Science.gov

Sample records for calibration laboratory sources

  1. NVLAP calibration laboratory program

    SciTech Connect

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  2. Calibrated vapor generator source

    DOEpatents

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  3. Calibrated vapor generator source

    DOEpatents

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  4. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS (Lawrence Berkeley Laboratory Advanced Light Source) Booster Dipole Magnets

    SciTech Connect

    Green, M.I.; Nelson, D.; Marks, S.; Gee, B.; Wong, W.; Meneghetti, J.

    1989-03-01

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs.

  5. 1989 neutron and gamma personnel dosimetry intercomparison study using RADCAL (Radiation Calibration Laboratory) sources

    SciTech Connect

    Sims, C.S.; Casson, W.H.; Patterson, G.R. ); Murakami, H. . Dept. of Health Physics); Liu, J.C. )

    1990-10-01

    The fourteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 14) was conducted during May 1-5, 1989. A total of 48 organizations (33 from the US and 15 from abroad) participated in PDIS 14. Participants submitted by mail a total of 1,302 neutron and gamma dosimeters for this mixed field study. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (40%), direct interaction TLD (22%), track (20%), film (7%), combination (7%), and bubble detectors (4%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: TLD (84%) and film (16%). Radiation sources used in the six PDIS 14 exposures included {sup 252}Cf moderated by 15-cm D{sub 2}O, {sup 252}Cf moderated by 15-cm polyethylene (gamma-enhanced with {sup 137}Cs), and {sup 238}PuBe. Neutron dose equivalents ranged from 0.44--2.63 mSv and gamma doses ranged from 0. 01-1.85 mSv. One {sup 252}Cf(D{sub 2}O) exposure was performed at a 60{degree} angle of incidence (most performance tests are at perpendicular incidence). The average neutron dosimeter response for this exposure was 70% of that at normal incidence. The average gamma dosimeter response was 96% of that at normal incidence. A total of 70% of individual reported neutron dosimeter measurements were within {plus minus}50% of reference values. If the 0.01 mSv data are omitted, approximately 90% of the individual reported gamma measurements were within {plus minus}50% of reference values. 33 refs., 9 figs., 27 tabs.

  6. Cobalt source calibration

    SciTech Connect

    Rizvi, H.M.

    1999-12-03

    The data obtained from these tests determine the dose rate of the two cobalt sources in SRTC. Building 774-A houses one of these sources while the other resides in room C-067 of Building 773-A. The data from this experiment shows the following: (1) The dose rate of the No.2 cobalt source in Building 774-A measured 1.073 x 10{sup 5} rad/h (June 17, 1999). The dose rate of the Shepherd Model 109 Gamma cobalt source in Building 773-A measured 9.27 x 10{sup 5} rad/h (June 25, 1999). These rates come from placing the graduated cylinder containing the dosimeter solution in the center of the irradiation chamber. (2) Two calibration tests in the 774-A source placed the graduated cylinder with the dosimeter solution approximately 1.5 inches off center in the axial direction. This movement of the sample reduced the measured dose rate 0.92% from 1.083 x 10{sup 5} rad/h to 1.073 x 10{sup 5} rad/h. and (3) A similar test in the cobalt source in 773-A placed the graduated cylinder approximately 2.0 inches off center in the axial direction. This change in position reduced the measured dose rate by 10.34% from 1.036 x 10{sup 6} to 9.27 x 10{sup 5}. This testing used chemical dosimetry to measure the dose rate of a radioactive source. In this method, one determines the dose by the chemical change that takes place in the dosimeter. For this calibration experiment, the author used a Fricke (ferrous ammonium sulfate) dosimeter. This solution works well for dose rates to 10{sup 7} rad/h. During irradiation of the Fricke dosimeter solution the Fe{sup 2+} ions ionize to Fe{sup 3+}. When this occurs, the solution acquires a slightly darker tint (not visible to the human eye). To determine the magnitude of the change in Fe ions, one places the solution in an UV-VIS Spectrophotometer. The UV-VIS Spectrophotometer measures the absorbency of the solution. Dividing the absorbency by the total time (in minutes) of exposure yields the dose rate.

  7. Quality assurance programs at the PNL calibrations laboratory

    SciTech Connect

    Piper, R.K.; McDonald, J.C.; Fox, R.A.; Eichner, F.N.

    1993-03-01

    The calibrations laboratory at Pacific Northwest Laboratory (PNL) serves as a radiological standardization facility for personnel and environmental dosimetry and radiological survey instruments. As part of this function, the calibrations laboratory must maintain radiological reference fields with calibrations traceable to the National Institute of Standards and Technology (NIST). This task is accomplished by a combination of (1) sources or reference instruments calibrated at or by NIST, (2) measurement quality assurance (MQA) interactions with NIST, and (3) rigorous internal annual and quarterly calibration verifications. This paper describes a representative sample of the facilities, sources, and actions used to maintain accurate and traceable fields.

  8. Cherenkov Source for PMT Calibrations

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, Tanner; SNO+ at UC Berkeley Collaboration

    2013-10-01

    My research is focused on building a deployable source for PMT calibrations in the SNO+ detector. I work for the SNO+ group at UC Berkeley headed by Gabriel Orebi Gann. SNO+ is an addition to the SNO project, and its main goal is to search for neutrinoless double beta decay. The detector will be monitored by over 9500 photomultiplier tubes (PMTs). In order to characterize the PMTs, several calibration sources are being constructed. One of which, the Cherenkov Source, will provide a well-understood source of non-isotropic light for calibrating the detector response. My goal is to design and construct multiple aspects of the Cherenkov Source. However, there are multiple questions that arose with its design. How do we keep the scintillation light inside the Cherenkov source so it does not contaminate calibration? How do we properly build the Cherenkov source: a hollow acrylic sphere with a neck? Can we maintain a clean source throughout these processes? These are some of the problems I have been working on, and will continue to work on, until the deployment of the source. Additionally, I have worked to accurately simulate the physics inside the source, mainly the energy deposition of alphas.

  9. NVLAP activities at Department of Defense calibration laboratories

    SciTech Connect

    Schaeffer, D.M.

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  10. HPS instrument calibration laboratory accreditation program

    SciTech Connect

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  11. The 1994 laboratory calibration of TIMS

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J.; Hajek, Pavel; Sinha, Mahadeva P.; Chrien, Thomas G.

    1995-01-01

    This summary describes the spatial, spectral, and radiometric calibration of Thermal Infrared Multispectral Scanner (TIMS) performed at the Jet Propulsion Laboratory (JPL) Thermal Infrared Calibration Facility (TIRCAL) between May and August, 1994. The 1994 calibration of TIMS was the first to make use of the new EXABYTE (8mm helical-scan tape) recording system. With the new recorder, the TIMS data tapes may be read directly on any computer system that has an EXABYTE tape drive. We analyzed the calibration data sets using image processing procedures written in Interactive Data Language.

  12. Calibration source for remote sensors

    NASA Technical Reports Server (NTRS)

    Mclean, J. T.; Mcculloch, A.; Mohr, E. I.

    1975-01-01

    The source described was developed as a calibration target for the multispectral scanner (MSS) which was flown on the Earth Resources Technology Satellite A (LANDSAT 1). The wavelength region of interest covered the four (4) MSS bands extending from 0.5 to 1.1 micrometers, although the target was calibrated from 0.32 to 2.5 micrometers. The following characteristics for the target were required: (1) large aperture, sufficient to accommodate an instrument with a 9 inch (23 centimeters(cm)) aperture and 2 1/2 deg field of view (fov), (2) highly diffuse energy from target, (3) high spatial uniformity across aperture area of source, (4) spectrally calibrated in absolute units, (5) stable output over long periods of time (1-2 yrs), and (6) rugged, yet portable enough to be easily transported long distances without detrimental effects on the operational capabilities of the target. Two approaches were considered: a thirty (30) inch (76 cm) diameter integrating sphere with a twelve inch (30.5 cm) exit port, or the use of one hemisphere of a 76 cm sphere in conjunction with a Kodak ektolite screen. The screen has the property of reflecting back uniformly into a well defined area the majority of the light received. After some preliminary trials it seemed that the 76 cm sphere would give the most satisfactory results.

  13. Development and calibration of UV/VUV radiometric sources

    NASA Technical Reports Server (NTRS)

    Bridges, J. M.

    1993-01-01

    A program exists at NIST to calibrate radiometric sources for the spectral range from 118-350 nm. These include deuterium lamps, hollow-cathode lamps, RF-excited dimer lamps, and wall-stabilized argon arcs. Sources have been calibrated for and used by researchers in solar physics, astrophysics, atmospheric physics (ozone measurements), magnetically controlled fusion, and photobiology. The argon arcs were developed in our laboratory, and provide intense sources of both radiance and irradiance. Calibrations are performed relative to two primary sources, a wall-stabilized hydrogen arc and a 12,000 K black-body line arc, both developed in our laboratory. Also we recently have begun periodic calibrations on the NIST storage ring, SURF II, to insure consistency between our respective radiometric bases. Various sources have been calibrated for space' applications, including several which are flyable. Also, some development and testing of radiometers for semiconductor lithography were recently carried out with an intense argon arc source.

  14. Multigamma-ray calibration sources

    SciTech Connect

    Meyer, R.A.; Massey, T.N.

    1983-05-01

    We have calibrated a self-consistent set of multigamma-ray standards using the automated multi-spectrometry ..gamma..-ray counting facility at LLNL's Nuclear Chemistry Division. Pure sources of long-lived activity were produced by mass separation and/or chemical purification. The sources were counted individually and in combination on several different calibrated spectrometer systems. These systems utilize various detectors ranging from small (x-ray) detectors to large volume high-purity Ge detectors. This has allowed the use of the most ideal individual detector-efficiency characteristics for the determination of the relative ..gamma..-ray intensities. Precise energy measurements, reported earlier (Meyer, 1976) have been performed by an independent method. Both the energy and ..gamma..-ray-emission probabilities determined compare well with independently established values such as the recent ICRM intercomparison of /sup 152/Eu. We discuss our investigations aimed at resolving the shape of the efficiency response function up to 10 MeV for large volume Ge(Li) and high-purity Ge detectors. Recent results on the ..gamma..-ray-emission probabilities per decay for /sup 149/Gd and /sup 168/Tm multigamma-ray sources are discussed. For /sup 168/Tm, we deduce a 0.01% ..beta../sup -/ branch to the 87.73-keV level in /sup 168/Yb rather than the previous value which was a factor of 200 greater. In addition, we describe current cooperative efforts aimed at establishing a consistent set of data for short-lived fission products. Included are recent measurements on the bromine fission products with ..gamma.. rays up to 7 MeV.

  15. RADCAL Operations Manual Radiation Calibration Laboratory Protocol

    SciTech Connect

    Bogard, J.S.

    1998-12-01

    The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research, primarily using the Health Physics Research Reactor (HPRR) and the Radiation Calibration Laboratory (RADCAL) in its Dosimetry Applications Research (DOSAR) Program. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and the testing of materials in a variety of radiation environments. Operations of the HPRR were terminated in 1987 and the reactor was moved to storage at the Oak Ridge Y-12 Plant; however, RADCAL will continue to be operated in accordance with the guidelines of the National Institute of Standards and Technology (NIST) Secondary Calibration Laboratory program and will meet all requirements for testing dosimeters under the National Voluntary Laboratory Accreditation Program (NVLAP). This manual is to serve as the primary instruction and operation manual for the Oak Ridge National Laboratory's RADCAL facility. Its purpose is to (1) provide operating protocols for the RADCAL facility, (2) outline the organizational structure, (3) define the Quality Assurance Action Plan, and (4) describe all the procedures, operations, and responsibilities for the safe and proper operation of all routine aspects of the calibration facility.

  16. Photometer calibration error using extended standard sources

    NASA Technical Reports Server (NTRS)

    Torr, M. R.; Hays, P. B.; Kennedy, B. C.; Torr, D. G.

    1976-01-01

    As part of a project to compare measurements of the night airglow made by the visible airglow experiment on the Atmospheric Explorer-C satellite, the standard light sources of several airglow observatories were compared with the standard source used in the absolute calibration of the satellite photometer. In the course of the comparison, it has been found that serious calibration errors (up to a factor of two) can arise when a calibration source with a reflecting surface is placed close to an interference filter. For reliable absolute calibration, the source should be located at a distance of at least five filter radii from the interference filter.

  17. Intercomparison of Laboratory Radiance Calibration Standards

    NASA Technical Reports Server (NTRS)

    Pavri, Betina; Chrien, Tom; Green, Robert; Williams, Orlesa

    2000-01-01

    Several standards for radiometric calibration were measured repeatedly with a spectroradiometer in order to understand how they compared in accuracy and stability. The tested radiance standards included a NIST 1000 W bulb and halon panel, two calibrated and stabilized integrating spheres, and a cavity blackbody. Results indicate good agreement between the blackbody and 1000 W bulb/spectralon panel, If these two radiance sources are assumed correct, then the integrating spheres did not conform. to their manufacturer-reported radiances in several regions of the spectrum. More detailed measurements am underway to investigate the discrepancy.

  18. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    NASA Technical Reports Server (NTRS)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  19. BNL Sources Development Laboratory

    SciTech Connect

    Ben-Zvi, I.; Graves, W.; Heese, R.; Johnson, E.D.; Krinsky, S.; Yu, L.H.

    1997-01-01

    The NSLS has a long-standing interest in providing the best possible synchrotron radiation sources for its user community, and hence, has recently established the Source Development Laboratory (SDL) to pursue research into fourth generation synchrotron radiation sources. A major element of the program includes development of a high peak power FEL meant to operate in the vacuum ultraviolet. The objective of the program is to develop the source, and experimental technology together to provide the greatest impact on UV science. The accelerator under construction for the SDL consists of a high brightness RF photocathode electron gun followed by a 230 MeV short pulse linac incorporating a magnetic chicane for pulse compression. The gun drive laser is a wide bandwidth Ti: Sapphire regenerative amplifier capable of pulse shaping which will be used to study non- linear emittance compensation. Using the compressor, 1 nC bunches with a length as small as 50 {mu}m sigma (2 kA peak current) are available for experiments. In this paper we briefly describe the facility and detail our plans for utilizing the 10 m long NISUS wiggler to carry out single pass FEL experiments. These include a 1 {mu}m SASE demonstration, a seeded beam demonstration at 300 nm, and a High Gain Harmonic Generation experiment at 200 mn. The application of chirped pulse amplification to this type of FEL will also be discussed.

  20. Calibration of the Standards and Calibration Laboratory`s Co{sup 60} Radiation Pool

    SciTech Connect

    Wirtenson, G.R.; White, R.H.

    1993-01-01

    The authors report measurements of dose rates at various locations in the LLNL Standards and Calibrations Laboratory`s Co{sup 60} Radiation Pool. Plots show the dependence of dose rate on radius near the bottom of the pool and the dependence of dose rate on height at a fixed distance from the pool center. The effect of varying sample location within the pool`s dry-well was also investigated.

  1. Precision Calibration via Artificial Light Sources Above the Atmosphere

    NASA Astrophysics Data System (ADS)

    Albert, J. E.; Fagin, M. H.; Brown, Y. J.; Stubbs, C. W.; Kuklev, N. A.; Conley, A. J.

    2016-05-01

    Deeper understanding of the properties of dark energy via SNIa surveys, and to a large extent other methods as well, will require unprecedented photometric precision. Laboratory and solar photometry and radiometry regularly achieve precisions on the order of parts in ten thousand, but photometric calibration for non-solar astronomy presently remains stuck at the percent or greater level. We discuss our project to erase this discrepancy, and our steps toward achieving laboratory-level photometric precision for surveys late this decade. In particular, we show near-field observations of the balloon-borne light source we are presently testing, in addition to previous work with a calibrated laser source presently in low-Earth orbit. Our technique is additionally applicable to microwave astronomy. Observation of gravitational waves in the polarized CMB will similarly require unprecedented polarimetric and radiometric precision, and we briefly discuss our plans for a calibrated microwave source above the atmosphere as well.

  2. Water content reflectometer calibration, field versus laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For soils with large amounts of high-charge clays, site-specific calibrations for the newer permittivity probes that operate at lower frequencies, often have higher permittivity values than factory calibrations. The purpose of this study was to determine site-specific calibration of water content re...

  3. Design, manufacture, and calibration of infrared radiometric blackbody sources

    SciTech Connect

    Byrd, D.A.; Michaud, F.D.; Bender, S.C.

    1996-04-01

    A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 {mu}m. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 {mu}m, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following.

  4. Source geometry factors for HDR 192Ir brachytherapy secondary standard well-type ionization chamber calibrations

    NASA Astrophysics Data System (ADS)

    Shipley, D. R.; Sander, T.; Nutbrown, R. F.

    2015-03-01

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) 192Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated 192Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR 192Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, ksg, is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR 192Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR 192Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR 192Ir Flexisource ksg was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  5. The Mars Science Laboratory APXS calibration target: Comparison of Martian measurements with the terrestrial calibration

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; King, P. L.; Burkemper, L.; Berger, J. A.; Gellert, R.; Boyd, N. I.; Perrett, G. M.; Pradler, I.; Thompson, L.; Edgett, K. S.; Yingst, R. A.

    2014-03-01

    The Mars Science Laboratory Curiosity rover carries a basalt calibration target for monitoring the performance of the alpha particle X-ray spectrometer. The spectrum acquired on Sol 34 shows increased contributions from Mg, S, Cl and Fe relative to laboratory spectra recorded before launch. Mars Hand Lens Imager images confirm changes in the appearance of the surface. Spectra taken on Sols 179 and 411 indicate some loss of the deposited material. The observations suggest deposition of a surface film likely consisting of dust mobilized by impingement of the sky crane's terminal descent engine plumes with surface fines during Curiosity's landing. New APXS software has been used to model the thin film that coated the calibration target on landing. The results suggest that a film of about 100 nm thickness, and containing predominantly MgO, Fe2O3, SO3, Cl and Na2O could give rise to the observed spectral changes. If this film is also present on the alpha particle sources within the APXS, then its effect is negligible and the terrestrial calibration remains appropriate.

  6. Noise Source for Calibrating a Microwave Polarimeter

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Kim, Edward J.

    2006-01-01

    A correlated-noise source has been developed for use in calibrating an airborne or spaceborne Earth-observing correlation microwave polarimeter that operates in a in a pass band that includes a nominal frequency of 10.7 GHz. Deviations from ideal behavior of the hardware of correlation polarimeters are such as to decorrelate the signals measured by such an instrument. A correlated-noise source provides known input signals, measurements of which can be processed to estimate and correct for the decorrelation effect.

  7. High-dose secondary calibration laboratory accreditation program

    SciTech Connect

    Humphreys, J.C.

    1993-12-31

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program.

  8. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    SciTech Connect

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  9. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source. (a) Identification. A nuclear sealed calibration source is a device that consists of an...

  10. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source. (a) Identification. A nuclear sealed calibration source is a device that consists of an...

  11. Comparison of Meteorological Service Calibration Laboratories in Southeastern Europe

    NASA Astrophysics Data System (ADS)

    Groselj, D.; Bojkovski, J.

    2012-09-01

    Interlaboratory comparisons serve as tools for assessment of measurement results performed by calibration laboratories in the relevant field of measurement. They are effective means to demonstrate technical competence of the participant and are used as a technical base for accreditation. However, in the network of meteorological services calibration laboratories, comparisons among laboratories are still rare. Some laboratories are still not evaluating measurement uncertainty, thus causing problems when comparing meteorological data from different countries. The Environmental Agency of the Republic of Slovenia (EARS), serving in the frame of the World Meteorological Organization as a Regional Instrument Centre, has organized a round-robin comparison of calibration laboratories of meteorological services in the southeastern part of Europe using instruments for temperature, relative humidity, and barometric pressure. Each participant laboratory had to calibrate a set of instruments at defined calibration points, to evaluate the measurement uncertainty (if possible), and to report the results. EARS RIC invited the National Hydrometeorological Services in the southeastern part of Europe to take part in the intercomparison. In addition, the Laboratory of Metrology and Quality (MIRS/UL-FE/LMK), which holds the Slovenian national standard for temperature and relative humidity, was also invited to participate in the comparison and in the data analysis. Results from MIRS/UL-FE/LMK and EARS were used to calculate the temperature and humidity comparison reference values, while the EARS results were taken as reference values for barometric pressure.

  12. Immediate needs for MQA testing at state secondary calibration laboratories

    SciTech Connect

    Cline, R.

    1993-12-31

    The Calibration Laboratory attempts to provide services that satisfy the needs and requests for a variety of customers. New needs and requests have resulted in calibration of instrumentation outside the original laboratory designs. These tasks require several changes at the laboratory and a need for new support services, especially measurement quality assurance (MQA). The MQA tests are gamma (Cs-137) below 0.5 mrem (5{mu}Sv) per hour and x-ray kVp. Modification to the current gamma (Cs-137) MQA test is recommended because lower intensity fields are commonly measured.

  13. Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility

    SciTech Connect

    Radev, R

    2009-09-04

    In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

  14. Five Proficiency Testing Programs for the Jcss Weight Calibration Laboratories

    NASA Astrophysics Data System (ADS)

    Ueki, Masaaki; Sun, Jianxin; Ueda, Kazunaga

    The Japan Calibration Service System (JCSS) organized in 1993 accredits the measurement capability of calibration laboratories and ensures the traceability to the national measurement standards. As an essential part of accreditation of the measurement capability of calibration laboratories for the weights, the International Accreditation Japan (IAJapan) of National Institute of Technology and Evaluation has been operating the JCSS proficiency testing programs with the technical support of the National Metrology Institute of Japan (NMIJ/AIST). Up to now, five proficiency testing programs have been carried out for the JCSS weight calibration laboratories in the range of 2 mg to 10 kg. The proficiency testing programs organized by the IAJapan were carried out in accordance with ISO/IEC Guide 43 (JIS Q 17043), and the NMIJ was responsible for the technical aspect as a reference laboratory. This paper describes the methods of the five proficiency testing programs during the period from 1997 to 2009, and outlines assessment of the measurement capability of the JCSS weight calibration laboratories.

  15. Laboratory radiometric calibration for the convex grating imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Chen, Xinhua; Chen, Yuheng; Ji, Yiqun; Shen, Weimin

    2014-09-01

    The radiometric calibration of imaging spectrometer plays an import role for scientific application of spectral data. The radiometric calibration accuracy is influenced by many factors, such as the stability and uniformity of light source, the transfer precision of radiation standard and so on. But the deviation from the linear response mode and the polarization effect of the imaging spectrometer are always neglected. In this paper, the linear radiometric calibration model is constructed and the radiometric linear response capacity is test by adjusting electric gain, exposure time and radiance level. The linear polarizer and the sine function fitting algorithm are utilized to measure polarization effect. The integrating sphere calibration system is constructed in our Lab and its spectral radiance is calibrated by a well-characterized and extremely stable NIST traceable transfer spectroradiometer. Our manufactured convex grating imaging spectrometer is relative and absolute calibrated based on the integrating sphere calibration system. The relative radiometric calibration data is used to remove or reduce the radiometric response non-uniformity every pixel of imaging spectrometer while the absolute radiometric calibration is used to construct the relationship between the physical radiant of the scene and the digital number of the image. The calibration coefficients are acquired at ten radiance levels. The diffraction noise in the images can be corrected by the calibration coefficients and the uniform radiance image can be got. The calibration result shows that our manufactured imaging spectrometer with convex grating has 3.0% degree of polarization and the uncertainties of the relative and absolute radiometric calibrations are 2.4% and 5.6% respectively.

  16. Calibration Laboratory Capabilities Listing as of April 2009

    NASA Technical Reports Server (NTRS)

    Kennedy, Gary W.

    2009-01-01

    This document reviews the Calibration Laboratory capabilities for various NASA centers (i.e., Glenn Research Center and Plum Brook Test Facility Kennedy Space Center Marshall Space Flight Center Stennis Space Center and White Sands Test Facility.) Some of the parameters reported are: Alternating current, direct current, dimensional, mass, force, torque, pressure and vacuum, safety, and thermodynamics parameters. Some centers reported other parameters.

  17. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  18. Thermocouple Calibration and Accuracy in a Materials Testing Laboratory

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Nathal, M. V.; Keller, D. J.

    2002-01-01

    A consolidation of information has been provided that can be used to define procedures for enhancing and maintaining accuracy in temperature measurements in materials testing laboratories. These studies were restricted to type R and K thermocouples (TCs) tested in air. Thermocouple accuracies, as influenced by calibration methods, thermocouple stability, and manufacturer's tolerances were all quantified in terms of statistical confidence intervals. By calibrating specific TCs the benefits in accuracy can be as great as 6 C or 5X better compared to relying on manufacturer's tolerances. The results emphasize strict reliance on the defined testing protocol and on the need to establish recalibration frequencies in order to maintain these levels of accuracy.

  19. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Calibration measurements of brachytherapy sources. 35.432... § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of a... licensee making its own measurements as required in paragraph (a) of this section, the licensee may...

  20. Laboratory calibration of pyrgeometers with known spectral responsivities

    NASA Astrophysics Data System (ADS)

    Gröbner, Julian; Los, Alexander

    2007-10-01

    A methodology is presented to calibrate pyrgeometers measuring atmospheric long-wave radiation, if their spectral dome transmission is known. The new calibration procedure is based on a black-body cavity to retrieve the sensitivity of the pyrgeometer, combined with calculated atmospheric long-wave spectra to determine a correction function in dependence of the integrated atmospheric water vapor to convert Planck radiation spectra to atmospheric long-wave spectra. The methodology was validated with two custom CG4 pyrgeometers with known dome transmissions by a comparison to the World Infrared Standard Group of Pyrgeometers at the World Radiation Center-Infrared Radiometry Section. The responsivities retrieved using the new laboratory calibration agree to within 1% with the responsivities determined by a comparison to the WISG, which is well within the uncertainties of both methodologies.

  1. High dose calibrations at the pacific northwest laboratory

    NASA Astrophysics Data System (ADS)

    McDonald, J. C.; Fox, R. A.

    1989-04-01

    he need is increasing for both high radiation exposures and calibration measurements that provide traceability of such exposures to national standards. The applications of high exposures include: electronic component damage studies, sterilization of medical products and food irradiation. Accurate high exposure measurements are difficult to obtain and cannot, in general, be carried out with a single dose measurement system or technique because of the wide range of doses and the variety of materials involved. This paper describes the dosimetric measurement and calibration techniques used at the Pacific Northwest Laboratory (PNL) that make use of radiochromic dye films, thermoluminescence dosimeters (TLDs), ionization chambers and calorimetric dosimeters. The methods used to demonstrate the consistency of PNL calibrations with national standards will also be discussed.

  2. Calibration of 192Ir high dose rate brachytherapy source using different calibration procedures

    PubMed Central

    Bondel, Shwetha; Ravikumar, Manickham; Supe, Sanjay Sudhakar; Reddy, Buchuppudi Rekha

    2013-01-01

    Aim To calibrate Ir-192 high dose rate (HDR) brachytherapy source using different calibration methods and to determine the accuracy and suitability of each method for routine calibrations. Background The source calibration is an essential part of the quality assurance programme for dosimetry of brachytherapy sources. The clinical use of brachytherapy source requires an independent measurement of the air kerma strength according to the recommendations of medical physics societies. Materials and methods The Ir-192 HDR brachytherapy source from Gammamed plus machine (Varian Medical Systems, Palo Alto, CA) was calibrated using three different procedures, one using the well-type ionization chamber, second by the in-air calibration method and third using solid water phantoms. The reference air kerma rate (RAKR) of the source was determined using Deutsche Gesellschaft fur Medizinische Physik (DGMP) recommendations. Results The RAKR determined using different calibration methods are in good agreement with the manufacturer stated value. The mean percentage variations of 0.21, −0.94, −0.62 and 0.58 in RAKR values with respect to the manufacturer quoted values were observed with the well-type chamber, in-air calibration, cylindrical phantom and slab phantom measurements, respectively. Conclusion Measurements with a well-type chamber are relatively simple to perform. For in-air measurements, the indigenously designed calibration jig provides an accurate positioning of the source and chamber with minimum scatter contribution. The slab phantom system has an advantage that no additional phantom and chamber are required other than those used for external beam therapy dosimetry. All the methods of calibration discussed in this study are effective to be used for routine calibration purposes. PMID:24944818

  3. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear sealed calibration source. 892.1400 Section 892.1400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration...

  4. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear sealed calibration source. 892.1400 Section 892.1400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration...

  5. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear sealed calibration source. 892.1400 Section 892.1400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration...

  6. Common Calibration Source for Monitoring Long-term Ozone Trends

    NASA Technical Reports Server (NTRS)

    Kowalewski, Matthew

    2004-01-01

    Accurate long-term satellite measurements are crucial for monitoring the recovery of the ozone layer. The slow pace of the recovery and limited lifetimes of satellite monitoring instruments demands that datasets from multiple observation systems be combined to provide the long-term accuracy needed. A fundamental component of accurately monitoring long-term trends is the calibration of these various instruments. NASA s Radiometric Calibration and Development Facility at the Goddard Space Flight Center has provided resources to minimize calibration biases between multiple instruments through the use of a common calibration source and standardized procedures traceable to national standards. The Facility s 50 cm barium sulfate integrating sphere has been used as a common calibration source for both US and international satellite instruments, including the Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet 2 (SBUV/2) instruments, Shuttle SBUV (SSBUV), Ozone Mapping Instrument (OMI), Global Ozone Monitoring Experiment (GOME) (ESA), Scanning Imaging SpectroMeter for Atmospheric ChartographY (SCIAMACHY) (ESA), and others. We will discuss the advantages of using a common calibration source and its effects on long-term ozone data sets. In addition, sphere calibration results from various instruments will be presented to demonstrate the accuracy of the long-term characterization of the source itself.

  7. Development of a system based on open source technology for DC resistor calibration

    NASA Astrophysics Data System (ADS)

    Geronymo, G. M.; Silva, M. C.

    2016-07-01

    This work present the development of a new system, based on open source technology, for the automation of DC resistor calibration. The new system is web-based, stores the measurement registers on a structured database and has new features that can increase the productivity of the laboratory. Some proposes of future development are presented, also.

  8. New blackbody calibration source for low temperatures from -20 C to +350 C

    NASA Astrophysics Data System (ADS)

    Mester, Ulrich; Winter, Peter

    2001-03-01

    Calibration procedures for infrared thermometers and thermal imaging systems require radiation sources of precisely known radiation properties. In the physical absence of an ideal Planck's radiator, the German Committee VDI/VDE-GMA FA 2.51, 'Applied Radiation Thermometry', agreed upon desirable specifications and limiting parameters for a blackbody calibration source with a temperature range from -20 degree(s)C to +350 degree(s)C, a spectral range from 2 to 15 microns, an emissivity greater than 0.999 and a useful source aperture of 60 mm, among others. As a result of the subsequent design and development performed with the support of the laboratory '7.31 Thermometry' of the German national institute of natural and engineering sciences (PTB), the Mester ME20 Blackbody Calibration Source is presented. The ME20 meets or exceeds all of the specifications formulated by the VDI/VDE committee.

  9. High intensity line source for x-ray spectrometer calibration

    SciTech Connect

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 ..mu.. x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10/sup 4/) time-resolved cyrstal spectrometer, will be discussed in detail.

  10. Calibration of an Ultrasound Tomography System for Medical Imaging with 2D Contrast-Source Inversion

    NASA Astrophysics Data System (ADS)

    Faucher, Gabriel Paul

    This dissertation describes two possible methods for the calibration of an ultrasound tomography system developed at University of Manitoba's Electromagnetic Imaging Laboratory for imaging with the contrast-source inversion algorithm. The calibration techniques are adapted from existing procedures employed for microwave tomography. A theoretical model of these calibration principles is developed in order to provide a rationale for the effectiveness of the proposed procedures. The applicability of such an imaging algorithm and calibration methods in the context of ultrasound are discussed. Also presented are 2D and 3D finite-difference time-domain update equations for the simulation of acoustic wave propagation in inhomogeneous media. Details regarding the application of an absorbing boundary-condition, point-source modelling and the treatment of penetrable objects are included in this document.

  11. Neutron calibration sources in the Daya Bay experiment

    DOE PAGESBeta

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  12. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K; Weber, F; Dewald, E; Glenzer, S; Landen, O; Turner, R; Waide, P

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  13. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K.M.; Weber, F.A.; Dewald, E.L.; Glenzer, S.H.; Landen, O.L.; Turner, R.E.; Waide, P.A.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  14. A dynamic pressure source for the calibration of pressure transducers

    NASA Technical Reports Server (NTRS)

    Vezzetti, C. F.; Hilten, J. S.; Mayo-Wells, J. F.; Lederer, P. S.

    1976-01-01

    A dynamic pressure source is described for producing sinusoidally varying pressures of up to 34 kPa zero to peak, over the frequency range of approximately 50 Hz to 2 kHz. The source is intended for the dynamic calibration of pressure transducers. The transducer to be calibrated is mounted near the base of the thick walled aluminum tube forming the vessel so that the pressure sensitive element is in contact with the liquid in the tube. A section of the tube is filled with small steel balls to damp the motion of the 10-St dimethyl siloxane working fluid in order to extend the useful frquency range to higher frequencies than would be provided by an undamped system. The dynamic response of six transducers provided by the sponsor was evaluated using the pressure sources; the results of these calibrations are given.

  15. Calibration of a DSSSD detector with radioactive sources

    SciTech Connect

    Guadilla, V.; Tain, J. L.; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Rubio, B.

    2013-06-10

    The energy calibration of a DSSSD is carried out with the spectra produced by a {sup 207}Bi conversion electron source, a {sup 137}Cs gamma source and a {sup 239}Pu/{sup 241}Am/{sup 244}Cm triple alpha source, as well as employing a precision pulse generator in the whole dynamic range. Multiplicity and coincidence of signals in different strips for the same event are also studied.

  16. Thomson scattering calibration with ultrabright supercontinuum light source

    SciTech Connect

    Pasqualotto, R.; Alfier, A.

    2006-10-15

    The recently developed supercontinuum light source (SLS) finds a useful application in the calibration of a Thomson scattering (TS) diagnostic. When filter polychromators are used, the relative responsivity of the spectral channels is generally measured with a cw halogen light source from the dc output of the detectors, while the TS signal is measured from an ac output. In a TS system with optical delay lines, like in RFX-mod, a cw light source cannot discriminate differences between the relative responsivities of the positions that share the same polychromator but are connected to different delay lines: this can be achieved with a pulsed white light source instead. In addition a pulsed source with a time response similar to the TS signals would avoid any frequency response problem, because the same ac output of the detectors used for the TS signals could also be used for the calibration. An SLS produces a 5 ns Gaussian pulse, with a wide and smooth spectrum that covers the range of 550-1600 nm. The SLS provides a light source sufficiently bright to calibrate simultaneously all spectrometers. The experimental setup used for the calibration and obtained results are presented.

  17. Active radiometric calorimeter for absolute calibration of radioactive sources

    NASA Astrophysics Data System (ADS)

    Stump, K. E.; DeWerd, L. A.; Rudman, D. A.; Schima, S. A.

    2005-03-01

    This report describes the design and initial noise floor measurements of a radiometric calorimeter designed to measure therapeutic medical radioactive sources. The instrument demonstrates a noise floor of approximately 2 nW. This low noise floor is achieved by using high temperature superconducting (HTS) transition edge sensor (TES) thermometers in a temperature-control feedback loop. This feedback loop will be used to provide absolute source calibrations based upon the electrical substitution method. Other unique features of the calorimeter are (a) its ability to change sources for calibration without disrupting the vacuum of the instrument, and (b) the ability to measure the emitted power of a source in addition to the total contained source power.

  18. NONPOINT SOURCE MODEL CALIBRATION IN HONEY CREEK WATERSHED

    EPA Science Inventory

    The U.S. EPA Non-Point Source Model has been applied and calibrated to a fairly large (187 sq. mi.) agricultural watershed in the Lake Erie Drainage basin of north central Ohio. Hydrologic and chemical routing algorithms have been developed. The model is evaluated for suitability...

  19. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  20. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  1. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  2. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  3. Primary calibrations of radionuclide solutions and sources for the EML quality assessment program

    SciTech Connect

    Fisenne, I.M.

    1993-12-31

    The quality assurance procedures established for the operation of the U.S. Department of Energy`s Environmental Measurements Laboratory (DOE-EML`s) Quality Assessment Program (QAP) are essentially the same as those that are in effect for any EML program involving radiometric measurements. All these programs have at their core the use of radionuclide standards for their instrument calibration. This paper focuses on EML`s approach to the acquisition, calibration and application of a wide range of radionuclide sources that are required to meet its programmatic needs.

  4. On the Error Sources in Absolute Individual Antenna Calibrations

    NASA Astrophysics Data System (ADS)

    Aerts, Wim; Baire, Quentin; Bilich, Andria; Bruyninx, Carine; Legrand, Juliette

    2013-04-01

    The two main methods for antenna calibration currently in use, are anechoic chamber measurements on the one hand and outdoor robot calibration on the other hand. Both techniques differ completely in approach, setup and data processing. Consequently, the error sources for both techniques are totally different as well. Except for the (near field) multi path error, caused by the antenna positioning device, that alters results for both calibration methods. But not necessarily with the same order of magnitude. Literature states a (maximum deviation) repeatability for robot calibration of choke ring antennas of 0.5 mm on L1 and 1 mm on L2 [1]. For anechoic chamber calibration, a value of 1.5 mm on L2 for a resistive ground plane antenna can be found in [2]. Repeatability however masks systematic errors linked with the calibration technique. Hence, comparing an individual calibration obtained with a robot to a calibration of the same antenna in an anechoic chamber, may result in differences that surpass these repeatability thresholds. This was the case at least for all six choke ring antennas studied. The order of magnitude of the differences moreover corresponded well to the values given for a LEIAT504GG in [3]. For some error sources, such as the GNSS receiver measurement noise or the VNA measurement noise, estimates can be obtained from manufacturer specifications in data sheets. For other error sources, such as the finite distance between transmit and receive antenna, or the limited attenuation of reflections on wall absorber, back-of-the-envelope calculations can be made to estimate their order of magnitude. For the error due to (near field) multi path this is harder to do, if not impossible. The more because this strongly depends on the antenna type and its mount. Unfortunately it is, again, this (near field) multi path influence that might void the calibration once the antenna is installed at the station. Hence it can be concluded that at present, due to (near

  5. Laboratory-Based BRDF Calibration of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2007-01-01

    The current study provides the remote sensing community with important high accuracy laboratory-based BRDF calibration of radiometric tarps. The results illustrate the dependence of tarps' weft and warp threads orientation on BRDF. The study was done at incident angles of 0deg, 10deg, and 30deg; scatter zenith angles from 0deg to 60deg, and scatter azimuth angles of 0deg, 45deg, 90deg, 135deg, and 180deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The dependence is well defined at all measurement geometries and wavelengths. It can be as high as 8% at 0deg incident angle and 2% at 30deg incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps is reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The BRDF characterization of radiometric tarps can be successfully extended to other structured surface fabric samples. The results are NIST traceable.

  6. ALTAIR: Precision Photometric Calibration via Low-Cost Artificial Light Sources Above the Atmosphere

    NASA Astrophysics Data System (ADS)

    Albert, Justin; Thanjavur, Karun; Brown, Yorke; Stubbs, Christopher; Kovacs, J. Paul; Bhatnagar, Divya; Hartwick, James; Vanderlinde, Keith; Dobbs, Matt; Gaertner, Arnold; Altair

    2015-01-01

    Understanding the properties of dark energy via SNIa surveys (and to a large extent via other methods as well) requires unprecedented photometric precision. Laboratory and solar photometry and radiometry regularly achieve precisions on the order of parts in ten thousand, but photometric calibration for non-solar astronomy presently remains stuck at the percent or greater level. We present our project, ALTAIR, sponsored by federal agencies in the U.S. and Canada, to erase this discrepancy, and current steps toward achieving laboratory-level photometric precision for major sky surveys late this decade. In particular, we show far- and near-field imaging of the balloon-borne light source we presently launch to altitudes of approximately 20 km, and our initial calibration results (in addition to prior work with a present calibrated source in low-Earth orbit). Our technique is additionally applicable to microwave astronomy. Observation of gravitational waves in the polarized CMB will similarly require unprecedented polarimetric and radiometric precision, and we briefly present our plans for a calibrated microwave source above the atmosphere as well.

  7. Comparison of pencil-type ionization chamber calibration results and methods between dosimetry laboratories.

    PubMed

    Hourdakis, Costas J; Büermann, Ludwig; Ciraj-Bjelac, Olivera; Csete, Istvan; Delis, Harry; Gomola, Igor; Persson, Linda; Novak, Leos; Petkov, Ivailo; Toroi, Paula

    2016-01-01

    A comparison of calibration results and procedures in terms of air kerma length product, PKL, and air kerma, K, was conducted between eight dosimetry laboratories. A pencil-type ionization chamber (IC), generally used for computed tomography dose measurements, was calibrated according to three calibration methods, while its residual signal and other characteristics (sensitivity profile, active length) were assessed. The results showed that the "partial irradiation method" is the preferred method for the pencil-type IC calibration in terms of PKL and it could be applied by the calibration laboratories successfully. Most of the participating laboratories achieved high level of agreement (>99%) for both dosimetry quantities (PKL and K). Estimated relative standard uncertainties of comparison results vary among laboratories from 0.34% to 2.32% depending on the quantity, beam quality and calibration method applied. Detailed analysis of the assigned uncertainties have been presented and discussed. PMID:26508013

  8. Calibration

    NASA Astrophysics Data System (ADS)

    Kunze, Hans-Joachim

    Commercial spectrographic systems are usually supplied with some wave-length calibration, but it is essential that the experimenter performs his own calibration for reliable measurements. A number of sources emitting well-known emission lines are available, and the best values of their wavelengths may be taken from data banks accessible on the internet. Data have been critically evaluated for many decades by the National Institute of Standards and Technology (NIST) of the USA [13], see also p. 3. Special data bases have been established by the astronomy and fusion communities (Appendix B).

  9. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    SciTech Connect

    Heaton, H.T. II; Taylor, A.R. Jr.

    1993-12-31

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory.

  10. Comparison of Blackbody Sources for Low-Temperature IR Calibration

    NASA Astrophysics Data System (ADS)

    Ljungblad, S.; Holmsten, M.; Josefson, L. E.; Klason, P.

    2015-12-01

    Radiation thermometers are traditionally mostly used in high-temperature applications. They are, however, becoming more common in different applications at room temperature or below, in applications such as monitoring frozen food and evaluating heat leakage in buildings. To measure temperature accurately with a pyrometer, calibration is essential. A problem with traditional, commercially available, blackbody sources is that ice is often formed on the surface when measuring temperatures below 0°C. This is due to the humidity of the surrounding air and, as ice does not have the same emissivity as the blackbody source, it biases the measurements. An alternative to a traditional blackbody source has been tested by SP Technical Research Institute of Sweden. The objective is to find a cost-efficient method of calibrating pyrometers by comparison at the level of accuracy required for the intended use. A disc-shaped blackbody with a surface pyramid pattern is placed in a climatic chamber with an opening for field of view of the pyrometer. The temperature of the climatic chamber is measured with two platinum resistance thermometers in the air in the vicinity of the disc. As a rule, frost will form only if the deposition surface is colder than the surrounding air, and, as this is not the case when the air of the climatic chamber is cooled, there should be no frost or ice formed on the blackbody surface. To test the disc-shaped blackbody source, a blackbody cavity immersed in a conventional stirred liquid bath was used as a reference blackbody source. Two different pyrometers were calibrated by comparison using the two different blackbody sources, and the results were compared. The results of the measurements show that the disc works as intended and is suitable as a blackbody radiation source.

  11. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    SciTech Connect

    Heiser .

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  12. Utilization of an automated multimeter calibration system by the Rocky Flats Standards Laboratory

    NASA Astrophysics Data System (ADS)

    Wickoff, B.; Stand, R. S.; Brown, G. R., Jr.; Riordan, G. A.; Delaney, I. C.

    1982-09-01

    The time required to calibrate multimeters was reduced by 75%. Using the calibration system and programmed tape, a Fluke 8050A is calibrated in less than 1/2 hour compared to approximately 2 hours using conventional methods and standards. Most possible sources of human error introduced by recording the setting of instruments and errors from repetitive computations were eliminated.

  13. Two laboratory methods for the calibration of GPS speed meters

    NASA Astrophysics Data System (ADS)

    Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie

    2015-01-01

    The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40-180 km h-1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology.

  14. Multi-source self-calibration: Unveiling the microJy population of compact radio sources

    NASA Astrophysics Data System (ADS)

    Radcliffe, J. F.; Garrett, M. A.; Beswick, R. J.; Muxlow, T. W. B.; Barthel, P. D.; Deller, A. T.; Middelberg, E.

    2016-03-01

    Context. Very long baseline interferometry (VLBI) data are extremely sensitive to the phase stability of the VLBI array. This is especially important when we reach μJy rms sensitivities. Calibration using standard phase-referencing techniques is often used to improve the phase stability of VLBI data, but the results are often not optimal. This is evident in blank fields that do not have in-beam calibrators. Aims: We present a calibration algorithm termed multi-source self-calibration (MSSC) which can be used after standard phase referencing on wide-field VLBI observations. This is tested on a 1.6 GHz wide-field VLBI data set of the Hubble Deep Field North and the Hubble Flanking Fields. Methods: MSSC uses multiple target sources that are detected in the field via standard phase referencing techniques and modifies the visibilities so that each data set approximates to a point source. These are combined to increase the signal to noise and permit self-calibration. In principle, this should allow residual phase changes caused by the troposphere and ionosphere to be corrected. By means of faceting, the technique can also be used for direction-dependent calibration. Results: Phase corrections, derived using MSSC, were applied to a wide-field VLBI data set of the HDF-N, which comprises of 699 phase centres. MSSC was found to perform considerably better than standard phase referencing and single source self-calibration. All detected sources exhibited dramatic improvements in dynamic range. Using MSSC, one source reached the detection threshold, taking the total detected sources to twenty. This means 60% of these sources can now be imaged with uniform weighting, compared to just 45% with standard phase referencing. In principle, this technique can be applied to any future VLBI observations. The Parseltongue code, which implements MSSC, has been released and made publicly available to the astronomical community (http://https://github.com/jradcliffe5/multi_self_cal).

  15. A Penning discharge source for extreme ultraviolet calibration

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    A Penning discharge lamp for use in the calibration of instruments and components for the extreme ultraviolet has been developed. This source is sufficiently light and compact to make it suitable for mounting on the movable slit assembly of a grazing incidence Rowland circle monochromator. Because this is a continuous discharge source, it is suitable for use with photon counting detectors. Line radiation is provided both by the gas and by atoms sputtered off the interchangeable metal cathodes. Usable lines are produced by species as highly ionized as Ne IV and Al V. The wavelength coverage provided is such that a good density of emission lines is available down to wavelengths as short as 100A. This source fills the gap between 100 and 300A, which is inadequately covered by the other available compact continuous radiation sources.

  16. A new standard cylindrical graphite-walled ionization chamber for dosimetry in 60Co beams at calibration laboratories

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Perini, Ana P.; Caldas, Linda V. E.

    2014-11-01

    60Co sources are used mostly at dosimetry laboratories for calibration of ionization chambers utilized for radiotherapy dosimetry, mainly in those laboratories where there is no linear accelerator available. In this work, a new cylindrical ionization chamber was developed and characterized to be used as a reference dosimeter at the Calibration Laboratory of the IPEN. The characterization tests were performed according to the IEC 60731 standard, and all tests presented results within its recommended limits. Furthermore, the correction factors for the wall, stem, central collecting electrode, nonaxial uniformity and the mass-energy absorption coefficient were determined using the EGSnrc Monte Carlo code. The air kerma rate determined with this new dosimeter was compared to the one obtained with the IPEN standard, presenting a difference of 1.5%. Therefore, the new ionization chamber prototype developed and characterized in this work presents potential use as a primary standard dosimeter at radiation metrology laboratories.

  17. Utilization of an automated multimeter calibration system by the Rocky Flats Standards Laboratory

    SciTech Connect

    Wickoff, B.; Stant, R.S.; Brown, G.R. Jr.

    1982-09-10

    The Physical Metrology Laboratory (PML) of the Rocky Flats (RF) Standards Laboratory, like many other standards laboratories, was inundated during the past decade with the vast variety of new digital multimeters. These multimeters were produced by several companies, and required accurate calibrations and certification to support the requirements at the Rocky Flats Plant. The need to automate the calibration and certification process accurately was vividly indicated by a time study of performing the process manually, for both the digital and the analog multimeters, in the PML Reference Standards Laboratory. By using an automated calibration system, approximately 90% of these calibrations could be completed in the Physical Metrology Support Laboratories with a reduction of 50% or more in hours required for the calibrations. With these specific requirements and other specifications deemed necessary, the automated calibration systems for digital and analog multimeters were purchased. Two Fluke 5101B Calibrators with Fluke 5220A Transconductance Amplifiers and two printers were procured for use by the Physical Metrology Support Laboratories. There operation and performance are described.

  18. Study and mitigation of calibration error sources in a water vapour Raman lidar

    NASA Astrophysics Data System (ADS)

    David, Leslie; Bock, Olivier; Bosser, Pierre; Thom, Christian; Pelon, Jacques

    2014-05-01

    gain and spatial inhomogeneity in the sensitivity of the photomultiplier photocathode,…) separately using theoretical analysis, numerical and optical simulations, and laboratory experiments. The instability induced by the use of an optics fibre for coupling the signal collected by the telescope to the detectors is especially investigated. We quantified the impact of all these error sources on the water vapour and nitrogen Raman channels measurements and on the change in the differential calibration constant and we tried to implement an experimental solution to minimize the variations.

  19. Broadband calibration of R/V Ewing seismic sources

    NASA Astrophysics Data System (ADS)

    Tolstoy, M.; Diebold, J. B.; Webb, S. C.; Bohnenstiehl, D. R.; Chapp, E.; Holmes, R. C.; Rawson, M.

    2004-07-01

    The effects of anthropogenic sound sources on marine mammals are of increasing interest and controversy [e.g., Malakoff, 2001]. To understand and mitigate better the possible impacts of specific sound sources, well-calibrated broadband measurements of acoustic received levels must be made in a variety of environments. In late spring 2003 an acoustic calibration study was conducted in the northern Gulf of Mexico to obtain broad frequency band measurements of seismic sources used by the R/V Maurice Ewing. Received levels in deep water were lower than anticipated based on modeling, and in shallow water they were higher. For the marine mammals of greatest concern (beaked whales) the 1-20 kHz frequency range is considered particularly significant [National Oceanic Atmospheric Administration and U. S. Navy, 2001; Frantzis et al., 2002]. 1/3-octave measurements show received levels at 1 kHz are ~20-33 dB (re: 1 μPa) lower than peak levels at 5-100 Hz, and decrease an additional ~20-33 dB in the 10-20 kHz range.

  20. The 16N calibration source for the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Dragowsky, M. R.; Hamer, A.; Chan, Y. D.; Deal, R.; Earle, E. D.; Frati, W.; Gaudette, E.; Hallin, A.; Hearns, C.; Hewett, J.; Jonkmans, G.; Kajiyama, Y.; McDonald, A. B.; Moffat, B. A.; Norman, E. B.; Sur, B.; Tagg, N.

    2002-04-01

    A calibration source using γ-rays from 16N ( t1/2=7.13 s) β-decay has been developed for the Sudbury Neutrino Observatory (SNO) for the purpose of energy and other calibrations. The 16N is produced via the (n,p) reaction on 16O in the form of CO 2 gas using 14-MeV neutrons from a commercially available Deuterium-Tritium (DT) generator. The 16N is produced in a shielding pit in a utility room near the SNO cavity and transferred to the water volumes (D 2O or H 2O) in a CO 2 gas stream via small diameter capillary tubing. The bulk of the activity decays in a decay/trigger chamber designed to block the energetic β-particles yet permit the primary branch 6.13 MeV γ-rays to exit. Detection of the coincident β-particles with plastic scintillator lining the walls of the decay chamber volume provides a tag for the SNO electronics. This paper gives details of the production, transfer, and triggering systems for this source along with a discussion of the source γ-ray output and performance.

  1. Laboratory test simulation for non-flat response calibration of global Earth albedo monitor

    NASA Astrophysics Data System (ADS)

    Seong, Sehyun; Kim, Sug-Whan; Ryu, Dongok; Hong, Jinsuk; Lockwood, Mike

    2012-09-01

    In this report, we present laboratory test simulation for directional responsivity of a global Earth albedo monitoring instrument. The sensor is to observe the Sun and the Earth, alternately, and measure their shortwave (<4μm) radiations around the L1 halo orbit to obtain global Earth albedo. The instrument consists of a broadband scanning radiometer (energy channel instrument) and an imager (visible channel instrument) with ±2° field-of-view. In the case of the energy channel instrument, radiations arriving at the viewing ports from the Sun and the Earth are directed toward the pyroelectric detector via two spherical folding mirrors and a 3D compound parabolic concentrator (CPC). The instrument responsivity is defined by the ratio of the incident radiation input to the instrument output signal. The radiometer's relative directional responsivity needs to be characterized across the field-of-view to assist output signal calibration. For the laboratory test, the distant small source configuration consists of an off-axis collimator and the instrument with adjustable mounts. Using reconstructed 3D CPC surface, the laboratory test simulation for predicting the instrument directional responsivity was conducted by a radiative transfer computation with ray tracing technique. The technical details of the laboratory test simulation are presented together with future plan.

  2. Calibration of Radiation Thermometers up to : Effective Emissivity of the Source

    NASA Astrophysics Data System (ADS)

    Kozlova, O.; Briaudeau, S.; Rongione, L.; Bourson, F.; Guimier, S.; Kosmalski, S.; Sadli, M.

    2015-08-01

    The growing demand of industry for traceable temperature measurements up to encourages improvement of calibration techniques for industrial-type radiation thermometers in this temperature range. High-temperature fixed points can be used at such high temperatures, but due to the small diameter of apertures of their cavities (3 mm), they are not adapted for the large field-of-views commonly featured by this kind of radiation thermometers. At LNE-Cnam, a Thermo Gauge furnace of 25.4 mm source aperture diameter is used as a comparison source to calibrate customers' instruments against a reference radiation thermometer calibrated according to the ITS-90 with the lowest uncertainties achievable in the Laboratory. But the furnace blackbody radiator exhibits a large temperature gradient that degrades its effective emissivity, and increases the calibration uncertainty due to the lack of information on the working spectral band of the industrial radiation thermometer. In order to estimate the corrections to apply, the temperature distribution (radial and on-axis) of the Thermo Gauge furnace blackbody radiator was characterized and the effective emissivity of the Thermo Gauge cavity was determined by three different methods. Because of this investigation, the corrections due to different fields of view and due to the different spectral bands of the reference pyrometer and the customer's pyrometer were obtained and the uncertainties on these corrections were evaluated.

  3. Programmable and automatic calibrator for radio sources at 45 MHz

    NASA Astrophysics Data System (ADS)

    Aparici, J.; May, J.; Salas, F.; Ventura, J.

    1981-12-01

    The design, construction and operation of a standard calibrator is presented. The calibrator consists of saturated diodes controlled by an indirect feed-back system and a digital-to-analog converter. The advantages over similar designs are described, as for instance, high-resolution in the calibration scale, good stability, very fast calibrations, use of balanced electronic switches, etc.

  4. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    SciTech Connect

    DeWard, L.A.; Micka, J.A.

    1993-12-31

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST).

  5. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    SciTech Connect

    Cerra, F.; Heaton, H.T.

    1993-12-31

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescent dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards.

  6. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  7. The Corinth Rift Laboratory (CRL) strainmeters: calibration and data analysis

    NASA Astrophysics Data System (ADS)

    Canitano, A.; Bernard, P.; Linde, A. T.; Sacks, S. I.; Boudin, F.

    2010-12-01

    The Gulf of Corinth (Greece) is one of the most seismic regions in Europe, producing some strong earthquakes in the decades, 1 to 1.5 cm/yr of north-south extension, and frequent seismic swarms. This structure is a 110 km long, N110E oriented graben bounded by systems of very recent normal faults. The Corinth Rift Laboratory (CRL) project is concentrated in the western part of the rift, around the city of Aigion, where instrumental seismicity and strain rate is highest. The CRL Network is made up about fifteen seismic stations as well as tiltmeters, strainmeters or GPS in order to study the local seismicity, and to observe and model the short and long term mechanics of the normal fault system. The instrumental seismicity in the Aigion zone clearly shows a strong concentration of small earthquakes between 5 and 10 km. In order to study slow transient deformation,two borehole strainmeters have been installed in the area (Trizonia, Monasteraki). We focus here on the one installed in the Trizonia island, which is continuously recording the horizontal strain at 150 m depth with a short term resolution better than 10-9. The dominant signal is the earth and sea tidal effects (few 10-7 strain), this one is modulated by the mechanical effects of the free oscillations of the Gulf with periods between 8 and 40 min. The barometric pressure fluctuations acts in combination with the mean sea level variation at longer periods and both effects are not independant. The comparison between the strain data and the two forcing signals exhibits a non zero phase delay of the sea-level which is increasing with period. We estimate a transfer function after few correlation iterations for each forcing signal but the physical interpretation of the sea-level function is still unclear. As the strainmeter is at 150 m depth, below the shoreline, a sea water percolation on land would increase the effect of sea level fluctuation, and be more efficient at longer periods. The dilatometer response to

  8. Calibration of R/V Marcus G. Langseth Seismic Sources

    NASA Astrophysics Data System (ADS)

    Diebold, J.; Tolstoy, M.; Webb, S.; Doermann, L.; Bohenstihl, D.; Nooner, S.; Crone, T.; Holmes, R. C.

    2008-12-01

    NSF-owned Research Vessel Marcus G. Langseth is operated by Lamont-Doherty Earth Observatory, providing the tools for full-scale marine seismic surveys to the academic community. Since inauguration of science operations, Langseth has successfully supported 2D and 3D seismic operations, including offshore- onshore and OBS refraction profiling A significant component of Langseths equipage is the seismic source, comprising four identical linear subarrays which can be combined in a number of configurations according to the needs of each scientific mission. To ensure a full understanding of the acoustic levels of these sources and in order to mitigate their possible impact upon marine life through accurate determination of safety radii, an extensive program of acoustic calibration was carried out in 2007 and 2008, during Langseths shakedown exercises. A total of 14000+ airgun array discharges were recorded in three separate locations with water depths varying from 1750 to 45 meters and at source-receiver offsets between near-zero and 17 km. The quantity of data recorded allows significant quantitative analysis of the sound levels produced by the Langseth seismic sources. A variety of acoustic metrics will be presented and compared, including peak levels and energy-based measures such as RMS, Energy Flux Density and its equivalent, Sound Exposure Level. It is clearly seen that water depth exerts a fundamental control on received sound levels, but also that these effects can be predicted with reasonable accuracy.

  9. Modeling Study of a Proposed Field Calibration Source Using K-40 and High-Z Targets for Sodium Iodide Detectors.

    PubMed

    Rogers, Jeremy; Marianno, Craig; Kallenbach, Gene; Trevino, Jose

    2016-06-01

    Calibration sources based on the primordial isotope potassium-40 (K) have reduced controls on the source's activity due to its terrestrial ubiquity and very low specific activity. Potassium-40's beta emissions and 1,460.8 keV gamma ray can be used to induce K-shell fluorescence x rays in high-Z metals between 60 and 80 keV. A gamma ray calibration source that uses potassium chloride salt and a high-Z metal to create a two-point calibration for a sodium iodide field gamma spectroscopy instrument is thus proposed. The calibration source was designed in collaboration with the Sandia National Laboratory using the Monte Carlo N-Particle eXtended (MCNPX) transport code. Two methods of x-ray production were explored. First, a thin high-Z layer (HZL) was interposed between the detector and the potassium chloride-urethane source matrix. Second, bismuth metal powder was homogeneously mixed with a urethane binding agent to form a potassium chloride-bismuth matrix (KBM). The bismuth-based source was selected as the development model because it is inexpensive, nontoxic, and outperforms the high-Z layer method in simulation. Based on the MCNPX studies, sealing a mixture of bismuth powder and potassium chloride into a thin plastic case could provide a light, inexpensive field calibration source. PMID:27115223

  10. RADBALL TECHNOLOGY TESTING IN THE SAVANNAH RIVER SITE HEALTH PHYSICS INSTRUMENT CALIBRATION LABORATORY

    SciTech Connect

    Farfan, E.

    2010-07-08

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{trademark}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBallTM technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  11. RadBallTM Technology Testing in the Savannah River Site's Health Physics Instrument Calibration Laboratory

    NASA Astrophysics Data System (ADS)

    Farfán, Eduardo B.; Foley, Trevor Q.; Jannik, G. Timothy; Harpring, Larry J.; Gordon, John R.; Blessing, Ronald; Rusty Coleman, J.; Holmes, Christopher J.; Oldham, Mark; Adamovics, John; Stanley, Steven J.

    2010-11-01

    The UK's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBallTM, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBallTM technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  12. RadBall Technology Testing in the Savannah River Site's Health Physics Instrument Calibration Laboratory.

    PubMed

    Farfán, Eduardo B; Foley, Trevor Q; Jannik, G Timothy; Harpring, Larry J; Gordon, John R; Blessing, Ronald; Coleman, J Rusty; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J

    2010-01-01

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall(™), consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL). PMID:21617738

  13. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source.

    PubMed

    Bakeman, M S; van Tilborg, J; Sokollik, T; Baum, D; Ybarrolaza, N; Duarte, R; Toth, C; Leemans, W P

    2010-10-01

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placement of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range. PMID:21034012

  14. Calibration of a Fenn-type nozzle beam source

    NASA Astrophysics Data System (ADS)

    Weaver, Bradley D.; Frankl, D. R.

    1987-11-01

    Calibration of a Fenn-type nozzle beam source and the limitations due to background attenuation, skimmer interference, and condensation are discussed. The nozzle flow rate Nn is calculated, and the peaking factor κ is determined from both radial pressure surveys and effusive-to-supersonic transition measurements. Stage pressure measurements verify both Nn and κ. These quantities specify the ideal beam flux in the absence of attenuation, interference, or condensation. Background attentuation depends on the effective scattering cross section, which can be quite large for finely collimated beams. Serious skimmer interference occurs below a critical value of the skimmer Knudsen number and depends on individual skimmer details. Condensation is observed and found to be predictable according to the known scaling laws. A calculation of absolute beam fluxes is presented. Nonideal behavior of the speed ratio and average particle velocity are also examined. Data are given for the gases H2, He, Ne, and Ar.

  15. Maintaining the accuracy of the (60)Co calibration service at the ARPANSA post source replacement in 2010.

    PubMed

    Oliver, Chris; Butler, Duncan; Webb, David; Wright, Tracy; Lye, Jessica; Ramanathan, Ganesan; Harty, Peter; Takau, Viliami

    2015-06-01

    The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) maintains a (60)Co teletherapy source primarily for the calibration of therapy dosemeters. The source and encapsulating head were replaced in early 2010 with an Eldorado 78 head and new (60)Co source. In this article we present the results of ongoing accuracy and stability measurements since the replacement. A number of formal and informal indirect comparisons have been carried out with laboratories holding primary and secondary standards for (60)Co. ARPANSA chambers have also been calibrated at international primary standard laboratories allowing comparison of calibration coefficients and thus (60)Co absorbed dose standards. (60)Co calibration coefficients supplied by manufacturers of chambers were compared to those measured at the ARPANSA when this calibration was traceable to a primary standard. ARPANSA also participates in an annual international mailed dosimetry audit conducted by the International Atomic Energy Agency. The results thus far demonstrate that the absorbed doses to water delivered by the new ARPANSA (60)Co source are consistent with international doses within the stated uncertainties. PMID:25749989

  16. IR spectral characterization of customer blackbody sources: first calibration results

    NASA Astrophysics Data System (ADS)

    Mekhontsev, S.; Noorma, M.; Prokhorov, A.; Hanssen, L.

    2006-04-01

    We summarize recent progress in our infrared (IR) spectral radiance metrology effort. In support of customer blackbody characterization, a realization of the spectral radiance scale has been undertaken in the temperature range of 232 °C to 962 °C and spectral range of 2.5 μm to 20 μm. We discuss the scale realization process that includes the use of Sn, Zn, Al and Ag fixed-point blackbodies (BB), as well as the transfer of the spectral radiance scale to transfer standard BBs based on water, Cs and Na heat pipes. Further we discuss the procedures for customer source calibration with several examples of the spectral radiance and emissivity measurements of secondary standard BB sources. For one of the BBs, a substantial deviation of emissivity values from the manufacturer specifications was found. Further plans include expansion of the adopted methodology for temperatures down to 15 °C and building a dedicated facility for spectral characterization of IR radiation sources.

  17. Hidden sources of mercury in clinical laboratories.

    PubMed

    Alvarez-Chavez, C R; Federico-Perez, R A; Gomez-Alvarez, A; Velazquez-Contreras, L E; Perez-Rios, R

    2014-09-01

    The healthcare sector is an important contributor to mercury (Hg) pollution because of the potential presence of mercury in thermometers, blood pressure cuffs, amalgams, etc. There are also other potential sources of mercury in this sector which are used frequently and in high volumes where the presence of the metal is not obvious and which might be collectively contributing to pollution. For instance, some chemicals used for the clinical diagnosis of illness may contain mercury. The goal of this study was to investigate potential sources of mercury pollution, which originate from clinical laboratory discharges, using an exploratory approach. The focus was on the residue generated during automatic analysis of patients' bodily fluids at a medical center in Hermosillo, Sonora, Mexico. This study shows an overview of what might be happening in the region or the country related to non-obvious sources of mercury in the healthcare sector. The results showed measurable levels of mercury in the residues coming from urine sediment analysis. These amounts do not exceed the maximum allowed by Mexican environmental regulations; nevertheless, the frequency and cumulative volume of residues generated, combined with the potential for persistence and the bioaccumulation of mercury in the environment, warrant attention. The work carried out in this study is being taken as a model for future studies for pollution prevention in the healthcare sector with the goal of measuring mercury emissions to the environment from clinical laboratory wastewater, including identifying sources which--while not obvious--could be important given the frequency and volume of their use in the clinical diagnosis. PMID:24816591

  18. R/V EWING seismic source array calibrations: 2003

    NASA Astrophysics Data System (ADS)

    Diebold, J.; Webb, S.; Tolstoy, M.; Rawson, M.; Holmes, C.; Bohnenstiehl, D.; Chapp, E.

    2003-12-01

    In the Northern Gulf of Mexico, May, 2003, an NSF-funded effort was carried out to obtain calibrated measurements of the various airgun arrays deployed by R/V EWING during its seismic surveys. The motivations for this were several: to ground-truth the modeling upon which safety radii for marine mammal mitigation are established; to obtain broadband digitized signals which will accurately define the full spectral content of airgun signatures; to investigate the effects of seafloor interactions and their contribution to the acoustic noise levels from seismic sources. For this purpose, a digital, remotely telemetering spar buoy was designed and assembled; affording interactive control over the choice of two hydrophone channels, four fixed gain settings and four digitizing rates [6,250 - 50,000 Hz.] Three deployments were planned: a deep-water site, suitable for comparison of actual signals with modeled results; a shallow-water [25 - 50m] site where the effects of bottom interaction would be strongest; and a continental-slope site, which represents the favored habitat of many cetacean species. Methodology was developed which enabled the sequential discharge of four subarrays of 6, 10, 12 and 20 airguns. A separate run was made with two "GI" airguns, the favored high resolution survey source. An Incidental Harassment Authorization and a Biological Opinion, including an Incidental Take Statement were issued for the project by National Marine Fisheries, and a suite of marine mammal observation and mitigation procedures was followed. The deep and shallow water sites were occupied, and some 440 airgun signals were recorded. The slope site work was cancelled due to weather too poor for accurate marine mammal observation, but calibration was subsequently carried out with an exploration industry source vessel in a similar environment. Preliminary results indicate that the mitigation modeling is accurate, though somewhat conservative; that the radiated energy from airgun arrays

  19. Astronomical Spectroscopy: Calibration Sources for the Near Infrared

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Aldenius, Maria; Nave, Gillian; Sansonetti, Craig J.; Ralchenko, Yuri

    2009-05-01

    The European Southern Observatory (ESO) operates a multitude of telescopes and instruments at its La Silla Paranal Observatory in Chile. The most powerful ones are the four 8-m telescopes of the Very Large Telescope (VLT). ESO is currently studying an Extremely Large Telescope (ELT) with a diameter of the primary mirror of 42 m. This telescope will make use of various techniques of adaptive optics (AO) to counter the perturbing effect of Earth's atmosphere. Due to the wavelength dependent performance of AO the European ELT (E-ELT) will be most powerful in the near-infrared (IR) domain. A collaboration of ESO and the US Institute for Standards and Technology (NIST) has successfully established wavelength standards in the emission spectrum of Th-Ar hollow cathode lamps for high resolution spectroscopy. This has been a major advancement for near-IR astronomy, which has traditionally relied on atmospheric features for wavelength calibration. ESO and NIST report on joint efforts to identify and establish the best sources for wavelength calibration for the 2nd generation of VLT instrument and for the E-ELT. To this end we are studying the near-IR spectra of various elements. With the focus of astronomy moving toward IR wavelengths the astronomical community will have a need for a large amount of atomic and molecular data in order to perform the scientific analysis of their data. It will be essential that the long-standing and fruitful collaboration between astrophysics and the atomic and molecular physics community continues in the future.

  20. Laboratory calibration of an underwater sound receiver in the reverberation field of a noise signal

    NASA Astrophysics Data System (ADS)

    Isaev, A. E.; Chernikov, I. V.

    2015-11-01

    When performing calibrations, it is expedient to measure the set of detailed frequency responses of an underwater sound receiver so that it can receive particular characteristics adequate to the tasks and conditions of using it according to its intended use. We demonstrate the possibility of using the reverberation field of a noise signal for this in conjunction with processing by complex moving weighted averaging. The paper presents the results of calibrating underwater sound receivers in the noise reverberation field of a laboratory tank.

  1. Angular response calibration of the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1988-01-01

    The Gamma Ray Observatory includes four experiments designed to observe the gamma-ray universe. Laboratory measurements to test the response the Burst and Transient Source Experiment (BATSE) modules to gamma-ray sources that are non-axial were recently completed. The results of these observations are necessary for the correct interpretation of BATSE data obtained after it is put in Earth orbit. The launch is planned for March, 1900. Preliminary analyses of these test data show the presence of a radial dependence to the detector's light collection efficiency. It is proposed to evaluate the importance of this radial response, analyze future experimental data to derive the actual functional dependence on radius, and calculate the net effect on the output spectrum as a function of the angle of incidence.

  2. Evaluation and calibration of a Los Alamos National Laboratory L/sub III/-edge densitometer

    SciTech Connect

    McGonnagle, W.J.; Holland, M.K.; Reynolds, C.S.; Trahey, N.M.; Zook, A.C.

    1983-07-01

    The Department of Energy (DOE), New Brunswick Laboratory (NBL) has evaluated and calibrated an L/sub III/-edge densitometer for the Los Alamos National Laboratory. This prototype instrument was designed for nondestructive on-line measurement of uranium and/or plutonium solutions. The sensitivity was optimized for measuring the uranium and plutonium concentrations in mixed solutions typical of those produced by solvent extraction in the U-Pu fuel cycle. Foil assays were performed on a daily basis to monitor the measurement precision and the stability of the calibration. Traceable reference solutions prepared at NBL were used to calibrate and evaluate the system. For solutions containing approximately 50 grams of uranium and/or plutonium per liter, the relative standard deviation for the L-edge measurements was approximately 0.3%. This experimental evaluation demonstrated that the solution matrix did not influence the results. The instrument performance in a laboratory environment was excellent.

  3. Research and development of a radioisotope dose calibrator with background alarm used in nuclear medical laboratories.

    PubMed

    Uşakli, Ali Bülent; Akdurak, Serdar

    2002-04-01

    In this study, research and development of a prototype background alarm levelled radioisotope dose calibrator for nuclear medical laboratories was emphasized. The aim was to develop a standard performance, economical dose calibrator (self-made) from the ion-chamber to the microcomputer. Dose calibrators are used in nuclear medical laboratories for treatment and diagnosis purposes. The device is developed using an ion chamber filled with 2 atm pressure argon gas, 3N201 dual gate mosfet for the extremely high impedance preamplifier, an Intel 8052AH microcontroller for the microcomputer, ADC0804 for the A/D conversion, a Phillips 2 x 16 character display, and other components. Correction factors are used for each radioisotope after the activity measurements, that can be updated and kept in the Ni-Cd rechargeable battery-powered RAM memory. To provide safety in nuclear medical laboratories, background activity values are measured. PMID:11993576

  4. Energy spectra of the pneumatically positioned neutron sources at LLNL's Hazards control standards and calibration facility

    SciTech Connect

    Thorngate, J.H.

    1987-06-15

    The Hazards Control Department of Lawrence Livermore National Laboratory maintains a Standards and Calibration Laboratory that includes three neutron sources (two /sup 252/Cf and one /sup 238/PuBe that can be positioned pneumatically for irradiations. Ten moderators exist to modify the neutron energy spectra produced by these sources. The thicknesses and materials of these moderators are: 25-cm water; 5-, 10-, 15-, and 25-cm heavy water; 20-cm aluminum; and 2-, 5-, 10-, and 15-cm polyethylene. We used a multisphere spectrometer to measure the neutron spectra at 2 m from both the PuBe source and the smaller Cf source, with the sources bare, and in all of the moderators. These data were reduced in 25 energy groups ranging from 0.25 eV to 16 MeV. Except for the 15-m polyethylene moderator, we also made measurements using a liquid-scintillator fast-neutron spectrometer. These data were reduced in 0.1-MeV increments from 0.5 to 12.5 MeV. Spectra from the measurements and from independent calculations are presented in tabular and graphic form. Dosimetric values, calculated from both the measured and calculated spectra, are also presented.

  5. Dealing with the size-of-source effect in the calibration of direct-reading radiation thermometer

    SciTech Connect

    Saunders, P.

    2013-09-11

    The majority of general-purpose low-temperature handheld radiation thermometers are severely affected by the size-of-source effect (SSE). Calibration of these instruments is pointless unless the SSE is accounted for in the calibration process. Traditional SSE measurement techniques, however, are costly and time consuming, and because the instruments are direct-reading in temperature, traditional SSE results are not easily interpretable, particularly by the general user. This paper describes a simplified method for measuring the SSE, suitable for second-tier calibration laboratories and requiring no additional equipment, and proposes a means of reporting SSE results on a calibration certificate that should be easily understood by the non-specialist user.

  6. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman; Kim, Ho Kyung

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to

  7. Low Temperature Infrared Source Calibration And Traceability At Arnold Engineering Development Center (AEDC)

    NASA Astrophysics Data System (ADS)

    Little, H. R.; Hiatt, Jay; Lienemann, K. A.

    1983-09-01

    The Aerospace Chamber (7V) at AFDC is a radiometric calibration facility for cold back-ground space-based long-wavelength infrared sensors. A working standard, low-temperature blackbody (BB) has been developed for use in establishing radiometric calibrations that are directly traceable to the National Bureau of Standards (NBS). A description of the BB and the NBS calibration results are presented. This standa.rd source has been utilized to calibrate a phosphorous-doped, silicon bolometer which serves as a transfer device for the calibration of new blackbody sources. The electrically self-calibrating feature of this bolometer has been used to normalize variations in responsivity from one installation to anotter over a period of five years. For infrared (IR) sensor testing, the radiometric quantity of interest is beam irradiance at the sensor aperture. The calibration transfer process which is used to relate the working standard to attenuated sources, is described and the transfer devices are discussed.

  8. Development and operation of a computerized source controller for a gamma calibration well

    SciTech Connect

    Halliburton, R.E.

    1986-01-01

    In the 1950s, the need for an accurately reproducible, real-time gamma calibration facility at the Oak Ridge National Laboratory (ORNL) was met with a manually operated radium source housed in a calibration well. This arrangement was quite satisfactory in the early days but was not able to keep pace with the increasing number of instruments necessary to support an expanding health physics program. Consequently, the hand crank was replaced by an electric motor in the early 1960s. This improvement made it possible to move the source at speeds up to 7 cm/s, resulting in a major increase in efficiency. This configuration served reliably for two decades but, by the 1980s, component aging and the growing scarcity of replacement parts led to the development of a third-generation source controller. The electric motor and vacuum-tube-driven power supply were replaced with a solid state power supply and a stepper motor interfaced to a microcomputer. The software written to operate the system is menu-driven, user-friendly, and provides the greatest flexibility and ease of use while minimizing learning time. The development and use of this control system will be discussed.

  9. History, organization, and oversight of the accredited dosimetry calibration laboratories by the AAPM

    SciTech Connect

    Rozenfeld, M.

    1993-12-31

    For more than 20 years, the American Association of Physicists in Medicine (AAPM) has operated an accreditation program for secondary standards laboratories that calibrate radiation measuring instruments. Except for one short period, that program has been able to provide the facilities to satisfy the national need for accurate calibrations of such instruments. That exception, in 1981, due to the combination of the U.S. Nuclear Regulatory Commission (NRC) requiring instrument calibrations by users of cobalt-60 teletherapy units and the withdrawal of one of the three laboratories accredited at that time. However, after successful operation as a Task Group of the Radiation Therapy Committee (RTC) of the AAPM for two decades, a reorganization of this structure is now under serious consideration by the administration of the AAPM.

  10. 10 CFR 70.19 - General license for calibration or reference sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... section, plutonium in the form of calibration or reference sources: (1) Any person in a non-agreement... plutonium in such sources; (2) Shall not receive, possess, use or transfer such source unless the source, or... regulatory authority. Do not remove this label. caution—radioactive material—this source contains...

  11. 10 CFR 70.19 - General license for calibration or reference sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... section, plutonium in the form of calibration or reference sources: (1) Any person in a non-agreement... plutonium in such sources; (2) Shall not receive, possess, use or transfer such source unless the source, or... regulatory authority. Do not remove this label. caution—radioactive material—this source contains...

  12. Phased Array Radiometer Calibration Using a Radiated Noise Source

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutoch S.; Laymon, Charles A.; Meyer, Paul J.

    2010-01-01

    Electronic beam steering capability of phased array antenna systems offer significant advantages when used in real aperture imaging radiometers. The sensitivity of such systems is limited by the ability to accurately calibrate variations in the antenna circuit characteristics. Passive antenna systems, which require mechanical rotation to scan the beam, have stable characteristics and the noise figure of the antenna can be characterized with knowledge of its physical temperature [1],[2]. Phased array antenna systems provide the ability to electronically steer the beam in any desired direction. Such antennas make use of active components (amplifiers, phase shifters) to provide electronic scanning capability while maintaining a low antenna noise figure. The gain fluctuations in the active components can be significant, resulting in substantial calibration difficulties [3]. In this paper, we introduce two novel calibration techniques that provide an end-to-end calibration of a real-aperture, phased array radiometer system. Empirical data will be shown to illustrate the performance of both methods.

  13. Böhm extrapolation chamber: Study of its behavior in beta radiation fields at the Calibration Laboratory of IPEN

    NASA Astrophysics Data System (ADS)

    Antonio, Patrícia L.; Xavier, Marcos; Caldas, Linda V. E.

    2014-11-01

    The Calibration Laboratory (LCI) at the Instituto de Pesquisas Energéticas e Nucleares (IPEN) is going to establish a Böhm extrapolation chamber as a primary standard system for the dosimetry and calibration of beta radiation sources and detectors. This chamber was already tested in beta radiation beams with an aluminized Mylar entrance window, and now, it was characterized with an original Hostaphan entrance window. A comparison between the results of the extrapolation chamber with the two entrance windows was performed. The results showed that this extrapolation chamber presents the same effectiveness in beta radiation fields as a primary standard system with both entrance windows, showing that any one of them may be utilized.

  14. A new facility for the synchrotron radiation-based calibration of transfer radiation sources in the ultraviolet and vacuum ultraviolet spectral range

    SciTech Connect

    Thornagel, Reiner; Fliegauf, Rolf; Klein, Roman Kroth, Simone; Paustian, Wolfgang; Richter, Mathias

    2015-01-15

    The Physikalisch-Technische Bundesanstalt (PTB) has a long tradition in the calibration of radiation sources in the ultraviolet and vacuum ultraviolet spectral range, with traceability to calculable synchrotron radiation. Within this context, new instrumentation in the PTB laboratory at the Metrology Light Source (MLS) has been put into operation that opens up extended and improved calibration possibilities. A new facility for radiation source calibrations has been set up in the spectral range from 7 nm to 400 nm based on a combined normal incidence-grazing incidence monochromator. The facility can be used for the calibration of transfer sources in terms of spectral radiant intensity or mean spectral radiance, with traceability to the MLS primary source standard. We describe the design and performance of the experimental station and give examples of some commissioning results.

  15. A new facility for the synchrotron radiation-based calibration of transfer radiation sources in the ultraviolet and vacuum ultraviolet spectral range

    NASA Astrophysics Data System (ADS)

    Thornagel, Reiner; Fliegauf, Rolf; Klein, Roman; Kroth, Simone; Paustian, Wolfgang; Richter, Mathias

    2015-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) has a long tradition in the calibration of radiation sources in the ultraviolet and vacuum ultraviolet spectral range, with traceability to calculable synchrotron radiation. Within this context, new instrumentation in the PTB laboratory at the Metrology Light Source (MLS) has been put into operation that opens up extended and improved calibration possibilities. A new facility for radiation source calibrations has been set up in the spectral range from 7 nm to 400 nm based on a combined normal incidence-grazing incidence monochromator. The facility can be used for the calibration of transfer sources in terms of spectral radiant intensity or mean spectral radiance, with traceability to the MLS primary source standard. We describe the design and performance of the experimental station and give examples of some commissioning results.

  16. Towards a laboratory-based calibration of the Swiss plate geophone bedload monitoring system

    NASA Astrophysics Data System (ADS)

    Rodrigo Wyss, Carlos; Rickenmann, Dieter; Fritschi, Bruno; Turowski, Jens Martin; Weitbrecht, Volker; Boes, Robert Michael

    2015-04-01

    The Swiss plate geophone is an indirect bedload monitoring device that is used to continuously monitor bedload transport. The Swiss plate geophone consists of a geophone sensor that measures the elastic deformation of a steel plate induced by the collision of a bedload particle. Differences between bedload particle shape and sizes as well as in-situ hydraulic conditions control the particle transport mode, and these elements have so far required a field calibration of the Swiss plate geophone. In this study, we performed flume experiments with varying bedload transport parameters like particle size and mean flow velocity with natural bedload particles from the Erlenbach stream, Central Switzerland. The impulses, i.e. the number of times the signal recorded by the Swiss plate geophone exceeds a predefined threshold, and wave packets representing a single impact are used to compute laboratory-based calibration curves. These calibration curves are then used as a framework to estimate bedload mass from the impulses and packets registered in the field. Estimated and measured bedload mass are compared for more than 50 bedload samples taken by the automatic basket samplers at the Erlenbach. The results emphasize the sensitivity of the Swiss plate geophone to different hydraulic parameters, in particular mean flow velocity and bed roughness. We conclude that to calibrate the Swiss plate geophone in the laboratory, the hydraulic conditions like bed roughness and Froude numbers have to be replicated. Keywords: Swiss plate geophone, calibration, flume experiments, bedload transport, indirect measurement.

  17. Simulation of germanium detector calibration using the Monte Carlo method: comparison between point and surface source models.

    PubMed

    Ródenas, J; Burgos, M C; Zarza, I; Gallardo, S

    2005-01-01

    Simulation of detector calibration using the Monte Carlo method is very convenient. The computational calibration procedure using the MCNP code was validated by comparing results of the simulation with laboratory measurements. The standard source used for this validation was a disc-shaped filter where fission and activation products were deposited. Some discrepancies between the MCNP results and laboratory measurements were attributed to the point source model adopted. In this paper, the standard source has been simulated using both point and surface source models. Results from both models are compared with each other as well as with experimental measurements. Two variables, namely, the collimator diameter and detector-source distance have been considered in the comparison analysis. The disc model is seen to be a better model as expected. However, the point source model is good for large collimator diameter and also when the distance from detector to source increases, although for smaller sizes of the collimator and lower distances a surface source model is necessary. PMID:16604596

  18. A technique for improving the calibration of large-area sphere sources

    NASA Technical Reports Server (NTRS)

    Walker, James H.; Cromer, Chris L.; Mclean, James T.

    1991-01-01

    A new technique for improving the accuracy of radiance calibrations for large-area integrating-sphere sources has been investigated. Such sources are used to calibrate numerous aircraft and spacecraft remote sensing instruments. Recent measurements performed at NIST and NASA Goddard Space Flight Center have demonstrated that the uncertainty of sphere-source radiance measurements can be improved from the present 5 to 10 percent level to a 1 to 2 percent level. Silicon detectors with bandpass filters mounted in front of them and calibrated for absolute spectral responsivity can be used to confirm and to monitor the absolute radiance of a sphere source.

  19. Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Blake, David; Vaniman, David; Achilles, Cherie; Anderson, Robert; Bish, David; Bristow, Tom; Chen, Curtis; Chipera, Steve; Crisp, Joy; Des Marais, David; Downs, Robert T.; Farmer, Jack; Feldman, Sabrina; Fonda, Mark; Gailhanou, Marc; Ma, Hongwei; Ming, Doug W.; Morris, Richard V.; Sarrazin, Philippe; Stolper, Ed; Treiman, Allan; Yen, Albert

    2012-09-01

    A principal goal of the Mars Science Laboratory (MSL) rover Curiosity is to identify and characterize past habitable environments on Mars. Determination of the mineralogical and chemical composition of Martian rocks and soils constrains their formation and alteration pathways, providing information on climate and habitability through time. The CheMin X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument on MSL will return accurate mineralogical identifications and quantitative phase abundances for scooped soil samples and drilled rock powders collected at Gale Crater during Curiosity's 1-Mars-year nominal mission. The instrument has a Co X-ray source and a cooled charge-coupled device (CCD) detector arranged in transmission geometry with the sample. CheMin's angular range of 5∘ to 50∘ 2 θ with <0.35∘ 2 θ resolution is sufficient to identify and quantify virtually all minerals. CheMin's XRF requirement was descoped for technical and budgetary reasons. However, X-ray energy discrimination is still required to separate Co K α from Co K β and Fe K α photons. The X-ray energy-dispersive histograms (EDH) returned along with XRD for instrument evaluation should be useful in identifying elements Z>13 that are contained in the sample. The CheMin XRD is equipped with internal chemical and mineralogical standards and 27 reusable sample cells with either Mylar® or Kapton® windows to accommodate acidic-to-basic environmental conditions. The CheMin flight model (FM) instrument will be calibrated utilizing analyses of common samples against a demonstration-model (DM) instrument and CheMin-like laboratory instruments. The samples include phyllosilicate and sulfate minerals that are expected at Gale crater on the basis of remote sensing observations.

  20. Ultra-Compact Imaging Spectrometer (UCIS) for In-Situ Planetary Mineralogy: Laboratory and Field Calibration

    NASA Technical Reports Server (NTRS)

    Van Gorp, Byron; Mouroulis, Pantazis; Green, Robert O.; Rodriguez, Jose I.; Blaney, Diana; Wilson, Daniel W.; Sellar, R. Glenn; Richardson, Brandon S.

    2012-01-01

    The Ultra-Compact Imaging Spectrometer (UCIS) is a miniature telescope and spectrometer system intended for mapping terrain mineralogy over distances from 1.5 m to infinity with spatial sampling of 1.35 mrad over a 33 deg field, and spectral sampling of 10 nm in the 600-2500 nm range. The core of the system has been designed for operation in a Martian environment, but can also be used in a terrestrial environment when placed inside a vacuum vessel. We report the laboratory and field calibration data that include spatial and spectral calibration, and demonstrate the use of the system.

  1. FOUR PI CALIBRATION AND MODELING OF A BARE GERMANIUM DETECTOR IN A CYLINDRICAL FIELD SOURCE

    SciTech Connect

    Dewberry, R.; Young, J.

    2011-04-29

    from an axially symmetric cylindrical shell. Subsequent to publication of 1, the theoretical treatment of the cylindrical shell and disk source acquisition sources was recognized by the Los Alamos National Laboratory as suitable for including in the Safeguards Training Program.8 Therefore, we felt it was important to accurately demonstrate the calculus describing the cylindrical shell configuration for the HpGe detector and to theoretically account for the observed bare-detector efficiencies measured in references (3-6). In this paper we demonstrate the applicability of the cylindrical shell derivation to a flexible planar sheet of known Am-241, Eu-152, and Cs-137 activity that we rolled into a symmetrical cylindrical shell of radioactivity. Using the geometry correction equation of reference 1, we calculate geometry correction values using the known detector and source dimensions combined with source to detector distances. We then compare measured detection efficiencies from a cylindrical shell of activity for the 185.7-keV photon (U-235) and for the 414.3-keV photon (Pu-239) with those determined for a 12-inch point source(2,7) to demonstrate agreement between experiment and the theoretically calculated values derived by the Savannah River National Laboratory (SRNL) authors of reference 1. We demonstrate this geometry correction first for the 185.7- and 414.3-keV {gamma}-rays. But because the detector was point source calibrated at 12 inches for the energy range (60 -1700) keV (using two distinct sources) to map its intrinsic efficiency, the geometry correction for any acquisition configuration holds for all photon energies.2 We demonstrate that for ten photon energies in the range 121 keV to 967 keV. The good agreement between experiment and calculation is demonstrated at five source to detector distances using the identical shielded HpGe detector of references 4-7 as well as with a separate HpGe detector. We then extend the measurement to include a single

  2. Establishment of a primary reference solar cell calibration technique in Korea: methods, results and comparison with WPVS qualified laboratories

    NASA Astrophysics Data System (ADS)

    Ahn, SeungKyu; Ahn, SeJin; Yun, Jae Ho; Lee, Dong-Hoon; Winter, Stefan; Igari, Sanekazu; Yoon, KyungHoon

    2014-06-01

    A primary reference solar cell calibration technique recently established at the Korea Institute of Energy Research in Korea is introduced. This calibration technique is an indoor method that uses a highly collimated continuous-type solar simulator and absolute cavity radiometer traceable to the World Radiometric Reference. The results obtained using this calibration technique are shown with a precise uncertainty analysis, and the system configuration and calibration procedures are introduced. The calibration technique avoids overestimating the short-circuit current of a reference solar cell due to multiple reflections of incident simulator light using a novel method. In addition, the uncertainty analysis indicates that the calibration technique has an expanded uncertainty of approximately 0.7% with a coverage factor of k = 2 for a c-Si reference cell calibration. In addition, the developed primary reference solar cell calibration technique was compared with other techniques established in the World Photovoltaic Scale (WPVS) qualified calibration laboratories to verify its validity and reliability.

  3. SOURCE OF MICROBUNCHING AT BNL NSLS SOURCE DEVELOPMENT LABORATORY

    SciTech Connect

    Seletskiy, S.; Hidaka, Y.; Murphy, J.B.; Podobedov, B.; Qian, H.; Shen, Y.; Wang, J.; Yang, X.

    2011-03-28

    We report experimental studies of the origins of electron beam microbunching instability at BNL Source Development Laboratory (SDL). We eliminated laser-induced microbunching by utilizing an ultra-short photocathode laser. The measurements of the resulting electron beam led us to conclude that, at SDL, microbunching arising from shot noise is not amplified to any significant level. Our results demonstrated that the only source of microbunching instability at SDL is the longitudinal modulation of the photocathode laser pulse. Our work shows that assuring a longitudinally smoothed photocathode laser pulse allows mitigating microbunching instability at a typical FEL injector with a moderate microbunching gain. In this paper we investigated the source of microbunching instability at the SDL. To distinguish microbunching induced by shot noise from that arising from the longitudinal modulation of the photocathode laser, we studied the beam created by a very short laser pulse, thus eliminating the possibility of laser-induced microbunching. While the measured energy spectra of compressed beam did reveal severe longitudinal fragmentation, an analysis of the beam dynamics proved this to be due to self-fields acting on a beam with an initially smooth longitudinal profile, and not due to microbunching instability. Such fragmentation only was possible with the very short bunch chosen for these studies, and is absent in routine SDL operations. Our experiment shows that in the absence of the initial laser-induced beam modulation, microbunching instability at the SDL is not observed, and must be well below the levels that would limit the FEL performance. This result agrees with assumption of previous SDL studies that (when present under different machine conditions) microbunching instability at the SDL was laser-induced. Microbunching instability gain at the SDL is moderate. This is mainly because the SDL utilizes a single stage bunch compressor as well as due to the small

  4. Calibration of a laboratory spectrophotometer for specular light by means of stacked glass plates.

    NASA Technical Reports Server (NTRS)

    Allen, W. A.; Richardson, A. J.

    1971-01-01

    Stacked glass plates have been used to calibrate a laboratory spectrophotometer, over the spectral range 0.5-2.5 microns, for specular light. The uncalibrated instrument was characterized by systematic errors when used to measure the reflectance and transmittance of stacked glass plates. Calibration included first, a determination of the reflectance of a standard composed of barium sulfate paint deposited on an aluminum plate; second, the approximation of the reflectance and transmittance residuals between observed and computed values by means of cubic equations; and, finally, the removal of the systematic errors by a computer. The instrument, after calibration, was accurate to 1% when used to measure the reflectance and transmittance of stacked glass plates.

  5. Production and characterization of 228Th calibration sources with low neutron emission for GERDA

    NASA Astrophysics Data System (ADS)

    Baudis, L.; Benato, G.; Carconi, P.; Cattadori, C.; De Felice, P.; Eberhardt, K.; Eichler, R.; Petrucci, A.; Tarka, M.; Walter, M.

    2015-12-01

    The GERDA experiment at the Laboratori Nazionali del Gran Sasso (LNGS) searches for the neutrinoless double beta decay of 76Ge. In view of the GERDA Phase II data collection, four new 228Th radioactive sources for the calibration of the germanium detectors enriched in 76Ge have been produced with a new technique, leading to a reduced neutron emission rate from (α, n) reactions. The gamma activities of the sources were determined with a total uncertainty of ~4% using an ultra-low background HPGe detector operated underground at LNGS. The neutron emission rate was determined using a low background LiI(Eu) detector and a 3He counter at LNGS. In both cases, the measured neutron activity is ~10-6 n/(sṡBq), with a reduction of about one order of magnitude with respect to commercially available 228Th sources. Additionally, a specific leak test with a sensitivity to leaks down to ~10 mBq was developed to investigate the tightness of the stainless steel capsules housing the sources after their use in cryogenic environment.

  6. Comparison of CNES spherical and NASA hemispherical large aperture integrating sources. I - Using a laboratory transfer spectroradiometer. II - Using the SPOT-2 satellite instruments

    NASA Technical Reports Server (NTRS)

    Guenther, B.; Mclean, J.; Leroy, M.; Henry, P.

    1990-01-01

    CNES spherical and NASA hemispherical large aperture calibration sources are examined using a laboratory transfer spectroradiometer and SPOT-2 instruments. The sources, collected at Matra in France during October 1987, are compared in terms of absolute calibration, linearity, and uniformity. The laboratory transfer spectroradiometer data reveal that the calibration results correspond to within about 7 percent absolute accuracy level and the linearity of the CNES source with lamp level is good. It is observed using the satellite data that both sources have an excellent uniformity over a 4 deg field of view.

  7. A Portable Ultra-Stable Calibration Source for Precision RV Measurements in NIR

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Ge, J.; Wan, X.; Delgado, A.; Jakeman, H.

    2011-09-01

    In the next decade, astronomers are aiming at reaching 0.1 m/s RV precision, which will enable discoveries of Earth-like planets around solar-type stars. However, the RV precision is currently limited by stellar activity, the stability and bandwidth of RV calibration sources. We proposed to use an ultra-stable monolithic Michelson interferometer as an RV calibration source. This monolithic interferometer source has several advantages over the conventional RV calibration sources: (1), it produces sinusoidal spectral features which can be easily processed, unlike gas absorption cells or emission lamps, which spectral line distributions are extremely nonuniform; (2), it has a wide spectral coverage from visible to near infrared (NIR); (3), it is designed to be thermal-stable (thermally compensated) so that the thermal induced RV drift is very small; (4), it is also field compensated to ensure a high optical efficiency so that a spatially incoherent continuum light source is suitable for producing bright calibration light (unlike the faint ThAr emission lamp); (5). it is extremely compact ( 10x10x10 cm3) and low cost compared to the bulky (more than 1x1x1 m3) and extremely high cost laser frequency combs. With the help of the proposed RV calibration source, the search of exoplanets around M dwarfs or even L, T dwarfs can be extended to the NIR band. The predicted sub m/s RV calibration precision will enable the discovery of Earth-like planets in the habitable zone around M dwarfs. The proposed calibration source may be quite useful for calibrating future space instruments for possible space RV exoplanet searches in the IR region where RV measurements are free of contamination of the Earth's telluric lines, which is a serious issue for ground-based IR RV observations. We will present our latest results of the calibration source on its application for both Echelle spectrograph and the instrument adopting DFDI method.

  8. A Generalized Finite Source Calibration Factor: A Natural Improvement to the Finite Source Correction Factor for Uranium Holdup Measurements

    SciTech Connect

    Gunn, C.A.; Oberer, R.B.; chiang, L.G.; Ceo, R.N.

    2003-01-28

    This paper proposes refinements to the finite source correction factor used in holdup measurements. Specifically it focuses on a more general method to estimate the average detector response for a finite source. This proposed method for the average detector response is based directly on the Generalized Geometry Holdup (GGH) assay method. First, the finite source correction factor as originally proposed is reviewed in this paper. Following this review the GGH assay method is described. Lastly, a new finite area calibration factor based on GGH is then proposed for finite point and line sources. As an alternative to the direct use of the finite arca calibration factor, finite source correction factors are also derived from this calibration factor. This new correction factor can be used in a manner similar to the finite source correction factor as currently implemented.

  9. Nanoseismic sources made in the laboratory: source kinematics and time history

    NASA Astrophysics Data System (ADS)

    McLaskey, G.; Glaser, S. D.

    2009-12-01

    When studying seismic signals in the field, the analysis of source mechanisms is always obscured by propagation effects such as scattering and reflections due to the inhomogeneous nature of the earth. To get around this complication, we measure seismic waves (wavelengths from 2 mm to 300 mm) in laboratory-sized specimens of extremely homogeneous isotropic materials. We are able to study the focal mechanism and time history of nanoseismic sources produced by fracture, impact, and sliding friction, roughly six orders of magnitude smaller and more rapid than typical earthquakes. Using very sensitive broadband conical piezoelectric sensors, we are able to measure surface normal displacements down to a few pm (10^-12 m) in amplitude. Thick plate specimens of homogeneous materials such as glass, steel, gypsum, and polymethylmethacrylate (PMMA) are used as propagation media in the experiments. Recorded signals are in excellent agreement with theoretically determined Green’s functions obtained from a generalized ray theory code for an infinite plate geometry. Extremely precise estimates of the source time history are made via full waveform inversion from the displacement time histories recorded by an array of at least ten sensors. Each channel is sampled at a rate of 5 MHz. The system is absolutely calibrated using the normal impact of a tiny (~1 mm) ball on the surface of the specimen. The ball impact induces a force pulse into the specimen a few ms in duration. The amplitude, duration, and shape of the force pulse were found to be well approximated by Hertzian-derived impact theory, while the total change in momentum of the ball is independently measured from its incoming and rebound velocities. Another calibration source, the sudden fracture of a thin-walled glass capillary tube laid on its side and loaded against the surface of the specimen produces a similar point force, this time with a source function very nearly a step in time with rise time of less than 500 ns

  10. Satellite-mounted Light Source as Photometric Calibration Standards

    NASA Astrophysics Data System (ADS)

    Albert, J.; Burgett, W.; Rhodes, J.; Battat, J.

    At AMOS 2006 we proposed a tunable laser-based satellite-mounted spectrophotometric and absolute flux calibration system, to be utilized by ground- and space-based telescopes, for precision calibration of ground-based telescope photometry and flux. Since then, we have performed a campaign of observations of the 532 nm pulsed laser aboard the CALIPSO satellite (launched Apr. 2006), using a portable network of cameras and NIST-calibrated photodiodes, to test the precision of this method of measuring atmospheric extinction. This technique has astrophysical applications including reducing a major systematic uncertainty (absolute photometry) on cosmological parameter measurement using type Ia supernovae, as well as in upcoming photometric red shift surveys measuring growth of large scale structure in the Universe. In addition, upcoming systems potentially have broad utility for defense and national security applications such as ground target illumination and space communication. We will report on our measurements using our observations of the CALIPSO laser, and discuss future directions and applications. For further details please see http://www.arxiv.org/abs/astro-ph/0604339 and http://www8.nationalacademies.org/astro2010/DetailFileDisplay.aspx?id=546.

  11. Power source evaluation capabilities at Sandia National Laboratories

    SciTech Connect

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  12. Ka-Band Monopulse Antenna Pointing Calibration Using Wideband Radio Sources

    NASA Astrophysics Data System (ADS)

    Buu, C.; Calvo, J.; Cheng, T.-H.; Vazquez, M.

    2010-08-01

    A new method of performing a system end-to-end monopulse antenna calibration using widely available wideband astronomical radio sources is presented as an alternative to the current method of using a spacecraft signal. Current monopulse calibration requires a spacecraft carrier signal to measure amplitude and phase differences in the monopulse feed and low-noise amplifiers (LNAs). The alternative method presented here will allow the ground station to perform monopulse calibrations during maintenance periods instead of spacecraft track time, and provide an end-to-end system check-out capability without requiring a spacecraft signal. In this article, we give an overview of the current calibration approach, describe a new method for calibrating with radio sources, and present results from field testing of this new method.

  13. On-sky calibration performance of a monolithic Michelson interferometer filtered source

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Ma, Bo; Powell, Scott; Varosi, Frank; Schofield, Sidney; Grieves, Nolan; Liu, Jian

    2014-07-01

    In the new era of searching for Earth-like planets, new generation radial velocity (RV) high resolution spectrographs requires ~0.1 m/s Doppler calibration accuracy in the visible band and a similar calibration precision in the near infrared. The patented stable monolithic Michelson interferometer filtered source called the Sine source emerges as a very promising calibration device. This Sine source has the potential of covering the practical working wavelengths (~0.38- 2.5 μm) for Doppler measurements with high resolution optical and near infrared high resolution spectrographs at the ground-based telescopes. The single frame calibration precision can reach < 0.1 m/s for the state of the art spectrographs, and it can be easily designed to match the intrinsic sensitivities of future Doppler instruments. The Sine source also has the great practical advantages in compact (portable) size and low cost. Here we report early results from on-sky calibration of a Sine source measured with two state-of-the-art TOU optical high resolution spectrograph (R=100,000, 0.38-0.9 microns) and FIRST near infrared spectrograph (R=50,000, 0.8-1.8 microns) at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The results with the TOU spectrograph monitoring over seven days show that the Sine source has produced ~3 times better calibration precision than the ThAr calibration (RMS = 2.7m/s vs. 7.4m/s) at 0.49-0.62 microns where calibration data have been processed by our preliminary data pipeline and ~1.4 times better than the iodine absorption spectra (RMS=3.6 m/s) at the same wavelength region. As both ThAr and Iodine have reached sub m/s calibration accuracy with existing Doppler instruments (such as HARPS and HIRES), it is likely that the sine source would provide similar improvement once a better data pipeline and an upgraded version of a Sine source are developed. It is totally possible to reach ~0.1 m/s in the optical wavelength region. In addition, this Sine source

  14. Study of neutron scattering contribution on Hp(10) and H*(10) calibration in the Brazilian National Low Scattering Laboratory.

    PubMed

    Freitas, B M; Pereira, W W; Patrão, K C S; Fonseca, E S; Mauricio, C L P

    2014-10-01

    The neutron scattering at the Low Scattering Laboratory of the Brazilian National Neutron Laboratory has been studied using three different methods. The measurements have been done with a traceable standard (241)Am-Be from source-to-detector distances of 0.52-3.00 m. The obtained results with the variation distance methods are in agreement. Measurements with a large shadow cone are not worth for larger distances due to overshadowing. As the quantity required in a calibration is the response of the device being calibrated to the scattered neutron component in order to subtract this from the total response, for these purposes, the distance variation method must be used for each device. To quantify absolutely the scattering contribution on the quantity rates of fluence, Hp(10) and H*(10) in irradiation procedures, a Bonner sphere spectrometer with the shadow cone was employed. The evaluated scattering correction factor value may be employed for a distance of 1.00 m. PMID:24984874

  15. Laboratory robotics -- An automated tool for preparing ion chromatography calibration standards

    SciTech Connect

    Chadwick, J.L.

    1995-04-01

    This paper describes the use of a laboratory robot as an automated tool for preparing multi-level calibration standards for On-Line Ion Chromatography (IC) Systems. The robot is designed for preparation of up to six levels of standards, with each level containing up to eleven ionic species in aqueous solution. The robot is required to add the standards` constituents as both a liquid and solid additions and to keep a record of exactly what goes into making up every standard. Utilizing a laboratory robot to prepare calibration standards provides significant benefits to the testing environment. These benefits include: accurate and precise calibration standards in individually capped containers with preparation traceability; automated and unattended multi-specie preparation for both anion and cation analytical channels; the ability to free up a test operator from a repetitive routine and re-apply those efforts to test operations; The robot uses a single channel IC to analyze each prepared standard for specie content and concentration. Those results are later used as a measure of quality control. System requirements and configurations, robotic operations, manpower requirements, analytical verification, accuracy and precision of prepared solutions, and robotic downtime are discussed in detail.

  16. Radiometric absolute noise-temperature measurement system features improved accuracy and calibration ease

    NASA Technical Reports Server (NTRS)

    Brown, W.; Ewen, H.; Haroules, G.

    1970-01-01

    Radiometric receiver system, which measures noise temperatures in degrees Kelvin, does not require cryogenic noise sources for routine operation. It eliminates radiometer calibration errors associated with RF attenuation measurements. Calibrated noise source is required only for laboratory adjustment and calibration.

  17. A Bayesian approach to calibrating apatite fission track annealing models for laboratory and geological timescales

    NASA Astrophysics Data System (ADS)

    Stephenson, John; Gallagher, Kerry; Holmes, Chris

    2006-10-01

    We present a new approach for modelling annealing of fission tracks in apatite, aiming to address various problems with existing models. We cast the model in a fully Bayesian context, which allows us explicitly to deal with data and parameter uncertainties and correlations, and also to deal with the predictive uncertainties. We focus on a well-known annealing algorithm [Laslett, G.M., Green, P.F., Duddy, I.R., Gleadow. A.J.W., 1987. Thermal annealing of fission tracks in apatite. 2. A quantitative-analysis. Chem. Geol., 65 (1), 1-13], and build a hierachical Bayesian model to incorporate both laboratory and geological timescale data as direct constraints. Relative to the original model calibration, we find a better (in terms of likelihood) model conditioned just on the reported laboratory data. We then include the uncertainty on the temperatures recorded during the laboratory annealing experiments. We again find a better model, but the predictive uncertainty when extrapolated to geological timescales is increased due to the uncertainty on the laboratory temperatures. Finally, we explictly include a data set [Vrolijk, P., Donelick, R.A., Quenq, J., Cloos. M., 1992. Testing models of fission track annealing in apatite in a simple thermal setting: site 800, leg 129. In: Larson, R., Lancelet, Y. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 129, pp. 169-176] which provides low-temperature geological timescale constraints for the model calibration. When combined with the laboratory data, we find a model which satisfies both the low-temperature and high-temperature geological timescale benchmarks, although the fit to the original laboratory data is degraded. However, when extrapolated to geological timescales, this combined model significantly reduces the well-known rapid recent cooling artifact found in many published thermal models for geological samples.

  18. Comparison of 192Ir air kerma calibration coefficients derived at ARPANSA using the interpolation method and at the National Physical Laboratory using a direct measurement.

    PubMed

    Butler, D; Haworth, A; Sander, T; Todd, S

    2008-12-01

    The reference air kerma rate from 192Ir High Dose Rate (HDR) brachytherapy sources can be measured using a suitably calibrated Farmer chamber and an appropriate in-air calibration jig. When a primary standard for 192Ir gamma rays is available, a calibration coefficient for the chamber and jig combination can be determined directly. In Australia, due to the absence of such a standard, the chamber must be calibrated by interpolation of the response in 60Co and in a kilovoltage x-ray beam. Corrections for the effect of the jig, scatter and beam non-uniformity must then be measured or calculated before the reference air kerma rate can be determined. We compare the air-kerma calibration coefficient of a PTW 30010 PMMA/A1 Farmer chamber (referred to as Farmer chamber throughout this report) obtained from the 192Ir primary standard at the National Physical Laboratory in the UK with the corresponding coefficient obtained by interpolating Australian calibrations using 60Co and 250 kV x-rays and determining suitable correction factors. The resulting chamber/jig calibration coefficients differ by 0.2% which is well within the combined standard uncertainties of 1.2% and 0.6% reported by ARPANSA and NPL respectively. PMID:19239060

  19. The Laboratory Radiometric Calibration of the CCD Stereo Camera for the Optical Payload of the Lunar Explorer Project

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Li, Chun-Lai; Zhao, Bao-Chang

    2007-03-01

    The system of the optical payload for the Lunar Explorer includes a CCD stereo camera and an imaging interferometer. The former is devised to get the solid images of the lunar surface with a laser altimeter. The camera working principle, calibration purpose, and content, nude chip detection, and the process of the relative and absolute calibration in the laboratory are introduced.

  20. Toward Improvements in Inter-laboratory Calibration of Argon Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; Deino, A. L.; Heizler, M. T.; Hodges, K. V.; McIntosh, W. C.; Renne, P. R.; Swisher, C. C., III; Turrin, B. D.; Van Soest, M. C.

    2015-12-01

    It is important to continue to develop strategies to improve our ability to compare results between laboratories chronometers. The U-Pb community has significantly reduced inter-laboratory biases with the application of a community tracer solution and the distribution of synthetic zircon solutions. Inevitably sample selection and processing and even biases in interpretations will still lead to some disagreements in the assignment of ages. Accordingly natural samples that are shared will be important for achievement of the highest levels of agreement. Analogous improvements in quality and inter-laboratory agreement of analytical aspects of Ar-Ar can be achieved through development of synthetic age standards in gas canisters with multiple pipettes to deliver various controlled amounts of argon to the mass spectrometer. A preliminary proof-of concept comes from the inter-laboratory calibration experiment for the 40Ar/39Ar community. This portable Argon Pipette Intercalibration System (APIS) consists of three 2.7 L canisters each equipped with three pipettes of 0.1, 0.2 and 0.4 cc volumes. The currently traveling APIS has the three canisters filled with air and 40Ar*/39Ar of 1.73 and canister 2 has a 40Ar*/39Ar of 40.98 (~ Alder Creek and Fish Canyon in the same irradiation). With these pipettes it is possible to combine them to provide 0.1, 0.2, 0.3 (0.1+0.2), 0.4, 0.5 (0.1+0.4), 0.6 (0.2+0.4), and 0.7 (0.1+0.2+0.4) cc. The configuration allows a simple test for inter-laboratory biases and for volume/pressure dependent mass fractionation on the measured ratios for a gas with a single argon isotope composition. Although not yet tested, it is also possible to mix gas from any one of the three canisters in proportions of these increments, allowing even more tightly controlled calibration of measurements. We suggest that ultimately each EARTHTIME lab should be equipped with such a system permanently, with a community plan for a traveling system to periodically repeat the

  1. Development of a low energy ion source for ROSINA ion mode calibration

    SciTech Connect

    Rubin, Martin; Altwegg, Kathrin; Jaeckel, Annette; Balsiger, Hans

    2006-10-15

    The European Rosetta mission on its way to comet 67P/Churyumov-Gerasimenko will remain for more than a year in the close vicinity (1 km) of the comet. The two ROSINA mass spectrometers on board Rosetta are designed to analyze the neutral and ionized volatile components of the cometary coma. However, the relative velocity between the comet and the spacecraft will be minimal and also the velocity of the outgassing particles is below 1 km/s. This combination leads to very low ion energies in the surrounding plasma of the comet, typically below 20 eV. Additionally, the spacecraft may charge up to a few volts in this environment. In order to simulate such plasma and to calibrate the mass spectrometers, a source for ions with very low energies had to be developed for the use in the laboratory together with the different gases expected at the comet. In this paper we present the design of this ion source and we discuss the physical parameters of the ion beam like sensitivity, energy distribution, and beam shape. Finally, we show the first ion measurements that have been performed together with one of the two mass spectrometers.

  2. High precision digital control LED spot light source used to calibrate camera

    NASA Astrophysics Data System (ADS)

    Du, Boyu; Xu, Xiping; Liu, Yang

    2015-04-01

    This paper introduces a method of using LED point light source as the camera calibration light. According to the characteristics of the LED point light source, the constant current source is used to provide the necessary current and the illuminometer is used to measure the luminance of the LED point light source. The constant current source is controlled by ARM MCU and exchange data with the host computer though the mode of serial communications. The PC is used as the host computer, it adjust the current according to the luminance of the LED point light source until the luminance achieve the anticipated value. By experimental analysis, we found that the LED point light source can achieve the desired requirements as the calibration light source, and the accuracy is quite better that achieve the desired effect and it can adaptive control the luminance of LED well. The system is convenient and flexible, and its performance is stable and reliable.

  3. Photometric Calibration of an EUV Flat Field Spectrometer at the Advanced Light Source

    SciTech Connect

    May, M; Lepson, J; Beiersdorfer, P; Thorn, D; Chen, H; Hey, D; Smith, A

    2002-07-03

    The photometric calibration of ail extreme ultraviolet flat field spectrometer has been done at the Advanced Light Source at LBNL. This spectrometer is used to record spectrum for atomic physics research from highly charged ions in plasmas created in the Livermore electron beam ion traps EBIT-I and SUPEREBIT. Two calibrations were done each with a different gold-coated grating, a 1200 {ell}/mm and a 2400 {ell}/mm, that covered 75-300{angstrom} and 15-160{angstrom}, respectively. The detector for this calibration was a back thinned CCD. The relative calibration was determined for several different incident angles for both gratings. Within the scatter of the data, the calibration was roughly insensitive to the incidence angle for the range of angles investigated.

  4. 10 CFR 31.8 - Americium-241 and radium-226 in the form of calibration or reference sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Americium-241 and radium-226 in the form of calibration or... BYPRODUCT MATERIAL § 31.8 Americium-241 and radium-226 in the form of calibration or reference sources. (a..., americium-241 or radium-226 in the form of calibration or reference sources: (1) Any person in a...

  5. Mathematical efficiency calibration with uncertain source geometries using smart optimization

    SciTech Connect

    Menaa, N.; Mirolo, L.

    2011-07-01

    The In Situ Object Counting Software (ISOCS), a mathematical method developed by CANBERRA, is a well established technique for computing High Purity Germanium (HPGe) detector efficiencies for a wide variety of source shapes and sizes. In the ISOCS method, the user needs to input the geometry related parameters such as: the source dimensions, matrix composition and density, along with the source-to-detector distance. In many applications, the source dimensions, the matrix material and density may not be well known. Under such circumstances, the efficiencies may not be very accurate since the modeled source geometry may not be very representative of the measured geometry. CANBERRA developed an efficiency optimization software known as 'Advanced ISOCS' that varies the not well known parameters within user specified intervals and determines the optimal efficiency shape and magnitude based on available benchmarks in the measured spectra. The benchmarks could be results from isotopic codes such as MGAU, MGA, IGA, or FRAM, activities from multi-line nuclides, and multiple counts of the same item taken in different geometries (from the side, bottom, top etc). The efficiency optimization is carried out using either a random search based on standard probability distributions, or using numerical techniques that carry out a more directed (referred to as 'smart' in this paper) search. Measurements were carried out using representative source geometries and radionuclide distributions. The radionuclide activities were determined using the optimum efficiency and compared against the true activities. The 'Advanced ISOCS' method has many applications among which are: Safeguards, Decommissioning and Decontamination, Non-Destructive Assay systems and Nuclear reactor outages maintenance. (authors)

  6. Characterization of large-area reference sources for the calibration of beta-contamination monitors

    NASA Astrophysics Data System (ADS)

    Janßen, H.; Klein, R.

    1996-02-01

    A method has been developed whereby the activity of a large-area reference source for the calibration of beta-contamination monitors can be determined from a series of measured countrates in a suitable detection system as a function of the distance between the surface of the source and the front face of the detector.

  7. Calibration of time of flight detectors using laser-driven neutron source

    SciTech Connect

    Mirfayzi, S. R.; Kar, S. Ahmed, H.; Green, A.; Alejo, A.; Jung, D.; Krygier, A. G.; Freeman, R. R.; Clarke, R.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.

    2015-07-15

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  8. Calibration of time of flight detectors using laser-driven neutron source.

    PubMed

    Mirfayzi, S R; Kar, S; Ahmed, H; Krygier, A G; Green, A; Alejo, A; Clarke, R; Freeman, R R; Fuchs, J; Jung, D; Kleinschmidt, A; Morrison, J T; Najmudin, Z; Nakamura, H; Norreys, P; Oliver, M; Roth, M; Vassura, L; Zepf, M; Borghesi, M

    2015-07-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil. PMID:26233373

  9. Radioactive target and source development at Argonne National Laboratory

    SciTech Connect

    Greene, J.P.; Ahmad, I.; Thomas, G.E.

    1992-10-01

    An increased demand for low-level radioactive targets has created the need for a laboratory dedicated to the production of these foils. A description is given of the radioactive target produced as well as source development work being performed at the Physics Division target facility of Argonne National Laboratory (ANL). Highlights include equipment used and the techniques employed. In addition, some examples of recent source preparation are given as well as work currently in progress.

  10. Radioactive target and source development at Argonne National Laboratory

    SciTech Connect

    Greene, J.P.; Ahmad, I.; Thomas, G.E.

    1992-01-01

    An increased demand for low-level radioactive targets has created the need for a laboratory dedicated to the production of these foils. A description is given of the radioactive target produced as well as source development work being performed at the Physics Division target facility of Argonne National Laboratory (ANL). Highlights include equipment used and the techniques employed. In addition, some examples of recent source preparation are given as well as work currently in progress.

  11. Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Campbell, John L.; Perrett, Glynis M.; Gellert, Ralf; Andrushenko, Stefan M.; Boyd, Nicholas I.; Maxwell, John A.; King, Penelope L.; Schofield, Céleste D. M.

    2012-09-01

    The alpha-particle X-ray spectrometer (APXS) for the Mars Science Laboratory (MSL) mission was calibrated for routine analysis of: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Br, Rb, Sr, and Y. The following elements were also calibrated, but may be too low to be measured (10s-100s ppm) for their usual abundance on Mars: V, Cu, Ga, As, Se and W. An extensive suite of geological reference materials, supplemented by pure chemical elements and compounds was used. Special attention was paid to include phyllosilicates, sulfates and a broad selection of basalts as these are predicted minerals and rocks at the Gale Crater landing site. The calibration approach is from first principles, using fundamental physics parameters and an assumed homogeneous sample matrix to calculate expected elemental signals for a given instrument setup and sample composition. Resulting concentrations for most elements accord with expected values. Deviations in elements of lower atomic number (Na, Mg, Al) indicate significant influences of mineral phases, especially in basalts, ultramafic rocks and trachytes. The systematics of these deviations help us to derive empirical, iterative corrections for different rock groups, based on a preliminary APXS analysis which assumes a homogeneous sample. These corrections have the potential to significantly improve the accuracy of APXS analyses, especially when other MSL instrument results, such as the X-ray diffraction data from CheMin, are included in the overall analysis process.

  12. Augmenting watershed model calibration with incorporation of ancillary data sources and qualitative soft data sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed simulation models can be calibrated using “hard data” such as temporal streamflow observations; however, users may find upon examination of detailed outputs that some of the calibrated models may not reflect summative actual watershed behavior. Thus, it is necessary to use “soft data” (i....

  13. Environmental Assessment for install calibration laboratory, Building 12-52B, Pantex Plant, Amarillo, Texas

    SciTech Connect

    Not Available

    1991-10-01

    This Environmental Assessment (EA) has been prepared pursuant to implementing regulations to the National Environmental Policy Act (NEPA), which requires federal agencies to assess the environmental impacts of a proposed action to determine whether that action requires the preparation of an Environmental Impact Statement (EIS) or if a Finding of No Significant Impact (FONSI) can be issued. NEPA requires that an EA provide an interdisciplinary review of the proposed action in order to identify possible preferable alternatives and to identify mitigative measures that will prevent environmental impacts. If it is determined that the proposed action will have unavoidable significant environmental impact, then an EIS shall be prepared. The proposed project is for design and installation of a self-contained Modular Gage Calibration Laboratory in Building 12-52B at Pantex Plant, Amarillo, Texas. The operating contractor of Pantex Plant has been directed by the Sandia Laboratory at Albuquerque to acquire facilities capable of close temperature and humidity control for calibration of gages and tooling in support of production operations for weapons programs.

  14. RadBall™ Technology Testing in the Savannah River Site’s Health Physics Instrument Calibration Laboratory

    PubMed Central

    Farfán, Eduardo B.; Foley, Trevor Q.; Jannik, G. Timothy; Harpring, Larry J.; Gordon, John R.; Blessing, Ronald; Coleman, J. Rusty; Holmes, Christopher J.; Oldham, Mark; Adamovics, John; Stanley, Steven J.

    2010-01-01

    The United Kingdom’s National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall™, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBall™ technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL). PMID:21617738

  15. Dosimetric calibration of solid state detectors with low energy β sources

    NASA Astrophysics Data System (ADS)

    Fidanzio, Andrea; Pia Toni, Maria; Capote, Roberto; Pena, Juan; Pasciuti, Katia; Bovi, Maurizio; Perrone, Franco; Azario, Luigi; Lazzeri, Mauro; Gaudino, Diego; Piermattei, Angelo

    2008-01-01

    A PTW Optidos plastic scintillation and a PTW natural diamond detectors were calibrated in terms of absorbed dose to water with β fields produced by 90Sr + 90Y and 85Kr reference sources. Each source was characterized at the Italian National Metrological Institute - the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti of ENEA (ENEA-INMRI) - for two different series, 1 and 2, of ISO reference β-particle radiation fields. Beam flattening filters were used for the series 1 β fields to give uniform absorbed dose rates over a large area at a source-to-reference plane distance of 30 cm. The series 2 β fields were produced at source-to-reference plane distance of 10 cm, without the beam flattening filters, in order to obtain higher absorbed dose rates. The reference absorbed dose rate values were directly determined by the Italian national standard for β-particle dosimetry (a PTW extrapolation ionization chamber) for the series 1 β fields and by a calibrated transfer standard chamber, (a Capintec thin fixed-volume parallel plate ionization chamber) for the series 2 β fields. Finally the two solid state detectors were calibrated in terms of absorbed dose to water with the series 2 β field. The expanded uncertainties of the calibration coefficients obtained for the plastic scintillation dosimeter were 10% and 12% (2SD) for the 90Sr + 90Y and the 85Kr sources, respectively. The expanded uncertainties obtained for the diamond dosimeter were 10% (2SD) and 16% (2SD) for the 90Sr + 90Y and the 85Kr sources, respectively. The good results obtained with the 90Sr + 90Y and the 85Kr β sources encourage to implement this procedure to calibrate this type of detectors at shorter distances and with other β sources of interest in brachytherapy, for example the 106Ru source.

  16. An in-flight blackbody calibration source for the GLORIA interferometer onboard an airborne research platform

    NASA Astrophysics Data System (ADS)

    Koppmann, R.; Olschewski, F.; Steffens, P.; Rolf, C.; Preusse, P.; Ebersoldt, A.; Friedl-Vallon, F.; Kleinert, A.; Piesch, C.; Hollandt, J.; Gutschwager, B.; Monte, C.

    2013-05-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) deployed on board different research aircraft provides detailed pictures of the Upper Troposphere/Lower Stratosphere (UTLS) region. GLORIA uses a two-dimensional detector array for infrared limb observations. GLORIA's in-flight calibration sources are two identical large-area high-precision blackbodies, which are independently controlled at two different temperatures. Thermo-Electric Coolers (TECs) are used to control the temperature of the calibration sources. The calibration sources have been comprehensively characterized for their spatially and spectrally resolved radiation properties in terms of radiation temperature traceable to the International Temperature Scale (ITS-90) at the Physikalisch-Technische Bundesanstalt (PTB), the national metrology institute of Germany.

  17. Isotherm Sensor Calibration Program for Mars Science Laboratory Heat Shield Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Santos, Jose A.; Oishi, Tomo; Martinez, Ed R.

    2011-01-01

    Seven instrumented sensor plugs were installed on the Mars Science Laboratory heat shield in December 2008 as part of the Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) project. These sensor plugs contain four in-depth thermocouples and one Hollow aErothermal Ablation and Temperature (HEAT) sensor. The HEAT sensor follows the time progression of a 700 C isotherm through the thickness of a thermal protection system (TPS) material. The data can be used to infer char depth and, when analyzed in conjunction with the thermocouple data, the thermal gradient through the TPS material can also be determined. However, the uncertainty on the isotherm value is not well defined. To address this uncertainty, a team at NASA Ames Research Center is carrying out a HEAT sensor calibration test program. The scope of this test program is described, and initial results from experiments conducted in the laboratory to study the isotherm temperature of the HEAT sensor are presented. Data from the laboratory tests indicate an isotherm temperature of 720 C 60 C. An overview of near term arc jet testing is also given, including preliminary data from 30.48cm 30.48cm PICA panels instrumented with two MEDLI sensor plugs and tested in the NASA Ames Panel Test Facility. Forward work includes analysis of the arc jet test data, including an evaluation of the isotherm value based on the instant in time when it reaches a thermocouple depth.

  18. Radiometric calibration of frame transfer CCD camera with uniform source system

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Shi, Rongbao; Chen, Yuheng; Zhou, Yuying; Shen, Weimin

    2010-08-01

    This paper presents a radiometric calibration method based on visibility function and uniform source system. The uniform system is mainly comprised of an integrating sphere and a monitoring silicon detector. The current of the silicon detector with a visibility function filter corresponds to the luminance at the exit port of integrating sphere through standard luminance meter transfer. The radiance at the camera entrance pupil is calculated for different solar zenith angles and Earth surface albedos by the MODTRAN atmospheric code. To simplify the calibration process, the radiance at its entrance pupil is integrated by visibility function. The shift smear of the frame transfer CCD is removed by the radiometric calibration and the amending ratio factor is introduced in the retrieving methods. The imaging experiment verifies the reliability of the calibration method and retrieves good quality image.

  19. The biochemical estimation of age in Euphausiids: Laboratory calibration and field comparisons

    NASA Astrophysics Data System (ADS)

    Harvey, H. R.; Ju, Se-J.; Son, S.-K.; Feinberg, L. R.; Shaw, C. T.; Peterson, W. T.

    2010-04-01

    Euphausiids play a key role in many marine ecosystems as a link between primary producers and top predators. Understanding their demographic (i.e. age) structure is an essential tool to assess growth and recruitment as well as to determine how changes in environmental conditions might alter their condition and distribution. Age determination of crustaceans cannot be accomplished using traditional approaches, and here we evaluate the potential for biochemical products of tissue metabolism (termed lipofuscins) to determine the demographic structure of euphausiids in field collections . Lipofuscin was extracted from krill neural tissues (eye and eye-stalk), quantified using fluorescent intensity and normalized to tissue protein content to allow comparisons across animal sizes. Multiple fluorescent components from krill were observed, with the major product having a maximum fluorescence at excitation of 355 nm and emission of 510 nm. Needed age calibration of lipofuscin accumulation in Euphausia pacifica was accomplished using known-age individuals hatched and reared in the laboratory for over one year. Lipofuscin content extracted from neural tissues of laboratory-reared animals was highly correlated with the chronological age of animals ( r=0.87). Calibrated with laboratory lipofuscin accumulation rates, field-collected sub-adult and adult E. pacifica in the Northeast Pacific were estimated to be older than 100 days and younger than 1year. Comparative data for the Antarctic krill, E. superba showed much higher lipofuscin values suggesting a much longer lifespan than the more temperate species, E. pacifica. These regional comparisons suggest that biochemical indices allow a practical approach to estimate population age structure of diverse populations, and combined with other measurements can provide estimates of vital rates (i.e. longevity, mortality, growth) for krill populations in dynamic environments.

  20. The intercomparison of mixed nuclide rod source sets used to calibrate waste assay systems

    SciTech Connect

    Kirkpatrick, J.M.; Philips, S.; Croft, S.

    2007-07-01

    The relative activities of five sets of commercially available, certified mixed-nuclide rod gamma sources have been measured. The results are compared with one another and with the manufacturer's calibration certificates in order to evaluate the self consistency, accuracies and uncertainties of the activities claimed. The comparison measurements were made with Canberra's Tomographic Gamma Scanner (TGS) System in Segmented Gamma Scanner (SGS) mode, operated with a single segment and using a 120% relative efficiency HPGe detector. Each set of six rods was measured in a rotating 208-liter drum geometry typical of applications in which such rod source sets are commonly used for both initial calibration and operational verification measurements. Three of the five source sets were found to be consistent with one another within the experimental and claimed certificate uncertainties; however, two of the mixed-nuclide source sets were found to have nuclide-to-nuclide variations of activity significantly in excess of expectations based upon the claimed 99% confidence-level uncertainties. Such discrepancies could introduce substantial bias into waste measurement results made using the afflicted rod sets as the calibration standards. The findings of this work lead us to conclude that, where possible, the certified activities and associated uncertainties on newly acquired sources should be independently confirmed before relying on them as calibration standards. (authors)

  1. Suppression of Fiber Modal Noise Induced Radial Velocity Errors for Bright Emission-line Calibration Sources

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  2. Calibration sources for the soft x-ray spectrometer instrument on ASTRO-H

    NASA Astrophysics Data System (ADS)

    de Vries, C. P.; Lowes, P.; den Herder, J. W.; Aarts, H.; Haas, D.; Mitsuda, K.; Yamasaki, N. Y.; Kelley, R.; Kilbourne, C.; Gendreau, K.

    2012-09-01

    The SXS instrument is the Soft X-ray micro-calorimeter Spectrometer planned for the Japanese ASTRO-H satellite, scheduled to be launched in 2014. In this paper we describe the X-ray calibration sources used in this instrument. These sources use light sensitive photo-cathodes to generate electrons, which in turn generate the X-rays. This design has the unique property to allow for fast discrete pulsations of the generated X-rays. This enables the energy scale calibration of the instrument simultaneously with astronomical observations, without adding to the background in the astronomical data. Flight-model sources have been made, and a number of them have been operating in the past several months to monitor their behaviour. Here we report on the characterisation and performance of these sources. In addition, we will elaborate on the nature and expected accuracy of the energy calibration, in relation to the expected stability of the instrument, given the calibration source strength and its mode of operation.

  3. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    SciTech Connect

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  4. Calibrated time-resolved transmission grating spectrometer for the study of ultrafast x-ray sources.

    PubMed

    Pelletier, J F; Chaker, M; Kieffer, J C

    1996-01-01

    A transmission grating spectrometer has been coupled to a high-temporal-resolution soft x-ray streak camera for the study of picosecond laser-plasma x-ray sources. A procedure to deconvolve the overlapping contributions of diffraction orders and to calibrate the instrument has been established in order to obtain absolute time-resolved x-ray emission spectra in the 0.1-1.2 keV spectral region. The deconvolution and calibration techniques are presented along with measurements establishing the temporal resolution of this diagnostic at ~2 ps. Examples of calibrated spectra of laser-plasma x-ray sources created by 400 fs laser pulses at intensities of 1018 W/cm2 are also shown. PMID:21307534

  5. Characteristics of Cometary Dust Tracks in Stardust Aerogel and Laboratory Calibrations

    NASA Technical Reports Server (NTRS)

    Burchell, M. J.; Fairey, S. A. J.; Wozniakiewicz, P.; Brownlee, D. E.; Hoerz, F.; Kearsley, A. T.; See, T. H.; Tsou, P.; Westphal, A.; Green, S. F.; Trigo-Rodriguez, J. M.; Dominguez, G.

    2007-01-01

    The cometary tray of the NASA Stardust spacecraft s aerogel collector has been examined to study the dust that was captured during the 2004 fly by of comet 81P/Wild-2. An optical scan of the entire collector surface revealed 256 impact features in the aerogel (width > 100 microns). 20 aerogel blocks (out of a total of 132) were removed from the collector tray for a higher resolution optical scan and 186 tracks were observed (track length > 50 microns and width > 8 microns). The impact features were classified into three types based on their morphology. Laboratory calibrations were conducted which reproduce all three types. This work suggests that the cometary dust consisted of some cohesive, relatively strong particles as well as particles with a more friable or low cohesion matrix containing smaller strong grains. The calibrations also permitted a particle size distribution to be estimated for the cometary dust. We estimate that approximately 1200 particles bigger than 1 micron struck the aerogel. The cumulative size distribution of the captured particles was obtained and compared with observations made by active dust detectors during the encounter. At large sizes (>20 microns) all measures of the dust are compatible, but at micrometer scales and smaller discrepancies exist between the various measurement systems which may reflect structure in the dust flux (streams, clusters etc.) along with some possible instrument effects.

  6. Design of a Prototype for the In Situ Calibration Source for the ECE Diagnostic on ITER

    NASA Astrophysics Data System (ADS)

    Phillips, P. E.; Austin, M. E.; Rowan, W. L.; Beno, J.; Ouroua, A.; Ellis, R. F.

    2009-11-01

    A large area (200mm diameter) calibration source will be prototyped for ITER. The source will generate blackbody emission (emissivity > 0.7) for frequencies greater than 120 GHz in the ITER vacuum environment. The device is a primary vacuum component (VQC 1B) and is subject to stringent vacuum requirements that will be tested in the case of this prototype. The source will operate at temperatures up to 800 ^oC though it will not be actively heated during plasma operation. A major challenge is to assure high reliability both in maintenance of calibration and mechanical integrity. SiC has been selected as the active emissive surface. Prior to construction of the prototype, candidate-heating methods will be critically examined for reliability, efficiency, and ITER compatibility. Results of test of a resistively heated source will be presented. A progress report on the development of the prototype will also be presented.

  7. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    SciTech Connect

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservative assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.

  8. An automated calibration laboratory for flight research instrumentation: Requirements and a proposed design approach

    NASA Technical Reports Server (NTRS)

    Oneill-Rood, Nora; Glover, Richard D.

    1990-01-01

    NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

  9. Behaviour of mudflows realized in a laboratory apparatus and relative numerical calibration

    NASA Astrophysics Data System (ADS)

    Brezzi, Lorenzo; Gabrieli, Fabio; Kaitna, Roland; Cola, Simonetta

    2016-04-01

    Nowadays, numerical simulations are indispensable allies for the researchers to reproduce phenomena such as earth-flows, debris-flows and mudflows. One of the most difficult and problematic phases is about the choice and the calibration of the parameters to be included in the model at the real scale. Surely, it can be useful to start from laboratory experiment that simplify as much as possible the case study with the aim of reducing uncertainties related to the trigger and the propagation of a real flow. In this way, geometry of the problem, identification of the triggering mass, are well known and constrained in the experimental tests as in the numerical simulations and the focus of the study may be moved to the material parameters. This article wants to analyze the behavior of different mixtures of water and kaolin, which flow in a laboratory channel. A 10 dm3 prismatic container that discharges the material into a channel 2m long and 0.16 m wide composes the simple experimental apparatus. The chute base was roughened by glued sand and inclined with a 21° angle. Initially, we evaluated the lengths of run-out, the spread and shape of the deposit for five different mixtures. A huge quantity of information were obtained by 3 laser sensors attached to the channel and by photogrammetry, that gives out a 3D model of the deposit shape at the end of the flow. Subsequently, we reproduced these physical phenomena by using the numerical model Geoflow-SPH (Pastor et al., 2008; 2014) , governed by a Bingham rheological law (O'Brien & Julien, 1988), and we calibrated the different tests by back-analysis to assess optimum parameters. The final goal was the comprehension of the relationship that characterizes the parameters with the variation of the kaolin content in the mixtures.

  10. Metrology laboratory requirements for third-generation synchrotron radiation sources

    SciTech Connect

    Takacs, P.Z.; Quian, Shinan

    1997-11-01

    New third-generation synchrotron radiation sources that are now, or will soon, come on line will need to decide how to handle the testing of optical components delivered for use in their beam lines. In many cases it is desirable to establish an in-house metrology laboratory to do the work. We review the history behind the formation of the Optical Metrology Laboratory at Brookhaven National Laboratory and the rationale for its continued existence. We offer suggestions to those who may be contemplating setting up similar facilities, based on our experiences over the past two decades.

  11. Open Source Software Licenses for Livermore National Laboratory

    SciTech Connect

    Busby, L.

    2000-08-10

    This paper attempts to develop supporting material in an effort to provide new options for licensing Laboratory-created software. Where employees and the Lab wish to release software codes as so-called ''Open Source'', they need, at a minimum, new licensing language for their released products. Several open source software licenses are reviewed to understand their common elements, and develop recommendations regarding new language.

  12. Calibration of stable isotopic data: An enriched δ18O standard used for source gas mixing detection and correction

    NASA Astrophysics Data System (ADS)

    Ostermann, D. R.; Curry, W. B.

    2000-06-01

    We present empirically based calibrations of our measurements made on a Finnigan MAT252 equipped with a Kiel Device to Vienna Pee Dee belemnite, using an enriched δ18O standard. Calibrations include corrections for biases caused by the differences in isotopic composition of carbonate standards measured on the two parallel extraction lines of the Kiel Device and for decreases in the isotopic difference between the reference and sample gas caused by mixing in the source. After correcting for these biases, the precision of 2200 NBS19 analyses (10-300 µg ) is ±0.07 for δ18O and ±0.03 for δ13C. We have shared our standard enriched in δ18O with 18 laboratories engaged in paleoceanographic research, producing the first large-scale interlaboratory calibrations for this community. Using correction procedures reported here, water mass reconstructions using data produced on multiple mass spectrometers may now be possible with a precision approaching the level necessary to reconstruct temperature-salinity and density variability in the deep ocean.

  13. Narrow Line X-Ray Calibration Source for High Resolution Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Hokin, M. S.; McCammon, D.; Morgan, K. M.; Bandler, S. R.; Lee, S. J.; Moseley, S. H.; Smith, S. J.

    2014-08-01

    We are developing a narrow line calibration source for use with X-ray microcalorimeters. At energies below 300 eV fluorescent lines are intrinsically broad, making calibration of high resolution detectors difficult. This source consists of a 405 nm (3 eV) laser diode coupled to an optical fiber. The diode is pulsed to create approximately one hundred photons in a few microseconds. If the pulses are short compared to the rise time of the detector, they will be detected as single events with a total energy in the soft X-ray range. Poisson fluctuations in photon number per pulse create a comb of X-ray lines with 3 eV spacing, so detectors with energy resolution better than 2 eV are required to resolve the individual lines. Our currently unstabilized diode has a multimode width less than 1 nm, giving a 300 eV event a FWHM less than 0.1 eV. By varying the driving voltage, or pulse width, the source can produce a comb centered on a wide range of energies. The calibration events are produced at precisely known times. This allows continuous calibration of a flight mission without contaminating the observed spectrum and with minimal deadtime.

  14. Point source calibration of the AKARI/FIS all-sky survey maps for stacking analysis

    NASA Astrophysics Data System (ADS)

    Arimatsu, Ko; Doi, Yasuo; Wada, Takehiko; Takita, Satoshi; Kawada, Mitsunobu; Matsuura, Shuji; Ootsubo, Takafumi; Kataza, Hirokazu

    2014-04-01

    Investigations of the point spread functions (PSFs) and flux calibrations for stacking analysis have been performed with the far-infrared (wavelength range of 60 to 140 μm) all-sky maps taken by the Far-Infrared Surveyor (FIS) on board the AKARI satellite. The PSFs are investigated by stacking the maps at the positions of standard stars with their fluxes of 0.02-10 Jy. The derived full widths at the half maximum (FWHMs) of the PSFs are ˜ 60'' at 65 and 90 μm and ˜ 90'' at 140 μm, which are much smaller than those of the previous all-sky maps obtained with the Infrared Astronomical Satellite IRAS (˜ 6'). Any flux dependence in the PSFs is not seen on the investigated flux range. By performing the flux calibrations, we found that absolute photometry for faint sources can be carried out with constant calibration factors, which range from 0.6 to 0.8. After applying the calibration factors, the photometric accuracies for the stacked sources in the 65, 90, and 140 μm bands are 9%, 3%, and 21%, respectively, even below the detection limits of the survey. No systematic dependence between the observed flux and model flux is found. These results indicate that the FIS map is a useful dataset for the stacking analyses of faint sources at far-infrared wavelengths.

  15. Narrow Line X-Ray Calibration Source for High Resolution Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Hokin, M.S.; McCammon, D.; Morgan, K.M.; Bandler, Simon Richard; Lee, S.J.; Moseley, S.H.; Smith, S.J.

    2013-01-01

    We are developing a narrow line calibration source for use with X-ray microcalorimeters. At energies below 300 electronvolts fluorescent lines are intrinsically broad, making calibration of high resolution detectors difficult. This source consists of a 405 nanometers (3 electronvolts) laser diode coupled to an optical fiber. The diode is pulsed to create approximately one hundred photons in a few microseconds. If the pulses are short compared to the rise time of the detector, they will be detected as single events with a total energy in the soft X-ray range. Poisson fluctuations in photon number per pulse create a comb of X-ray lines with 3 electronvolts spacing, so detectors with energy resolution better than 2 electronvolts are required to resolve the individual lines. Our currently unstabilized diode has a multimode width less than 1 nanometer, giving a 300 electronvolt event a Full width at half maximum (FWHM) less than 0.1 electronvolts. By varying the driving voltage, or pulse width, the source can produce a comb centered on a wide range of energies. The calibration events are produced at precisely known times. This allows continuous calibration of a flight mission without contaminating the observed spectrum and with minimal deadtime.

  16. SQUID (superconducting quantum interference device) arrays for simultaneous magnetic measurements: Calibration and source localization performance

    NASA Astrophysics Data System (ADS)

    Kaufman, Lloyd; Williamson, Samuel J.; Costaribeiro, P.

    1988-02-01

    Recently developed small arrays of SQUID-based magnetic sensors can, if appropriately placed, locate the position of a confined biomagnetic source without moving the array. The authors present a technique with a relative accuracy of about 2 percent for calibrating such sensors having detection coils with the geometry of a second-order gradiometer. The effects of calibration error and magnetic noise on the accuracy of locating an equivalent current dipole source in the human brain are investigated for 5- and 7-sensor probes and for a pair of 7-sensor probes. With a noise level of 5 percent of peak signal, uncertainties of about 20 percent in source strength and depth for a 5-sensor probe are reduced to 8 percent for a pair of 7-sensor probes, and uncertainties of about 15 mm in lateral position are reduced to 1 mm, for the configuration considered.

  17. New detections of Galactic molecular absorption systems toward ALMA calibrator sources

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Kohno, Kotaro; Tamura, Yoichi; Izumi, Takuma; Umehata, Hideki; Nagai, Hiroshi

    2016-02-01

    We report on Atacama Large Millimeter/submillimeter Array (ALMA) detections of molecular absorption lines in Bands 3, 6, and 7 toward four radio-loud quasars, which were observed as the bandpass and complex gain calibrators. The absorption systems, three of which are newly detected, are found to be Galactic origin. Moreover, HCO absorption lines toward two objects are detected, which almost doubles the number of HCO absorption samples in the Galactic diffuse medium. In addition, high HCO-to-H13CO+ column density ratios are found, suggesting that the interstellar media (ISM) observed toward the two calibrators are in photodissociation regions, which observationally illustrates the chemistry of diffuse ISM driven by ultraviolet (UV) radiation. These results demonstrate that calibrators in the ALMA Archive are potential sources for the quest for new absorption systems and for detailed investigation of the nature of the ISM.

  18. 10 CFR 70.39 - Specific licenses for the manufacture or initial transfer of calibration or reference sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Specific licenses for the manufacture or initial transfer... manufacture or initial transfer of calibration or reference sources. (a) An application for a specific license to manufacture or initially transfer calibration or reference sources containing plutonium,...

  19. 10 CFR 70.39 - Specific licenses for the manufacture or initial transfer of calibration or reference sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Specific licenses for the manufacture or initial transfer... manufacture or initial transfer of calibration or reference sources. (a) An application for a specific license to manufacture or initially transfer calibration or reference sources containing plutonium,...

  20. 10 CFR 70.39 - Specific licenses for the manufacture or initial transfer of calibration or reference sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Specific licenses for the manufacture or initial transfer... manufacture or initial transfer of calibration or reference sources. (a) An application for a specific license to manufacture or initially transfer calibration or reference sources containing plutonium,...

  1. Absolute flux density calibrations of radio sources: 2.3 GHz

    NASA Technical Reports Server (NTRS)

    Freiley, A. J.; Batelaan, P. D.; Bathker, D. A.

    1977-01-01

    A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations.

  2. Non-matrix Matched Glass Disk Calibration Standards Improve XRF Micronutrient Analysis of Wheat Grain across Five Laboratories in India.

    PubMed

    Guild, Georgia E; Stangoulis, James C R

    2016-01-01

    Within the HarvestPlus program there are many collaborators currently using X-Ray Fluorescence (XRF) spectroscopy to measure Fe and Zn in their target crops. In India, five HarvestPlus wheat collaborators have laboratories that conduct this analysis and their throughput has increased significantly. The benefits of using XRF are its ease of use, minimal sample preparation and high throughput analysis. The lack of commercially available calibration standards has led to a need for alternative calibration arrangements for many of the instruments. Consequently, the majority of instruments have either been installed with an electronic transfer of an original grain calibration set developed by a preferred lab, or a locally supplied calibration. Unfortunately, neither of these methods has been entirely successful. The electronic transfer is unable to account for small variations between the instruments, whereas the use of a locally provided calibration set is heavily reliant on the accuracy of the reference analysis method, which is particularly difficult to achieve when analyzing low levels of micronutrient. Consequently, we have developed a calibration method that uses non-matrix matched glass disks. Here we present the validation of this method and show this calibration approach can improve the reproducibility and accuracy of whole grain wheat analysis on 5 different XRF instruments across the HarvestPlus breeding program. PMID:27375644

  3. Non-matrix Matched Glass Disk Calibration Standards Improve XRF Micronutrient Analysis of Wheat Grain across Five Laboratories in India

    PubMed Central

    Guild, Georgia E.; Stangoulis, James C. R.

    2016-01-01

    Within the HarvestPlus program there are many collaborators currently using X-Ray Fluorescence (XRF) spectroscopy to measure Fe and Zn in their target crops. In India, five HarvestPlus wheat collaborators have laboratories that conduct this analysis and their throughput has increased significantly. The benefits of using XRF are its ease of use, minimal sample preparation and high throughput analysis. The lack of commercially available calibration standards has led to a need for alternative calibration arrangements for many of the instruments. Consequently, the majority of instruments have either been installed with an electronic transfer of an original grain calibration set developed by a preferred lab, or a locally supplied calibration. Unfortunately, neither of these methods has been entirely successful. The electronic transfer is unable to account for small variations between the instruments, whereas the use of a locally provided calibration set is heavily reliant on the accuracy of the reference analysis method, which is particularly difficult to achieve when analyzing low levels of micronutrient. Consequently, we have developed a calibration method that uses non-matrix matched glass disks. Here we present the validation of this method and show this calibration approach can improve the reproducibility and accuracy of whole grain wheat analysis on 5 different XRF instruments across the HarvestPlus breeding program. PMID:27375644

  4. The Science of Calibration

    NASA Astrophysics Data System (ADS)

    Kent, S. M.

    2016-05-01

    This paper presents a broad overview of the many issues involved in calibrating astronomical data, covering the full electromagnetic spectrum from radio waves to gamma rays, and considering both ground-based and space-based missions. These issues include the science drivers for absolute and relative calibration, the physics behind calibration and the mechanisms used to transfer it from the laboratory to an astronomical source, the need for networks of calibrated astronomical standards, and some of the challenges faced by large surveys and missions.

  5. Clarity: an open-source manager for laboratory automation.

    PubMed

    Delaney, Nigel F; Rojas Echenique, José I; Marx, Christopher J

    2013-04-01

    Software to manage automated laboratories, when interfaced with hardware instruments, gives users a way to specify experimental protocols and schedule activities to avoid hardware conflicts. In addition to these basics, modern laboratories need software that can run multiple different protocols in parallel and that can be easily extended to interface with a constantly growing diversity of techniques and instruments. We present Clarity, a laboratory automation manager that is hardware agnostic, portable, extensible, and open source. Clarity provides critical features including remote monitoring, robust error reporting by phone or email, and full state recovery in the event of a system crash. We discuss the basic organization of Clarity, demonstrate an example of its implementation for the automated analysis of bacterial growth, and describe how the program can be extended to manage new hardware. Clarity is mature, well documented, actively developed, written in C# for the Common Language Infrastructure, and is free and open-source software. These advantages set Clarity apart from currently available laboratory automation programs. The source code and documentation for Clarity is available at http://code.google.com/p/osla/. PMID:23032169

  6. Comparison of Continuous Wave CO2 Doppler Lidar Calibration Using Earth Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency

  7. A Compact Laboratory Spectro-Goniometer (CLabSpeG) to Assess the BRDF of Materials. Presentation, Calibration and Implementation on Fagus sylvatica L. Leaves

    PubMed Central

    Biliouris, Dimitrios; Verstraeten, Willem W.; Dutré, Phillip; van Aardt, Jan A.N.; Muys, Bart; Coppin, Pol

    2007-01-01

    The design and calibration of a new hyperspectral Compact Laboratory Spectro-Goniometer (CLabSpeG) is presented. CLabSpeG effectively measures the bidirectional reflectance Factor (BRF) of a sample, using a halogen light source and an Analytical Spectral Devices (ASD) spectroradiometer. The apparatus collects 4356 reflectance data readings covering the spectrum from 350 nm to 2500 nm by independent positioning of the sensor, sample holder, and light source. It has an azimuth and zenith resolution of 30 and 15 degrees, respectively. CLabSpeG is used to collect BRF data and extract Bidirectional Reflectance Distribution Function (BRDF) data of non-isotropic vegetation elements such as bark, soil, and leaves. Accurate calibration has ensured robust geometric accuracy of the apparatus, correction for the conicality of the light source, while sufficient radiometric stability and repeatability between measurements are obtained. The bidirectional reflectance data collection is automated and remotely controlled and takes approximately two and half hours for a BRF measurement cycle over a full hemisphere with 125 cm radius and 2.4 minutes for a single BRF acquisition. A specific protocol for vegetative leaf collection and measurement was established in order to investigate the possibility to extract BRDF values from Fagus sylvatica L. leaves under laboratory conditions. Drying leaf effects induce a reflectance change during the BRF measurements due to the laboratory illumination source. Therefore, the full hemisphere could not be covered with one leaf. Instead 12 BRF measurements per leaf were acquired covering all azimuth positions for a single light source zenith position. Data are collected in radiance format and reflectance is calculated by dividing the leaf cycle measurement with a radiance cycle of a Spectralon reference panel, multiplied by a Spectralon reflectance correction factor and a factor to correct for the conical effect of the light source. BRF results of

  8. Laboratory studies of sources of HONO in polluted urban atmospheres

    NASA Astrophysics Data System (ADS)

    Saliba, Najat A.; Mochida, Michihiro; Finlayson-Pitts, Barbara. J.

    2000-10-01

    Laboratory studies reported here and in previous work show that the reaction of NO(g) with surface adsorbed HNO3 may be a significant source of HONO in polluted urban atmospheres. If these laboratory studies can be extrapolated to ambient conditions, this heterogeneous reaction may generate HONO to about the same extent as the hydrolysis of NO2 on surfaces, which is greater than the heterogeneous reaction of NO, NO2 and water. It may also be involved in generating HONO in snowpacks, and important in reconciling the discrepancy between measured and modeled HNO3/NOx ratios in the troposphere.

  9. Third generation infrared system calibration using dual band thermoelectric thermal reference sources and test systems to calibrate uncooled IRFPAs

    NASA Astrophysics Data System (ADS)

    Finfrock, David K.; Kolander, William L.

    2008-04-01

    As dual band, 3rd generation FLIR systems progress from the research lab into the field, supporting technologies must also advance. This paper describes advances in Thermoelectric Thermal Reference Sources (TTRS) from single band (3 to 5 or 8 to 12 microns) to dual band in one assembly (3 to 5 and 8 to 12 microns). It will describe the optical, system, electrical, and mechanical parameters of dual band TTRS units. It provides IR system design engineers with the critical parameters of dual band TTRS units to aid in their design process. TTRS assemblies provide a temperature controllable radiometrically uniform surface. When viewed by theFLIR system detectors, the TTRS enables the system electronics to perform gain and offset calibration as well as DC restoration for each pixel's preamp Some of the parameters for 3rd Generation FLIR system TTRS units included in this paper will be: Emissivity of BB surfaces. Apparent thermal radiometric uniformity. How this is predicted and measured. Window material wavelength transmission (Hermetically sealed units only). TTRS emitter surface temperatures as a function of heat sink temperatures. Trade-off between uniformity, power consumption, and transient performance. Power consumption, Thermal interfaces and required heat sinking Types and accuracy of Temperature sensors mounted on emitter surface. Also included in this paper is a description of a Thermoelectric Black Body Test Apparatus that can be used to generate temperature coefficients needed to "burn" Proms for uncooled IRFPAs during their production and burn in processing.

  10. The Use of Transfer Radiometers in Validating the Visible through Shortwave Infrared Calibrations of Radiance Sources Used by Instruments in NASA's Earth Observing System

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Barnes, Robert A.

    2002-01-01

    The detection and study of climate change over a time frame of decades requires successive generations of satellite, airborne, and ground-based instrumentation carefully calibrated against a common radiance scale. In NASA s Earth Observing System (EOS) program, the pre-launch radiometric calibration of these instruments in the wavelength region from 400 nm to 2500 nm is accomplished using internally illuminated integrating spheres and diffuse reflectance panels illuminated by irradiance standard lamps. Since 1995, the EOS Calibration Program operating within the EOS Project Science Office (PSO) has enlisted the expertise of national standards laboratories and government and university metrology laboratories in an effort to validate the radiance scales assigned to sphere and panel radiance sources by EOS instrument calibration facilities. This state-of-the-art program has been accomplished using ultra-stable transfer radiometers independently calibrated by the above participating institutions. In ten comparisons since February 1995, the agreement between the radiance measurements of the transfer radiometers is plus or minus 1.80% at 411 nm, plus or minus 1.31% at 552.5 nm, plus or minus 1.32% at 868.0 nm, plus or minus 2.54% at 1622nm, and plus or minus 2.81% at 2200nm (sigma =1).

  11. Application of advanced shearing techniques to the calibration of autocollimators with small angle generators and investigation of error sources.

    PubMed

    Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B

    2016-05-01

    The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements. PMID:27250375

  12. Large-Area Radiation Sources for the In-flight Calibration of the GLORIA Interferometer

    NASA Astrophysics Data System (ADS)

    Olschewski, F.; Rolf, C.; Steffens, P.; Kleinert, A.; Piesch, C.; Ebersoldt, A.; Monte, C.; Gutschwager, B.; Hollandt, J.; Preusse, P.; Friedl-Vallon, F.; Koppmann, R.

    2012-04-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is a prototype of an imaging Fourier Transform Spectrometer for a candidate Earth Explorer mission by ESA. GLORIA is deployed onboard different research aircraft like the Russian M55 Geophysica or the German HALO. The instrument shall provide a detailed picture of the upper troposphere/lower stratosphere (UTLS) region, which plays a crucial role in the climate system. GLORIA uses a two-dimensional detector array for infrared limb-observations and therefore it needs large-area radiation sources (126 mm x 126 mm) for calibration with an absolute accuracy of 0.1 K as well as a spatial homogeneity of better than 0.1 K in order to meet the uncertainty requirements for atmospheric temperature and trace gas retrieval. Since the instrument is exposed to the hostile environment of the tropopause with mutable low temperature and pressure, the in-flight calibration sources have to be carefully designed to cope with those adverse circumstances. The GLORIA in-flight calibration system consists of two identical high-precision blackbodies, which are independently controlled at two different temperatures. The two point calibration should be in the range of the observed atmospheric radiance with 10 K below ambient temperature and 30 K above ambient temperature, respectively. Thermo-Electric Coolers are used to control the temperature of the blackbodies offering the advantage of avoiding cryogens and mechanical coolers. We will present the design and performance of the GLORIA in-flight calibration system. The system has been comprehensively characterized for its spatially (full aperture) and spectrally (5 µm to 14 µm) resolved radiation properties in terms of radiation temperature traceable to the international temperature scale (ITS-90) at the national metrology institute of Germany (PTB).

  13. Development of hollow anode penning ion source for laboratory application

    NASA Astrophysics Data System (ADS)

    Das, B. K.; Shyam, A.; Das, R.; Rao, A. D. P.

    2012-03-01

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J × B force in the region helps for efficient ionization of the gas even in the high vacuum region˜1×10 -5 Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 μA was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  14. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    PubMed

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline. PMID:22380298

  15. Compact extreme ultraviolet source for laboratory-based photoemission spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph; Wilson, Daniel; Rudolf, Denis; Wiemann, Carsten; Plucinski, Lukasz; Riess, Sally; Schuck, Martin; Hardtdegen, Hilde; Schneider, Claus M.; Tautz, F. Stefan; Juschkin, Larissa

    2016-06-01

    We report on the combination of a state-of-the-art energy-filtering photoemission electron microscope with an intense yet compact laboratory-based gas discharge extreme ultraviolet (EUV) light source. Using a photon energy of 71.7 eV from oxygen plasma (O5+ spectral line), we demonstrate element-selective photoelectron imaging in real space and band structure mapping in reciprocal space. Additionally, the high surface sensitivity of the EUV light was used to study the surface oxidation on islands of the phase-change material Ge1Sb2Te4 . The EUV light source allows the extension of spectromicroscopy, previously only feasible at synchrotron beamlines, to laboratory-based work.

  16. Radiometric calibration of a 100 cm sphere integrating source for VIIRS solar diffuser stability monitor bands

    NASA Astrophysics Data System (ADS)

    Kim, Eugene D.; Murgai, Vijay; Menzel, Reinhard W.

    2012-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Joint Polar-orbiting Satellite System (JPSS) mission has a solar diffuser as a reflective band calibrator. Due to UV solarization of the solar diffuser, the Solar Diffuser Stability Monitor (SDSM) is on-board to track the reflectance change of the solar diffuser in visible to near IR wavelengths. A 100 cm Sphere Integrating Source (SIS) has been used to configure and test the SDSM on the ground since MODerate resolution Imaging Spectroradiometer (MODIS) programs. Recent upgrades of the radiance transfer and BRDF measurement instruments in Raytheon have enabled more spectral data and faster measurement time with comparable uncertainty to the previous methods. The SIS has a Radiance Monitor, which has been mainly used as a SIS real-time health checker. It has been observed that the Radiance Monitor response is sufficiently linear and stable thus the Radiance Monitor can be used as a calibrator for ground tests. This paper describes the upgraded SIS calibration instruments, and the changes in the calibration philosophy of the SIS for the SDSM bands.

  17. Calibration of the CDF tile-fiber endplug calorimeters using moving radioactive sources

    SciTech Connect

    Barnes, V.; Laasanen, A.; Pompos, A.; Wilson, M.

    1998-11-01

    The use of moving radioactive gamma sources to assess, calibrate and monitor scintillating tile calorimeters is discussed, and the techniques and equipment are described. The capabilities of the technique are illustrated using Cs{sup 137} sources with the CDF Endplug Upgrade EM and Hadron calorimeters at testbeams and at a cosmic ray test stand. Source measurements of all the tiles in testbeam modules which are exact replicas of the calorimeters, predict the relative responses of EM towers to 50 GeV positrons and muons, and of Hadron towers to 50 GeV pions, with RMS accuracies of 1.3{percent}, 1.8{percent} and 2.0{percent}, respectively. Source measurements will be used in lieu of testbeam measurements for the initial calibration of all towers in the final calorimeters. Source measurements of single tiles are reproducible to 0.4{percent} and will be used to monitor gain changes of the photomultiplier tubes. {copyright} {ital 1998 American Institute of Physics.}

  18. A 220Rn source for the calibration of low-background experiments

    NASA Astrophysics Data System (ADS)

    Lang, R. F.; Brown, A.; Brown, E.; Cervantes, M.; Macmullin, S.; Masson, D.; Schreiner, J.; Simgen, H.

    2016-04-01

    We characterize two 40 kBq sources of electrodeposited 228Th for use in low-background experiments. The sources efficiently emanate 220Rn, a noble gas that can diffuse in a detector volume. 220Rn and its daughter isotopes produce α-, β-, and γ-radiation, which may used to calibrate a variety of detector responses and features, before decaying completely in only a few days. We perform various tests to place limits on the release of other long-lived isotopes. In particular, we find an emanation of < 0.008 atoms/min/kBq (90% CL) for 228Th and (1.53 ± 0.04) atoms/min/kBq for 224Ra. The sources lend themselves in particular to the calibration of detectors employing liquid noble elements such as argon and xenon. With the source mounted in a noble gas system, we demonstrate that filters are highly efficient in reducing the activity of these longer-lived isotopes further. We thus confirm the suitability of these sources even for use in next-generation experiments, such as XENON1T/XENONnT, LZ, and nEXO.

  19. Laboratory Calibration of Density-Dependent Lines in the EUV and Soft X-Ray Regions

    SciTech Connect

    Lepson, J K; Beiersdorfer, P; Gu, M F; Desai, P

    2010-12-09

    We analyzed spectral data of Fe XXII and Ar XIV from laboratory sources in which the electron density varies by several orders of magnitude to help benchmark density-sensitive emission lines useful for astrophysics and to test the atomic models underlying the diagnostic line ratios. We found excellent agreement for Fe XXII, but poorer agreement for Ar XIV. A number of astrophysically important emission lines are sensitive to electron density in the EUV and soft X-ray regions. Lines from Fe XXII, for example, have been used in recent years as diagnostics of stellar coronae, such as the active variable AB Dor, Capella, and EX Hya (Sanz-Forcada et al. 2003, Mewe et al. 2001, Mauche et al. 2003). Here we report spectral data of Fe XXII and Ar XIV from laboratory sources in which the electron density is known from either K-shell density diagnostics (for electron beam ion traps) or from non-spectroscopic means (tokamaks), ranging from 5 x 10{sup 10} cm{sup -3} to 5 x 10{sup 14} cm{sup -3}. These measurements were used to test the atomic data underlying the density diagnostic line ratios, complementing earlier work (Chen et al. 2004).

  20. Single-source gamma radiation procedures for improved calibration and measurements in porous media

    SciTech Connect

    Oostrom, M.; Hofstee, C.; Dane, H.; Lenhard, R.J.

    1998-08-01

    When dual-energy gamma radiation systems are employed for measurements in porous media, count rates from both sources are often used to compute parameter values. However, for several applications, the count rates of just one source are insufficient. These applications include the determination of volumetric liquid content values in two-liquid systems and salt concentration values in water-saturated porous media. Single-energy gamma radiation procedures for three applications are described in this paper. Through an error analysis, single-source procedures are shown to reduce the probable error in the determinations considerably. Example calculations and simple column experiments were conducted for each application to compare the performance of the new single-source and standard dual-source methods. In all cases, the single-source methods provided more reliable data than the traditional dual-source methods. In addition, a single-source calibration procedure is proposed to determine incident count rates indirectly. This procedure, which requires packing under saturated conditions, can be used in all single- and dual-source applications and yields accurate porosity and dry bulk density values.

  1. Scheduling and calibration strategy for continuous radio monitoring of 1700 sources every three days

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, Walter

    2014-08-01

    The Owens Valley Radio Observatory 40 meter telescope is currently monitoring a sample of about 1700 blazars every three days at 15 GHz, with the main scientific goal of determining the relation between the variability of blazars at radio and gamma-rays as observed with the Fermi Gamma-ray Space Telescope. The time domain relation between radio and gamma-ray emission, in particular its correlation and time lag, can help us determine the location of the high-energy emission site in blazars, a current open question in blazar research. To achieve this goal, continuous observation of a large sample of blazars in a time scale of less than a week is indispensable. Since we only look at bright targets, the time available for target observations is mostly limited by source observability, calibration requirements and slewing of the telescope. Here I describe the implementation of a practical solution to this scheduling, calibration, and slewing time minimization problem. This solution combines ideas from optimization, in particular the traveling salesman problem, with astronomical and instrumental constraints. A heuristic solution using well established optimization techniques and astronomical insights particular to this situation, allow us to observe all the sources in the required three days cadence while obtaining reliable calibration of the radio flux densities. Problems of this nature will only be more common in the future and the ideas presented here can be relevant for other observing programs.

  2. A method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-06-01

    A phase fluctuation calibration method is presented for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method consists of the generation of a continuous triggered tone-burst waveform rather than an asynchronous waveform by use of a function generator and the removal of the global phases of the measured Jones matrices by use of matrix normalization. This could remove the use of auxiliary optical components for the phase fluctuation compensation in the system, which reduces the system complexity. Phase fluctuation calibration is necessary to obtain the reference Jones matrix by averaging the measured Jones matrices at sample surfaces. Measurements on an equine tendon sample were made by the PS-SS-OCT system to validate the proposed method.

  3. Flux-Calibrated Emission-Line Imaging of Extended Sources Using GTC/OSIRIS Tunable Filters

    NASA Astrophysics Data System (ADS)

    Mayya, Y. D.; Rosa González, D.; Vega, O.; Méndez-Abreu, J.; Terlevich, R.; Terlevich, E.; Bertone, E.; Rodríguez-Merino, L. H.; Muñoz-Tuñón, C.; Rodríguez-Espinosa, J. M.; Sánchez Almeida, J.; Aguerri, J. A. L.

    2012-08-01

    We investigate the utility of the tunable filters (TFs) for obtaining flux-calibrated emission-line maps of extended objects such as galactic nebulae and nearby galaxies using the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) at the 10.4-m Gran Telescopio Canarias (GTC). Despite the relatively large field of view (FoV) of OSIRIS (8' × 8'), the change in wavelength across the field (~80 Å) and the long tail of the TF spectral response function are hindrances for obtaining accurate flux-calibrated emission-line maps of extended sources. The purpose of this article is to demonstrate that emission-line maps useful for diagnostics of nebulae can be generated over the entire FoV of OSIRIS if we make use of theoretically well-understood characteristics of TFs. We have successfully generated the flux-calibrated images of the nearby large late-type spiral galaxy M101 in the emission lines of Hα, [N II]λ6583, [S II]λ6716 and [S II]λ6731. We find that the present uncertainty in setting the central wavelength of TFs (~1 Å) is the biggest source of error in the emission-line fluxes. By comparing the Hα fluxes of H II regions in our images with the fluxes derived from Hα images obtained using narrow-band filters, we estimate an error of ~11% in our fluxes. The flux-calibration of the images was carried out by fitting the Sloan Digital Sky Survey (SDSS) griz magnitudes of in-frame stars with the stellar spectra from the SDSS spectral database. This method resulted in an accuracy of 3% in flux-calibration of any narrow-band image, which is as good as, if not better than, what has been feasible using the observations of spectrophotometric standard stars. Thus time-consuming calibration images need not be taken. A user-friendly script under the IRAF environment was developed and is available on request. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the

  4. Numerical Simulations of Landslides Calibrated Against Laboratory Experiments for Application to Asteroid Surface Processes

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Blum, J.; Weinhart, T.; Schwartz, S. R.; Michel, P.; Walsh, K. J.

    2012-10-01

    Spacecraft images of asteroids show evidence of low-gravity granular flows. Interpretation of these flows requires numerical modeling, which in turn requires code validation at laboratory scales. We have implemented a soft-sphere discrete element method (SSDEM) for modeling granular flows in our numerical code (Schwartz et al. 2012, Granular Matter 14, 363). Here we present results from a study to calibrate our code against controlled landslide experiments in order to determine the SSDEM parameters that best match real materials, to see how changes in those parameters affect the flow, and to mimic effects such as those due to irregular particle shapes. The apparatus, designed at University of Braunschweig, is a 0.6 × 0.8 m enclosed bed with a surface comprised of 10 mm diameter glass spheres glued into precisely drilled holes in a metal plate. The exact positions and depths of each of these glued spheres are input to the simulations. The experiments consist of filling the apparatus with loose glass beads (also 10 mm diameter) up to a set depth then gradually tilting the bed to note the angle of landslide initiation and the characteristics of the resulting flow. We reproduce this procedure in simulations, which we find are quite sensitive to the adopted SSDEM parameters, e.g., rolling friction and tangential damping delay landslide onset, while higher particle elasticity gives rise to faster, shorter-duration landslides. Preliminary results show a best match to the experiments (landslide initiation around 25 degrees) when adopting low static friction and no rolling friction in the simulations, but more experiments are in process. In future work, we will perform simulations in low-gravity environments representative of asteroid surfaces. This work is supported in part by grant NNX08AM39G from the NASA Office of Space Science. This study resulted from International Team collaboration #202 sponsored by ISSI in Switzerland.

  5. Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25-250 °C temperature range

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; John, Cédric M.; Jourdan, Anne-Lise; Davis, Simon; Crawshaw, John

    2015-05-01

    Many fields of Earth sciences benefit from the knowledge of mineral formation temperatures. For example, carbonates are extensively used for reconstruction of the Earth's past climatic variations by determining ocean, lake, and soil paleotemperatures. Furthermore, diagenetic minerals and their formation or alteration temperature may provide information about the burial history of important geological units and can have practical applications, for instance, for reconstructing the geochemical and thermal histories of hydrocarbon reservoirs. Carbonate clumped isotope thermometry is a relatively new technique that can provide the formation temperature of carbonate minerals without requiring a priori knowledge of the isotopic composition of the initial solution. It is based on the temperature-dependent abundance of the rare 13C-18O bonds in carbonate minerals, specified as a Δ47 value. The clumped isotope thermometer has been calibrated experimentally from 1 °C to 70 °C. However, higher temperatures that are relevant to geological processes have so far not been directly calibrated in the laboratory. In order to close this calibration gap and to provide a robust basis for the application of clumped isotopes to high-temperature geological processes we precipitated CaCO3 (mainly calcite) in the laboratory between 23 and 250 °C. We used two different precipitation techniques: first, minerals were precipitated from a CaCO3 supersaturated solution at atmospheric pressure (23-91 °C), and, second, from a solution resulting from the mixing of CaCl2 and NaHCO3 in a pressurized reaction vessel at a pressure of up to 80 bar (25-250 °C). The calibration lines of both experimental approaches overlap and agree in the slopes with theoretical estimates and with other calibration experiments in which carbonates were reacted with phosphoric acid at temperatures above 70 °C. Our study suggests a universal Δ47-T calibration (T in K, Δ47 in ‰):

  6. The Brookhaven National Laboratory electron beam ion source for RHICa)

    NASA Astrophysics Data System (ADS)

    Alessi, J. G.; Barton, D.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McNerney, A.; Mapes, M.; Marneris, Y.; Okamura, M.; Phillips, D.; Pikin, A. I.; Raparia, D.; Ritter, J.; Snydstrup, L.; Theisen, C.; Wilinski, M.

    2010-02-01

    As part of a new heavy ion preinjector that will supply beams for the Relativistic Heavy Ion Collider and the National Aeronautics and Space Administration Space Radiation Laboratory, construction of a new electron beam ion source (EBIS) is now being completed. This source, based on the successful prototype Brookhaven National Laboratory Test EBIS, is designed to produce milliampere level currents of all ion species, with q/m=(1/6)-(1/2). Among the major components of this source are a 5 T, 2-m-long, 204 mm diameter warm bore superconducting solenoid, an electron gun designed to operate at a nominal current of 10 A, and an electron collector designed to dissipate ˜300 kW of peak power. Careful attention has been paid to the design of the vacuum system, since a pressure of 10-10 Torr is required in the trap region. The source includes several differential pumping stages, the trap can be baked to 400 C, and there are non-evaporable getter strips in the trap region. Power supplies include a 15 A, 15 kV electron collector power supply, and fast switchable power supplies for most of the 16 electrodes used for varying the trap potential distribution for ion injection, confinement, and extraction. The EBIS source and all EBIS power supplies sit on an isolated platform, which is pulsed up to a maximum of 100 kV during ion extraction. The EBIS is now fully assembled, and operation will be beginning following final vacuum and power supply tests. Details of the EBIS components are presented.

  7. Radiometric Measurement Comparison on the Integrating Sphere Source Used to Calibrate the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+).

    PubMed

    Butler, James J; Brown, Steven W; Saunders, Robert D; Johnson, B Carol; Biggar, Stuart F; Zalewski, Edward F; Markham, Brian L; Gracey, Paul N; Young, James B; Barnes, Robert A

    2003-01-01

    As part of a continuing effort to validate the radiometric scales assigned to integrating sphere sources used in the calibration of Earth Observing System (EOS) instruments, a radiometric measurement comparison was held in May 1998 at Raytheon/Santa Barbara Remote Sensing (SBRS). This comparison was conducted in support of the calibration of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) instruments. The radiometric scale assigned to the Spherical Integrating Source (SIS100) by SBRS was validated through a comparison with radiometric measurements made by a number of stable, well-characterized transfer radiometers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration's Goddard Space Flight Center (NASA's GSFC), and the University of Arizona Optical Sciences Center (UA). The measured radiances from the radiometers differed by ±3 % in the visible to near infrared when compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements. In general, the transfer radiometers gave higher values than the SBRS calibration in the near infrared and lower values in the blue. The measurements of the radiometers differed by ±4 % from 800 nm to 1800 nm compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements for wavelengths less than 2200 nm. The results of the radiometric measurement comparison presented here supplement the results of previous measurement comparisons on the integrating sphere sources used to calibrate the Multi-angle Imaging SpectroRadiometer (MISR) at NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) at NEC Corporation, Yokohama, Japan. PMID:27413606

  8. Radiometric Measurement Comparison on the Integrating Sphere Source Used to Calibrate the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+)

    PubMed Central

    Butler, James J.; Brown, Steven W.; Saunders, Robert D.; Johnson, B. Carol; Biggar, Stuart F.; Zalewski, Edward F.; Markham, Brian L.; Gracey, Paul N.; Young, James B.; Barnes, Robert A.

    2003-01-01

    As part of a continuing effort to validate the radiometric scales assigned to integrating sphere sources used in the calibration of Earth Observing System (EOS) instruments, a radiometric measurement comparison was held in May 1998 at Raytheon/Santa Barbara Remote Sensing (SBRS). This comparison was conducted in support of the calibration of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) instruments. The radiometric scale assigned to the Spherical Integrating Source (SIS100) by SBRS was validated through a comparison with radiometric measurements made by a number of stable, well-characterized transfer radiometers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration’s Goddard Space Flight Center (NASA’s GSFC), and the University of Arizona Optical Sciences Center (UA). The measured radiances from the radiometers differed by ±3 % in the visible to near infrared when compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements. In general, the transfer radiometers gave higher values than the SBRS calibration in the near infrared and lower values in the blue. The measurements of the radiometers differed by ±4 % from 800 nm to 1800 nm compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements for wavelengths less than 2200 nm. The results of the radiometric measurement comparison presented here supplement the results of previous measurement comparisons on the integrating sphere sources used to calibrate the Multi-angle Imaging SpectroRadiometer (MISR) at NASA’s Jet Propulsion Laboratory (JPL), Pasadena, CA and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) at NEC Corporation, Yokohama, Japan. PMID:27413606

  9. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    SciTech Connect

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-25

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution ({lambda}/{Delta}{lambda} >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  10. Measuring sound absorption properties of porous materials using a calibrated volume velocity source

    NASA Astrophysics Data System (ADS)

    Arenas, Jorge P.; Darmendrail, Luis

    2013-10-01

    Measurement of acoustic properties of sound-absorbing materials has been the source of much investigation that has produced practical measuring methods. In particular, the measurement of the normal incidence sound absorption coefficient is commonly done using a well-known configuration of a tube carrying a plane wave. The sound-absorbing coefficient is calculated from the surface impedance measured on a sample of material. Therefore, a direct measurement of the impedance requires knowing the ratio between the sound pressure and the volume velocity. However, the measurement of volume velocity is not straightforward in practice and many methods have been proposed including complex transducers, laser vibrometry, accelerometers and calibrated volume velocity sources. In this paper, a device to directly measure the acoustic impedance of a sample of sound-absorbing material is presented. The device uses an internal microphone in a small cavity sealed by a loudspeaker and a second microphone mounted in front of this source. The calibration process of the device and the limitations of the method are also discussed and measurement examples are presented. The accuracy of the device was assessed by direct comparison with the standardized method. The proposed measurement method was tested successfully with various types of commercial acoustic porous materials.

  11. Preliminary designs for X-ray source modifications for the Marshall Space Flight Center's X-ray calibration facility

    NASA Technical Reports Server (NTRS)

    Croft, W. L.

    1986-01-01

    The objective of this investigation is to develop preliminary designs for modifications to the X-ray source of the MSFC X-Ray Calibration Facility. Recommendations are made regarding: (1) the production of an unpolarized X-ray beam, (2) modification of the source to provide characteristic X-rays with energies up to 40 keV, and (3) addition of the capability to calibrate instruments in the extreme ultraviolet wavelength region.

  12. 10 CFR 31.8 - Americium-241 and radium-226 in the form of calibration or reference sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Americium-241 and radium-226 in the form of calibration or reference sources. 31.8 Section 31.8 Energy NUCLEAR REGULATORY COMMISSION GENERAL DOMESTIC LICENSES FOR BYPRODUCT MATERIAL § 31.8 Americium-241 and radium-226 in the form of calibration or reference sources. (a) A general license is issued to...

  13. Calibration and Laboratory Test of the Department of Energy Cloud Particle Imager

    SciTech Connect

    McFarquhar, GM; Um, J

    2012-02-17

    Calibration parameters from the Connolly et al. (2007) algorithm cannot be applied to the Department of Energy's (DOE) CPI because the DOE CPI is version 2.0. Thus, Dr. Junshik Um and Prof. Greg McFarquhar brought the DOE CPI to the University of Manchester, UK, where facilities for calibrating it were available. In addition, two other versions of CPIs (1.0 and 1.5) were available on-site at the University of Manchester so that an intercomparison of three different versions of the CPI was possible. The three CPIs (versions 1.0, 1.5, and 2.0) were calibrated by moving glass calibration beads and ice analogues of known size parallel to the object plane. The distance between the object plane and a particle, the particle's focus, its apparent maximum dimension, and a background image were measured in order to derive calibration parameters for each CPI version. The calibration parameters are used in two empirical equations that are applied to in situ CPI data to determine particle size and depth of field, and hence particle size distributions (PSDs). After the tests with the glass calibration beads to derive the calibration parameters, the three CPIs were installed at the base of the Manchester Ice Cloud Chamber and connected to air pumps that drew cloud through the sample volume. Warm liquid clouds at a temperature of 1-2 C and ice clouds at a temperature of -5 C were generated, and the resulting PSDs for each of the CPIs were determined by applying the results of each calibration.

  14. Evaluation of the Earth Radiation Budget Experiment (ERBE) shortwave channel's stability using in-flight calibration sources

    NASA Technical Reports Server (NTRS)

    Gibson, Michael A.; Lee, Robert B., III; Thomas, Susan

    1992-01-01

    The Earth Radiation Budget Experiment (ERBE) radiometers were designed to make absolute measurements of the incoming solar, earth-reflected solar, and earth-emitted fluxes for investigations of the earth's climate system. Thermistor bolometers were the sensors used for the ERBE scanning radiometric package. Each thermistor bolometer package consisted of three narrow field of view broadband radiometric channels measuring shortwave, longwave, and total (0.2 micron to 50 microns) radiation. The in-flight calibration facilities include Mirror Attenuator Mosaics, shortwave internal calibration source, and internal blackbody sources to monitor the long-term responsivity of the radiometers. This paper describes the in-flight calibration facilities, the calibration data reduction techniques, and the results from the in-flight shortwave channel calibrations. The results indicate that the ERBE shortwave detectors were stable to within +/- 1 percent for up to five years of flight operation.

  15. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  16. The moon as a radiometric reference source for on-orbit sensor stability calibration

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  17. Calibration of the Regional Crustal Waveguide and the Retrieval of Source Parameters Using Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Saikia, C. K.; Woods, B. B.; Thio, H. K.

    - Regional crustal waveguide calibration is essential to the retrieval of source parameters and the location of smaller (M<4.8) seismic events. This path calibration of regional seismic phases is strongly dependent on the accuracy of hypocentral locations of calibration (or master) events. This information can be difficult to obtain, especially for smaller events. Generally, explosion or quarry blast generated travel-time data with known locations and origin times are useful for developing the path calibration parameters, but in many regions such data sets are scanty or do not exist. We present a method which is useful for regional path calibration independent of such data, i.e. with earthquakes, which is applicable for events down to Mw = 4 and which has successfully been applied in India, central Asia, western Mediterranean, North Africa, Tibet and the former Soviet Union. These studies suggest that reliably determining depth is essential to establishing accurate epicentral location and origin time for events. We find that the error in source depth does not necessarily trade-off only with the origin time for events with poor azimuthal coverage, but with the horizontal location as well, thus resulting in poor epicentral locations. For example, hypocenters for some events in central Asia were found to move from their fixed-depth locations by about 20km. Such errors in location and depth will propagate into path calibration parameters, particularly with respect to travel times. The modeling of teleseismic depth phases (pP, sP) yields accurate depths for earthquakes down to magnitude Mw = 4.7. This Mwthreshold can be lowered to four if regional seismograms are used in conjunction with a calibrated velocity structure model to determine depth, with the relative amplitude of the Pnl waves to the surface waves and the interaction of regional sPmP and pPmP phases being good indicators of event depths. We also found that for deep events a seismic phase which follows an S

  18. Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources

    NASA Technical Reports Server (NTRS)

    McAndrew, Brendan; Cooper, John; Arecchi, Angelo; McKee, Greg; Durell, Christopher

    2012-01-01

    Stable high radiance in visible and near-ultraviolet wavelengths is desirable for radiometric calibration sources. In this work, newly available electrodeless radio-frequency (RF) driven plasma light sources were combined with research grade, low-noise power supplies and coupled to an integrating sphere to produce a uniform radiance source. The stock light sources consist of a 28 VDC power supply, RF driver, and a resonant RF cavity. The RF cavity includes a small bulb with a fill gas that is ionized by the electric field and emits light. This assembly is known as the emitter. The RF driver supplies a source of RF energy to the emitter. In commercial form, embedded electronics within the RF driver perform a continual optimization routine to maximize energy transfer to the emitter. This optimization routine continually varies the light output sinusoidally by approximately 2% over a several-second period. Modifying to eliminate this optimization eliminates the sinusoidal variation but allows the output to slowly drift over time. This drift can be minimized by allowing sufficient warm-up time to achieve thermal equilibrium. It was also found that supplying the RF driver with a low-noise source of DC electrical power improves the stability of the lamp output. Finally, coupling the light into an integrating sphere reduces the effect of spatial fluctuations, and decreases noise at the output port of the sphere.

  19. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    SciTech Connect

    Sehlke, G.

    2003-03-17

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect

  20. Development of NIR calibration for determining quality of barley as a fuel ethanol source and calibration transfer between instruments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently there has been growing interest in using barley as a feedstock for fuel ethanol in the U.S. This study focused on potential of near infrared (NIR) spectroscopy for quality evaluation of barley as a rapid and non-destructive analytical method and calibration transfer between two instrument...

  1. Innovative methodology for intercomparison of radionuclide calibrators using short half-life in situ prepared radioactive sources

    SciTech Connect

    Oliveira, P. A.; Santos, J. A. M.

    2014-07-15

    Purpose: An original radionuclide calibrator method for activity determination is presented. The method could be used for intercomparison surveys for short half-life radioactive sources used in Nuclear Medicine, such as{sup 99m}Tc or most positron emission tomography radiopharmaceuticals. Methods: By evaluation of the resulting net optical density (netOD) using a standardized scanning method of irradiated Gafchromic XRQA2 film, a comparison of the netOD measurement with a previously determined calibration curve can be made and the difference between the tested radionuclide calibrator and a radionuclide calibrator used as reference device can be calculated. To estimate the total expected measurement uncertainties, a careful analysis of the methodology, for the case of{sup 99m}Tc, was performed: reproducibility determination, scanning conditions, and possible fadeout effects. Since every factor of the activity measurement procedure can influence the final result, the method also evaluates correct syringe positioning inside the radionuclide calibrator. Results: As an alternative to using a calibrated source sent to the surveyed site, which requires a relatively long half-life of the nuclide, or sending a portable calibrated radionuclide calibrator, the proposed method uses a source preparedin situ. An indirect activity determination is achieved by the irradiation of a radiochromic film using {sup 99m}Tc under strictly controlled conditions, and cumulated activity calculation from the initial activity and total irradiation time. The irradiated Gafchromic film and the irradiator, without the source, can then be sent to a National Metrology Institute for evaluation of the results. Conclusions: The methodology described in this paper showed to have a good potential for accurate (3%) radionuclide calibrators intercomparison studies for{sup 99m}Tc between Nuclear Medicine centers without source transfer and can easily be adapted to other short half-life radionuclides.

  2. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    NASA Technical Reports Server (NTRS)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to

  3. Calibration of Seismic Sources during a Test Cruise with the new RV SONNE

    NASA Astrophysics Data System (ADS)

    Engels, M.; Schnabel, M.; Damm, V.

    2015-12-01

    During autumn 2014, several test cruises of the brand new German research vessel SONNE were carried out before the first official scientific cruise started in December. In September 2014, BGR conducted a seismic test cruise in the British North Sea. RV SONNE is a multipurpose research vessel and was also designed for the mobile BGR 3D seismic equipment, which was tested successfully during the cruise. We spend two days for calibration of the following seismic sources of BGR: G-gun array (50 l @ 150 bar) G-gun array (50 l @ 207 bar) single GI-gun (3.4 l @ 150 bar) For this experiment two hydrophones (TC4042 from Reson Teledyne) sampling up to 48 kHz were fixed below a drifting buoy at 20 m and 60 m water depth - the sea bottom was at 80 m depth. The vessel with the seismic sources sailed several up to 7 km long profiles around the buoy in order to cover many different azimuths and distances. We aimed to measure sound pressure level (SPL) and sound exposure level (SEL) under the conditions of the shallow North Sea. Total reflections and refracted waves dominate the recorded wave field, enhance the noise level and partly screen the direct wave in contrast to 'true' deep water calibration based solely on the direct wave. Presented are SPL and RMS power results in time domain, the decay with distance along profiles, and the somehow complicated 2D sound radiation pattern modulated by topography. The shading effect of the vessel's hull is significant. In frequency domain we consider 1/3 octave levels and estimate the amount of energy in frequency ranges not used for reflection seismic processing. Results are presented in comparison of the three different sources listed above. We compare the measured SPL decay with distance during this experiment with deep water modeling of seismic sources (Gundalf software) and with published results from calibrations with other marine seismic sources under different conditions: E.g. Breitzke et al. (2008, 2010) with RV Polarstern

  4. Data-driven and calibration-free Lamb wave source localization with sparse sensor arrays.

    PubMed

    Harley, Joel B; Moura, José M F

    2015-08-01

    Most Lamb wave localization techniques require that we know the wave's velocity characteristics; yet, in many practical scenarios, velocity estimates can be challenging to acquire, are unavailable, or are unreliable because of the complexity of Lamb waves. As a result, there is a significant need for new methods that can reduce a system's reliance on a priori velocity information. This paper addresses this challenge through two novel source localization methods designed for sparse sensor arrays in isotropic media. Both methods exploit the fundamental sparse structure of a Lamb wave's frequency-wavenumber representation. The first method uses sparse recovery techniques to extract velocities from calibration data. The second method uses kurtosis and the support earth mover's distance to measure the sparseness of a Lamb wave's approximate frequency-wavenumber representation. These measures are then used to locate acoustic sources with no prior calibration data. We experimentally study each method with a collection of acoustic emission data measured from a 1.22 m by 1.22 m isotropic aluminum plate. We show that both methods can achieve less than 1 cm localization error and have less systematic error than traditional time-of-arrival localization methods. PMID:26276960

  5. Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Valerius, K.; Hein, H.; Baumeister, H.; Beck, M.; Bokeloh, K.; Bonn, J.; Glück, F.; Ortjohann, H.-W.; Ostrick, B.; Zbořil, M.; Weinheimer, Ch

    2011-01-01

    The method of direct neutrino mass determination based on the kinematics of tritium beta decay, which is adopted by the KATRIN experiment, makes use of a large, high-resolution electrostatic spectrometer with magnetic adiabatic collimation. In order to target a sensitivity on m(ν) of 0.2eV/c2, a detailed understanding of the electromagnetic properties of the electron spectrometer is essential, requiring comprehensive calibration measurements with dedicated electron sources. In this paper we report on a prototype of a photoelectron source providing a narrow energy spread and angular selectivity. Both are key properties for the characterisation of the spectrometer. The angular selectivity is achieved by applying non-parallel strong electric and magnetic fields: Directly after being created, photoelectrons are accelerated rapidly and non-adiabatically by a strong electric field before adiabatic magnetic guiding takes over.

  6. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: PLANETS AND CELESTIAL CALIBRATION SOURCES

    SciTech Connect

    Weiland, J. L.; Odegard, N.; Hill, R. S.; Greason, M. R.; Wollack, E.; Hinshaw, G.; Kogut, A.; Bennett, C. L.; Gold, B.; Larson, D.; Dunkley, J.; Halpern, M.; Komatsu, E.; Limon, M.; Meyer, S. S.; Nolta, M. R.; Smith, K. M.; Spergel, D. N.

    2011-02-01

    We present WMAP seven-year observations of bright sources which are often used as calibrators at microwave frequencies. Ten objects are studied in five frequency bands (23-94 GHz): the outer planets (Mars, Jupiter, Saturn, Uranus, and Neptune) and five fixed celestial sources (Cas A, Tau A, Cyg A, 3C274, and 3C58). The seven-year analysis of Jupiter provides temperatures which are within 1{sigma} of the previously published WMAP five-year values, with slightly tighter constraints on variability with orbital phase (0.2% {+-} 0.4%), and limits (but no detections) on linear polarization. Observed temperatures for both Mars and Saturn vary significantly with viewing geometry. Scaling factors are provided which, when multiplied by the Wright Mars thermal model predictions at 350 {mu}m, reproduce WMAP seasonally averaged observations of Mars within {approx}2%. An empirical model is described which fits brightness variations of Saturn due to geometrical effects and can be used to predict the WMAP observations to within 3%. Seven-year mean temperatures for Uranus and Neptune are also tabulated. Uncertainties in Uranus temperatures are 3%-4% in the 41, 61, and 94 GHz bands; the smallest uncertainty for Neptune is 8% for the 94 GHz band. Intriguingly, the spectrum of Uranus appears to show a dip at {approx}30 GHz of unidentified origin, although the feature is not of high statistical significance. Flux densities for the five selected fixed celestial sources are derived from the seven-year WMAP sky maps and are tabulated for Stokes I, Q, and U, along with polarization fraction and position angle. Fractional uncertainties for the Stokes I fluxes are typically 1% to 3%. Source variability over the seven-year baseline is also estimated. Significant secular decrease is seen for Cas A and Tau A: our results are consistent with a frequency-independent decrease of about 0.53% per year for Cas A and 0.22% per year for Tau A. We present WMAP polarization data with uncertainties of a

  7. Spectral Irradiance Calibration in the Infrared 11: Comparison of (alpha) Boo and 1 Ceres with a Laboratory Standard

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C.; Cohen, Martin; Bregman, Jess D.; Wooden, Diane; Heere, Karen; Shirley, Eric L.

    1998-01-01

    Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the K1.5III star, alpha Boo, is measured from 3 microns to 30 microns and that of the C-type asteroid, 1 Ceres, from 5 microns to 30 microns. While these 'standard' spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically they provide a model-independent means of calibrating celestial flux in the spectral range from 12 microns to 30 microns where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards, and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux calibrated by theoretical modeling of these hot stars strengthens our confidence in the applicability of the stellar models as primary irradiance standards.

  8. Spectral Irradiance Calibration in the Infrared. 11; Comparison of (alpha) Bootis and 1 Ceres with a Laboratory Standard

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C.; Cohen, Martin; Bregman, Jesse D.; Wooden, Diane H.; Heere, Karen; Shirley, Eric L.

    1999-01-01

    Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the KI.5 III star alpha Boo is measured from 3 to 30 microns, and that of the C-type asteroid 1 Ceres from 5 to 30 microns. While these "standard" spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically, they provide a model-independent means of calibrating celestial flux in the spectral range from 12 to 30 microns, where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux-calibrated by theoretical modeling of these hot stars, strengthens our confidence in the applicability of the stellar models as primary irradiance standards.

  9. Calibration and Sequence Development Status for the Sample Analysis at Mars Investigation on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.

    2012-01-01

    The measurement goals of the Sample Analysis at Mars (SAM) instrument suite on the "Curiosity" Rover of the Mars Science Laboratory (MSL) include chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples [1,2]. SAM directly supports the ambitious goals of the MSL mission to provide a quantitative assessment of habitability and preservation in Gale crater by means of a range of chemical and geological measurements [3]. The SAM FM combined calibration and environmental testing took place primarily in 2010 with a limited set of tests implemented after integration into the rover in January 2011. The scope of SAM FM testing was limited both to preserve SAM consumables such as life time of its electromechanical elements and to minimize the level of terrestrial contamination in the SAM instrument. A more comprehensive calibration of a SAM-like suite of instruments will be implemented in 2012 with calibration runs planned for the SAM testbed. The SAM Testbed is nearly identical to the SAM FM and operates in a ambient pressure chamber. The SAM Instrument Suite: SAM's instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). Gas Chromatography Mass Spectrometry is designed for identification of even trace organic compounds. The TLS [5] secures the C, H, and O isotopic composition in carbon dioxide, water, and methane. Sieved materials are delivered from the MSL sample acquisition and processing system to one of68 cups of the Sample Manipulation System (SMS). 59 of these cups are fabricated from inert quartz. After sample delivery, a cup is inserted into one of 2 ovens for evolved gas analysis (EGA ambient to >9500C) by the QMS and TLS. A portion of the gas released can be trapped and subsequently analyzed by GCMS. Nine sealed cups contain liquid solvents and chemical derivatization or thermochemolysis agents to extract and transform polar molecules

  10. Laser ion source activities at Brookhaven National Laboratory

    DOE PAGESBeta

    Kanesue, Takeshi; Okamura, Masahiro

    2015-07-31

    In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 1010more » of C6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.« less

  11. Laser ion source activities at Brookhaven National Laboratory

    SciTech Connect

    Kanesue, Takeshi; Okamura, Masahiro

    2015-07-31

    In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 1010 of C6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.

  12. 10 CFR 70.39 - Specific licenses for the manufacture or initial transfer of calibration or reference sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to manufacture or initially transfer calibration or reference sources containing plutonium, for...) Chemical and physical form and maximum quantity of plutonium in the source; (ii) Details of construction and design; (iii) Details of the method of incorporation and binding of the plutonium in the...

  13. 10 CFR 70.39 - Specific licenses for the manufacture or initial transfer of calibration or reference sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to manufacture or initially transfer calibration or reference sources containing plutonium, for...) Chemical and physical form and maximum quantity of plutonium in the source; (ii) Details of construction and design; (iii) Details of the method of incorporation and binding of the plutonium in the...

  14. Exploring a Black Body Source as an Absolute Radiometric Calibration Standard and Comparison with a NIST Traced Lamp Standard

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Chrien, Thomas; Sarture, Chuck

    2001-01-01

    Radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is required for the scientific research and application objectives pursued with the spectroscopic measurements. Specifically calibration is required for: inter-comparison of AVIRIS data measured at different locations and at different times; analysis of AVIRIS data with data measured by other instruments; and analysis of AVIRIS data in conjunction with computer models. The primary effect of radiometric calibration is conversion of AVIRIS instrument response values (digitized numbers, or DN) to units of absolute radiance. For example, a figure shows the instrument response spectrum measured by AVIRIS over a portion of Rogers Dry Lake, California, and another figure shows the same spectrum calibrated to radiance. Only the calibrated spectrum may be quantitatively analyzed for science research and application objectives. Since the initial development of the AVIRIS instrument-radiometric calibration has been based upon a 1000-W irradiance lamp with a calibration traced to the National Institute of Standards and Technology (NIST). There are several advantages to this irradiance-lamp calibration approach. First, the considerable effort of NIST backs up the calibration. Second, by changing the distance to the lamp, the output can closely span the radiance levels measured by AVIRIS. Third, this type of standard is widely used. Fourth, these calibrated lamps are comparatively inexpensive. Conversely, there are several disadvantages to this approach as well. First, the lamp is not a primary standard. Second, the lamp output characteristics may change in an unknown manner through time. Third, it is difficult to assess, constrain, or improve the calibration uncertainty delivered with the lamp. In an attempt to explore the effect and potentially address some of these disadvantages a set of analyses and measurements comparing an irradiance lamp with a black-body source have been completed

  15. Analysis and Calibration of Sources of Electronic Error in PSD Sensor Response

    PubMed Central

    Rodríguez-Navarro, David; Lázaro-Galilea, José Luis; Bravo-Muñoz, Ignacio; Gardel-Vicente, Alfredo; Tsirigotis, Georgios

    2016-01-01

    In order to obtain very precise measurements of the position of agents located at a considerable distance using a sensor system based on position sensitive detectors (PSD), it is necessary to analyze and mitigate the factors that generate substantial errors in the system’s response. These sources of error can be divided into electronic and geometric factors. The former stem from the nature and construction of the PSD as well as the performance, tolerances and electronic response of the system, while the latter are related to the sensor’s optical system. Here, we focus solely on the electrical effects, since the study, analysis and correction of these are a prerequisite for subsequently addressing geometric errors. A simple calibration method is proposed, which considers PSD response, component tolerances, temperature variations, signal frequency used, signal to noise ratio (SNR), suboptimal operational amplifier parameters, and analog to digital converter (ADC) quantitation SNRQ, etc. Following an analysis of these effects and calibration of the sensor, it was possible to correct the errors, thus rendering the effects negligible, as reported in the results section. PMID:27136562

  16. GOSAT-OCO-2 synergetic CO2 observations over calibration & validation sites and large emission sources

    NASA Astrophysics Data System (ADS)

    Kuze, A.; Shiomi, K.; Suto, H.; Kataoka, F.; Crisp, D.; Schwandner, F. M.; Bruegge, C. J.; Taylor, T.; Kawakami, S.

    2015-12-01

    GOSAT and OCO-2 have different observation strategies. TANSO-FTS onboard GOSAT has wide spectral coverage from SWIR to TIR and an agile pointing system at the expense of spatial context, while OCO-2 targets CO2with higher spatial resolution using imaging grating spectrometers. Since the early phase of the two projects, both teams have worked in calibration and validation to demonstrate the effectiveness of satellite greenhouse gases observation. In 2008, the pre-launch cross-calibration agreement between GOSAT and OCO radiometers was better than 2% when measuring the traceable GOSAT calibration sphere (Sakuma et. al, 2010). Since GOSAT's launch in 2009, annual joint vicarious calibration campaigns at the Railroad Valley (RRV) playa have estimated radiometric degradation factors with time at an uncertainty of 7%. (Kuze et al., 2014). After OCO-2 launch, two independent measurements can now be compared to distinguish common forward calculation errors such as molecule absorption line parameters, solar lines and light-path modification by aerosol scattering from instrument-specific errors. On 25 Mach 2015, both GOSAT and OCO-2 targeted RRV simultaneously. The measured radiance spectra at the top of the atmosphere agree within 5% for all common bands. On June 29 and July 1 during the 7th RRV campaign, coincidence observation of GOSAT, OCO-2, AJAX airplane, radiosonde, and FTS and radiometers on the ground, provided surface albedo, BRDF, temperature, humidity CO2 and CH4 density to demonstrate consistency between forward radiative transfer calculation and satellite measured data. Both GOSAT and OCO-2 have been regularly targeting the TCCON site at Lamont and large emission sources such as mega cities and oil fields and glint over the ocean. Retrieved parameters such as surface albedo, pressure, column averaged mole fraction and aerosol related parameters can be compared firstly where aerosol optical thickness is low and topography is flat, and then over aerosol

  17. Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source

    NASA Astrophysics Data System (ADS)

    Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.

    2015-06-01

    One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.

  18. Method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-07-01

    We present a phase fluctuation calibration method for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method uses a low-voltage broadband polarization modulator driven by a synchronized sinusoidal burst waveform rather than an asynchronous waveform, together with the removal of the global phases of the measured Jones matrices by the use of matrix normalization. This makes it possible to average the measured Jones matrices to remove the artifact due to the speckle noise of the signal in the sample without introducing auxiliary optical components into the sample arm. This method was validated on measurements of an equine tendon sample by the PS-SS-OCT system.

  19. GT0 Explosion Sources for IMS Infrasound Calibration: Charge Design and Yield Estimation from Near-source Observations

    NASA Astrophysics Data System (ADS)

    Gitterman, Y.; Hofstetter, R.

    2014-03-01

    Three large-scale on-surface explosions were conducted by the Geophysical Institute of Israel (GII) at the Sayarim Military Range, Negev desert, Israel: about 82 tons of strong high explosives in August 2009, and two explosions of about 10 and 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources, monitored by extensive observations, for calibration of International Monitoring System (IMS) infrasound stations in Europe, Middle East and Asia. In all shots, the explosives were assembled like a pyramid/hemisphere on dry desert alluvium, with a complicated explosion design, different from the ideal homogenous hemisphere used in similar experiments in the past. Strong boosters and an upward charge detonation scheme were applied to provide more energy radiated to the atmosphere. Under these conditions the evaluation of the actual explosion yield, an important source parameter, is crucial for the GT0 calibration experiment. Audio-visual, air-shock and acoustic records were utilized for interpretation of observed unique blast effects, and for determination of blast wave parameters suited for yield estimation and the associated relationships. High-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. The yield estimators, based on empirical scaled relations for well-known basic air-blast parameters—the peak pressure, impulse and positive phase duration, as well as on the crater dimensions and seismic magnitudes, were analyzed. A novel empirical scaled relationship for the little-known secondary shock delay was developed, consistent for broad ranges of ANFO charges and distances, which facilitates using this stable and reliable air-blast parameter as a new potential

  20. Cochlear traveling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources.

    PubMed

    Shera, Christopher A; Guinan, John J

    2007-02-01

    Originally developed to estimate the power gain of the cochlear amplifier, so-called "Allen-Fahey" and related experiments have proved invaluable for probing the mechanisms of wave generation and propagation within the cochlea. The experimental protocol requires simultaneous measurement of intracochlear distortion products (DPs) and ear-canal otoacoustic emissions (DPOAEs) under tightly controlled conditions. To calibrate the intracochlear response to the DP, Allen-Fahey experiments traditionally employ invasive procedures such as recording from auditory-nerve fibers or measuring basilar-membrane velocity. This paper describes an alternative method that allows the intracochlear distortion source to be calibrated noninvasively. In addition to the standard pair of primary tones used to generate the principal DP the noninvasive method employs a third, fixed tone to create a secondary DPOAE whose amplitude and phase provide a sensitive assay of the intracochlear value of the principal DP near its characteristic place. The method is used to perform noninvasive Allen-Fahey experiments in cat and shown to yield results in quantitative agreement with the original, auditory-nerve-based paradigm performed in the same animal. Data obtained using a suppression-compensated variation of the noninvasive method demonstrate that neither traveling-wave amplification nor two-tone suppression constitutes the controlling influence in DPOAE generation at close frequency ratios. Rather, the dominant factor governing the emission magnitude appears to be the variable directionality of the waves radiated by the distortion-source region, which acts as a distortion beamformer tuned by the primary frequency ratio. PMID:17348523

  1. Broadband calibration of the R/V Marcus G. Langseth four-string seismic sources

    NASA Astrophysics Data System (ADS)

    Tolstoy, M.; Diebold, J.; Doermann, L.; Nooner, S.; Webb, S. C.; Bohnenstiehl, D. R.; Crone, T. J.; Holmes, R. C.

    2009-08-01

    The R/V Marcus G. Langseth is the first 3-D seismic vessel operated by the U.S. academic community. With up to a four-string, 36-element source and four 6-km-long solid state hydrophone arrays, this vessel promises significant new insights into Earth science processes. The potential impact of anthropogenic sound sources on marine life is an important topic to the marine seismic community. To ensure that operations fully comply with existing and future marine mammal permitting requirements, a calibration experiment was conducted in the Gulf of Mexico in 2007-2008. Results are presented from deep (˜1.6 km) and shallow (˜50 m) water sites, obtained using the full 36-element (6600 cubic inches) seismic source. This array configuration will require the largest safety radii, and the deep and shallow sites provide two contrasting operational environments. Results show that safety radii and the offset between root-mean-square and sound exposure level measurements were highly dependent on water depth.

  2. Preparation and characterisation of ceramic-based thoron sources for thoron calibration chamber.

    PubMed

    Csordás, A; Fábián, F; Horváth, M; Hegedűs, M; Somlai, J; Kovács, T

    2015-11-01

    The aim of this study is to explore the correlations between the properties of the source's material and the thoron flux produced. This means a complex procedure that involves morphological characterisation (the determination of specific surface area and pore size distribution) and thoron emanation and exhalation measurements as well. In this work, the preparation of 27 thoron sources has been carried out. Three types of ceramics with different morphological properties were used as a matrix material with three different thorium contents. Spheres were formed from the dollop, and they were fired at different temperatures (200, 600 and 900°C). The phase analysis of the samples was performed by powder X-ray diffraction. The pore size distribution was determined by mercury penetration. The thoron emanation was measured using an accumulation chamber; the measured thoron emanation coefficients were from 0.34 ± 0.03 to 7.69 ± 0.13 %. Based on the results, the preparation parameters of the thoron source optimised for the calibration procedure have been given. PMID:25920779

  3. Dual channel photoacoustic hygrometer for airborne measurements: background, calibration, laboratory and in-flight inter-comparison tests

    NASA Astrophysics Data System (ADS)

    Tátrai, D.; Bozóki, Z.; Smit, H.; Rolf, C.; Spelten, N.; Krämer, M.; Filges, A.; Gerbig, C.; Gulyás, G.; Szabó, G.

    2014-06-01

    This paper describes a tunable diode laser based dual channel photoacoustic (PA) humidity measuring system called WaSul-Hygro primarily designed for aircraft based environment research. It is calibrated for total pressures and water vapor (WV) volume mixing ratios (VMRs) possible during airborne applications. WV VMR is calculated by using pressure dependent calibration curves and a cubic spline interpolation method. Coverage of the entire atmospheric humidity concentration range which might be encountered during airborne measurements is facilitated by applying an automated sensitivity mode switching algorithm. The calibrated PA system was validated through laboratory and airborne inter-comparisons, which proved that the repeatability, the estimated accuracy and the response time of the system is 0.5 ppmV or 0.5% of the actual reading (whichever value is the greater), 5% of the actual reading within the VMR range of 1-12 000 ppmV and 2 s, respectively. The upper detection limit of the system is about 85 000 ppmV, limited only by condensation of water vapor on the walls of the 318 K heated PA cells and inlet lines. The unique advantage of the presented system is its applicability for simultaneous water vapor and total water volume mixing ratio measurements.

  4. Dual-channel photoacoustic hygrometer for airborne measurements: background, calibration, laboratory and in-flight intercomparison tests

    NASA Astrophysics Data System (ADS)

    Tátrai, D.; Bozóki, Z.; Smit, H.; Rolf, C.; Spelten, N.; Krämer, M.; Filges, A.; Gerbig, C.; Gulyás, G.; Szabó, G.

    2015-01-01

    This paper describes a tunable diode laser-based dual-channel photoacoustic (PA) humidity measuring system primarily designed for aircraft-based environment research. It is calibrated for total pressure and water vapor (WV) volume mixing ratios (VMRs) possible during airborne applications. WV VMR is calculated by using pressure-dependent calibration curves and a cubic spline interpolation method. Coverage of the entire atmospheric humidity concentration range that might be encountered during airborne measurements is facilitated by applying an automated sensitivity mode switching algorithm. The calibrated PA system was validated through laboratory and airborne intercomparisons, which proved that the repeatability, the estimated accuracy and the response time of the system are 0.5 ppmV or 0.5% of the actual reading (whichever value is the greater), 5% of the actual reading within the VMR range of 1-12 000 ppmV and 2 s, respectively. The upper detection limit of the system is theoretically about 85 000 ppmV, limited only by condensation of water vapor on the walls of the 318 K heated PA cells and inlet lines, and was experimentally verified up to 20 000 ppmV. The unique advantage of the presented system is its applicability for simultaneous water vapor and total water volume mixing ratio measurements.

  5. Design, construction, and use of a shipping case for radioactive sources used in the calibration of portal monitors in the radiation portal monitoring project

    SciTech Connect

    Lepel, Elwood A.; Hensley, Walter K.

    2009-12-01

    Pacific Northwest National Laboratory is working with US Customs and Border Protection to assist in the installation of radiation portal monitors. We need to provide radioactive sources – both gamma- and neutron-emitting – to ports of entry where the monitors are being installed. The monitors must be calibrated to verify proper operation and detection sensitivity. We designed a portable source-shipping case using numerical modeling to predict the neutron dose rate at the case’s surface. The shipping case including radioactive sources meets the DOT requirements for “limited quantity.” Over 300 shipments, domestic and international, were made in FY2008 using this type of shipping case.

  6. Calibration Facilities for NIF

    SciTech Connect

    Perry, T.S.

    2000-06-15

    The calibration facilities will be dynamic and will change to meet the needs of experiments. Small sources, such as the Manson Source should be available to everyone at any time. Carrying out experiments at Omega is providing ample opportunity for practice in pre-shot preparation. Hopefully, the needs that are demonstrated in these experiments will assure the development of (or keep in service) facilities at each of the laboratories that will be essential for in-house preparation for experiments at NIF.

  7. A radio telescope for the calibration of radio sources at 32 gigahertz

    NASA Astrophysics Data System (ADS)

    Gatti, M. S.; Stewart, S. R.; Bowen, J. G.; Paulsen, E. B.

    1994-08-01

    A 1.5-m-diameter radio telescope has been designed, developed, and assembled to directly measure the flux density of radio sources in the 32-GHz (Ka-band) frequency band. The main goal of the design and development was to provide a system that could yield the greatest absolute accuracy yet possible with such a system. The accuracy of the measurements have a heritage that is traceable to the National Institute of Standards and Technology. At the present time, the absolute accuracy of flux density measurements provided by this telescope system, during Venus observations at nearly closest approach to Earth, is plus or minus 5 percent, with an associated precision of plus or minus 2 percent. Combining a cooled high-electron mobility transistor low-noise amplifier, twin-beam Dicke switching antenna, and accurate positioning system resulted in a state-of-the-art system at 32 GHz. This article describes the design and performance of the system as it was delivered to the Owens Valley Radio Observatory to support direct calibrations of the strongest radio sources at Ka-band.

  8. A radio telescope for the calibration of radio sources at 32 gigahertz

    NASA Technical Reports Server (NTRS)

    Gatti, M. S.; Stewart, S. R.; Bowen, J. G.; Paulsen, E. B.

    1994-01-01

    A 1.5-m-diameter radio telescope has been designed, developed, and assembled to directly measure the flux density of radio sources in the 32-GHz (Ka-band) frequency band. The main goal of the design and development was to provide a system that could yield the greatest absolute accuracy yet possible with such a system. The accuracy of the measurements have a heritage that is traceable to the National Institute of Standards and Technology. At the present time, the absolute accuracy of flux density measurements provided by this telescope system, during Venus observations at nearly closest approach to Earth, is plus or minus 5 percent, with an associated precision of plus or minus 2 percent. Combining a cooled high-electron mobility transistor low-noise amplifier, twin-beam Dicke switching antenna, and accurate positioning system resulted in a state-of-the-art system at 32 GHz. This article describes the design and performance of the system as it was delivered to the Owens Valley Radio Observatory to support direct calibrations of the strongest radio sources at Ka-band.

  9. Pt/Pd thermocouple resilience over 327 operating hours in an industrial calibration laboratory

    NASA Astrophysics Data System (ADS)

    Elliott, C. J.; Pearce, J. V.; Machin, G.; Ford, T.; Hicks, K.

    2013-09-01

    Two Pt/Pd thermocouples have been manufactured industrially at CCPI-Europe to a robust design optimised by NPL. The first has been exposed to temperatures up to 1000 °C for 93 operating hours and the second exposed to higher temperatures (up to 1300 °C) for 327 operating hours, over the course of a year. No significant drift is observed in the temperature measurement for either Pt/Pd thermocouple, when compared against reference Type R thermocouples. This work demonstrates the long-term stability and reliability of Pt/Pd thermocouples in use within an industrial calibration environment with this optimised, robust design.

  10. Laboratory data on coarse-sediment transport for bedload-sampler calibrations

    USGS Publications Warehouse

    Hubbell, David Wellington; Stevens, H.H., Jr.; Skinner, J.V.; Beverage, J.P.

    1987-01-01

    A unique facility capable of recirculating and continuously measuring the transport rates of sediment particles ranging in size from about 1 to 75 millimeters in diameter was designed and used in an extensive program involving the calibration of bedload samplers. The facility consisted of a 9-footwide by 6-foot-deep by 272-foot-long rectangular channel that incorporated seven automated collection pans and a sedimentreturn system. The collection pans accumulated, weighed, and periodically dumped bedload falling through a slot in the channel floor. Variations of the Helley-Smith bedload sampler, an Arnhem sampler, and two VUV-type samplers were used to obtain transport rates for comparison with rates measured at the bedload slot (trap). Tests were conducted under 20 different hydraulic and sedimentologic conditions (runs) with 3 uniform-size bed materials and a bed-material mixture. Hydraulic and sedimentologic data collected concurrently with the calibration measurements are described and, in part, summarized in tabular and graphic form. Tables indicate the extent of the data, which are available on magnetic media. The information includes sediment-transport rates; particle-size distributions; water discharges, depths, and slopes; longitudinal profiles of streambed-surface elevations; and temporal records of streambed-surface elevations at fixed locations.

  11. Laboratory calibrations of the PP-SESAME instrument on Philae for measuring the cometary surface permittivity

    NASA Astrophysics Data System (ADS)

    Hamelin, M.; Le Gall, A.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.; Laasko, H.; Ciarletti, V.; Seidensticker, K.

    2013-09-01

    The complex permittivity of terrestrial and planetary grounds can be derived from Mutual Impedance (MI) measurements using a four-electrode array [1]; the system is working at a fixed frequency with the electrodes not necessarily in contact with the ground and with a dedicated electronic system. This concept was used to build the Permittivity Probe (PP) as part of the SESAME experiment of the Philae Rosetta cometary lander. However severe constraints due to the payload facilities and to the particular environment lead to the actual design of the instrument. Unfortunately it was not possible to perform calibrations of the full system before lauch and the ground model consists of several parts used by various instruments. Here we report the results of basic calibration tests performed with a model of the Philae Landing Gear built in DLR. These tests involve only the three feet electrodes and a mockup of the the Philae body with very simple and well defined targets for characterizing the instrument. Further measurements on natural targets would be the next step.

  12. Laboratory Testing and Calibration of the Nuclei-Mode Aerosol Size Spectrometer

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.

    1999-01-01

    This grant was awarded to complete testing and calibration of a new instrument, the nuclei-mode aerosol size spectrometer (N-MASS), following its use in the WB-57F Aerosol Measurement (WAM) campaign in early 1998. The N-MASS measures the size distribution of particles in the 4-60 nm diameter range with 1-Hz response at typical free tropospheric conditions. Specific tasks to have been completed under the auspices of this award were: 1) to experimentally determine the instrumental sampling efficiency; 2) to determine the effects of varying temperatures and flows on N-MASS performance; and 3) to calibrate the N-MASS at typical flight conditions as operated in WAM. The work outlined above has been completed, and a journal manuscript based on this work and that describes the performance of the N-MASS is in preparation. Following a brief description of the principles of operation of the instrument, the major findings of this study are described.

  13. Real-time particle monitor calibration factors and PM2.5 emission factors for multiple indoor sources.

    PubMed

    Dacunto, Philip J; Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Repace, James L; Ott, Wayne R; Hildemann, Lynn M

    2013-08-01

    Indoor sources can greatly contribute to personal exposure to particulate matter less than 2.5 μm in diameter (PM2.5). To accurately assess PM2.5 mass emission factors and concentrations, real-time particle monitors must be calibrated for individual sources. Sixty-six experiments were conducted with a common, real-time laser photometer (TSI SidePak™ Model AM510 Personal Aerosol Monitor) and a filter-based PM2.5 gravimetric sampler to quantify the monitor calibration factors (CFs), and to estimate emission factors for common indoor sources including cigarettes, incense, cooking, candles, and fireplaces. Calibration factors for these indoor sources were all significantly less than the factory-set CF of 1.0, ranging from 0.32 (cigarette smoke) to 0.70 (hamburger). Stick incense had a CF of 0.35, while fireplace emissions ranged from 0.44-0.47. Cooking source CFs ranged from 0.41 (fried bacon) to 0.65-0.70 (fried pork chops, salmon, and hamburger). The CFs of combined sources (e.g., cooking and cigarette emissions mixed) were linear combinations of the CFs of the component sources. The highest PM2.5 emission factors per time period were from burned foods and fireplaces (15-16 mg min(-1)), and the lowest from cooking foods such as pizza and ground beef (0.1-0.2 mg min(-1)). PMID:23784066

  14. Pinon Pine Tree Study, Los Alamos National Laboratory: Source document

    SciTech Connect

    P. R. Fresquez; J. D. Huchton; M. A. Mullen; L. Naranjo, Jr.

    2000-01-01

    One of the dominant tree species growing within and around Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis) tree. Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup tot}U, {sup 238}Pu, {sup 239,240}Pu, and {sup 241}Am in soils (0- to 12-in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) concentrations of radionuclides in PPN collected in 1977 to present data, (3) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (4) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of {sup 3}H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 {micro}Sv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.

  15. Neutron Arm Study and Calibration for the GEn Experiment at Thomas Jefferson National Laboratory

    SciTech Connect

    Timothy Ngo

    2007-07-01

    The measurement of the neutron electric form factor, GEn, will allow us to solve indirectly for the quark charge distribution inside of the neutron. With the equipment at Jefferson Lab we have measured GEn at four momentum transfer values of Q**2 at 1.3, 2.4 and 3.4 (GeV/c)**2 using a polarized electron beam and polarized Helium target. The scattered electrons off of the Helium target are detected in the BigBite spectrometer and the recoiling neutrons from the Helium are detected in the Neutron Arm, which is composed of an array of scintillators. The main focus of this thesis will be devoted to the geometry, timing and energy calibrations of the Neutron Arm.

  16. Importance of Temperature Calibration for Sunset Laboratory Carbon Analyzer: NIOSH and IMPROVE Temperature Protocols

    EPA Science Inventory

    The Sunset Laboratory Dual-Optical Carbonaceous Analyzer that simultaneously measures transmission and reflectance signals is widely used in thermal-optical analysis of particulate matter samples. Most often it is used to measure total carbon (TC), organic carbon (OC), and eleme...

  17. Calibration results of the ebit medium-energy flat-field spectrometer using the LBL advanced light source

    SciTech Connect

    Lepson, J K; Beiersdorfer, P; Brown, G V; Chen, H; Gullikson, E M; Schneider, M B; Utter, S B; Wong, K L

    2001-01-17

    The relative instrument response function of a flat-field grating extreme ultraviolet spectrometer was determined using the ALS synchrotron source in the wavelength region 40-200 {angstrom}. Details of the calibration procedure and results are given in the report.

  18. 10 CFR 32.57 - Calibration or reference sources containing americium-241 or radium-226: Requirements for license...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Calibration or reference sources containing americium-241... americium-241 or radium-226: Requirements for license to manufacture or initially transfer. An application... containing americium-241 or radium-226, for distribution to persons generally licensed under § 31.8 of...

  19. 10 CFR 32.57 - Calibration or reference sources containing americium-241 or radium-226: Requirements for license...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Calibration or reference sources containing americium-241... americium-241 or radium-226: Requirements for license to manufacture or initially transfer. An application... containing americium-241 or radium-226, for distribution to persons generally licensed under § 31.8 of...

  20. 10 CFR 32.57 - Calibration or reference sources containing americium-241 or radium-226: Requirements for license...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Calibration or reference sources containing americium-241... americium-241 or radium-226: Requirements for license to manufacture or initially transfer. An application... containing americium-241 or radium-226, for distribution to persons generally licensed under § 31.8 of...

  1. 10 CFR 32.57 - Calibration or reference sources containing americium-241 or radium-226: Requirements for license...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Calibration or reference sources containing americium-241... americium-241 or radium-226: Requirements for license to manufacture or initially transfer. An application... containing americium-241 or radium-226, for distribution to persons generally licensed under § 31.8 of...

  2. 10 CFR 32.57 - Calibration or reference sources containing americium-241 or radium-226: Requirements for license...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Calibration or reference sources containing americium-241... americium-241 or radium-226: Requirements for license to manufacture or initially transfer. An application... containing americium-241 or radium-226, for distribution to persons generally licensed under § 31.8 of...

  3. Metrological tests of a 200 L calibration source for HPGE detector systems for assay of radioactive waste drums.

    PubMed

    Boshkova, T; Mitev, K

    2016-03-01

    In this work we present test procedures, approval criteria and results from two metrological inspections of a certified large volume (152)Eu source (drum about 200L) intended for calibration of HPGe gamma assay systems used for activity measurement of radioactive waste drums. The aim of the inspections was to prove the stability of the calibration source during its working life. The large volume source was designed and produced in 2007. It consists of 448 identical sealed radioactive sources (modules) apportioned in 32 transparent plastic tubes which were placed in a wooden matrix which filled the drum. During the inspections the modules were subjected to tests for verification of their certified characteristics. The results show a perfect compliance with the NIST basic guidelines for the properties of a radioactive certified reference material (CRM) and demonstrate the stability of the large volume CRM-drum after 7 years of operation. PMID:26640236

  4. Global Inter-Laboratory Fecal Source Identification Methods Comparison Study

    EPA Science Inventory

    Source tracking is key to identifying sources of fecal contamination for remediation as well as risk assessment. Previous intra- and inter-lab studies have investigated the performance of human and cow-associated source tracking markers, as well as library-dependent fecal source ...

  5. Sources of systematic error in calibrated BOLD based mapping of baseline oxygen extraction fraction.

    PubMed

    Blockley, Nicholas P; Griffeth, Valerie E M; Stone, Alan J; Hare, Hannah V; Bulte, Daniel P

    2015-11-15

    Recently a new class of calibrated blood oxygen level dependent (BOLD) functional magnetic resonance imaging (MRI) methods were introduced to quantitatively measure the baseline oxygen extraction fraction (OEF). These methods rely on two respiratory challenges and a mathematical model of the resultant changes in the BOLD functional MRI signal to estimate the OEF. However, this mathematical model does not include all of the effects that contribute to the BOLD signal, it relies on several physiological assumptions and it may be affected by intersubject physiological variability. The aim of this study was to investigate these sources of systematic error and their effect on estimating the OEF. This was achieved through simulation using a detailed model of the BOLD signal. Large ranges for intersubject variability in baseline physiological parameters such as haematocrit and cerebral blood volume were considered. Despite this the uncertainty in the relationship between the measured BOLD signals and the OEF was relatively low. Investigations of the physiological assumptions that underlie the mathematical model revealed that OEF measurements are likely to be overestimated if oxygen metabolism changes during hypercapnia or cerebral blood flow changes under hyperoxia. Hypoxic hypoxia was predicted to result in an underestimation of the OEF, whilst anaemic hypoxia was found to have only a minimal effect. PMID:26254114

  6. Dissolved plume attenuation with DNAPL source remediation, aqueous decay and volatilization — Analytical solution, model calibration and prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Parker, Jack C.; Park, Eungyu; Tang, Guoping

    2008-11-01

    A vertically-integrated analytical model for dissolved phase transport is described that considers a time-dependent DNAPL source based on the upscaled dissolution kinetics model of Parker and Park with extensions to consider time-dependent source zone biodecay, partial source mass reduction, and remediation-enhanced source dissolution kinetics. The model also considers spatial variability in aqueous plume decay, which is treated as the sum of aqueous biodecay and volatilization due to diffusive transport and barometric pumping through the unsaturated zone. The model is implemented in Excel/VBA coupled with (1) an inverse solution that utilizes prior information on model parameters and their uncertainty to condition the solution, and (2) an error analysis module that computes parameter covariances and total prediction uncertainty due to regression error and parameter uncertainty. A hypothetical case study is presented to evaluate the feasibility of calibrating the model from limited noisy field data. The results indicate that prediction uncertainty increases significantly over time following calibration, primarily due to propagation of parameter uncertainty. However, differences between the predicted performance of source zone partial mass reduction and the known true performance were reasonably small. Furthermore, a clear difference is observed between the predicted performance for the remedial action scenario versus that for a no-action scenario, which is consistent with the true system behavior. The results suggest that the model formulation can be effectively utilized to assess monitored natural attenuation and source remediation options if careful attention is given to model calibration and prediction uncertainty issues.

  7. Dissolved plume attenuation with DNAPL source remediation, aqueous decay and volatilization--analytical solution, model calibration and prediction uncertainty.

    PubMed

    Parker, Jack C; Park, Eungyu; Tang, Guoping

    2008-11-14

    A vertically-integrated analytical model for dissolved phase transport is described that considers a time-dependent DNAPL source based on the upscaled dissolution kinetics model of Parker and Park with extensions to consider time-dependent source zone biodecay, partial source mass reduction, and remediation-enhanced source dissolution kinetics. The model also considers spatial variability in aqueous plume decay, which is treated as the sum of aqueous biodecay and volatilization due to diffusive transport and barometric pumping through the unsaturated zone. The model is implemented in Excel/VBA coupled with (1) an inverse solution that utilizes prior information on model parameters and their uncertainty to condition the solution, and (2) an error analysis module that computes parameter covariances and total prediction uncertainty due to regression error and parameter uncertainty. A hypothetical case study is presented to evaluate the feasibility of calibrating the model from limited noisy field data. The results indicate that prediction uncertainty increases significantly over time following calibration, primarily due to propagation of parameter uncertainty. However, differences between the predicted performance of source zone partial mass reduction and the known true performance were reasonably small. Furthermore, a clear difference is observed between the predicted performance for the remedial action scenario versus that for a no-action scenario, which is consistent with the true system behavior. The results suggest that the model formulation can be effectively utilized to assess monitored natural attenuation and source remediation options if careful attention is given to model calibration and prediction uncertainty issues. PMID:18502537

  8. Preliminary study for improving the VIIRS DNB low light calibration accuracy with ground based active light source

    NASA Astrophysics Data System (ADS)

    Cao, Changyong; Zong, Yuqing; Bai, Yan; Shao, Xi

    2015-09-01

    There is a growing interest in the science and user community in the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) low light detection capabilities at night for quantitative applications such as airglow, geophysical retrievals under lunar illumination, light power estimation, search and rescue, energy use, urban expansion and other human activities. Given the growing interest in the use of the DNB data, a pressing need arises for improving the calibration stability and absolute accuracy of the DNB at low radiances. Currently the low light calibration accuracy was estimated at a moderate 15%-100% while the long-term stability has yet to be characterized. This study investigates selected existing night light point sources from Suomi NPP DNB observations and evaluates the feasibility of SI traceable nightlight source at radiance levels near 3 nW·cm-2·sr-1, that potentially can be installed at selected sites for VIIRS DNB calibration/validation. The illumination geometry, surrounding environment, as well as atmospheric effects are also discussed. The uncertainties of the ground based light source are estimated. This study will contribute to the understanding of how the Earth's atmosphere and surface variability contribute to the stability of the DNB measured radiances, and how to separate them from instrument calibration stability. It presents the need for SI traceable active light sources to monitor the calibration stability, radiometric and geolocation accuracy, and point spread functions of the DNB. Finally, it is also hoped to address whether or not active light sources can be used for detecting environmental changes, such as aerosols.

  9. Successful remediation of four uranium calibration pits at Technical Area II, Sandia National Laboratories, Albuquerque, New Mexico, USA

    SciTech Connect

    Conway, R.; Wade, M.; Tharp, T.; Copland, J.

    1994-12-31

    The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-L drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.

  10. Laboratory Simulation of Impacts upon Aluminum Foils of the Stardust Spacecraft: Calibration of Dust Particle Size from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Horz, F.; Cole, M. J.; Schwandt, C. S.

    2006-01-01

    Metallic aluminium alloy foils exposed on the forward, comet-facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminium alloy to record hypervelocity impacts as bowl-shaped craters offers an opportunistic substrate for recognition of impacts by particles of a wide potential size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild 2, with a known and constant spacecraft-particle relative velocity and effective surface-perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration programme we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well-documented particle size range from 10 microns to nearly 100 microns. Light gas gun buckshot firings of these particles at approximately 6km s)exp -1) onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild 2, independent of the active impact detector instruments aboard the Stardust spacecraft.

  11. Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography

    PubMed Central

    Azimi, Ehsan; Liu, Bin; Brezinski, Mark E.

    2010-01-01

    For high-speed swept-source optical coherence tomography (SS-OCT), the real-time calibration process to convert the OCT signal to wave number space is highly essential. A novel calibration process∕algorithm using a genetic algorithm and precise interpolation is developed. This algorithm is embedded and validated in a SS-OCT system with 16-kHz A-scan rate. The performance of the new algorithm is evaluated by measuring point spread functions at two distinct locations in the entire imaging range. The data is compared to the same system but embedded with a regular calibration algorithm, which demonstrates about 20% improvement in the axial resolution. The steady improvement at different locations of the range suggests the strong robustness of the algorithm, which will ultimately optimize the operation performance of this SS-OCT system in terms of resolution and dynamic range and improves details in biological tissues. PMID:20210451

  12. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-01

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k = 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k = 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  13. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    SciTech Connect

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-11

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k= 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k= 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  14. Calibration of the Brookhaven National Laboratory delayed gamma neutron activation facility to measure total body calcium.

    PubMed

    Ma, R; Stamatelatos, I E; Yasumura, S

    2000-05-01

    Differences in body size and shape can cause large variances in the in vivo results of neutron activation analysis. To introduce corrections for body size for the delayed gamma neutron activation facility at Brookhaven National Laboratory, "reference man"-sized and "reference woman"-sized phantoms were constructed. Simulation results using the Monte Carlo Neutron and Photon Transport code also provided correction factors for people of different sizes. For individuals with a body mass index (BMI = weight (kg)/height (m)2) between 20 and 30, no correction was required. At BMIs greater than 30, the effects of neutron attenuation were significant and a correction factor of CF = -0.0192 x BMI + 1.5635 can be applied. PMID:10865727

  15. VIEW OF BUILDING 126, LOOKING NORTH. BUILDING 126, THE SOURCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING 126, LOOKING NORTH. BUILDING 126, THE SOURCE CALIBRATION LABORATORY, WAS USED TO EXPOSE AND CALIBRATE RADIATION DETECTION DEVICES, INCLUDING THERMOLUMINESCENT DOSIMETERS, WORN BY EMPLOYEES TO DETECT RADIATION EXPOSURE - Rocky Flats Plant, Source Calibration Laboratory, Between Second & Third Streets & Central & Cedar Avenues, Golden, Jefferson County, CO

  16. Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources

    SciTech Connect

    Fuchs, S.; Roedel, C.; Bierbach, J.; Paz, A. E.; Foerster, E.; Paulus, G. G.; Krebs, M.; Haedrich, S.; Limpert, J.; Kuschel, S.; Wuensche, M.; Hilbert, V.; Zastrau, U.

    2013-02-15

    We report on the absolute sensitivity calibration of an extreme ultraviolet (XUV) spectrometer system that is frequently employed to study emission from short-pulse laser experiments. The XUV spectrometer, consisting of a toroidal mirror and a transmission grating, was characterized at a synchrotron source in respect of the ratio of the detected to the incident photon flux at photon energies ranging from 15.5 eV to 99 eV. The absolute calibration allows the determination of the XUV photon number emitted by laser-based XUV sources, e.g., high-harmonic generation from plasma surfaces or in gaseous media. We have demonstrated high-harmonic generation in gases and plasma surfaces providing 2.3 {mu}W and {mu}J per harmonic using the respective generation mechanisms.

  17. [Laser-based radiometric calibration].

    PubMed

    Li, Zhi-gang; Zheng, Yu-quan

    2014-12-01

    Increasingly higher demands are put forward to spectral radiometric calibration accuracy and the development of new tunable laser based spectral radiometric calibration technology is promoted, along with the development of studies of terrestrial remote sensing, aeronautical and astronautical remote sensing, plasma physics, quantitative spectroscopy, etc. Internationally a number of national metrology scientific research institutes have built tunable laser based spectral radiometric calibration facilities in succession, which are traceable to cryogenic radiometers and have low uncertainties for spectral responsivity calibration and characterization of detectors and remote sensing instruments in the UK, the USA, Germany, etc. Among them, the facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCCUS) at the National Institute of Standards and Technology (NIST) in the USA and the Tunable Lasers in Photometry (TULIP) facility at the Physikalisch-Technische Bundesanstalt (PTB) in Germany have more representatives. Compared with lamp-monochromator systems, laser based spectral radiometric calibrations have many advantages, such as narrow spectral bandwidth, high wavelength accuracy, low calibration uncertainty and so on for radiometric calibration applications. In this paper, the development of laser-based spectral radiometric calibration and structures and performances of laser-based radiometric calibration facilities represented by the National Physical Laboratory (NPL) in the UK, NIST and PTB are presented, technical advantages of laser-based spectral radiometric calibration are analyzed, and applications of this technology are further discussed. Laser-based spectral radiometric calibration facilities can be widely used in important system-level radiometric calibration measurements with high accuracy, including radiance temperature, radiance and irradiance calibrations for space remote sensing instruments, and promote the

  18. CONSTRUCTION OF A CALIBRATED PROBABILISTIC CLASSIFICATION CATALOG: APPLICATION TO 50k VARIABLE SOURCES IN THE ALL-SKY AUTOMATED SURVEY

    SciTech Connect

    Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Brink, Henrik; Crellin-Quick, Arien; Butler, Nathaniel R.

    2012-12-15

    With growing data volumes from synoptic surveys, astronomers necessarily must become more abstracted from the discovery and introspection processes. Given the scarcity of follow-up resources, there is a particularly sharp onus on the frameworks that replace these human roles to provide accurate and well-calibrated probabilistic classification catalogs. Such catalogs inform the subsequent follow-up, allowing consumers to optimize the selection of specific sources for further study and permitting rigorous treatment of classification purities and efficiencies for population studies. Here, we describe a process to produce a probabilistic classification catalog of variability with machine learning from a multi-epoch photometric survey. In addition to producing accurate classifications, we show how to estimate calibrated class probabilities and motivate the importance of probability calibration. We also introduce a methodology for feature-based anomaly detection, which allows discovery of objects in the survey that do not fit within the predefined class taxonomy. Finally, we apply these methods to sources observed by the All-Sky Automated Survey (ASAS), and release the Machine-learned ASAS Classification Catalog (MACC), a 28 class probabilistic classification catalog of 50,124 ASAS sources in the ASAS Catalog of Variable Stars. We estimate that MACC achieves a sub-20% classification error rate and demonstrate that the class posterior probabilities are reasonably calibrated. MACC classifications compare favorably to the classifications of several previous domain-specific ASAS papers and to the ASAS Catalog of Variable Stars, which had classified only 24% of those sources into one of 12 science classes.

  19. Construction of a Calibrated Probabilistic Classification Catalog: Application to 50k Variable Sources in the All-Sky Automated Survey

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; Brink, Henrik; Crellin-Quick, Arien

    2012-12-01

    With growing data volumes from synoptic surveys, astronomers necessarily must become more abstracted from the discovery and introspection processes. Given the scarcity of follow-up resources, there is a particularly sharp onus on the frameworks that replace these human roles to provide accurate and well-calibrated probabilistic classification catalogs. Such catalogs inform the subsequent follow-up, allowing consumers to optimize the selection of specific sources for further study and permitting rigorous treatment of classification purities and efficiencies for population studies. Here, we describe a process to produce a probabilistic classification catalog of variability with machine learning from a multi-epoch photometric survey. In addition to producing accurate classifications, we show how to estimate calibrated class probabilities and motivate the importance of probability calibration. We also introduce a methodology for feature-based anomaly detection, which allows discovery of objects in the survey that do not fit within the predefined class taxonomy. Finally, we apply these methods to sources observed by the All-Sky Automated Survey (ASAS), and release the Machine-learned ASAS Classification Catalog (MACC), a 28 class probabilistic classification catalog of 50,124 ASAS sources in the ASAS Catalog of Variable Stars. We estimate that MACC achieves a sub-20% classification error rate and demonstrate that the class posterior probabilities are reasonably calibrated. MACC classifications compare favorably to the classifications of several previous domain-specific ASAS papers and to the ASAS Catalog of Variable Stars, which had classified only 24% of those sources into one of 12 science classes.

  20. Calibration of the E Si detector in a DE-E telescope with a ^212Pb pin source

    NASA Astrophysics Data System (ADS)

    Chan, Ka Pang

    2012-10-01

    In nuclear physics experiments, telescopes composed of two or more large area silicon strip detectors are used to identify charged particles. To use the energy loss method for particle identification, a thin (˜0.065mm) silicon detector (DE) is mounted in front of a thicker E detector (˜1.5 mm). The DE Si detector can be calibrated with 8.785, 6.778, 6.288, 5.685 and 5.423 MeV alpha particles emitted from a ^228Th source. However, this method cannot be used to calibrate the E detector as the alpha particles cannot penetrate the front DE detector. We have developed a method to calibrate the E detector by inserting a small irradiated dowel pin between the two Si detectors. The pin source is electroplated with ^212Pb nuclei which emit alpha particles with 8.785 MeV, 6.090 and 6.051 MeV. Insertion of the dowel pin is designed and guided so that the head of the pin lies near the center of the detector at a distance of 2.72 mm away from the surface of the E detector. In addition to providing two strong alpha peaks for calibrations, the close distance and high pixilation of the E detector allows accurate determination of the front dead layer of the E Si strip detector. This technique has been implemented successfully in calibrating the E Si detectors in the NSCL High Resolution Array (HiRA) consisting of 20 closely pack DE-E-CsI telescopes.

  1. Laboratory calibration of the seismo-acoustic response of CO2 saturated sandstones

    NASA Astrophysics Data System (ADS)

    Siggins, A. F.; Lwin, M.; Wisman, P.

    2009-04-01

    Geological sequestration can be regarded as one of the promising mitigation strategies against the negative effects of atmospheric carbon dioxide on global climate change. Injection of CO2into depleted natural gas reservoirs in particular, sandstone formations at depth with suitable porosity and seals, seems to be a promising scenario for on-land storage. In fact, a demonstration project is currently underway in the Otway Basin in South Eastern Australia under the auspices of the Australian CO2CRC. One of the most useful geophysical remote sensing tools for monitoring sub surface CO2 injection is seismic imaging. Interpretation of seismic data for the quantitative measurement of the distribution and saturations of CO2 in the subsurface requires a knowledge of the effects of CO2as a pore fluid on the seismo-acoustic response of the reservoir rocks. This report describes some recent experiments that we have conducted to investigate this aspect under controlled laboratory conditions at pressures representative of in-situ reservoir conditions. Prior to the availability of core from the actual Otway injection site, two synthetic sandstones were tested ultrasonically in a computer controlled triaxial testing rig under a range of confining pressures and pore pressures representative of in-situ reservoir pressures. These sandstones comprised; (1) a synthetic material with calcite intergranular cement (CIPS) and (2), a synthetic sandstone with silica intergranular cement. Porosities of the sandstones were respectively, 32%,and 33%. Initial testing was carried on the cores at room temperature-dried condition with confining pressures up to 65MPa in steps of 5 MPa. Cores were then flooded with CO2, initially at 6MPa, 22 degrees C, then with liquid phase CO2at pressures from 7MPa to 17 MPa in steps of 5 MPa. Confining pressures varied from 10 MPa to 65 MPa. A limited number of experiments were also conducted in an additional rig at 50oC with supercritical phase CO2. Ultrasonic

  2. Developing Biofuel in the Teaching Laboratory: Ethanol from Various Sources

    ERIC Educational Resources Information Center

    Epstein, Jessica L.; Vieira, Matthew; Aryal, Binod; Vera, Nicolas; Solis, Melissa

    2010-01-01

    In this series of experiments, we mimic a small-scale ethanol plant. Students discover that the practical aspects of ethanol production are determined by the quantity of biomass produced per unit land, rather than the volume of ethanol produced per unit of biomass. These experiments explore the production of ethanol from different sources: fruits,…

  3. Filters and calibration sources for the soft x-ray spectrometer (SXS) instrument on ASTRO-H

    NASA Astrophysics Data System (ADS)

    de Vries, C. P.; den Herder, J. W.; Costantini, E.; Aarts, H.; Lowes, P.; Kaastra, J. S.; Kelley, R.; Gendreau, K.; Arzoumanian, Z.; Koenecke, R.; Haas, D.; Paltani, S.; Mitsuda, K.; Yamasaki, N. Y.

    2010-07-01

    The SXS instrument is the Soft X-ray micro-calorimeter Spectrometer planned for the Japanese ASTRO-H satellite, scheduled to be launched in 2014. In this paper, the trade off and modelling for the X-ray absorption and optical blocking filters will be described. The X-ray absorption filter will optimize the efficiency for high spectral resolution observations for bright sources at higher energies (notably around the Fe-K line at 6.4 KeV), given the characteristics of the instrument while the optical blocking filter allows X-ray observations of optically bright sources. For this mission a novel type of on-off-switchable X-ray calibration source, using light sensitive photo-cathodes, is being developed, which will be used for gain calibration and contamination monitoring. These sources will be used by both the SXS and SXI (Soft X-ray Imager) instruments and have the capability to be pulsed at millisecond intervals. Details of these sources will also be discussed.

  4. The Los Alamos National Laboratory source geometry experiment

    SciTech Connect

    Stump, B.W.; Pearson, D.C.; Edwards, C.L.; Baker, D.F.

    1995-09-01

    The Source Geometry Experiment was successfully conducted over the time period 17 April to 7 May 95. Recording in the mine was conducted 24 April to 4 May 95. Five single sources were instrumented that included four cylindrical charges at different burdens (distance from the free face) and a pseudo-spherical charge. Nine production shots conducted during the two week visit to the mine were also recorded. Included in these production shots were a number of explosions designed to primarily bulk (no cast) the overburden and a number which cast material into the mine pit. Instrumentation was divided into six primary types: (1) Near-source accelerometers were deployed at distances of approximately 20 to 300 m [14, three-component 25 g/volt accelerometers and 16, three-component 1 g/volt accelerometers]; (2) Linear array of velocity gauges to quantify wave propagation effects [4-11 three component strong motion velocity gauges]; (3)Far-field velocity gages deployed in an azimuthal array around the mine at ranges from 500 to 2500 m [8, three component velocity gauges]; (4) High speed film and multiple camera video designed to quantify the two and three dimensional affects around the explosions [2 high speed cameras and 3 Hi-8 video cameras]; (5) Velocity of detonation and detonation time measurements of selected explosions [2 VODR systems]; and (6) Pre and post shot laser survey. Any one shot had as many as 154 channels of data. Although the complete data set is still being assembled, quality checked and analyzed, it appears that nearly 2,000 channels of data were successfully recovered during the experiment. Preliminary analysis of the data illustrates the: (1) Significant spall accompanied both the cylindrical and spherical single sources; (2) Similarity of waveforms from the cylindrical and spherical single sources; (3) Strong variations in the body and surface wave generation from the nine production shot.

  5. 10 CFR 70.19 - General license for calibration or reference sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... authorizes him to receive, possess, use and transfer byproduct material, source material, or special nuclear... Commission that authorizes it to receive, possess, use, or transfer byproduct material, source material, or... plutonium in such sources; (2) Shall not receive, possess, use or transfer such source unless the source,...

  6. 10 CFR 70.19 - General license for calibration or reference sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... authorizes him to receive, possess, use and transfer byproduct material, source material, or special nuclear... Commission that authorizes it to receive, possess, use, or transfer byproduct material, source material, or... plutonium in such sources; (2) Shall not receive, possess, use or transfer such source unless the source,...

  7. 10 CFR 70.19 - General license for calibration or reference sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... authorizes him to receive, possess, use and transfer byproduct material, source material, or special nuclear... Commission that authorizes it to receive, possess, use, or transfer byproduct material, source material, or... plutonium in such sources; (2) Shall not receive, possess, use or transfer such source unless the source,...

  8. PandASoft: Open Source Instructional Laboratory Administration Software

    NASA Astrophysics Data System (ADS)

    Gay, P. L.; Braasch, P.; Synkova, Y. N.

    2004-12-01

    PandASoft (Physics and Astronomy Software) is software for organizing and archiving a department's teaching resources and materials. An easy to use, secure interface allows faculty and staff to explore equipment inventories, see what laboratory experiments are available, find handouts, and track what has been used in different classes in the past. Divided into five sections: classes, equipment, laboratories, links, and media, its database cross links materials, allowing users to see what labs are used with which classes, what media and equipment are used with which labs, or simply what equipment is lurking in which room. Written in PHP and MySQL, this software can be installed on any UNIX / Linux platform, including Macintosh OS X. It is designed to allow users to easily customize the headers, footers and colors to blend with existing sites - no programming experience required. While initial data input is labor intensive, the system will save time later by allowing users to quickly answer questions related to what is in inventory, where it is located, how many are in stock, and where online they can learn more. It will also provide a central location for storing PDFs of handouts, and links to applets and cool sites at other universities. PandASoft comes with over 100 links to online resources pre-installed. We would like to thank Dr. Wolfgang Rueckner and the Harvard University Science Center for providing computers and resources for this project.

  9. A derivative standard for polarimeter calibration

    SciTech Connect

    Mulhollan, G.; Clendenin, J.; Saez, P.

    1996-10-01

    A long-standing problem in polarized electron physics is the lack of a traceable standard for calibrating electron spin polarimeters. While several polarimeters are absolutely calibrated to better than 2%, the typical instrument has an inherent accuracy no better than 10%. This variability among polarimeters makes it difficult to compare advances in polarized electron sources between laboratories. The authors have undertaken an effort to establish 100 nm thick molecular beam epitaxy grown GaAs(110) as a material which may be used as a derivative standard for calibrating systems possessing a solid state polarized electron source. The near-bandgap spin polarization of photoelectrons emitted from this material has been characterized for a variety of conditions and several laboratories which possess well calibrated polarimeters have measured the photoelectron polarization of cathodes cut from a common wafer. Despite instrumentation differences, the spread in the measurements is sufficiently small that this material may be used as a derivative calibration standard.

  10. Instrument study of the Lunar Dust eXplorer (LDX) for a lunar lander mission II: Laboratory model calibration

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Strack, Heiko; Bugiel, Sebastian; Wu, Yiyong; Srama, Ralf

    2015-10-01

    A dust trajectory detector placed on the lunar surface is exposed to extend people's knowledge on the dust environment above the lunar surface. The new design of Lunar Dust eXplorer (LDX) is well suited for lunar or asteroid landers with a broad range of particle charges (0.1-10 fC), speeds (few m s-1 to few km s-1) and sizes (0.1-10 μ m). The calibration of dust trajectory detector is important for the detector development. We do present experimental results to characterize the accuracy of the newly developed LDX laboratory model. Micron sized iron particles were accelerated to speed between 0.5 and 20 km s-1 with primary charges larger than 1 fC. The achieved accuracies of the detector are ± 5 % and ± 7 % for particle charge and speed, respectively. Dust trajectories can be determined with measurement accuracy better than ± 2°. A dust sensor of this type is suited for the exploration of the surface of small bodies without an atmosphere like the Earth's moon or asteroids in future, and the minisatellites are also suitable carriers for the study of interplanetary dust and manned debris on low Earth orbits.

  11. Theoretic Studies of Full Constraints on a Star Tracker's Influential Error Sources for In-orbit Calibration

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Cai Hao, Yun; Wang, Li; Long, Ye

    2016-03-01

    To collect star transits data qualified for in-orbit calibration, this study derives the full error constraints to limit star tracker's influential error sources and computes their error boundaries from a theoretical perspective. The full constraints, including not only the minimum variance estimation of position but also the error bound prediction of scale and intensity of Gaussian-shaped starspots, are studied based on the Cramér-Rao Lower Bound (CRLB) theorem. By imposing these constraints on motion, drift in focal length, and other factors, their boundaries could be determined before launch. Therefore, the in-orbit correction accuracy is expected to be close to CRLB through suitable implementation of these constraints. The correctness of the theoretical position error of motion is demonstrated by the data-fitting procedure against test results of star tracker on dynamic performance. The simulation result shows that the drift in focal length can generate an error with the same magnitude as detector noise and thus might be the dominant error source when star tracker is working under stationary circumstance. Using the accuracy performance of some typical star trackers, this study shows that the CRLB constraint may be very effective to estimate the overall position error of a starspot or one axis, valuable data that can be used for online calibration. The overall position uncertainty analysis shows that a weighted method can be employed for calibration, a process where star data can be given a weight in inverse proportion to the CRLB value.

  12. ENHANCED BIOREMEDIATION UTILIZING HYDROGEN PEROXIDE AS A SUPPLEMENTAL SOURCE OF OXYGEN: A LABORATORY AND FIELD STUDY

    EPA Science Inventory

    Laboratory and field scale studies were conducted to investigate the feasibility of using hydrogen peroxide as a supplemental source of oxygen for bioremediation of an aviation gasoline fuel spill. Field samples of aviation gasoline contaminated aquifer material were artificially...

  13. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    USGS Publications Warehouse

    Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A.; DeFlores, L.; Delapp, D.; Dyar, M.D.; Fabre, C.; Gasnault, O.; Lanza, N.; Mazoyer, J.; Melikechi, N.; Meslin, P.-Y.; Newsom, H.; Ollila, A.; Perez, R.; Tokar, R.; Vaniman, D.

    2013-01-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  14. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R. B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B. L.; Cousin, A.; Deflores, L.; Delapp, D.; Dyar, M. D.; Fabre, C.; Gasnault, O.; Lanza, N.; Mazoyer, J.; Melikechi, N.; Meslin, P.-Y.; Newsom, H.; Ollila, A.; Perez, R.; Tokar, R. L.; Vaniman, D.

    2013-04-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350-550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  15. WE-D-9A-06: Open Source Monitor Calibration and Quality Control Software for Enterprise Display Management

    SciTech Connect

    Bevins, N; Vanderhoek, M; Lang, S; Flynn, M

    2014-06-15

    Purpose: Medical display monitor calibration and quality control present challenges to medical physicists. The purpose of this work is to demonstrate and share experiences with an open source package that allows for both initial monitor setup and routine performance evaluation. Methods: A software package, pacsDisplay, has been developed over the last decade to aid in the calibration of all monitors within the radiology group in our health system. The software is used to calibrate monitors to follow the DICOM Grayscale Standard Display Function (GSDF) via lookup tables installed on the workstation. Additional functionality facilitates periodic evaluations of both primary and secondary medical monitors to ensure satisfactory performance. This software is installed on all radiology workstations, and can also be run as a stand-alone tool from a USB disk. Recently, a database has been developed to store and centralize the monitor performance data and to provide long-term trends for compliance with internal standards and various accrediting organizations. Results: Implementation and utilization of pacsDisplay has resulted in improved monitor performance across the health system. Monitor testing is now performed at regular intervals and the software is being used across multiple imaging modalities. Monitor performance characteristics such as maximum and minimum luminance, ambient luminance and illuminance, color tracking, and GSDF conformity are loaded into a centralized database for system performance comparisons. Compliance reports for organizations such as MQSA, ACR, and TJC are generated automatically and stored in the same database. Conclusion: An open source software solution has simplified and improved the standardization of displays within our health system. This work serves as an example method for calibrating and testing monitors within an enterprise health system.

  16. Laboratory Reproduction of Auroral Magnetospheric Radio Wave Sources

    NASA Astrophysics Data System (ADS)

    Ronald, K.; Speirs, D. C.; McConville, S. L.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Bingham, R.; Robertson, C. W.; Whyte, C. G.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.; He, W.

    2008-10-01

    Auroral Kilometric Radiation, AKR, occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emissions and radiation is emitted in the X-mode. In the laboratory a 75-85kV electron beam of 5-40A was magnetically compressed by a system of solenoids. Results are presented for an electron beam gyrating at cyclotron frequencies of 4.42GHz and 11.7GHz resonating with near cut-off TE01 and TE03 modes respectively. Measurements of the electron transport combined with numerical simulations demonstrated that a horseshoe distribution function was formed in electron velocity space. Analysis of the experimental measurements allowed the inference of the 1D number density as a function of the electron beam pitch angle. The total power emitted experimentally was ~19-35 kW with a maximum RF emission efficiency of ~2%. These results were compared to those obtained numerically using a 2D PiC code KARAT with a maximum efficiency of 2% predicted for the same mode and frequency, consistent with astrophysical and theoretical results.

  17. Laboratory Reproduction of Auroral Magnetospheric Radio Wave Sources

    SciTech Connect

    Ronald, K.; Speirs, D. C.; McConville, S. L.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Bingham, R.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.

    2008-10-15

    Auroral Kilometric Radiation, AKR, occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emissions and radiation is emitted in the X-mode. In the laboratory a 75-85kV electron beam of 5-40A was magnetically compressed by a system of solenoids. Results are presented for an electron beam gyrating at cyclotron frequencies of 4.42GHz and 11.7GHz resonating with near cut-off TE01 and TE03 modes respectively. Measurements of the electron transport combined with numerical simulations demonstrated that a horseshoe distribution function was formed in electron velocity space. Analysis of the experimental measurements allowed the inference of the 1D number density as a function of the electron beam pitch angle. The total power emitted experimentally was {approx}19-35 kW with a maximum RF emission efficiency of {approx}2%. These results were compared to those obtained numerically using a 2D PiC code KARAT with a maximum efficiency of 2% predicted for the same mode and frequency, consistent with astrophysical and theoretical results.

  18. Francium sources at Laboratori Nazionali di Legnaro: Design and performance

    SciTech Connect

    Stancari, G.; Veronesi, S.; Corradi, L.; Atutov, S.N.; Calabrese, R.; Dainelli, A.; Mariotti, E.; Moi, L.; Sanguinetti, S.; Tomassetti, L.

    2006-03-15

    A facility for the production of radioactive francium is operating at the laboratories of the Istituto Nazionale di Fisica Nucleare (INFN) in Legnaro, Italy. The goal is to collect a cold sample of radioactive atoms in a magneto-optical trap for studies in atomic, nuclear, and particle physics. Production of francium is achieved via the fusion-evaporation reaction {sup 197}Au({sup 18}O,kn){sup 215-k}Fr generated by a {approx}100-MeV {sup 18}O{sup 6+} beam on a thick gold target. The production target is heated to {approx}1200 K and kept at a potential of +3 kV to enhance Fr diffusion and surface desorption. Average production rates are 0.7x10{sup 6} ions/s for {sup 210}Fr with a primary beam flux of 10{sup 12} particles/s, with peaks of 2x10{sup 6} ions/s. Details are given on the design and construction of the production targets and on the measurements that characterize their performance.

  19. Calibration services for medical applications of radiation

    SciTech Connect

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.

  20. Herschel celestial calibration sources. Four large main-belt asteroids as prime flux calibrators for the far-IR/sub-mm range

    NASA Astrophysics Data System (ADS)

    Müller, Thomas; Balog, Zoltán; Nielbock, Markus; Lim, Tanya; Teyssier, David; Olberg, Michael; Klaas, Ulrich; Linz, Hendrik; Altieri, Bruno; Pearson, Chris; Bendo, George; Vilenius, Esa

    2014-07-01

    Celestial standards play a major role in observational astrophysics. They are needed to characterise the performance of instruments and are paramount for photometric calibration. During the Herschel Calibration Asteroid Preparatory Programme approximately 50 asteroids have been established as far-IR/sub-mm/mm calibrators for Herschel. The selected asteroids fill the flux gap between the sub-mm/mm calibrators Mars, Uranus and Neptune, and the mid-IR bright calibration stars. All three Herschel instruments observed asteroids for various calibration purposes, including pointing tests, absolute flux calibration, relative spectral response function, observing mode validation, and cross-calibration aspects. Here we present newly established models for the four large and well characterized main-belt asteroids (1) Ceres, (2) Pallas, (4) Vesta, and (21) Lutetia which can be considered as new prime flux calibrators. The relevant object-specific properties (size, shape, spin-properties, albedo, thermal properties) are well established. The seasonal (distance to Sun, distance to observer, phase angle, aspect angle) and daily variations (rotation) are included in a new thermophysical model setup for these targets. The thermophysical model predictions agree within 5 % with the available (and independently calibrated) Herschel measurements. The four objects cover the flux regime from just below 1,000 Jy (Ceres at mid-IR N-/Q-band) down to fluxes below 0.1 Jy (Lutetia at the longest wavelengths). Based on the comparison with PACS, SPIRE and HIFI measurements and pre-Herschel experience, the validity of these new prime calibrators ranges from mid-infrared to about 700 μm, connecting nicely the absolute stellar reference system in the mid-IR with the planet-based calibration at sub-mm/mm wavelengths.

  1. Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter

    SciTech Connect

    Choi, Wonshik; Lee, Moonjoo; Lee, Ye-Ryoung; Park, Changsoon; Lee, Jai-Hyung; An, Kyungwon; Fang-Yen, C.; Dasari, R. R.; Feld, M. S.

    2005-08-15

    A novel high-throughput second-order correlation measurement system is developed that records and makes use of all the arrival times of photons detected at both start and stop detectors. This system is suitable, particularly for a light source having a high photon flux and a long coherence time, since it is more efficient than conventional methods by an amount equal to the product of the count rate and the correlation time of the light source. We have used this system in carefully investigating the dead time effects of detectors and photon counters on the second-order correlation function in the two-detector configuration. For a nonstationary light source, a distortion of the original signal was observed at high photon flux. A systematic way of calibrating the second-order correlation function has been devised by introducing the concept of an effective dead time of the entire measurement system.

  2. Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry

    USGS Publications Warehouse

    Johnson, J. R.; Sohl-Dickstein, J.; Grundy, W.M.; Arvidson, R. E.; Bell, J.F., III; Christensen, P.R.; Graff, T.; Guinness, E.A.; Kinch, K.; Morris, R.; Shepard, M.K.

    2006-01-01

    Laboratory visible/near-infrared multispectral observations of Mars Exploration Rover Pancam calibration target materials coated with different thicknesses of Mars spectral analog dust were acquired under variable illumination geometries using the Bloomsburg University Goniometer. The data were fit with a two-layer radiative transfer model that combines a Hapke formulation for the dust with measured values of the substrate interpolated using a He-Torrance approach. We first determined the single-scattering albedo, phase function, opposition effect width, and amplitude for the dust using the entire data set (six coating thicknesses, three substrates, four wavelengths, and phase angles 3??-117??). The dust exhibited single-scattering albedo values similar to other Mars analog soils and to Mars Pathfinder dust and a dominantly forward scattering behavior whose scattering lobe became narrower at longer wavelengths. Opacity values for each dust thickness corresponded well to those predicted from the particles sizes of the Mars analog dust. We then restricted the number of substrates, dust thicknesses, and incidence angles input to the model. The results suggest that the dust properties are best characterized when using substrates whose reflectances are brighter and darker than those of the deposited dust and data that span a wide range of dust thicknesses. The model also determined the dust photometric properties relatively well despite limitations placed on the range of incidence angles. The model presented here will help determine the photometric properties of dust deposited on the MER rovers and to track the multiple episodes of dust deposition and erosion that have occurred at both landing sites. Copyright 2006 by the American Geophysical Union.

  3. 226Ra as a standard source for efficiency calibration of Ge(Li) detectors

    NASA Astrophysics Data System (ADS)

    Farouk, M. A.; Al-Soraya, A. M.

    1982-09-01

    The relative intensities of gamma-rays resulting from the decay of 226Ra in equilibrium with its short-lived daughters have been measured using two different high resolution Ge(Li) detectors. The accuracy of the measurements does not exceed 2.5%. The most intense components of gamma-rays from thin 226Ra are recommended for use as a calibration standard Ge(Li) detectors in the energy range from 186 keV to 3.050 MeV.

  4. Xenon N4,500 Auger spectrum - a useful calibration source

    SciTech Connect

    Carroll, T.X.; Bozek, J.D.; Kukk, E.; Myrseth, V.; Saethre, L.J.; Thomas, T.D.; Wiesner, Karoline

    2002-02-06

    In the xenon N4,5OO Auger spectrum there are 19 prominent lines ranging from 8 to 36 eV that provide a convenient set of standards for calibrating electron spectrometers. Combining optical data with recent measurements of this spectrum gives energies for these lines that are absolutely accurate to 11 meV. For most lines the relative accuracy is better than 1 meV; for a few it is about 3 meV. The spin-orbit splitting of the xenon 4d lines is measured to be 1979.0 +- 0.5meV.

  5. UV and VUV calibration capabilities at the Metrology Light Source for solar and atmospheric research

    NASA Astrophysics Data System (ADS)

    Klein, R.; Gottwald, A.; Kolbe, M.; Richter, M.; Scholze, F.; Thornagel, R.; Ulm, G.

    2013-05-01

    The Physikalisch-Technische Bundesanstalt (PTB), Germany's national metrology institute, is responsible for the realization and dissemination of the legal units in Germany. Within this mission, PTB has been using synchrotron radiation for the realization of the radiometric units in the spectral range from the UV to the X-ray region for more than 25 years. Prominent examples for calibration work using synchrotron radiation performed by PTB within the framework of solar or atmospheric research refer, e.g., to the SUMER and CDS spectrometers of the SOHO mission, the LYRA mission, or the SOL-ACES and the SOLSPEC instruments on ISS.

  6. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  7. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A description of the sensor, ground data processing facility, laboratory calibration, and first results

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1987-01-01

    The papers in this document were presented at the Imaging Spectroscopy 2 Conference of the 31st International Symposium on Optical and Optoelectronic Applied Science and Engineering, in San Diego, California, on 20 and 21 August 1987. They describe the design and performance of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and its subsystems, the ground data processing facility, laboratory calibration, and first results.

  8. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri; Hlongwane, Miranda; Heitmann, Uwe; Florek, Stefan

    2012-05-01

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 μg·L- 1 using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed.

  9. Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources.

    PubMed

    Elder, A D; Frank, J H; Swartling, J; Dai, X; Kaminski, C F

    2006-11-01

    High brightness light emitting diodes are an inexpensive and versatile light source for wide-field frequency-domain fluorescence lifetime imaging microscopy. In this paper a full calibration of an LED based fluorescence lifetime imaging microscopy system is presented for the first time. A radio-frequency generator was used for simultaneous modulation of light emitting diode (LED) intensity and the gain of an intensified charge coupled device (CCD) camera. A homodyne detection scheme was employed to measure the demodulation and phase shift of the emitted fluorescence, from which phase and modulation lifetimes were determined at each image pixel. The system was characterized both in terms of its sensitivity to measure short lifetimes (500 ps to 4 ns), and its capability to distinguish image features with small lifetime differences. Calibration measurements were performed in quenched solutions containing Rhodamine 6G dye and the results compared to several independent measurements performed with other measurement methodologies, including time correlated single photon counting, time gated detection, and acousto optical modulator (AOM) based modulation of excitation sources. Results are presented from measurements and simulations. The effects of limited signal-to-noise ratios, baseline drifts and calibration errors are discussed in detail. The implications of limited modulation bandwidth of high brightness, large area LED devices ( approximately 40 MHz for devices used here) are presented. The results show that phase lifetime measurements are robust down to sub ns levels, whereas modulation lifetimes are prone to errors even at large signal-to-noise ratios. Strategies for optimizing measurement fidelity are discussed. Application of the fluorescence lifetime imaging microscopy system is illustrated with examples from studies of molecular mixing in microfluidic devices and targeted drug delivery research. PMID:17204064

  10. Comparison of Continuous-Wave CO2 Lidar Calibration by use of Earth-Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1998-01-01

    Backscatter of several Earth surfaces was characterized in the laboratory as a function of incidence angle with a focused continuous-wave 9.1 micro meter CO2 Doppler lidar for use as possible calibration targets. Some targets showed negligible angular dependence, while others showed a slight increase with decreasing angle. The Earth-surface signal measured over the complex Californian terrain during a 1995 NASA airborne mission compared well with laboratory data. Distributions of the Earth's surface signal shows that the lidar efficiency can be estimated with a fair degree of accuracy, preferably with uniform Earth-surface targets during flight for airborne or space-based lidar.

  11. Water vapor as an error source in microwave geodetic systems: Background and survey of calibration techniques. [very long base interferometry

    NASA Technical Reports Server (NTRS)

    Claflin, E. S.; Resch, G. M.

    1980-01-01

    Water vapor as an error source in radio interferometry systems is briefly examined. At microwave frequencies, the delay imposed by tropospheric water vapor becomes a limiting error source for high accuracy geodetic systems. The mapping of tropospheric induced errors into 'solved-for' parameters depends upon baseline length and observing strategy. Simulation analysis (and experience) indicates that in some cases, errors in estimating tropospheric delay can be magnified in their effect on baseline components. The various techniques by which tropospheric water can be estimated or measured are surveyed with particular consideration to their possible use as a calibration technique in support to very long baseline interferometry experiments. The method of remote sensing using a microwave radiometer seems to be the most effective way to provide an accurate estimate of water vapor delay.

  12. 10 CFR 35.65 - Authorization for calibration, transmission, and reference sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Sealed sources, not exceeding 1.11 GBq (30 mCi) each, manufactured and distributed by a person licensed... exceeding 1.11 GBq (30 mCi) each, redistributed by a licensee authorized to redistribute the sealed sources... longer than 120 days in individual amounts not to exceed 0.56 GBq (15 mCi). (d) Any byproduct...

  13. Using cross correlations to calibrate lensing source redshift distributions: Improving cosmological constraints from upcoming weak lensing surveys

    SciTech Connect

    De Putter, Roland; Doré, Olivier; Das, Sudeep

    2014-01-10

    Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias and scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).

  14. Practical biosafety in the tuberculosis laboratory: containment at the source is what truly counts.

    PubMed

    van Soolingen, D; Wisselink, H J; Lumb, R; Anthony, R; van der Zanden, A; Gilpin, C

    2014-08-01

    In industrialised countries, sufficient resources for establishing and maintaining fully equipped biosafety level 3 (BSL-3) laboratories according to international standards are generally available. BSL-3 laboratories are designed to provide several layers of containment to protect the laboratory worker as well as the outside environment and community from risk of exposure in case of local contamination. However, such facilities are scarce in high-burden settings, primarily due to the high financial burden and complexity of the initial construction and/or regular maintenance. Measures to prevent unintended exposure to Mycobacterium tuberculosis during laboratory manipulation of specimens and cultures is the first, and by far the most important, aspect of containment. This paper focuses on the need for risk containment at source. Assuming that in many settings the establishment of BSL-3 laboratories with all the required features is not achievable, this paper also discusses the minimum requirements necessary to mitigate risks associated with particular laboratory procedures. The term 'TB containment laboratory' is used throughout this paper to describe the minimum requirements for a laboratory suitable for high-risk procedures. The TB containment laboratory has many, but not all, of the features of a BSL-3 laboratory. PMID:25199000

  15. A novel method for large-area sources preparation for the calibration of beta- and alpha-contamination monitors.

    PubMed

    Tsoupko-Sitniko, V; Picolo, J L; Carrier, M; Peulon, S; Moutard, G

    2002-01-01

    A method is proposed for the preparation of large-area reference sources for the calibration of beta- and alpha-contamination monitors. It is based on the incorporation, by the ion-exchange mechanism, of the radionuclide in a thin film of a conducting polymer ion-exchanger preliminarily grown on a metal support. Conducting pyrrole-based polymer functionalized by carboxylic cation-exchange groups is used to prepare 60Co and 90Sr-90Y beta-particle sources. Electrochemical polymerization of the corresponding monomer on different conducting supports is studied and a special electrochemical equipment developed permitting the preparation of large-area polymer films of controlled and reproducible thickness. The ion-exchanger obtained is characterized in terms of chemical affinity for cations Co2+ and Sr2+. Incorporation of the radionuclides in the large-area ion-exchanger films thus obtained is studied and optimized with respect to the uniform distribution of the radionuclide. The performance of the procedure is demonstrated using the example of circular sources 44 mm in diameter prepared on stainless steel supports. The sources obtained are characterized in terms of activity, beta-particle flux, uniformity and source efficiency. PMID:11839017

  16. Fiber optic microphone having a pressure sensing reflective membrane and a voltage source for calibration purpose

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor)

    1993-01-01

    A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a back plate for damping membrane motion. The back plate further provides a means for on-line calibration of the microphone.

  17. Integrated verification experiment data collected as part of the Los Alamos National Laboratory`s Source Region program. Appendix F: Regional data from Lawrence Livermore National Laboratory and Sandia National Laboratory Seismic Networks

    SciTech Connect

    Taylor, S.R.

    1993-06-11

    A dataset of regional seismograms assembled for a series of Integrated Verification Experiments conducted by the Los Alamos National Laboratory Source Region program is described. The seismic data has been assembled from networks operated by Lawrence Livermore National Laboratory and Sandia National Laboratory. Examples of the data are shown and basic recording characteristics of the network are described. The seismograms are available on a data tape in SAC format upon request.

  18. Low-level measuring techniques for neutrons: High accuracy neutron source strength determination and fluence rate measurement at an underground laboratory

    SciTech Connect

    Zimbal, Andreas; Reginatto, Marcel; Schuhmacher, Helmut; Wiegel, Burkhard; Degering, Detlev; Zuber, Kai

    2013-08-08

    We report on measuring techniques for neutrons that have been developed at the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute. PTB has characterized radioactive sources used in the BOREXINO and XENON100 experiments. For the BOREXINO experiment, a {sup 228}Th gamma radiation source was required which would not emit more than 10 neutrons per second. The determination of the neutron emission rate of this specially designed {sup 228}Th source was challenging due to the low neutron emission rate and because the ratio of neutron to gamma radiation was expected to be extremely low, of the order of 10{sup −6}. For the XENON100 detector, PTB carried out a high accuracy measurement of the neutron emission rate of an AmBe source. PTB has also done measurements in underground laboratories. A two month measurement campaign with a set of {sup 3}He-filled proportional counters was carried out in PTB's former UDO underground laboratory at the Asse salt mine. The aim of the campaign was to determine the intrinsic background of detectors, which is needed for the analysis of data taken in lowintensity neutron fields. At a later time, PTB did a preliminary measurement of the neutron fluence rate at the underground laboratory Felsenkeller operated by VKTA. By taking into account data from UDO, Felsenkeller, and detector calibrations made at the PTB facility, it was possible to estimate the neutron fluence rate at the Felsenkeller underground laboratory.

  19. Modelling fault surface roughness and fault rocks thickness evolution with slip: calibration based on field and laboratory data

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Tisato, N.; Spagnuolo, E.; Nielsen, S. B.; Di Toro, G.

    2012-12-01

    deformation processes (e.g. frictional melting vs. cataclasis) and experimental conditions (unconfined vs. confined). Since the model is based on geometrical and volume-conservation considerations (and not on a particular deformation mechanism), we conclude that the surface roughness and fault-rock thickness after some slip is mostly determined by the initial roughness (measured over several orders of magnitude in wavelength), rather than the particular deformation process (cataclasis, melting, etc.) activated during faulting. Conveniently, since the model can be applied (under certain conditions) to surfaces which depart from self-affine roughness, the model parameters can be calibrated with laboratory experiments. If this conclusion will be confirmed by a larger dataset, the forward model proposed here will provide realistic fault roughness and fault rock thickness predictions to be used in the mechanics of earthquakes and faulting, oil and water exploration, and underground engineering projects.

  20. The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1

    NASA Technical Reports Server (NTRS)

    Petrov, Leonid; Phillips, Chris; Bertarini, Alessandra; Murphy, Tara; Sadler, Elaine M.

    2011-01-01

    We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90deg, -40deg] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40deg which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5.

  1. Spectrally and Radiometrically Stable Wide-Band on Board Calibration Source for In-Flight Data Validation in Imaging Spectroscopy Applications

    NASA Technical Reports Server (NTRS)

    Coles, J. B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Hernandez, Marco A.; Kroll, Linley A.; Nolte, Scott H.; Porter, Michael D.; Green, Robert O.

    2011-01-01

    The quality of the quantitative spectral data collected by an imaging spectrometer instrument is critically dependent upon the accuracy of the spectral and radiometric calibration of the system. In order for the collected spectra to be scientifically useful, the calibration of the instrument must be precisely known not only prior to but during data collection. Thus, in addition to a rigorous in-lab calibration procedure, the airborne instruments designed and built by the NASA/JPL Imaging Spectroscopy Group incorporate an on board calibrator (OBC) system with the instrument to provide auxiliary in-use system calibration data. The output of the OBC source illuminates a target panel on the backside of the foreoptics shutter both before and after data collection. The OBC and in-lab calibration data sets are then used to validate and post-process the collected spectral image data. The resulting accuracy of the spectrometer output data is therefore integrally dependent upon the stability of the OBC source. In this paper we describe the design and application of the latest iteration of this novel device developed at NASA/JPL which integrates a halogen-cycle source with a precisely designed fiber coupling system and a fiber-based intensity monitoring feedback loop. The OBC source in this Airborne Testbed Spectrometer was run over a period of 15 hours while both the radiometric and spectral stabilities of the output were measured and demonstrated stability to within 1% of nominal.

  2. Radiation and Health Technology Laboratory Capabilities

    SciTech Connect

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-07-15

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  3. Radiation and Health Technology Laboratory Capabilities

    SciTech Connect

    Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.; Myers, Lynette E.; Piper, Roman K.; Rolph, James T.

    2005-07-09

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  4. Absolute sensitivity calibration of extreme ultraviolet photoresists

    SciTech Connect

    Jones, Juanita; Naulleau, Patrick P.; Gullikson, Eric M.; Aquila, Andrew; George, Simi; Niakoula, Dimitra

    2008-05-16

    One of the major challenges facing the commercialization of extreme ultraviolet (EUV) lithography remains simultaneously achieving resist sensitivity, line-edge roughness, and resolution requirement. Sensitivity is of particular concern owing to its direct impact on source power requirements. Most current EUV exposure tools have been calibrated against a resist standard with the actual calibration of the standard resist dating back to EUV exposures at Sandia National Laboratories in the mid 1990s. Here they report on an independent sensitivity calibration of two baseline resists from the SEMATECH Berkeley MET tool performed at the Advanced Light Source Calibrations and Standards beamline. The results show the baseline resists to be approximately 1.9 times faster than previously thought based on calibration against the long standing resist standard.

  5. Determination of phosphorus source coefficients for organic phosphorus sources: laboratory studies.

    PubMed

    Leytem, A B; Sims, J T; Coale, F J

    2004-01-01

    Phosphorus losses in runoff from application of manures and biosolids to agricultural land are implicated in the degradation of water quality in the Chesapeake and Delaware Inland Bays. We conducted an incubation study to determine the relative P solubility and bioavailability, referred to as P source coefficients (PSCs), for organic P sources, which are typically land-applied in the Mid-Atlantic USA. Nine organic and one inorganic (KH2PO4) P amendments were applied to an Evesboro loamy sand (mesic, coated Typic Quartzipsamments) at a rate of 60 mg P kg(-1) and incubated for 8 wk with subsamples analyzed at 2 and 8 wk. There was an increase in Mehlich-3 P (M3-P), water-soluble P (WS-P), iron-oxide strip extractable P (FeO-P), and Mehlich-3 P saturation ratio (M3-PSR) with P additions, which varied by P source. The trend of relative extractable WS-P, FeO-P, and M3-P generally followed the pattern: inorganic P > liquid and deep pit manures > manures and biosolids treated with metal salts or composted. We found significant differences in the availability of P from varying organic P sources. The use of PSCs may be beneficial when determining the risk of P losses from land application of manures and other organic P sources and could be used in risk assessments such as a P site index. These PSCs may also be useful for determining P application rates when organic P sources are applied to P deficient soils for use as a fertilizer source. PMID:14964394

  6. In situ calibration of a light source in a sensor device

    DOEpatents

    Okandan, Murat; Serkland, Darwin k.; Merchant, Bion J.

    2015-12-29

    A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.

  7. Thermal infrared radiometer calibration and experimental measurements

    NASA Astrophysics Data System (ADS)

    Wei, JiAn; Wang, Difeng; Gong, Fang; Yan, Bai; He, Xianqiang

    2015-08-01

    Thermal infrared radiometers play a vital role in obtaining information in field measurements and also in verifying information from remote sensing satellite sensor data. However, the calibration precision of the thermal infrared radiometers directly affects the accuracy of the remote sensing data analysis and application. It is therefore necessary to ensure that the calibration of thermal infrared radiometers is of sufficient and reliable precision. In this paper, the theory of a six-band thermal infrared radiometer (CE 312-2 ASTER) calibration method was introduced, with the calibration being conducted by using a blackbody source in the laboratory. The sources of error during the calibration procedure were analyzed, and the results of the calibration were provided. Then, laboratory experiments using the radiometer were described. The measurements of the surface temperature of a water sample that was contained in a thermostatic water bath, performed by using the radiometer, were compared to the water sample's temperature controlled by another device. These experiments were used to evaluate the calibration precision of the CE 312-2 ASTER radiometer, by means of assessing the measurement accuracy of the experiments. The results demonstrated that the calibration coefficients of the CE 312-2 ASTER thermal infrared radiometer displayed a very good performance, with highly accurate measurements, and could be used to detect phenomena related to a thermal infrared target.

  8. Practical application of electromyogram radiotelemetry: the suitability of applying laboratory-acquired calibration data to field data

    SciTech Connect

    Geist, David R. ); Brown, Richard S.; Lepla, Ken; Chandler, James P.

    2001-12-01

    One of the practical problems with quantifying the amount of energy used by fish implanted with electromyogram (EMG) radio transmitters is that the signals emitted by the transmitter provide only a relative index of activity unless they are calibrated to the swimming speed of the fish. Ideally calibration would be conducted for each fish before it is released, but this is often not possible and calibration curves derived from more than one fish are used to interpret EMG signals from individuals which have not been calibrated. We tested the validity of this approach by comparing EMG data within three groups of three wild juvenile white sturgeon Acipenser transmontanus implanted with the same EMG radio transmitter. We also tested an additional six fish which were implanted with separate EMG transmitters. Within each group, a single EMG radio transmitter usually did not produce similar results in different fish. Grouping EMG signals among fish produced less accurate results than having individual EMG-swim speed relationships for each fish. It is unknown whether these differences were a result of different swimming performances among individual fish or inconsistencies in the placement or function of the EMG transmitters. In either case, our results suggest that caution should be used when applying calibration curves from one group of fish to another group of uncalibrated fish.

  9. Laboratory Calibration and Flight Validation of an Aircraft Based Instrument to Measure Water Isotopes in the Upper Troposphere and Lower Stratosphere.

    NASA Astrophysics Data System (ADS)

    St. Clair, J. M.; Hanisco, T. F.; Anderson, J. G.

    2004-12-01

    The relative abundance of the hydrogen isotopes of water, H2O and HDO, is a sensitive indicator of the condensation history of air in the near-tropopause region. The observations of the isotopes present a particular challenge because of the very high probability of sampling artifacts in the detection of water vapor itself and the certainty that the isotopes bear those same errors. We have developed a fluorescence-based instrument that has the sensitivity to measure the relative abundance of H2O and HDO without the sampling artifacts associated with large sampling volumes. The instrument combines a new water photolysis system with our pre-existing instrument for laser induced fluorescence detection of OH. Water is photolyzed with an excimer lamp source at 172;nm, producing ground state OH and OD radicals that are detected with state selective laser induced fluorescence at 287;nm. The experiment has three notable characteristics. The first is the high sensitivity afforded by laser induced fluorescence detection. At stratospheric mixing ratios of H2O (4;ppm at 50;mbar), the relative abundance of H2O and HDO can be measured with a S/N > 12 in a 16;s acquisition cycle. The second is a reduction in the exchange of water isotopes on surfaces within the instrument: the OH and OD radicals are removed with near unity efficiency after collisions with walls in the system and are not detected. The third is a rigorous laboratory evaluation of artifacts in the sampling of water vapor and its isotopes, and an empirical demonstration of the instrument's capabilities. The instrument layout and unique detection scheme virtually eliminates the possibility of contamination and resulting measurement hysteresis. These characteristics enable an independent validation of the absorption-based water isotope instruments in situ. Laboratory calibration will be discussed in depth, and data will be presented from recent test flights where the laser induced fluorescence instrument was flown

  10. Development of an absolute method for efficiency calibration of a coaxial HPGe detector for large volume sources

    NASA Astrophysics Data System (ADS)

    Ortiz-Ramírez, Pablo C.

    2015-09-01

    In this work an absolute method for the determination of the full energy peak efficiency of a gamma spectroscopy system for voluminous sources is presented. The method was tested for a high-resolution coaxial HPGe detector and cylindrical homogeneous volume source. The volume source is represented by a set of point sources filling its volume. We found that the absolute efficiency of a volume source can be determined as the average over its volume of the absolute efficiency of each point source. Experimentally, we measure the intrinsic efficiency as a function upon source-detector position. Then, considering the solid angle and the attenuations of the gamma rays emitted to the detector by each point source, considered as embedded in the source matrix, the absolute efficiency for each point source inside of the volume was determined. The factor associate with the solid angle and the self-attenuation of photons in the sample was deduced from first principles without any mathematical approximation. The method was tested by determining the specific activity of 137Cs in cylindrical homogeneous sources, using IAEA reference materials with specific activities between 14.2 Bq/kg and 9640 Bq/kg at the moment of the experimentation. The results obtained shown a good agreement with the expected values. The relative difference was less than 7% in most of the cases. The main advantage of this method is that it does not require of the use of expensive and hard to produce standard materials. In addition it does not require of matrix effect corrections, which are the main cause of error in this type of measurements, and it is easy to implement in any nuclear physics laboratory.

  11. Protein Structural Studies by Traveling Wave Ion Mobility Spectrometry: A Critical Look at Electrospray Sources and Calibration Issues.

    PubMed

    Sun, Yu; Vahidi, Siavash; Sowole, Modupeola A; Konermann, Lars

    2016-01-01

    The question whether electrosprayed protein ions retain solution-like conformations continues to be a matter of debate. One way to address this issue involves comparisons of collision cross sections (Ω) measured by ion mobility spectrometry (IMS) with Ω values calculated for candidate structures. Many investigations in this area employ traveling wave IMS (TWIMS). It is often implied that nanoESI is more conducive for the retention of solution structure than regular ESI. Focusing on ubiquitin, cytochrome c, myoglobin, and hemoglobin, we demonstrate that Ω values and collisional unfolding profiles are virtually indistinguishable under both conditions. These findings suggest that gas-phase structures and ion internal energies are independent of the type of electrospray source. We also note that TWIMS calibration can be challenging because differences in the extent of collisional activation relative to drift tube reference data may lead to ambiguous peak assignments. It is demonstrated that this problem can be circumvented by employing collisionally heated calibrant ions. Overall, our data are consistent with the view that exposure of native proteins to electrospray conditions can generate kinetically trapped ions that retain solution-like structures on the millisecond time scale of TWIMS experiments. ᅟ PMID:26369778

  12. Protein Structural Studies by Traveling Wave Ion Mobility Spectrometry: A Critical Look at Electrospray Sources and Calibration Issues

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Vahidi, Siavash; Sowole, Modupeola A.; Konermann, Lars

    2016-01-01

    The question whether electrosprayed protein ions retain solution-like conformations continues to be a matter of debate. One way to address this issue involves comparisons of collision cross sections (Ω) measured by ion mobility spectrometry (IMS) with Ω values calculated for candidate structures. Many investigations in this area employ traveling wave IMS (TWIMS). It is often implied that nanoESI is more conducive for the retention of solution structure than regular ESI. Focusing on ubiquitin, cytochrome c, myoglobin, and hemoglobin, we demonstrate that Ω values and collisional unfolding profiles are virtually indistinguishable under both conditions. These findings suggest that gas-phase structures and ion internal energies are independent of the type of electrospray source. We also note that TWIMS calibration can be challenging because differences in the extent of collisional activation relative to drift tube reference data may lead to ambiguous peak assignments. It is demonstrated that this problem can be circumvented by employing collisionally heated calibrant ions. Overall, our data are consistent with the view that exposure of native proteins to electrospray conditions can generate kinetically trapped ions that retain solution-like structures on the millisecond time scale of TWIMS experiments.

  13. Comparison of laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at the beginning and end of the first flight season

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Chrien, Thomas G.; Reimer, John H.; Green, Robert O.; Conel, James E.

    1988-01-01

    Spectral and radiometric calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) were performed in the laboratory in June and November, 1987, at the beginning and end of the first flight season. Those calibrations are described along with changes in instrument characteristics that occurred during the flight season as a result of factors such as detachment of the optical fibers to two of the four AVIRIS spectrometers, degradation in the optical alignment of the spectrometers due to thermally-induced and mechanical warpage, and breakage of a thermal blocking filter in one of the spectrometers. These factors caused loss of signal in three spectrometers, loss of spectral resolution in two spectrometers, and added uncertainty in the radiometry of AVIRIS. Results from in-flight assessment of the laboratory calibrations are presented. A discussion is presented of improvements made to the instrument since the end of the first flight season and plans for the future. Improvements include: (1) a new thermal control system for stabilizing spectrometer temperatures, (2) kinematic mounting of the spectrometers to the instrument rack, and (3) new epoxy for attaching the optical fibers inside their mounting tubes.

  14. A multi-source satellite data approach for modelling Lake Turkana water level: calibration and validation using satellite altimetry data

    NASA Astrophysics Data System (ADS)

    Velpuri, N. M.; Senay, G. B.; Asante, K. O.

    2012-01-01

    Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of inter- and intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellite-driven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of 0.80 during the validation period (2004-2009). Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1-2 m. The lake level fluctuated in the range up to 4 m between the years 1998-2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated satellite-driven water

  15. A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data

    USGS Publications Warehouse

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2012-01-01

    Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of interand intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellitedriven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of 0.80 during the validation period (2004-2009). Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1-2m. The lake level fluctuated in the range up to 4m between the years 1998-2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated satellite-driven water balance

  16. Applications of an 88Y/Be photoneutron calibration source to dark matter and neutrino experiments.

    PubMed

    Collar, J I

    2013-05-24

    The low-energy monochromatic neutron emission from an (88)Y/Be source can be exploited to mimic the few keV(nr) nuclear recoils expected from low-mass weakly interacting massive particles and coherent scattering of neutrinos off nuclei. Using this source, a

  17. VNIR, MWIR, and LWIR source assemblies for optical quality testing and spectro-radiometric calibration of earth observation satellites

    NASA Astrophysics Data System (ADS)

    Compain, Eric; Maquet, Philippe; Leblay, Pierrick; Gavaud, Eric; Marque, Julien; Glastre, Wilfried; Cortese, Maxime; Sugranes, Pierre; Gaillac, Stephanie; Potheau, Hervé

    2015-09-01

    This document presents several original OGSEs, Optical Ground Support Equipment, specifically designed and realized for the optical testing and calibration of earth observation satellites operating in a large spectral band from 0.4μm to 14.7μm. This work has been mainly supported by recent development dedicated to MTG, Meteosat Third Generation, the ESA next generation of meteorological satellites. The improved measurement capabilities of this new satellite generation has generated new challenging requirements for the associated optical test equipments. These improvements, based on design and component innovation will be illustrated for the MOTA, the GICS and the DEA OGSEs. MOTA and GICS are dedicated to the AIT, Assembly Integration and Test, of FCI, the Flexible Combined Imager of the imaging satellite MTG-I. DEA OGSE is dedicated to the AIT of the DEA, Detection Electronics Assembly, which is part of IRS instrument, an IR sounder part of MTG-S satellite. From an architectural point of view, the presented original designs enable to run many optical tests with a single system thanks to a limited configuration effort. Main measurement capabilities are optical quality testing (MTF based mainly on KEF measurement), Line of Sight (LoS) stability measurement, straylight analyses, VNIR-MWIR-LWIR focal plane array co-registration, and broadband large dynamic spectro-radiometric calibration. Depending on the AIT phase of the satellite, these source assemblies are operated at atmospheric pressure or under secondary vacuum. In operation, they are associated with an opto-mechanical projection system that enables to conjugate the image of the source assembly with the focal plane of the satellite instruments. These conjugation systems are usually based on high resolution, broadband collimator, and are optionally mounted on hexapod to address the entire field of instruments.

  18. Development of Fiber Fabry-Perot Interferometers as Stable Near-infrared Calibration Sources for High Resolution Spectrographs

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel; Mahadevan, Suvrath; Ramsey, Lawrence; Hearty, Fred; Wilson, John; Holtzman, Jon; Redman, Stephen; Nave, Gillian; Nidever, David; Nelson, Matt; Venditti, Nick; Bizyaev, Dmitry; Fleming, Scott

    2014-05-01

    We discuss the ongoing development of single-mode fiber Fabry-Perot (FFP) Interferometers as precise astrophotonic calibration sources for high precision radial velocity (RV) spectrographs. FFPs are simple, inexpensive, monolithic units that can yield a stable and repeatable output spectrum. An FFP is a unique alternative to a traditional etalon, as the interferometric cavity is made of single-mode fiber rather than an air-gap spacer. This design allows for excellent collimation, high spectral finesse, rigid mechanical stability, insensitivity to vibrations, and no need for vacuum operation. The device we have tested is a commercially available product from Micron Optics.10 Our development path is targeted toward a calibration source for the Habitable-Zone Planet Finder (HPF), a near-infrared spectrograph designed to detect terrestrial-mass planets around low-mass stars, but this reference could also be used in many existing and planned fiber-fed spectrographs as we illustrate using the Apache Point Observatory Galactic Evolution Experiment (APOGEE) instrument. With precise temperature control of the fiber etalon, we achieve a thermal stability of 100 μK and associated velocity uncertainty of 22 cm s-1. We achieve a precision of ≈2 m s-1 in a single APOGEE fiber over 12 hr using this new photonic reference after removal of systematic correlations. This high precision (close to the expected photon-limited floor) is a testament to both the excellent intrinsic wavelength stability of the fiber interferometer and the stability of the APOGEE instrument design. Overall instrument velocity precision is 80 cm s-1 over 12 hr when averaged over all 300 APOGEE fibers and after removal of known trends and pressure correlations, implying the fiber etalon is intrinsically stable to significantly higher precision.

  19. openBIS ELN-LIMS: an open-source database for academic laboratories

    PubMed Central

    Barillari, Caterina; Ottoz, Diana S. M.; Fuentes-Serna, Juan Mariano; Ramakrishnan, Chandrasekhar; Rinn, Bernd; Rudolf, Fabian

    2016-01-01

    Summary: The open-source platform openBIS (open Biology Information System) offers an Electronic Laboratory Notebook and a Laboratory Information Management System (ELN-LIMS) solution suitable for the academic life science laboratories. openBIS ELN-LIMS allows researchers to efficiently document their work, to describe materials and methods and to collect raw and analyzed data. The system comes with a user-friendly web interface where data can be added, edited, browsed and searched. Availability and implementation: The openBIS software, a user guide and a demo instance are available at https://openbis-eln-lims.ethz.ch. The demo instance contains some data from our laboratory as an example to demonstrate the possibilities of the ELN-LIMS (Ottoz et al., 2014). For rapid local testing, a VirtualBox image of the ELN-LIMS is also available. Contact: brinn@ethz.ch or fabian.rudolf@bsse.ethz.ch PMID:26508761

  20. The standardization methods of radioactive sources (125I, 131I, 99mTc, and 18F) for calibrating nuclear medicine equipment in Indonesia

    NASA Astrophysics Data System (ADS)

    Wurdiyanto, G.; Candra, H.

    2016-03-01

    The standardization of radioactive sources (125I, 131I, 99mTc and 18F) to calibrate the nuclear medicine equipment had been carried out in PTKMR-BATAN. This is necessary because the radioactive sources used in the field of nuclear medicine has a very short half-life in other that to obtain a quality measurement results require special treatment. Besides that, the use of nuclear medicine techniques in Indonesia develop rapidly. All the radioactive sources were prepared by gravimetric methods. Standardization of 125I has been carried out by photon- photon coincidence methods, while the others have been carried out by gamma spectrometry methods. The standar sources are used to calibrate a Capintec CRC-7BT radionuclide calibrator. The results shows that calibration factor for Capintec CRC-7BT dose calibrator is 1,03; 1,02; 1,06; and 1,04 for 125I, 131I, 99mTc and 18F respectively, by about 5 to 6% of the expanded uncertainties.

  1. Final report on key comparison CCAUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz

    NASA Astrophysics Data System (ADS)

    Avison, Janine; Barham, Richard

    2014-01-01

    This document and the accompanying spreadsheets constitute the final report for key comparison CCAUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Twelve national measurement institutes took part in the key comparison and the National Physical Laboratory piloted the project. Two laboratory standard microphones IEC type LS1P were circulated to the participants and results in the form of regular calibration certificates were collected throughout the project. One of the microphones was subsequently deemed to have compromised stability for the purpose of deriving a reference value. Consequently the key comparison reference value (KCRV) has been made based on the weighted mean results for sensitivity level and for sensitivity phase from just one of the microphones. Corresponding degrees of equivalence (DoEs) have also been calculated and are presented. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Status report on the Advanced Photon Source Project at Argonne National Laboratory

    SciTech Connect

    Huebner, R.H. Sr.

    1989-01-01

    The Advanced Photon Source at Argonne National Laboratory is designed as a national synchrotron radiation user facility which will provide extremely bright, highly energetic x-rays for multidisciplinary research. When operational, the Advanced Photon Source will accelerate positrons to a nominal energy of 7 GeV. The positrons will be manipulated by insertion devices to produce x-rays 10,000 times brighter than any currently available for research. Accelerator components, insertion devices, optical elements, and optical-element cooling schemes have been and continue to be the subjects of intensive research and development. A call for Letters of Intent from prospective users of the Advanced Photon Source has resulted in a substantial response from industrial, university, and national laboratory researchers.

  3. Status report on the Advanced Photon Source Project at Argonne National Laboratory

    SciTech Connect

    Huebner, R.H. Sr.

    1989-12-31

    The Advanced Photon Source at Argonne National Laboratory is designed as a national synchrotron radiation user facility which will provide extremely bright, highly energetic x-rays for multidisciplinary research. When operational, the Advanced Photon Source will accelerate positrons to a nominal energy of 7 GeV. The positrons will be manipulated by insertion devices to produce x-rays 10,000 times brighter than any currently available for research. Accelerator components, insertion devices, optical elements, and optical-element cooling schemes have been and continue to be the subjects of intensive research and development. A call for Letters of Intent from prospective users of the Advanced Photon Source has resulted in a substantial response from industrial, university, and national laboratory researchers.

  4. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    NASA Astrophysics Data System (ADS)

    Henderson, Kevin; Harper, Ron; Funsten, Herb; MacDonald, Elizabeth

    2012-07-01

    We have developed and demonstrated a versatile, compact electron source that can produce a mono-energetic electron beam up to 50 mm in diameter from 0.1 to 30 keV with an energy spread of <10 eV. By illuminating a metal cathode plate with a single near ultraviolet light emitting diode, a spatially uniform electron beam with 15% variation over 1 cm2 can be generated. A uniform electric field in front of the cathode surface accelerates the electrons into a beam with an angular divergence of <1° at 1 keV. The beam intensity can be controlled from 10 to 109 electrons cm-2 s-1.

  5. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    SciTech Connect

    Pynn, R.; Weinacht, D.

    1995-12-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the US with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW, long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the US. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE`s Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide US scientists with a complementary pair of high-performance neutron sources to rival the world`s leading facilities in Europe.

  6. Dosimetric characteristics, air-kerma strength calibration and verification of Monte Carlo simulation for a new ytterbium-169 brachytherapy source

    SciTech Connect

    Perera, H.; Williamson, J.F.; Li, Zuofeng; Mishra, V.; Meigooni, A.S. )

    1994-03-01

    Ytterbium-169 ([sup 169]Yb) is a promising new isotope for brachytherapy with a half life of 32 days and an average photon energy of 93 KeV. It has an Ir-192-equivalent dose distribution in water but a much smaller half-value layer in lead (0.2 mm), affording improved radiation protection and customized shielding of dose-limiting anatomic structures. The goals of this study are to: (a) experimentally validate Monte Carlo photon transport dose-rate calculations for this energy range, (b) to develop a secondary air-kerma strength standard for [sup 169]Yb, and (c) to present essential treatment planning data including the transverse-axis dose-rate distribution and dose correction factors for a number of local shielding materials. Several interstitial [sup 169]Yb sources (type 6) and an experimental high dose-rate source were made available for this study. Monte Carlo photon-transport (MCPT) simulations, based upon validated geometric models of source structure, were used to calculate dose rates in water. To verify MCPT predictions, the transverse-axis dose distribution in homogeneous water medium was measured using a silicon-diode detector. For use in designing shielded applicators, heterogeneity correction factors (HCF) arising from small cylindrical heterogeneities of lead, aluminum, titanium, steel and air were measured in a water medium. Finally, to provide a sound experimental basis for comparing experimental and theoretical dose-rate distributions, the air-kerma strength of the sources was measured using a calibrated ion chamber. To eliminate the influence of measurement artifacts on the comparison of theory and measurement, simulated detector readings were compared directly to measured diode readings. The final data are presented in the format endorsed by the Interstitial Collaborative Working Group. 33 refs., 8 figs., 3 tabs.

  7. Image Calibration

    NASA Technical Reports Server (NTRS)

    Peay, Christopher S.; Palacios, David M.

    2011-01-01

    Calibrate_Image calibrates images obtained from focal plane arrays so that the output image more accurately represents the observed scene. The function takes as input a degraded image along with a flat field image and a dark frame image produced by the focal plane array and outputs a corrected image. The three most prominent sources of image degradation are corrected for: dark current accumulation, gain non-uniformity across the focal plane array, and hot and/or dead pixels in the array. In the corrected output image the dark current is subtracted, the gain variation is equalized, and values for hot and dead pixels are estimated, using bicubic interpolation techniques.

  8. SEISMIC SOURCE AND PATH CALIBRATION IN THE KOREAN PENINSULA, YELLOW SEA

    SciTech Connect

    Herrmann, R B; Walter, W R; Pasyanos, M

    2007-07-11

    Two significant seismic events were analyzed using the crustal velocity model developed under this contract. The M{sub W} = 4.55 Korea earthquake of January 20, 2007 occurred in the Republic of Korea on land and within the dense digital seismic network. Using P-wave arrivals from 60 broadband, short-period and acceleration stations, the event occurred at 37.68N, 128.58E at a depth of 7.5 km at 20070120115653.8. Source inversion was performed using the accelerometer recordings in the 0.05-0.20 Hz band the broadband data in the 0.02-0.10 Hz band, with identical focal mechanisms and source depths of 9 and 11 km, respectively. This is the largest event on land in South Korea since the M{sub W} 4.7 event on December 13, 1996. Forward modeling of the waveforms at INCN and MDJ indicates the ability of the current model to match observations on the Korean Peninsula and the effect of significant pulse shape modification for paths that partially cross the Sea of Japan. The results of using the local network data provide a ground truth point for other studies analyzing seismic events on the peninsula. The isotropic seismic moment of the October 9, 2006 North Korea explosion was estimated from the Rayleigh-wave spectral amplitudes observed at MDJ and INCN. Very little Love wave signal was observed, indicating weak tectonic release. The explosion yield was investigated using the Denny and Johnson (1991) model relating yield to the observed isotropic moment as a function of depth of burial and material properties. Sensitivity analysis highlights the strong effect of the assumed velocity and density structure in the upper kilometer of the Earth and the assumed depth of burial on the estimated yield. The crustal velocity model developed under this contract provides strong constraints on the expected shear-wave velocities in the shallow parts of the crust. Issues to be investigated include the effect of wave propagation through the Eastern Sea (Sea of Japan) to stations in South

  9. Calibration of microscopic traffic-flow models using multiple data sources.

    PubMed

    Hoogendoorn, Serge; Hoogendoorn, Raymond

    2010-10-13

    Parameter identification of microscopic driving models is a difficult task. This is caused by the fact that parameters--such as reaction time, sensitivity to stimuli, etc.--are generally not directly observable from common traffic data, but also due to the lack of reliable statistical estimation techniques. This contribution puts forward a new approach to identifying parameters of car-following models. One of the main contributions of this article is that the proposed approach allows for joint estimation of parameters using different data sources, including prior information on parameter values (or the valid range of values). This is achieved by generalizing the maximum-likelihood estimation approach proposed by the authors in previous work. The approach allows for statistical analysis of the parameter estimates, including the standard error of the parameter estimates and the correlation of the estimates. Using the likelihood-ratio test, models of different complexity (defined by the number of model parameters) can be cross-compared. A nice property of this test is that it takes into account the number of parameters of a model as well as the performance. To illustrate the workings, the approach is applied to two car-following models using vehicle trajectories of a Dutch freeway collected from a helicopter, in combination with data collected with a driving simulator. PMID:20819819

  10. CFD modeling of a laboratory-scale underwater explosion created by a spark gap source

    NASA Astrophysics Data System (ADS)

    Esplin, J. James; Kinzel, Michael P.; Kim, Benjamin; Culver, R. Lee

    2015-11-01

    Underwater explosions contain complex physical phenomena that can be difficult to observe. As large-scale tests are expensive, most researchers investigate the physical phenomena using laboratory-scale explosions with hopes that the salient physical phenomena remain similar. Most of the laboratory-scale tests use small amounts of chemical explosive as the explosive source, which have been examined using computational fluid dynamics (CFD) modeling at both large and small-scale. Other tests use a spark gap source (sparker) as the explosive source, which act similarly to chemical explosives on a small scale. Few studies have applied CFD to spark gap sources used to model underwater explosions, and fewer still have dealt with the differences between chemical explosions and spark gap sources. This work will demonstrate CFD simulations for a spark gap source discharged near a free surface. The simulation uses a compressible medium including both a gas and liquid and aims to predict the transient bubble motion and pressure field. The simulations are validated against experimental data. Work supported by the ONR Naval Undersea Research Program.

  11. Radioactive Standards Laboratory ININ as a reference laboratory in Mexico.

    PubMed

    GarcíaDíaz, O; MartínezAyala, L; HerreraValadez, L; TovarM, V; Karam, L

    2016-03-01

    The Radioactive Standards Laboratory of the National Institute of Nuclear Research is the National reference laboratory for the measurement of radioactivity in Mexico. It has a gamma-ray spectrometry system with a high-purity Ge-detector for measurements from 50 keV to 2000 keV, and develops standardized radioactive (beta-particle and gamma-ray emitting) sources in different geometries with uncertainties less than or equal to 5% for applications such as the calibration of radionuclide calibrators (clinically used dose calibrators), Ge-detectors and NaI(Tl) detectors. PMID:27358942

  12. KEY COMPARISON: Final report of comparison of the calibrations of hydrometers for liquid density determination between SIM laboratories: SIM.M.D-K4

    NASA Astrophysics Data System (ADS)

    Becerra, Luis Omar

    2009-01-01

    This SIM comparison on the calibration of high accuracy hydrometers was carried out within fourteen laboratories in the density range from 600 kg/m3 to 1300 kg/m3 in order to evaluate the degree of equivalence among participant laboratories. This key comparison anticipates the planned key comparison CCM.D-K4, and is intended to be linked with CCM.D-K4 when results are available. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  13. The Optics and Alignment of the Divergent Beam Laboratory X-ray Powder Diffractometer and its Calibration Using NIST Standard Reference Materials.

    PubMed

    Cline, James P; Mendenhall, Marcus H; Black, David; Windover, Donald; Henins, Albert

    2015-01-01

    The laboratory X-ray powder diffractometer is one of the primary analytical tools in materials science. It is applicable to nearly any crystalline material, and with advanced data analysis methods, it can provide a wealth of information concerning sample character. Data from these machines, however, are beset by a complex aberration function that can be addressed through calibration with the use of NIST Standard Reference Materials (SRMs). Laboratory diffractometers can be set up in a range of optical geometries; considered herein are those of Bragg-Brentano divergent beam configuration using both incident and diffracted beam monochromators. We review the origin of the various aberrations affecting instruments of this geometry and the methods developed at NIST to align these machines in a first principles context. Data analysis methods are considered as being in two distinct categories: those that use empirical methods to parameterize the nature of the data for subsequent analysis, and those that use model functions to link the observation directly to a specific aspect of the experiment. We consider a multifaceted approach to instrument calibration using both the empirical and model based data analysis methods. The particular benefits of the fundamental parameters approach are reviewed. PMID:26958446

  14. The Optics and Alignment of the Divergent Beam Laboratory X-ray Powder Diffractometer and its Calibration Using NIST Standard Reference Materials

    PubMed Central

    Cline, James P.; Mendenhall, Marcus H.; Black, David; Windover, Donald; Henins, Albert

    2015-01-01

    The laboratory X-ray powder diffractometer is one of the primary analytical tools in materials science. It is applicable to nearly any crystalline material, and with advanced data analysis methods, it can provide a wealth of information concerning sample character. Data from these machines, however, are beset by a complex aberration function that can be addressed through calibration with the use of NIST Standard Reference Materials (SRMs). Laboratory diffractometers can be set up in a range of optical geometries; considered herein are those of Bragg-Brentano divergent beam configuration using both incident and diffracted beam monochromators. We review the origin of the various aberrations affecting instruments of this geometry and the methods developed at NIST to align these machines in a first principles context. Data analysis methods are considered as being in two distinct categories: those that use empirical methods to parameterize the nature of the data for subsequent analysis, and those that use model functions to link the observation directly to a specific aspect of the experiment. We consider a multifaceted approach to instrument calibration using both the empirical and model based data analysis methods. The particular benefits of the fundamental parameters approach are reviewed. PMID:26958446

  15. Laboratory Astrophysics with High Power Lasers and 4th Generation Light Sources

    NASA Astrophysics Data System (ADS)

    Gregori, Gianluca

    2013-10-01

    The combination of high power optical lasers and free electron lasers operating at short wavelength (in the x-ray regime) has opened new avenues for laboratory astrophysics, where exotic states of matter can now be generated and probed with high accuracy. We will review a few examples of recent experiments performed at the Linac Coherent Light Source (LCLS) free electron laser operating in Stanford (CA), but also discuss future applications. We will focus our discussion on the following three examples: 1) Laboratory analogues of white dwarf envelopes and the physics of strongly coupled plasmas near crystallization; 2) scaled laboratory experiments to investigate magnetized and radiative shocks; and 3) possible proposals for testing strong gravity analogues using x-ray Thomson scattering. This work was partially the European Research Council under the European Community's Seventh Framework Programme.

  16. Reqscan: An open source solution for laboratory requisition scanning, archiving and retrieval

    PubMed Central

    Bach, Eviatar; Holmes, Daniel T.

    2015-01-01

    Requisition storage and retrieval are an integral part of the outpatient laboratory testing process. It is frequently necessary to review an original requisition to confirm the ordering physician, patient demographics, diagnostic information, and requested tests. Manual retrieval of a paper requisition is time-consuming and tedious. Although commercial solutions exist for the scanning and archiving of barcoded paper requisitions, the tools to accomplish this are freely available from the open source software community. We present a simple dedicated piece of software, Reqscan, for scanning patient laboratory requisitions, finding all barcode information, and saving the requisition as a portable document format named according the barcode(s) found. This Python application offers a simple solution to patient requisition digitization. Reqscan has been successfully tested and implemented into routine practice for storage and retrieval of outpatient requisitions at St. Paul's Hospital, Department of Pathology and Laboratory Medicine in Vancouver, British Columbia, Canada. PMID:25722943

  17. Reqscan: An open source solution for laboratory requisition scanning, archiving and retrieval.

    PubMed

    Bach, Eviatar; Holmes, Daniel T

    2015-01-01

    Requisition storage and retrieval are an integral part of the outpatient laboratory testing process. It is frequently necessary to review an original requisition to confirm the ordering physician, patient demographics, diagnostic information, and requested tests. Manual retrieval of a paper requisition is time-consuming and tedious. Although commercial solutions exist for the scanning and archiving of barcoded paper requisitions, the tools to accomplish this are freely available from the open source software community. We present a simple dedicated piece of software, Reqscan, for scanning patient laboratory requisitions, finding all barcode information, and saving the requisition as a portable document format named according the barcode(s) found. This Python application offers a simple solution to patient requisition digitization. Reqscan has been successfully tested and implemented into routine practice for storage and retrieval of outpatient requisitions at St. Paul's Hospital, Department of Pathology and Laboratory Medicine in Vancouver, British Columbia, Canada. PMID:25722943

  18. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  19. Laboratory source based full-field x-ray microscopy at 9 keV

    NASA Astrophysics Data System (ADS)

    Fella, C.; Balles, A.; Wiest, W.; Zabler, S.; Hanke, R.

    2016-01-01

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  20. Laboratory experiments designed to provide limits on the radionuclide source term for the NNWSI Project

    SciTech Connect

    Oversby, V.M.; McCright, R.D.

    1984-11-01

    The Nevada Nuclear Waste Storage Investigations Project is investigating the suitability of the tuffaceous rocks at Yucca Mountain Nevada for potential use as a high-level nuclear waste repository. The horizon under investigation lies above the water table, and therefore offers a setting that differs substantially from other potential repository sites. The unsaturated zone environment allows a simple, but effective, waste package design. The source term for radionuclide release from the waste package will be based on laboratory experiments that determine the corrosion rates and mechanisms for the metal container and the dissolution rate of the waste form under expected long term conditions. This paper describes the present status of laboratory results and outlines the approach to be used in combining the data to develop a realistic source term for release of radionuclides from the waste package. 16 refs., 3 figs., 1 tab.

  1. Broad-band calibration of marine seismic sources used by R/V Polarstern for academic research in polar regions

    NASA Astrophysics Data System (ADS)

    Breitzke, Monika; Boebel, Olaf; El Naggar, Saad; Jokat, Wilfried; Werner, Berthold

    2008-08-01

    Air guns and air-gun arrays of different volumes are used for scientific seismic surveys with R/V Polarstern in polar regions. To assess the potential risk of these research activities on marine mammal populations, knowledge of the sound pressure field of the seismic sources is essential. Therefore, a broad-band (0-80 kHz) calibration study was conducted at the Heggernes Acoustic Range, Norway. A GI (2.4 l), a G (8.5 l) and a Bolt gun (32.8 l) were deployed as single sources, 3 GI (7.4 l), 3 G (25.6 l) and 8 VLF™ Prakla-Seismos air guns (24.0 l) as arrays. Each configuration was fired along a line of 3-4 km length running between two hydrophone chains with receivers in 35, 100, 198 and 263 m depth. Peak-to-peak, zero-to-peak, rms and sound exposure levels (SEL) were analysed as functions of range. They show the typical dipole-like directivity of marine seismic sources with amplitude cancellation close to the sea surface, higher amplitudes in greater depths, and sound pressure levels which continuously decrease with range. Levels recorded during the approach are lower than during the departure indicating a shadowing effect of Polarsterns's hull. Backcalculated zero-to-peak source levels range from 224-240 dB re 1 μPa @ 1 m. Spectral source levels are highest below 100 Hz and amount to 182-194 dB re 1 μPa Hz-1. They drop off continuously with range and frequency. At 1 kHz they are ~30 dB, at 80 kHz ~60 dB lower than the peak level. Above 1 kHz amplitude spectra are dominated by Polarstern's self-noise. From the rms and sound exposure levels of the deepest hydrophone radii for different thresholds are derived. For a 180 dB rms-level threshold radii maximally vary between 200 and 600 m, for a 186 dB SEL threshold between 50 and 300 m.

  2. Preliminary Designs for Modifications to the X-Ray Source and Beam Monitor of the Marshall Space Flight Center's X-Ray Calibration Facility

    NASA Technical Reports Server (NTRS)

    Croft, W. L.

    1983-01-01

    Preliminary designs for modifications to the X-ray source and beam monitor of the MSFC X-Ray Calibration Facility to meet requirements for the calibration of the Advanced X-Ray Astrophysics Facility are considered. A rhodium plated copper target and rhodium foil filter are proposed as a source of X-rays of approximately 2.6 keV energy. Bragg scattering of the unpolarized X-ray beam from the present source through an angle of 90 deg by a single crystal placed on the axis of the guide tube is proposed as a source of approximately monoenergetic plane polarized X-rays. A sealed xenon proportional counter with a Beryllium window is proposed as a beam monitor for use between 2.5 and 8 keV to obtain improved detection efficiency.

  3. TECHNIQUE FOR IN SITU CALIBRATION OF PARTICULATE MASS MONITORS

    EPA Science Inventory

    Two types of aerosol generators, the Riker Laboratories metered spray can and the Mistogen EN145 ultrasonic nebulizer, were evaluated by laboratory measurements for application to the in situ calibration of particulate mass monitors for stationary sources. The metered spray can d...

  4. Mean-free-paths in concert and chamber music halls and the correct method for calibrating dodecahedral sound sources.

    PubMed

    Beranek, Leo L; Nishihara, Noriko

    2014-01-01

    The Eyring/Sabine equations assume that in a large irregular room a sound wave travels in straight lines from one surface to another, that the surfaces have an average sound absorption coefficient αav, and that the mean-free-path between reflections is 4 V/Stot where V is the volume of the room and Stot is the total area of all of its surfaces. No account is taken of diffusivity of the surfaces. The 4 V/Stot relation was originally based on experimental determinations made by Knudsen (Architectural Acoustics, 1932, pp. 132-141). This paper sets out to test the 4 V/Stot relation experimentally for a wide variety of unoccupied concert and chamber music halls with seating capacities from 200 to 5000, using the measured sound strengths Gmid and reverberation times RT60,mid. Computer simulations of the sound fields for nine of these rooms (of varying shapes) were also made to determine the mean-free-paths by that method. The study shows that 4 V/Stot is an acceptable relation for mean-free-paths in the Sabine/Eyring equations except for halls of unusual shape. Also demonstrated is the proper method for calibrating the dodecahedral sound source used for measuring the sound strength G, i.e., the reverberation chamber method. PMID:24437762

  5. Characterization of the 300 K and 700 K Calibration Sources for Space Application with the Bepicolombo Mission to Mercury

    NASA Astrophysics Data System (ADS)

    Gutschwager, B.; Driescher, H.; Herrmann, J.; Hirsch, H.; Hollandt, J.; Jahn, H.; Kuchling, P.; Monte, C.; Scheiding, M.

    2011-08-01

    The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) onboard the European-Japanese space mission BepiColombo to Mercury will be launched in 2014. The MERTIS scientific objective is to identify rock-forming minerals and measure surface temperatures by infrared spectroscopy (7 μm to 14 μm) and spectrally unresolved infrared radiometry (7 μm to 40 μm). To achieve this goal, MERTIS utilizes two onboard infrared calibration sources, the MERTIS blackbody at 700 K (MBB7) and the MERTIS blackbody at 300 K (MBB3), together with deep space observations corresponding to 3 K. All three sources can be observed one after the other using a rotating mirror system. The leaders of the project MERTIS are the Westfälische University of Münster, institute for planetary investigation, Mr. Prof. Dr. H. Hiesinger (PI) and the DLR, Institute of Planetary Research Berlin-Adlershof, Mr. Dr. J. Helbert (CoPI). Both blackbody radiators have to fulfill the severe mass, volume, and power restrictions of MERTIS. The radiating area of the MBB3 is based on a structured surface with a high-emissivity space qualified coating. The relatively high emissivity of the coating was further enhanced by a pyramidal surface structure to values over 0.99 in the wavelength range from 5 μm to 10 μm and over 0.95 in the wavelength range from 10 μm to 30 μm. The MBB7 is based on a small commercially available surface emitter in a standard housing. The windowless emitter is an electrically heated resistor, which consists of a platinum structure with a blackened surface on a ceramic body. The radiation of the emitter is expanded and collimated through use of a parabolic mirror. The design requirements and the radiometric and thermometric characterization of these two blackbodies are described in this paper.

  6. Improvements to the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Calibration System

    NASA Technical Reports Server (NTRS)

    Chrien, T.; Kopp, G.; Green, R.; Chovit, C.; Eastwood, M.; Holbrook, J.; Johnson, H.; Hajek, P.; Raney, J.; Sarture, C.

    1994-01-01

    As a continuing effort to increase the calibration accuracy of the AVIRIS data a number of recent improvements have been implemented and are in the process of being tested during the 1994 flight season. These include the following innovations: A direct observation of a laboratory radiance standard is now used to double check the wide field-of-view calibration via an integrating sphere source. Launch site field calibration of the AVIRIS sensor is now being planned to augment the laboratory and inflight calibration. Modification to a dry air conditioning unit has been made to enable ground calibration at flight operating temperatures. One hundred lines of dark imagery has been added to the end of each flight line to assist in the analysis and removal of residual coherent noise. The intensity of the onboard calibration lamp has been modified to improve response in the blue end of the spectrum. Novel spectral filters have been installed in the onboard calibration source.

  7. FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units.

    PubMed

    Castillo-Hair, Sebastian M; Sexton, John T; Landry, Brian P; Olson, Evan J; Igoshin, Oleg A; Tabor, Jeffrey J

    2016-07-15

    Flow cytometry is widely used to measure gene expression and other molecular biological processes with single cell resolution via fluorescent probes. Flow cytometers output data in arbitrary units (a.u.) that vary with the probe, instrument, and settings. Arbitrary units can be converted to the calibrated unit molecules of equivalent fluorophore (MEF) using commercially available calibration particles. However, there is no convenient, nonproprietary tool available to perform this calibration. Consequently, most researchers report data in a.u., limiting interpretation. Here, we report a software tool named FlowCal to overcome current limitations. FlowCal can be run using an intuitive Microsoft Excel interface, or customizable Python scripts. The software accepts Flow Cytometry Standard (FCS) files as inputs and is compatible with different calibration particles, fluorescent probes, and cell types. Additionally, FlowCal automatically gates data, calculates common statistics, and produces publication quality plots. We validate FlowCal by calibrating a.u. measurements of E. coli expressing superfolder GFP (sfGFP) collected at 10 different detector sensitivity (gain) settings to a single MEF value. Additionally, we reduce day-to-day variability in replicate E. coli sfGFP expression measurements due to instrument drift by 33%, and calibrate S. cerevisiae Venus expression data to MEF units. Finally, we demonstrate a simple method for using FlowCal to calibrate fluorescence units across different cytometers. FlowCal should ease the quantitative analysis of flow cytometry data within and across laboratories and facilitate the adoption of standard fluorescence units in synthetic biology and beyond. PMID:27110723

  8. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    ERIC Educational Resources Information Center

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  9. MODIS airborne simulator visible and near-infrared calibration, 1991 FIRE-Cirrus field experiment. Calibration version: FIRE King 1.1

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.

    1994-01-01

    Calibration of the visible and near-infrared channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1991 FIRE-Cirrus field experiment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Laboratory tests during the FIRE Cirrus field experiment were conducted to calibrate the hemisphere and from the hemisphere to the MAS. The purpose of this report is to summarize the FIRE-Cirrus hemisphere calibration, and then describe how the MAS was calibrated from observations of the hemisphere data. All MAS calibration measurements are presented, and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. Thermal sensitivity of the MAS visible and near-infrared calibration is also discussed. Typically, the MAS in-flight is 30 to 60 degrees C colder than the room temperature laboratory calibration. Results from in-flight temperature measurements and tests of the MAS in a cold chamber are given, and from these, equations are derived to adjust the MAS in-flight data to what the value would be at laboratory conditions. For FIRE-Cirrus data, only channels 3 through 6 were found to be temperature sensitive. The final section of this report describes comparisons to an independent MAS (room temperature) calibration by Ames personnel using their 30-inch integrating sphere.

  10. Users program for storage-ring based FEL and synchrotron sources of the Duke FEL Laboratory

    SciTech Connect

    Straub, K.D.; Barnett, G.; Burnham, B.

    1995-12-31

    The storage ring at the Duke FEL Laboratory was first operated with a stored e-beam in November, 1994. It has now achieved operation energies in excess 1 GeV with more than 100 mA current at 280 MeV. The ring has several ports for FEL and synchrotron light source research. The circulating ring current can be synchronized with the seperate Mark III FEL operating in the 2-9.5 {mu}m IR region. This allows low optical jitter (10-20 ps) between the two sources and thus pump-probe operation. The ring has been configured to drive a number of light sources including the OK-4 FEL system capable of FEL operation between 400 and 65 nm, an inverse Compton scattering source using this undulator which will yield 4-200 MeV gammas, an undulator source at approximately 40 {angstrom} (not an FEL), a mm FEL with inverse compton scattering providing 1-100 keV x-rays and two synchrotron ports from the bend magnets for which the {lambda}{sub c} = 11-12 {angstrom} for 1 GeV. The broadly tunable FEL sources and their associated inverse compton scattering are extremely bright. The initial research proposals, submitted to the Laboratory emphasizes photoelectron spectroscopy, PEEM, high resolution vacuum UV of gases, solid spectroscopy and photochemistry in the UV, X-ray microprobe studies, X-ray microscopy, X-ray holography, X-ray crystallography, Mossbauer spectroscopy, nuclear spectroscopy, neutron production, photon activation therapy and broadband synchrotron as a probe of fast reaction in the IR and near IR.

  11. Cross calibration of new x-ray films against direct exposure film from 1 to 8 keV using the X-pinch x-ray source

    SciTech Connect

    Chandler, K.M.; Pikuz, S.A.; Shelkovenko, T.A.; Mitchell, M.D.; Hammer, D.A.; Knauer, J.P.

    2005-11-15

    A cross calibration of readily available x-ray sensitive films has been carried out against the calibrated direct exposure film (DEF) which is no longer being manufactured by Kodak. Four-wire X pinches made from various metal wires were used as x-ray sources for this purpose. Tests were carried out for the Kodak films Biomax MS, Biomax XAR, M100, Technical Pan, and T-Max over the energy range of 1-8 keV (12.4-1.5 A wavelength). The same hand-development procedures as described by Henke et al. [J. Opt. Soc. Am. B 3, 1540 (1986)] were followed for all films in every test. Sensitivity curves as a function of wavelength for these films relative DEF are presented. These relative calibrations show that Biomax MS is likely to be the best replacement film for DEF for most purposes over the energy range tested here.

  12. Cross calibration of new x-ray films against direct exposure film from 1 to 8 keV using the X-pinch x-ray source

    NASA Astrophysics Data System (ADS)

    Chandler, K. M.; Pikuz, S. A.; Shelkovenko, T. A.; Mitchell, M. D.; Hammer, D. A.; Knauer, J. P.

    2005-11-01

    A cross calibration of readily available x-ray sensitive films has been carried out against the calibrated direct exposure film (DEF) which is no longer being manufactured by Kodak. Four-wire X pinches made from various metal wires were used as x-ray sources for this purpose. Tests were carried out for the Kodak films Biomax MS, Biomax XAR, M100, Technical Pan, and T-Max over the energy range of 1-8keV (12.4-1.5Å wavelength). The same hand-development procedures as described by Henke et al. [J. Opt. Soc. Am. B 3, 1540 (1986)] were followed for all films in every test. Sensitivity curves as a function of wavelength for these films relative DEF are presented. These relative calibrations show that Biomax MS is likely to be the best replacement film for DEF for most purposes over the energy range tested here.

  13. Effect of numerical dispersion as a source of structural noise in the calibration of a highly parameterized saltwater intrusion model

    USGS Publications Warehouse

    Langevin, Christian D.; Hughes, Joseph D.

    2010-01-01

    A model with a small amount of numerical dispersion was used to represent saltwater 7 intrusion in a homogeneous aquifer for a 10-year historical calibration period with one 8 groundwater withdrawal location followed by a 10-year prediction period with two groundwater 9 withdrawal locations. Time-varying groundwater concentrations at arbitrary locations in this low-10 dispersion model were then used as observations to calibrate a model with a greater amount of 11 numerical dispersion. The low-dispersion model was solved using a Total Variation Diminishing 12 numerical scheme; an implicit finite difference scheme with upstream weighting was used for 13 the calibration simulations. Calibration focused on estimating a three-dimensional hydraulic 14 conductivity field that was parameterized using a regular grid of pilot points in each layer and a 15 smoothness constraint. Other model parameters (dispersivity, porosity, recharge, etc.) were 16 fixed at the known values. The discrepancy between observed and simulated concentrations 17 (due solely to numerical dispersion) was reduced by adjusting hydraulic conductivity through the 18 calibration process. Within the transition zone, hydraulic conductivity tended to be lower than 19 the true value for the calibration runs tested. The calibration process introduced lower hydraulic 20 conductivity values to compensate for numerical dispersion and improve the match between 21 observed and simulated concentration breakthrough curves at monitoring locations. 22 Concentrations were underpredicted at both groundwater withdrawal locations during the 10-23 year prediction period.

  14. BROOKHAVEN NATIONAL LABORATORY SOURCE WATER ASSESSMENT FOR DRINKING WATER SUPPLY WELLS

    SciTech Connect

    BENNETT,D.B.; PAQUETTE,D.E.; KLAUS,K.; DORSCH,W.R.

    2000-12-18

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past

  15. Comparison of Spectral Radiance Calibration Techniques Used for Backscatter Ultraviolet Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Kowalewski, Matthew G.; Janz, Scott

    2014-01-01

    Methods for determining the absolute radiometric calibration sensitivities of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration errors. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV (SSBUV), Total Ozone Mapping Spectrometer (TOMS), Ozone Mapping Instrument (OMI), and Global Ozone Monitoring Experiment 2 (GOME-2) using standardized procedures traceable to national standards. These sphere-based sensitivities agree to within three percent [k equals 2] relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary radiance calibration method for BUV instruments. The uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Centers Radiometric Calibration and Development Laboratory is shown to be 4 percent at 250nm [k equals 2] when using a single traceable calibration standard. Significant reduction in the uncertainty of nearly 1 percent is demonstrated when multiple calibration standards are used.

  16. Recommendations following a multi-laboratory comparison of microbial source tracking methods.

    PubMed

    Stewart, Jill R; Boehm, Alexandria B; Dubinsky, Eric A; Fong, Theng-Theng; Goodwin, Kelly D; Griffith, John F; Noble, Rachel T; Shanks, Orin C; Vijayavel, Kannappan; Weisberg, Stephen B

    2013-11-15

    Microbial source tracking (MST) methods were evaluated in the Source Identification Protocol Project (SIPP), in which 27 laboratories compared methods to identify host sources of fecal pollution from blinded water samples containing either one or two different fecal types collected from California. This paper details lessons learned from the SIPP study and makes recommendations to further advance the field of MST. Overall, results from the SIPP study demonstrated that methods are available that can correctly identify whether particular host sources including humans, cows and birds have contributed to contamination in a body of water. However, differences between laboratory protocols and data processing affected results and complicated interpretation of MST method performance in some cases. This was an issue particularly for samples that tested positive (non-zero Ct values) but below the limits of quantification or detection of a PCR assay. Although false positives were observed, such samples in the SIPP study often contained the fecal pollution source that was being targeted, i.e., the samples were true positives. Given these results, and the fact that MST often requires detection of targets present in low concentrations, we propose that such samples be reported and identified in a unique category to facilitate data analysis and method comparisons. Important data can be lost when such samples are simply reported as positive or negative. Actionable thresholds were not derived in the SIPP study due to limitations that included geographic scope, age of samples, and difficulties interpreting low concentrations of target in environmental samples. Nevertheless, the results of the study support the use of MST for water management, especially to prioritize impaired waters in need of remediation. Future integration of MST data into quantitative microbial risk assessments and other models could allow managers to more efficiently protect public health based on site conditions

  17. Report on key comparison COOMET.AUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz

    NASA Astrophysics Data System (ADS)

    Dobrowolska, D.; Kosterov, A.

    2016-01-01

    This is the final report for regional key comparison COOMET.AUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Two laboratories—Central Office of Measures (GUM)—the national metrology institute for Poland and the State Enterprise Scientific-Research Institute for Metrology of Measurement and Control Systems (DP NDI Systema)— the designated institute for acoustics in Ukraine took part in this comparison with the GUM as a pilot. One travelling type LS1P microphone was circulated to the participants and results in the form of regular calibration certificates were collected. The results of the DP NDI Systema obtained in this comparison were linked to the CCAUV.A-K5 key comparison through the joint participation of the GUM. The degrees of equivalence were computed for DP NDI Systema with respect to the CCAUV.A-K5 key comparison reference value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory`s Source Region Program. Appendix B: Surface ground motion

    SciTech Connect

    Weaver, T.A.; Baker, D.F.; Edwards, C.L.; Freeman, S.H.

    1993-10-01

    Surface ground motion was recorded for many of the Integrated Verification Experiments using standard 10-, 25- and 100-g accelerometers, force-balanced accelerometers and, for some events, using golf balls and 0.39-cm steel balls as surface inertial gauges (SIGs). This report contains the semi-processed acceleration, velocity, and displacement data for the accelerometers fielded and the individual observations for the SIG experiments. Most acceleration, velocity, and displacement records have had calibrations applied and have been deramped, offset corrected, and deglitched but are otherwise unfiltered or processed from their original records. Digital data for all of these records are stored at Los Alamos National Laboratory.

  19. Calibration of a helium-cooled infrared spatial radiometer and grating spectrometer

    NASA Technical Reports Server (NTRS)

    Jacobsen, Larry; Sargent, Steve; Wyatt, Clair L.; Steed, Allan J.

    1992-01-01

    Methods used by the Space Dynamics Laboratory of Utah State University (SDL/USU) to calibrate infrared sensors are described, using the Infrared Background Signature Survey (IBSS) spatial radiometer and grating spectrometer as examples. A calibration equation and a radiometric model are given for each sensor to describe their responsivity in terms of individual radiometric parameters. The calibration equation terms include dark offset, linearity, absolute responsivity, and measurement uncertainty, and the radiometric model domains include spatial, spectral, and temporal domains. A portable calibration facility, designed and fabricated by SDL/USU, provided collimated, extended, diffuse scatter, and Jones sources in a single cryogenic dewar. This multi-function calibrator allowed calibration personnel to complete a full calibration of the IBSS infrared radiometer and spectrometer in two 15-day periods. A calibration data system was developed to control and monitor the calibration facility, and to record and analyze sensor data.

  20. A feasibility study for a one-megawatt pulsed spallation source at Los Alamos National Laboratory

    SciTech Connect

    Pynn, R.

    1994-07-01

    Over the past two decades, high-intensity proton accelerators have been designed and developed to support nuclear physics research and defense applications. This technology has now matured to the point where it can support simultaneous and cost-effective exploitation of a number of important areas of both basic and applied science. Examples include neutron scattering, the production of radioisotopes, tests of technologies to transmute nuclear waste, radiation damage studies, nuclear physics, and muon spin research. As part of a larger program involving these and other areas, a team at Los Alamos National Laboratory has undertaken a feasibility study for a 1-MW pulsed spallation neutron source (PSS) based on the use of an 800-MeV proton linac and an accumulator ring. In January 1994, the feasibility study was reviewed by a large, international group of experts in the design of accelerators and neutron spallation targets. This group confirmed the viability of the proposed neutron source. In this paper, I describe the approach Los Alamos has taken to the feasibility study, which has involved a synergistic application of the Laboratory`s expertise in nuclear science and technology, computation, and particle-beam technologies. Several examples of problems resolved by the study are described, including chopping of low-energy proton beam, interactions between H{sup {minus}} particles and the stripper foil used to produce protons for injection into an accumulator ring, and the inclusion of engineering realities into the design of a neutron production target. These examples are chosen to illustrate the breadth of the expertise that has been brought to bear on the feasibility study and to demonstrate that there are real R&D issues that need to be resolved before a next-generation spoliation source can be built.

  1. Laboratory Calibration Studies in Support of ORGANICS on the International Space Station: Evolution of Organic Matter in Space

    NASA Technical Reports Server (NTRS)

    Ruiterkamp, R.; Ehrenfreund, P.; Halasinski, T.; Salama, F.; Foing, B.; Schmidt, W.

    2002-01-01

    This paper describes the scientific overview and current status of ORGANICS an exposure experiment performed on the International Space Station (ISS) to study the evolution of organic matter in space (PI: P. Ehrenfreund), with supporting laboratory experiments performed at NASA Ames. ORGANICS investigates the chemical evolution of samples submitted to long-duration exposure to space environment in near-Earth orbit. This experiment will provide information on the nature, evolution, and survival of carbon species in the interstellar medium (ISM) and in solar system targets.

  2. Measurement of Turbulence with Acoustic Doppler Current Profilers - Sources of Error and Laboratory Results

    USGS Publications Warehouse

    Nystrom, E.A.; Oberg, K.A.; Rehmann, C.R.

    2002-01-01

    Acoustic Doppler current profilers (ADCPs) provide a promising method for measuring surface-water turbulence because they can provide data from a large spatial range in a relatively short time with relative ease. Some potential sources of errors in turbulence measurements made with ADCPs include inaccuracy of Doppler-shift measurements, poor temporal and spatial measurement resolution, and inaccuracy of multi-dimensional velocities resolved from one-dimensional velocities measured at separate locations. Results from laboratory measurements of mean velocity and turbulence statistics made with two pulse-coherent ADCPs in 0.87 meters of water are used to illustrate several of inherent sources of error in ADCP turbulence measurements. Results show that processing algorithms and beam configurations have important effects on turbulence measurements. ADCPs can provide reasonable estimates of many turbulence parameters; however, the accuracy of turbulence measurements made with commercially available ADCPs is often poor in comparison to standard measurement techniques.

  3. Recovery the release history and source location of a pollutant in groundwater using data collected in laboratory

    NASA Astrophysics Data System (ADS)

    Zanini, A.; Cupola, F.

    2013-12-01

    This work shows the application of an innovative procedure that is able to simultaneously identify the release history and the source location of a pollutant injection in groundwater using a dataset obtained experimentally. The methodology follows a geostatistical approach and it requires a preliminary delineation of a probably source area. The dataset was provided through an experimental installation developed at the hydraulic laboratory of the University of Parma (DICATeA). The equipment represents a 2-D unconfined aquifer controlled through two constant head levels (upstream and downstream); it consists of a Plexiglas sandbox filled with a porous medium (1 mm glass beads). An injector was placed inside the porous medium and sodium fluorescein salt was used as tracer during the tests. The standard test consists of releasing a constant and known concentration with a variable flow rate. The injection rate and the mean flow rate inside the sandbox are stored by means of a data acquisition system, meanwhile the concentration distribution inside the sandbox is observed through the processing of side wall images collected by means of a digital camera. The digital camera and the sandbox are placed in a dark room lightened by blue light in order to excite the fluorescein and easily evaluate the concentration distribution. A Matlab routine was developed to cut and to correct images by a projective transformation in order to obtain pictures with same size and orientation. Each pixel of the image has known coordinates on the sandbox. After a calibration process, the relationships between the luminosity of the emitted fluorescence and the tracer concentration have been identified in each pixel of the picture and consequently in each point of the domain. Initially a series of simple tests (with constant injection) were carried out with the aim at validating the experimental equipment comparing the observed data to those collected through the images, such as mass balance or

  4. A novel method for the preparation of large-area 90Sr/90Y sources for the calibration of hand contamination monitors.

    PubMed

    Kumar, Manoj; Gandhi, Shyamala S; Chakravarty, Rubel; Nuwad, J; Udhayakumar, J; Dash, Ashutosh

    2013-09-01

    This paper describes a method for the preparation of large-area (90)Sr/(90)Y polymer film sources for the calibration of hand contamination monitors. The process consists of solvent extraction of predictable quantity of (90)Sr into an organic solvent containing di-tert-butyl-cyclohexano-18-crown-6 (DCH18C6), formation of a polymeric solution of poly(methyl methacrylate) (PMMA), pouring the (90)Sr-embedded polymer solution over a surface of a defined area followed by evaporation to create a thin film and peeling-off of the radioactive PMMA film. Quality control tests of the radioactive films were carried out to ensure nonleachability, uniform distribution of activity and stability. Sources having 5kBq±428Bq were prepared using this method and routinely used for calibration of contamination monitors. PMID:23714116

  5. Plasma source ion implantation research and applications at Los Alamos National Laboratory

    SciTech Connect

    Munson, C.P.; Faehl, R.J.; Henins, I.

    1996-12-31

    Plasma Source Ion Implantation research at Los Alamos Laboratory includes direct investigation of the plasma and materials science involved in target surface modification, numerical simulations of the implantation process, and supporting hardware engineering. Target materials of Al, Cr, Cu-Zn, Mg, Ni, Si, Ti, W, and various Fe alloys have been processed using plasmas produced from Ar, NH{sub 3}, N{sub 2}, CH{sub 4}, and C{sub 2}H{sub 2} gases. Individual targets with surface areas as large as {approximately}4 m{sup 2}, or weighing up to 1200 kg, have been treated in the large LANL facility. In collaboration with General Motors and the University of Wisconsin, a process has been developed for application of hard, low friction, diamond-like-carbon layers on assemblies of automotive pistons. Numerical simulations have been performed using a 2{1/2}-D particle- in-cell code, which yields time-dependent implantation energy, dose, and angle of arrival for ions at the target surface for realistic geometries. Plasma source development activities include the investigation of pulsed, inductively coupled sources capable of generating highly dissociated N{sup +} with ion densities n{sub i} {approximately} 10{sup 11}/cm{sup 3}, at {approximately}100 W average input power. Cathodic arc sources have also been used to produce filtered metallic and C plasmas for implantation and deposition either in vacuum, or in conjunction with a background gas for production of highly adherent ceramic coatings.

  6. Laboratory calibration and field testing of the Chemcatcher-Metal for trace levels of rare earth elements in estuarine waters.

    PubMed

    Petersen, Jördis; Pröfrock, Daniel; Paschke, Albrecht; Broekaert, Jose A C; Prange, Andreas

    2015-10-01

    Little knowledge is available about water concentrations of rare earth elements (REEs) in the marine environment. The direct measurement of REEs in coastal waters is a challenging task due to their ultra-low concentrations as well as the high salt content in the water samples. To quantify these elements at environmental concentrations (pg L(-1) to low ng L(-1)) in coastal waters, current analytical techniques are generally expensive and time consuming, and require complex chemical preconcentration procedures. Therefore, an integrative passive sampler was tested as a more economic alternative sampling approach for REE analysis. We used a Chemcatcher-Metal passive sampler consisting of a 3M Empore Chelating Disk as the receiving phase, as well as a cellulose acetate membrane as the diffusion-limiting layer. The effect of water turbulence and temperature on the uptake rates of REEs was analyzed during 14-day calibration experiments by a flow-through exposure tank system. The sampling rates were in the range of 0.42 mL h(-1) (13 °C; 0.25 m s(-1)) to 4.01 mL h(-1) (13 °C; 1 m s(-1)). Similar results were obtained for the different REEs under investigation. The water turbulence was the most important influence on uptake. The uptake rates were appropriate to ascertain time-weighted average concentrations of REEs during a field experiment in the Elbe Estuary near Cuxhaven Harbor (exposure time 4 weeks). REE concentrations were determined to be in the range 0.2 to 13.8 ng L(-1), where the highest concentrations were found for neodymium and samarium. In comparison, most of the spot samples measured along the Chemcatcher samples had REE concentrations below the limit of detection, in particular due to necessary dilution to minimize the analytical problems that arise with the high salt content in marine water samples. This study was among the first efforts to measure REE levels in the field using a passive sampling approach. Our results suggest that passive samplers could be

  7. Calibration of hydrometers

    NASA Astrophysics Data System (ADS)

    Lorefice, Salvatore; Malengo, Andrea

    2006-10-01

    After a brief description of the different methods employed in periodic calibration of hydrometers used in most cases to measure the density of liquids in the range between 500 kg m-3 and 2000 kg m-3, particular emphasis is given to the multipoint procedure based on hydrostatic weighing, known as well as Cuckow's method. The features of the calibration apparatus and the procedure used at the INRiM (formerly IMGC-CNR) density laboratory have been considered to assess all relevant contributions involved in the calibration of different kinds of hydrometers. The uncertainty is strongly dependent on the kind of hydrometer; in particular, the results highlight the importance of the density of the reference buoyant liquid, the temperature of calibration and the skill of operator in the reading of the scale in the whole assessment of the uncertainty. It is also interesting to realize that for high-resolution hydrometers (division of 0.1 kg m-3), the uncertainty contribution of the density of the reference liquid is the main source of the total uncertainty, but its importance falls under about 50% for hydrometers with a division of 0.5 kg m-3 and becomes somewhat negligible for hydrometers with a division of 1 kg m-3, for which the reading uncertainty is the predominant part of the total uncertainty. At present the best INRiM result is obtained with commercially available hydrometers having a scale division of 0.1 kg m-3, for which the relative uncertainty is about 12 × 10-6.

  8. Automated calibration of a flight particle spectrometer

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1986-01-01

    An automatic calibration system was designed for use in the vacuum facility at the Space Science Laboratory of the Marshall Space Flight Center. That system was developed and used in the intervening winter to calibrate the ion spectrometer that eventually flew in May 1986 aboard the NASA project, CRIT 1. During this summer, it is planned to implement the calibration of both an ion and electron spectrometer of a new design whose basic elements were conceived during the winter of 1985 to 1986. This spectrometer was completed in the summer and successfully mounted in the vacuum tank for calibration. However, the source gate valve malfunctioned, and, at the end of the summer, it still needed a replacement. During the inevitable delays in the experimental research, the numerical model of the Critical Velocity effect was completed and these results were presented.

  9. Imager for Mars Pathfinder (IMP) image calibration

    USGS Publications Warehouse

    Reid, R.J.; Smith, P.H.; Lemmon, M.; Tanner, R.; Burkland, M.; Wegryn, E.; Weinberg, J.; Marcialis, R.; Britt, D.T.; Thomas, N.; Kramm, R.; Dummel, A.; Crowe, D.; Bos, B.J.; Bell, J.F., III; Rueffer, P.; Gliem, F.; Johnson, J. R.; Maki, J.N.; Herkenhoff, K. E.; Singer, Robert B.

    1999-01-01

    The Imager for Mars Pathfinder returned over 16,000 high-quality images from the surface of Mars. The camera was well-calibrated in the laboratory, with <5% radiometric uncertainty. The photometric properties of two radiometric targets were also measured with 3% uncertainty. Several data sets acquired during the cruise and on Mars confirm that the system operated nominally throughout the course of the mission. Image calibration algorithms were developed for landed operations to correct instrumental sources of noise and to calibrate images relative to observations of the radiometric targets. The uncertainties associated with these algorithms as well as current improvements to image calibration are discussed. Copyright 1999 by the American Geophysical Union.

  10. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    NASA Astrophysics Data System (ADS)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  11. East Asia Dust Source Location Using the Naval Research Laboratory's 1-km Dust Enhancement Product

    NASA Astrophysics Data System (ADS)

    Walker, A. L.; Curtis, C. A.; Miller, S. D.; Richardson, K.; Westphal, D. L.

    2011-12-01

    In the effort to predict dust storms and their effects on local, regional and global scales an often cited uncertainty is the precise location of dust sources. Many approaches have been used to identify major dust source regions in East Asia. These approaches include analysis of station data for frequency of dust storms, drifting dust, dusty day, wind speed, and PM10 total suspended particulates. Some approaches emphasize the location of land surface type (Gobi, sandy desert, and loess) and geomorphological setting/features (basins, plateaus, alluvial fans, dry rivers, or oases). Other approaches use remote sensing to locate areas of high dust activity using the Total Ozone Mapping Spectrometer Aerosol Index (TOMS AI) data, to correlate Normalized Difference Vegetation Index (NDVI) vegetation cover with dust storm frequency, or to track dust storm event origination by analyzing Moderate Resolution Imaging Spectroradiometer (MODIS) images. It is also customary for researchers to combine two or more of these approaches to identify dust source regions. In this paper we use a novel approach to locate dust sources in East Asia. Utilizing the Naval Research Laboratory's satellite derived 1-km Dust Enhancement Product (DEP) imagery we can readily distinguish elevated dust over land from other components of the scene and individual dust plumes are readily seen. The high resolution of the DEP allows the many small, eroding point sources (measuring 1-10s km across) that form individual plumes to be located. Five years (2007 - 2011) of East Asia DEP imagery have been analyzed. Dust source frequency plots will be shown highlighting the most active dust source areas in East Asia. Our results show the most active point sources are located along the slopes and around the rim of large basins. Within basins, on plateaus and in valleys point sources are concentrated in smaller depressions relative to the surrounding topography. Point sources are also associated with the action of

  12. The EnzymeTracker: an open-source laboratory information management system for sample tracking

    PubMed Central

    2012-01-01

    Background In many laboratories, researchers store experimental data on their own workstation using spreadsheets. However, this approach poses a number of problems, ranging from sharing issues to inefficient data-mining. Standard spreadsheets are also error-prone, as data do not undergo any validation process. To overcome spreadsheets inherent limitations, a number of proprietary systems have been developed, which laboratories need to pay expensive license fees for. Those costs are usually prohibitive for most laboratories and prevent scientists from benefiting from more sophisticated data management systems. Results In this paper, we propose the EnzymeTracker, a web-based laboratory information management system for sample tracking, as an open-source and flexible alternative that aims at facilitating entry, mining and sharing of experimental biological data. The EnzymeTracker features online spreadsheets and tools for monitoring numerous experiments conducted by several collaborators to identify and characterize samples. It also provides libraries of shared data such as protocols, and administration tools for data access control using OpenID and user/team management. Our system relies on a database management system for efficient data indexing and management and a user-friendly AJAX interface that can be accessed over the Internet. The EnzymeTracker facilitates data entry by dynamically suggesting entries and providing smart data-mining tools to effectively retrieve data. Our system features a number of tools to visualize and annotate experimental data, and export highly customizable reports. It also supports QR matrix barcoding to facilitate sample tracking. Conclusions The EnzymeTracker was designed to be easy to use and offers many benefits over spreadsheets, thus presenting the characteristics required to facilitate acceptance by the scientific community. It has been successfully used for 20 months on a daily basis by over 50 scientists. The EnzymeTracker is

  13. An Updated Calibration of the ROSAT PSPC Particle Background for the Analysis of Diffuse and Extended Sources

    NASA Astrophysics Data System (ADS)

    Plucinsky, P. P.; Snowden, S. L.; Briel, U. G.; Hasinger, G.; Pfeffermann, E.

    1993-11-01

    In order to permit quantitative studies of the cosmic diffuse X-ray background (DXRB) and of extended X-ray sources, we present updated calibrations of the particle-induced background of the Position Sensitive Proportional Counters (PSPCs) on board the Röntgen Satellite (ROSAT). We present new parameterizations of the temporal, spectral, and spatial distributions of the particle-induced events following closely the analysis discussed in Snowden et al. (1992). The ROSAT Guest Observer (GO) may find a step-by-step method for applying these parameterizations to a GO observation in § 3.4. Except for a variable contamination which is present in channels ≤ 18 and a change in our understanding of the externally produced components, the current parameterizations are quite similar to the previous results. We have used the spectral information available on the variable contamination to formulate a method for determining the level of this contamination in a given observation. The PSPC rejection efficiency for particle background events in the pulse-height range 18 ≤ CH ≤ 249 is 99.90%, with a typical count rate of 4 × 10-6 counts s-1 arcmin-2 keV-1. During typical conditions, the count rate of residual events is well correlated with the Master Veto count rate. The spectrum in the pulse-height range 18 ≤ CH ≤ 249 is well described by a power law, a flat component, and an Al Kα line at 1.5 keV. The spatial distribution of counts with pulse heights ≥ 18 is uniform over the field of view except for a small radial gradient and shadowing of the Al Kα line and part of the flat continuum by the window support structure. During an astronomical observation in low-gain mode (after 1991 October 11), the particle background can also be monitored by the count rate in channels 260 ≤ CH ≤ 370, since in most cases all these events are produced by particles. We have used a 54 ks observation of the Ursa Major region to verify the accuracy of our model. We have also

  14. Laboratory Measurements on Martian Soil Simulant JSC Mars-1 Supporting the Calibration of Instruments for Planetary Missions

    NASA Astrophysics Data System (ADS)

    Simõs, F.; Trautner, R.; Grard, R.; Hamelin, M.

    2004-04-01

    The concentration of water in the Martian regolith is an important parameter in many scientific domains. The abundance and distribution of water in the atmosphere and under the surface of Mars have fundamental significance for the geological, hydrological and climatic history of the planet. Furthermore, water is a fundamental ingredient of life and represents an important potential resource for future manned missions. Water possesses an electrical signature that allows the identification of its presence among other materials, even at very low concentrations. Not only the permittivity, but also the conductivity of permafrost and water-bearing rocks depends upon the presence of water. A laboratory facility has been set up to measure the complex permittivity of soil mixtures as a function of porosity, humidity, and temperature in the frequency range 10 Hz 10 kHz. The experimental technique is presented and the results obtained with the JSC Mars-1 soil simulant are discussed. A measurable gravimetric water content threshold is evaluated. The measurement of the dielectric properties of soil analogues allows estimating conductivity and permittivity of the Martian regolith, and supports the design of instruments for the detection of water and ice.

  15. A step towards temperature-referenced ERT: Laboratory-calibrated ERT of seasonal changes in permafrost rock walls at the Zugspitze (German/Austrian Alps)

    NASA Astrophysics Data System (ADS)

    Krautblatter, M.; Verleysdonk, S.; Flores-Orozco, A.; Kemna, A.

    2009-04-01

    High-resolution ERT with 127 electrodes and on average 1550 datum points was conducted in a 276 m long gallery along the permafrost-affected north face of the Zugspitze in 2800 m a.s.l. in Februray, May, June, July, August, September and October 2007. Inversion was performed in a 8400 finite element grid with adjusted boundary conditions. To receive quantitatively reliable ERT values, we fitted a smoothness-constrained Occam's inversion to an empirically measured normal-reciprocal error model. Water-saturated dolomised Wetterstein limestone was measured in the laboratory to freeze at 30 (±3) kohmm at -0.5 (±0.1) °C, independent of initial or refreezing paths. Resistivity of unfrozen limestones increases by less than 104 ohmm/°C. According to laboratory values, temperature referencing of ERT below -0.5 °C could be described by p [in kohmm] = 19 - 19.3 (±2.1) * t [in C°] with an R² of 0.99. A comparison of the absolute ERT plots and monthly changes is consistent with the temporal changes of air temperature and rock temperature data. Maximum resistivity changes (30 kohmm ≈ lab analogue +1.5°C warming) in depths up to 27 m occur coincidently to maximum measured cleftwater flow in May. Differences in snow coverage seem to dominate the general distribution of permafrost and the timing of thaw in the rock wall transect. Refreezing from the rock wall starts in September is apparent in both, resistivity changes and expansion of the high-resistivity body. Error-controlled inversion and temperature calibration in the laboratory present the first approach towards quantitative temperature-referenced ERT in permafrost rocks.

  16. Conceptual study of moderately coupled plasmas and experimental comparison of laboratory x-ray sources

    SciTech Connect

    Li, C.

    1993-12-01

    In this thesis the fundamental concepts of moderately coupled plasmas, for which 2{approx_lt}ln{Lambda}{sub b}{approx_lt}10, are, for the first time, presented. This investigation is motivated because neither the conventional Fokker-Planck approximation [for weakly coupled plasmas (ln{Lambda}{sub b}{approx_lt}10)] nor the theory of dielectric response with correlations for strongly coupled plasmas (ln{Lambda}{sub b}{approx_lt}1) has satisfactorily addressed this regime. Specifically, herein the standard Fokker-Planck operator for Coulomb collisions has been modified to include hitherto neglected terms that are directly associated with large-angle scattering. In addition a reduced electron-ion collision operator has been calculated that, for the first time, manifests 1/ln{Lambda}{sub b} corrections. Precise calculations of some relaxation rates and crude calculations of electron transport coefficients have been made. As one of major applications of the modified Fokker-Planck equation, the stopping powers and {rho}R have been calculated for charged fusion products ({alpha}`s, {sup 3}H, {sup 3}He) and hot electrons interacting with plasmas relevant to inertial confinement fusion. In the second major topic of this thesis, advances made in the area of laboratory x-ray sources are presented. First, and most importantly, through the use a Cockcroft-Walton linear accelerator, a charged particle induced x-ray emission (PIXE) source has been developed. Intense line x radiation (including K-, L-, M-, and N-lines) with wavelengths from 0.5 {angstrom} to 111 {angstrom} have been successfully produced. Second, a new high intensity electron-beam x-ray generator has also been developed, and it has been used with advantage in the soft x-ray region ( < 3 keV). Finally, a direct comparisons of both sources (PIXE and electron-beam x-ray sources) to a commercially available radioactive {alpha} fluorescent x-ray source has been made.

  17. A New Electron Source for Laboratory Simulation of the Space Environment

    NASA Technical Reports Server (NTRS)

    Krause, Linda Habash; Everding, Daniel; Bonner, Mathew; Swan, Brian

    2012-01-01

    We have developed a new collimated electron source called the Photoelectron Beam Generator (PEBG) for laboratory and spaceflight applications. This technology is needed to replace traditional cathodes because of serious fundamental weaknesses with the present state of the art. Filament cathodes suffer from numerous practical problems, even if expertly designed, including the dependence of electron emission on filament temperature, short lifetimes (approx 100 hours), and relatively high power (approx 10s of W). Other types of cathodes have solved some of these problems, but they are plagued with other difficult problems, such as the Spindt cathode's extreme sensitivity to molecular oxygen. None to date have been able to meet the demand of long lifetime, robust packaging, and precision energy and flux control. This new cathode design avoids many common pitfalls of traditional cathodes. Specifically, there are no fragile parts, no sensitivity to oxygen, no intrinsic emission dependencies on device temperature, and no vacuum requirements for protecting the source from contamination or damage. Recent advances in high-brightness Light Emitting Diodes (LEDs) have provided the key enabling technology for this new electron source. The LEDs are used to photoeject electrons off a target material of a low work-function, and these photoelectrons are subsequently focused into a laminar beam using electrostatic lenses. The PEBG works by illuminating a target material and steering photoelectrons into a laminar beam using electrostatic lenses

  18. Inter-laboratory calibration of natural gas round robins for δ2H and δ13C using off-line and on-line techniques

    USGS Publications Warehouse

    Dai, Jinxing; Xia, Xinyu; Li, Zhisheng; Coleman, Dennis D.; Dias, Robert F.; Gao, Ling; Li, Jian; Deev, Andrei; Li, Jin; Dessort, Daniel; Duclerc, Dominique; Li, Liwu; Liu, Jinzhong; Schloemer, Stefan; Zhang, Wenlong; Ni, Yunyan; Hu, Guoyi; Wang, Xiaobo; Tang, Yongchun

    2012-01-01

    Compound-specific carbon and hydrogen isotopic compositions of three natural gas round robins were calibrated by ten laboratories carrying out more than 800 measurements including both on-line and off-line methods. Two-point calibrations were performed with international measurement standards for hydrogen isotope ratios (VSMOW and SLAP) and carbon isotope ratios (NBS 19 and L-SVEC CO2). The consensus δ13C values and uncertainties were derived from the Maximum Likelihood Estimation (MLE) based on off-line measurements; the consensus δ2H values and uncertainties were derived from MLE of both off-line and on-line measurements, taking the bias of on-line measurements into account. The calibrated consensus values in ‰ relative to VSMOW and VPDB are: NG1 (coal-related gas): Methane: δ2HVSMOW = − 185.1‰ ± 1.2‰, δ13CVPDB = − 34.18‰ ± 0.10‰ Ethane: δ2HVSMOW = − 156.3‰ ± 1.8‰, δ13CVPDB = − 24.66‰ ± 0.11‰ Propane: δ2HVSMOW = − 143.6‰ ± 3.3‰, δ13CVPDB = − 22.21‰ ± 0.11‰ i-Butane: δ13CVPDB = − 21.62‰ ± 0.12‰ n-Butane: δ13CVPDB = − 21.74‰ ± 0.13‰ CO2: δ13CVPDB = − 5.00‰ ± 0.12‰ NG2 (biogas): Methane: δ2HVSMOW = − 237.0‰ ± 1.2‰, δ13CVPDB = − 68.89‰ ± 0.12‰ NG3 (oil-related gas): Methane: δ2HVSMOW = − 167.6‰ ± 1.0‰, δ13CVPDB = − 43.61‰ ± 0.09‰ Ethane: δ2HVSMOW = − 164.1‰ ± 2.4‰, δ13CVPDB = − 40.24‰ ± 0.10‰ Propane: δ2HVSMOW = − 138.4‰ ± 3.0‰, δ13CVPDB = − 33.79‰ ± 0.09‰ All of the assigned values are traceable to the international carbon isotope standard of VPDB and hydrogen isotope standard of VSMOW.

  19. Real-time dynamic calibration of a tunable frequency laser source using a Fabry-Pérot interferometer.

    PubMed

    Mandula, Gábor; Kis, Zsolt; Lengyel, Krisztián

    2015-12-01

    We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for a wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions. PMID:26724003

  20. Real-time dynamic calibration of a tunable frequency laser source using a Fabry-Pérot interferometer

    SciTech Connect

    Mandula, Gábor Kis, Zsolt; Lengyel, Krisztián

    2015-12-15

    We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for a wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.

  1. HENC performance evaluation and plutonium calibration

    SciTech Connect

    Menlove, H.O.; Baca, J.; Pecos, J.M.; Davidson, D.R.; McElroy, R.D.; Brochu, D.B.

    1997-10-01

    The authors have designed a high-efficiency neutron counter (HENC) to increase the plutonium content in 200-L waste drums. The counter uses totals neutron counting, coincidence counting, and multiplicity counting to determine the plutonium mass. The HENC was developed as part of a Cooperative Research and Development Agreement between the Department of Energy and Canberra Industries. This report presents the results of the detector modifications, the performance tests, the add-a-source calibration, and the plutonium calibration at Los Alamos National Laboratory (TA-35) in 1996.

  2. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

  3. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2016-03-01

    We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  4. Structural testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    SciTech Connect

    Bronowski, D.R.; Madsen, M.M.

    1991-06-01

    The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in three orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.

  5. Applied x-ray computed tomography with high resolution in paleontology using laboratory and synchrotron sources

    NASA Astrophysics Data System (ADS)

    Bidola, Pidassa; Pacheco, Mirian L. A. F.; Stockmar, Marco K.; Achterhold, Klaus; Pfeiffer, Franz; Beckmann, Felix; Tafforeau, Paul; Herzen, Julia

    2014-09-01

    X-ray computed tomography (CT) has become an established technique in the biomedical imaging or materials science research. Its ability to non-destructively provide high-resolution images of samples makes it attractive for diverse fields of research especially the paleontology. Exceptionally, the Precambrian is a geological time of rocks deposition containing several fossilized early animals, which still need to be investigated in order to predict the origin and evolution of early life. Corumbella werneri is one of those fossils skeletonized in Corumbá (Brazil). Here, we present a study on selected specimens of Corumbella werneri using absorption-based contrast imaging at diverse tomographic setups. We investigated the potential of conventional laboratory-based device and synchrotron radiation sources to visualize internal structures of the fossils. The obtained results are discussed as well as the encountered limitations of those setups.

  6. Certification testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    SciTech Connect

    Bronowski, D.R.; Madsen, M.M.

    1991-09-01

    The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.

  7. Calibration method for a photoacoustic system for real time source apportionment of light absorbing carbonaceous aerosol based on size distribution measurements

    NASA Astrophysics Data System (ADS)

    Utry, Noemi; Ajtai, Tibor; Pinter, Mate; Orvos, Peter I.; Szabo, Gabor; Bozoki, Zoltan

    2016-04-01

    In this study, we introduce a calibration method with which sources of light absorbing carbonaceous particulate matter (LAC) can be apportioned in real time based on multi wavelength optical absorption measurements with a photoacoustic system. The method is primary applicable in wintry urban conditions when LAC is dominated by traffic and biomass burning. The proposed method was successfully tested in a field campaign in the city center of Szeged, Hungary during winter time where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. With the help of the proposed calibration method a relationship between the measured Aerosol Angström Exponent (AAE) and the number size distribution can be deduced. Once the calibration curve is determined, the relative strength of the two pollution sources can be deduced in real time as long as the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed in the presented measurement campaign by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The proposed method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data.

  8. Laboratory-based standards for interpreting X-ray spectra from celestial sources

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.

    2014-08-01

    High sensitivity, high resolution instrumentation flown on the Chandra, XMM-Newton, and Suzaku X-ray observatories have provided X-ray astrophysicists with relatively straightforward access to powerful line diagnostics that tightly constrain the physical parameters of celestial sources. Accurate measurements of transition energies, line shapes, and intensities provide, for example, quantitative measures of velocity fields, electron densities, and temperatures. X-ray measurements probe sources unattainable by any other wavelength bands, such as the regions of accretion disks near black holes, and the hot intracluster medium in clusters of galaxies. Thus, X-ray astronomy in the age of Chandra, XMM-Newton, and Suzaku provides important information necessary to understand the formation and evolution of galaxies, stars, the phenomena near black holes, and the evolution of the universe as a whole. Beginning in 2015 with the launch of the Astro-H X-ray Observatory, high throughput, high resolution X-ray spectroscopy of extended sources in the Fe K band will be available for the first time, making it possible to unravel the mysteries of some of the most energetic objects in our Universe. Accurate, unambiguous interpretation of high quality, high resolution spectra from these premier observatories requires laboratory-tested spectral models. Starting over twenty years ago, the electron beam ion trap facility at Lawrence Livermore National Laboratory has produced a plethora of highly accurate data to satisfy this requirement, and has also addressed specific problems found to be beyond any modeling capability. As part of this work, a variety of new measurement techniques and instruments, including the NASA/GSFC ECS calorimeter, have been developed. More recently, the portable FLASH-EBIT, built and maintained at the Max Planck Institute for Nuclear Physics and coupled to third and fourth generation light sources has opened new measurement regimes, i.e., the ability to probe the

  9. Comparison of spectral radiance responsivity calibration techniques used for backscatter ultraviolet satellite instruments

    NASA Astrophysics Data System (ADS)

    Kowalewski, M. G.; Janz, S. J.

    2015-02-01

    Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.

  10. 10 CFR 31.8 - Americium-241 and radium-226 in the form of calibration or reference sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., use, and transfer of byproduct material, source material, or special nuclear material; and (2) Any... chapter which authorizes it to receive, possess, use, and transfer byproduct material, source material, or... microcuries) of radium-226 in such sources; (2) Shall not receive, possess, use, or transfer a source...

  11. 10 CFR 31.8 - Americium-241 and radium-226 in the form of calibration or reference sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., use, and transfer of byproduct material, source material, or special nuclear material; and (2) Any... chapter which authorizes it to receive, possess, use, and transfer byproduct material, source material, or... microcuries) of radium-226 in such sources; (2) Shall not receive, possess, use, or transfer a source...

  12. 10 CFR 31.8 - Americium-241 and radium-226 in the form of calibration or reference sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., use, and transfer of byproduct material, source material, or special nuclear material; and (2) Any... chapter which authorizes it to receive, possess, use, and transfer byproduct material, source material, or... microcuries) of radium-226 in such sources; (2) Shall not receive, possess, use, or transfer a source...

  13. A transportable source of gamma rays with discrete energies and wide range for calibration and on-site testing of gamma-ray detectors

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Slavicek, Tomas; Kroupa, Martin; Owens, Alan; Pospisil, Stanislav; Janout, Zdenek; Kralik, Miloslav; Solc, Jaroslav; Valach, Ondrej

    2015-01-01

    We describe a compact and transportable wide energy range, gamma-ray station for the calibration of gamma-ray sensitive devices. The station was specifically designed for the on-site testing and calibration of gamma-ray sensitive spacecraft payloads, intended for space flight on the BepiColombo and SoIar Orbiter missions of the European Space Agency. The source is intended to serve as a calibrated reference for post test center qualification of integrated payload instruments and for preflight evaluation of scientific radiation sensors. Discrete gamma rays in the energy range 100 keV-9 MeV are produced in the station with reasonable intensity using a radionuclide neutron source and 100 l of distilled water with 22 kg salt dissolved. The gamma-rays generated contain many discrete lines conveniently evenly distributed over the entire energy range. The neutron and gamma-ray fields have been simulated by Monte Carlo calculations. Results of the numerical calculations are given in the form of neutron and gamma-ray spectra as well as dose equivalent rate. The dose rate was also determined directly by dedicated dosemetric measurements. The gamma-ray field produced in the station was characterized using a conventional HPGe detector. The application of the station is demonstrated by measurements taken with a flight-qualified LaBr3:Ce scintillation detector. Gamma-ray spectra acquired by both detectors are presented. The minimum measuring times for calibration of the flight-version detector, was between 2 and 10 min (up to 6.2 MeV) and 20-30 min (up to 8 MeV), when the detector was placed at a distance 2-5 m from the station.

  14. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.

    PubMed

    Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter

    2014-08-15

    Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events. PMID:24858216

  15. Absolute spectral radiance responsivity calibration of sun photometers

    SciTech Connect

    Xu Qiuyun; Zheng Xiaobing; Zhang Wei; Wang Xianhua; Li Jianjun; Li Xin; Li Zhengqiang

    2010-03-15

    Sun photometers are designed to measure direct solar irradiance and diffused sky radiance for the purpose of atmospheric parameters characterization. A sun photometer is usually calibrated by using a lamp-illuminated integrating sphere source for its band-averaged radiance responsivity, which normally has an uncertainty of 3%-5% at present. Considering the calibration coefficients may also change with time, a regular high precision calibration is important to maintain data quality. In this paper, a tunable-laser-based facility for spectral radiance responsivity calibration has been developed at the Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences. A reference standard radiance radiometer, calibrated against cryogenic radiometer, is used to determine the radiance from a laser-illuminated integrating sphere source. Spectral radiance responsivity of CIMEL CE318-2 sun photometer is calibrated using this new calibration system with a combined standard uncertainty of about 0.8%. As a validation, the derived band-averaged radiance responsivity are compared to that from a Goddard Space Flight Center lamp-based sphere calibration and good agreements (difference <1.4%) are found from 675 to 1020 nm bands.

  16. Pulsed neutrons: one year of experience with the new source at Argonne National Laboratory

    SciTech Connect

    Lander, G.H.

    1982-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source based on a 500-MeV proton accelerator operating at 30 Hz and with an average proton current of approx. 10 ..mu..A. Neutron-scattering instruments for elastic scattering include two powder diffractometers, a single-crystal diffractometer based on the Laue method and employing a large (30 x 30 cm) position-sensitive scintillation detector, a small-angle diffractometer using a position-sensitive detector, and a polarized-neutron diffractometer which will utilize the spin-refrigerator device to obtain a beam of white polarized neutrons. For inelastic scattering, we presently have the crystal-analyzer spectrometer and two chopper spectrometers capable of providing monoenergetic incident neutron beams of between 100 and 600 MeV. From its inception IPNS has been operating in a user mode and the selection of experiments is made by a Program Committee twice a year on the basis of the scientific merit of submitted proposals.

  17. A flexible setup for angle-resolved X-ray fluorescence spectrometry with laboratory sources.

    PubMed

    Spanier, M; Herzog, C; Grötzsch, D; Kramer, F; Mantouvalou, I; Lubeck, J; Weser, J; Streeck, C; Malzer, W; Beckhoff, B; Kanngießer, B

    2016-03-01

    X-ray fluorescence (XRF) analysis is one of the standard tools for the analysis of stratified materials and is widely applied for the investigation of electronics and coatings. The composition and thickness of the layers can be determined quantitatively and non-destructively. Recent work showed that these capabilities can be extended towards retrieving stratigraphic information like concentration depth profiles using angle-resolved XRF (ARXRF). This paper introduces an experimental sample chamber which was developed as a multi-purpose tool enabling different measurement geometries suited for transmission measurements, conventional XRF, ARXRF, etc. The chamber was specifically designed for attaching all kinds of laboratory X-ray sources for the soft and hard X-ray ranges as well as various detection systems. In detail, a setup for ARXRF using an X-ray tube with a polycapillary X-ray lens as source is presented. For such a type of setup, both the spectral and lateral characterizations of the radiation field are crucial for quantitative ARXRF measurements. The characterization is validated with the help of a stratified validation sample. PMID:27036820

  18. Design of an inexpensive integrating sphere student laboratory setup for the optical characterization of light sources

    NASA Astrophysics Data System (ADS)

    Leloup, Frédéric B.; Leyre, Sven; Bauwens, Eva; Van den Abeele, Toon; Hanselaer, Peter

    2016-01-01

    In this paper, the design of an inexpensive integrating sphere setup is presented, enabling students to perform optical characterization of light sources with reasonable accuracy, in a student laboratory context. Instead of using an expensive sphere with magnesium oxide or barium sulfate coating, a cheap polystyrene sphere is employed. In combination with a low-cost USB spectroradiometer, the system enables the direct measurement of the spectral radiant power of a light source. In addition to the radiant power, the luminous flux, luminous efficacy, and distinctive colorimetric quantities (colour coordinates, colour temperature, and colour rendering index) can be determined. Besides a description of the equipment used, the experimental measurement procedure and some typical measurement results are presented. A comparison between the data and the results obtained with scientific metrology instrumentation indicates reasonable accuracy. As a result, it can be concluded that the purpose of the presented experiments, being that students become acquainted with applications of radiometry and photometry, and with data collection and data analysis as in a professional context, is fully achieved with the described test setup.

  19. Design of a laboratory for experiments with a pulsed neutron source.

    PubMed

    Memoli, G; Trusler, J P M; Ziver, A K

    2009-06-01

    We present the results of a neutron shielding design and optimisation study performed to reduce the exposure to radiological doses arising from a 14 MeV pulsed neutron generator (PNG) having a maximum emission strength of 2.0 x 10(8) neutrons s(-1). The source was intended to be used in a new irradiation facility for the realisation of an experiment on acoustical cavitation in liquids. This paper describes in detail how the facility was designed to reduce both neutron and gamma-ray dose rates to acceptable levels, taking into account the ALARP principle in following the steps of optimisation. In particular, this work compares two different methods of optimisation to assess neutron dose rates: the use of analytical methods and the use of Monte Carlo simulations (MCNPX 2.4). The activation of the surrounding materials during operation was estimated using the neutron spectra as input to the FISPACT 3.0 code. The limitations of a first-order analytical model to determine the neutron activation levels are highlighted. The impact that activation has on the choice of the materials to be used inside the laboratory and on the waiting time before anyone can safely enter the room after the neutron source is switched off is also discussed. PMID:19454793

  20. Pulsed neutrons: One year of experience with the new source at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Lander, G. H.

    1983-05-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source based on a 500 MeV proton accelerator operating at 30 Hz and with an average proton current of ≈ 10 μA. Neutron scattering instruments for elastic scattering include two powder diffractometers, a single-crystal diffractometer based on the Laue method and employing a large (30 x 30 cm) position-sensitive scintillation detector, a small-angle diffractometer using a position-sensitive detector, and a polarized-neutron diffractometer which will utilize the spin-refrigerator device to obtain a beam of white polarized neutrons. For inelastic scattering we presently have the crystal-analyzer spectrometer, and two chopper spectrometers capable of providing monoenergetic incident neutron beams of between 100 and 600 meV. From its inception IPNS has been operating in a user mode and the selection of experiments is made by a Program Committee twice a year on the basis of the scientifi cmerit of submitted proposals.

  1. A flexible setup for angle-resolved X-ray fluorescence spectrometry with laboratory sources

    NASA Astrophysics Data System (ADS)

    Spanier, M.; Herzog, C.; Grötzsch, D.; Kramer, F.; Mantouvalou, I.; Lubeck, J.; Weser, J.; Streeck, C.; Malzer, W.; Beckhoff, B.; Kanngießer, B.

    2016-03-01

    X-ray fluorescence (XRF) analysis is one of the standard tools for the analysis of stratified materials and is widely applied for the investigation of electronics and coatings. The composition and thickness of the layers can be determined quantitatively and non-destructively. Recent work showed that these capabilities can be extended towards retrieving stratigraphic information like concentration depth profiles using angle-resolved XRF (ARXRF). This paper introduces an experimental sample chamber which was developed as a multi-purpose tool enabling different measurement geometries suited for transmission measurements, conventional XRF, ARXRF, etc. The chamber was specifically designed for attaching all kinds of laboratory X-ray sources for the soft and hard X-ray ranges as well as various detection systems. In detail, a setup for ARXRF using an X-ray tube with a polycapillary X-ray lens as source is presented. For such a type of setup, both the spectral and lateral characterizations of the radiation field are crucial for quantitative ARXRF measurements. The characterization is validated with the help of a stratified validation sample.

  2. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    SciTech Connect

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  3. From laboratory results to models: Polyoxymethylene as a parent of formaldehyde extended source in comet Halley

    NASA Astrophysics Data System (ADS)

    Cottin, H.; Benilan, Y.; Fray, N.; Gazeau, M.; Raulin, F.

    Measurements performed by the NMS mass spectrometer on board Giotto show that the formaldehyde density profile, as a function of the distance to the nucleus of comet Halley, cannot be explained only by a direct release of formaldehyde from the nucleus. Understanding this observation requires an additional source of formaldehyde, which is most commonly called "extended source". Such a phenomenon is also detected in comets Hyakutake and Hale-Bopp. Presence of Polyoxymethylene (POM-polymer of formaldehyde) has often been debated to interpret H2 CO extended source but until very recently important quantitative data were missing to allow an appropriate analysis of this hypothesis. Formaldehyde production rate from POM on solid grains is a function of several unknown parameters: the matrix in which POM is imbedded, the geometry of the grains, the chemical structure of the polymer, its photodegradation rate and its temperature. We have obtained experimental data concerning the photo and thermal degradation of POM and modelled the contribution of potential solid POM on dust particles to the gaseous phase. First results were presented in (Cottin et al., 2001) for a single size population of grains, and temperature as a free parameter. We have now extended our model to a more realistic grain population, based on actual measurements in Halley coma, for which velocity and temperature of each grain are a function of its size and composition. We have calculated the best fits to Giotto measurements and derived the amount of POM required to account H2 CO observation. The results show that the presence of a few percent in mass of solid POM on grains can provide a realistic explanation to the formaldehyde extended source observed in several comets. Even if the model still needs to be improved, for example to include different grains geometry, it can already be used to test other molecules like Hexamethylenetetramine (HMT) or poly-HCN against known extended sources such as CN, C2 or

  4. Development of the front end test stand and vessel for extraction and source plasma analyses negative hydrogen ion sources at the Rutherford Appleton Laboratory

    SciTech Connect

    Lawrie, S. R.; Faircloth, D. C.; Letchford, A. P.; Perkins, M.; Whitehead, M. O.; Wood, T.; Gabor, C.; Back, J.

    2014-02-15

    The ISIS pulsed spallation neutron and muon facility at the Rutherford Appleton Laboratory (RAL) in the UK uses a Penning surface plasma negative hydrogen ion source. Upgrade options for the ISIS accelerator system demand a higher current, lower emittance beam with longer pulse lengths from the injector. The Front End Test Stand is being constructed at RAL to meet the upgrade requirements using a modified ISIS ion source. A new 10% duty cycle 25 kV pulsed extraction power supply has been commissioned and the first meter of 3 MeV radio frequency quadrupole has been delivered. Simultaneously, a Vessel for Extraction and Source Plasma Analyses is under construction in a new laboratory at RAL. The detailed measurements of the plasma and extracted beam characteristics will allow a radical overhaul of the transport optics, potentially yielding a simpler source configuration with greater output and lifetime.

  5. Mathematical calibration of Ge detectors, and the instruments that use them

    SciTech Connect

    Bronson, F.L.; Young, B.

    1997-11-01

    Efficiency calibrations for Ge detectors are typically done with the use of multiple energy calibrations sources which are added to a bulk matrix intended to simulate the measurement sample, and then deposited in the sample container. This is rather easy for common laboratory samples. Bu, even there, for many environmental samples, waste assay samples, and operational health physics samples, accurate calibrations are difficult. For these situations, various mathematical corrections or direct calibration techniques are used at Canberra. EML has pioneered the use of mathematical calibrations following source-based detector characterization measurements for in situ measurements of environmental fallout. Canberra has expanded this by the use of MCNP for the source measurements required in EML. For other calibration situations, MCNP was used directly, as the primary calibration method. This is demonstrated to be at least as accurate as source based measurements, and probably better. Recently, a new method [ISOCS] has been developed and is nearing completion. This promises to be an easy to use calibration software that can be used by the customer for in situ gamma spectroscopy to accurately measure many large sized samples, such as boxes, drums, pipes, or to calibrate small laboratory-type samples. 8 refs., 8 figs., 5 tabs.

  6. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    SciTech Connect

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; Robinson, Jeff C.; Gullikson, Eric M.; Heimann, Philip; Yashchuk, Valerie V.; McKinney, Wayne R.; Schlotter, William F.; Rowen, Michael

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.

  7. Development and calibration of mirrors and gratings for the soft x-ray materials science beamline at the Linac Coherent Light Source free-electron laser.

    PubMed

    Soufli, Regina; Fernández-Perea, Mónica; Baker, Sherry L; Robinson, Jeff C; Gullikson, Eric M; Heimann, Philip; Yashchuk, Valeriy V; McKinney, Wayne R; Schlotter, William F; Rowen, Michael

    2012-04-20

    This work discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 to 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region. PMID:22534924

  8. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    DOE PAGESBeta

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; Robinson, Jeff C.; Gullikson, Eric M.; Heimann, Philip; Yashchuk, Valerie V.; McKinney, Wayne R.; Schlotter, William F.; Rowen, Michael

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on allmore » SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less

  9. Unit-specific calibration of Actigraph accelerometers in a mechanical setup – Is it worth the effort? The effect on random output variation caused by technical inter-instrument variability in the laboratory and in the field

    PubMed Central

    Moeller, Niels C; Korsholm, Lars; Kristensen, Peter L; Andersen, Lars B; Wedderkopp, Niels; Froberg, Karsten

    2008-01-01

    was observed over time. Conclusion The application of unit-specific calibration factors to data collected during free living conditions had no apparent effect on inter-instrument variability. In all probability, the effect of technical calibration was primarily attenuated in the field by other more dominant sources of variation. However, routine technical assessments are still very important for determining the acceleration responses in the batch of instruments being used and, if performed after every field use, for preventing decidedly broken instruments from being returned into the field repeatedly. PMID:18405353

  10. Method for the calibration of the spectral irradiance of tungsten filament transfer standard sources traceable to synchrotron radiation.

    PubMed

    Anevsky, Sergey; Krutikov, Vladimir; Minaeva, Olga; Minaev, Roman; Senin, Dmitriy; Hollandt, Jörg; Taubert, Dieter R

    2013-07-20

    The spectral irradiance calibration of tungsten strip and spiral filament lamps applying synchrotron radiation revealed that the spectral irradiance in the wavelength range from 280 to 400 nm can be well approximated by blackbody radiation according to Planck's law. Consequently, the spectral irradiance of the filament lamp can then be described by an effective irradiance temperature, which would be beneficial for practical measurements. Including the emissivity of tungsten into the approximation, the model can be expanded to visible and near-infrared wavelength regions. The effective irradiance temperature dependence of the lamp current was investigated and appeared to be close to linear. PMID:23872760

  11. A new chapter in environmental sensing: The Open-Source Published Environmental Sensing (OPENS) laboratory

    NASA Astrophysics Data System (ADS)

    Selker, J. S.; Roques, C.; Higgins, C. W.; Good, S. P.; Hut, R.; Selker, A.

    2015-12-01

    The confluence of 3-Dimensional printing, low-cost solid-state-sensors, low-cost, low-power digital controllers (e.g., Arduinos); and open-source publishing (e.g., Github) is poised to transform environmental sensing. The Open-Source Published Environmental Sensing (OPENS) laboratory has launched and is available for all to use. OPENS combines cutting edge technologies and makes them available to the global environmental sensing community. OPENS includes a Maker lab space where people may collaborate in person or virtually via on-line forum for the publication and discussion of environmental sensing technology (Corvallis, Oregon, USA, please feel free to request a free reservation for space and equipment use). The physical lab houses a test-bed for sensors, as well as a complete classical machine shop, 3-D printers, electronics development benches, and workstations for code development. OPENS will provide a web-based formal publishing framework wherein global students and scientists can peer-review publish (with DOI) novel and evolutionary advancements in environmental sensor systems. This curated and peer-reviewed digital collection will include complete sets of "printable" parts and operating computer code for sensing systems. The physical lab will include all of the machines required to produce these sensing systems. These tools can be addressed in person or virtually, creating a truly global venue for advancement in monitoring earth's environment and agricultural systems. In this talk we will present an example of the process of design and publication the design and data from the OPENS-Permeameter. The publication includes 3-D printing code, Arduino (or other control/logging platform) operational code; sample data sets, and a full discussion of the design set in the scientific context of previous related devices. Editors for the peer-review process are currently sought - contact John.Selker@Oregonstate.edu or Clement.Roques@Oregonstate.edu.

  12. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory.

    PubMed

    Ikeda, S; Kumaki, M; Kanesue, T; Okamura, M

    2016-02-01

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL. PMID:26931976

  13. An open-source, extensible system for laboratory timing and control

    NASA Astrophysics Data System (ADS)

    Gaskell, Peter E.; Thorn, Jeremy J.; Alba, Sequoia; Steck, Daniel A.

    2009-11-01

    We describe a simple system for timing and control, which provides control of analog, digital, and radio-frequency signals. Our system differs from most common laboratory setups in that it is open source, built from off-the-shelf components, synchronized to a common and accurate clock, and connected over an Ethernet network. A simple bus architecture facilitates creating new and specialized devices with only moderate experience in circuit design. Each device operates independently, requiring only an Ethernet network connection to the controlling computer, a clock signal, and a trigger signal. This makes the system highly robust and scalable. The devices can all be connected to a single external clock, allowing synchronous operation of a large number of devices for situations requiring precise timing of many parallel control and acquisition channels. Provided an accurate enough clock, these devices are capable of triggering events separated by one day with near-microsecond precision. We have achieved precisions of ˜0.1 ppb (parts per 109) over 16 s.

  14. New developments and applications of intense pulsed radiation sources at Sandia National Laboratories

    SciTech Connect

    Cook, D.

    1998-02-01

    In the past thirty-six months, tremendous strides have been made in x-ray production using high-current z-pinches. Today, the x-ray energy (1.9 MJ) and power (200 TW) output of the Z accelerator (formerly PBFA-II) is the largest available in the laboratory. These z-pinch x-ray sources are being developed for research into the physics of high energy density plasmas of interest in weapon behavior and in inertial confinement fusion. Beyond the Z accelerator current of 20 MA, an extrapolation to the X-1 accelerator level of 60 MA may have the potential to drive high-yield ICF reactions at affordable cost if several challenging technical problems can be overcome. New developments have also taken place at Sandia in the area of high current, mm-diameter electron beams for advanced hydrodynamic radiography. On SABRE, x-ray spot diameters were less than 2 mm with a dose of 100 R at 1 meter in a 40 ns pulse.

  15. Collecting data in the home laboratory: evolution of X-ray sources, detectors and working practices

    SciTech Connect

    Skarzynski, Tadeusz

    2013-07-01

    Recent developments in X-ray crystallographic hardware related to structural biology research are presented and discussed. While the majority of macromolecular X-ray data are currently collected using highly efficient beamlines at an ever-increasing number of synchrotrons, there is still a need for high-performance reliable systems for in-house experiments. In addition to crystal screening and optimization of data-collection parameters before a synchrotron trip, the home system allows the collection of data as soon as the crystals are produced to obtain the solution of novel structures, especially by the molecular-replacement method, and is invaluable in achieving the quick turnover that is often required for ligand-binding studies in the pharmaceutical industry. There has been a continuous evolution of X-ray sources, detectors and software developed for in-house use in recent years and a diverse range of tools for structural biology laboratories are available. An overview of the main directions of these developments and examples of specific solutions available to the macromolecular crystallography community are presented in this paper, showing that data collection ‘at home’ is still an attractive proposition complementing the use of synchrotron beamlines.

  16. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    NASA Astrophysics Data System (ADS)

    Ikeda, S.; Kumaki, M.; Kanesue, T.; Okamura, M.

    2016-02-01

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

  17. A Large Neutrino Detector Facility at the Spallation Neutron Source at Oak Ridge National Laboratory

    SciTech Connect

    Efremenko, Y.V.

    1999-02-14

    The ORLaND (Oak Ridge Large Neutrino Detector) collaboration proposes to construct a large neutrino detector in an underground experimental hall adjacent to the first target station of the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory. The main mission of a large (2000 ton) Scintillation-Cherenkov detector is to measure {bar {nu}}{sub {mu}} {r_arrow} {bar {nu}}{sub e} neutrino oscillation parameters more accurately than they can be determined in other experiments, or significantly extending the covered parameter space below (sin'20 {le} 10{sup {minus}4}). In addition to the neutrino oscillation measurements, ORLaND would be capable of making precise measurements of sin{sup 2} {theta}{sub W}, search for the magnetic moment of the muon neutrino, and investigate the anomaly in the KARMEN time spectrum, which has been attributed to a new neutral particle. With the same facility an extensive program of measurements of neutrino nucleus cross sections is also planned to support nuclear astrophysics.

  18. Internet-based calibration of a multifunction calibrator

    SciTech Connect

    BUNTING BACA,LISA A.; DUDA JR.,LEONARD E.; WALKER,RUSSELL M.; OLDHAM,NILE; PARKER,MARK

    2000-04-17

    A new way of providing calibration services is evolving which employs the Internet to expand present capabilities and make the calibration process more interactive. Sandia National Laboratories and the National Institute of Standards and Technology are collaborating to set up and demonstrate a remote calibration of multifunction calibrators using this Internet-based technique that is becoming known as e-calibration. This paper describes the measurement philosophy and the Internet resources that can provide real-time audio/video/data exchange, consultation and training, as well as web-accessible test procedures, software and calibration reports. The communication system utilizes commercial hardware and software that should be easy to integrate into most calibration laboratories.

  19. Internet-Based Calibration of a Multifunction Calibrator

    SciTech Connect

    BUNTING BACA,LISA A.; DUDA JR.,LEONARD E.; WALKER,RUSSELL M.; OLDHAM,NILE; PARKER,MARK

    2000-12-19

    A new way of providing calibration services is evolving which employs the Internet to expand present capabilities and make the calibration process more interactive. Sandia National Laboratories and the National Institute of Standards and Technology are collaborating to set up and demonstrate a remote calibration of multijunction calibrators using this Internet-based technique that is becoming known as e-calibration. This paper describes the measurement philosophy and the Internet resources that can provide real-time audio/video/data exchange, consultation and training, as well as web-accessible test procedures, software and calibration reports. The communication system utilizes commercial hardware and software that should be easy to integrate into most calibration laboratories.

  20. DIRBE External Calibrator (DEC)

    NASA Technical Reports Server (NTRS)

    Wyatt, Clair L.; Thurgood, V. Alan; Allred, Glenn D.

    1987-01-01

    Under NASA Contract No. NAS5-28185, the Center for Space Engineering at Utah State University has produced a calibration instrument for the Diffuse Infrared Background Experiment (DIRBE). DIRBE is one of the instruments aboard the Cosmic Background Experiment Observatory (COBE). The calibration instrument is referred to as the DEC (Dirbe External Calibrator). DEC produces a steerable, infrared beam of controlled spectral content and intensity and with selectable point source or diffuse source characteristics, that can be directed into the DIRBE to map fields and determine response characteristics. This report discusses the design of the DEC instrument, its operation and characteristics, and provides an analysis of the systems capabilities and performance.

  1. Sandia WIPP calibration traceability

    SciTech Connect

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  2. Photometric calibrations for 21st century science

    SciTech Connect

    Kent, Stephen; Kaiser, Mary Elizabeth; Deustua, Susana E.; Smith, J.Allyn; Adelman, Saul; Allam, Sahar S.; Baptista, Brian; Bohlin, Ralph C.; Clem, James L.; Conley, Alex; Edelstein, Jerry; /UC, Berkeley, Space Sci. Dept. /NOAO, Tucson

    2009-02-01

    The answers to fundamental science questions in astrophysics, ranging from the history of the expansion of the universe to the sizes of nearby stars, hinge on our ability to make precise measurements of diverse astronomical objects. As our knowledge of the underlying physics of objects improves along with advances in detectors and instrumentation, the limits on our capability to extract science from measurements is set, not by our lack of understanding of the nature of these objects, but rather by the most mundane of all issues: the precision with which we can calibrate observations in physical units. In principle, photometric calibration is a solved problem - laboratory reference standards such as blackbody furnaces achieve precisions well in excess of those needed for astrophysics. In practice, however, transferring the calibration from these laboratory standards to astronomical objects of interest is far from trivial - the transfer must reach outside the atmosphere, extend over 4{pi} steradians of sky, cover a wide range of wavelengths, and span an enormous dynamic range in intensity. Virtually all spectrophotometric observations today are calibrated against one or more stellar reference sources, such as Vega, which are themselves tied back to laboratory standards in a variety of ways. This system's accuracy is not uniform. Selected regions of the electromagnetic spectrum are calibrated extremely well, but discontinuities of a few percent still exist, e.g., between the optical and infrared. Independently, model stellar atmospheres are used to calibrate the spectra of selected white dwarf stars, e.g. the HST system, but the ultimate accuracy of this system should be verified against laboratory sources. Our traditional standard star systems, while sufficient until now, need to be improved and extended in order to serve future astrophysics experiments. This white paper calls for a program to improve upon and expand the current networks of spectrophotometrically

  3. Pore-space alteration in source rock (shales) during hydrocarbons generation: laboratory experiment

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, D. R.; Korost, D. V.; Nadezhkin, D. V.

    2013-12-01

    Hydrocarbons (HC) are generated from solid organic matter (kerogen) due to thermocatalytic reactions. The rate of such reactions shows direct correlation with temperature and depends on the depth of source rock burial. Burial of sedimentary rock is also inevitably accompanied by its structural alteration owing to compaction, dehydration and re-crystallization. Processes of HC generation, primary migration and structural changes are inaccessible for direct observation in nature, but they can be studied in laboratory experiments. Experiment was carried out with a clayey-carbonate rock sample of the Domanik Horizon taken from boreholes drilled in the northeastern part of the south Tatar arch. The rock chosen fits the very essential requirements - high organic matter content and its low metamorphic grade. Our work aimed at laboratory modeling of HC generation in an undisturbed rock sample by its heating in nitrogen atmosphere based on a specified temperature regime and monitoring alterations in the pore space structure. Observations were carried out with a SkyScan-1172 X-ray microtomography scanner (resulting scan resolution of 1 μm). A cylinder, 44 mm in diameter, was prepared from the rock sample for the pyrolitic and microtomographic analyses. Scanning procedures were carried out in 5 runs. Temperature interval for each run had to match the most important stage of HC generation in the source rock, namely: (1) original structure; (2) 100-300°C - discharge of free and adsorbed HC and water; (3) 300-400°C - initial stage of HC formation owing to high-temperature pyrolysis of the solid organic matter and discharge of the chemically bound water; (4) 400-470°C - temperature interval fitting the most intense stage of HC formation; (5) 470-510°C - final stage of HC formation. Maximum sample heating in the experiment was determined as temperature of the onset of active decomposition of carbonates, i.e., in essence, irreversible metamorphism of the rock. Additional

  4. 10 CFR 32.102 - Schedule C-prototype tests for calibration or reference sources containing americium-241 or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sources containing americium-241 or radium-226. 32.102 Section 32.102 Energy NUCLEAR REGULATORY COMMISSION... americium-241 or radium-226. An applicant for a license under § 32.57 shall, for any type of source which is designed to contain more than 0.185 kilobecquerel (0.005 microcurie) of americium-241 or...

  5. 10 CFR 32.102 - Schedule C-prototype tests for calibration or reference sources containing americium-241 or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sources containing americium-241 or radium-226. 32.102 Section 32.102 Energy NUCLEAR REGULATORY COMMISSION... americium-241 or radium-226. An applicant for a license under § 32.57 shall, for any type of source which is designed to contain more than 0.185 kilobecquerel (0.005 microcurie) of americium-241 or...

  6. 10 CFR 32.102 - Schedule C-prototype tests for calibration or reference sources containing americium-241 or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sources containing americium-241 or radium-226. 32.102 Section 32.102 Energy NUCLEAR REGULATORY COMMISSION... americium-241 or radium-226. An applicant for a license under § 32.57 shall, for any type of source which is designed to contain more than 0.185 kilobecquerel (0.005 microcurie) of americium-241 or...

  7. Lidar Calibration Centre

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  8. PERSONALISED BODY COUNTER CALIBRATION USING ANTHROPOMETRIC PARAMETERS.

    PubMed

    Pölz, S; Breustedt, B

    2016-09-01

    Current calibration methods for body counting offer personalisation for lung counting predominantly with respect to ratios of body mass and height. Chest wall thickness is used as an intermediate parameter. This work revises and extends these methods using a series of computational phantoms derived from medical imaging data in combination with radiation transport simulation and statistical analysis. As an example, the method is applied to the calibration of the In Vivo Measurement Laboratory (IVM) at Karlsruhe Institute of Technology (KIT) comprising four high-purity germanium detectors in two partial body measurement set-ups. The Monte Carlo N-Particle (MCNP) transport code and the Extended Cardiac-Torso (XCAT) phantom series have been used. Analysis of the computed sample data consisting of 18 anthropometric parameters and calibration factors generated from 26 photon sources for each of the 30 phantoms reveals the significance of those parameters required for producing an accurate estimate of the calibration function. Body circumferences related to the source location perform best in the example, while parameters related to body mass show comparable but lower performances, and those related to body height and other lengths exhibit low performances. In conclusion, it is possible to give more accurate estimates of calibration factors using this proposed approach including estimates of uncertainties related to interindividual anatomical variation of the target population. PMID:26396263

  9. Calibration of well-type NaI(Tl) detector using a point sources measured out the detector well at different axial distances

    NASA Astrophysics Data System (ADS)

    Gouda, M. M.; Badawi, M. S.; El-Khatib, A. M.; Mohamed, M. M.; Thabet, A. A.; Abbas, M. I.

    2015-03-01

    The high efficiency of well-type detector is one of its important advantages, when it is used to determine the low level activity of radiation in many different fields. In the present work the full-energy peak efficiency of 3"× 3" NaI(Tl) well-type scintillation detector was calculated. The calculations were based on the efficiency transfer principle and a new straightforward analytical definition to compute the effective solid angle between a point source and the detector surfaces Moreover, the effective solid angle ratio subtended by the well-type detector and a point source located out the detector cavity at various distances was calculated, the attenuation of the photon by the source-detector system [detectorendcap,deadlayer and holder material] was considered and determined. This method is easily useful in setting up the efficiency calibration curve for well-type detectors when the source is outside. The computed efficiency values are found to be in a good agreement with the experimental data obtained in the case of radiating γ -ray standard point sources.

  10. Recommendations following a multi-laboratory comparison of microbial source tracking methods

    EPA Science Inventory

    Microbial source tracking (MST) methods are under development to provide resource managers with tools to identify sources of fecal contamination in water. Some of the most promising methods currently under development were recently evaluated in the Source Identification Protocol ...

  11. Radiometric calibration of an airborne multispectral scanner. [of Thematic Mapper Simulator

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Ahmad, Suraiya P.; Jackson, Ray D.; Moran, M. S.; Biggar, Stuart F.; Gellman, David I.; Slater, Philip N.

    1991-01-01

    The absolute radiometric calibration of the NS001 Thematic Mapper Simulator reflective channels was examined based on laboratory tests and in-flight comparisons to ground measurements. The NS001 data are calibrated in-flight by reference to the NS001 internal integrating sphere source. This source's power supply or monitoring circuitry exhibited greater instability in-flight during 1988-1989 than in the laboratory. Extrapolating laboratory behavior to in-flight data resulted in 7-20 percent radiance errors relative to ground measurements and atmospheric modeling. Assuming constancy in the source's output between laboraotry and in-flight resulted in generally smaller errors. Upgrades to the source's power supply and monitoring circuitry in 1990 improved its in-flight stability, though in-flight ground reflectance based calibration tests have not yet been performed.

  12. Sources of Variability in Chlorophyll Analysis by Fluorometry and High-Performance Liquid Chromatography in a SIMBIOS Inter-Calibration Exercise

    NASA Technical Reports Server (NTRS)

    VanHeukelem, Laurie; Thomas, Crystal S.; Gilbert, Patricia M.; Fargion, Giulietta S. (Editor); McClain, Charles R. (Editor)

    2002-01-01

    The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project. This particular document focus on the variability in chlorophyll pigment measurements resulting from differences in methodologies and laboratories conducting the pigment analysis.

  13. Beowulf - Beta-Gamma Detector Calibration Graphical User Interface

    SciTech Connect

    McIntyre, Justin I.; Schrom, Brian T.; Cooper, Matthew W.; Haas, Derek A.; Hayes, James C.

    2009-09-21

    Pacific Northwest National Laboratory (PNNL) has demonstrated significant advancement in using beta-gamma coincidence detectors to detect a wide range of radioxenon isotopes. To obtain accurate activities with the detector it must be properly calibrated by measuring a series of calibration gas samples. The data is analyzed to create the calibration block used in the International Monitoring System file format. Doing the calibration manually has proven to be tedious and prone to errors, requiring a high degree of expertise. The Beowulf graphical user interface (GUI) is a software application that encompasses several components of the calibration task and generates a calibration block, as well as, a detailed report describing the specific calibration process used. This additional document can be used as a Quality assurance certificate to assist in auditing the calibration. This paper consists of two sections. Section 1 will describe the capabilities of Beowulf and section 2 will be a representative report generated or the 137Cs calibration and quality assurance source.

  14. Source Tracking of Nitrous Oxide using A Quantum Cascade Laser System in the Field and Laboratory Environments

    EPA Science Inventory

    Nitrous oxide is an important greenhouse gas and ozone depleting substance. Nitrification and denitrification are two major biological pathways that are responsible for soil emissions of N2O. However, source tracking of in-situ or laboratory N2O production is still challenging to...

  15. Scaling Transition in Earthquake Sources: A Possible Link Between Seismic and Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Malagnini, Luca; Mayeda, Kevin; Nielsen, Stefan; Yoo, Seung-Hoon; Munafo', Irene; Rawles, Christopher; Boschi, Enzo

    2014-10-01

    We estimate the corner frequencies of 20 crustal seismic events from mainshock-aftershock sequences in different tectonic environments (mainshocks 5.7 < M W < 7.6) using the well-established seismic coda ratio technique ( Mayeda et al. in Geophys Res Lett 34:L11303, 2007; Mayeda and Malagnini in Geophys Res Lett, 2010), which provides optimal stability and does not require path or site corrections. For each sequence, we assumed the Brune source model and estimated all the events' corner frequencies and associated apparent stresses following the MDAC spectral formulation of Walter and Taylor (A revised magnitude and distance amplitude correction (MDAC2) procedure for regional seismic discriminants, 2001), which allows for the possibility of non-self-similar source scaling. Within each sequence, we observe a systematic deviation from the self-similar line, all data being rather compatible with , where ɛ > 0 ( Kanamori and Rivera in Bull Seismol Soc Am 94:314-319, 2004). The deviation from a strict self-similar behavior within each earthquake sequence of our collection is indicated by a systematic increase in the estimated average static stress drop and apparent stress with increasing seismic moment (moment magnitude). Our favored physical interpretation for the increased apparent stress with earthquake size is a progressive frictional weakening for increasing seismic slip, in agreement with recent results obtained in laboratory experiments performed on state-of-the-art apparatuses at slip rates of the order of 1 m/s or larger. At smaller magnitudes ( M W < 5.5), the overall data set is characterized by a variability in apparent stress of almost three orders of magnitude, mostly from the scatter observed in strike-slip sequences. Larger events ( M W > 5.5) show much less variability: about one order of magnitude. It appears that the apparent stress (and static stress drop) does not grow indefinitely at larger magnitudes: for example, in the case of the Chi

  16. Energy calibration via correlation

    NASA Astrophysics Data System (ADS)

    Maier, Daniel; Limousin, Olivier

    2016-03-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be less than ~ 0.1 keV. Energy calibration via correlation can be applied to any kind of calibration spectra and shows a robust behavior at low counting statistics. It enables a fast and accurate calibration that can be used to monitor the spectroscopic properties of a detector system in near realtime.

  17. Primary calibration in acoustics metrology

    NASA Astrophysics Data System (ADS)

    Bacelar Milhomem, T. A.; Defilippo Soares, Z. M.

    2015-01-01

    SI unit in acoustics is realized by the reciprocity calibrations of laboratory standard microphones in pressure field, free field and diffuse field. Calibrations in pressure field and in free field are already consolidated and the Inmetro already done them. Calibration in diffuse field is not yet consolidated, however, some national metrology institutes, including Inmetro, are conducting researches on this subject. This paper presents the reciprocity calibration, the results of Inmetro in recent key comparisons and the research that is being developed for the implementation of reciprocity calibration in diffuse field.

  18. Limits on the release of Rb isotopes from a zeolite based 83mKr calibration source for the XENON project

    NASA Astrophysics Data System (ADS)

    Hannen, V.; Aprile, E.; Arneodo, F.; Baudis, L.; Beck, M.; Bokeloh, K.; Ferella, A. D.; Giboni, K.; Lang, R. F.; Lebeda, O.; Ortjohann, H.-W.; Schumann, M.; Spalek, A.; Venos, D.; Weinheimer, C.

    2011-10-01

    The isomer 83mKr with its half-life of 1.83 h is an ideal calibration source for a liquid noble gas dark matter experiment like the XENON project. However, the risk of contamination of the detector with traces of the much longer lived mother isotope 83Rb(T½ = 86.2 d) has to be ruled out. In this work the release of 83Rb atoms from a 1.8 MBq 83Rb source embedded in zeolite beads has been investigated. To do so, a cryogenic trap has been connected to the source for about 10 days, after which it was removed and probed for the strongest 83Rbγ-rays with an ultra-sensitive Germanium detector. No signal has been found. The corresponding upper limit on the released 83Rb activity means that the investigated type of source can be used in the XENON project and similar low-background experiments as 83mKr generator without a significant risk of contaminating the detector. The measurements also allow to set upper limits on the possible release of the isotopes 84Rb and 86Rb, traces of which were created alongside the production of 83Rb at the Rez cyclotron.

  19. Water Quality & Pollutant Source Monitoring: Field and Laboratory Procedures. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on techniques and instrumentation used to develop data in field monitoring programs and related laboratory operations concerned with water quality and pollution monitoring. Topics include: collection and handling of samples; bacteriological, biological, and chemical field and laboratory methods; field…

  20. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  1. Instrument calibration.

    PubMed

    Padden, Harvey

    2002-05-01

    The main thing to remember is that measurement uncertainty must encompass everything from NIST to the final laboratory result. Every source of error along the way must be accounted for. Our vendors do much of it for us, but we must make sure they are doing their job properly. We must make certain our vendors have performed rigorous uncertainty analyses and are performing in accordance with them. ISO 9001-2000 and 17,025 accreditations can eventually help offer us assurance in this area. PMID:12037906

  2. Laboratory Assessment of a Screening Model: Exploring the Coupling between Dissolution and Degradation Rates in Ganglia-Dominated Source Zones

    NASA Astrophysics Data System (ADS)

    Phelan, T. J.; Abriola, L. M.; Gibson, J. L.; Smits, K. M.; Christ, J.

    2014-12-01

    In-situ bioremediation is a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs). It is both economical and reasonably efficient for long-term management and closure of contaminated sites. A number of laboratory studies have demonstrated enhancement in chlorinated ethene dissolution rates due to the presence of dehalogenating microorganisms, which may lead to increased mass removal rates and shorter cleanup times. Previous modeling efforts have suggested this dissolution enhancement can be a factor of 10 or more when the contaminant is located in high saturation DNAPL pools. Yet, laboratory studies with DNAPL trapped as ganglia have suggested dissolution enhancement is often less than 10. This presentation investigates the interplay between dissolution and degradation rates in ganglia-contaminated source zones using a one-dimensional, simplified, steady-state, analytical solution to the advection-dispersion-reaction equation. A linear driving force model is employed to simulate ganglia dissolution. Degradation kinetics are approximated as zero- or first-order. Model predictions are independently compared to laboratory data available in the literature. Results indicate that dissolution enhancement predictions in ganglia-dominated source zones are often much less than those predicted assuming high saturation pools, suggesting that the presented model is a better tool for estimating bioenhanced dissolution in ganglia-contaminated regions. Furthermore, this screening model provides a remarkably good prediction of laboratory results and could provide practitioners with a useful tool for estimating the extent to which bioenhanced dissolution may aid in site closure strategies.

  3. Laboratory Validation of a Screening Model: Exploring the Interplay between Dissolution and Degradation Rates in Ganglia-Dominated Source Zones

    NASA Astrophysics Data System (ADS)

    Phelan, T. J.; Abriola, L. M.; Gibson, J. L.; Smits, K. M.; Christ, J.

    2013-12-01

    In-situ bioremediation is a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs). It is both economical and reasonably efficient for long-term management and closure of contaminated sites. A number of laboratory studies have demonstrated enhancement in chlorinated ethene dissolution rates due to the presence of dehalogenating microorganisms, which may lead to increased mass removal rates and shorter cleanup times. Previous modeling efforts have suggested this dissolution enhancement can be a factor of 10 or more when the contaminant is located in high saturation DNAPL pools. Yet, laboratory studies with DNAPL trapped as ganglia have suggested dissolution enhancement is often less than 10. This presentation investigates the interplay between dissolution and degradation rates in ganglia-contaminated source zones using a one-dimensional, simplified, steady-state, analytical solution to the advection-dispersion-reaction equation. A linear driving force model is employed to simulate ganglia dissolution. Degradation kinetics are approximated as zero- or first-order. Model predictions are independently compared to laboratory data available in the literature. Results indicate that dissolution enhancement predictions in ganglia-dominated source zones are often much less than those predicted assuming high saturation pools, suggesting that the presented model is a better tool for estimating bioenhanced dissolution in ganglia-contaminated regions. Furthermore, this screening model provides a remarkably good prediction of laboratory results and could provide practitioners with a useful tool for estimating the extent to which bioenhanced dissolution may aid in site closure strategies.

  4. Methods for calibrating the gain and offset of the DSSC detector for the European XFEL using X-ray line sources

    NASA Astrophysics Data System (ADS)

    Schlee, S.; Weidenspointner, G.; Moch, D.; Kuster, M.; Porro, M.

    2016-01-01

    The DSSC (DEPFET Sensor with Signal Compression) will be a silicon based, 2d 1 Mpx imaging detector for the European X-ray Free Electron Laser Facility (XFEL.EU) in Hamburg, Germany. The DSSC is foreseen for soft X-radiation from 0.5 keV up to 6 keV . Driven by its scientific requirements, the design goals of the detector system are single photon detection, high dynamic range and a high frame rate of up to 4.5 MHz. Signal compression and amplification will be performed in the silicon sensor pixels yielding a low signal noise. Utilizing an in-pixel active filtering stage and an 8/9-bit ADC, the detector will provide parallel read-out of all pixels. In order to calibrate offset and gain, the procedure currently under investigation relies on determining peak positions in measurements with calibration line sources such as 55Fe. Here the status of studies of the stability and performance of a parameterized fit function designed for this task will be presented.

  5. Calibration and operational data for a compact photodiode detector useful for monitoring the location of moving sources of positron emitting radioisotopes

    NASA Astrophysics Data System (ADS)

    Marsland, M. G.; Dehnel, M. P.; Johansson, S.; Rajander, J.; Solin, O.; Theroux, J.; Stewart, T. M.; Christensen, T.; Hollinger, C.

    2013-04-01

    D-Pace has developed a compact cost-effective gamma detector system based on technology licensed from TRIUMF [1]. These photodiode detectors are convenient for detecting the presence of positron emitting radioisotopes, particularly for the case of transport of radioisotopes from a PET cyclotron to hotlab, or from one location to another in an automated radiochemistry processing unit. This paper describes recent calibration experiments undertaken at the Turku PET Centre for stationary and moving sources of F18 and C11 in standard setups. The practical diagnostic utility of using several of these devices to track the transport of radioisotopes from the cyclotron to hotlab is illustrated. For example, such a detector system provides: a semi-quantitative indication of total activity, speed of transport, location of any activity lost en route and effectiveness of follow-up system flushes, a means of identifying bolus break-up, feedback useful for deciding when to change out tubing.

  6. Calibration and operational data for a compact photodiode detector useful for monitoring the location of moving sources of positron emitting radioisotopes

    SciTech Connect

    Marsland, M. G.; Dehnel, M. P.; Theroux, J.; Christensen, T.; Hollinger, C.; Johansson, S.; Rajander, J.; Solin, O.; Stewart, T. M.

    2013-04-19

    D-Pace has developed a compact cost-effective gamma detector system based on technology licensed from TRIUMF. These photodiode detectors are convenient for detecting the presence of positron emitting radioisotopes, particularly for the case of transport of radioisotopes from a PET cyclotron to hotlab, or from one location to another in an automated radiochemistry processing unit. This paper describes recent calibration experiments undertaken at the Turku PET Centre for stationary and moving sources of F18 and C11 in standard setups. The practical diagnostic utility of using several of these devices to track the transport of radioisotopes from the cyclotron to hotlab is illustrated. For example, such a detector system provides: a semi-quantitative indication of total activity, speed of transport, location of any activity lost en route and effectiveness of follow-up system flushes, a means of identifying bolus break-up, feedback useful for deciding when to change out tubing.

  7. Calibrated Properties Model

    SciTech Connect

    C.F. Ahlers, H.H. Liu

    2001-12-18

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M&O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  8. Calibrated Properties Model

    SciTech Connect

    C. Ahlers; H. Liu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  9. Gemini facility calibration unit

    NASA Astrophysics Data System (ADS)

    Ramsay-Howat, Suzanne K.; Harris, John W.; Gostick, David C.; Laidlaw, Ken; Kidd, Norrie; Strachan, Mel; Wilson, Ken

    2000-08-01

    High-quality, efficient calibration instruments is a pre- requisite for the modern observatory. Each of the Gemini telescopes will be equipped with identical facility calibration units (GCALs) designed to provide wavelength and flat-field calibrations for the suite of instruments. The broad range of instrumentation planned for the telescopes heavily constrains the design of GCAL. Short calibration exposures are required over wavelengths from 0.3micrometers to 5micrometers , field sizes up to 7 arcminutes and spectral resolution from R-5 to 50,000. The output from GCAL must mimic the f-16 beam of the telescope and provide a uniform illumination of the focal plane. The calibration units are mounted on the Gemini Instrument Support Structure, two meters from the focal pane, necessitating the use of large optical components. We will discuss the opto-mechanical design of the Gemini calibration unit, with reference to those feature which allow these stringent requirements to be met. A novel reflector/diffuser unit replaces the integration sphere more normally found in calibration systems. The efficiency of this system is an order of magnitude greater than for an integration sphere. A system of two off-axis mirrors reproduces the telescope pupil and provides the 7 foot focal plane. The results of laboratory test of the uniformity and throughput of the GCAL will be presented.

  10. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    SciTech Connect

    Lawrie, Scott R.; Faircloth, Daniel C.; Letchford, Alan P.; Perkins, Mike; Whitehead, Mark O.; Wood, Trevor

    2015-04-08

    In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for either long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.

  11. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    NASA Astrophysics Data System (ADS)

    Lawrie, Scott R.; Faircloth, Daniel C.; Letchford, Alan P.; Perkins, Mike; Whitehead, Mark O.; Wood, Trevor

    2015-04-01

    In order to facilitate the testing of advanced H- ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H- ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H- production efficiency and subsequent transport for either long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H- source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.

  12. Developing a calibrated CONUS-wide watershed-scale simulation platform for quantifying the influence of different sources of uncertainty on streamflow forecast skill

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Sampson, K. M.; Wood, A. W.; Hopson, T. M.; Brekke, L. D.; Arnold, J.; Raff, D. A.; Clark, M. P.

    2013-12-01

    Skill in model-based hydrologic forecasting depends on the ability to estimate a watershed's initial moisture and energy conditions, to forecast future weather and climate inputs, and on the quality of the hydrologic model's representation of watershed processes. The impact of these factors on prediction skill varies regionally, seasonally, and by model. We are investigating these influences using a watershed simulation platform that spans the continental US (CONUS), encompassing a broad range of hydroclimatic variation, and that uses the current simulation models of National Weather Service streamflow forecasting operations. The first phase of this effort centered on the implementation and calibration of the SNOW-17 and Sacramento soil moisture accounting (SAC-SMA) based hydrologic modeling system for a range of watersheds. The base configuration includes 630 basins in the United States Geological Survey's Hydro-Climatic Data Network 2009 (HCDN-2009, Lins 2012) conterminous U.S. basin subset. Retrospective model forcings were derived from Daymet (http://daymet.ornl.gov/), and where available, a priori parameter estimates were based on or compared with the operational NWS model parameters. Model calibration was accomplished by several objective, automated strategies, including the shuffled complex evolution (SCE) optimization approach developed within the NWS in the early 1990s (Duan et al. 1993). This presentation describes outcomes from this effort, including insights about measuring simulation skill, and on relationships between simulation skill and model parameters, basin characteristics (climate, topography, vegetation, soils), and the quality of forcing inputs. References: %Z Thornton, P.; Thornton, M.; Mayer, B.; Wilhelmi, N.; Wei, Y.; Devarakonda, R; Cook, R. Daymet: Daily Surface Weather on a 1 km Grid for North America. 1980-2008; Oak Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2012; Volume 10.

  13. CALIBRATION OF PHOTOELASTIC MODULATORS IN THE VACUUM UV.

    SciTech Connect

    OAKBERG, T.C.; TRUNK, J.; SUTHERLAND, J.C.

    2000-02-15

    Measurements of circular dichroism (CD) in the UV and vacuum UV have used photoelastic modulators (PEMs) for high sensitivity (to about 10{sup -6}). While a simple technique for wavelength calibration of the PEMs has been used with good results, several features of these calibration curves have not been understood. The authors have calibrated a calcium fluoride PEM and a lithium fluoride PEM using the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory as a light source. These experiments showed calibration graphs that are linear bit do not pass through the graph origin. A second ''multiple pass'' experiment with laser light of a single wavelength, performed on the calcium fluoride PEM, demonstrates the linearity of the PEM electronics. This implies that the calibration behavior results from intrinsic physical properties of the PEM optical element material. An algorithm for generating calibration curves for calcium fluoride and lithium fluoride PEMs has been developed. The calibration curves for circular dichroism measurement for the two PEMs investigated in this study are given as examples.

  14. Uniform calibration of night vision goggles and test sets

    NASA Astrophysics Data System (ADS)

    Eppeldauer, George P.

    2007-10-01

    There are orders of magnitude differences between the ~0.1 % (k=2) uncertainty of NIST reference detector calibrations and the uncertainty of night vision (NV) goggle measurements. NIST developed a night vision radiometer calibration facility including NV radiometer transfer standards. The transfer standards, that propagate the radiance responsivity scale to the military primary standards laboratories, are calibrated against a NIST reference radiometer. The reference radiometer has been calibrated on the NIST Spectral Comparator Facility (SCF) for spectral power and irradiance responsivities. Spectral considerations are discussed to lower the uncertainties of the radiance responsivity scale transfer to the test sets and then to the goggles. Since direct determination of the final uncertainties in goggle calibrations and measurements is difficult, models have been made to estimate the most important uncertainty components based on individual spectral measurements of the applied source distributions and radiometer spectral responsivities. It is also shown, that because of source spectral mismatch problems, the goggle measurement uncertainty at applications can be much higher than at calibration. A suggestion is being made to mimic the no-moon (stars only) night sky radiation distribution using several LEDs in the test-sets to decrease the large spectral mismatch errors. A broad-band correction factor has been developed to further decrease calibration uncertainty when the goggles to be used have different spectral responsivities than the standard. Geometrical considerations to optimize the radiance measurement angle and the out-of-target blocking are also discussed to decrease the uncertainty in the radiance responsivity transfer.

  15. Site-specific calibration of the Hanford personnel neutron dosimeter

    SciTech Connect

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford`s Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated {sup 252}Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST).

  16. Existing data sources for clinical epidemiology: The clinical laboratory information system (LABKA) research database at Aarhus University, Denmark

    PubMed Central

    Grann, Anne Fia; Erichsen, Rune; Nielsen, Anders Gunnar; Frøslev, Trine; Thomsen, Reimar W

    2011-01-01

    This paper provides an introduction to the clinical laboratory information system (LABKA) research database in Northern and Central Denmark. The database contains millions of stored laboratory test results for patients living in the two Danish regions, encompassing 1.8 million residents, or one-third of the country’s population. More than 1700 different types of blood test analyses are available. Therefore, the LABKA research database represents an incredible source for studies involving blood test analyses. By record linkage of different Danish registries with the LABKA research database, it is possible to examine a large number of biomarkers as predictors of disease risk and prognosis and as markers of disease severity, and to evaluate medical treatments regarding effectiveness and possible side effects. Large epidemiological studies using routinely stored blood test results for individual patients can be performed because it is possible to link the laboratory data to high-quality individual clinical patient data in Denmark. PMID:21487452

  17. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect

    Lettry J.; Alessi J.; Faircloth, D.; Gerardin, A.; Kalvas, T.; Pereira, H.; Sgobba, S.

    2012-02-23

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  18. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect

    Lettry, J.; Gerardin, A.; Pereira, H.; Sgobba, S.; Alessi, J.; Faircloth, D.; Kalvas, T.

    2012-02-15

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  19. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation.

    PubMed

    Lettry, J; Alessi, J; Faircloth, D; Gerardin, A; Kalvas, T; Pereira, H; Sgobba, S

    2012-02-01

    Linac4 accelerator of Centre Européen de Recherches Nucléaires is under construction and a RF-driven H(-) ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H(-), electrons, and Cs(-) ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results. PMID:22380237

  20. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operationa)

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Alessi, J.; Faircloth, D.; Gerardin, A.; Kalvas, T.; Pereira, H.; Sgobba, S.

    2012-02-01

    Linac4 accelerator of Centre Européen de Recherches Nucléaires is under construction and a RF-driven H- ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H-, electrons, and Cs- ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  1. Compact electrostatic levitator for diffraction measurements with a two axis diffractometer and a laboratory x-ray source

    NASA Astrophysics Data System (ADS)

    Masaki, Tadahiko; Ishikawa, Takehiko; Paradis, Paul-François; Yoda, Shinichi; Okada, Junpei T.; Watanabe, Yasuhiro; Nanao, Susumu; Ishikura, Akiko; Higuchi, Kensuke; Mizuno, Akitoshi; Watanabe, Masato; Kohara, Shinji

    2007-02-01

    A compact electrostatic levitator was developed for the structural analysis of high-temperature liquids by x-ray diffraction methods. The size of the levitator was 200mm in diameter and 200mm in height and can be set up on a two axis diffractometer with a laboratory x-ray source, which is very convenient in performing structural measurements of high-temperature liquids. In particular, since the laboratory x-ray source allows a great amount of user time, preliminary or challenging experiments can be performed with trial and error, which prepares and complements synchrotron x-ray experiments. The present small apparatus also provides the advantage of portability and facility of setting. To demonstrate the capability of this electrostatic levitator, the static structure factors of alumina and silicon samples in their liquid phases were successfully measured.

  2. The Calibration Reference Data System

    NASA Astrophysics Data System (ADS)

    Greenfield, P.; Miller, T.

    2016-07-01

    We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.

  3. Ultra-Stable Beacon Source for Laboratory Testing of Optical Tracking

    NASA Technical Reports Server (NTRS)

    Aso, Yoichi; Marka, Szabolcs; Kovalik, Joseph

    2008-01-01

    The ultra-stable beacon source (USBS) provides a laser-beam output with a very low angular jitter and can be used as an absolute angular reference to simulate a beacon in the laboratory. The laser is mounted on the top of a very short (approximately equal to 1 m) inverted pendulum (IP) with its optical axis parallel to the carbon fiber pendulum leg. The 85-cm, carbon fiber rods making up the leg are very lightweight and rigid, and are supported by a flex-joint at the bottom (see figure). The gimbal-mounted laser is a weight-adjustable load of about 1.5 kg with its center of rotation co-located with the center of percussion of the inverted pendulum. This reduces the coupling of transverse motion at the base of the pendulum to angular motion of the laser at the top. The inverted pendulum is mounted on a gimbal with its center of rotation coinciding with the pivot position of the inverted pendulum flexure joint. This reduces coupling of ground tilt at the inverted pendulum base to motion of the laser mounted at the top. The mass of the top gimbal is adjusted to give the pendulum a very low resonant frequency (approximately equal to 10 mHz) that filters transverse seismic disturbances from the ground where the base is attached. The motion of the IP is monitored by an optical-lever sensor. The laser light is reflected by the mirror on the IP, and then is detected by a quadrant photo-detector (QPD). The position of the beam spot on the QPD corresponds to the tilt of the IP. Damping of this motion is provided by two coil and magnet pairs. The bottom gimbal mount consists of two plates. The IP is mounted on the second plate. The first plate is supported by two posts through needles and can be rotated about the axis connecting the tips of the needles. The second plate hangs from the first plate and can be rotated about the axis perpendicular to the first plate. As a result, the second plate acts as a two-axis rotation stage. Its center of rotation is located at the

  4. Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source

    SciTech Connect

    Ng, I.; Fouras, A.; Paganin, D. M.

    2012-10-01

    Phase contrast particle image velocimetry (PIV) using a laboratory x-ray microfocus source is investigated using a numerical model. Phase contrast images of 75 {mu}m air bubbles, embedded within water exhibiting steady-state vortical flow, are generated under the paraxial approximation using a tungsten x-ray spectrum at 30 kVp. Propagation-based x-ray phase-contrast speckle images at a range of source-object and object-detector distances are generated, and used as input into a simulated PIV measurement. The effects of source-size-induced penumbral blurring, together with the finite dynamic range of the detector, are accounted for in the simulation. The PIV measurement procedure involves using the cross-correlation between temporally sequential speckle images to estimate the transverse displacement field for the fluid. The global error in the PIV reconstruction, for the set of simulations that was performed, suggests that geometric magnification is the key parameter for designing a laboratory-based x-ray phase-contrast PIV system. For the modeled system, x-ray phase-contrast PIV data measurement can be optimized to obtain low error (<0.2 effective pixel of the detector) in the system with magnification lying in the range between 1.5 and 3. For large effective pixel size (>15 {mu}m) of the detector, high geometric magnification (>2.5) is desired, while for large source size system (FWHM > 30 {mu}m), low magnification (<1.5) would be suggested instead. The methods developed in this paper can be applied to optimizing phase-contrast velocimetry using a variety of laboratory x-ray sources.

  5. Characterization of Wastewater Treatment Plant Microbial Communities and the Effects of Carbon Sources on Diversity in Laboratory Models

    PubMed Central

    Torok, Tamas; Wu, Cindy H.; Singer, Mary; Reid, Francine C.; Tarjan, Daniel R.; Hazen, Terry C.; Arkin, Adam P.; Hillson, Nathan J.

    2014-01-01

    We are developing a laboratory-scale model to improve our understanding and capacity to assess the biological risks of genetically engineered bacteria and their genetic elements in the natural environment. Our hypothetical scenario concerns an industrial bioreactor failure resulting in the introduction of genetically engineered bacteria to a downstream municipal wastewater treatment plant (MWWTP). As the first step towards developing a model for this scenario, we sampled microbial communities from the aeration basin of a MWWTP at three seasonal time points. Having established a baseline for community composition, we investigated how the community changed when propagated in the laboratory, including cell culture media conditions that could provide selective pressure in future studies. Specifically, using PhyloChip 16S-rRNA-gene targeting microarrays, we compared the compositions of sampled communities to those of inocula propagated in the laboratory in simulated wastewater conditionally amended with various carbon sources (glucose, chloroacetate, D-threonine) or the ionic liquid 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl). Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in both aeration basin and laboratory-cultured communities. Laboratory-cultured communities were enriched in γ-Proteobacteria. Enterobacteriaceae, and Aeromonadaceae were enriched by glucose, Pseudomonadaceae by chloroacetate and D-threonine, and Burkholderiacea by high (50 mM) concentrations of chloroacetate. Microbial communities cultured with chloroacetate and D-threonine were more similar to sampled field communities than those cultured with glucose or [C2mim]Cl. Although observed relative richness in operational taxonomic units (OTUs) was lower for laboratory cultures than for field communities, both flask and reactor systems supported phylogenetically diverse communities. These results importantly provide a foundation for laboratory models of industrial bioreactor

  6. Automatic beamline calibration procedures

    SciTech Connect

    Corbett, W.J.; Lee, M.J.; Zambre, Y.

    1992-03-01

    Recent experience with the SLC and SPEAR accelerators have led to a well-defined set of procedures for calibration of the beamline model using the orbit fitting program, RESOLVE. Difference orbit analysis is used to calibrate quadrupole strengths, BPM sensitivities, corrector strengths, focusing effects from insertion devices, and to determine the source of dispersion and coupling errors. Absolute orbit analysis is used to locate quadrupole misalignments, BPM offsets, or beam loss. For light source applications, the photon beam source coordinates can be found. The result is an accurate model of the accelerator which can be used for machine control. In this paper, automatable beamline calibration procedures are outlined and illustrated with recent examples. 5 refs.

  7. Sources of Differences in On-Orbital Total Solar Irradiance Measurements and Description of a Proposed Laboratory Intercomparison

    PubMed Central

    Butler, J. J; Johnson, B. C; Rice, J. P; Shirley, E. L; Barnes, R. A

    2008-01-01

    There is a 5 W/m2 (about 0.35 %) difference between current on-orbit Total Solar Irradiance (TSI) measurements. On 18–20 July 2005, a workshop was held at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland that focused on understanding possible reasons for this difference, through an examination of the instrument designs, calibration approaches, and appropriate measurement equations. The instruments studied in that workshop included the Active Cavity Radiometer Irradiance Monitor III (ACRIM III) on the Active Cavity Radiometer Irradiance Monitor SATellite (ACRIMSAT), the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE), the Variability of solar IRradiance and Gravity Oscillations (VIRGO) on the Solar and Heliospheric Observatory (SOHO), and the Earth Radiation Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS). Presentations for each instrument included descriptions of its design, its measurement equation and uncertainty budget, and the methods used to assess on-orbit degradation. The workshop also included a session on satellite- and ground-based instrument comparisons and a session on laboratory-based comparisons and the application of new laboratory comparison techniques. The workshop has led to investigations of the effects of diffraction and of aperture area measurements on the differences between instruments. In addition, a laboratory-based instrument comparison is proposed that uses optical power measurements (with lasers that underfill the apertures of the TSI instruments), irradiance measurements (with lasers that overfill the apertures of the TSI instrument), and a cryogenic electrical substitution radiometer as a standard for comparing the instruments. A summary of the workshop and an overview of the proposed research efforts are presented here. PMID:27096120

  8. Sources of Differences in On-Orbit Total Solar Irradiance Measurements and Description of Proposed Laboratory Intercomparison

    NASA Technical Reports Server (NTRS)

    Butler, J.J.; Johnson, B. C.; Rice, J. P.; Shirley, E. L.; Barnes, R.A.

    2008-01-01

    There is a 5 W/sq m (about 0.35 %) difference between current on-orbit Total Solar Irradiance (TSI) measurements. On 18-20 July 2005, a workshop was held at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland that focused on understanding possible reasons for this difference, through an examination of the instrument designs, calibration approaches, and appropriate measurement equations. The instruments studied in that workshop included the Active Cavity Radiometer Irradiance Monitor III (ACRIM III) on the Active Cavity Radiometer Irradiance Monitor SATellite (ACRIMSAT), the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE), the Variability of solar IRradiance and Gravity Oscillations (VIRGO) on the Solar and Heliospheric Observatory (SOHO), and the Earth Radiation Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS). Presentations for each instrument included descriptions of its design, its measurement equation and uncertainty budget, and the methods used to assess on-orbit degradation. The workshop also included a session on satellite- and ground-based instrument comparisons and a session on laboratory-based comparisons and the application of new laboratory comparison techniques. The workshop has led to investigations of the effects of diffraction and of aperture area measurements on the differences between instruments. In addition, a laboratory-based instrument comparison is proposed that uses optical power measurements (with lasers that underEll the apertures of the TSI instruments), irradiance measurements (with lasers that overfill the apertures of the TSI instrument), and a cryogenic electrical substitution radiometer as a standard for comparing the instruments. A summary of the workshop and an overview of the proposed research efforts are presented here.

  9. Integration of Atmospheric, Laboratory, and Satellite Data to Estimate Biospheric Sources of Oxygenated Organic Compounds

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.

    2001-01-01

    For this study, we intend to use a long time series of coarse resolution (8 km and quarter degree) vegetation leaf area index (LAI) and fraction of absorbed PAR (FAPAR) derived from AVHRR data for the time period July 1981 through Dec 2001. The Global Inventory Monitoring and Modeling Studies (GIMMS) data set of AVHRR channel reflectances currently was developed by Dr. Tucker at NASA Goddard. The spatial resolution of the data is 8 km, and a 15-day maximum Normalized Difference Vegetation Index (NDVI) composite time series for the period July 1981 through December 1999 has been produced. The data processing included improved navigation, calibration for intra- and inter-sensor variations, partial atmospheric correction for gaseous absorption and scattering. Stratospheric aerosol effects associated with volcanic eruptions were corrected using a combination of the methods for the data from the period April 1982 - December 1984 (El Chichon) and June 1991 - December 1993 (Mt. Pinatubo).

  10. LLL calibration and standards facility

    SciTech Connect

    Campbell, G.W.; Elliott, J.H.

    1980-04-15

    The capabilities of Lawrence Livermore Laboratory's Calibration and Standards Facility are delineated. The facility's ability to provide radiation fields and measurements for a variety of radiation safety applications and the available radiation measurement equipment are described. The need for national laboratory calibration labs to maintain traceability to a national standard are discussed as well as the areas where improved standards and standardization techniques are needed.

  11. The Inquiry Laboratory as a Source for Development of Metacognitive Skills

    ERIC Educational Resources Information Center

    Kipnis, Mira; Hofstein, Avi

    2008-01-01

    The study described in this article is based on a long-term comprehensive series of investigations that were conducted in the context of teaching high school chemistry in the laboratory using inquiry-type experiments. The students that study chemistry according to this program are involved in an inquiry process that included all the inquiry skills…

  12. Psychophysical contrast calibration

    PubMed Central

    To, Long; Woods, Russell L; Goldstein, Robert B; Peli, Eli

    2013-01-01

    Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the display’s three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843

  13. Investigating Sources of Toxicity in Stormwater: Algae Mortality in Runoff Upstream of the Lawrence Livermore National Laboratory

    SciTech Connect

    Campbell, C G; Folks, K; Mathews, S; Martinelli, R

    2003-10-06

    A source evaluation case study is presented for observations of algae toxicity in an intermittent stream passing through the Lawrence Livermore National Laboratory near Livermore, California. A five-step procedure is discussed to determine the cause of water toxicity problems and to determine appropriate environmental management practices. Using this approach, an upstream electrical transfer station was identified as the probable source of herbicides causing the toxicity. In addition, an analytical solution for solute transport in overland flow was used to estimate the application level of 40 Kg/ha. Finally, this source investigation demonstrates that pesticides can impact stream water quality regardless of application within levels suggested on manufacturer labels. Environmental managers need to ensure that pesticides that could harm aquatic organisms (including algae) not be used within close proximity to streams or storm drainages and that application timing should be considered for environmental protection.

  14. SMAP RADAR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  15. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  16. Tracing water sources of terrestrial animal populations with stable isotopes: laboratory tests with crickets and spiders.

    PubMed

    McCluney, Kevin E; Sabo, John L

    2010-01-01

    Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the "water web"). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change. PMID:21209877

  17. Tracing Water Sources of Terrestrial Animal Populations with Stable Isotopes: Laboratory Tests with Crickets and Spiders

    PubMed Central

    McCluney, Kevin E.; Sabo, John L.

    2010-01-01

    Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the “water web”). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change. PMID:21209877

  18. Evaluation of stormwater micropollutant source control and end-of-pipe control strategies using an uncertainty-calibrated integrated dynamic simulation model.

    PubMed

    Vezzaro, L; Sharma, A K; Ledin, A; Mikkelsen, P S

    2015-03-15

    The estimation of micropollutant (MP) fluxes in stormwater systems is a fundamental prerequisite when preparing strategies to reduce stormwater MP discharges to natural waters. Dynamic integrated models can be important tools in this step, as they can be used to integrate the limited data provided by monitoring campaigns and to evaluate the performance of different strategies based on model simulation results. This study presents an example where six different control strategies, including both source-control and end-of-pipe treatment, were compared. The comparison focused on fluxes of heavy metals (copper, zinc) and organic compounds (fluoranthene). MP fluxes were estimated by using an integrated dynamic model, in combination with stormwater quality measurements. MP sources were identified by using GIS land usage data, runoff quality was simulated by using a conceptual accumulation/washoff model, and a stormwater retention pond was simulated by using a dynamic treatment model based on MP inherent properties. Uncertainty in the results was estimated with a pseudo-Bayesian method. Despite the great uncertainty in the MP fluxes estimated by the runoff quality model, it was possible to compare the six scenarios in terms of discharged MP fluxes, compliance with water quality criteria, and sediment accumulation. Source-control strategies obtained better results in terms of reduction of MP emissions, but all the simulated strategies failed in fulfilling the criteria based on emission limit values. The results presented in this study shows how the efficiency of MP pollution control strategies can be quantified by combining advanced modeling tools (integrated stormwater quality model, uncertainty calibration). PMID:25532057

  19. Comparison of Laboratory and Modeling Results for High Strain Rates in Support of the Source Physics Experiment

    NASA Astrophysics Data System (ADS)

    Sussman, A.; Rougier, E.; Broome, S.; Knight, E.; Pfeifle, T.; Schultz-Fellenz, E. S.

    2011-12-01

    The Source Physics Experiment program, conducted in Climax Stock Granite at the Nevada Test Site, will provide ground truth data to create and improve strong ground motion and seismic S-wave generation and propagation models. Modeling using advanced simulation codes will be performed both a priori and after each experiment; a key component in the predictive capability and ultimate validation of the models is the full understanding of the intervening geology between the source and instrumented bore holes including the geomechanical behavior of the site rock/structural features. Mechanical properties determined via laboratory testing of site rocks leads to the parameterization of constitutive models used in the simulations. The combined finite-discrete element method by Munjiza is an excellent tool to address a wide range of problems involving fracturing and fragmentation of solids and has been applied to many complex rock mechanics problems such as block caving, deep mining techniques, rock blasting, and seismic wave propagation. Since most of the problems involving fracture and fragmentation of solids are three dimensional, an improved 2D/3D FEM/DEM capability has been developed at Los Alamos National Laboratory. In this paper, Split Hopkinson Pressure Bar experiments, performed on the Climax Stock Granite by Sandia National Laboratories, are simulated using this improved 2D/3D FEM/DEM approach, implemented on LANL's MUNROU (Munjiza-Rougier) code and show excellent agreement.

  20. Application of open-source photogrammetric software MicMac for monitoring surface deformation in laboratory models

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Bertelsen, Hâvard S.; Guldstrand, Frank; Girod, Luc; Johannessen, Rikke F.; Bjugger, Fanny; Burchardt, Steffi; Mair, Karen

    2016-04-01

    Quantifying deformation is essential in modern laboratory models of geological systems. This paper presents a new laboratory monitoring method through the implementation of the open-source software MicMac, which efficiently implements photogrammetry in Structure-from-Motion algorithms. Critical evaluation is provided using results from two example laboratory geodesy scenarios: magma emplacement and strike-slip faulting. MicMac automatically processes images from synchronized cameras to compute time series of digital elevation models (DEMs) and orthorectified images of model surfaces. MicMac also implements digital image correlation to produce high-resolution displacements maps. The resolution of DEMs and displacement maps corresponds to the pixel size of the processed images. Using 24 MP cameras, the precision of DEMs and displacements is ~0.05 mm on a 40 × 40 cm surface. Processing displacement maps with Matlab® scripts allows automatic fracture mapping on the monitored surfaces. MicMac also offers the possibility to integrate 3-D models of excavated structures with the corresponding surface deformation data. The high resolution and high precision of MicMac results and the ability to generate virtual 3-D models of complex structures make it a very promising tool for quantitative monitoring in laboratory models of geological systems.