction in humans

    NASA Astrophysics Data System (ADS)

    Werkmeister, Ren M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-10-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3??9.0??l/min during baseline and decreased to 18.7??4.2??l/min during 100% oxygen breathing (P?oxygen extraction from 2.33??0.51??l(O2)/min to 0.88??0.14??l(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy.

  19. THE INDOOR FUGACITY MODEL

    EPA Science Inventory

    Dermal and non-dietary pathways are potentially significant exposure pathways to pesticides used in the home. The exposure pathways include dermal contact through the hands and skin, ingestion from hand to mouth activities, ingestion through contact with toys and other items, ...

  20. Oxygen saturation dependent absorption and scattering of whole blood

    NASA Astrophysics Data System (ADS)

    Faber, Dirk J.; Aalders, Maurice C. G.; Mik, Egbert G.; Hooper, Brett A.; van Leeuwen, Ton G.

    2004-07-01

    We report on the scattering properties of oxygenated and de-oxygenated whole blood from 250-1000 nm. We determined the complex refractive index of oxygenated and de-oxygenated hemoglobin using Kramers Kronig analysis and Optical Coherence Tomography measurements. Combining these data with Mie theory, the scattering properties of oxygenated and deoxygenated whole blood were calculated. The results show strong oxygen saturation dependent scattering effects, which should be taken into account in data analysis of optical oxymetry.

  1. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  2. Enhanced Shrinkage of Lanthanum Strontium Manganite (La0.90Sr0.10MnO3+?) Resulting from Thermal and Oxygen Partial Pressure Cycling

    SciTech Connect

    McCarthy, Ben; Pederson, Larry R.; Anderson, Harlan U.; Zhou, Xiao Dong; Singh, Prabhakar; Coffey, Greg W.; Thomsen, Ed C.

    2007-10-01

    Exposure of La0.9Sr0.1MnO3+? to repeated oxygen partial pressure cycles (air/10 ppm O2) resulted in enhanced densification rates, similar to behavior shown previously due to thermal cycling. Shrinkage rates in the temperature range 700 to 1000oC were orders of magnitude higher than Makipirtti-Meng model estimations based on stepwise isothermal dilatometry results at high temperature. A maximum in enhanced shrinkage due to oxygen partial pressure cycling occurred at 900oC. Shrinkage was greatest when LSM-10 bars that were first equilibrated in air were exposed to gas flows of lower oxygen fugacity than in the reverse direction. The former creates transient cation and oxygen vacancies well above the equilibrium concentration, resulting in enhanced mobility. These vacancies annihilate as Schottky equilibria is re-established, whereas the latter condition does not lead to excess vacancy concentrations.

  3. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    PubMed Central

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 ?M, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ?2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ?500 million years while the oxygen level in the Earths atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 ?M, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ?40 ?m or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. PMID:24806920

  4. Monitoring oxygenation.

    PubMed

    Severinghaus, John W

    2011-06-01

    Cyanosis was used for a century after dentists began pulling teeth under 100% N(2)O in 1844 because brief (2 min) severe hypoxia is harmless. Deaths came with curare and potent anesthetic respiratory arrest. Leland Clark's invention of a polarographic blood oxygen tension electrode (1954) was introduced for transcutaneous PO2 monitoring to adjust PEEP and CPAP PO2 to prevent premature infant blindness from excess O2 (1972). Oximetry for warning military aviators was tried after WW II but not used for routine monitoring until Takuo Aoyagi (1973) discovered an equation to measure SaO2 by the ratio of ratios of red and IR light transmitted through tissue as it changed with arterial pulses. Pulse oximetry (1982) depended on simultaneous technology improvements of light emitting red and IR diodes, tiny cheap solid state sensors and micro-chip computers. Continuous monitoring of airway anesthetic concentration and oxygen also became very common after 1980. Death from anesthesia fell 10 fold between 1985 and 2000 as pulse oximetry became universally used, but no proof of a causative relationship to pulse oximetry exists. It is now assumed that all anesthesiologist became much more aware of the dangers of prolonged hypoxia, perhaps by using the pulse oximeters. PMID:21717228

  5. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Appelo, C. A. J.; Parkhurst, D. L.; Post, V. E. A.

    2014-01-01

    Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich-Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson-Kirkham-Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye-Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich-Rosenfeld equation were fitted by least-squares on measured solution densities. The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng-Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The coefficients for the Peng-Robinson equations are readily available in the literature. The required equations have been implemented in PHREEQC, version 3, and the parameters for calculating the partial molar volumes and fugacity coefficients have been added to the databases that are distributed with PHREEQC. The ease of use and power of the formulation are illustrated by calculating the solubility of CO2 at high pressures and temperatures, and comparing with well-known examples from the geochemical literature. The equations and parameterizations are suitable for wide application in hydrogeochemical systems, especially in the field of carbon capture and storage.

  6. Is the Neoproterozoic oxygen burst a supercontinent legacy?

    NASA Astrophysics Data System (ADS)

    Macouin, Melina; Roques, Damien; Rousse, Sonia; Ganne, Jerome; Denele, Yoann; Trindade, Ricardo

    2015-09-01

    The Neoproterozoic (1000–542 Myr ago) witnessed the dawn of Earth as we know it with modern-style plate tectonics, high levels of O2 in atmosphere and oceans and a thriving fauna. Yet, the processes leading to the fully oxygenation of the external envelopes, its exact timing and its link with the inner workings of the planet remain poorly understood. In some ways, it is a "chicken and egg" question: did the Neoproterozoic Oxygenation Event (NOE) cause life blooming, low-latitudes glaciations and perturbations in geochemical cycles or is it a consequence of these phenomena? Here, we suggest that the NOE may have been triggered by multi-million years oxic volcanic emissions along a protracted period at the end of the Neoproterozoic when continents were assembled in the Rodinia supercontinent. We report a very oxidized magma source at the upper mantle beneath a ring of subducting margins around Rodinia, and detail here the evidence at the margin of the Arabian shield. We investigate the 780 Ma Biotite and Pink granites and associated rocks of the Socotra Island with rock magnetic and petrographic methods. Magnetic susceptibility and isothermal remanent magnetization acquisitions show that, in these granites, both magnetite and hematite are present. Hematite subdivides magnetite grains into small grains. Magnetite and hematite are found to be primary, and formed at the early magmatic evolution of the granite at very high oxygen fugacity. Massive degassing of these oxidized magmas would reduce the sink for oxygen, and consequently contribute to its rise in the atmosphere with a net O2 flux of at least 2.25 x 107 Tmol. Our conceptual model provides a deep Earth link to the NOE and implies the oxygenation burst has occurred earlier than previously envisaged, paving the way for later changes in the outer envelopes of the planet epitomized on the extreme Neoproterozoic glaciations and the appearance of the first animals.

  7. First principles calculation on the magnetic, optical properties and oxygen vacancy effect of Ce{sub x}Y{sub 3?x}Fe{sub 5}O{sub 12}

    SciTech Connect

    Liang, Xiao; Xie, Jianliang; Deng, Longjiang Bi, Lei

    2015-02-02

    We report a first principles study on the magnetic and optical properties of Ce substituted yttrium iron garnet (Ce{sub x}Y{sub 3?x}Fe{sub 5}O{sub 12}) (Ce:YIG) (x?=?0.125, 0.25, 0.5, and 1.0). Using density functional theory with Hubbard-U corrections, we demonstrate that Ce{sup 3+}-Fe{sup 3+}(tetrahedral) charge transfer is the dominating mechanism of enhanced near infrared absorption in Ce:YIG. In particular, oxygen vacancies are found to be able to stabilize Ce{sup 3+} from converting to Ce{sup 4+}, at the same time reduce two neighboring Fe{sup 3+} to Fe{sup 2+} which occupy both the octahedral and tetrahedral sites. The formation enthalpy of Ce{sup 4+}-Fe{sup 2+} state is strongly dependent on the distance from the Ce ion to the oxygen vacancy, which is closely related to the local lattice distortion around the Ce ion. This result provides theoretical insight for developing high figure of merit magneto-optical materials for nonreciprocal photonic applications.

  8. Diffusion pathway of oxygen in ox lung.

    PubMed

    Koyama, T; Araiso, T

    1988-01-01

    The diffusion coefficients of cell membranes of pneumocytes plus endothelial cells, cytosol plus blood plasma, erythrocyte membranes, and hemoglobin solution in erythrocytes were estimated from the fluorometrically measured membrane viscosity. The time course of oxygen partial pressure distribution was numerically calculated in a model for the pathway of oxygen in the lung. The high viscosity of the phospholipid bilayers seems to cause a reduction in the rate of oxygenation of the hemoglobin solution. PMID:3364290

  9. MEMS Calculator

    National Institute of Standards and Technology Data Gateway

    SRD 166 MEMS Calculator (Web, free access) This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  10. Hyperbaric oxygen therapy

    MedlinePLUS

    Hyperbaric oxygen therapy uses a special pressure chamber to increase the amount of oxygen in the blood. ... outpatient centers. The air pressure inside a hyperbaric oxygen chamber is about two and a half times ...

  11. Living with Oxygen Therapy

    MedlinePLUS

    ... page from the NHLBI on Twitter. Living With Oxygen Therapy Oxygen therapy helps many people function better and be ... chronic obstructive pulmonary disease) Although you may need oxygen therapy continuously or for long periods, it doesn' ...

  12. Home Oxygen Therapy

    MedlinePLUS

    ... oxygen is rarely delivered in the older large, steel gas cylinders any longer since frequent and costly ... just like the compressed oxygen in the older steel cylinders. An important advantage of liquid oxygen is ...

  13. A new oxygen barometer for solar system basaltic glasses based on vanadium valence

    SciTech Connect

    Karner, J.M.; Sutton, S.R.; Papike, J.J.; Delaney, J.S.; Shearer, C.K.; Newville, M.; Eng, P.; Rivers, M.; Dyar, M.D.

    2004-05-10

    An oxybarometer based on vanadium valence and applicable to basaltic glasses covers eight orders of magnitude in oxygen fugacity. The determination of oxidation conditions for basaltic magmas derived by the melting of planetary mantles is critical to our understanding of the nature and evolution of planetary interiors. Yet, these determinations are compromised in terrestrial and especially extraterrestrial basalts by our analytical and computational methods for estimating oxygen fugacity (fO{sub 2}). For example, mineralogical barometers (1, 2) can be reduced in effectiveness by subsolidus re-equilibration of mineral assemblages, inversion of mineralogical data to melt characteristics, and deviations of the natural mineral compositions from ideal thermodynamic parameters. Likewise, techniques to estimate fO{sub 2} based on the valence state of Fe (i.e. Fe{sup 3+}/Fe{sup 2+}) are ineffective for materials that crystallized at or below the IW buffer, and only contain Fe{sup 2+} and Fe{sup 0} (3). For these reasons, we have developed an oxybarometer based on the valence state of vanadium in basaltic glasses. This oxybarometer has enormous potential because (1) V valence is measured in basaltic glasses that have been quenched at near liquidus temperatures, thereby recording magmatic fO{sub 2} conditions, and (2) V is a multivalent element, existing as V{sup 2+}, V{sup 3+}, V{sup 4+}, and V{sup 5+}, thus allowing for applicability over a range of redox conditions from the most reduced materials in the solar system, (e.g. calcium aluminum rich inclusions in chondritic meteorites [4]) to the most oxidized terrestrial magmas (this work).

  14. Determination of oxygen self-diffusion in akermanite, anorthite, diopside, and spinel: Implications for oxygen isotopic anomalies and the thermal histories of Ca-Al-rich inclusions

    SciTech Connect

    Ryerson, F.J. ); McKeegan, K.D. )

    1994-09-01

    Oxygen self-diffusion coefficients have been measured for three natural diopsidic clinopyroxenes, a natural anorthite, a synthetic magnesium aluminate spinel, and a synthetic akermanite for oxygen fugacities ranging from the NNO to IW buffers. The oxygen diffusion data are used to evaluate the effects of three different types of thermal histories upon the oxygen isotopic compositions of minerals found in Type B Ca-Al-rich inclusions (CAIBs) in carbonaceous chondrites: (1) gas-solid exchange during isothermal heating, (2) gas-solid exchange as a function of cooling rate subsequent to instantaneous heating, and (3) isotopic exchange with a gaseous reservoir during partial melting and recrystallization. With the assumptions that the mineral compositions within a CAIB were uniformly enriched in [sup 16]O prior to any thermal processing, that effective diffusion dimensions may be estimated from observed grain sizes, and that diffusion in diopside is similar to that in fassaitic clinopyroxene, none of the above scenarios can reproduce the relative oxygen isotopic anomalies observed in CAIBs without improbably long or unrealistically intense thermal histories relative to current theoretical models of nebular evolution. The failure of these simple models, coupled with recent observations of disturbed magnesium isotopic abundances and correlated petrographic features in anorthite and melilite indicative of alteration and recrystallization, suggests that the oxygen isotopic compositions of these phases may have also been modified by alteration and recrystallization possibly interspersed with multiple melting events. Because the modal abundance of spinel remains relatively constant for plausible melting scenarios, and its relatively sluggish diffusion kinetics prevent substantial equilibration, Mg-Al spinel is the most reliable indicator of the oxygen isotopic composition of precursor material which formed Type B CAIs.

  15. Oxygen ionic conductivity of La2NiO4+? via interstitial oxygen defect

    NASA Astrophysics Data System (ADS)

    Jeon, S.-Y.; Choi, M.-B.; Im, H.-N.; Hwang, J.-H.; Song, S.-J.

    2012-05-01

    The ionic conduction properties of La2NiO4+? were studied from oxygen permeation flux and defect-related transport properties. The effects of the applied oxygen chemical potential gradient and temperature on the oxygen permeability of La2NiO4+? at various thickness are reported. The thermally activated oxygen permeation flux increased monotonically with increasing oxygen chemical potential gradient, yielding a maximum of 0.15 cc min-1 cm-2 under air/N2 conditions for the 0.95 mm-thick La2NiO4+? specimen at 900 C. The oxygen ion conductivity of La2NiO4+? was calculated as a function of temperature and oxygen partial pressure by differentiating the chemical diffusion equation for the oxygen permeation flux based on the dominant electronic transference number. In addition, the oxygen ion conductivity was extracted successfully by solving the Nernst-Einstein equation combining with the calculated self-diffusion coefficient of oxygen from the chemical diffusivity and thermodynamic enhancement factor from the equilibrium oxygen nonstoichoimetry of a La2NiO4+? specimen, and a deviation of the OPP dependence of 1/6 power was observed.

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  17. Assessment of Industry-Induced Urban Human Health Risks Related to Benzo[a]pyrene based on a Multimedia Fugacity Model: Case Study of Nanjing, China

    PubMed Central

    Xu, Linyu; Song, Huimin; Wang, Yan; Yin, Hao

    2015-01-01

    Large amounts of organic pollutants emitted from industries have accumulated and caused serious human health risks, especially in urban areas with rapid industrialization. This paper focused on the carcinogen benzo[a]pyrene (BaP) from industrial effluent and gaseous emissions, and established a multi-pathway exposure model based on a Level IV multimedia fugacity model to analyze the human health risks in a city that has undergone rapid industrialization. In this study, GIS tools combined with land-use data was introduced to analyze smaller spatial scales so as to enhance the spatial resolution of the results. An uncertainty analysis using a Monte Carlo simulation was also conducted to illustrate the rationale of the probabilistic assessment mode rather than deterministic assessment. Finally, the results of the case study in Nanjing, China indicated the annual average human cancer risk induced by local industrial emissions during 2002–2008 (lowest at 1.99×10–6 in 2008 and highest at 3.34×10–6 in 2004), which was lower than the USEPA prescriptive level (1×10–6–1×10–4) but cannot be neglected in the long term.The study results could not only instruct the BaP health risk management but also help future health risk prediction and control. PMID:26035663

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  19. Oxygen fluoride chemical kinetics

    SciTech Connect

    Lyman, J.L.; Holland, R.

    1988-12-29

    This paper reports the results of a study of the reactions of fluorine atoms with oxygen. The fluorine atoms are produced by photolysis of molecular fluorine with an excimer laser (KrF, 248 nm). Subsequent reactions produce (and consume) the species O/sub 2/F and O/sub 2/F/sub 2/. The reaction mechanism and rate constants for six reactions follow from the analysis of transient absorption signals. The signals were obtained with an ultraviolet lamp at 215 nm. Both of the oxygen fluorides absorb at that wavelength. The experiments also gave the absorption cross sections of the two species at the probe wavelength and an enthalpy of formation for O/sub 2/F. Some of the rate constants are different from those reported earlier. This is most likely due to their avoidance of assumptions made by authors. All experiments were at room temperature, but they estimated the temperature dependence of the set of reaction rates using the measured rate constants and published, measured, and calculated thermodynamic properties.

  20. Oxygen stoichiometry, phase stability, and thermodynamic behavior of the lead-doped Bi-2223 and Ag/Bi-2223 systems.

    SciTech Connect

    Tetenbaum, M.; Hash, M. C.; Tani, B. S.; Luo, J. S.; Maroni, V. A.; Chemical Engineering

    1995-07-15

    Electromotive-force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made in the lead-doped Bi-2223 superconducting system in the temperature range 700-815 C by means of an oxygen titration technique that employs an yttria-stabilized zirconia electrolyte. The results of our studies indicate that processing or annealing lead-doped Bi-2223 at temperatures ranging from 750 to 815 C and at oxygen partial pressures ranging from {approx} 0.02 to 0.2 atm should preserve Bi-2223 as essentially single-phase material. Thermodynamic assessments of the partial molar quantities {Delta}{bar S}(O{sub 2}) and {Delta}{bar H}(O{sub 2})indicate that the plateau regions in the plot of oxygen partial pressure versus oxygen stoichiometry (x) can be represented by the diphasic CuO---Cu2O system. In accord with the EMF measurements, it was found that lead-doped Bi-2223 in a silver sheath is stable at 815 C for oxygen partial pressures between 0.02 and 0.13 atm.

  1. Who Needs Oxygen Therapy?

    MedlinePLUS

    ... from the NHLBI on Twitter. Who Needs Oxygen Therapy? Your doctor may recommend oxygen therapy if you have a low blood oxygen level. ... Acute Diseases and Conditions You may receive oxygen therapy if you're in the hospital for a ...

  2. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  3. Oxygen sensing and signaling.

    PubMed

    van Dongen, Joost T; Licausi, Francesco

    2015-01-01

    Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway. PMID:25580837

  4. Calculation Software

    NASA Technical Reports Server (NTRS)

    1994-01-01

    MathSoft Plus 5.0 is a calculation software package for electrical engineers and computer scientists who need advanced math functionality. It incorporates SmartMath, an expert system that determines a strategy for solving difficult mathematical problems. SmartMath was the result of the integration into Mathcad of CLIPS, a NASA-developed shell for creating expert systems. By using CLIPS, MathSoft, Inc. was able to save the time and money involved in writing the original program.

  5. WBGT Calculator

    SciTech Connect

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulate the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.

  6. WBGT Calculator

    Energy Science and Technology Software Center (ESTSC)

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulatemore » the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.« less

  7. Oxygen chemisorption cryogenic refrigerator

    NASA Astrophysics Data System (ADS)

    Jones, Jack A.

    1987-10-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  8. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  9. Anemia and Oxygen Delivery.

    PubMed

    Bliss, Stuart

    2015-09-01

    Clinical assessment of tissue oxygenation is challenging. Anemia reflects a decreased oxygen carrying capacity of the blood and its significance in the perioperative setting relates largely to the associated risk of insufficient oxygen delivery and cellular hypoxia. Until meaningful clinical measures of tissue oxygenation are available in veterinary practice, clinicians must rely on evaluation of a patient's hemodynamic and ventilatory performance, along with biochemical and hemogasometric measurements. Blood transfusion is used commonly for treatment of perioperative anemia, and may improve tissue oxygenation by normalizing the rheologic properties of blood and enhancing perfusion, independent of increases in oxygen carrying capacity. PMID:26033442

  10. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  11. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  12. Benefits of oxygen incorporation in atomic laminates

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Martin

    2016-04-01

    Atomic laminates such as MAX phases benefit from the addition of oxygen in many ways, from the formation of a protective oxide surface layer with self-healing capabilities when cracks form to the tuning of anisotropic conductivity. In this paper oxygen incorporation and vacancy formation in M 2AlC (M  =  Ti, V, Cr) MAX phases have been studied using first-principles calculations where the focus is on phase stability and electronic structure for different oxygen and/or vacancy configurations. Oxygen prefers different lattice sites depending on M-element and this can be correlated to the number of available non-bonding M d-electrons. In Ti2AlC, oxygen substitutes carbon while in Cr2AlC it is located interstitially within the Al-layer. I predict that oxygen incorporation in Ti2AlC stabilizes the material, which explains the experimentally observed 12.5 at% oxygen (x  =  0.5) in Ti2Al(C1‑x O x ). In addition, it is also possible to use oxygen to stabilize the hypothetical Zr2AlC and Hf2AlC. Hence, oxygen incorporation may be beneficial in many ways. Not only can it make a material more stable, but it also can act as a reservoir for internal self-healing with shorter diffusion paths.

  13. Benefits of oxygen incorporation in atomic laminates.

    PubMed

    Dahlqvist, Martin

    2016-04-01

    Atomic laminates such as MAX phases benefit from the addition of oxygen in many ways, from the formation of a protective oxide surface layer with self-healing capabilities when cracks form to the tuning of anisotropic conductivity. In this paper oxygen incorporation and vacancy formation in M 2AlC (M  =  Ti, V, Cr) MAX phases have been studied using first-principles calculations where the focus is on phase stability and electronic structure for different oxygen and/or vacancy configurations. Oxygen prefers different lattice sites depending on M-element and this can be correlated to the number of available non-bonding M d-electrons. In Ti2AlC, oxygen substitutes carbon while in Cr2AlC it is located interstitially within the Al-layer. I predict that oxygen incorporation in Ti2AlC stabilizes the material, which explains the experimentally observed 12.5 at% oxygen (x  =  0.5) in Ti2Al(C1-x O x ). In addition, it is also possible to use oxygen to stabilize the hypothetical Zr2AlC and Hf2AlC. Hence, oxygen incorporation may be beneficial in many ways. Not only can it make a material more stable, but it also can act as a reservoir for internal self-healing with shorter diffusion paths. PMID:26941112

  14. Biogeochemistry: Oxygen burrowed away

    NASA Astrophysics Data System (ADS)

    Meysman, Filip J. R.

    2014-09-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  15. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H. (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM)

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  16. Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates

    SciTech Connect

    Zhao, Y.; Xu, Q.; Cheah, S.

    2013-01-01

    Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

  17. Medical Oxygen Safety

    MedlinePLUS

    ... to the air a patient uses to breath. Fire needs oxygen to burn. If a fire should start in an oxygen-enriched area, the ... Homes where medical oxygen is used need specific fire safety rules to keep people safe from fire ...

  18. Oxygen boost pump study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An oxygen boost pump is described which can be used to charge the high pressure oxygen tank in the extravehicular activity equipment from spacecraft supply. The only interface with the spacecraft is the +06 6.205 Pa supply line. The breadboard study results and oxygen tank survey are summarized and the results of the flight-type prototype design and analysis are presented.

  19. Calculating intermolecular potentials with SIMPER

    NASA Astrophysics Data System (ADS)

    Wheatley, Richard J.; Lillestolen, Timothy C.

    Recent theoretical studies of the van der Waals complexes formed between water and the two main components of air, nitrogen and oxygen, are reviewed. Combined with previous work on the water-argon complex, the results allow non-ideal thermodynamic properties of water-air mixtures to be calculated. The intermolecular potential energy surfaces for these complexes have been calculated using a combination of supermolecule methods and perturbation theory, as described in a previous review. Theoretical techniques introduced since this previous work include the extension of the intermolecular perturbation theory to open-shell electronic species, as required for the water-oxygen complex, and new and more accurate calculations of dispersion energy coefficients. Spin-unrestricted, time-dependent coupled cluster theory has been used for calculating dispersion energy coefficients for the water-oxygen complex, and this method is described and compared with other accurate methods, and a possible alternative method is suggested for future work. The results obtained for the water-nitrogen complex are highly satisfactory. With little more computational effort than is required to produce a second-order Moller-Plesset supermolecule potential energy surface, the intermolecular potential is calculated to an accuracy which appears to be comparable to coupled-cluster calculations with perturbative triple excitations. For the water-oxygen complex, the different theoretical methods produce potential energy surfaces with larger discrepancies than for water-nitrogen, although they predict the main features of the potential energy surface better than calculations in the literature. Although few experimental measurements of water-oxygen virial coefficients are available, the agreement of theoretical predictions with these is reasonable, and the agreement with the better characterized water-air virial coefficients is very good. The review concludes with a forward look to work on larger molecules. Increasing the size of the interacting molecules creates a number of practical problems. Some problems, including the steep scaling of computation time with system size, are common to all methods. The use in the current work of a damped multipole expansion about the molecular centres also causes problems when larger molecules are considered. The review therefore considers methods that can be used to reduce the unfavourable size scaling, to reduce the size of the basis set, and to use damped atomic multipole expansions, which are centred on the nuclei of the interacting molecules.

  20. Protecting spacecraft from atomic oxygen

    NASA Technical Reports Server (NTRS)

    Leger, L. J.; Visentine, J. T.

    1986-01-01

    Findings are reported from Space Shuttle flights STS-3, 4, 5, and 8 regarding the degradation of materials exposed to atomic oxygen in low earth orbit. Atomic oxygen, a strong oxidizing agent, is present in low concentrations at such altitudes, and a spacecraft can sweep up considerable volumes of it at orbital velocities of 5 miles/s, especially if mission lifetimes are measured in years or decades. Material loss has been found to be a function of the fluence (the number of oxygen atoms striking a unit area of surface over a given period); fluence is proportional to atmospheric density, orbital velocity, surface attitude relative to velocity vector, and duration of exposure. Atmospheric density depends first on altitude and second on the phase of the 11-year solar activity cycle. Metals, in the experiments, reacted less than nonmetals. Graphs and a table are included, permitting calculation of how far a surface of various organic materials will recede on a spacecraft in low earth orbit. The limited data base on atomic oxygen interactions with materials, using both Shuttle flight experiments and ground-based facilities must be augmented. Space Station design is imminent, and the understanding of such interactions is critical to the success of that design.

  1. The system Fe-Si-O: Oxygen buffer calibrations to 1,500K

    NASA Astrophysics Data System (ADS)

    Myers, J.; Eugster, H. P.

    1983-03-01

    The five solid-phase oxygen buffers of the system Fe-Si-O, iron-wuestite (IW), wuestite-magnetite (WM), magnetite-hematite (MH), quartz-iron-fayalite (QIF) and fayalite-magnetite-quartz (FMQ) have been recalibrated at 1 atm pressure and temperatures from 800 1,300 C, using a thermogravimetric gas mixing furnace. The oxygen fugacity, f_{{text{O}}_{text{2}} } was measured with a CaO-doped ZrO2 electrode. Measurements were made also for wuestite solid solutions in order to determine the redox behavior of wuestites with O/Fe ratios varying from 1.05 to 1.17. For FMQ, additional determinations were carried out at 1 kb over a temperature range of 600 to 800 C, using a modified Shaw membrane. Results agree reasonably well with published data and extrapolations. The reaction parameters K, ? G {r/o}, ? H {r/o}, and ? S {r/o}were calculated from the following log f_{{text{O}}_{text{2}} }/ T relations (T in K): 410_2004_Article_BF00371177_TeX2GIFE1.gif begin{gathered} {text{IW }}log f_{{text{O}}_{text{2}} } = - 26,834.7/T + 6.471left( { 0.058} right) \\ {text{ }}left( {{text{800}} - 1,260{text{ C}}} right), \\ {text{WM }}log f_{{text{O}}_{text{2}} } = - 36,951.3/T + 16.092left( { 0.045} right) \\ {text{ }}left( {{text{1,000}} - 1,300{text{ C}}} right), \\ {text{MH }}log f_{{text{O}}_{text{2}} } = - 23,847.6/T + 13.480left( { 0.055} right) \\ {text{ }}left( {{text{1,040}} - 1,270{text{ C}}} right), \\ {text{QIF }}log f_{{text{O}}_{text{2}} } = - 27,517.5/T + 6.396left( { 0.049} right) \\ {text{ }}left( {{text{960}} - 1,140{text{ C}}} right), \\ {text{FMQ }}log f_{{text{O}}_{text{2}} } = - 24,441.9/T + 8.290left( { 0.167} right) \\ {text{ }}left( {{text{600}} - 1,140{text{ C}}} right). \\ These experimentally determined reaction parameters were combined with published 298 K data to determine the parameters Gf, Hf, and Sf for the phases wuestite, magnetite, hematite, and fayalite from 298 K to the temperatures of the experiments. The T-f_{{text{O}}_{text{2}} } data for wuestite solid solutions were used to obtain activities, excess free energies and Margules mixing parameters. The new data provide a more reliable, consistent and complete reference set for the interpretation of redox reactions at elevated temperatures in experiments and field settings encompassing the crust, mantle and core as well as extraterrestrial environments.

  2. Atomic oxygen exposure of LDEF experiment trays

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.

    1992-01-01

    Atomic oxygen exposures were determined analytically for rows, longerons, and end bays of the Long Duration Exposure Facility (LDEF). The calculations are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation on atomic oxygen flux. Results incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the 6-year flight of the spacecraft. To facilitate use of the data, both detailed tabulations and summary charts for atomic oxygen fluences are presented.

  3. 40 CFR 1065.850 - Calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Calculations. 1065.850 Section 1065.850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.850 Calculations. Use the...

  4. 40 CFR 1065.850 - Calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Calculations. 1065.850 Section 1065.850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.850 Calculations. Use the...

  5. 40 CFR 1065.850 - Calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Calculations. 1065.850 Section 1065.850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.850 Calculations. Use the...

  6. 40 CFR 1065.850 - Calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Calculations. 1065.850 Section 1065.850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.850 Calculations. Use the...

  7. An improved program to calculate intrapulmonary shunting.

    PubMed

    Siegel, D; Ramanathan, S; Chalon, J; Turndorf, H

    1979-06-01

    A computer program was developed to calculate intrapulmonary venous admixture on a Texas Instruments TI 59 programmable calculator. The program incorporates the following characteristics: 1) a correction for saturated water vapor pressure which varies with body temperature; 2) a mathematical model of the standard oxyhemoglobin dissociation curve; and 3) correction factors for shifts of the dissociation curve due to variations in pH and carbon dioxide tension. It also corrects oxygen tensions obtained at electrode temperature to those at patient temperature, and calculates variations of the Bunsen solubility coefficient of oxygen in blood with body temperature. PMID:446063

  8. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W. (Downers Grove, IL)

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  9. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  10. Singlet oxygen in photosensitization.

    PubMed

    Moan, Johan; Juzenas, Petras

    2006-01-01

    Oxygen is a ubiquitous element and a vitally important substance for life on the Earth, and especially for human life. Living organisms need oxygen for most, if not all, of their cellular functions. On the other hand, oxygen can produce metabolites that are toxic and potentially lethal to the same cells. Being reactive and chemically unstable reactive oxygen species (ROS) are the most important metabolites that initiate reduction and oxidation (redox) reactions under physiological conditions. Oxygen in its excited singlet state (1O2) is probably the most important intermediate in such reactions. Since the discovery of oxygen by Joseph Priestley in 1775 it has been recognized that oxygen can be both beneficial and harmful to life. PMID:16566709

  11. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors

    NASA Technical Reports Server (NTRS)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David

    2010-01-01

    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  12. Oxygen measurements via phosphorescence.

    PubMed

    Shaban, Sami; Marzouqi, Farida; Al Mansouri, Aysha; Penefsky, Harvey S; Souid, Abdul-Kader

    2010-12-01

    Accurate measurements of dissolved O(2) as a function of time have numerous chemical and biological applications. The Pd (II) complex of meso-tetra-(4-sulfonatophenyl)-tetrabenzoporphyrin (Pd phosphor) was used for this purpose. Detection is based on the principle that the phosphorescence of this oxygen probe is inversely related to dissolved O(2) (O(2) quenches the phosphorescence). Biologic samples containing the Pd phosphor were flashed (10/s) with a peak output of 625nm; emitted light was detected at 800nm. Amplified pulses of phosphorescence were digitized at 1-2MHz using an analog/digital converter (PCI-DAS 4020/12 I/O Board) with outputs ranging from 1 to 20MHz. Assessment revealed a customized program was necessary. Pulses were captured using a developed software at 0.1-4MHz, depending on the speed of the computer. O(2) concentration was calculated by fitting to an exponential the decay of the phosphorescence. Twelve tasks were identified, which allowed full control and customization of the data acquisition, storage and analysis. The program used Microsoft Visual Basic 6 (VB6), Microsoft Access Database 2007, and a Universal Library component that allowed direct reading from the PCI-DAS 4020/12 I/O Board. It involved a relational database design to store experiments, pulses and pulse metadata, including phosphorescence decay rates. The method permitted reliable measurements of cellular O(2) consumption over several hours. PMID:20478639

  13. Program developed for CO{sub 2} system calculations

    SciTech Connect

    Lewis, E.; Wallace, D.; Allison, L.J.

    1998-02-01

    The program CO2SYS performs calculations relating parameters of the carbon dioxide (CO{sub 2}) system in seawater and freshwater. The program uses two of the four measurable parameters of the CO{sub 2} system [total alkalinity (TA), total inorganic CO{sub 2} (TCO{sub 2}), pH, and either fugacity (fCO{sub 2}) or partial pressure of CO{sub 2} (pCO{sub 2})] to calculate the other two parameters at a set of input conditions (temperature and pressure) and a set of output conditions chosen by the user. It replaces and extends the programs CO2SYSTM.EXE, FCO2TCO2.EXE, PHTCO2.EXE, and CO2BTCH.EXE, which were released in May 1995. It may be run in single-input mode or batch-input mode and has a variety of options for the various constants and parameters used. An on-screen information section is available that includes documentation on various topics relevant to the program. This program may be run on any 80 x 86 computer equipped with the DOS operating system by simply typing CO2SYS at the prompt after loading the executable file CO2SYS.EXE.

  14. Enzymatic Glucose Sensor Compensation for Variations in Ambient Oxygen Concentration

    PubMed Central

    Collier, Bradley B.; McShane, Michael J.

    2014-01-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in “smart materials” for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases. PMID:26257458

  15. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  16. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  17. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly...

  18. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment, Prosthetic and Orthotic Devices, and Surgical Dressings § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is...

  19. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly...

  20. Core-mantle partitioning of oxygen on Earth and Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Tsuno, K.; Frost, D. J.; Rubie, D. C.

    2010-12-01

    Oxygen is potentially one of the important light elements in the Earth’s core, based on geophysical observations and high-pressure experimental studies of the solubility and partitioning of oxygen into liquid Fe metal. However, its concentrations in the Earth’s core, as well as in the cores of Mercury, Venus and Mars, are still poorly constrained. In addition to Fe, Ni and S are important components in the cores of terrestrial planets. For example, based on cosmochemical constraints, the Earth’s core is considered to have a low S content (e.g. <2 wt%), whereas the Martian core is likely to have a much higher S concentration of up to 14 wt%. It is therefore important to understand how O partitions between silicates/oxides and liquid Fe alloy in Ni- and S-bearing systems. We have experimentally investigated the partitioning of oxygen between ferropericlase, and liquid Fe-Ni, Fe-S, and Fe-Ni-S metal at conditions up to 24.5 GPa and 2746 K using the Kawai-type multi-anvil apparatus. Our experimental results show that adding 10-20 mol% Ni to the metallic Fe at a fixed oxygen fugacity reduces the concentration of oxygen in the liquid metal, for example, from ~3 mol % to ~2 mol %. In contrast, adding up to 30 mol % S to liquid Fe increases the oxygen concentration by as much as 10 mol %. Experiments to determine the combined effects of Ni and S show a decrease in the effect of Ni on oxygen partitioning as the concentration of S in the metal increases. Our experimental data, together with previous studies of melting phase relations of Fe-Ni and Fe-S metals, are fitted using a thermodynamic model (asymmetric, regular solution model). By extrapolating to CMB conditions, oxygen concentrations in the core can be constrained, assuming equilibrium with the bulk of the mantle. Given that the maximum oxygen content of the core, based on the density deficit, is 6-9 wt%, this extrapolation shows that the core must be undersaturated in oxygen with respect to the bulk of the mantle. Two end-member consequences of this conclusion are (1) that the very base of the mantle is strongly depleted in FeO and (2) the uppermost part of the outer core consists of a thin buoyant FeO-rich liquid layer, as suggested by some seismological studies. Assuming core-mantle equilibrium, the Martian core could contain up to 2-4 wt% oxygen and, due to cooling since core formation, a solid FeO-rich layer may have formed at the base of the Martian mantle.

  1. Silicon in Mars' Core: A Prediction Based on Mars Model Using Nitrogen and Oxygen Isotopes in SNC Meteorites

    NASA Technical Reports Server (NTRS)

    Mohapatra, R. K.; Murty, S. V. S.

    2002-01-01

    Chemical and (oxygen) isotopic compositions of SNC meteorites have been used by a number of workers to infer the nature of precursor materials for the accretion of Mars. The idea that chondritic materials played a key role in the formation of Mars has been the central assumption in these works. Wanke and Dreibus have proposed a mixture of two types of chondritic materials, differing in oxygen fugacity but having CI type bulk chemical composition for the nonvolatile elements, for Mars' precursor. But a number of studies based on high pressure and temperature melting experiments do not favor a CI type bulk planet composition for Mars, as it predicts a bulk planet Fe/Si ratio much higher than that reported from the recent Pathfinder data. Oxygen forms the bulk of Mars (approximately 40% by wt.) and might provide clues to the type of materials that formed Mars. But models based on the oxygen isotopic compositions of SNC meteorites predict three different mixtures of precursor materials for Mars: 90% H + 10% CM, 85% H + 11% CV + 4% CI and 45% EH + 55% H. As each of these models has been shown to be consistent with the bulk geophysical properties (such as mean density, and moment of inertia factor) of Mars, the nature of the material that accreted to form Mars remains ambiguous.

  2. Influence of ortho-substitution homolog group on polychlorobiphenyl bioaccumulation factors and fugacity ratios in plankton and zebra mussels (Dreissena polymorpha)

    SciTech Connect

    Willman, E.J.; Manchester-Neesvig, J.B.; Agrell, C.; Armstrong, D.E.

    1999-07-01

    The accumulation of a set of non- and mono-ortho (coplanar) PCB congeners in aquatic ecosystems is of interest due to their dioxin-like toxicities. Chemical properties (octanol-water partition coefficients) suggest that the coplanar congeners may accumulate in organisms to a greater extent than homologs with greater ortho substitution. The authors analyzed a set of 65 PCB congeners with zero to four ortho-chlorines from seven homolog groups in water, suspended particulate matter, and zebra mussels from Green Bay, Wisconsin, USA, on four dates throughout the ice-free season. The suspended particulate matter was separated by size and characterized as phytoplankton or zooplankton using diagnostic carotenoid pigments and light microscopy. Median bioconcentration factors (BCFs) for accumulation from water by phytoplankton and bioaccumulation factors (BAFs) for accumulation from water plus food by zooplankton and zebra mussels ranged from 1 x 10{sup 4} to 1 x 10{sup 6} and were generally the greatest for the tetra- to heptachlorobiphenyls. The average coplanar congener BCFs and BAFs for accumulation from water by phytoplankton, zooplankton, and zebra mussels for the tri-, tetra-, and pentachlorobiphenyls were 54% larger than corresponding values for their homologs. Biomagnification factors (BMFs) of the tetra-, penta-, and hexachlorobiphenyls between zooplankton and zebra mussels and their food source, phytoplankton, typically ranged between 1 and 10, but the average coplanar congener BMFs were 25% less than values for their corresponding homologs. The tendency for coplanar congeners to accumulate to a lesser extent between trophic levels was not as large as their tendency to accumulate from water to a greater extent. Based on accumulation factors, the authors conclude that the dioxin-like tetra- and pentachlorobiphenyls generally accumulate in the phytoplankton, zooplankton, and zebra mussels of the Green Bay ecosystem to a greater extent than other congeners. Fugacity ratios suggest that, in phytoplankton and zooplankton, homolog concentrations were below equilibrium with water throughout the field season, particularly for the more chlorinated groups, but that concentrations in zebra mussels were at or above equilibrium with water.

  3. An ab initio study of oxygen on strained graphene.

    PubMed

    Nguyen, Manh-Thuong

    2013-10-01

    Graphene under strain exhibits new fascinating properties. In this work, I show that lattice strain introduced by uniform expansion of unit cells can strongly modify the chemical properties of graphene. By employing density functional theory calculations I found that strain enhances the bonding between atomic oxygen and graphene. Strain also increases the diffusion energy barrier of atomic oxygen on graphene; however, it reduces the activation energy for oxygen migrating through the graphene sheet. Strong stability enhancement of atomic oxygen on graphene induced by strain would also change molecular oxygen dissociation reactions from endothermic to exothermic. PMID:23945352

  4. An ab initio study of oxygen on strained graphene

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh-Thuong

    2013-10-01

    Graphene under strain exhibits new fascinating properties. In this work, I show that lattice strain introduced by uniform expansion of unit cells can strongly modify the chemical properties of graphene. By employing density functional theory calculations I found that strain enhances the bonding between atomic oxygen and graphene. Strain also increases the diffusion energy barrier of atomic oxygen on graphene; however, it reduces the activation energy for oxygen migrating through the graphene sheet. Strong stability enhancement of atomic oxygen on graphene induced by strain would also change molecular oxygen dissociation reactions from endothermic to exothermic.

  5. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  6. Oxygen ion conducting materials

    DOEpatents

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  7. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  8. Integrated turbomachine oxygen plant

    SciTech Connect

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  9. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  10. Rockets using Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Busemann, Adolf

    1947-01-01

    It is my task to discuss rocket propulsion using liquid oxygen and my treatment must be highly condensed for the ideas and experiments pertaining to this classic type of rocket are so numerous that one could occupy a whole morning with a detailed presentation. First, with regard to oxygen itself as compared with competing oxygen carriers, it is known that the liquid state of oxygen, in spite of the low boiling point, is more advantageous than the gaseous form of oxygen in pressure tanks, therefore only liquid oxygen need be compared with the oxygen carriers. The advantages of liquid oxygen are absolute purity and unlimited availability at relatively small cost in energy. The disadvantages are those arising from the impossibility of absolute isolation from heat; consequently, allowance must always be made for a certain degree of vaporization and only vented vessels can be used for storage and transportation. This necessity alone eliminates many fields of application, for example, at the front lines. In addition, liquid oxygen has a lower specific weight than other oxygen carriers, therefore many accessories become relatively larger and heavier in the case of an oxygen rocket, for example, the supply tanks and the pumps. The advantages thus become effective only in those cases where definitely scheduled operation and a large ground organization are possible and when the flight requires a great concentration of energy relative to weight. With the aim of brevity, a diagram of an oxygen rocket will be presented and the problem of various component parts that receive particularly thorough investigation in this classic case but which are also often applicable to other rocket types will be referred to.

  11. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  12. Elastomer Compatible With Oxygen

    NASA Technical Reports Server (NTRS)

    Martin, Jon W.

    1987-01-01

    Artificial rubber resists ignition on impact and seals at low temperatures. Filled fluoroelastomer called "Katiflex" developed for use in seals of vessels holding cold liquid and gaseous oxygen. New material more compatible with liquid oxygen than polytetrafluoroethylene. Provides dynamic seal at -196 degrees C with only 4 times seal stress required at room temperature. In contrast, conventional rubber seals burn or explode on impact in high-pressure oxygen, and turn hard or even brittle at liquid-oxygen temperatures, do not seal reliably, also see (MFS-28124).

  13. New sources for the hot oxygen geocorona

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Hickey, M. P.; Torr, D. G.

    1994-01-01

    This paper investigates new sources of thermospheric non thermal (hot) oxygen due to exothermic reactions involving numerous minor (ion and neutral) and metastable species. Numerical calculations are performed for low altitude, daytime, winter conditions, with moderately high solar activity and low magnetic activity. Under these conditions we find that the quenching of metastable species are a significant source of hot oxygen, with kinetic energy production rates a factor of ten higher than those due to previously considered O2(+) and NO(+) dissociative recombination reactions. Some of the most significant new sources of hot oxygen are reactions involving quenching of O(+)((sup 2)D), O((sup 1)D), N((sup 2)D), O(+)((sup 2)P) and vibrationally excited N2 by atomic oxygen.

  14. Carbon substituting for oxygen in silicates: A novel mechanism for carbon incorporation in the deep Earth

    NASA Astrophysics Data System (ADS)

    Armentrout, M. M.; Tavakoli, A.; Ionescu, E.; Mera, G.; Riedel, R.; Navrotsky, A.

    2013-12-01

    Traditionally, carbon in the deep Earth has been thought of in terms of either carbonate at high oxygen fugacities or graphite or diamond under more reducing conditions. However, material science studies of amorphous Si-O-C polymer derived ceramics have demonstrated that carbon can be accommodated as an anion substituting for oxygen in mixed silica tetrahedra. Furthermore these structures are energetically favorable relative to a mixture of crystalline silica, silicon carbide, and graphite by ten or more kJ/g.atom. Thermodynamic stability suggests that these nano-structured composites are a potentially important storage mechanism for carbon under moderately reducing conditions. Here we expand the scope of the previous work by examining the compositional effect of geologically relevant cations (calcium and magnesium) on the thermodynamic stability, nanostructure, and ability to accommodate carbon of these composites. Silicon oxy-carbides doped with magnesium, magnesium and calcium or undoped resisted crystallization at 1100 C under inert atmosphere. 29Si NMR of the samples shows a similar distribution of silicon between end-member and mixed sites (Table 1). Results are presented from studies utilizing NMR, high temperature solution calorimetry, and microprobe. Table 1. Percentages of Si species in each material as determined by 29Si NMR.

  15. Wildlife monitoring, modeling, and fugacity

    SciTech Connect

    Clark, T.; Clark, K.; Paterson, S.; Mackay, D.; Norstrom, R.J. )

    1988-02-01

    Observations of wildlife populations and their state of health have played a key role in identifying situations in which chemical contaminants have reached unacceptable concentrations in the environment. The reproductive failure of several species - including the peregrine falcon (Falco peregrinus), the double crested cormorant (Phalocrocorax auritus), the brown pelican (Pelicanus occidentalis), and the osprey (Pandion haliaetus) - has been attributed to organochlorine contamination. As the mine canary can warn of the presence of a poisonous gas in a coal mine, wildlife populations can act as sentinels for excessive chemical contamination. This blunt and often tragic exploitation of wildlife as a sentinel is, to be sure, an extreme example of the more subtle and far-reaching issue of the extent to which wildlife tissues can be used to indicate general levels of environmental contamination and provide guidance to the scientific and regulatory communities about the state of the environment.

  16. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(?) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1?), oxygen atom removal and ozone formation. It is shown that the process O3(? ? 2) + O2(a1?) ? 2O2 + O is the main O2(a1?) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1?) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  17. Oxygen sensitive paper

    NASA Technical Reports Server (NTRS)

    Whidby, J. F.

    1973-01-01

    Paper is impregnated with mixture of methylene blue and ethylenediaminetetraacetic acid. Methylene blue is photo-reduced to leuco-form. Paper is kept isolated from oxygen until ready for use. Paper can be reused by photo-reduction after oxygen exposure.

  18. Oxygen therapy - infants

    MedlinePLUS

    ... help breathing than they can get from an oxygen hood or nasal cannula, but do not need a machine to completely ... is not warm enough. Most (but not all) nasal cannulas use cool, dry oxygen. At higher flow rates, this can irritate the ...

  19. Aircrew oxygen system

    NASA Technical Reports Server (NTRS)

    Babinsky, A. D.; Kiraly, R. J.; Wynveen, R. A.

    1972-01-01

    Closed-loop rebreather system which includes pilot provides oxygen for use in aircraft by safe, reliable method of low weight and size and reduces expense of ground equipment. Water electrolysis generated oxygen is fed into rebreather loop which allows nitrogen elimination and water and carbon dioxide removal.

  20. Oxygen isotope fractionation in double carbonates.

    PubMed

    Zheng, Yong-Fei; Böttcher, Michael E

    2016-01-01

    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates. PMID:25393769

  1. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  2. Multigroup Reactor Lattice Cell Calculation

    Energy Science and Technology Software Center (ESTSC)

    1990-03-01

    The Winfrith Improved Multigroup Scheme (WIMS), is a general code for reactor lattice cell calculations on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters, and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered themore » choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are available in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a succesor version of WIMS-D/4.« less

  3. Oxygen Saturation-Dependent Absorption and Scattering of Blood

    NASA Astrophysics Data System (ADS)

    Faber, Dirk J.; Aalders, Maurice C.; Mik, Egbert G.; Hooper, Brett A.; van Gemert, Martin J.; van Leeuwen, Ton G.

    2004-07-01

    We report on the scattering properties of oxygenated and deoxygenated whole blood from 250 to 1000nm. We determine the complex refractive index of oxygenated and deoxygenated hemoglobin using a Kramers-Kronig analysis and optical coherence tomography measurements. Combining these data with Mie theory, the scattering properties are calculated. The strong oxygen saturation dependent scattering effects should be taken into account in the data analysis of optical oxymetry.

  4. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or transmitted to a receiving station on Earth. By comparison of the short-circuit currents from the fluence-measuring photodiode and the reference photodiode, one can compute the accumulated atomic oxygen fluence arriving in the direction that the fluence monitor is pointing. The device produces a signal that is linear with atomic oxygen fluence using a material whose atomic oxygen erosion yield has been measured over a period of several years in low-Earth orbit.

  5. Oxygen foreshock of Mars

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Lundin, R.; Frahm, R. A.; Sauvaud, J.-A.; Holmstrm, M.; Barabash, S.

    2015-12-01

    Mars Express (MEX) has operated for more than 10 years in the environment of Mars, providing solar wind ion observations from the Analyzer of Space Plasmas and Energetic Atoms experiment's Ion Mass Analyser (IMA). On 21 September 2008, MEX/IMA detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock and this distribution was observed continuously up to more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. This is the first time that a substantial amount of planetary oxygen is observed upstream of the bow shock. Although rare, this is not the only IMA observation of foreshock-like oxygen: oxygen ions are sometimes observed for a short period of time (<5 min) inside the foreshock region. These observations suggest a new escape channel for planetary ions through the acceleration in the bow shock-magnetosheath region.

  6. Electrochemical oxygen concentrator as an oxygen compressor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.

  7. Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors.

    PubMed

    Rols, J L; Condoret, J S; Fonade, C; Goma, G

    1990-02-20

    Limitations of oxygen transfer in fermentation can be solved using auxiliary liquids immiscible in the aqueous phase. The liquids (called oxygen-vectors) used in this study were hydrocarbon (n-dodecane) and perfluorocarbon (forane F66E) in which oxygen is highly soluble (54.9 mg/L in n-dodecane and 118 mg/L in forane F66E at 35 degrees C in contact with air at atmospheric pressure). It has been demonstrated that the use of n-dodecane emulsion in a culture of Aerobacter aerogenes enabled a 3. 5-fold increase of the volumetric oxygen transfer coefficient(k(L)a) calculated on a per-liter aqueous phase basis. The droplet size of the vector played a crucial role in the phenomena. When a static contact between gas bubble and vector droplet was established in water, the vector covered the bubble, in agreement with positive values of the spreading coefficient for these fluids. The determination of the oxygen transfer coefficients (k(L)) in a reactor with a definite interfacial area enabled the main resistance to be located in the boundary layer of the waterside either for a gas-water or a vector-water interface. Because oxygen consumption by weakly hydrophobic cells can only occur in the aqueous phase, the oxygen transfer is achieved according to the following pathway: gas-vector-water-cell. Finally, a mechanism for oxygen transfer within this four-phased system is proposed. PMID:18592535

  8. Peroxidase-catalyzed S-oxygenation: Mechanism of oxygen transfer for lactoperoxidase

    SciTech Connect

    Doerge, D.R.; Cooray, N.M. ); Brewster, M.E. )

    1991-09-17

    The mechanism of organosulfur oxygenation by peroxidases (lactoperoxidase (LPX), chloroperoxidase, thyroid peroxidase, and horseradish peroxidase) and hydrogen peroxide was investigated by use of para-substituted thiobenzamides and thioanisoles. The rate constants for thiobenzamide oxygenation by LPX/H{sub 2}O{sub 2} were found to correlate with calculated vertical ionization potentials, suggesting rate-limiting single-electron transfer between LPX compound I and the organosulfur substrate. The incorporation of oxygen from {sup 18}O-labeled hydrogen peroxide, water, and molecular oxygen into sulfoxides during peroxidase-catalyzed S-oxygenation reactions was determined by LC- and GC-MS. All peroxidases tested catalyzed essentially quantitative oxygen transfer from {sup 18}O-labeled hydrogen peroxide into thiobenzamide S-oxide, suggesting that oxygen rebound from the oxoferryl heme is tightly coupled with the initial electron transfer in the active site. Experiments using H{sub 2}{sup 18}O{sub 2}, and H{sub 2}{sup 18}O showed the LPX catalyzed approximately 85,22, and 0% {sup 18}O-incorporation into thioanisole sulfoxide oxygen, respectively. These results are consistent with an active site controlled mechanism in which the protein radical form of LPX compound I is an intermediate in LPX-mediated sulfoxidation reactions.

  9. Oxygen Isotope Thermometry and Speedometry

    NASA Astrophysics Data System (ADS)

    Ni, H.; Zhang, Y.

    2003-12-01

    Oxygen isotope fractionation depends on temperature and has been extensively applied to geothermometry. However, unless the cooling is rapid enough, formation or peak temperature may not be recorded, and retrograde reaction and diffusion among minerals may lead to inconsistent temperatures for different mineral pairs. Dodson (1973) examined the isotopic exchange of a single crystal with an infinite reservoir and developed the concept of closure temperature (Tc). Giletti (1986) treated closure temperature as an innate property of a mineral and examined the isotopic exchange in a closed system. Eiler et al. (1992a, b, 1994) pointed out that this method is not strictly correct, and developed an FGB model for isotopic evolution of a multi-mineral system. They concluded that the apparent equilibrium temperature (Tae) calculated from isotopic fractionation between two phases is strongly dependent on mineral proportions and could even be negative. Although the FGB model can in principle be applied to determine the cooling history by matching observed and calculated isotopic compositions of the minerals by varying the cooling history, in practice the application is very difficult. In this contribution, we apply the FGB model to look for a simple method for oxygen isotope thermometry and speedometry. Our results can be summarized as follows. For a multi-mineral system, it is best to use two minerals with the greatest isotopic fractionation (such as quartz and magnetite, or quartz and rutile) to calculate Tae. Tae obtained from such a mineral pair almost always lies between the closure temperatures of the two minerals. The significance of this thermometry (calculation of Tae) is actually in speedometry: Using Tae as a proxy for Tc of each of the two minerals, the range of cooling rate can be estimated using the method of Dodson. If the two minerals happen to have diffusion properties so that they have similar closure temperatures (e.g., quartz and magnetite), Tae would be an excellent approximation of Tc of both minerals, from which cooling rate of the rock can be estimated. In summary, a mineral pair with the largest fractionation and similar closure temperatures is the best for obtaining cooling rate. San Jose tonalite (Giletti, 1986) serves as a good example to apply this method. It contains 5 minerals: quartz, plagioclase, hornblende, biotite, and magnetite, in the order of oxygen isotopic ratio (hornblende, quartz, magnetite, biotite and plagioclase, in the order of decreasing closure temperature). Tae between quartz and magnetite is 817 K (Zheng, 1995). Using diffusion data from Giletti and Yund (1984) for quartz and from Giletti and Hess (1988) for magnetite, the cooling rate at Tae ranges from 16 to 65 K/Myr.

  10. Effects of oxygen concentration on atmospheric-pressure pulsed dielectric barrier discharges in argon/oxygen mixture

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Tan, Zhenyu; Liu, Yadi; Pan, Guangsheng; Wang, Xiaolong

    2015-09-01

    In this work, the effects of oxygen concentration on the atmospheric-pressure argon/oxygen pulsed dielectric barrier discharges (DBDs) have been numerically investigated based on a 1-D fluid model. The effects of oxygen concentration in the range below 5% on the important discharge properties of the argon/oxygen pulsed DBDs are systematically calculated and analyzed. The present work presents the following significant observations. The discharge current density still presents, in spite of oxygen addition, the form of two bipolar pulses in one period of the applied voltage, as occurred in pure noble gases. Especially, oxygen admixture affects basically only the first discharge, and the resultant characteristics are that the peak value of the current density reduces and the peak position moves in the direction of the time, when increasing oxygen concentration. Increasing oxygen admixture significantly raises both the breakdown voltage of the second discharge and the averaged electron temperature not only in the pulse duration but also in the time interval between the applied voltage pulses. The averaged dissipated power density reaches its maximum as the oxygen concentration is 3%. Also, increasing oxygen admixture effectively enhances the averaged particle densities of O+, O2(1?g), and O3, but obviously reduces those of electron, Ar+, O, and O(1D). Under the considered oxygen concentrations, O2 + and O3 - are the dominated oxygen-related charged species.

  11. Oxygen Transport in Melts Based on V2O5

    NASA Astrophysics Data System (ADS)

    Klimashin, Anton; Belousov, Valery

    2016-02-01

    An oxygen ion transport model was developed for oxide melts based on V2O5. Within the framework of this model, the values of the parabolic rate constant of catastrophic oxidation of V2O5-deposited copper and the oxygen flux through the slags based on molten V2O5 were calculated and compared with experimental data. The calculated and experimental values are of the same order of magnitude which shows an adequacy of the model.

  12. Oceanography: Oxygen and climate dynamics

    NASA Astrophysics Data System (ADS)

    Doney, Scott C.; Karnauskas, Kristopher B.

    2014-10-01

    Low oxygen levels in tropical oceans shape marine ecosystems and biogeochemistry, and climate change is expected to expand these regions. Now a study indicates that regional dynamics control tropical oxygen trends, bucking projected global reductions in ocean oxygen.

  13. How Does Oxygen Therapy Work?

    MedlinePLUS

    ... attached to the tube from the oxygen container. Nasal Cannula and Portable Oxygen Container The image shows how a nasal cannula and portable oxygen container are attached to a patient. You might ...

  14. Integrated calculator programs for pharmacokinetic calculations.

    PubMed

    Robb, R A; Bauer, L A; Koup, J R

    1982-05-01

    A package of integrated programs for calculating pharmacokinetic variables and drug-dosing regimens using a hand-held programmable calculator is described. Twelve pharmacokinetic programs, which were based on previously published pharmacokinetic equations, were developed for use in a HP-41C hand-held calculator (Hewlett-Packard). The programs perform, pharmacokinetic calculations for many drugs, including digoxin, theophylline, phenytoin, nd the aminoglycosides. Also programs for ideal body weight, body surface area, and creatinine clearance calculations are included. Eleven of the 12 programs can be stored in the calculator at any time. Values generated in one program are stored in memory registers and can be recalled directly for use in other programs. The calculator has a continuous memory; therefore, all stored data, programs, and functions are maintained when the calculator is turned off. The integrated calculator programs provide a quick and reliable means of applying pharmacokinetic principles to everyday hospital pharmacy practice. PMID:7081256

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-07-01

    In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  16. Oxygen and Biological Evolution.

    ERIC Educational Resources Information Center

    Baugh, Mark A.

    1990-01-01

    Discussed is the evolution of aerobic organisms from anaerobic organisms and the accompanying biochemistry that developed to motivate and enable this evolution. Uses of oxygen by aerobic organisms are described. (CW)

  17. High Selectivity Oxygen Delignification

    SciTech Connect

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  18. Traveling with Portable Oxygen

    MedlinePLUS

    ... is rich in oxygen. At higher altitudes, the atmosphere becomes increasingly thin as a result of decreasing ... breathe a mixture of gases similar to the atmosphere inside a pressurized airplane cabin at cruising altitude. ...

  19. Estimation of air concentrations and profiles for polychlorinated dibenzo-p-dioxins and dibenzofurans from calculated vegetation-air partition coefficients

    SciTech Connect

    Kjeller, L.O.; Rappe, C.; Jones, K.C.

    1995-12-31

    Air concentrations of vapor and particulate phase polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are predicted by use of calculated plant-air partition coefficients. The plant-air interaction is reduced to an octanol-air distribution at equilibrium. Partition coefficients are deduced from the fugacity approach and calculated from congener group average data of solubility, vapor pressure and octanol-water partition coefficient. Calculated partition coefficients were used for prediction of the PCDD/F levels and congener profile in air from archived herbage collected pre- and post-1940. Before 1940 the air had a fly ash or combustion derived PCDD/F composition. After 1940 Hp and OCDD/F are superimposed on the combustion pattern, reflection of their release from the extensive use of polychlorinated compounds, notably penta chlorophenol, but also related compounds.

  20. Magnetism in lithium-oxygen discharge product.

    PubMed

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A; Du, Peng; Assary, Rajeev S; Greeley, Jeffrey; Ferguson, Glen A; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A; Amine, Kahlil

    2013-07-01

    Nonaqueous lithium-oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium-oxygen batteries. We demonstrate that the major discharge product formed in the lithium-oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium-oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide-type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules. PMID:23670967

  1. Magnetism in Lithium–Oxygen Discharge Product

    SciTech Connect

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13

    Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  2. HENRY'S LAW CALCULATOR

    EPA Science Inventory

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  3. Thermodynamic laws of the oxygen solubility in liquid metals (Ni, Co, Fe, Mn, Cr) and the formation of oxygen-containing solutions in the alloys based on them

    NASA Astrophysics Data System (ADS)

    Paderin, S. N.; Shil'nikov, E. V.

    2015-12-01

    The solubility of oxygen in liquid Ni, Co, Fe, Mn, and Cr metals (Group IV in the periodic table) has been found for the first time. Linear dependences of the oxygen solubility on the standard Gibbs energy for the oxidation reaction of a liquid metal with gaseous oxygen are found. The revealed function of oxygen solubility is of scientific importance and allows one to develop a theory of oxygen solutions in liquid metals and liquid multicomponent metallic compositions and to calculate the energies of mixing of liquid metals with oxygen from Δ G MO ° for metal oxidation reactions with allowance for pseudoregular-solution model equations. Using the energies of mixing and metal compositions, we calculated the equilibrium oxygen concentrations in a metal molten pool at the end of oxidation stage of melting 08Kh18N10T steel in an arc furnace. This fact indicates practical importance of the found function of the oxygen solubility in metals.

  4. Oxidation-Reduction Calculations in the Biochemistry Course

    ERIC Educational Resources Information Center

    Feinman, Richard D.

    2004-01-01

    Redox calculations have the potential to reinforce important concepts in bioenergetics. The intermediacy of the NAD[superscript +]/NADH couple in the oxidation of food by oxygen, for example, can be brought out by such calculations. In practice, students have great difficulty and, even when adept at the calculations, frequently do not understand…

  5. Oxidation-Reduction Calculations in the Biochemistry Course

    ERIC Educational Resources Information Center

    Feinman, Richard D.

    2004-01-01

    Redox calculations have the potential to reinforce important concepts in bioenergetics. The intermediacy of the NAD[superscript +]/NADH couple in the oxidation of food by oxygen, for example, can be brought out by such calculations. In practice, students have great difficulty and, even when adept at the calculations, frequently do not understand

  6. Calculating Thermophysical Properties Of 12 Fluids

    NASA Technical Reports Server (NTRS)

    Cleghorn, T. F.; Mccarty, R. D.

    1991-01-01

    MIPROPS is set of computer programs giving thermophysical and transport properties of selected fluids. Calculates properties of fluids in both liquid and vapor states over wide range of temperatures and pressures. Fluids included: helium, hydrogen, nitrogen, oxygen, argon, nitrogen trifluoride, methane, ethylene, ethane, propane, isobutane, and normal butane. All programs except helium program incorporate same equation of state. Written in FORTRAN 77.

  7. Fluorescence quantum yield of verteporfin is independent of oxygen

    NASA Astrophysics Data System (ADS)

    Monahan, Tim; Jiang, Shudong; Pogue, Brian

    2008-02-01

    Photodynamic therapy dosimetery and treatment planning is affected by the concentration of photosensitizer in a given tissue, and these values are often estimated based on measurements of fluorescence in the region to be treated. Some studies with benzoporphyrin derivate monoacid ring a (BPD-MA) showed a significant increase in fluorescence quantum yield with deoxygenation of the solution, indicating a possible oxygen sensitive switch in intersystem crossing or reverse intersystem crossing. The experiments done in this paper show that at oxygenation levels found in vivo the variation in fluorescence quantum yield of liposomal BPD-MA (verteporfin) is negligible for changes in solution oxygenation. The results from all of the experiments show that it is not necessary to measure the oxygenation of tissues when calculating the concentration of verteporfin from fluorescence measurements, so that dosimetry calculations based upon photosensitizer levels would not be affected by the tissue oxygenation. This greatly simplifies the dosimetry process with verteporfin.

  8. Atmospheric odd oxygen production due to the photodissociation of ordinary and isotopic molecular oxygen

    NASA Technical Reports Server (NTRS)

    Omidvar, K.; Frederick, J. E.

    1987-01-01

    Line-by-line calculations are performed to determine the contributions of the Schumann-Runge bands of ordinary and isotopic oxygen to the photodissociation of these molecules at different altitudes. The contributions to the dissociation rates of the satellite lines and of the first and higher vibrational states of the initial molecular states are found to be insignificant. At 70 km, (O-16)(O-18) is found to produce 10 times as much odd oxygen as would be produced if the isotope did not have selective absorption, and 6 percent of the odd oxygen produced is due to this isotope. It is noted that the excess odd oxygen produced is not enough to explain the excess quantity of ozone observed in the atmosphere, which cannot be accounted for in photochemical models. Comparison with previous results is made.

  9. Oxygen chemistry of shocked interstellar clouds. III - Sulfur and oxygen species in dense clouds

    NASA Technical Reports Server (NTRS)

    Leen, T. M.; Graff, M. M.

    1988-01-01

    The chemical evolution of oxygen and sulfur species in shocked dense clouds is studied. Reaction rate constants for several important neutral reactions are examined, and revised values are suggested. The one-fluid magnetohydrodynamic shock structure and postshock chemical evolution are calculated for shocks of velocity v(s) = 10 km/s through clouds of initial number density n(0) = 100,000/cu cm and of molecule/atom ratios H2/H = 10, 1000, and 100,000 with most sulfur contained initially in molecules SO2 and SO. Abundances of SO2, SO, CS, and OCS remain near their preshock values, except in clouds containing substantial amounts of atomic hydrogen, where significant destruction of sulfur-oxygen species occurs. Abundances of shock-enhanced molecules HS and H2O are sensitive to the molecule/atom ratio. Nonthermal oxygen-hydrogen chemistry has a minor effect on oxygen-sulfur molecules in the case H2/H = 10.

  10. Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.; Liu, Baochang; Penjweini, Rozhin

    2015-03-01

    An appropriate expression for the oxygen supply rate (?s) is required for the macroscopic modeling of the complex mechanisms of photodynamic therapy (PDT). It is unrealistic to model the actual heterogeneous tumor microvascular networks coupled with the PDT processes because of the large computational requirement. In this study, a theoretical microscopic model based on uniformly distributed Krogh cylinders is used to calculate ?s=g (1-[O]/[]0) that can replace the complex modeling of blood vasculature while maintaining a reasonable resemblance to reality; g is the maximum oxygen supply rate and [O]/[]0 is the volume-average tissue oxygen concentration normalized to its value prior to PDT. The model incorporates kinetic equations of oxygen diffusion and convection within capillaries and oxygen saturation from oxyhemoglobin. Oxygen supply to the tissue is via diffusion from the uniformly distributed blood vessels. Oxygen can also diffuse along the radius and the longitudinal axis of the cylinder within tissue. The relations of ?s to [3O2]/] are examined for a biologically reasonable range of the physiological parameters for the microvasculature and several light fluence rates (?). The results show a linear relationship between ?s and [3O2]/], independent of ? and photochemical parameters; the obtained g ranges from 0.4 to 1390 ?M/s.

  11. Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model

    PubMed Central

    Zhu, Timothy C.; Liu, Baochang; Penjweini, Rozhin

    2015-01-01

    Abstract. An appropriate expression for the oxygen supply rate (?s) is required for the macroscopic modeling of the complex mechanisms of photodynamic therapy (PDT). It is unrealistic to model the actual heterogeneous tumor microvascular networks coupled with the PDT processes because of the large computational requirement. In this study, a theoretical microscopic model based on uniformly distributed Krogh cylinders is used to calculate ?s=g (1?[O32]/[O32]0) that can replace the complex modeling of blood vasculature while maintaining a reasonable resemblance to reality; g is the maximum oxygen supply rate and [O32]/[O32]0 is the volume-average tissue oxygen concentration normalized to its value prior to PDT. The model incorporates kinetic equations of oxygen diffusion and convection within capillaries and oxygen saturation from oxyhemoglobin. Oxygen supply to the tissue is via diffusion from the uniformly distributed blood vessels. Oxygen can also diffuse along the radius and the longitudinal axis of the cylinder within tissue. The relations of ?s to [3O2]/[3O2]0 are examined for a biologically reasonable range of the physiological parameters for the microvasculature and several light fluence rates (?). The results show a linear relationship between ?s and [3O2]/[3O2]0, independent of ? and photochemical parameters; the obtained g ranges from 0.4 to 1390???M/s. PMID:25741665

  12. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  13. Atomic oxygen stimulated outgassing

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Reynolds, John M.

    1991-01-01

    The passive Long Duration Exposure Facility (LDEF) Experiment A0034, Atomic Oxygen Simulated Outgassing, consisted of two identical one-sixth tray modules, exposing selected thermal control coatings to atomic oxygen and the combined space environment on the leading edge and, for reference, to the relative wake environment on the trailing edge. Optical mirrors were included adjacent to the thermal coatings for deposition of outgassing products. Ultraviolet grade windows and metal covers were provided for additional assessment of the effects of the various environmental factors. Preliminary results indicate that orbital atomic oxygen is both a degrading and a optically restorative factor in the thermo-optical properties of selected thermal coatings. There is evidence of more severe optical degradation on collector mirrors adjacent to coatings that were exposed to the RAM-impinging atomic oxygen. This evidence of atomic oxygen stimulated outgassing is discussed in relation to alternative factors that could affect degradation. The general effects of the space environment on the experiment hardware as well as the specimens are discussed.

  14. Venous oxygen saturation.

    PubMed

    Hartog, Christiane; Bloos, Frank

    2014-12-01

    Early detection and rapid treatment of tissue hypoxia are important goals. Venous oxygen saturation is an indirect index of global oxygen supply-to-demand ratio. Central venous oxygen saturation (ScvO2) measurement has become a surrogate for mixed venous oxygen saturation (SvO2). ScvO2 is measured by a catheter placed in the superior vena cava. After results from a single-center study suggested that maintaining ScvO2 values >70% might improve survival rates in septic patients, international practice guidelines included this target in a bundle strategy to treat early sepsis. However, a recent multicenter study with >1500 patients found that the use of central hemodynamic and ScvO2 monitoring did not improve long-term survival when compared to the clinical assessment of the adequacy of circulation. It seems that if sepsis is recognized early, a rapid initiation of antibiotics and adequate fluid resuscitation are more important than measuring venous oxygen saturation. PMID:25480771

  15. Interactions of Au cluster anions with oxygen

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Jena, Puru; Kim, Young Dok; Fischer, Matthias; Gantefr, Gerd

    2004-04-01

    Experimental and theoretical evidence is presented for the nondissociative chemisorption of O2 on free Au cluster anions (Aun-, n=number of atoms) with n=2, 4, 6 at room temperature, indicating that the stabilization of the activated di-oxygen species is the key for the unusual catalytic activities of Au-based catalysts. In contrast to Aun- with n=2, 4, 6, O2 adsorbs atomically on Au monomer anions. For the Au monomer neutral, calculations based on density functional theory reveal that oxygen should be molecularly bound. On Au dimer and tetramer neutrals, oxygen is molecularly bound with the O-O bond being less activated with respect to their anionic counterparts, suggesting that the excess electron in the anionic state plays a crucial role for the O-O activation. We demonstrate that interplay between experiments on gas phase clusters and theoretical approach can be a promising strategy to unveil mechanisms of elementary steps in nanocatalysis.

  16. Lunar oxygen production by pyrolysis of regolith

    NASA Technical Reports Server (NTRS)

    Senior, Constance L.

    1991-01-01

    Oxygen represents one of the most desirable products of lunar mining and manufacturing. Among the many processes which have been proposed for oxygen production, pyrolysis stands out as one which is uncomplicated and easy to bootstrap. Pyrolysis or vapor-phase reduction involves heating regolith to temperatures sufficient to allow partial decomposition and vaporization. Some metal oxides give up oxygen upon heating, either in the gas phase to form reduced gaseous species or in the condensed phase to form a metallic phase. Based on preliminary experiments and equilibrium calculations, the temperatures needed for pyrolysis are expected to be in the range of 2000 to 2200 K, giving total gas pressures of 0.001 to 0.1 torr. Bulk regolith can be used as a feedstock without beneficiation with concentrated solar radiation supplying most of energy needed. Further, selective condensation of metal-containing species from the gas phase may yield metallic iron and silicon as byproducts.

  17. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline 80.66 Calculation of... blend, based upon its percentage oxygenate by volume and density, shall exclude denaturants and...

  18. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline 80.66 Calculation of... blend, based upon its percentage oxygenate by volume and density, shall exclude denaturants and...

  19. Experimental and theoretical investigation of oxygen diffusion in stabilised zirconia

    NASA Astrophysics Data System (ADS)

    Kilo, M.; Fundenberger, C.; Argirusis, C.; Taylor, M. A.; Borchardt, G.; Weller, M.; Jackson, R. A.

    Oxygen diffusion in stabilised zirconias is investigated by the simultaneous application of computer modelling and experimental techniques to yttria-stabilised zirconia. Using the Mott-Littleton method, migration pathways for oxygen ions have been calculated in perfect cubic zirconia. The oxygen migration occurs through a straight pathway, but not starting from the ideal lattice positions. The calculated activation energy of migration is about 0.2 eV. Oxygen transport is investigated experimentally in YSZ containing 8-24 mol% Y2O3 as a function of stabiliser content by combining the stable isotope (O-18(2)) method with ionic conductivity measurements. It was found that for a given temperature, diffusion and conductivity are highest for YSZ containing 8-10 mol% yttria, but with differing activation energies which can be compared to the calculated values.

  20. Clathrates: Computer programs to calculate fluid inclusion V- X properties using clathrate melting temperatures

    NASA Astrophysics Data System (ADS)

    Bakker, Ronald J.

    1997-02-01

    Knowledge of final clathrate melting temperatures is essential for estimates of salinity, bulk composition and density in H 2O-gas-rich fluid inclusions by nondestructive methods. The salinities calculated strongly depend on the thermodynamic model used, which involves many independent intensive properties and related parameters, such as osmotic coefficients, fugacity coefficients, gas solubilities. Four programs have been developed ( DENSITY, ICE, Q2, and NOSALT) using Turbo C++ version 3.0 to handle clathrate melting temperatures with several initiation procedures. These programs allow the calculation of bulk densities and compositions ( V- X properties) for H 2O-CO 2-CH 4-N 2-NaCl-KCl-CaCl 2-rich fluid inclusions using the clathrate melting temperature in combnation with liquidvapour equilibria, data from Raman spectroscopic analysis of the nonaqueous phases, and volume fraction estimates of the phases present. Calculations are restricted to fluid compositions less than eutectic salinities. If volume estimates are not provided, the programs calculate only the properties of the individual phases present in fluid inclusions during clathrate melting, including the salinity. Errors in measured parameters and in volume fraction estimates, which may be relatively large, are also handled by the programs.

  1. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  2. Premixed silane-oxygen-nitrogen flames

    SciTech Connect

    Tokuhashi, K.; Horiguchi, S.; Uranco, Y.; Iwasaka, M.; Ohtani, H.; Kondo, S. )

    1990-10-01

    The burning velocities of lean premised silane-oxygen-nitrogen flames were measured in the silane and oxygen concentration ranges from 1.6% to 2.9% and from 4% to 24%, respectively. Combustion product analyses and flame temperature measurements were also carried out. The burning velocity of a silane-air flame is around 55 cm/ at a silane concentration of 2%. For lean mixtures, when the oxygen concentration is reduced, dependence of burning velocity upon silane concentration decreases but does not significantly affect the flame temperature. For extremely lean flames, the degree of hydrogen production increase with decreasing silane, although silane is consumed almost completely. On the other hand, if the silane concentration exceeds stoichiometric, the burning velocity increases gradually with increasing silane concentration. In that case, silane as well as oxygen are consumed completely and, at the same time, hydrogen rather than water production becomes dominant. The mechanism of silane combustion is discussed, based on numerical calculations, where the mechanism used in the calculation is assembled by analogy of silane to methane combustion.

  3. Spontaneous gas bubbling in microporous oxygenators.

    PubMed

    Karichev, Z R; Muler, A L; Vishnevsky, M E

    1999-10-01

    During operation of the microporous membrane oxygenators at some conditions, gas microbubbles penetrate into the blood. This effect, so-called spontaneous bubbling, takes place even when the blood pressure is higher than the gas pressure. This phenomenon was confirmed experimentally both in a model cell with hydrophobic microporous hollow fibers being used in the oxygenators and in in vitro tests on the actual microporous hollow fiber oxygenator. We proposed a mechanism of spontaneous gas bubbling into liquid that contains dissolved gases. Because of a partial pressure gradient, the dissolved gases and water vapors are transported from blood into the gas pore. This causes Stefans gas flow directed from the liquid-gas interface. Because of the high hydraulic resistance of the micropores, gas pressure at the meniscus increases up to gas bubbling. A mishandled priming of the oxygenator as well as the blood pressure pulsation caused by the roller pump operation contribute to spontaneous gas bubbling in the microporous oxygenators. The flow and pressure in the hydrophobic pores were calculated for various gases. PMID:10564288

  4. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  5. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  6. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  7. FUEL OXYGENATES HEALTH ISSUES

    EPA Science Inventory

    Oxygenates (e.g., methyl tertiary butyl ether [MTBE], ethanol) are required in certain areas of the United States by the 1990 Clean Air Act Amendments. MTBE and ethanol have also been used to increase octane ratings in U.S. gasoline since the 1970s. In 1996 alone, 10 billion Kg...

  8. Oxygenated Derivatives of Hydrocarbons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  9. Using oxygen at home

    MedlinePLUS

    ... run out. Never has to be refilled. Needs electricity to work. You must have a back-up ... Tell your local fire department, electric company, and telephone company that you use oxygen in your home. They will restore power sooner to your house or neighborhood ...

  10. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  11. The Oxygen Cycle.

    ERIC Educational Resources Information Center

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  12. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  13. Spacecraft oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1974-01-01

    Recovery system is comprised of three integrated subsystems: electrochemical carbon dioxide concentrator which removes carbon dioxide from atmosphere, Sabatier reactor in which carbon dioxide is reduced with hydrogen to form methane and water, and static-feed water electrolysis cell to recover oxygen from water.

  14. The Oxygen Flask Method

    ERIC Educational Resources Information Center

    Boulton, L. H.

    1973-01-01

    Discusses application of Schoniger's method of quantitative organic elemental analysis in teaching of qualitative analysis of the halogens, nitrogen, sulphur, and phosphorus. Indicates that the oxygen flask method is safe and suitable for both high school and college courses because of simple apparatus requirements. (CC)

  15. Ocean Ridges and Oxygen

    NASA Astrophysics Data System (ADS)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized material, and oxygen could rise. Once the ocean becomes fully oxidized, a substantial subduction flux operates as a negative feedback. Plate tectonic geochemical cycles may have played a very significant role in the oxygen balance in both the ancient and modern Earth.

  16. Transport properties of ground state oxygen atoms

    NASA Technical Reports Server (NTRS)

    Holland, Paul M.; Biolsi, Louis

    1988-01-01

    The transport properties of dilute monatomic gases depend on the two-body interactions between like atoms. When two ground-state oxygen atoms interact, they can follow any of 18 potential energy curves corresponding to O2, all of which contribute to the transport properties of the ground-state atoms. Transport collision integrals have been calculated for those interactions with an attractive minimum in the potential, and repulsive ab initio potential-energy curves have been accurately represented. Results are given for viscosity, thermal conductivity, and diffusion and they are compared with previous theoretical calculations.

  17. Interactions of Oxygen and Hydrogen on Pd(111) surface

    SciTech Connect

    Demchenko, D.O.; Sacha, G.M.; Salmeron, M.; Wang, L.-W.

    2008-06-25

    The coadsorption and interactions of oxygen and hydrogen on Pd(1 1 1) was studied by scanning tunneling microscopy and density functional theory calculations. In the absence of hydrogen oxygen forms a (2 x 2) ordered structure. Coadsorption of hydrogen leads to a structural transformation from (2 x 2) to a ({radical}3 x {radical}3)R30 degree structure. In addition to this transformation, hydrogen enhances the mobility of oxygen. To explain these observations, the interaction of oxygen and hydrogen on Pd(1 1 1) was studied within the density functional theory. In agreement with the experiment the calculations find a total energy minimum for the oxygen (2 x 2) structure. The interaction between H and O atoms was found to be repulsive and short ranged, leading to a compression of the O islands from (2 x 2) to ({radical}3 x {radical}3)R30 degree ordered structure at high H coverage. The computed energy barriers for the oxygen diffusion were found to be reduced due to the coadsorption of hydrogen, in agreement with the experimentally observed enhancement of oxygen mobility. The calculations also support the finding that at low temperatures the water formation reaction does not occur on Pd(1 1 1).

  18. Distillation Calculations with a Programmable Calculator.

    ERIC Educational Resources Information Center

    Walker, Charles A.; Halpern, Bret L.

    1983-01-01

    Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the

  19. Acute use of oxygen therapy

    PubMed Central

    Pilcher, Janine; Beasley, Richard

    2015-01-01

    Summary A major change is needed in the entrenched culture of routinely administering high-concentration oxygen to acutely ill patients regardless of need. Oxygen is a drug that should be prescribed for specific indications. There should be a documented target range for oxygen saturation, and regular monitoring of the patients response. There are risks from unrelieved hypoxaemia due to insufficient oxygen therapy, and from provoked hyperoxaemia due to excessive oxygen therapy. Oxygen therapy should therefore be titrated so that the saturation is within a range that avoids these risks. If oxygen requirements are increasing, the clinician should review the patient and consider transfer to a higher level of care. If oxygen requirements are decreasing, consider reducing or discontinuing oxygen therapy. PMID:26648631

  20. Adipose tissue oxygenation

    PubMed Central

    Hodson, Leanne

    2014-01-01

    With the increasing prevalence of obesity there is a concomitant increase in white adipose tissue dysfunction, with the tissue moving toward a proinflammatory phenotype. Adipose tissue hypoxia has been proposed as a key underlying mechanism triggering tissue dysfunction but data from human, in vivo studies, to support this hypothesis is limited. Human adipose tissue oxygenation has been investigated by direct assessment of tissue oxygen tension (pO2) or by expression of hypoxia-sensitive genes/protein in lean and obese subjects but findings are inconsistent. An obvious read-out of hypoxia is the effect on intermediary metabolism, and we have investigated the functional consequences, in terms of a “metabolic signature” of human adipose tissue hypoxia in vivo. Here, we discuss the different approaches used and the importance of integrative physiological techniques to try and elucidate what defines adipose tissue hypoxia in humans. PMID:24575375

  1. Integrated oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Davenport, Ronald J.

    1993-01-01

    Life Systems has conceptualized an innovative Integrated Oxygen Recovery System (IORS) applicable to advanced mission air revitalization. The IORS provides the capability to electrochemically generate metabolic oxygen (O2) and recover O2 from the space habitat atmosphere via a carbon dioxide (CO2) reduction process within a single assembly. To achieve this capability, the IORS utilizes a Solid Metal Cathode (SMC) water electrolysis unit that simultaneously serves as the Sabatier CO2 reduction reactor. The IORS enables two major life support systems currently baselined in closed loop air revitalization systems to be combined into one smaller, less complex system. This concept reduces fluidic and electrical interface requirements and eliminates a hydrogen (H2) interface. Life Systems is performing an evaluation of the IORS process directed at demonstrating performance and quantifying key physical characteristics including power, weight, and volume. Technical progress achieved during the first two months of the program is summarized.

  2. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  3. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E. (Kensington, CA)

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  4. Oxygen Pickup Ions at Mars: Model Comparisons with MAVEN Data and Implications for Oxygen Escape

    NASA Astrophysics Data System (ADS)

    Cravens, Tom; Rahmati, Ali; Larsen, Davin; Lillis, Rob; Connerney, Jack; Halekas, Jasper; Bougher, Stephen W.

    2015-04-01

    A major source of atmospheric escape on Mars is the dissociative recombination of O2+ in the ionosphere, which creates oxygen atoms with energies exceeding the escape energy. These atoms are the source of the hot oxygen exosphere of Mars, which extends to tens of Martian radii. Direct measurement of the distant oxygen exosphere, which is mainly populated with escaping neutral oxygen atoms, is difficult due to the very low densities at these distances. However, ionization of these atoms creates pickup ions that are accelerated by the solar wind convective electric field to high energies, allowing them to be measured by the SEP (Solar Energetic Particle) instrument onboard the MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft.We modeled the hot oxygen at Mars and its interaction with the solar wind using Monte Carlo and test particle methods and using densities and temperatures from the MTGCM (Mars Thermospheric General Circulation Model). The distribution function of hot oxygen atoms at 300 km is calculated using a two-stream method, and the Liouville theorem extends this distribution for the gravitationally bound and escaping parts to high altitudes. We determined the O+ flux upstream of Mars as a function of energy, and separate it into parts due both the gravitationally bound and the escaping oxygen. Significant fluxes of O+ ions are predicted for energies greater than 60 keV and have been observed by the SEP instrument, even when MAVEN was several Martian radii away from the planet. These data-model comparisons will be presented and then interpreted in terms of the escape of oxygen from Mars.

  5. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  7. Atmospheric Oxygen Photoabsorption

    NASA Technical Reports Server (NTRS)

    Slanger, Tom G.

    1996-01-01

    The work conducted on this grant was devoted to various aspects of the photophysics and photochemistry of the oxygen molecule. Predissociation linewidths were measured for several vibrational levels in the O2(B3 Sigma(sub u)(sup -)) state, providing good agreement with other groups working on this important problem. Extensive measurements were made on the loss kinetics of vibrationally excited oxygen, where levels between v = 5 and v = 22 were investigated. Cavity ring-down spectroscopy was used to measure oscillator strengths in the oxygen Herzberg bands. The great sensitivity of this technique made it possible to extend the known absorption bands to the dissociation limit as well as providing many new absorption lines that seem to be associated with new O2 transitions. The literature concerning the Herzberg band strengths was evaluated in light of our new measurements, and we made recommendations for the appropriate Herzberg continuum cross sections to be used in stratospheric chemistry. The transition probabilities for all three Herzberg band systems were re-evaluated, and we are recommending a new set of values.

  8. Oxygen requirements of yeasts.

    PubMed Central

    Visser, W; Scheffers, W A; Batenburg-van der Vegte, W H; van Dijken, J P

    1990-01-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, such as Torulaspora delbrueckii and Candida tropicalis, grew poorly mu max, 0.03 and 0.05 h-1, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth. Images PMID:2082825

  9. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  10. SINGLET OXYGEN IN NATURAL WATERS

    EPA Science Inventory

    Singlet oxygen is a reactive, electronically excited form of molecular oxygen that rapidly oxidizes a wide variety of organic substances, such as the polycyclic aromatics in petroleum hydrocarbon and the amino acids, histidine, tryptophan, and methionine. Studies of water samples...

  11. Ancient Oceans Had Less Oxygen

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    The amount of dissolved oxygen in the oceans in the mid-Proterozoic period has evolutionary implications since essential trace metals are redox sensitive. The findings suggest that there is global lack of oxygen in seawater.

  12. Effect of energetic oxygen atoms on neutral density models.

    NASA Technical Reports Server (NTRS)

    Rohrbaugh, R. P.; Nisbet, J. S.

    1973-01-01

    The dissociative recombination of O2(+) and NO(+) in the F region results in the production of atomic oxygen and atomic nitrogen with substantially greater kinetic energy than the ambient atoms. In the exosphere these energetic atoms have long free paths. They can ascend to altitudes of several thousand kilometers and can travel horizontally to distances of the order of the earth's radius. The distribution of energetic oxygen atoms is derived by means of models of the ion and neutral densities for quiet and disturbed solar conditions. A distribution technique is used to study the motion of the atoms in the collision-dominated region. Ballistic trajectories are calculated in the spherical gravitational field of the earth. The present calculations show that the number densities of energetic oxygen atoms predominate over the ambient atomic oxygen densities above 1000 km under quiet solar conditions and above 1600 km under disturbed solar conditions.

  13. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones I: Oxygen consumption rates and critical oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Trueblood, Lloyd A.; Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91μmolg-1h-1 at 10°C and 12.62μmolg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.

  14. Oxygen in demand: How oxygen has shaped vertebrate physiology.

    PubMed

    Dzal, Yvonne A; Jenkin, Sarah E M; Lague, Sabine L; Reichert, Michelle N; York, Julia M; Pamenter, Matthew E

    2015-08-01

    In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite of adaptations that maintain cellular oxygen content across vertebrate taxa, which underscores the value of the comparative approach to the study of physiological systems. PMID:25698654

  15. In-situ measurement of oxygen concentration under high pressure and the application to oxygen permeation through polymer films

    NASA Astrophysics Data System (ADS)

    Sterr, Julia; Rtzer, Katharina; Weck, Kathrin; Wirth, Andreas Leonhard Karl; Fleckenstein, Benedikt Stefan; Langowski, Horst-Christian

    2015-09-01

    Up until now, gas permeation through polymers under high pressure has not been able to be measured continuously. The combination of a special high pressure cell and a commercially available fluorescence-based oxygen measurement system allows in-situ monitoring of oxygen permeation through a polymer sample under pressure in an aqueous environment. The principle of the oxygen sensor is based on dynamic fluorescence quenching and measurement of the fluorescence decay time. It was observed that the decay time increases non-linearly with the applied pressure, and hence, the displayed oxygen concentration has to be corrected. This deviation between the measured and the real concentration depends not only on the pressure but also on the absolute oxygen concentration in the water. To obtain a calibration curve, tests were performed in the pressure range between 1 and 2000 bars and initial oxygen concentrations in the range between 40 and 280 ?mol/l. The polynomial calibration curve was of the fourth order, describing the raw data with a coefficient of determination R2 > 0.99. The effective oxygen permeation through polymeric samples can be calculated with this function. A pressure hysteresis test was undertaken but no hysteresis was found. No temperature dependence of the oxygen sensor signal was observed in the range between 20 C and 30 C. This study presents for the first time data showing the oxygen permeation rates through a polyethylene film in the pressure range between 1 and 2000 bars at 23 C.

  16. In-situ measurement of oxygen concentration under high pressure and the application to oxygen permeation through polymer films.

    PubMed

    Sterr, Julia; Rtzer, Katharina; Weck, Kathrin; Wirth, Andreas Leonhard Karl; Fleckenstein, Benedikt Stefan; Langowski, Horst-Christian

    2015-09-21

    Up until now, gas permeation through polymers under high pressure has not been able to be measured continuously. The combination of a special high pressure cell and a commercially available fluorescence-based oxygen measurement system allows in-situ monitoring of oxygen permeation through a polymer sample under pressure in an aqueous environment. The principle of the oxygen sensor is based on dynamic fluorescence quenching and measurement of the fluorescence decay time. It was observed that the decay time increases non-linearly with the applied pressure, and hence, the displayed oxygen concentration has to be corrected. This deviation between the measured and the real concentration depends not only on the pressure but also on the absolute oxygen concentration in the water. To obtain a calibration curve, tests were performed in the pressure range between 1 and 2000 bars and initial oxygen concentrations in the range between 40 and 280 ?mol/l. The polynomial calibration curve was of the fourth order, describing the raw data with a coefficient of determination R(2) > 0.99. The effective oxygen permeation through polymeric samples can be calculated with this function. A pressure hysteresis test was undertaken but no hysteresis was found. No temperature dependence of the oxygen sensor signal was observed in the range between 20?C and 30?C. This study presents for the first time data showing the oxygen permeation rates through a polyethylene film in the pressure range between 1 and 2000 bars at 23?C. PMID:26395698

  17. Assessing hafnium on hafnia as an oxygen getter

    SciTech Connect

    O'Hara, Andrew; Demkov, Alexander A.; Bersuker, Gennadi

    2014-05-14

    Hafnium dioxide or hafnia is a wide band gap dielectric used in a range of electronic applications from field effect transistors to resistive memory. In many of these applications, it is important to maintain control over oxygen stoichiometry, which can be realized in practice by using a metal layer, specifically hafnium, to getter oxygen from the adjacent dielectric. In this paper, we employ density functional theory to study the thermodynamic stability of an interface between (100)-oriented monoclinic hafnia and hafnium metal. The nudged elastic band method is used to calculate the energy barrier for migration of oxygen from the oxide to the metal. Our investigation shows that the presence of hafnium lowers the formation energy of oxygen vacancies in hafnia, but more importantly the oxidation of hafnium through the migration of oxygen from hafnia is favored energetically.

  18. Calculate and Plot Complex Potential

    Energy Science and Technology Software Center (ESTSC)

    1998-05-05

    SOLUPLOT is a program designed to calculate and plot complex potential, pH diagrams and log oxygen activity, pH diagrams for aqueous chemical syatems, considering speciation of ligands, from free energy and thermodynamic activity data. These diagrams, commonly referred to as Eh-pH and ao2-pH diagrams, respectively, define areas of predominance in Eh-pH diagrams or ao2-pH space for chemical species of a chemical system at equilibrium. Over an area of predominance, one predominant species is at greatermore » activity than the other species of the system considered. The diagram axes, pH (a measure of hydrogen ion activity) and either Eh or log ao2 (measures of a tendency toward either oxidation or reduction) , are paremeters commonly applied in describing the chemistry of aqueous systems.« less

  19. Oxygen Transport Membranes

    SciTech Connect

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phase membranes have been evaluated for structural properties. An increasing crack growth resistance was observed for the membranes heat-treated at 1000 C in air and N{sub 2} with increasing crack length. The combined effect of thermal and elastic mismatch stresses on the crack path was studied and the fracture behavior of the dual phase composite at the test conditions was analyzed. Ceramic/metal (C/M) seals are needed to form a leak-tight interface between the OTM and a nickel-base super alloy. It was concluded that Ni-based brazing alloys provided the best option in terms of brazing temperature and final operating conditions after analyzing several possible brazing systems. A mechanical testing procedure has been developed. This model was tested with model ceramic/metal systems but it is expected to be useful for testing concentric perovskite/metal seals.

  20. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  1. Interaction between oxygen and single self-interstitials in silicon

    NASA Astrophysics Data System (ADS)

    Pinho, N.; Coutinho, J.; Jones, R.; Briddon, P. R.

    2003-12-01

    Unlike vacancy-oxygen defects, the role of Si interstitials (I) when trapped by interstitial oxygen (Oi) is far from clear. In an attempt to enlighten this interaction between these complexes, we report ab initio modeling of IOi defects. The calculated properties such as vibrational modes and spin density are compared with the available experimental data. We conclude with the assignment of the A18 EPR signal to a C1h symmetry IOi defect in the positive charge state.

  2. Model calculations of nuclear data for biologically-important elements

    SciTech Connect

    Chadwick, M.B.; Blann, M.; Reffo, G.; Young, P.G.

    1994-05-01

    We describe calculations of neutron-induced reactions on carbon and oxygen for incident energies up to 70 MeV, the relevant clinical energy in radiation neutron therapy. Our calculations using the FKK-GNASH, GNASH, and ALICE codes are compared with experimental measurements, and their usefulness for modeling reactions on biologically-important elements is assessed.

  3. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the Archimedes method. The bulk density was 5.029 and 5.57 g/cc for LSFT and dual phase membranes, respectively. The microstructure of the dual phase membrane was analyzed using SEM. It is evident from the micrograph that the microstructure is composed of dual phases. The dense circular regions are enclosed by the less dense, continuous phase which accommodates most of the pores. The pores are normally aggregated and found clustered along the dense regions where as the dense regions do not have pores. Upon closer observation of the micrograph it is revealed that the dense region has a clear circular cleavage or crack as their boundary. The circular cleavage clearly encompasses a dense region and which consists of no pore or any flaw that is visible. The size distribution of the dense, discontinuous regions is varying from 5 to 20 {micro}m with a D{sub 50} of 15 {micro}m. The grain size distribution was estimated from the micrographs using image analysis and a unimodal distribution of grains was observed with an average grain size of 1.99 {micro}m. The chemical compositions of the membranes were analyzed using EDS analysis and no other impurities were observed. The XRD analysis was carried out for the membranes and the phase purity was confirmed. The fracture toughness of LSFT membranes at room temperature has to be calculated using the Vickers indentation method. An electrochemical cell has been designed and built for measurements of the ionic conductivity by the use of blocking electrodes. Preliminary measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Modifications to the apparatus to improve the data quality have been completed. Electron microscopy studies of the origin of the slow kinetics on reduction of ferrites have been initiated. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  4. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    NASA Technical Reports Server (NTRS)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  5. Oxygen isotope thermometry, speedometry, and hygrometry: Apparent equilibrium temperature versus closure temperature

    NASA Astrophysics Data System (ADS)

    Ni, Huaiwei

    2015-01-01

    than indicating formation/peak temperature, oxygen isotope fractionations preserved in mineral assemblages of slowly cooled plutonic and metamorphic rocks yield apparent equilibrium temperatures (Tae). The isotopic fractionations and Tae values deliver information about cooling history, as the extent of diffusive exchange of oxygen isotopes during cooling is controlled by the cooling time scale or cooling rate. Despite that several models, such as the Fast Grain Boundary (FGB) model, have been developed to simulate oxygen isotope exchange between coexisting minerals during cooling, extraction of cooling rate remains far from straightforward. On the other hand, there is a well-defined quantitative relationship between the Dodson closure temperature (Tc) and the cooling rate, but Tc cannot be directly measured. Based on simulation results of existing models for a variety of rock systems, including open systems (with an infinite fluid reservoir), closed systems (with negligible fluid participation) and semi-open systems (with moderate fluid participation), this study demonstrates that Tae of the mineral pair with the largest equilibrium isotope fractionation (PLEIF) is always bounded by their Tc values, regardless of how mineral proportions vary or how significant a role fluid has played in isotopic exchange. If the two Tc values happen to be similar, Tae will serve as a good approximation of both Tc, provided that the equilibrium fractionation factor has been precisely determined as a function of temperature. One such pair is quartz-magnetite. By contrast, a mineral pair with similar Tc but relatively small fractionation is susceptible to the disturbance from other minerals, hence does not always have Tae confined within their Tc range. The relationship of Tae-Tc correspondence for PLEIF with similar Tc can be used to constrain either cooling rate (i.e., as a speedometry method) or oxygen isotope diffusivity if one of them has been independently determined. In the latter case, the inferred oxygen diffusivity may be an index of water fugacity (i.e., as a hygrometry method) when compared with experimental diffusivity values measured under different fluid conditions.

  6. Should we pre-oxygenate?

    PubMed

    Erasmus, F R; Murray, W B

    1981-03-21

    The importance of routine pre-oxygenation before induction of anaesthesia was demonstrated in animals. The onset of dangerous levels of hypoxia after the administered of suxamethonium can be delayed considerably by the administration of pure oxygen for 5 minutes before induction. This allows time for an atraumatic and a panic-free intubation before controlled ventilation. After pre-oxygenation the volume of oxygen in the functional residual capacity of the lungs shows a sixfold increase. This is the principal oxygen store during apnoea. PMID:7209724

  7. Extreme ultraviolet spectra of highly ionized oxygen and fluorine

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Griffin, P. M.; Haselton, H. H.; Laubert, R.; Mowat, J. R.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.

    1974-01-01

    The foil-excitation method has been used to study the extreme ultraviolet spectra of highly ionized oxygen and fluorine. Several previously unreported lines in heliumlike fluorine are reported and other newly reported lines in heliumlike oxygen have been measured to higher accuracy. Included in the measurements are certain heliumlike oxygen transitions of significance in interpretation of solar-flare spectral observations. The wavelength determinations are usually in good agreement with calculated results which includes relativistic corrections, but discrepancies arise when nonrelativistic calculations are used. A comparison of the present results and those recently obtained by theta-pinch and laser-induced plasma sources is made for both heliumlike and lithiumlike ions; a few discrepancies occur, with results in most cases in better agreement with relativistically corrected calculations. Certain unidentified lines in the spectra may be attributable to radiative transitions between quartet states of lithiumlike ions.

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

  9. Water Broadening of Oxygen

    NASA Astrophysics Data System (ADS)

    Drouin, Brian J.; Payne, Vivienne; Mlawer, Eli

    2013-06-01

    A need for precise air-mass retrievals utilizing the near-infrared O_2 A-band has motivated measurements of the water-broadening in oxygen. Experimental challenges have resulted in very little water broadened oxygen data, especially in the near-infrared where pressure broadened linewidth must compete with the relatively large thermal linewidth. Existing water broadening data^a for the O_2 A-band is of insufficient precision for application to the atmospheric data. Because of the nature of scattering processes, it is believed that broadening parameters for O_2 from one spectral region may be transferable to other spectral regions - so we investigated the O_2 60 GHz magnetic dipole Q branch which is also used prominently in remote sensing. Atmospheric retrievals of air-mass and temperature that use the 60 GHz magnetic dipole Q branch incorporate a water-broadening parameter that is scaled to self-broadened values, but there is only high temperature data that directly supports this hypothesis.^b We present precise O_2-H_2O broadening measurements for the magnetic dipole Q-branch and the pure-rotational band, measured at room temperature with a Zeeman-modulated absorption cell and a frequency-multiplier spectrometer. Here we will describe the apparatus and the measurement analysis. Inter-comparisons of these and other O_2 broadening data sets confirm the expectation of only minor band-to-band scaling of pressure broadening. The measurement provides a basis for fundamental parameterization of retrieval codes for the long-wavelength atmospheric measurements. Finally, we encourage the application of these measurements for retrievals of air-mass via remote sensing of the oxygen A-band. ^a E.M. Vess et al. J. Phys. Chem. A 116, 4069-4073 (2012). ^b G. Fanjoux et al. J. Chem. Phys. 101(2) 1061-1071 (1994).

  10. Effect of surface strain on oxygen adsorption on Zr (0001) surface

    SciTech Connect

    Wang, Xing; Khafizov, Marat; Szlufarska, Izabela

    2014-02-01

    The effect of surface strain on oxygen adsorption on Zr (0 0 0 1) surface is investigated by density functional theory (DFT) calculations. It is demonstrated that both surface strain and interactions between oxygen adsorbates influence the adsorption process. Oxygen binding to zirconium becomes stronger as the strain changes from compressive to tensile. When oxygen coverage is low and the oxygen interactions are negligible, surface face-centered cubic sites are the most stable for O binding. At high coverage and under compression, octahedral sites between second and third Zr layers become most favorable because the interactions between adsorbates are weakened by positive charge screening. Calculations with both single-layer adsorption model and multiple-layer adsorption model demonstrate that compressive strain at the Zr/oxide interface will provide a thermodynamic driving force for oxygen to incorporate from the surface into the bulk of Zr, while binding oxygen to the Zr surface will be easier when tensile strain is applied.

  11. Correlation between crystallinity and oxygen vacancy formation in In–Ga–Zn oxide

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Tomoki; Nakashima, Motoki; Kikuchi, Erumu; Ishihara, Noritaka; Tsubuku, Masashi; Dairiki, Koji; Yamazaki, Shunpei

    2016-02-01

    We study the effect of indium–gallium–zinc oxide (IGZO) crystallinity on oxygen vacancies that play an important role in the characteristics of IGZO-based devices. Optical and electrical measurements revealed that deep defect levels due to oxygen vacancies are largely eliminated in c-axis-aligned crystal IGZO (CAAC-IGZO), which has increased crystallinity without clear grain boundaries. In this study, the correlation between crystallinity and oxygen vacancy formation has been examined by first-principles calculations to investigate the effect of oxygen vacancies in IGZO. Furthermore, the likelihood of oxygen vacancy formation at an edge portion of single-crystal IGZO has been verified by observations of oxygen atoms at the edge region of the IGZO film by annular bright-field scanning transmission electron microscopy (ABF-STEM). Experimental and calculation results show that the high crystallinity of IGZO is important for the inhibition of oxygen vacancies.

  12. Investigation of oxygen point defects in cubic ZrO2 by density functional theory

    SciTech Connect

    Liu, Bin; Xiao, Haiyan; Zhang, Yanwen; Aidhy, Dilpuneet S; Weber, William J

    2014-01-01

    The energetics of formation and migration of the oxygen vacancy and interstitial in cubic ZrO2 are investigated by density functional theory calculations. In an O-rich environment, the negatively charged oxygen interstitial is the most dominant defect whereas, the positively charged oxygen vacancy is the most dominant defect under O-poor conditions. Oxygen interstitial migration occurs by the interstitialcy and the direct interstitial mechanisms, with calculated migration energy barriers of 2.94 eV and 2.15 eV, respectively. For the oxygen vacancy, diffusion is preferred along the <100> direction, and the calculated energy barriers are 0.26 eV for , 0.27 eV for and 0.54 eV for . These results indicate that oxygen diffusivity is higher through the vacancy-migration mechanism.

  13. Oxygen supplies in disaster management.

    PubMed

    Blakeman, Thomas C; Branson, Richard D

    2013-01-01

    Mass casualty events and disasters, both natural and human-generated, occur frequently around the world and can generate scores of injured or ill victims in need of resources. Of the available medical supplies, oxygen remains the critical consumable resource in disaster management. Strategic management of oxygen supplies in disaster scenarios remains a priority. Hospitals have large supplies of liquid oxygen and a supply of compressed gas oxygen cylinders that allow several days of reserve, but a large influx of patients from a disaster can strain these resources. Most backup liquid oxygen supplies are attached to the main liquid system and supply line. In the event of damage to the main system, the reserve supply is rendered useless. The Strategic National Stockpile supplies medications, medical supplies, and equipment to disaster areas, but it does not supply oxygen. Contracted vendors can deliver oxygen to alternate care facilities in disaster areas, in the form of concentrators, compressed gas cylinders, and liquid oxygen. Planning for oxygen needs following a disaster still presents a substantial challenge, but alternate care facilities have proven to be valuable in relieving pressure from the mass influx of patients into hospitals, especially for those on home oxygen who require only an electrical source to power their oxygen concentrator. PMID:23271827

  14. Calculator-Active Materials.

    ERIC Educational Resources Information Center

    Crow, Tracy, Ed.; Harris, Julia, Ed.

    1997-01-01

    This journal contains brief descriptions of calculator-active materials that were found using Resource Finder, the searchable online catalog of curriculum resources from the Eisenhower National Clearinghouse (ENC). It features both the calculators themselves and the activity books that are used with them. Among the calculators included are those

  15. Vibrationally Resolved Electron Attachment to Oxygen Clusters

    SciTech Connect

    Matejcik, S.; Kiendler, A.; Stampfli, P.; Stamatovic, A.; Maerk, T.D.

    1996-10-01

    Highly monochromiatized electrons (with 30meV FWHM) are used in a crossed beam experiment to investigate electron attachment to oxygen clusters (O{sub 2}){sub {ital n}} at electron energies from approximately 0 to 2eV.At energies close to zero, the attachment cross section for the reaction (O{sub 2}){sub {ital n}}+{ital e}{r_arrow}O{sub 2}{sup {minus}} rises strongly with decreasing electron energy compatible with {ital s}-wave electron capture to (O{sub 2}){sub {ital n}}. Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for by model calculations. {copyright} {ital 1996 The American Physical Society.}

  16. Comparison of two probe designs for determining intraocular oxygen distribution

    PubMed Central

    Park, Young-Hoon; Shui, Ying-Bo; Beebe, David C.

    2013-01-01

    Introduction Alterations in intraocular oxygen levels are important contributors to, or indications of ocular disease. Polarographic electrodes and fiberoptic sensors (optodes) have been used to measure oxygen and to map the distribution of oxygen in animal models and in human eyes. A recent study reported the use of a commercial electrode to compare oxygen distribution in the vitreous of patients undergoing vitrectomy related to central retinal vein occlusion, macular hole or preretinal membrane. The results of this study were at variance with previous measures of oxygen distribution in the human vitreous using polarographic or optical sensors. To resolve this discrepancy, the present study compared measurements made in vitro or in animal eyes, using the electrode employed in the previous study or a fiberoptic sensor of different design. Study design Comparative in vitro and in vivo measurements. Results In vitro, the two devices reported similar levels of oxygen, although the electrode consistently detected levels above the calculated values. In rabbit eyes, the electrode had a slow response time and was unable to detect oxygen gradients that were readily measured by the smaller optode. When the electrode was inserted into an eye of similar size to the human eye, the reference thermistor measured the temperature outside the eye, not in the vitreous. Conclusions The design of the electrode used in the previous study makes it unsuitable for measurements of oxygen distribution in the eye. PMID:20870641

  17. Oxygen depletion in relation to water residence times.

    PubMed

    Mudge, Stephen M; Icely, John D; Newton, Alice

    2007-11-01

    The relationship between residence time and oxygen saturation was investigated in a mesotidal lagoon in southern Portugal. The system receives no significant freshwater input during the summer months and has a high evaporation rate. These features enable an estimate of residence time from the salinity differences between ocean water entering the system and lagoon water. More than 10,000 GPS referenced measurements of oxygen saturation, temperature and salinity were made during large spring tides in September, 2006. The lowest oxygen saturation ( approximately 44%) was measured in the waters with the highest calculated residence times (7 days). There was a significant linear decrease in the oxygen saturation with increasing residence time of approximately 16% per day. This was similar to the rate measured on a neap tide in August, 2005. The high salinity, low oxygen saturated water was spatially confined to one inner channel, except at high water when this water was pushed into other channels. Although the tides investigated were the largest for several years, the oxygen saturation did not exceed 70% in this inner region. It is proposed that the direct discharge of oxygen consuming effluent, including domestic sewage, into this inner channel is responsible for this persistent oxygen deficit. PMID:17968445

  18. Sterilization by oxygen plasma

    NASA Astrophysics Data System (ADS)

    Moreira, Adir Jos; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Zambon, Luis da Silva; da Silva, Mnica Valero; Verdonck, Patrick Bernard

    2004-07-01

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  19. Hyperthermal atomic oxygen generator

    NASA Technical Reports Server (NTRS)

    Khandelwal, Govind S.; Wu, Dongchuan

    1990-01-01

    Characterization of the transport properties of oxygen through silver was continued. Specifically, experiments measuring the transport through Ag(111), Ag(110), Ag(100) single crystals and through Ag0.05 Zr alloy were completed. In addition, experiments using glow discharge excitation of oxygen to assist in the transport were completed. It was found that the permeability through the different orientations of single crystal Ag was the same, but significant differences existed in the diffusivity. The experimental ratio of diffusivities, however, was in reasonable agreement with theoretical estimates. Since the solubilities of orientations must be the same, this suggests some problems with the assumption K = DS. The glow discharge experiments show that there is a substantial increase in transport (factor of six) when the upstream pressure is dissociated to some fraction of atoms (which have a much higher sticking coefficient). These results indicate that there is a significant surface limitation because of dissociative adsorption of the molecules. Experiments with the Ag0.05 Zr alloy and its high-grain boundary and defect density show a permeability of greater than a factor of two over ordinary polycrystalline Ag, but it is unclear as to whether this is because of enhanced transport through these defects or whether the Zr and defects on the surface increased the sticking coefficient and therefore the transport.

  20. Composite oxygen transport membrane

    SciTech Connect

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  1. Extracorporeal membrane oxygenation

    PubMed Central

    Butt, Warwick

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) is an advanced form of life support technology whereby venous blood is oxygenated outside of the body and returned to the patient. ECMO was initially used as last-resort rescue therapy for patients with severe respiratory failure. Over the last four decades, it has developed into a safe, standard therapy for newborns with progressive cardiorespiratory failure, as a resuscitation therapy after cardiac arrest, and in combination with other treatments such as hypothermia and various blood filtration therapies. ECMO has also become routine for children and adults with all forms of cardiogenic shock and is also routine in early graft failure after transplantation. The one area of ongoing debate is the role of ECMO in adults with hypoxemic respiratory failure. As ECMO equipment becomes safer, earlier use improves patient outcomes. Several modifications of the two basic venovenous and venoarterial ECMO systems are now occurring, as are many minor variations in cannulation strategies and systems of care for patients receiving ECMO. The indications and situations in which ECMO have been tried continue to change, and ECMO for sub-acute and chronic illnesses is now commonplace, as is the use of ECMO in patients with clinical problems previously regarded as contraindications, such as sepsis, malignancy, and immunosuppression. PMID:24404382

  2. Extracorporeal Membrane Oxygenation Circuitry

    PubMed Central

    Horton, Stephen B.; McMullan, D. Michael; Bartlett, Robert H

    2013-01-01

    The extracorporeal membrane oxygenation (ECMO) circuit is made of a number of components that have been customized to provide adequate tissue oxygen delivery in patients with severe cardiac and/or respiratory failure for a prolonged period of time (days to weeks). A standard ECMO circuit consists of a mechanical blood pump, gas exchange device, and a heat exchanger all connected together with circuit tubing. ECMO circuits can vary from simple to complex and may include a variety of blood flow and pressure monitors, continuous oxyhemoglobin saturation monitors, circuit access sites and a bridge connecting the venous access and arterial infusion limbs of the circuit. Significant technical advancements have been made in the equipment available for short and long term ECMO applications. Contemporary ECMO circuits have greater biocompatibility and allow for more prolonged cardiopulmonary support time, while minimizing the procedure-related complications of bleeding, thrombosis and other physiologic derangements that were so common with the early application of ECMO. Modern era ECMO circuitry and components are simpler, safer, more compact and can be used across a wide variety of patient sizes from neonates to adults. PMID:23735989

  3. Cerebral oxygenation and hyperthermia

    PubMed Central

    Bain, Anthony R.; Morrison, Shawnda A.; Ainslie, Philip N.

    2014-01-01

    Hyperthermia is associated with marked reductions in cerebral blood flow (CBF). Increased distribution of cardiac output to the periphery, increases in alveolar ventilation and resultant hypocapnia each contribute to the fall in CBF during passive hyperthermia; however, their relative contribution remains a point of contention, and probably depends on the experimental condition (e.g., posture and degree of hyperthermia). The hyperthermia-induced hyperventilatory response reduces arterial CO2 pressure (PaCO2) causing cerebral vasoconstriction and subsequent reductions in flow. During supine passive hyperthermia, the majority of recent data indicate that reductions in PaCO2 may be the primary, if not sole, culprit for reduced CBF. On the other hand, during more dynamic conditions (e.g., hemorrhage or orthostatic challenges), an inability to appropriately decrease peripheral vascular conductance presents a condition whereby adequate cerebral perfusion pressure may be compromised secondary to reductions in systemic blood pressure. Although studies have reported maintenance of pre-frontal cortex oxygenation (assessed by near-infrared spectroscopy) during exercise and severe heat stress, the influence of cutaneous blood flow is known to contaminate this measure. This review discusses the governing mechanisms associated with changes in CBF and oxygenation during moderate to severe (i.e., 1.0C to 2.0C increase in body core temperature) levels of hyperthermia. Future research directions are provided. PMID:24624095

  4. Oxygen-Methane Thruster

    NASA Technical Reports Server (NTRS)

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  5. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  6. High Selectivity Oxygen Delignification

    SciTech Connect

    Arthur J. Ragauskas Lucian A. Lucia Hasan Jameel

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

  7. Binding Energies for Oxygen on Transition Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Petrova, N. V.; Yakovkin, I. N.

    The binding energies and related energies of associative desorption for oxygen on close-packed (W(110), Mo(110), and Ru(0001)) and furrowed (W(112), Mo(112), and Ru(10bar {1}0)) surfaces have been calculated by DFT method with generalized gradient approximation for exchange-correlation potential in the revised-Perdew-Burke-Ernzerhof form. The unified approach allows one for a direct comparison of calculated binding energies for different transition metals and different surface geometries, thus revealing the trends that are essential for catalytic properties of surfaces with adsorbed oxygen layers.

  8. Fires and Burns Involving Home Medical Oxygen

    MedlinePLUS

    ... nfpa.org Fires and Burns Involving Home Medical Oxygen The air is normally 21% oxygen. Oxygen is not flammable, but fire needs it to burn. ¾ When more oxygen is present, any fire that starts will burn ...

  9. Theoretical model for electrophilic oxygen atom insertion into hydrocarbons

    SciTech Connect

    Bach, R.D.; Su, M.D. ); Andres, J.L. Wayne State Univ., Detroit, MI ); McDouall, J.J.W. )

    1993-06-30

    A theoretical model suggesting the mechanistic pathway for the oxidation of saturated-alkanes to their corresponding alcohols and ketones is described. Water oxide (H[sub 2]O-O) is employed as a model singlet oxygen atom donor. Molecular orbital calculations with the 6-31G basis set at the MP2, QCISD, QCISD(T), CASSCF, and MRCI levels of theory suggest that oxygen insertion by water oxide occurs by the interaction of an electrophilic oxygen atom with a doubly occupied hydrocarbon fragment orbital. The electrophilic oxygen approaches the hydrocarbon along the axis of the atomic carbon p orbital comprising a [pi]-[sub CH(2)] or [pi]-[sub CHCH(3)] fragment orbital to form a carbon-oxygen [sigma] bond. A concerted hydrogen migration to an adjacent oxygen lone pair of electrons affords the alcohol insertion product in a stereoselective fashion with predictable stereochemistry. Subsequent oxidation of the alcohol to a ketone (or aldehyde) occurs in a similar fashion and has a lower activation barrier. The calculated (MP4/6-31G*//MP2/6-31G*) activation barriers for oxygen atom insertion into the C-H bonds of methane, ethane, propane, butane, isobutane, and methanol are 10.7, 8.2, 3.9, 4.8, 4.5, and 3.3 kcal/mol, respectively. We use ab initio molecular orbital calculations in support of a frontier MO theory that provides a unique rationale for both the stereospecificity and the stereoselectivity of insertion of electrophilic oxygen and related electrophiles into the carbon-hydrogen bond. 13 refs., 7 figs., 2 tabs.

  10. Strain effects on oxygen migration in perovskites.

    PubMed

    Mayeshiba, Tam; Morgan, Dane

    2015-01-28

    Fast oxygen transport materials are necessary for a range of technologies, including efficient and cost-effective solid oxide fuel cells, gas separation membranes, oxygen sensors, chemical looping devices, and memristors. Strain is often proposed as a method to enhance the performance of oxygen transport materials, but the magnitude of its effect and its underlying mechanisms are not well-understood, particularly in the widely-used perovskite-structured oxygen conductors. This work reports on an ab initio prediction of strain effects on migration energetics for nine perovskite systems of the form LaBO3, where B = [Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Ga]. Biaxial strain, as might be easily produced in epitaxial systems, is predicted to lead to approximately linear changes in migration energy. We find that tensile biaxial strain reduces the oxygen vacancy migration barrier across the systems studied by an average of 66 meV per percent strain for a single selected hop, with a low of 36 and a high of 89 meV decrease in migration barrier per percent strain across all systems. The estimated range for the change in migration barrier within each system is 25 meV per percent strain when considering all hops. These results suggest that strain can significantly impact transport in these materials, e.g., a 2% tensile strain can increase the diffusion coefficient by about three orders of magnitude at 300 K (one order of magnitude at 500 C or 773 K) for one of the most strain-responsive materials calculated here (LaCrO3). We show that a simple elasticity model, which assumes only dilative or compressive strain in a cubic environment and a fixed migration volume, can qualitatively but not quantitatively model the strain dependence of the migration energy, suggesting that factors not captured by continuum elasticity play a significant role in the strain response. PMID:25503536

  11. The effects of low earth orbit atomic oxygen on the properties of Polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Hooshangi, Zhila; Hossein Feghhi, Seyed Amir; Saeedzadeh, Rezgar

    2016-02-01

    Polymers are widely used in space systems as the structural materials. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen. Exposure of polymeric materials to atomic oxygen results in destructive effects on the chemical, electrical, thermal, optical and mechanical properties as well as surface degradation. In the present work, the effects of atomic oxygen on the mechanical, thermal, and optical properties of Polytetrafluoroethylene film have been investigated. The atomic oxygen density was calculated by SPENVIS tool. After the atomic oxygen exposure by using radio-frequency (RF) plasma source, the appearance of the samples changed, and the mass of the samples reduced because of outgassing. The results of thermal analysis showed that atomic oxygen flux does not affect thermal degradation of samples regarding TGA diagrams. By increasing the atomic oxygen flux, the amount of absorbance increased showing that atomic oxygen had damaged the surface of Polytetrafluoroethylene, and it had oxidized the surface of the polymer.

  12. Guide for Oxygen Compatibility Assessments on Oxygen Components and Systems

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Shoffstall, Michael S.; Stoltzfus, Joel M.

    2007-01-01

    Understanding and preventing fire hazards is necessary when designing, maintaining, and operating oxygen systems. Ignition risks can be minimized by controlling heat sources and using materials that will not ignite or will not support burning in the end-use environment. Because certain materials are more susceptible to ignition in oxygen-enriched environments, a compatibility assessment should be performed before the component is introduced into an oxygen system. This document provides an overview of oxygen fire hazards and procedures that are consistent with the latest versions of American Society for Testing and Materials (ASTM) Standards G63 (1999) and G94 (2005) to address fire hazards associated with oxygen systems. This document supersedes the previous edition, NASA Technical Memorandum 104823, Guide for Oxygen Hazards Analyses on Components and Systems (1996). The step-by-step oxygen compatibility assessment method described herein (see Section 4) enables oxygen-system designers, system engineers, and facility managers to determine areas of concern with respect to oxygen compatibility and, ultimately, prevent damage to a system or injury to personnel.

  13. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

  14. Increase in whole-body peripheral vascular resistance during three hours of air or oxygen prebreathing

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.; Conkin, J.; Dierlam, J. J.; Stanford, J., Jr.; Riddle, J. R.

    1984-01-01

    Male and female subjects prebreathed air or 100% oxygen through a mask for 3.0 hours while comfortably reclined. Blood pressures, heart rate, and cardiac output were collected before and after the prebreathe. Peripheral vascular resistance (PVR) was calculated from these parameters and increased by 29% during oxygen prebreathing and 15% during air prebreathing. The oxygen contributed substantially to the increase in PVR. Diastolic blood pressure increased by 18% during the oxygen prebreathe while stystolic blood pressure showed no change under either procedure. The increase in PVR during air prebreathing was attributed to procedural stress common to air and oxygen prebreathing.

  15. Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2011-11-01

    We have used an adaptive optics confocal scanning laser ophthalmoscope to assess oxygen saturation in small retinal vessels. Images of the vessels with a diameter smaller than 50 ?m are recorded at oxygen sensitive and isosbestic wavelengths (680 and 796 nm, respectively). The vessel optical densities (ODs) are determined by a computer algorithm. Then, OD ratios (ODRs), which are inversely proportional to oxygen saturation, are calculated. The results show that arterial ODRs are significantly smaller than venous ODRs, indicating that oxygen saturation in the artery is higher than that in the vein. To the best of our knowledge, this is the first noninvasive measurement of oxygen saturation in small retinal vessels.

  16. Functional Oxygen Sensitivity of Astrocytes

    PubMed Central

    Angelova, Plamena R.; Kasymov, Vitaliy; Christie, Isabel; Sheikhbahaei, Shahriar; Turovsky, Egor; Marina, Nephtali; Korsak, Alla; Zwicker, Jennifer; Teschemacher, Anja G.; Ackland, Gareth L.; Funk, Gregory D.; Kasparov, Sergey; Abramov, Andrey Y.

    2015-01-01

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2. Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca2+]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca2+ from the intracellular stores. Hypoxia-induced [Ca2+]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. SIGNIFICANCE STATEMENT Most, if not all, animal cells possess mechanisms that allow them to detect decreases in oxygen availability leading to slow-timescale, adaptive changes in gene expression and cell physiology. To date, only two types of mammalian cells have been demonstrated to be specialized for rapid functional oxygen sensing: glomus cells of the carotid body (peripheral respiratory chemoreceptors) that stimulate breathing when oxygenation of the arterial blood decreases; and pulmonary arterial smooth muscle cells responsible for hypoxic pulmonary vasoconstriction to limit perfusion of poorly ventilated regions of the lungs. Results of the present study suggest that there is another specialized oxygen-sensitive cell type in the body, the astrocyte, that is tuned for rapid detection of physiological changes in brain oxygenation. PMID:26203141

  17. Oxygen diffusion barrier coating

    NASA Technical Reports Server (NTRS)

    Unnam, Jalaiah (Inventor); Clark, Ronald K. (Inventor)

    1987-01-01

    A method for coating a titanium panel or foil with aluminum and amorphous silicon to provide an oxygen barrier abrogating oxidation of the substrate metal is developed. The process is accomplished with known inexpensive procedures common in materials research laboratories, i.e., electron beam deposition and sputtering. The procedures are conductive to treating foil gage titanium and result in submicron layers which virtually add no weight to the titanium. There are no costly heating steps. The coatings blend with the substrate titanium until separate mechanical properties are subsumed by those of the substrate without cracking or spallation. This method appreciably increases the ability of titanium to mechanically perform in high thermal environments such as those witnessed on structures of space vehicles during re-entry

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-04-01

    This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  19. Tissue oxygen measurement system

    NASA Technical Reports Server (NTRS)

    Soller, Babs R. (Inventor)

    2004-01-01

    A device and method in accordance with the invention for determining the oxygen partial pressure (PO.sub.2) of a tissue by irradiating the tissue with optical radiation such that the light is emitted from the tissue, and by collecting the reflected or transmitted light from the tissue to form an optical spectrum. A spectral processor determines the PO.sub.2 level in tissue by processing this spectrum with a previously-constructed spectral calibration model. The tissue may, for example, be disposed underneath a covering tissue, such as skin, of a patient, and the tissue illuminated and light collected through the skin. Alternatively, direct tissue illumination and collection may be effected with a hand-held or endoscopic probe. A preferred system also determines pH from the same spectrum, and the processor may determine critical conditions and issue warnings based on parameter values.

  20. Microdistribution of oxygen in silicon

    NASA Technical Reports Server (NTRS)

    Murgai, A.; Chi, J. Y.; Gatos, H. C.

    1980-01-01

    The microdistribution of oxygen in Czochralskii-grown, p-type silicon crystals was determined by using the SEM in the EBIC mode in conjunction with spreading resistance measurements. When the conductivity remained p-type, bands of contrast were observed in the EBIC image which corresponded to maxima in resistivity. When at the oxygen concentration maxima the oxygen donor concentration exceeded the p-type dopant concentration, an inversion of the conductivity occurred. It resulted in the formation of p-n junctions in a striated configuration and the local inversion of the EBIC image contrast. By heat-treating silicon at 1000 C prior to the activation of oxygen donors, some silicon-oxygen micro-precipitates were observed in the EBIC image within the striated oxygen concentration maxima.

  1. Outgassing of oxygen from polycarbonate.

    PubMed

    Moon, Sung In; Monson, L; Extrand, C W

    2009-07-01

    A manometric permeation apparatus was used to study the "outgassing" or desorption of oxygen from polycarbonate (PC). A PC film was placed in the apparatus. Both sides were exposed to oxygen until the film was saturated. To simulate inert gas purging of a closed container or "microenvironment", oxygen was pumped from one side of the apparatus to reduce the concentration on that side to nearly zero. Oxygen concentrations on the freshly purged side rose quickly at first but then slowed. Eventually, a steady state was established and oxygen concentrations increased linearly with time. Mass-transport coefficients (permeation, diffusion, and solubility coefficients) were also estimated and then used to successfully predict the postpurge rise of the oxygen concentration. PMID:20355958

  2. The Herschel Oxygen Project

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul; Herschel Oxygen Project Team

    2009-01-01

    The Herschel Oxygen Project (HOP) is an Open Time Key Project on the Herschel Space Observatory currently scheduled for launch in March 2009. The goals of the project are to determine the abundance of the oxygen molecule (O2) in a variety of regions of the dense interstellar medium. Thirty scientists from six countries are participating in this project, which has been granted 140 hours of observing time to observe three of the rotational transitions of O2 at 487 GHz, 774 GHz, and 1121 GHz with the Heterodyne Instrument for the Far-Infrared (HIFI) high resolution spectrometer. Previous observations with the Submillimeter Wave Astronomy Satellite (SWAS) and Odin missions have indicated that the abundance of O2 is 2 orders of magnitude below that expected from gas phase chemical models. A number of theoretical explanations have been proposed that have a broad impact on molecular abundances and their distribution within insterstellar clouds. With Herschel we have a far smaller beam (0.3 - 0.7 arcmin compared to 4 - 10 arcmin used for earlier O2 observations) which will allow us to probe selected regions including PDRs, XDRs, shocked gas, and regions around embedded sources with warm dust. In these, we will be able to assess the contributions of different chemical pathways and thus make a valuable comparison with theoretical models. The much improved sensitivity of the SIS and HEB mixer receivers used in HIFI compared to those previous employed will allow us to reach fractional abundances that will test critical aspects of interstellar chemistry and provide valuable information on the abundances of key species in the molecular ISM. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology.

  3. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-12-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  4. Oxygen-reducing catalyst layer

    DOEpatents

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  5. OxygenAbundant and Essential

    NASA Astrophysics Data System (ADS)

    Quinsey, Carolyn S.

    2003-10-01

    Oxygen is colorless, odorless, tasteless, aggressive, necessary for human life, and provides protection from the sun; it is the most abundant element in Earth's crust and makes up approximately two-thirds of the human body by mass. This essential element was the focus of Oxygen, a public symposium held at the University of WisconsinMadison. The symposium included eight presentations on topics related to oxygen; those presentations are synopsized in this article.

  6. Two photon excitation of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Pindzola, M. S.

    1977-01-01

    A standard perturbation expansion in the atom-radiation field interaction is used to calculate the two photon excitation cross section for 1s(2) 2s(2) 2p(4) p3 to 1s(2) 2s(2) 2p(3) (s4) 3p p3 transition in atomic oxygen. The summation over bound and continuum intermediate states is handled by solving the equivalent inhomogeneous differential equation. Exact summation results differ by a factor of 2 from a rough estimate obtained by limiting the intermediate state summation to one bound state. Higher order electron correlation effects are also examined.

  7. Multiphase flow calculation software

    DOEpatents

    Fincke, James R. (Idaho Falls, ID)

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  8. Waste Package Lifting Calculation

    SciTech Connect

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  9. Electrochemical studies of quinone oxygen

    SciTech Connect

    Deanhardt, M.L. ); Mushrush, G.W.; Stalick, W.M. ); Watkins, J.M. Jr. )

    1990-02-01

    Asphaltenes are a chemically complex mixture of aromatic and heteroaromatic compounds. This material contains oxygen in various functional groups. The distribution includes esters, carboxylic acids, phenolic and most probably quinone type oxygen functionalities. The present work details the complete electrochemical behaviour of quinone type oxygen. The method is quinone specific. A condensed aromatic quinone, 9,10-anthraquinone, was selected as representative of complex quinones. By this method quinones can be determined in the presence of other oxygen functional groups, alcohols, carboxylic acids, ethers, and other carbonyls.

  10. Hot oxygen corona of Mars

    SciTech Connect

    Ip, W.H.

    1988-10-01

    Electron dissociative recombination of O2(+) ions in the Venus ionosphere, which may be an important source of suprathermal atomic oxygen, is presently considered as a factor in the Mars exosphere; due to the weaker surface gravitational attraction of Mars, a hot oxygen corona thus formed would be denser than that of Venus at altitudes greater than 2000 km despite Mars' lower ionospheric content. If such an extended oxygen corona does exist on Mars, its collisional interaction with Phobos would lead to the formation of an oxygen gas torus whose average number density is of the order of only 1-2/cu cm along the Phobos orbit. 51 references.

  11. Mass spectrometers and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Hunton, D. E.; Trzcinski, E.; Cross, J. B.; Spangler, L. H.; Hoffbauer, M. H.; Archuleta, F. H.; Visentine, J. T.

    1987-01-01

    The likely role of atmospheric atomic oxygen in the recession of spacecraft surfaces and in the shuttle glow has revived interest in the accurate measurement of atomic oxygen densities in the upper atmosphere. The Air Force Geophysics Laboratory is supplying a quadrupole mass spectrometer for a materials interactions flight experiment being planned by the Johnson Space Center. The mass spectrometer will measure the flux of oxygen on test materials and will also identify the products of surface reactions. The instrument will be calibrated at a new facility for producing high energy beams of atomic oxygen at the Los Alamos National Laboratory. The plans for these calibration experiments are summarized.

  12. Phase Behavior of Oxygen-Containing Polymers in CO2

    SciTech Connect

    Killic, Sevgi; Michalik, Stephen; Wang, Yang; Johnson, J.K.; Enick, R.M.; Beckman, E.J.

    2007-02-20

    The cloud point curves of a series of oxygen-containing polymers in CO2 were measured to attempt to deduce the effect of oxygen functional groups within a polymer on the polymer/CO2 phase behavior. The addition of an ether oxygen to a hydrocarbon polymer, either in the backbone or the side chain, enhances "CO2-philicity" by providing sites for specific interactions with CO2 as well as by enhancing the entropy of mixing by creating more flexible chains with higher free volume. Ab initio calculations show that both ether and ester oxygens provide very attractive interaction sites for CO2 molecules. The binding energy for an isolated ether oxygen with CO2 is larger in magnitude than that for a carbonyl oxygen/CO2 complex. However, acetate functionalized polymers are more CO2-soluble than polymers with only ether functionalities-possibly because acetate functional groups contain a total of three binding modes for CO2 interactions, compared with only one for the ether functional group. Experiments clearly indicate that adding a single methylene group as a spacer between a polymer backbone and either an ether or acetate group exhibits a strong deleterious effect on phase behavior. This effect cannot be explained from our ab initio calculations.

  13. Modelling the effects of cerebral microvasculature morphology on oxygen transport

    PubMed Central

    Park, Chang Sub; Payne, Stephen J.

    2016-01-01

    The cerebral microvasculature plays a vital role in adequately supplying blood to the brain. Determining the health of the cerebral microvasculature is important during pathological conditions, such as stroke and dementia. Recent studies have shown the complex relationship between cerebral metabolic rate and transit time distribution, the transit times of all the possible pathways available dependent on network topology. In this paper, we extend a recently developed technique to solve for residue function, the amount of tracer left in the vasculature at any time, and transit time distribution in an existing model of the cerebral microvasculature to calculate cerebral metabolism. We present the mathematical theory needed to solve for oxygen concentration followed by results of the simulations. It is found that oxygen extraction fraction, the fraction of oxygen removed from the blood in the capillary network by the tissue, and cerebral metabolic rate are dependent on both mean and heterogeneity of the transit time distribution. For changes in cerebral blood flow, a positive correlation can be observed between mean transit time and oxygen extraction fraction, and a negative correlation between mean transit time and metabolic rate of oxygen. A negative correlation can also be observed between transit time heterogeneity and the metabolic rate of oxygen for a constant cerebral blood flow. A sensitivity analysis on the mean and heterogeneity of the transit time distribution was able to quantify their respective contributions to oxygen extraction fraction and metabolic rate of oxygen. Mean transit time has a greater contribution than the heterogeneity for oxygen extraction fraction. This is found to be opposite for metabolic rate of oxygen. These results provide information on the role of the cerebral microvasculature and its effects on flow and metabolism. They thus open up the possibility of obtaining additional valuable clinical information for diagnosing and treating cerebrovascular diseases. PMID:26499366

  14. Modelling the effects of cerebral microvasculature morphology on oxygen transport.

    PubMed

    Park, Chang Sub; Payne, Stephen J

    2016-01-01

    The cerebral microvasculature plays a vital role in adequately supplying blood to the brain. Determining the health of the cerebral microvasculature is important during pathological conditions, such as stroke and dementia. Recent studies have shown the complex relationship between cerebral metabolic rate and transit time distribution, the transit times of all the possible pathways available dependent on network topology. In this paper, we extend a recently developed technique to solve for residue function, the amount of tracer left in the vasculature at any time, and transit time distribution in an existing model of the cerebral microvasculature to calculate cerebral metabolism. We present the mathematical theory needed to solve for oxygen concentration followed by results of the simulations. It is found that oxygen extraction fraction, the fraction of oxygen removed from the blood in the capillary network by the tissue, and cerebral metabolic rate are dependent on both mean and heterogeneity of the transit time distribution. For changes in cerebral blood flow, a positive correlation can be observed between mean transit time and oxygen extraction fraction, and a negative correlation between mean transit time and metabolic rate of oxygen. A negative correlation can also be observed between transit time heterogeneity and the metabolic rate of oxygen for a constant cerebral blood flow. A sensitivity analysis on the mean and heterogeneity of the transit time distribution was able to quantify their respective contributions to oxygen extraction fraction and metabolic rate of oxygen. Mean transit time has a greater contribution than the heterogeneity for oxygen extraction fraction. This is found to be opposite for metabolic rate of oxygen. These results provide information on the role of the cerebral microvasculature and its effects on flow and metabolism. They thus open up the possibility of obtaining additional valuable clinical information for diagnosing and treating cerebrovascular diseases. PMID:26499366

  15. Oxygen release kinetics from solid phase oxygen in Arctic Alaska.

    PubMed

    Schmidtke, T; White, D; Woolard, C

    1999-01-29

    Child's Pad is a gravel construction surface that was contaminated with petroleum during oil-field service operations in Deadhorse, Alaska. As part of a remedial action plan, a buffer strip of uncontaminated sandy gravel was placed along sections of the pad boundary. A magnesium peroxide formulation manufactured by Regenesis, and sold as Oxygen Release Compound (ORC), was placed in the buffer strips. The ORC was intended to supply oxygen to aerobic microorganisms capable of degrading petroleum. Studies were conducted in the laboratory to determine initial oxygen release kinetics from ORC in contact with barrier soil. Studies quantified the biotic and abiotic catalytic mechanisms for converting hydrogen peroxide (a possible MgO2 intermediate) and ORC to oxygen and water, the effects of temperature on oxygen release from ORC, and the effect of field exposure on ORC viability. Barrier soil exhibited sufficient catalytic activity to convert hydrogen peroxide to oxygen faster than the expected biological demand. The oxygen evolution rate (OER) from ORC was lower at 7 degrees C than 21 degrees C by more than two times. The ORC recovered from Child's Pad after less than 1 year retained nearly all of the original available oxygen, although physical bridging was evident. PMID:10337396

  16. Oxygen gas-filled microparticles provide intravenous oxygen delivery.

    PubMed

    Kheir, John N; Scharp, Laurie A; Borden, Mark A; Swanson, Edward J; Loxley, Andrew; Reese, James H; Black, Katherine J; Velazquez, Luis A; Thomson, Lindsay M; Walsh, Brian K; Mullen, Kathryn E; Graham, Dionne A; Lawlor, Michael W; Brugnara, Carlo; Bell, David C; McGowan, Francis X

    2012-06-27

    We have developed an injectable foam suspension containing self-assembling, lipid-based microparticles encapsulating a core of pure oxygen gas for intravenous injection. Prototype suspensions were manufactured to contain between 50 and 90 ml of oxygen gas per deciliter of suspension. Particle size was polydisperse, with a mean particle diameter between 2 and 4 μm. When mixed with human blood ex vivo, oxygen transfer from 70 volume % microparticles was complete within 4 s. When the microparticles were infused by intravenous injection into hypoxemic rabbits, arterial saturations increased within seconds to near-normal levels; this was followed by a decrease in oxygen tensions after stopping the infusions. The particles were also infused into rabbits undergoing 15 min of complete tracheal occlusion. Oxygen microparticles significantly decreased the degree of hypoxemia in these rabbits, and the incidence of cardiac arrest and organ injury was reduced compared to controls. The ability to administer oxygen and other gases directly to the bloodstream may represent a technique for short-term rescue of profoundly hypoxemic patients, to selectively augment oxygen delivery to at-risk organs, or for novel diagnostic techniques. Furthermore, the ability to titrate gas infusions rapidly may minimize oxygen-related toxicity. PMID:22745438

  17. Oxygen gas-filled microparticles provide intravenous oxygen delivery.

    TOXLINE Toxicology Bibliographic Information

    Kheir JN; Scharp LA; Borden MA; Swanson EJ; Loxley A; Reese JH; Black KJ; Velazquez LA; Thomson LM; Walsh BK; Mullen KE; Graham DA; Lawlor MW; Brugnara C; Bell DC; McGowan FX Jr

    2012-06-27

    We have developed an injectable foam suspension containing self-assembling, lipid-based microparticles encapsulating a core of pure oxygen gas for intravenous injection. Prototype suspensions were manufactured to contain between 50 and 90 ml of oxygen gas per deciliter of suspension. Particle size was polydisperse, with a mean particle diameter between 2 and 4 μm. When mixed with human blood ex vivo, oxygen transfer from 70 volume % microparticles was complete within 4 s. When the microparticles were infused by intravenous injection into hypoxemic rabbits, arterial saturations increased within seconds to near-normal levels; this was followed by a decrease in oxygen tensions after stopping the infusions. The particles were also infused into rabbits undergoing 15 min of complete tracheal occlusion. Oxygen microparticles significantly decreased the degree of hypoxemia in these rabbits, and the incidence of cardiac arrest and organ injury was reduced compared to controls. The ability to administer oxygen and other gases directly to the bloodstream may represent a technique for short-term rescue of profoundly hypoxemic patients, to selectively augment oxygen delivery to at-risk organs, or for novel diagnostic techniques. Furthermore, the ability to titrate gas infusions rapidly may minimize oxygen-related toxicity.

  18. Guide for Oxygen Compatibility Assessments on Oxygen Components and Systems

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Shoffstall, Michael S.; Stoltzfus, Joel M.

    2007-01-01

    A viewgraph presentation evaluating the compatibility of oxygen components and systems is shown. The topics include: 1) Application; 2) Gaining Wide Subscription; 3) Approach; 4) Establish Worst-Case Operating Conditions; 5) Assess Materials Flammability; 6) Evaluate Ignition Mechanisms; 7) Evaluate Kindling Chain; 8) Determine Reaction Affect; 9) Document Results; 10) Example of Documentation; and 11) Oxygen Compatibility Assessment Team.

  19. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of ?17O versus ?18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (<8 solar masses), and 18O coming primarily from high-mass stars (Prantzos et al., 1996). These differences in type of stellar source result in large observable variations in stellar isotopic abundances as functions of age, size, metallicity, and galactic location ( Prantzos et al., 1996). In their paper reporting the discovery of 18O in the Earth's atmosphere, Giauque and Johnston (1929) refer to nonuniform distribution of oxygen isotopes as a "remote possibility," whereas Manian et al. (1934) sought to find variations in oxygen isotope abundances in meteorites as evidence for an origin outside the solar system.In addition to the abundance variations due to nuclear processes, there are important isotopic variations produced within molecular clouds, the precursors to later star-formation. The most important process is isotopic self-shielding in the UV photodissociation of CO (van Dishoeck and Black, 1988). This process results from the large differences in abundance between C16O, on the one hand, and C17O and C18O on the other. Photolysis of CO occurs by absorption of stellar UV radiation in the wavelength range 90-100 nm. The reaction proceeds by a predissociation mechanism, in which the excited electronic state lives long enough to have well-defined vibrational and rotational energy levels. As a consequence, the three isotopic species - C16O, C17O, and C18O - absorb at different wavelengths, corresponding to the isotope shift in vibrational frequencies. Because of their different number densities, the abundant C16O becomes optically thick in the outermost part of the cloud (nearest to the external source of UV radiation), while the rare C17O and C18O remain optically thin, and hence dissociate at a greater rate in the cloud interior. The differences in chemical reactivity between C16O molecules and 17O and 18O atoms may lead to isotopically selective reaction products. This scenario has been suggested to explain meteoritic isotope patterns, as discussed below (Yurimoto and Kuramoto, 2002).Stable isotope abundances in meteoritic material provide an opportunity to evaluate the thoroughness of mixing of isotopes of diverse stellar sources. Molybdenum presents a good test case: it has seven stable isotopes, derived from at least three types of stellar sources, corresp

  20. Oxygen dynamics around buried lesser sandeels Ammodytes tobianus (Linnaeus 1785): mode of ventilation and oxygen requirements.

    PubMed

    Behrens, Jane W; Stahl, Henrik J; Steffensen, John F; Glud, Ronnie N

    2007-03-01

    The oxygen environment around buried sandeels (Ammodytes tobianus) was monitored by planar optodes. The oxygen penetration depth at the sediment interface was only a few mm. Thus fish, typically buried at 1-4 cm depth, were generally in anoxic sediment. However, they induced an advective transport through the permeable interstice and formed an inverted cone of porewater with 93% air saturation in front of the mouth. From dye experiments the mean ventilatory flow rate was estimated at 0.26+/-0.02 ml min(-1) (86.9+/-7.3 ml min(-1) kg(-1)) (N=3). Expelled water from the gills induced a 1 cm circular plume with <15% air saturation around the gills. During this quasi-steady ventilation mode, fish extracted 86.2+/-4.8% (N=7) of the oxygen from the inspired water. However, 13% of the investigated fish (2 of 15) occasionally wriggled their bodies and thereby transported almost fully air-saturated water down along the body, referred to as ;plume ventilation'. Yet, within approximately 30 min the oxic plume was replenished by oxygen-depleted water from the gills. The potential for cutaneous respiration by the buried fish was thus of no quantitative importance. Calculations derived by three independent methods (each with N=3) revealed that the oxygen uptake of sandeel buried for 6-7 h was 40-50% of previous estimates on resting respirometry of non-buried fish, indicating lower O(2) requirements during burial on a diurnal timescale. Buried fish exposed to decreasing oxygen tensions gradually approached the sediment surface, but remained in the sediment until the inspired water reached 5-10% air saturation. PMID:17337713

  1. Burmese eclipse calculations

    NASA Astrophysics Data System (ADS)

    Gisln, Lars

    2015-03-01

    Two Burmese eclipse calculations, one lunar and one solar, are analysed using examples from a Burmese manuscript. The fundamental parameters are with some important exceptions the same as in Suryasiddhanta, but the handling of, for instance, parallax in the solar eclipse is different and much simplified. Specific to Burma are also the shadow calculations.

  2. Oxygen-stabilized triangular defects in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Huber, S. P.; Gullikson, E.; van de Kruijs, R. W. E.; Bijkerk, F.; Prendergast, D.

    2015-12-01

    Recently several experimental transmission electron microscopy (TEM) studies have reported the observation of nanoscale triangular defects in mono- and multilayer hexagonal boron nitride (h -BN). First-principles calculations are employed to study the thermodynamical stability and spectroscopic properties of these triangular defects and the chemical nature of their edge termination. Oxygen-terminated defects are found to be significantly more stable than defects with nitrogen-terminated edges. Simulated x-ray absorption spectra of the boron K edge for oxygen-terminated defects show excellent agreement with experimental x-ray absorption near-edge spectroscopy (XANES) measurements on defective h -BN films with oxygen impurities. Finally, we show that the structural model for oxygen defects in h -BN as deduced from the simulated core-level spectroscopy is intrinsically linked to the equilateral triangle shape of defects as observed in many recent electron microscopy measurements.

  3. Sample size calculations.

    PubMed

    Noordzij, Marlies; Dekker, Friedo W; Zoccali, Carmine; Jager, Kitty J

    2011-01-01

    The sample size is the number of patients or other experimental units that need to be included in a study to answer the research question. Pre-study calculation of the sample size is important; if a sample size is too small, one will not be able to detect an effect, while a sample that is too large may be a waste of time and money. Methods to calculate the sample size are explained in statistical textbooks, but because there are many different formulas available, it can be difficult for investigators to decide which method to use. Moreover, these calculations are prone to errors, because small changes in the selected parameters can lead to large differences in the sample size. This paper explains the basic principles of sample size calculations and demonstrates how to perform such a calculation for a simple study design. PMID:21293154

  4. Inhomogeneous depletion of oxygen ions in metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vykhodets, Vladimir B.; Jarvis, Emily A. A.; Kurennykh, Tatiana E.; Beketov, Igor V.; Obukhov, Sviatoslav I.; Samatov, Oleg M.; Medvedev, Anatoly I.; Davletshin, Andrey E.; Whyte, Travis H.

    2016-02-01

    Zirconia and yttria stabilized zirconia (YSZ) have multiple uses, including catalysis, fuel cells, dental applications, and thermal coatings. We employ nuclear reaction analysis to determine elemental composition of YSZ nanoparticles synthesized by laser evaporation including 18O studies to distinguish between oxide and adsorbed oxygen content as a function of surface area. We see dramatic deviation from stoichiometry that can be traced to loss of oxygen from the oxide near the surface of these nanopowders. Density functional calculations are coupled with these experimental studies to explore the electronic structure of nonstoichiometric surfaces achieved through depletion of oxygen. Our results show oxygen-depleted surfaces present under oxygen potentials where stoichiometric, oxygen-terminated surfaces would be favored thermodynamically for crystalline systems. Oxygen depletion at nanopowder surfaces can create effective two-dimensional surface metallic states while maintaining stoichiometry in the underlying nanoparticle core. This insight into nanopowder surfaces applies to dissimilar oxides of aluminum and zirconium indicating synthesis conditions may be more influential than the inherent oxide properties and displaying need for distinct models for nanopowders of these important engineering materials where surface chemistry dominates performance.

  5. Waiting ages for atmospheric oxygen: A titration hourglass and the oxidation of the solid Earth. (Invited)

    NASA Astrophysics Data System (ADS)

    Catling, D. C.; Claire, M.; Zahnle, K. J.

    2013-12-01

    Atmospheric O2 increased from less than 1 ppm to 0.2-2% at 2.45-2.22 Ga in the Great Oxidation Event (GOE). A minority opinion is that the GOE happened close to the time when oxygenic photosynthesis originated but evidence from the concentration of redox-sensitive elements in shales and their isotopes, as well as the setting and morphology of stromatolites supports the consensus view that oxygenic photosynthesis had originated by 2.8-2.7 Ga. Models show that O2 can be consumed rapidly by reductants in the Archean so that the air can remain anoxic even after photosynthesis began pumping out O2. Why did the world ultimately shift away from this balance? What conditions were needed to oxygenate the atmosphere in addition to oxygenic photosynthesis? A general principle is that a shift to an oxic environment from a reducing one requires net export of reductant. In planetary science, for example, the oxidation of the surfaces and atmospheres of other planets or satellites is universally attributed to the escape of hydrogen to space. Hydrogen escape explains the redness of Mars, several characteristics of the atmosphere of Venus, and the presence of tenuous O2 atmospheres on Ganymede, Europa, Rhea and Dione. For the Earth's rise of oxygen, many ideas focus on a decline in mantle or seafloor reductant fluxes (driven by internal geologic evolution) to the point where these fluxes were surpassed by biogenic oxygen fluxes. But for such a shift (without a role for hydrogen escape), the surface still has to export net reductant to the mantle. Such net export depends on the ratio of subducted ferric iron versus reduced carbon during the Archean, which remains poorly constrained. Over a decade ago, we proposed that rapid escape of hydrogen to space from the pre-GOE atmosphere would have gradually oxidized the Earth's surface and crust, accompanied by falling levels of atmospheric CH4 [1]. The idea is that Earth underwent a redox titration. A point would be reached where O2 became more stable than competing reducing gases, such as CH4 and H2. In this scheme, the delay in the rise of oxygen by several hundred million years is the time it takes to oxidize the outer portions of the solid Earth to the point when the atmosphere flipped redox state. We also speculate that hydrogen escape may be associated with continental growth. As the Archean continents grew, they would have accumulated excess oxygen in their minerals at the tempo of hydrogen escape. The ferric oxide concentration in average continents is an order of magnitude greater than in the mantle. Continental growth supplied reducing power to the surface environment that became intertwined with the carbon cycle and photosynthesis. Thus, 'granitoid' material may be a consequence of increased oxygen fugacity in weathered subducted materials (cf. ref. 2). If so, continents are, in part, a response to surface oxidation rather than vice versa. Moreover, continental growth would necessarily slow once hydrogen escape rates were throttled by the GOE. [1] Catling et al. (2001) Science 293, 839 [2] Jagoutz (2013) Terra Nova 25, 95

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  7. Singlet oxygen dosimetry modeling for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Liang, Xing; Wang, Ken Kang-hsin; Zhu, Timothy C.

    2012-02-01

    Photodynamic therapy (PDT) is an important treatment modality for cancer and other localized diseases. In addition to PDT dose, singlet oxygen (1O2) concentration is used as an explicit PDT dosimetry quantity, because 1O2 is the major cytotoxic agent in photodynamic therapy, and the reaction between 1O2 and tumor tissues/cells determines the treatment efficacy. 1O2 concentration can be obtained by the PDT model, which includes diffusion equation for the light transport in tissue and macroscopic kinetic equations for the generation of the singlet oxygen. This model was implemented using finite-element method (FEM) by COMSOL. In the kinetic equations, 5 photo-physiological parameters were determined explicitly to predict the generation of 1O2. The singlet oxygen concentration profile was calculated iteratively by comparing the model with the measurements based on mice experiments, to obtain the apparent reacted 1O2concentration as an explicit PDT dosimetry quantity. Two photosensitizers including Photofrin and BPD Verteporfin, were tested using this model to determine their photo-physiological parameters and the reacted 1O2 concentrations.

  8. The chemical effects of auroral oxygen precipitation at Jupiter

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Eisenhower, G. M.

    1992-01-01

    A numerical model of the auroral ionosphere and thermosphere of Jupiter, which includes odd oxygen species, is presented. Density profiles of neutral species O, OH, and H2O and the ion species H2(+), H3(+), H(+), H2O(+), H3O(+), O(+), and OH(+) are calculated. The total neutral odd oxygen density is found to be about 10 exp 5/cu cm near the auroral ionosphere peak. The major ionospheric ion, H(+) reacts rapidly with both O and H2O and the presence of these species in the model calculations significantly reduces the H(+) density and thus the electron density. The chemical lifetime against reaction of H(+) with odd oxygen is about 1000 s near the peak, whereas the radiative recombination lifetime is roughly 10,000 s.

  9. The ancient oxygen exosphere of Mars - Implications for atmosphere evolution

    NASA Technical Reports Server (NTRS)

    Zhang, M. H. G.; Luhmann, J. G.; Bougher, S. W.; Nagy, A. F.

    1993-01-01

    The paper considers absorption of oxygen (atoms and ions) by the surface as a mechanism for the early Martian atmosphere escape, due to the effect of high EUV flux of the ancient sun. Hot oxygen exosphere densities in ancient atmosphere and ionosphere are calculated for different EUV fluxes and the escape fluxes associated with these exposures. Using these densities, the ion production rate above the ionopause is calculated for different epochs including photoionization, charge exchange, and solar wind electron impact. It is found that, when the inferred high solar EUV fluxes of the past are taken into account, oxygen equivalent to that in several tens of meters of water, planet-wide, should have escaped Martian atmosphere to space over the last 3 Gyr.

  10. Arterio-venous shunts or low oxygen utilization?

    PubMed

    Rozin, Alexander P

    2010-02-01

    An idea of arteriovenous shunts (AVS) was proposed for explanation of dynamic regulation of oxygenation and venous hyperoxia. A formula enabling calculation of AVS and real CO2 production has recently been derived by comparing data of arterial and venous blood gases. Regarding venous hyperoxia, there is a need to differentiate capillary to tissue transport defect (low oxygen utilisation-LOU) from AVS, which may exist simultaneously. The AVS may be associated with normal or relatively high oxygen utilization from the capillary vessels and increased CO2 production. AVS is proposed to carry protective and 'stealing' properties including renal, cardiac, and pulmonary hemodynamic. Calculations of the AVS may be important for dynamic assessment of vascular and metabolic status and in emergency medicine. PMID:20026514

  11. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  12. Work, heat, and oxygen cost

    NASA Technical Reports Server (NTRS)

    Webb, P.

    1973-01-01

    Human energy is discussed in terms of the whole man. The physical work a man does, the heat he produces, and the quantity of oxygen he takes from the air to combine with food, the fuel source of his energy, are described. The daily energy exchange, work and heat dissipation, oxygen costs of specific activities, anaerobic work, and working in space suits are summarized.

  13. ANALYTICAL METHODS FOR FUEL OXYGENATES

    EPA Science Inventory

    MTBE (and potentially any other oxygenate) may be present at any petroleum UST site, whether the release is new or old, virtually anywhere in the United States. Consequently, it is prudent to analyze samples for the entire suite of oxygenates as identified in this protocol (i.e....

  14. Mars oxygen production system design

    NASA Technical Reports Server (NTRS)

    Cotton, Charles E.; Pillow, Linda K.; Perkinson, Robert C.; Brownlie, R. P.; Chwalowski, P.; Carmona, M. F.; Coopersmith, J. P.; Goff, J. C.; Harvey, L. L.; Kovacs, L. A.

    1989-01-01

    The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing.

  15. Oxygen in the heliosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.

    1994-01-01

    Oxygen within the heliosphere, whether neutral or ionized, comes from both the external source in the local interstellar medium (LISM) and internal sources. If transient cometary sources are neglected, Jupiter is the strongest of the internal sources by virtue of its corotation and charge exchange driven neutral wind. O(+) pickup ions are born where the penetrating neutrals lose an electron as a result of photoionization, charge exchange with solar wind protons, or solar wind electron impact ionization. The region of the heliosphere from which these pickup ions arise depends on the phase of the solar cycle as well as on the velocities of the neutrals. The present model of neutral O populations and their ionization suggests that Jovian pickup ions can dominate the inner heliospheric O(+) population if the LISM neutrals are strongly filtered at the heliopause, or are excluded by strong ionizing fluxes from the Sun. Other heliospheric species such as sulfur and nitrogen may have similar origins. These planetary sources need to be taken into account in the interpretation of interplanetary gas and ion composition observations.

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  17. The Oxygen a Band

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun; Hodges, Joseph; Long, David A.; Sung, Keeyoon; Drouin, Brian; Okumura, Mitchio; Bui, Thinh Quoc; Rupasinghe, Priyanka

    2014-06-01

    The oxygen A band is used for numerous atmospheric experiments, but spectral line parameters that sufficiently describe the spectrum to the level required by OCO2 and other high precision/accuracy experiments are lacking. Fourier transform spectra from the Jet Propulsion Laboratory and cavity ring down spectra from the National Institute of Standards and Technology were fitted simultaneously using the William and Mary multispectrum nonlinear least squares fitting technique into a single solution including the entire band. In addition, photoacoustic spectra already available from the California Institute of Technology will be added to the solution. The three types of spectrometers are complementary allowing the strengths of each to fill in the weaknesses of the others. With this technique line positions, intensities, widths, shifts, line mixing, Dicke narrowing, temperature dependences and collision induced absorption have been obtained in a single physically consistent fit. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. Atkins, JQSRT 1995;53:705-21. Part of the research described in this paper was performed at The College of William and Mary, the, Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration and the Jet Propulsion Laboratory. Support for the National Institute of Standards and Technology was provided by the NIST Greenhouse Gas Measurements and Climate Research Program and a NIST Innovations in Measurement Science (IMS) award.

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

  19. USE OF A PROGRAMMABLE CALCULATOR IN CARDIOPULMONARY PERFUSION

    PubMed Central

    Mills, J. David; Tallent, Jerome H.

    1978-01-01

    This study describes a hand-held, battery-powered, programmable instrument (Calculator Model SR-52) that can be taken directly into the operating room by cardiopulmonary perfusionists. Three programs are described in detail: 1) Cardiopulmonary perfusion parameters and estimated blood volume; 2) blood gas parameters and saturations, with temperature corrections; and 3) cardiopulmonary oxygen transfer and oxygenator efficiency. This inexpensive calculator allows perfusion personnel to manipulate easily-derived data into values which heretofore have required elaborate nomograms or special slide rulesor were not available within a reasonable computational time. PMID:15216068

  20. USE OF A PROGRAMMABLE CALCULATOR IN CARDIOPULMONARY PERFUSION.

    PubMed

    Mills, J David; Tallent, Jerome H.

    1978-06-01

    This study describes a hand-held, battery-powered, programmable instrument (Calculator Model SR-52) that can be taken directly into the operating room by cardiopulmonary perfusionists. Three programs are described in detail: 1) Cardiopulmonary perfusion parameters and estimated blood volume; 2) blood gas parameters and saturations, with temperature corrections; and 3) cardiopulmonary oxygen transfer and oxygenator efficiency. This inexpensive calculator allows perfusion personnel to manipulate easily-derived data into values which heretofore have required elaborate nomograms or special slide rules-or were not available within a reasonable computational time. PMID:15216068