Science.gov

Sample records for california current ecosystem

  1. Mesopelagic fish biomass in the southern California current ecosystem

    NASA Astrophysics Data System (ADS)

    Davison, Peter; Lara-Lopez, Ana; Anthony Koslow, J.

    2015-02-01

    Mesopelagic fishes are the most common vertebrates on Earth, forming an important link between lower trophic levels and higher predators, and also between surface production and the deep sea. The biomass of these fishes is a key parameter for ecological modeling of oceanic ecosystems, but it is poorly known. The two most common methods to estimate the biomass of these fishes, acoustic and trawl surveys, are both sensitive to the ability of fishes to avoid nets. We show that size-dependent changes in trawl capture efficiency can affect acoustic estimates of biomass estimates 5-fold. We used both acoustic and trawl-based methods (informed by morphological data and acoustic modeling of individual backscattering) to estimate the biomass of mesopelagic fishes of southern California to be 25-37 g m-2 of ocean surface, a comparable density to that of inshore epipelagic zooplanktivorous fishes. Our results indicate that mesopelagic fishes are likely to play a major role in regional food webs.

  2. Using expert judgment to estimate marine ecosystem vulnerability in the California Current.

    PubMed

    Teck, Sarah J; Halpern, Benjamin S; Kappel, Carrie V; Micheli, Fiorenza; Selkoe, Kimberly A; Crain, Caitlin M; Martone, Rebecca; Shearer, Christine; Arvai, Joe; Fischhoff, Baruch; Murray, Grant; Neslo, Rabin; Cooke, Roger

    2010-07-01

    As resource management and conservation efforts move toward multi-sector, ecosystem-based approaches, we need methods for comparing the varying responses of ecosystems to the impacts of human activities in order to prioritize management efforts, allocate limited resources, and understand cumulative effects. Given the number and variety of human activities affecting ecosystems, relatively few empirical studies are adequately comprehensive to inform these decisions. Consequently, management often turns to expert judgment for information. Drawing on methods from decision science, we offer a method for eliciting expert judgment to (1) quantitatively estimate the relative vulnerability of ecosystems to stressors, (2) help prioritize the management of stressors across multiple ecosystems, (3) evaluate how experts give weight to different criteria to characterize vulnerability of ecosystems to anthropogenic stressors, and (4) identify key knowledge gaps. We applied this method to the California Current region in order to evaluate the relative vulnerability of 19 marine ecosystems to 53 stressors associated with human activities, based on surveys from 107 experts. When judging the relative vulnerability of ecosystems to stressors, we found that experts primarily considered two criteria: the ecosystem's resistance to the stressor and the number of species or trophic levels affected. Four intertidal ecosystems (mudflat, beach, salt marsh, and rocky intertidal) were judged most vulnerable to the suite of human activities evaluated here. The highest vulnerability rankings for coastal ecosystems were invasive species, ocean acidification, sea temperature change, sea level rise, and habitat alteration from coastal engineering, while offshore ecosystems were assessed to be most vulnerable to ocean acidification, demersal destructive fishing, and shipwrecks. These results provide a quantitative, transparent, and repeatable assessment of relative vulnerability across ecosystems to any ongoing or emerging human activity. Combining these results with data on the spatial distribution and intensity of human activities provides a systematic foundation for ecosystem-based management. PMID:20666257

  3. Impact of assimilating physical oceanographic data on modeled ecosystem dynamics in the California Current System

    NASA Astrophysics Data System (ADS)

    Raghukumar, Kaustubha; Edwards, Christopher A.; Goebel, Nicole L.; Broquet, Gregoire; Veneziani, Milena; Moore, Andrew M.; Zehr, Jon P.

    2015-11-01

    A method to model ocean ecosystems using data-constrained physical circulation estimates is investigated. Physical oceanographic data is assimilated into a Regional Ocean Modeling System implementation of the California Current System using an incremental 4-Dimensional Variational method. The resulting state estimate drives a complex, self-assembling ocean ecosystem model for the year 2003, and results are evaluated against SeaWiFS surface and CalCOFI subsurface observations and with ecosystem model output driven by an unconstrained physical model. While physical data assimilation improves correlation with observations, this method also drives elevated levels of phytoplankton standing stock, leading to a large bias particularly in regions of low mean concentration. We identify two causes for this increase: biological rectification of fluctuating vertical nutrient transport due to gravity wave generation at assimilation cycle initialization and increased nutrient variance on density surfaces. We investigate one and propose other possible remedies for these deleterious side-effects of this data assimilation method.

  4. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current.

    PubMed

    Fleming, Alyson H; Clark, Casey T; Calambokidis, John; Barlow, Jay

    2016-03-01

    Large, migratory predators are often cited as sentinel species for ecosystem processes and climate-related changes, but their utility as indicators is dependent upon an understanding of their response to environmental variability. Documentation of the links between climate variability, ecosystem change and predator dynamics is absent for most top predators. Identifying species that may be useful indicators and elucidating these mechanistic links provides insight into current ecological dynamics and may inform predictions of future ecosystem responses to climatic change. We examine humpback whale response to environmental variability through stable isotope analysis of diet over a dynamic 20-year period (1993-2012) in the California Current System (CCS). Humpback whale diets captured two major shifts in oceanographic and ecological conditions in the CCS. Isotopic signatures reflect a diet dominated by krill during periods characterized by positive phases of the North Pacific Gyre Oscillation (NPGO), cool sea surface temperature (SST), strong upwelling and high krill biomass. In contrast, humpback whale diets are dominated by schooling fish when the NPGO is negative, SST is warmer, seasonal upwelling is delayed and anchovy and sardine populations display increased biomass and range expansion. These findings demonstrate that humpback whales trophically respond to ecosystem shifts, and as a result, their foraging behavior is a synoptic indicator of oceanographic and ecological conditions across the CCS. Multi-decadal examination of these sentinel species thus provides insight into biological consequences of interannual climate fluctuations, fundamental to advancing ecosystem predictions related to global climate change. PMID:26599719

  5. Introduction to CCE-LTER: Responses of the California Current Ecosystem to climate forcing

    NASA Astrophysics Data System (ADS)

    Goericke, R.; Ohman, M. D.

    2015-02-01

    The California Current Ecosystem Long Term Ecological Research (CCE-LTER) site has been in existence since 2004. One of its primary objectives is to understand the response of the southern California Current ecosystem to climate forcing. The CCE-LTER site cooperates with the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program and complements CalCOFI's work through more extensive observations, process studies, and a modeling program. This special issue is focused on the long-term observations made by the CCE-LTER and CalCOFI programs, describing and understanding long-term changes in the physical, chemical, and biotic environment in the region. The papers in this issue highlight the climatological conditions during recent years and employ modeling to diagnose the principal forcing of meridional currents and eddy transport, both of which affect biotic responses. Changes in source waters in the region, and altered flushing of the Santa Barbara Basin, are considered. Temporal variations in inherent optical properties and in higher trophic levels, including seabirds and marine mammals, are presented. Key methodological developments presented include the incorporation of subsurface phytoplankton and light distributions in order to improve remotely sensed measures of primary production, and the validation of multi-frequency acoustic estimates of mesopelagic fish biomass. Results also highlight significant spatial differences across the CCE-LTER region, including cross-shore trends in microbial assemblages, and glider-resolved frontal features and zones of mixing associated with abrupt topography. Alterations to the spatial structure of the pelagic ecosystem must also be considered when evaluating future climate-related changes.

  6. Exploring local adaptation and the ocean acidification seascape - studies in the California Current Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Hofmann, G. E.; Evans, T. G.; Kelly, M. W.; Padilla-Gamiño, J. L.; Blanchette, C. A.; Washburn, L.; Chan, F.; McManus, M. A.; Menge, B. A.; Gaylord, B.; Hill, T. M.; Sanford, E.; LaVigne, M.; Rose, J. M.; Kapsenberg, L.; Dutton, J. M.

    2013-07-01

    The California Current Large Marine Ecosystem (CCLME), a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification. Aragonite saturation state within the California Current System is predicted to decrease in the future, with near-permanent undersaturation conditions expected by the year 2050. Thus, the CCLME is a critical region to study due to the rapid rate of environmental change that resident organisms will experience and because of the economic and societal value of this coastal region. Recent efforts by a research consortium - the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS) - has begun to characterize a portion of the CCLME; both describing the mosaic of pH in coastal waters and examining the responses of key calcification-dependent benthic marine organisms to natural variation in pH and to changes in carbonate chemistry that are expected in the coming decades. In this review, we present the OMEGAS strategy of co-locating sensors and oceanographic observations with biological studies on benthic marine invertebrates, specifically measurements of functional traits such as calcification-related processes and genetic variation in populations that are locally adapted to conditions in a particular region of the coast. Highlighted in this contribution are (1) the OMEGAS sensor network that spans the west coast of the US from central Oregon to southern California, (2) initial findings of the carbonate chemistry amongst the OMEGAS study sites, (3) an overview of the biological data that describes the acclimatization and the adaptation capacity of key benthic marine invertebrates within the CCLME.

  7. Exploring local adaptation and the ocean acidification seascape - studies in the California Current Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Hofmann, G. E.; Evans, T. G.; Kelly, M. W.; Padilla-Gamiño, J. L.; Blanchette, C. A.; Washburn, L.; Chan, F.; McManus, M. A.; Menge, B. A.; Gaylord, B.; Hill, T. M.; Sanford, E.; LaVigne, M.; Rose, J. M.; Kapsenberg, L.; Dutton, J. M.

    2014-02-01

    The California Current Large Marine Ecosystem (CCLME), a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification. The aragonite saturation state within the California Current System is predicted to decrease in the future with near-permanent undersaturation conditions expected by the year 2050. Thus, the CCLME is a critical region to study due to the rapid rate of environmental change that resident organisms will experience and because of the economic and societal value of this coastal region. Recent efforts by a research consortium - the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS) - has begun to characterize a portion of the CCLME; both describing the spatial mosaic of pH in coastal waters and examining the responses of key calcification-dependent benthic marine organisms to natural variation in pH and to changes in carbonate chemistry that are expected in the coming decades. In this review, we present the OMEGAS strategy of co-locating sensors and oceanographic observations with biological studies on benthic marine invertebrates, specifically measurements of functional traits such as calcification-related processes and genetic variation in populations that are locally adapted to conditions in a particular region of the coast. Highlighted in this contribution are (1) the OMEGAS sensor network that spans the west coast of the US from central Oregon to southern California, (2) initial findings of the carbonate chemistry amongst the OMEGAS study sites, and (3) an overview of the biological data that describes the acclimatization and the adaptation capacity of key benthic marine invertebrates within the CCLME.

  8. Screening California Current fishery management scenarios using the Atlantis end-to-end ecosystem model

    NASA Astrophysics Data System (ADS)

    Kaplan, Isaac C.; Horne, Peter J.; Levin, Phillip S.

    2012-09-01

    End-to-end marine ecosystem models link climate and oceanography to the food web and human activities. These models can be used as forecasting tools, to strategically evaluate management options and to support ecosystem-based management. Here we report the results of such forecasts in the California Current, using an Atlantis end-to-end model. We worked collaboratively with fishery managers at NOAA’s regional offices and staff at the National Marine Sanctuaries (NMS) to explore the impact of fishery policies on management objectives at different spatial scales, from single Marine Sanctuaries to the entire Northern California Current. In addition to examining Status Quo management, we explored the consequences of several gear switching and spatial management scenarios. Of the scenarios that involved large scale management changes, no single scenario maximized all performance metrics. Any policy choice would involve trade-offs between stakeholder groups and policy goals. For example, a coast-wide 25% gear shift from trawl to pot or longline appeared to be one possible compromise between an increase in spatial management (which sacrificed revenue) and scenarios such as the one consolidating bottom impacts to deeper areas (which did not perform substantially differently from Status Quo). Judged on a coast-wide scale, most of the scenarios that involved minor or local management changes (e.g. within Monterey Bay NMS only) yielded results similar to Status Quo. When impacts did occur in these cases, they often involved local interactions that were difficult to predict a priori based solely on fishing patterns. However, judged on the local scale, deviation from Status Quo did emerge, particularly for metrics related to stationary species or variables (i.e. habitat and local metrics of landed value or bycatch). We also found that isolated management actions within Monterey Bay NMS would cause local fishers to pay a cost for conservation, in terms of reductions in landed value. However, this cost was minimal when local conservation actions were part of a concerted coast-wide plan. The simulations demonstrate the utility of using the Atlantis end-to-end ecosystem model within NOAA’s Integrated Ecosystem Assessment, by illustrating an end-to-end modeling tool that allows consideration of multiple management alternatives that are relevant to numerous state, federal and private interests.

  9. Shearwaters as ecosystem indicators: Towards fishery-independent metrics of fish abundance in the California Current

    NASA Astrophysics Data System (ADS)

    Lyday, Shannon E.; Ballance, Lisa T.; Field, David B.; David Hyrenbach, K.

    2015-06-01

    Shearwaters are ideal for monitoring ocean conditions in the California Current because these predators are abundant, conspicuous, and responsive to oceanographic variability. Herein we evaluated black-vented (Puffinus opisthomelas), Buller's (P. bulleri), flesh-footed (P. carneipes), pink-footed (P. creatopus), short-tailed (P. tenuirostris), and sooty (P. griseus) shearwaters as fishery-independent indicators of predatory or prey fish availability. We analyzed four years (1996, 2001, 2005, 2008) of monthly (August-November) National Oceanic and Atmospheric Administration seabird surveys, and United States Geological Survey Pacific Coast Fisheries Database catch, from the California coast to 200 nm offshore. An ordination of shearwater abundance and fish catch revealed that the shearwaters and 11 fish/squid species were significantly correlated with one or more of three principal components, which explained 86% of the variation and revealed distinct species assemblages. We evaluated multiple linear regression models for 19 fisheries using five shearwater metrics: density, aggregation, and behavior (traveling, stationary, feeding), three oceanographic indices, and latitude. Eight of these models had a shearwater metric as the primary predictor. In particular, feeding black-vented shearwater abundance explained 75% of dolphinfish (Coryphaena hippurus) longline catch. This research illustrates the utility of shearwaters as ecosystem indicators, with direct application for predicting fishery catch of commercial importance.

  10. Declining abundance of beaked whales (family Ziphiidae) in the California Current large marine ecosystem.

    PubMed

    Moore, Jeffrey E; Barlow, Jay P

    2013-01-01

    Beaked whales are among the most diverse yet least understood groups of marine mammals. A diverse set of mostly anthropogenic threats necessitates improvement in our ability to assess population status for this cryptic group. The Southwest Fisheries Science Center (NOAA) conducted six ship line-transect cetacean abundance surveys in the California Current off the contiguous western United States between 1991 and 2008. We used a Bayesian hidden-process modeling approach to estimate abundance and population trends of beaked whales using sightings data from these surveys. We also compiled records of beaked whale stranding events (3 genera, at least 8 species) on adjacent beaches from 1900 to 2012, to help assess population status of beaked whales in the northern part of the California Current. Bayesian posterior summaries for trend parameters provide strong evidence of declining beaked whale abundance in the study area. The probability of negative trend for Cuvier's beaked whale (Ziphius cavirostris) during 1991-2008 was 0.84, with 1991 and 2008 estimates of 10771 (CV = 0.51) and ≈7550 (CV = 0.55), respectively. The probability of decline for Mesoplodon spp. (pooled across species) was 0.96, with 1991 and 2008 estimates of 2206 (CV = 0.46) and 811 (CV = 0.65). The mean posterior estimates for average rate of decline were 2.9% and 7.0% per year. There was no evidence of abundance trend for Baird's beaked whale (Berardius bairdii), for which annual abundance estimates in the survey area ranged from ≈900 to 1300 (CV≈1.3). Stranding data were consistent with the survey results. Causes of apparent declines are unknown. Direct impacts of fisheries (bycatch) can be ruled out, but impacts of anthropogenic sound (e.g., naval active sonar) and ecosystem change are plausible hypotheses that merit investigation. PMID:23341907

  11. Declining Abundance of Beaked Whales (Family Ziphiidae) in the California Current Large Marine Ecosystem

    PubMed Central

    Moore, Jeffrey E.; Barlow, Jay P.

    2013-01-01

    Beaked whales are among the most diverse yet least understood groups of marine mammals. A diverse set of mostly anthropogenic threats necessitates improvement in our ability to assess population status for this cryptic group. The Southwest Fisheries Science Center (NOAA) conducted six ship line-transect cetacean abundance surveys in the California Current off the contiguous western United States between 1991 and 2008. We used a Bayesian hidden-process modeling approach to estimate abundance and population trends of beaked whales using sightings data from these surveys. We also compiled records of beaked whale stranding events (3 genera, at least 8 species) on adjacent beaches from 1900 to 2012, to help assess population status of beaked whales in the northern part of the California Current. Bayesian posterior summaries for trend parameters provide strong evidence of declining beaked whale abundance in the study area. The probability of negative trend for Cuvier's beaked whale (Ziphius cavirostris) during 1991–2008 was 0.84, with 1991 and 2008 estimates of 10771 (CV = 0.51) and ≈7550 (CV = 0.55), respectively. The probability of decline for Mesoplodon spp. (pooled across species) was 0.96, with 1991 and 2008 estimates of 2206 (CV = 0.46) and 811 (CV = 0.65). The mean posterior estimates for average rate of decline were 2.9% and 7.0% per year. There was no evidence of abundance trend for Baird's beaked whale (Berardius bairdii), for which annual abundance estimates in the survey area ranged from ≈900 to 1300 (CV≈1.3). Stranding data were consistent with the survey results. Causes of apparent declines are unknown. Direct impacts of fisheries (bycatch) can be ruled out, but impacts of anthropogenic sound (e.g., naval active sonar) and ecosystem change are plausible hypotheses that merit investigation. PMID:23341907

  12. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem

    PubMed Central

    Asch, Rebecca G.

    2015-01-01

    Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends. PMID:26159416

  13. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.

    PubMed

    Asch, Rebecca G

    2015-07-28

    Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends. PMID:26159416

  14. Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew G.; Landry, Michael R.; Selph, Karen E.; Wokuluk, John J.

    2015-02-01

    As part of the California Current Ecosystem Long Term Ecological Research (CCE-LTER) Program, samples for epifluorescence microscopy and flow cytometry (FCM) were collected at ten 'cardinal' stations on the California Cooperative Oceanic Fisheries Investigations (CalCOFI) grid during 25 quarterly cruises from 2004 to 2010 to investigate the biomass, composition and size-structure of microbial communities within the southern CCE. Based on our results, we divided the region into offshore, and inshore northern and southern zones. Mixed-layer phytoplankton communities in the offshore had lower biomass (16±2 μg C L-1; all errors represent the 95% confidence interval), smaller size-class cells and biomass was more stable over seasonal cycles. Offshore phytoplankton biomass peaked during the winter months. Mixed-layer phytoplankton communities in the northern and southern inshore zones had higher biomass (78±22 and 32±9 μg C L-1, respectively), larger size-class cells and stronger seasonal biomass patterns. Inshore communities were often dominated by micro-size (20-200 μm) diatoms; however, autotrophic dinoflagellates dominated during late 2005 to early 2006, corresponding to a year of delayed upwelling in the northern CCE. Biomass trends in mid and deep euphotic zone samples were similar to those seen in the mixed-layer, but with declining biomass with depth, especially for larger size classes in the inshore regions. Mixed-layer ratios of autotrophic carbon to chlorophyll a (AC:Chl a) had a mean value of 51.5±5.3. Variability of nitracline depth, bin-averaged AC:Chl a in the mixed-layer ranged from 40 to 80 and from 22 to 35 for the deep euphotic zone, both with significant positive relationships to nitracline depth. Total living microbial carbon, including auto- and heterotrophs, consistently comprised about half of particulate organic carbon (POC).

  15. Species associations and redundancy in relation to biological hotspots within the northern California Current ecosystem

    NASA Astrophysics Data System (ADS)

    Reese, Douglas C.; Brodeur, Richard D.

    2015-06-01

    The dynamic nature of biological hotspots, while well recognized, is not well understood. We hypothesize that the persistence of hotspots in the northern California Current System (CCS), despite seasonal and annual changes in the nekton community species composition, is related to associations among species and their functional redundancy. To address this hypothesis, sampling was conducted during June and August of 2000 and 2002 within two hotspots occurring between Newport, Oregon and Crescent City, California in the coastal CCS. Associations were examined to identify potentially complementary and redundant species. The strongest negative associations were between jellyfish and fish species, with strong positive associations evident among several fish species. Dominant species varied seasonally and annually, although evidence indicated replacement of dominant species by other similar species with respect to functional group and preferred habitat. This finding suggests that the persistence of these biological hotspots is related to species redundancy and is an important attribute contributing to stability within this highly variable system.

  16. Do inverse ecosystem models accurately reconstruct plankton trophic flows? Comparing two solution methods using field data from the California Current

    NASA Astrophysics Data System (ADS)

    Stukel, Michael R.; Landry, Michael R.; Ohman, Mark D.; Goericke, Ralf; Samo, Ty; Benitez-Nelson, Claudia R.

    2012-03-01

    Despite the increasing use of linear inverse modeling techniques to elucidate fluxes in undersampled marine ecosystems, the accuracy with which they estimate food web flows has not been resolved. New Markov Chain Monte Carlo (MCMC) solution methods have also called into question the biases of the commonly used L2 minimum norm (L 2MN) solution technique. Here, we test the abilities of MCMC and L 2MN methods to recover field-measured ecosystem rates that are sequentially excluded from the model input. For data, we use experimental measurements from process cruises of the California Current Ecosystem (CCE-LTER) Program that include rate estimates of phytoplankton and bacterial production, micro- and mesozooplankton grazing, and carbon export from eight study sites varying from rich coastal upwelling to offshore oligotrophic conditions. Both the MCMC and L 2MN methods predicted well-constrained rates of protozoan and mesozooplankton grazing with reasonable accuracy, but the MCMC method overestimated primary production. The MCMC method more accurately predicted the poorly constrained rate of vertical carbon export than the L 2MN method, which consistently overestimated export. Results involving DOC and bacterial production were equivocal. Overall, when primary production is provided as model input, the MCMC method gives a robust depiction of ecosystem processes. Uncertainty in inverse ecosystem models is large and arises primarily from solution under-determinacy. We thus suggest that experimental programs focusing on food web fluxes expand the range of experimental measurements to include the nature and fate of detrital pools, which play large roles in the model.

  17. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem

    PubMed Central

    Bednaršek, N.; Feely, R. A.; Reum, J. C. P.; Peterson, B.; Menkel, J.; Alin, S. R.; Hales, B.

    2014-01-01

    Few studies to date have demonstrated widespread biological impacts of ocean acidification (OA) under conditions currently found in the natural environment. From a combined survey of physical and chemical water properties and biological sampling along the Washington–Oregon–California coast in August 2011, we show that large portions of the shelf waters are corrosive to pteropods in the natural environment. We show a strong positive correlation between the proportion of pteropod individuals with severe shell dissolution damage and the percentage of undersaturated water in the top 100 m with respect to aragonite. We found 53% of onshore individuals and 24% of offshore individuals on average to have severe dissolution damage. Relative to pre-industrial CO2 concentrations, the extent of undersaturated waters in the top 100 m of the water column has increased over sixfold along the California Current Ecosystem (CCE). We estimate that the incidence of severe pteropod shell dissolution owing to anthropogenic OA has doubled in near shore habitats since pre-industrial conditions across this region and is on track to triple by 2050. These results demonstrate that habitat suitability for pteropods in the coastal CCE is declining. The observed impacts represent a baseline for future observations towards understanding broader scale OA effects. PMID:24789895

  18. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem.

    PubMed

    Bednarek, N; Feely, R A; Reum, J C P; Peterson, B; Menkel, J; Alin, S R; Hales, B

    2014-06-22

    Few studies to date have demonstrated widespread biological impacts of ocean acidification (OA) under conditions currently found in the natural environment. From a combined survey of physical and chemical water properties and biological sampling along the Washington-Oregon-California coast in August 2011, we show that large portions of the shelf waters are corrosive to pteropods in the natural environment. We show a strong positive correlation between the proportion of pteropod individuals with severe shell dissolution damage and the percentage of undersaturated water in the top 100 m with respect to aragonite. We found 53% of onshore individuals and 24% of offshore individuals on average to have severe dissolution damage. Relative to pre-industrial CO2 concentrations, the extent of undersaturated waters in the top 100 m of the water column has increased over sixfold along the California Current Ecosystem (CCE). We estimate that the incidence of severe pteropod shell dissolution owing to anthropogenic OA has doubled in near shore habitats since pre-industrial conditions across this region and is on track to triple by 2050. These results demonstrate that habitat suitability for pteropods in the coastal CCE is declining. The observed impacts represent a baseline for future observations towards understanding broader scale OA effects. PMID:24789895

  19. Variability in diatom contributions to biomass, organic matter production and export across a frontal gradient in the California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Krause, Jeffrey W.; Brzezinski, Mark A.; Goericke, Ralf; Landry, Michael R.; Ohman, Mark D.; Stukel, Michael R.; Taylor, Andrew G.

    2015-02-01

    In the offshore waters of Southern California, submesoscale processes associated with fronts may stimulate phytoplankton blooms and lead to biomass shifts at multiple trophic levels. Here we report the results of a study on the cycling of biogenic silica (bSiO2) with estimates of the contributions of diatoms to primary and new production in water masses adjacent to (i.e., coastal or oceanic) and within an offshore front in the Southern California Current Ecosystem (CCE). The coastal and oceanic water were sampled in cyclonic and anticyclonic eddies, respectively, with the frontal water being an interaction region between the eddy types. Concentrations of bSiO2 varied by 25-fold across the front, with concentrations in frontal waters 20-25% of those in coastal waters. Rates of biogenic silica production spanned an equally large range, with rates within the frontal region that were half those in the coastal regions. Contributions of diatoms to primary and new production were disproportionately higher than their contribution to autotrophic biomass in all areas, ranging from 5-8%, 19-30%, and 32-43% for both processes in the oceanic, frontal and coastal waters, respectively. Across the frontal area, diatoms could account for <1.0%, 6-8%, and 44-72% of organic matter export in the oceanic, frontal and coastal waters, respectively. The results suggest that the regions of frontal interactions between eddies in the southern CCE can account for variability in diatom biomass, productivity and export over very short spatial scales that is comparable to the variability observed across the Pacific basin.

  20. Top-down modeling and bottom-up dynamics: Linking a fisheries-based ecosystem model with climate hypotheses in the Northern California Current

    NASA Astrophysics Data System (ADS)

    Field, J. C.; Francis, R. C.; Aydin, K.

    2006-02-01

    In this paper we present results from dynamic simulations of the Northern California Current ecosystem, based on historical estimates of fishing mortality, relative fishing effort, and climate forcing. Climate can affect ecosystem productivity and dynamics both from the bottom-up (through short- and long-term variability in primary and secondary production) as well as from the top-down (through variability in the abundance and spatial distribution of key predators). We have explored how the simplistic application of climate forcing through both bottom-up and top-down mechanisms improves the fit of the model dynamics to observed population trends and reported catches for exploited components of the ecosystem. We find that using climate as either a bottom-up or a top-down forcing mechanism results in substantial improvements in model performance, such that much of the variability observed in single species models and dynamics can be replicated in a multi-species approach. Using multiple climate variables (both bottom-up and top-down) simultaneously did not provide significant improvement over a model with only one forcing. In general, results suggest that there do not appear to be strong trophic interactions among many of the longer-lived, slower-growing rockfish, roundfish and flatfish in this ecosystem, although strong interactions were observed in shrimp, salmon and small flatfish populations where high turnover and predation rates have been coupled with substantial changes in many predator populations over the last 40 years.

  1. El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems

    NASA Astrophysics Data System (ADS)

    Arntz, W. E.; Gallardo, V. A.; Gutiérrez, D.; Isla, E.; Levin, L. A.; Mendo, J.; Neira, C.; Rowe, G. T.; Tarazona, J.; Wolff, M.

    2006-03-01

    To a certain degree, Eastern Boundary Current (EBC) ecosystems are similar: Cold bottom water from moderate depths, rich in nutrients, is transported to the euphotic zone by a combination of trade winds, Coriolis force and Ekman transport. The resultant high primary production fuels a rich secondary production in the upper pelagic and nearshore zones, but where O2 exchange is restricted, it creates oxygen minimum zones (OMZs) at shelf and upper slope (Humboldt and Benguela Current) or slope depths (California Current). These hypoxic zones host a specifically adapted, small macro- and meiofauna together with giant sulphur bacteria that use nitrate to oxydise H2S. In all EBC, small polychaetes, large nematodes and other opportunistic benthic species have adapted to the hypoxic conditions and co-exist with sulphur bacteria, which seem to be particularly dominant off Peru and Chile. However, a massive reduction of macrobenthos occurs in the core of the OMZ. In the Humboldt Current area the OMZ ranges between <100 and about 600 m, with decreasing thickness in a poleward direction. The OMZ merges into better oxygenated zones towards the deep sea, where large cold-water mega- and macrofauna occupy a dominant role as in the nearshore strip. The Benguela Current OMZ has a similar upper limit but remains shallower. It also hosts giant sulphur bacteria but little is known about the benthic fauna. However, sulphur eruptions and intense hypoxia might preclude the coexistence of significant mega- und macrobenthos. Conversely, off North America the upper limit of the OMZ is considerably deeper (e.g., 500-600 m off California and Oregon), and the lower boundary may exceed 1000m. The properties described are valid for very cold and cold (La Niña and "normal") ENSO conditions with effective upwelling of nutrient-rich bottom water. During warm (El Niño) episodes, warm water masses of low oxygen concentration from oceanic and equatorial regions enter the upwelling zones, bringing a variety of (sub)tropical immigrants. The autochthonous benthic fauna emigrates to deeper water or poleward, or suffers mortality. However, some local macrofaunal species experience important population proliferations, presumably due to improved oxygenation (in the southern hemisphere), higher temperature tolerance, reduced competition or the capability to use different food. Both these negative and positive effects of El Niño influence local artisanal fisheries and the livelihood of coastal populations. In the Humboldt Current system the hypoxic seafloor at outer shelf depths receives important flushing from the equatorial zone, causing havoc on the sulphur bacteria mats and immediate recolonisation of the sediments by mega- and macrofauna. Conversely, off California, the intruding equatorial water masses appear to have lower oxygen than ambient waters, and may cause oxygen deficiency at upper slope depths. Effects of this change have not been studied in detail, although shrimp and other taxa appear to alter their distribution on the continental margin. Other properties and reactions of the two Pacific EBC benthic ecosystems to El Niño seem to differ, too, as does the overall impact of major episodes (e.g., 1982/1983(1984) vs. 1997/1998). The relation of the "Benguela Niño" to ENSO seems unclear although many Pacific-Atlantic ocean and atmosphere teleconnections have been described. Warm, low-oxygen equatorial water seems to be transported into the upwelling area by similar mechanisms as in the Pacific, but most major impacts on the eukaryotic biota obviously come from other, independent perturbations such as an extreme eutrophication of the sediments ensuing in sulphidic eruptions and toxic algal blooms. Similarities and differences of the Humboldt and California Current benthic ecosystems are discussed with particular reference to ENSO impacts since 1972/73. Where there are data available, the authors include the Benguela Current ecosystem as another important, non-Pacific EBC, which also suffers from the effects of hypoxia.

  2. Delta Revival: Restoring a California Ecosystem

    USGS Publications Warehouse

    U.S. Geological Survey; California Bay Delta Authority

    2003-01-01

    'Delta Revival: Restoring a California Ecosystem' shows scientists from many disciplines working together to guide the unprecendented restoration of the Sacramento- San Joaquin Delta east of San Francisco Bay.

  3. Mapping Groundwater Dependent Ecosystems in California

    PubMed Central

    Howard, Jeanette; Merrifield, Matt

    2010-01-01

    Background Most groundwater conservation and management efforts focus on protecting groundwater for drinking water and for other human uses with little understanding or focus on the ecosystems that depend on groundwater. However, groundwater plays an integral role in sustaining certain types of aquatic, terrestrial and coastal ecosystems, and their associated landscapes. Our aim was to illuminate the connection between groundwater and surface ecosystems by identifying and mapping the distribution of groundwater dependent ecosystems (GDEs) in California. Methodology/Principal Findings To locate where groundwater flow sustains ecosystems we identified and mapped groundwater dependent ecosystems using a GIS. We developed an index of groundwater dependency by analyzing geospatial data for three ecosystem types that depend on groundwater: (1) springs and seeps; (2) wetlands and associated vegetation alliances; and (3) stream discharge from groundwater sources (baseflow index). Each variable was summarized at the scale of a small watershed (Hydrologic Unit Code-12; mean size = 9,570 ha; n = 4,621), and then stratified and summarized to 10 regions of relative homogeneity in terms of hydrologic, ecologic and climatic conditions. We found that groundwater dependent ecosystems are widely, although unevenly, distributed across California. Although different types of GDEs are clustered more densely in certain areas of the state, watersheds with multiple types of GDEs are found in both humid (e.g. coastal) and more arid regions. Springs are most densely concentrated in the North Coast and North Lahontan, whereas groundwater dependent wetlands and associated vegetation alliances are concentrated in the North and South Lahontan and Sacramento River hydrologic regions. The percentage of land area where stream discharge is most dependent on groundwater is found in the North Coast, Sacramento River and Tulare Lake regions. GDE clusters are located at the highest percentage in the North Coast (an area of the highest annual rainfall totals), North Lahontan (an arid, high desert climate with low annual rainfall), and Sacramento River hydrologic regions. That GDEs occur in such distinct climatic and hydrologic settings reveals the widespread distribution of these ecosystems. Conclusions/Significance Protection and management of groundwater-dependent ecosystems are hindered by lack of information on their diversity, abundance and location. By developing a methodology that uses existing datasets to locate GDEs, this assessment addresses that knowledge gap. We report here on the application of this method across California, but believe the method can be expanded to regions where spatial data exist. PMID:20585640

  4. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Yack, Tina M.

    The objectives of this research were to test available automated detection methods for passive acoustic monitoring and integrate the best available method into standard marine mammal monitoring protocols for ship based surveys. The goal of the first chapter was to evaluate the performance and utility of PAMGUARD 1.0 Core software for use in automated detection of marine mammal acoustic signals during towed array surveys. Three different detector configurations of PAMGUARD were compared. These automated detection algorithms were evaluated by comparing them to the results of manual detections made by an experienced bio-acoustician (author TMY). This study provides the first detailed comparisons of PAMGUARD automated detection algorithms to manual detection methods. The results of these comparisons clearly illustrate the utility of automated detection methods for odontocete species. Results of this work showed that the majority of whistles and click events can be reliably detected using PAMGUARD software. The second chapter moves beyond automated detection to examine and test automated classification algorithms for beaked whale species. Beaked whales are notoriously elusive and difficult to study, especially using visual survey methods. The purpose of the second chapter was to test, validate, and compare algorithms for detection of beaked whales in acoustic line-transect survey data. Using data collected at sea from the PAMGUARD classifier developed in Chapter 2 it was possible to measure the clicks from visually verified Baird's beaked whale encounters and use this data to develop classifiers that could discriminate Baird's beaked whales from other beaked whale species in future work. Echolocation clicks from Baird's beaked whales, Berardius bairdii, were recorded during combined visual and acoustic shipboard surveys of cetacean populations in the California Current Ecosystem (CCE) and with autonomous, long-term recorders at four different sites in the Southern California Bight (SCB). The preliminary measurement of the visually validated Baird's beaked whale echolocation signals recorded from the ship-based towed array were used as a basis for identifying Baird's signals in the seafloor-mounted autonomous recorder data. The passive acoustic detection algorithms for beaked whales developed using data from Chapters 2 and 3 were field tested during a three year period to test the reliability of acoustic beaked whale monitoring techniques and to use these methods to describe beaked whale habitat in the SCB. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the SCB and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study (SOCAL-BRS). The final step in this research was to utilize the passive acoustic detection techniques developed herin to predictively model beaked whale habitat use and preferences in the CCE. This chapter uses a multifaceted approach to model beaked whale encounter rates in the CCE. Beaked whale acoustic encounters are utilized to inform Generalized Additive Models (GAMs) of encounter rate for beaked whales in the CCE and compare these to visual based models. Acoustic and visual based models were independently developed for a small beaked whale group and Baird's beaked whales. Two models were evaluated for visual and acoustic encounters, one that also included Beaufort sea state as a predictor variable in addition to those listed and one that did not include Beaufort sea state. (Abstract shortened by UMI.)

  5. California current system - Predators and the preyscape

    NASA Astrophysics Data System (ADS)

    Ainley, David G.; Adams, Peter B.; Jahncke, Jaime

    2015-06-01

    The preyscape of the California Current System (CCS), one of the most productive marine areas on Earth (Glantz and Thompson, 1981), is highly variable, as evidenced by the papers in this issue, and as such presents a challenge to Ecosystem-based fishery management (EBFM), which attempts to integrate ecosystem considerations as part of fishery management and conservation decisions. Approaches to EBFM for the waters off Washington, Oregon, and California, the CCS, have been initiated (PFMC, 2007, 2013), and are continually being developed. To inform this process, a workshop was held in September 2013 to: i) gather together the existing information on forage fish and predator dynamics in the CCS; ii) consider temporal (seasonal, annual, decadal) and spatial availability of prey complexes and why these patterns of availability occur and change; iii) summarize and present that information for discussion to a large range of experts in oceanography, fish and fisheries management, seabirds, marine mammals, and ecosystem management; and, iv) synthesize this information to be useable by fishery agencies. The papers in this special Journal of Marine Systems issue address these four points. While the full results and recommendations can be found here - "http://www.pointblue.org/uploads/assets/calcurrent/REPORT_Forage_Fish_Workshop_FINAL.pdf"

  6. Predictability of the California Current System

    NASA Technical Reports Server (NTRS)

    Miller, Arthur J.; Chereskin, T.; Cornuelle, B. D.; Niiler, P. P.; Moisan, J. R.; Lindstrom, Eric (Technical Monitor)

    2001-01-01

    The physical and biological oceanography of the Southern California Bight (SCB), a highly productive subregion of the California Current System (CCS) that extends from Point Conception, California, south to Ensenada, Mexico, continues to be extensively studied. For example, the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has sampled this region for over 50 years, providing an unparalleled time series of physical and biological data. However, our understanding of what physical processes control the large-scale and mesoscale variations in these properties is incomplete. In particular, the non-synoptic and relatively coarse spatial sampling (70km) of the hydrographic grid does not completely resolve the mesoscale eddy field (Figure 1a). Moreover, these unresolved physical variations exert a dominant influence on the evolution of the ecosystem. In recent years, additional datasets that partially sample the SCB have become available. Acoustic Doppler Current Profiler (ADCP) measurements, which now sample upper-ocean velocity between stations, and sea level observations along TOPEX tracks give a more complete picture of the mesoscale variability. However, both TOPEX and ADCP are well-sampled only along the cruise or orbit tracks and coarsely sampled in time and between tracks. Surface Lagrangian drifters also sample the region, although irregularly in time and space. SeaWiFS provides estimates of upper-ocean chlorophyll-a (chl-alpha), usually giving nearly complete coverage for week-long intervals, depending on cloud coverage. Historical ocean color data from the Coastal Zone Color Scanner (CZCS) has been used extensively to determine phytoplankton patterns and variability, characterize the primary production across the SCB coastal fronts, and describe the seasonal and interannual variability in pigment concentrations. As in CalCOFI, these studies described much of the observed structures and their variability over relatively large space and time scales.

  7. Taxonomic Distinctness of Demersal Fishes of the California Current: Moving Beyond Simple Measures of Diversity for Marine Ecosystem-Based Management

    PubMed Central

    Tolimieri, Nick; Anderson, Marti J.

    2010-01-01

    Background Large-scale patterns or trends in species diversity have long interested ecologists. The classic pattern is for diversity (e.g., species richness) to decrease with increasing latitude. Taxonomic distinctness is a diversity measure based on the relatedness of the species within a sample. Here we examined patterns of taxonomic distinctness in relation to latitude (ca. 32–48 °N) and depth (ca. 50–1220 m) for demersal fishes on the continental shelf and slope of the US Pacific coast. Methodology/Principal Findings Both average taxonomic distinctness (AvTD) and variation in taxonomic distinctness (VarTD) changed with latitude and depth. AvTD was highest at approximately 500 m and lowest at around 200 m bottom depth. Latitudinal trends in AvTD were somewhat weaker and were depth-specific. AvTD increased with latitude on the shelf (50–150 m) but tended to decrease with latitude at deeper depths. Variation in taxonomic distinctness (VarTD) was highest around 300 m. As with AvTD, latitudinal trends in VarTD were depth-specific. On the shelf (50–150 m), VarTD increased with latitude, while in deeper areas the patterns were more complex. Closer inspection of the data showed that the number and distribution of species within the class Chondrichthyes were the primary drivers of the overall patterns seen in AvTD and VarTD, while the relatedness and distribution of species in the order Scorpaeniformes appeared to cause the relatively low observed values of AvTD at around 200 m. Conclusions/Significance These trends contrast to some extent the patterns seen in earlier studies for species richness and evenness in demersal fishes along this coast and add to our understanding of diversity of the demersal fishes of the California Current. PMID:20498727

  8. Through the stomach of a predator: Regional patterns of forage in the diet of albacore tuna in the California Current System and metrics needed for ecosystem-based management

    NASA Astrophysics Data System (ADS)

    Glaser, Sarah M.; Waechter, Katrina E.; Bransome, Nicole C.

    2015-06-01

    Foraging habits of predators can reveal patterns in prey ecology and guide ecosystem-based management by informing species interactions. This study describes the diet habits of albacore tuna in three regions (north, central, south) of the California Current System (CCS) and estimates the total predation mortality imposed on twenty prey taxa. The northern CCS was defined by predation on decapods, euphausiids, anchovy and hake. The central CCS was defined by predation on squid, hake and Pacific saury. The southern CCS was defined by predation on anchovy. We estimate North Pacific albacore consumed each year, on average, 54,000 mt of decapods and euphausiids, 43,000 mt of cephalopods, 84,000 mt of juvenile hake, 1600 mt of myctophids, 21,000 mt of juvenile sardine, 10,000 mt of juvenile rockfishes, almost 43,000 mt of Pacific saury, and over 107,000 mt of juvenile anchovy. While variability in predation certainly exists, this and prior studies show that diet habits of albacore are fairly stable through time. The northern CCS appears to be a more significant source of energy for albacore. When designing ecosystem-based approaches to the management of CCS-based fisheries, we recommend that the forage contribution of saury, hake and anchovy to the albacore population be considered.

  9. Where California Meets Alaska: Ecosystem Response in a Transition Zone

    NASA Astrophysics Data System (ADS)

    Crawford, W.; Pena, A.; Irvine, J. R.

    2008-12-01

    Ecosystems along the west coast of Vancouver Island share features with those of the northern California Current and also with the southern part of the Alaska Coastal Current, and provide the richest fisheries of these two regimes. Studies of the past few decades reveal surprisingly consistent biological responses to changes in ocean temperatures, partly due to the extreme warm and cool years since 1998. Zooplankton populations, migrating salmon, and fledgling seabirds are rapidly affected by changing ocean conditions, whereas the biomass of resident fish stocks responds over several years or even decades. The specific mechanisms responsible for these temperature-related changes vary from species to species, and many are unknown. We will present examples of how influx of predators, timing of food availability, and wind and coastal weather contribute to the response of coastal populations. Results are based on statistical analyses of many decades of observations and also on biophysical models. The responses to past temperature variability suggest which species will eventually thrive with climate warming and the speed with which these changes might occur. One unresolved factor is the ability of cold water species to survive and rebound after warm years, and of warm-water species to recover after cold years. These responses will be increasingly important, because the IPCC models suggest increasing local ocean temperature variability during this century.

  10. Future scenarios of impacts to ecosystem services on California rangelands

    USGS Publications Warehouse

    Byrd, Kristin; Alvarez, Pelayo; Flint, Lorraine; Flint, Alan

    2014-01-01

    The 18 million acres of rangelands in the Central Valley of California provide multiple benefits or “ecosystem services” to people—including wildlife habitat, water supply, open space, recreation, and cultural resources. Most of this land is privately owned and managed for livestock production. These rangelands are vulnerable to land-use conversion and climate change. To help resource managers assess the impacts of land-use change and climate change, U.S. Geological Survey scientists and their cooperators developed scenarios to quantify and map changes to three main rangeland ecosystem services—wildlife habitat, water supply, and carbon sequestration. Project results will help prioritize strategies to conserve these rangelands and the ecosystem services that they provide.

  11. Climate-ecosystem change off southern California: Time-dependent seabird predator-prey numerical responses

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Thompson, Sarah Ann; Santora, Jarrod A.; Koslow, J. Anthony; Goericke, Ralf; Ohman, Mark D.

    2015-02-01

    Climate change may increase both stratification and upwelling in marine ecosystems, but these processes may affect productivity in opposing or complementary ways. For the Southern California region of the California Current Ecosystem (CCE), we hypothesized that changes in stratification and upwelling have affected marine bird populations indirectly through changes in prey availability. To test this hypothesis, we derived trends and associations between stratification and upwelling, the relative abundance of potential prey including krill and forage fish, and seabirds based on the long-term, multi-disciplinary CalCOFI/CCE-LTER program. Over the period 1987 through 2011, spring and summer seabird density (all species combined) declined by ~2% per year, mostly in the northern sector of the study region. Krill showed variable trends with two species increasing and one deceasing, resulting in community reorganization. Nearshore forage fish, dominated by northern anchovy (Engraulis mordax) as well as offshore mesopelagic species, show declines in relative abundance over this period. The unidirectional decline in springtime seabird density is largely explained by declining nearshore fish abundance in the previous season (winter). Interannual variability in seabird density, especially in the 2000s, is explained by variability in krill abundance. Changes in the numerical responses of seabirds to prey abundance correspond to a putative ecosystem shift in 1998-1999 and support aspects of optimal foraging (diet) theory. Predator-prey interactions and numerical responses clearly explain aspects of the upper trophic level patterns of change in the pelagic ecosystem off southern California.

  12. Measuring Tsunami Current Velocities on Californias North Coast

    NASA Astrophysics Data System (ADS)

    Crawford, G. B.; Dengler, L. A.; Montoya, J.

    2009-12-01

    The Northern California coast is particularly susceptible to tsunami damage. Thirty-one tsunamis have been recorded since 1933 when the first tide gauge was installed at Citizens Dock in Crescent City, California and four have caused damage. In November 2006, a magnitude 8.3 earthquake in the Kuril Islands generated a tsunami that caused over $20 million in damages and replacement costs to the Crescent City small boat basin. The 2006 tsunami did not flood any areas above the normal high tide; very strong currents produced as the tsunami surged in and out of the small boat basin caused all of the damage. The Harbor Master and commercial fishermen in the area estimated the peak currents near the mouth of the small boat basin at 12 to 15 knots or 6 to 8 m/sec. MOST numerical modeling of the 2006 currents in Crescent City gives peak velocities in the 2-3 m/sec range. We have initiated a pilot project to directly measure current velocities produced by moderate tsunamis such as the 2006 event. In spring of 2009 we acquired a Nortek Aquadopp 600 kHz acoustic 2-D current profiler through a donation from the Pacific Gas and Electric Company to measure currents in Humboldt Bay, located 100 km south of Crescent City. The manufacturer specifies the current meter can measure currents up to 10 m/sec. In a preliminary deployment at the Fairhaven dock inside Humboldt Bay in May 2009, we measured current velocities of 1.5 m/sec caused by the daily tidal fluctuation with a 1 minute sampling rate. Our primary goal is to model control and data telemetry of this current meter after NOAAs tsunami-ready tide gages, in collaboration with NOAA personnel at PMEL and CO-OPS. We also intend to make available real-time current measurements online for the local maritime community. In this poster, we present preliminary results from the current meter and discuss deployment and telecommunication considerations. While some interference is present in the closest range bins, the system measures currents in the nearby navigational channel that compare favorably to NOAA tidal predictions at a nearby location. Once the deployment and telemetry issues have been resolved at the Humboldt Bay site, we will be deploying two additional instruments in Crescent City.

  13. Modeling phytoplankton growth rates and chlorophyll to carbon ratios in California coastal and pelagic ecosystems

    NASA Astrophysics Data System (ADS)

    Li, Qian P.; Franks, Peter J. S.; Landry, Michael R.; Goericke, Ralf; Taylor, Andrew G.

    2010-12-01

    To understand and quantify plankton community dynamics in the ocean, high-resolution models are needed to capture the temporal and spatial variations of physical, biological, and biogeochemical processes. However, ecosystem models often fail to agree with observations. This failure can be due to inadequacies in the data and/or inadequacies in the model formulation and parameterization. Here we parameterize and optimize a two-phytoplankton functional type model of phytoplankton growth rate and chlorophyll/carbon (Chl:C) ratio using data from the Lagrangian field measurements conducted during process cruises of the Long-Term Ecosystem Research-California Current Ecosystem (CCE) program. We parameterize the model based on a small coastal subset of the data and then extend and test it with the full data set, including data from offshore regions. The CCE process studies were focused on quantifying the size-resolved planktonic growth, grazing, production, and export rates while following water parcels. The resulting data therefore provided strong constraints for the model we employed. The modeled growth rates and Chl:C ratios were in good agreement with observations. Our results indicate that the model can accurately predict Chl:C ratios, biomasses, and growth rates of dominant functional types using relatively easily measured environmental variables (temperature, nutrients, and bulk chlorophyll). The model also accurately reproduces the subsurface maxima of growth rates, the spatial separation of carbon and chlorophyll maxima, and many other observations in the California Current coastal and pelagic ecosystems.

  14. Whither the Rangeland?: Protection and conversion in California's Rangeland ecosystems.

    PubMed

    Cameron, D Richard; Marty, Jaymee; Holland, Robert F

    2014-01-01

    Land use change in rangeland ecosystems is pervasive throughout the western United States with widespread ecological, social and economic implications. In California, rangeland habitats have high biodiversity value, provide significant habitat connectivity and form the foundation for a number of ecosystem services. To comprehensively assess the conservation status of these habitats, we analyzed the extent and drivers of habitat loss and the degree of protection against future loss across a 13.5 M ha study area in California. We analyzed rangeland conversion between 1984 and 2008 using time series GIS data and classified resulting land uses with aerial imagery. In total, over 195,000 hectares of rangeland habitats were converted during this period. The majority of conversions were to residential and associated commercial development (49% of the area converted), but agricultural intensification was surprisingly extensive and diverse (40% across six categories). Voluntary enrollment in an agricultural tax incentive program provided widespread protection from residential and commercial conversions across 37% of the remaining rangeland habitat extent (7.5 M ha), though this program did not protect rangeland from conversion to more intensive agricultural uses. Additionally, 24% of the remaining rangeland was protected by private conservation organizations or public agencies through land or easement ownership while 38% had no protection status at all. By developing a spatial method to analyze the drivers of loss and patterns of protection, this study demonstrates a novel approach to prioritize conservation strategies and implementation locations to avert habitat conversion. We propose that this approach can be used in other ecosystem types, and can serve as a regional conservation baseline assessment to focus strategies to effect widespread, cost-effective conservation solutions. PMID:25141171

  15. Whither the Rangeland?: Protection and Conversion in California's Rangeland Ecosystems

    PubMed Central

    Cameron, D. Richard; Marty, Jaymee; Holland, Robert F.

    2014-01-01

    Land use change in rangeland ecosystems is pervasive throughout the western United States with widespread ecological, social and economic implications. In California, rangeland habitats have high biodiversity value, provide significant habitat connectivity and form the foundation for a number of ecosystem services. To comprehensively assess the conservation status of these habitats, we analyzed the extent and drivers of habitat loss and the degree of protection against future loss across a 13.5 M ha study area in California. We analyzed rangeland conversion between 1984 and 2008 using time series GIS data and classified resulting land uses with aerial imagery. In total, over 195,000 hectares of rangeland habitats were converted during this period. The majority of conversions were to residential and associated commercial development (49% of the area converted), but agricultural intensification was surprisingly extensive and diverse (40% across six categories). Voluntary enrollment in an agricultural tax incentive program provided widespread protection from residential and commercial conversions across 37% of the remaining rangeland habitat extent (7.5 M ha), though this program did not protect rangeland from conversion to more intensive agricultural uses. Additionally, 24% of the remaining rangeland was protected by private conservation organizations or public agencies through land or easement ownership while 38% had no protection status at all. By developing a spatial method to analyze the drivers of loss and patterns of protection, this study demonstrates a novel approach to prioritize conservation strategies and implementation locations to avert habitat conversion. We propose that this approach can be used in other ecosystem types, and can serve as a regional conservation baseline assessment to focus strategies to effect widespread, cost-effective conservation solutions. PMID:25141171

  16. Avian Conservation Practices Strengthen Ecosystem Services in California Vineyards

    PubMed Central

    Jedlicka, Julie A.; Greenberg, Russell; Letourneau, Deborah K.

    2011-01-01

    Insectivorous Western Bluebirds (Sialia mexicana) occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without nest boxes. The average species richness of avian insectivores increased by over 50 percent compared to controls. Insectivorous bird density nearly quadrupled, primarily due to a tenfold increase in Western Bluebird abundance. In contrast, there was no significant difference in the abundance of omnivorous or granivorous bird species some of which opportunistically forage on grapes. In a sentinel prey experiment, 2.4 times more live beet armyworms (Spodoptera exigua) were removed in the nest box treatment than in the control. As an estimate of the maximum foraging services provided by insectivorous birds, we found that larval removal rates measured immediately below occupied boxes averaged 3.5 times greater than in the control. Consequently the presence of Western Bluebirds in vineyard nest boxes strengthened ecosystem services to winegrape growers, illustrating a benefit of agroecological conservation practices. Predator addition and sentinel prey experiments lack some disadvantages of predator exclusion experiments and were robust methodologies for detecting ecosystem services. PMID:22096555

  17. Rapid progression of ocean acidification in the California Current System.

    PubMed

    Gruber, Nicolas; Hauri, Claudine; Lachkar, Zouhair; Loher, Damian; Frölicher, Thomas L; Plattner, Gian-Kasper

    2012-07-13

    Nearshore waters of the California Current System (California CS) already have a low carbonate saturation state, making them particularly susceptible to ocean acidification. We used eddy-resolving model simulations to study the potential development of ocean acidification in this system up to the year 2050 under the Special Report on Emissions Scenarios A2 and B1 scenarios. In both scenarios, the saturation state of aragonite Ω(arag) is projected to drop rapidly, with much of the nearshore region developing summer-long undersaturation in the top 60 meters within the next 30 years. By 2050, waters with Ω(arag) above 1.5 will have largely disappeared, and more than half of the waters will be undersaturated year-round. Habitats along the sea floor will become exposed to year-round undersaturation within the next 20 to 30 years. These projected events have potentially major implications for the rich and diverse ecosystem that characterizes the California CS. PMID:22700658

  18. Chlorocarbon Fluxes in Coastal and Upland Ecosystems of California

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Mazéas, O.; Miller, B. R.; Pingatore, C.; Weiss, R. F.

    2007-12-01

    Anthropogenic chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) account for ~ 70% of the organic chlorine in the global atmosphere, with CH3Cl (methyl chloride), CHCl3 (chloroform), CCl4 (carbon tetrachloride) and CH3CCl3 (methyl chloroform) supplying most of the balance. Since 1994, the total atmospheric chlorine burden has been decreasing, owing in large part to the declining concentrations of CH3CCl3 and CCl4, two chlorocarbons regulated by the Montreal Protocol. The primary sink of all four compounds is attributed to destruction processes in the atmosphere (oxidation or photodissociation). However, several recent studies have reported a potentially significant terrestrial sink for CH3Cl, CCl4 and CH3CCl3. Particularly surprising is the report that coastal salt marshes in China appear to be net sinks for all four of these chlorocarbons. If these sinks are indeed significant relative to atmospheric destruction processes, then their estimated lifetimes would need to be reduced and their source and sink budgets reassessed. In this study, we report net fluxes of CHCl3, CCl4, and CH3CCl3 from a variety of southern California ecosystems, including coast sagebrush, chamise chaparral, creosote bush scrub, shoreline, and coastal salt marsh. 75 flux chamber measurements were conducted between 1997 and 2000. We find no evidence of a significant soil sink in these ecosystems but rather a small net source of CHCl3 and CCl4. Meanwhile, previously reported CH3Cl fluxes from these ecosystems show that coastal salt marshes are large sources of this compound while shrublands act as either a net source or sink, depending on predominant vegetation, soil conditions and season. To address the possibility of simultaneous production and consumption of CH3Cl in salt marshes, we employed a stable isotope tracer technique at a northern California salt marsh during the spring of 2007. We measured gross consumption rates of CH3Cl, but gross production rates were much greater at all sites, resulting in large net emissions overall. We suggest that salt marshes are typically net sources of CH3Cl and CHCl3 but may become net sinks if ambient concentrations of these compounds are unusually high, as reported from the salt marshes in China.

  19. The Gulf of California: Review of ecosystem status and sustainability challenges

    NASA Astrophysics Data System (ADS)

    Lluch-Cota, Salvador E.; Aragón-Noriega, Eugenio A.; Arreguín-Sánchez, Francisco; Aurioles-Gamboa, David; Jesús Bautista-Romero, J.; Brusca, Richard C.; Cervantes-Duarte, Rafael; Cortés-Altamirano, Roberto; Del-Monte-Luna, Pablo; Esquivel-Herrera, Alfonso; Fernández, Guillermo; Hendrickx, Michel E.; Hernández-Vázquez, Sergio; Herrera-Cervantes, Hugo; Kahru, Mati; Lavín, Miguel; Lluch-Belda, Daniel; Lluch-Cota, Daniel B.; López-Martínez, Juana; Marinone, Silvio G.; Nevárez-Martínez, Manuel O.; Ortega-García, Sofia; Palacios-Castro, Eduardo; Parés-Sierra, Alejandro; Ponce-Díaz, Germán; Ramírez-Rodríguez, Mauricio; Salinas-Zavala, Cesar A.; Schwartzlose, Richard A.; Sierra-Beltrán, Arturo P.

    2007-04-01

    The Gulf of California is unique because of its geographical location and conformation. It hosts diverse ecosystems and important fisheries that support industry and provide livelihood to coastal settlements. It is also the site of interests and problems, and an intense interaction among managers, producers, and conservationists. In this report, we scrutinize the abiotic (hydrography, climate, ocean circulation, and chemistry) and biotic (phyto- and zooplankton, fish, invertebrates, marine mammals, birds, and turtles) components of the marine ecosystem, and some particular aspects of climate variability, endemisms, harmful algal blooms, oxygen minimum layer, and pollution. We also review the current conditions and conflicts around the main fisheries (shrimp, small and large pelagic fishes, squid, artisanal and sportfishing), the most important human activity in the Gulf of California. We cover some aspects of management and conservation of fisheries, especially the claimed overexploitation of fish resources and the ecosystems, and review proposals for creating networks of marine protected areas. We conclude by identifying main needs for information and research, particularly the integration of data bases, the implementation of models and paleoreconstructions, establishment of monitoring programs, and the evaluation of fishing impacts and management actions.

  20. Persistence of chlorinated hydrocarbon contamination in a California marine ecosystem

    SciTech Connect

    Young, D.R.; Gossett, R.W.; Heesen, T.C.

    1989-01-01

    Despite major reductions in the dominant DDT and polychlorinated biphenyls (PCB) input off Los Angeles (California, U.S.A.) in the early 1970s, the levels of these pollutants decreased only slightly from 1972 to 1975 both in surficial bottom sediments and in a flatfish bioindicator (Dover sole, Microstomus pacificus) collected near the submarine outfall. Concentrations of these pollutants in the soft tissues of the mussel Mytilus californianus, collected intertidally well inshore of the highly contaminated bottom sediments, followed much more closely the decreases in the outfall discharges. These observations suggest that contaminated sediments on the seafloor were the principal (although not necessarily direct) cause of the relatively high and persistent concentrations of DDT and PCB residues in tissues. The study indicated that residues of the higher-molecular-weight chlorinated hydrocarbons, such as DDT and PCB, can be highly persistent once released to coastal marine ecosystems and that their accumulation in surficial bottom sediments is the most likely cause of this persistence observed in the biota of the discharge zone.

  1. Ecosystem Change in California Grasslands: Impacts of Species Invasion

    NASA Astrophysics Data System (ADS)

    Koteen, L. E.; Harte, J.; Baldocchi, D. D.

    2009-12-01

    Grassland ecosystems of California have undergone dramatic changes, resulting in the almost complete replacement of native perennial grasses by non-native annuals across millions of hectares of grassland habitat. Our research investigates the effects of this community shift on carbon, water and energy cycles at two sites in northern coastal California. Our goal was to understand how changes to California’s grasslands have affected climate through 1. shifting the balance of carbon storage between terrestrial stocks and the atmosphere, and 2. altering the water and energy regimes that heat or cool the earth's surface. To compare the processes that govern material exchange before and after annual grass invasion, we made use of sites where native vegetation is found adjacent to locations that have undergone non-native invasion. In plots of each vegetation type, we monitored whole plant productivity, root and litter decay rates and soil respiration, as well as soil climatic controls on these processes. At one site, we also measured surface albedo and the components of the surface energy balance in each grass community, using the surface renewal method. Although seemingly subtle, the shift in California grassland communities from native perennial to non-native annual grass dominance has had profound consequences for ecosystem biogeochemical, radiative and hydrological cycles. Soil carbon storage was found to be significantly greater in native perennial grass communities. Across both study sites, we found that non-native grass invasion has resulted in the transfer of from 3 to 6 tons of carbon per hectare from the soil to the atmosphere, dependent on site and species. A soil density fractionation and a radiocarbon analysis also revealed the carbon to be more recalcitrant in native grass dominated locations. The primary plant traits that help explain why soil carbon losses follow annual grass invasion are: 1. differences between annual and perennial grasses in above/ belowground allocation, 2. differences in growth plasticity in response to inter-annual precipitation variability, and 3. the effect of differences in rooting depth and aboveground morphology on soil moisture content and soil respiration. Over the years 2004-2006, we found energy partitioning into latent and sensible heat flux to be similar among annual and perennial grass communities during periods of sufficient soil moisture availability. When water becomes scarce in the late spring, however, and annual grasses die, the ratio of latent to sensible heat loss is reduced in annual grass communities relative to perennials. The deep roots of perennial grasses prolong the period over which transpiration occurs. We also found that albedo differs year-round between perennial and annual grasses, tracking differences in grass phenology. Albedo differences are at a maximum during the summer and autumn months. At this time, the lower albedo in non-native annual communities can raise near surface temperatures up to 6 oC midday relative to native perennials.

  2. Predator-driven nutrient recycling in California stream ecosystems.

    PubMed

    Munshaw, Robin G; Palen, Wendy J; Courcelles, Danielle M; Finlay, Jacques C

    2013-01-01

    Nutrient recycling by consumers in streams can influence ecosystem nutrient availability and the assemblage and growth of photoautotrophs. Stream fishes can play a large role in nutrient recycling, but contributions by other vertebrates to overall recycling rates remain poorly studied. In tributaries of the Pacific Northwest, coastal giant salamanders (Dicamptodon tenebrosus) occur at high densities alongside steelhead trout (Oncorhynchus mykiss) and are top aquatic predators. We surveyed the density and body size distributions of D. tenebrosus and O. mykiss in a California tributary stream, combined with a field study to determine mass-specific excretion rates of ammonium (N) and total dissolved phosphorus (P) for D. tenebrosus. We estimated O. mykiss excretion rates (N, P) by bioenergetics using field-collected data on the nutrient composition of O. mykiss diets from the same system. Despite lower abundance, D. tenebrosus biomass was 2.5 times higher than O. mykiss. Mass-specific excretion summed over 170 m of stream revealed that O. mykiss recycle 1.7 times more N, and 1.2 times more P than D. tenebrosus, and had a higher N:P ratio (8.7) than that of D. tenebrosus (6.0), or the two species combined (7.5). Through simulated trade-offs in biomass, we estimate that shifts from salamander biomass toward fish biomass have the potential to ease nutrient limitation in forested tributary streams. These results suggest that natural and anthropogenic heterogeneity in the relative abundance of these vertebrates and variation in the uptake rates across river networks can affect broad-scale patterns of nutrient limitation. PMID:23520520

  3. Predator-Driven Nutrient Recycling in California Stream Ecosystems

    PubMed Central

    Munshaw, Robin G.; Palen, Wendy J.; Courcelles, Danielle M.; Finlay, Jacques C.

    2013-01-01

    Nutrient recycling by consumers in streams can influence ecosystem nutrient availability and the assemblage and growth of photoautotrophs. Stream fishes can play a large role in nutrient recycling, but contributions by other vertebrates to overall recycling rates remain poorly studied. In tributaries of the Pacific Northwest, coastal giant salamanders (Dicamptodon tenebrosus) occur at high densities alongside steelhead trout (Oncorhynchus mykiss) and are top aquatic predators. We surveyed the density and body size distributions of D. tenebrosus and O. mykiss in a California tributary stream, combined with a field study to determine mass-specific excretion rates of ammonium (N) and total dissolved phosphorus (P) for D. tenebrosus. We estimated O. mykiss excretion rates (N, P) by bioenergetics using field-collected data on the nutrient composition of O. mykiss diets from the same system. Despite lower abundance, D. tenebrosus biomass was 2.5 times higher than O. mykiss. Mass-specific excretion summed over 170 m of stream revealed that O. mykiss recycle 1.7 times more N, and 1.2 times more P than D. tenebrosus, and had a higher N:P ratio (8.7) than that of D. tenebrosus (6.0), or the two species combined (7.5). Through simulated trade-offs in biomass, we estimate that shifts from salamander biomass toward fish biomass have the potential to ease nutrient limitation in forested tributary streams. These results suggest that natural and anthropogenic heterogeneity in the relative abundance of these vertebrates and variation in the uptake rates across river networks can affect broad-scale patterns of nutrient limitation. PMID:23520520

  4. The Economic Value of Coastal Ecosystems in California

    EPA Science Inventory

    The status of marine ecosystems affects the well being of human societies. These ecosystems include but are not limited to estuaries, lagoons, reefs, and systems further offshore such as deep ocean vents. The coastal regions that connect terrestrial and marine ecosystems are of p...

  5. A long term monitoring of Net Ecosystem Exchanges of the chaparral ecosystem in Southern California

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Oechel, W. C.; Murphy, P.; Ikawa, H.; Sturtevant, C. S.

    2012-12-01

    Arid and semiarid woody shrublands represent approximately 35% of the global terrestrial surface area and 24% of the global soil organic carbon, and 16% of the global aboveground biomass (Atjay et al., 1979; Shmida, 1985). Therefore, these areas potentially have a large contribution to the global carbon budget. However, the assessment of carbon uptake for the old-growth shrubland has remained largely unexplored. Therefore, a long-term observation of CO2 flux with the eddy covariance technique has started since 1997 at Sky Oaks Field Station in Southern California. The research site is categorized at the climatic gradient between desert and semiarid area and that experiences a Mediterranean climate. The long term record of CO2 flux showed the area has been a sink of CO2 of up to -0.2 kgCm-2yr-1. In addition to evaluating vertical carbon fluxes, we initiated a project to evaluate lateral carbon transports using litter traps, sediment fences and two small weirs adjacent to the eddy covariance site in 2011. Preliminary results indicate that the lateral carbon efflux from the system may offset the vertical influx to the shrub ecosystem. However, it is still necessary to develop the methodology to compare vertical carbon flux and the lateral carbon fluxes more accurately.

  6. Carbon Cycling Studies in Forest and Rangeland Ecosystems of Northern and Central Coastal California

    NASA Astrophysics Data System (ADS)

    Potter, C.; Klooster, S.; Gross, P.; Hiatt, S.; Genovese, V.

    2008-12-01

    The varied topography and micro-climates of northern and central coastal California result in high biodiversity and many different levels of primary production driving regional carbon cycles. Coastal mountains trap moisture from low clouds and fog in summer to supplement rainfall in winter. This creates a favorable micro-environment for coniferous forests, including the southernmost habitat of the coast redwood (Sequoia sempervirens), which grows mainly on lower north-facing slopes in Big Sur. In rain shadows, forests transition to open oak woodland, and then into the more fire-tolerant chaparral and coast scrub. Field sites for our on-going climate change studies on the California northern and central coasts currently include the University of California Santa Cruz Campus Natural Reserve, the US Forest Service Brazil Ranch, and the University of California Big Creek Reserve. We are conducting research at each of these sites to better understand possible impacts of climate change, including: (1) biological and physical capacity of soils to capture carbon and retain plant-essential nutrients; (2) rates of plant-soil water and carbon cycling and energy flow; and (3) recovery mechanisms for disturbances such as invasive weed species, grazing, and wildfire. The NASA-CASA simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate carbon cycling for much of the central coast as far north as Mendocino County. Net primary production (NPP) of all vegetation cover was mapped at 30-meter resolution for selected years by combining MODIS and Landsat images across the region. Results show annual NPP predictions of between 200-400 grams C per square meter for coastal scrub and 800-1200 grams C per square meter for coastal evergreen forests, Net ecosystem fluxes of carbon will be presented for the region based on NASA-CASA modeling and field measurements of soil respiration fluxes.

  7. Evaluating Ecosystem Services Provided by Non-Native Species: An Experimental Test in California Grasslands

    PubMed Central

    Stein, Claudia; Hallett, Lauren M.; Harpole, W. Stanley; Suding, Katharine N.

    2014-01-01

    The concept of ecosystem services the benefits that nature provides to human's society has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem. PMID:25222028

  8. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current

    PubMed Central

    Reimer, Janet J.; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J. Martin; Lara-Lara, Ruben

    2015-01-01

    Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could influence coastal ecosystem productivity. PMID:25923109

  9. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current.

    PubMed

    Reimer, Janet J; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J Martin; Lara-Lara, Ruben

    2015-01-01

    Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could influence coastal ecosystem productivity. PMID:25923109

  10. Does positioning of the North Pacific Current affect downstream ecosystem productivity?

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Thompson, Sarah Ann; Field, John C.; Peterson, William T.; Tanasichuk, Ronald W.; Freeland, Howard J.; Bograd, Steven J.; Rykaczewski, Ryan R.

    2011-06-01

    Fluctuations in the positioning of major ocean currents can influence ecosystem dynamics, but previously the technology has been lacking to make direct observational assessments. Here, we test the hypothesis that positioning of the North Pacific Current (NPC) is related to biological attributes of the central-northern California Current Ecosystem (CCE). To test this hypothesis we use newly available data from the Argo array and compare it with a suite of well-known ecosystem indicators over 6 years, 2002 through 2007. We found increased biomass and productivity when the NPC was shifted poleward, and suggest that positioning influences advective transport of nutrients and perhaps key planktonic organisms from the sub-arctic domain thereby enhancing mid to upper trophic level species. This study is significant because climate change is predicted to cause poleward shifts in the westerlies that drive ocean currents and positioning of large marine gyre systems. Rather than reducing ecosystem productivity, poleward shifts in positioning of the NPC may be beneficial for many species of the central-northern CCE.

  11. PERSISTENCE OF CHLORINATED HYDROCARBON CONTAMINATION IN A CALIFORNIA MARINE ECOSYSTEM

    EPA Science Inventory

    Despite major reductions in the dominant DDT and polychlorinated biphenyls (PCB) input off Los Angeles (California, USA) in the early 1970s, the levels of these pollutants decreased only slightly from 1972 to 1975 both in surficial bottom sediments and in a flatfish bioindicator ...

  12. Climatic impacts on phenology of southern California native ecosystems using MODIS-derived time series

    NASA Astrophysics Data System (ADS)

    Willis, K. S.; Gillespie, T. W.; Okin, G. S.; MacDonald, G. M.

    2014-12-01

    Phenology, the timing of seasonal activities of animals and plants, is a straightforward process used to track the response of ecology to climate change. Remote sensing can be utilized to track these responses and ecosystem functioning in Mediterranean-type ecosystems. This study elucidates these climate-phenology relations in native chaparral- and coastal sage scrub-dominated ecosystems in southern California. Whole ecosystem phenology is monitored for the period 2000-2014 using the Normalized Difference Vegetation Index (NDVI) derived from MODIS MOD13Q1. Changes in phenology are assessed through comparison of the time series with raw data and anomalies of temperature, precipitation, and Palmer Drought Indices (Modified Drought Index and Z Index) data to address the following questions: 1) Which climatic factors have the greatest impact on southern California whole ecosystem phenology? And 2) What are the differences between chaparral- and coastal sage scrub-dominated ecosystems? In addressing these questions, special consideration is given to late 2013/ 2014; a season of exceptional drought. We find that anomalous Palmer Drought Indices show highest correlations with vegetation NDVI. Each vegetation type displays a different response to short-term climate; with chaparral ecosystems having highest correlations with drought indices, and coastal sage scrub correlations highest with discrete precipitation events and temperature. Climate anomalies had little to no correlations with NDVI, indicating that the phenology of these native plants may be highly resilient to short-term changes in climate.

  13. In the Schools: California Treat: Three Days in Five Ecosystems.

    ERIC Educational Resources Information Center

    Rigby, Jennifer A.

    1986-01-01

    Describes a 3-day program sponsored by the Orange County Marine Institute that provides biological, cultural, and historical learning experiences. Discusses the setting and activities of the five ecosystems explored by the students. The Chaparral to Ocean Science Camp includes chaparral, riparian, woodland, intertidal, and pelagic environments.…

  14. Effects of drought stress on microbial dynamics in seasonally dry California ecosystems

    NASA Astrophysics Data System (ADS)

    Schaeffer, S. M.; Boot, C. M.; Doyle, A.; Clark, J.; Schimel, J. P.

    2008-12-01

    One of the key environmental factors controlling microbial activity is moisture. This water limitation is particularly strong in semi-arid and arid ecosystems such as those found along California's coast and interior range-lands. Cool, wet winters separated by long, dry summers present some the most challenging conditions for microbial survival and growth. Infrequent pulses of precipitation directly control microbial dynamics through soil wet-dry cycles, which in turn control the export of materials and nutrients into streams and groundwater. Recent research suggests that living microbial biomass can increase during the driest, hottest part of the year. We measured dissolved organic carbon and nitrogen (DOC, DON), microbial biomass carbon and nitrogen, inorganic nitrogen (NH4+, NO3-), and nitrification potential from July of 2007 to the present in California semi-arid grasslands. We also monitored inorganic nitrogen concentrations in soil pore water, shallow ground water, and stream water over the same period. Seasonal trends in DOC and DON show that they accumulate over the dry summer, and then decrease with the onset of the winter rains. Microbial biomass carbon showed a similar pattern, being higher in the summer and declining during winter (188.9413.34 and 139.218.45 ?g C g-1 dry soil respectively. However, biomass nitrogen remained unchanged over the same period (11.210.84 and 10.860.74 ?g N g-1 dry soil respectively). Nitrification potentials were lowest during the winter wet season (5.260.40 ?g N d-1 g-1 dry soil) and highest during the dry summer season (8.910.60 ?g N d-1 g-1 dry soil). However, the seasonal patterns in NH4+ and NO3- availability suggest that net nitrification was not substantial until after the winter rains began. It is not currently known whether this increase in biomass represents actual growth of new organisms, or is a result of microbes accumulating internal solutes to avoid drying out. At the landscape-scale, these microbial dynamics control the amount and composition of nutrient export from these ecosystems into groundwater and streams. Long, dry summers allow nutrients to accumulate, and then a single large precipitation event can lead to a large pulse being released. Microbial dynamics in natural ecosystems, such as NO3- production via nitrification, can have important implications for water quality (in the case of NO3-) in urban areas located downstream.

  15. 2013. Wetlands. In: Mooney, H. and Zavaleta, E., editors. Ecosystems of California: A Source Book. Berkeley, CA: University of California Press, p.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication is an introduction to wetland ecosystems in California, their geographic distribution, and historical ecology. Hydroclimatology and hydrology are explained as key drivers and patterns of variability in wetland habitats and biological communities. Primary wetland types are describe...

  16. Where the wild things are: Predicting hotspots of seabird aggregations in the California Current System

    USGS Publications Warehouse

    Nur, N.; Jahncke, J.; Herzog, M.P.; Howar, J.; Hyrenbach, K.D.; Zamon, J.E.; Ainley, D.G.; Wiens, J.A.; Morgan, K.; Balance, L.T.; Stralberg, D.

    2011-01-01

    Marine Protected Areas (MPAs) provide an important tool for conservation of marine ecosystems. To be most effective, these areas should be strategically located in a manner that supports ecosystem function. To inform marine spatial planning and support strategic establishment of MPAs within the California Current System, we identified areas predicted to support multispecies aggregations of seabirds ("hotspot????). We developed habitat-association models for 16 species using information from at-sea observations collected over an 11-year period (1997-2008), bathymetric data, and remotely sensed oceanographic data for an area from north of Vancouver Island, Canada, to the USA/Mexico border and seaward 600 km from the coast. This approach enabled us to predict distribution and abundance of seabirds even in areas of few or no surveys. We developed single-species predictive models using a machine-learning algorithm: bagged decision trees. Single-species predictions were then combined to identify potential hotspots of seabird aggregation, using three criteria: (1) overall abundance among species, (2) importance of specific areas ("core area????) to individual species, and (3) predicted persistence of hotspots across years. Model predictions were applied to the entire California Current for four seasons (represented by February, May, July, and October) in each of 11 years. Overall, bathymetric variables were often important predictive variables, whereas oceanographic variables derived from remotely sensed data were generally less important. Predicted hotspots often aligned with currently protected areas (e.g., National Marine Sanctuaries), but we also identified potential hotspots in Northern California/Southern Oregon (from Cape Mendocino to Heceta Bank), Southern California (adjacent to the Channel Islands), and adjacent to Vancouver Island, British Columbia, that are not currently included in protected areas. Prioritization and identification of multispecies hotspots will depend on which group of species is of highest management priority. Modeling hotspots at a broad spatial scale can contribute to MPA site selection, particularly if complemented by fine-scale information for focal areas. ?? 2011 by the Ecological Society of America.

  17. Current California Drought: Impact on Citrus Trees and Potential Mitigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    California is in another cycle of extended drought. The article reviews and discusses likely impact of the current drought on citrus growers and potential mitigation techniques. Citrus physiological responses to water stress is briefly reviewed. The direct impact of drought on citrus is reduced frui...

  18. California Coastal Upwelling Onset Variability: Cross-Shore and Bottom-Up Propagation in the Planktonic Ecosystem

    PubMed Central

    Chenillat, Fanny; Rivière, Pascal; Capet, Xavier; Franks, Peter J. S.; Blanke, Bruno

    2013-01-01

    The variability of the California Current System (CCS) is primarily driven by variability in regional wind forcing. In particular, the timing of the spring transition, i.e., the onset of upwelling-favorable winds, varies considerably in the CCS with changes in the North Pacific Gyre Oscillation. Using a coupled physical-biogeochemical model, this study examines the sensitivity of the ecosystem functioning in the CCS to a lead or lag in the spring transition. An early spring transition results in an increased vertical nutrient flux at the coast, with the largest ecosystem consequences, both in relative amplitude and persistence, hundreds of kilometers offshore and at the highest trophic level of the modeled food web. A budget analysis reveals that the propagation of the perturbation offshore and up the food web is driven by remineralization and grazing/predation involving both large and small plankton species. PMID:23690935

  19. California coastal upwelling onset variability: cross-shore and bottom-up propagation in the planktonic ecosystem.

    PubMed

    Chenillat, Fanny; Rivière, Pascal; Capet, Xavier; Franks, Peter J S; Blanke, Bruno

    2013-01-01

    The variability of the California Current System (CCS) is primarily driven by variability in regional wind forcing. In particular, the timing of the spring transition, i.e., the onset of upwelling-favorable winds, varies considerably in the CCS with changes in the North Pacific Gyre Oscillation. Using a coupled physical-biogeochemical model, this study examines the sensitivity of the ecosystem functioning in the CCS to a lead or lag in the spring transition. An early spring transition results in an increased vertical nutrient flux at the coast, with the largest ecosystem consequences, both in relative amplitude and persistence, hundreds of kilometers offshore and at the highest trophic level of the modeled food web. A budget analysis reveals that the propagation of the perturbation offshore and up the food web is driven by remineralization and grazing/predation involving both large and small plankton species. PMID:23690935

  20. Plankton dynamics in a cyclonic eddy in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Chenillat, Fanny; Franks, Peter J. S.; Rivière, Pascal; Capet, Xavier; Grima, Nicolas; Blanke, Bruno

    2015-08-01

    The California Current System is an eastern boundary upwelling system (EBUS) with high biological production along the coast. Oligotrophic offshore waters create cross-shore gradients of biological and physical properties, which are affected by intense mesoscale eddy activity. The influence of eddies on ecosystem dynamics in EBUS is still in debate. To elucidate the mechanisms that influence the dynamics of ecosystems trapped in eddies, and the relative contribution of horizontal and vertical advection in determining local production, we analyze a particular cyclonic eddy using Lagrangian particle-tracking analyses of numerical Eulerian. The eddy formed in a coastal upwelling system; coastal waters trapped in the eddy enabled it to leave the upwelling region with high concentrations of plankton and nutrients. The ecosystem was initially driven mainly by recycling of biological material. As the eddy moved offshore, production in its core was enhanced compared to eddy exterior waters through Ekman pumping of nitrate from below the euphotic zone; this Ekman pumping was particularly effective due to the shallow nitracline in the eddy compared to eddy exterior waters. Both eddy trapping and Ekman pumping helped to isolate and maintain the ecosystem productivity in the eddy core. This study shows the importance of cyclonic eddies for biological production in EBUS: they contribute both to the redistribution of the coastal upwelling ecosystem and are local regions of enhanced new production. Together, these processes impact cross-shore gradients of important biological properties.

  1. Appreciation, Use, and Management of Biodiversity and Ecosystem Services in California's Working Landscapes

    NASA Astrophysics Data System (ADS)

    Plieninger, Tobias; Ferranto, Shasta; Huntsinger, Lynn; Kelly, Maggi; Getz, Christy

    2012-09-01

    "Working landscapes" is the concept of fostering effective ecosystem stewardship and conservation through active human presence and management and integrating livestock, crop, and timber production with the provision of a broad range of ecosystem services at the landscape scale. Based on a statewide survey of private landowners of "working" forests and rangelands in California, we investigated whether owners who are engaged in commercial livestock or timber production appreciate and manage biodiversity and ecosystem services on their land in different ways than purely residential owners. Both specific uses and management practices, as well as underlying attitudes and motivations toward biodiversity and ecosystem services, were assessed. Correlation analysis showed one bundle of ecosystem goods and services (e.g., livestock, timber, crops, and housing) that is supported by some landowners at the community level. Another closely correlated bundle of biodiversity and ecosystem services includes recreation, hunting/fishing, wildlife habitat, and fire prevention. Producers were more likely to ally with the first bundle and residential owners with the second. The survey further confirmed that cultural ecosystem services and quality-of-life aspects are among the primary amenities that motivate forest and rangeland ownership regardless of ownership type. To live near natural beauty was the most important motive for both landowner groups. Producers were much more active in management for habitat improvement and other environmental goals than residential owners. As the number of production-oriented owners decreases, developing strategies for encouraging environment-positive management by all types of landowners is crucial.

  2. Appreciation, use, and management of biodiversity and ecosystem services in California's working landscapes.

    PubMed

    Plieninger, Tobias; Ferranto, Shasta; Huntsinger, Lynn; Kelly, Maggi; Getz, Christy

    2012-09-01

    "Working landscapes" is the concept of fostering effective ecosystem stewardship and conservation through active human presence and management and integrating livestock, crop, and timber production with the provision of a broad range of ecosystem services at the landscape scale. Based on a statewide survey of private landowners of "working" forests and rangelands in California, we investigated whether owners who are engaged in commercial livestock or timber production appreciate and manage biodiversity and ecosystem services on their land in different ways than purely residential owners. Both specific uses and management practices, as well as underlying attitudes and motivations toward biodiversity and ecosystem services, were assessed. Correlation analysis showed one bundle of ecosystem goods and services (e.g., livestock, timber, crops, and housing) that is supported by some landowners at the community level. Another closely correlated bundle of biodiversity and ecosystem services includes recreation, hunting/fishing, wildlife habitat, and fire prevention. Producers were more likely to ally with the first bundle and residential owners with the second. The survey further confirmed that cultural ecosystem services and quality-of-life aspects are among the primary amenities that motivate forest and rangeland ownership regardless of ownership type. To live near natural beauty was the most important motive for both landowner groups. Producers were much more active in management for habitat improvement and other environmental goals than residential owners. As the number of production-oriented owners decreases, developing strategies for encouraging environment-positive management by all types of landowners is crucial. PMID:22767213

  3. Environmental conditions impacting juvenile Chinook salmon growth off central California: An ecosystem model analysis

    NASA Astrophysics Data System (ADS)

    Fiechter, J.; Huff, D. D.; Martin, B. T.; Jackson, D. W.; Edwards, C. A.; Rose, K. A.; Curchitser, E. N.; Hedstrom, K. S.; Lindley, S. T.; Wells, B. K.

    2015-04-01

    A fully coupled ecosystem model is used to identify the effects of environmental conditions and upwelling variability on growth of juvenile Chinook salmon in central California coastal waters. The ecosystem model framework consists of an ocean circulation submodel, a biogeochemical submodel, and an individual-based submodel for salmon. Simulation results indicate that years favorable for juvenile salmon growth off central California are characterized by particularly intense early season upwelling (i.e., March through May), leading to enhanced krill concentrations during summer near the location of ocean entry (i.e., Gulf of the Farallones). Seasonally averaged growth rates in the model are generally consistent with observed values and suggest that juvenile salmon emigrating later in the season (i.e., late May and June) achieve higher weight gains during their first 90 days of ocean residency.

  4. Concentrations, deposition, and effects of nitrogenous pollutants in selected California ecosystems.

    PubMed

    Bytnerowicz, A; Padgett, P E; Parry, S D; Fenn, M E; Arbaugh, M J

    2001-11-28

    Atmospheric deposition of nitrogen (N) in California ecosystems is ecologically significant and highly variable, ranging from about 1 to 45 kg/ha/year. The lowest ambient concentrations and deposition values are found in the eastern and northern parts of the Sierra Nevada Mountains and the highest in parts of the San Bernardino and San Gabriel Mountains that are most exposed to the Los Angeles air pollution plume. In the Sierra Nevada Mountains, N is deposited mostly in precipitation, although dry deposition may also provide substantial amounts of N. On the western slopes of the Sierra Nevada, the majority of airborne N is in reduced forms as ammonia (NH3) and particulate ammonium (NH4+) from agricultural activities in the California Central Valley. In southern California, most of the N air pollution is in oxidized forms as nitrogen oxides (NOx), nitric acid (HNO3), and particulate nitrate (NO3-) resulting from fossil fuel combustion and subsequent complex photochemical reactions. In southern California, dry deposition of gases and particles provides most (up to 95%) of the atmospheric N to forests and other ecosystems. In the mixed-conifer forest zone, elevated deposition of N may initially benefit growth of vegetation, but chronic effects may be expressed as deterioration of forest health and sustainability. HNO3 vapor alone has a potential for toxic effects causing damage of foliar surfaces of pines and oaks. In addition, dry deposition of predominantly HNO3 has lead to changes in vegetation composition and contamination of ground- and stream water where terrestrial N loading is high. Long-term, complex interactions between N deposition and other environmental stresses such as elevated ozone (O3), drought, insect infestations, fire suppression, or intensive land management practices may affect water quality and sustainability of California forests and other ecosystems. PMID:12805794

  5. Material properties of zooplankton and nekton from the California current

    NASA Astrophysics Data System (ADS)

    Becker, Kaylyn

    This study measured the material properties of zooplankton, Pacific hake (Merluccius productus), Humboldt squid (Dosidicus gigas), and two species of myctophids (Symbolophorus californiensis and Diaphus theta) collected from the California Current ecosystem. The density contrast (g) was measured for euphausiids, decapods (Sergestes similis), amphipods (Primno macropa, Phronima sp., and Hyperiid spp.), siphonophore bracts, chaetognaths, larval fish, crab megalopae, larval squid, and medusae. Morphometric data (length, width, and height) were collected for these taxa. Density contrasts varied within and between zooplankton taxa. The mean and standard deviation for euphausiid density contrast were 1.059 +/- 0.009. Relationships between zooplankton density contrast and morphometric measurements, geographic location, and environmental conditions were investigated. Site had a significant effect on euphausiid density contrast. Density contrasts of euphausiids collected in the same geographic area approximately 4-10 days apart were significantly higher (p < 0.001). Sound speed contrast (h) was measured for euphausiids and pelagic decapods (S. similis) and it varied between taxa. The mean and standard deviation for euphausiid sound speed were 1.019 +/- 0.009. Euphausiid mass was calculated from density measurements and volume, and a relationship between euphausiid mass and length was produced. We determined that euphausiid from volumes could be accurately estimated two dimensional measurements of animal body shape, and that biomass (or biovolume) could be accurately calculated from digital photographs of animals. Density contrast (g) was measured for zooplankton, pieces of hake flesh, myctophid flesh, and of the following Humboldt squid body parts: mantle, arms, tentacle, braincase, eyes, pen, and beak. The density contrasts varied within and between fish taxa, as well as among squid body parts. Effects of animal length and environmental conditions on nekton density contrast were investigated. The sound speed contrast (h) was measured for Pacific hake flesh, myctophid flesh, Humboldt squid mantle, and Humboldt squid braincase. Sound speed varied within and between nekton taxa. The material properties reported in this study can be used to improve target strength estimates from acoustic scattering models which would increase the accuracy of biomass estimates from acoustic surveys for these zooplankton and nekton.

  6. California's Summer and Winter Coastal Upwelling Impact on the Terrestrial Ecosystem

    NASA Astrophysics Data System (ADS)

    Garcia Reyes, M.; Sydeman, W. J.; Black, B.

    2014-12-01

    The terrestrial ecosystem along the California coastal region depends on the water that winter rain and year-round fog brings. The location and strength of the North Pacific Ocean high pressure system off the California coast determine the amount of rain during winter by blocking or allowing the pass of winter storms through the region. It also determines the strength and timing of alongshore winds that drive coastal upwelling, which in turns lead to cool coastal water during the spring and summer that is closely relate to fog formation. Timing and intensity of coastal upwelling vary year to year due to a number of climate processes impacting the high pressure system and the coastal atmospheric and ocean conditions. Notably, persistent summer upwelling varies independently from the sporadic winter/early spring upwelling events (as well as other weather patterns), and in turn they impact differently the marine and terrestrial ecosystems. Here, we review the variability and source of variability of the North Pacific High, its impact on the upwelling conditions along the California coast, and investigate their influence on terrestrial rain and fog during winter and summer, highlighting their impact on coastal and terrestrial ecosystems.

  7. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  8. The California Current system off Monterey, California: physical and biological coupling

    NASA Astrophysics Data System (ADS)

    Collins, C. A.; Pennington, J. T.; Castro, C. G.; Rago, T. A.; Chavez, F. P.

    2003-08-01

    Repeated hydrobiological surveys over the period 1988-2002 perpendicular to the central California coast indicate strong coupling between physical circulation and biological production. An equatorward-flowing jet about 100-200 km from shore marked the inshore edge of the California Current (CC). This "CC Jet" had its highest velocities during late winter and spring. The jet divided inshore, biologically productive waters from offshore, low-production waters. Mean flow in the inshore waters is poleward. However, this flow is interrupted in late spring and summer by a surface-enhanced, equatorward-flowing, coastal upwelling jet. The upwelling jet coincides with maxima of nutrients, chlorophyll- a and primary production. Annual variability in the inshore zone is related to (1) vertical pycnocline movements associated with geostrophic adjustments to accelerations of the California Current system, and (2) coastal upwelling. In offshore waters, the annual cycle accounted for a small fraction of the variability, indicating the dominance of eddies and meanders in this zone (J. Geophys. Res. 92 (1987) 12 947). The offshore regime was mesotrophic to oligotrophic, with a subsurface chlorophyll- a maximum above the nutricline. Considerable subduction may occur under the California Current jet and be an important process in the export of biogenic material to the deep sea.

  9. Land use change and effects on water quality and ecosystem health in the Lake Tahoe basin, Nevada and California

    USGS Publications Warehouse

    Forney, William; Richards, Lora; Adams, Kenneth D.; Minor, Timothy B.; Rowe, Timothy G.; Smith, J. LaRue; Raumann, Christian G.

    2001-01-01

    Human activity in the Lake Tahoe Basin has increased substantially in the past four decades, causing significant impacts on the quality and clarity of the lake's famous deep, clear water. Protection of Lake Tahoe and the surrounding environment has become an important activity in recent years. A variety of agencies, including the Tahoe Regional Planning Agency, Tahoe Research Group of the University of California at Davis, Desert Research Institute of the University and Community College System of Nevada, U.S. Geological Survey (USGS), and a host of State (both Nevada and California) and local agencies have been monitoring and conducting research in the Basin in order to understand how the lake functions and to what extent humans have affected its landscape and ecosystem processes. In spite of all of these activities, there remains a lack of comprehensive land use change data and analysis for the Basin. A project is underway that unites the land cover mapping expertise of the USGS National Mapping Discipline with the hydrologic expertise of the Water Resources Discipline to assess the impacts of urban growth and land use change in the Lake Tahoe Basin. Three activities are planned over the next 3 years: (1) mapping the current and historic state of the land surface, (2) conducting analysis to document patterns, rates, and trends in urbanization, land use change, and ecosystem health, and (3) assessing the causes and consequences of land use change with regard to water quality and ecosystem health. We hypothesize that changes in the extent of urban growth and the corresponding increases in impervious surfaces and decreases in natural vegetation have resulted in severe impacts on ecosystem health and integrity, riparian zones and water quality over time. We are acting on multiple fronts to test this hypothesis through the quantification of landscape disturbances and impacts.

  10. Multi-decadal variations in calcareous holozooplankton in the California Current System: Thecosome pteropods, heteropods, and foraminifera

    NASA Astrophysics Data System (ADS)

    Ohman, Mark D.; Lavaniegos, Bertha E.; Townsend, Annie W.

    2009-09-01

    We examine long-term (1951-2008) variability of three major taxa of calcareous holozooplankton (aragonite-secreting thecosome pteropods and heteropods, and calcite-secreting large planktonic foraminifera) in light of recent interest in the impingement of waters undersaturated with respect to aragonite onto continental shelf depths in the California Current System. We assess interannual variability in springtime abundances of zooplankton sampled in the epipelagic layer, using CalCOFI (California Cooperative Oceanic Fisheries Investigations) zooplankton samples from two regions: Southern California (SC) and Central California (CC). Thecosome pteropods show no evidence of recent declines in abundance in SC or CC waters. In SC, sampling was sufficient to conclude that heteropods and large foraminifera also show no evidence of declines in abundance in recent years. These results do not preclude as-yet undetected changes in vertical distributions or shell morphology, and underscore the importance of sustained in situ measurement programs in order to detect and understand changes to pelagic ecosystems.

  11. Patterns and processes in the California Current System

    NASA Astrophysics Data System (ADS)

    Checkley, David M., Jr.; Barth, John A.

    2009-12-01

    The California Current System (CCS) is forced by the distribution of atmospheric pressure and associated winds in relation to the west coast of North America. In this paper, we begin with a simplified case of winds and a linear coast, then consider variability characteristic of the CCS, and conclude by considering future change. The CCS extends from the North Pacific Current (∼50°N) to off Baja California, Mexico (∼15-25°N) with a major discontinuity at Point Conception (34.5°N). Variation in atmospheric pressure affects winds and thus upwelling. Coastal, wind-driven upwelling results in nutrification and biological production and a southward coastal jet. Offshore, curl-driven upwelling results in a spatially large, productive habitat. The California Current flows equatorward and derives from the North Pacific Current and the coastal jet. Dominant modes of spatial and temporal variability in physical processes and biological responses are discussed. High surface production results in deep and bottom waters depleted in oxygen and enriched in carbon dioxide. Fishing has depleted demersal stocks more than pelagic stocks, and marine mammals, including whales, are recovering. Krill, squid, and micronekton are poorly known and merit study. Future climate change will differ from past change and thus prediction of the CCS requires an understanding of its dynamics. Of particular concern are changes in winds, stratification, and ocean chemistry.

  12. Climate, fishing, and fluctuations of sardine and anchovy in the California Current.

    PubMed

    Lindegren, Martin; Checkley, David M; Rouyer, Tristan; MacCall, Alec D; Stenseth, Nils Chr

    2013-08-13

    Since the days of Elton, population cycles have challenged ecologists and resource managers. Although the underlying mechanisms remain debated, theory holds that both density-dependent and density-independent processes shape the dynamics. One striking example is the large-scale fluctuations of sardine and anchovy observed across the major upwelling areas of the world. Despite a long history of research, the causes of these fluctuations remain unresolved and heavily debated, with significant implications for fisheries management. We here model the underlying causes of these fluctuations, using the California Current Ecosystem as a case study, and show that the dynamics, accurately reproduced since A.D. 1661 onward, are explained by interacting density-dependent processes (i.e., through species-specific life-history traits) and climate forcing. Furthermore, we demonstrate how fishing modifies the dynamics and show that the sardine collapse of the 1950s was largely unavoidable given poor recruitment conditions. Our approach provides unique insight into the origin of sardine-anchovy fluctuations and a knowledge base for sustainable fisheries management in the California Current Ecosystem and beyond. PMID:23836661

  13. Sub-regional ecosystem variability in the Canary Current upwelling

    NASA Astrophysics Data System (ADS)

    Arístegui, Javier; Barton, Eric D.; Álvarez-Salgado, Xosé A.; Santos, A. Miguel P.; Figueiras, Francisco G.; Kifani, Souad; Hernández-León, Santiago; Mason, Evan; Machú, Eric; Demarcq, Hervé

    2009-12-01

    The Canary Current upwelling ecosystem (CanC) constitutes one of the four main eastern boundary upwelling ecosystems (EBUEs) of the world, thus hosting high productivity and fisheries. Recent observations indicate that the CanC region as a whole has been experiencing a progressive warming and a decrease in productivity over the last decades. This overall trend is however not directly reflected in the fisheries of the region. Here we update recent results and previous reviews on the CanC, covering aspects from the physical environment to fish populations and fisheries on a range of time scales. We approach these topics, when possible, through a comparative exploration of the biogeographical characteristics of different sub-regions comprising this ecosystem. This review shows that variability in coastline configuration, shelf width, coastal upwelling, nutrient fertilization, productivity, or retentive vs. dispersive physical mechanisms, among other factors, may help explain sub-regional differences in fish distributions and abundances in the CanC. Nevertheless, the lack of systematic information on the regional variability of physical and biological processes hampers an integrated understanding of the relative contribution of natural vs. human-induced variability in the populations of at least small-pelagic fishes and their associated fisheries.

  14. Mechanisms Controlling the Effects of Weather and Climate on California's Ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Goulden, M.; Kelly, A. E.; Fellows, A.; Winston, G.

    2010-12-01

    We combined observations and manipulations along topographic gradients in southern and central California to understand how climate controls ecosystem function. California's topography causes large temperature and precipitation gradients as a result of orographic, rain-shadow, atmospheric lapse, and sea breeze effects. These gradients lead to a wide diversity of ecosystem types and provide a natural laboratory for understanding the controls on plant community composition and ecosystem function. Findings include: (1) Natural climate gradients drive large changes in species composition, plant phenology, growing season length, and primary production. The growing season at low, dry, and warm locations is limited by summer drought, resulting in low primary production. The growing season at high, wet, and cold locations is limited by winter cold, resulting in low primary production. The growing season at mid elevation is limited by neither summer drought nor winter cold, resulting in year-round and high primary production. (2) The relative importance of plant species within a community shifts rapidly in response to changes in water input, caused by either natural variability or experimental manipulation. Species that are intolerant of drier conditions decline rapidly with reduced water input, and may disappear locally; species that are tolerant of drier conditions increase rapidly in extent. (3) Inward plant migration, and the establishment of new species at a location, is a comparatively slow process. The initial phases of climate change will likely reshuffle the importance of existing species within the community, resulting in only modest changes in ecosystem function but possibly extirpating species that are intolerant of warmer and drier conditions, and reducing biodiversity. These declines in biodiversity and delays in species immigration may ultimately limit the ability of ecosystems to respond to subsequent interannual and decadal variations in weather, and to adjust to more extreme changes in climate.

  15. Chloroform, carbon tetrachloride and methyl chloroform fluxes in southern California ecosystems

    NASA Astrophysics Data System (ADS)

    Rhew, Robert C.; Miller, Benjamin R.; Weiss, Ray F.

    Chloroform (CHCl 3), carbon tetrachloride (CCl 4), and methyl chloroform (CH 3CCl 3) are important carriers of chlorine to the stratosphere and account for an estimated 15% of the total organic chlorine in the troposphere, roughly equivalent to chlorine load due to methyl chloride (CH 3Cl). The tropospheric burden of chlorine has declined since 1994, largely due to the restriction of CH 3CCl 3 and CCl 4 use as specified by the Montreal Protocol. However, few field studies have been conducted on the terrestrial-atmosphere exchange of these chlorinated hydrocarbons, leading to uncertainties about the natural cycling of these trace gases. This work shows the results of 75 flux measurements conducted in a variety of southern California ecosystems, including coast sagebrush, chamise chaparral, creosote bush scrub, shoreline, and coastal salt marsh. We find no evidence of a significant soil sink in these ecosystems but rather a small net source of CHCl 3 and possibly CCl 4.

  16. Effects of selenium supplementation in cattle on aquatic ecosystems in northern California

    SciTech Connect

    Norman, B.; Nader, G.; Oliver, M.; Delmas, R.; Drake, D.; George, H. )

    1992-09-15

    The potential impact on aquatic ecosystems of supplementing the diets of beef cattle with selenium (Se) was studied on 4 northern California ranches. All study sites included an area of concentrated use by cattle that had diets supplemented with Se. In each case, a stream flowed through the site and provided a control sampling area upstream and a treated sampling area downstream. Specimens of water, sediment, algae, aquatic plants, aquatic invertebrates, and fish were analyzed fluorometrically for total Se content. Significant differences in Se concentration were not found between specimens from upstream control areas and those from downstream areas subjected to use by Se-treated cattle. Evidence was not found that Se supplementation in cattle at maximal permitted concentrations caused Se accumulation in associated aquatic ecosystems.

  17. Multivariate ocean-climate indicators (MOCI) for the central California Current: Environmental change, 1990-2010

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Thompson, Sarah Ann; García-Reyes, Marisol; Kahru, Mati; Peterson, William T.; Largier, John L.

    2014-01-01

    Temporal environmental variability may confound interpretations of management actions, such as reduced fisheries mortality when Marine Protected Areas are implemented. To aid in the evaluation of recent ecosystem protection decisions in central-northern California, we designed and implemented multivariate ocean-climate indicators (MOCI) of environmental variability. To assess the validity of the MOCI, we evaluated interannual and longer-term variability in relation to previously recognized environmental variability in the region, and correlated MOCI to a suite of biological indicators including proxies for lower- (phytoplankton, copepods, krill), and upper-level (seabirds) taxa. To develop the MOCI, we selected, compiled, and synthesized 14 well-known atmospheric and oceanographic indicators of large-scale and regional processes (transport and upwelling), as well as local atmospheric and oceanic response variables such as wind stress, sea surface temperature, and salinity. We derived seasonally-stratified MOCI using principal component analysis. Over the 21-year study period (1990-2010), the ENSO cycle weakened while extra-tropical influences increased with a strengthening of the North Pacific Gyre Oscillation (NPGO) and cooling of the Pacific Decadal Oscillation (PDO). Correspondingly, the Northern Oscillation Index (NOI) strengthened, leading to enhanced upwelling-favorable wind stress and cooling of air and ocean surface temperatures. The seasonal MOCI related well to subarctic copepod biomass and seabird productivity, but poorly to chlorophyll-a concentration and krill abundance. Our results support a hypothesis of enhanced sub-arctic influence (transport from the north) and upwelling intensification in north-central California over the past two decades. Such environmental conditions may favor population growth for species with sub-arctic zoogeographic affinities within the central-northern California Current coastal ecosystem.

  18. Seasonality of the transitional region of the California Current System off Baja California

    NASA Astrophysics Data System (ADS)

    Durazo, Reginaldo

    2015-02-01

    Hydrographic data collected over the period 1997-2013 are analyzed to investigate the seasonality of hydrographic features and associated geostrophic flows off the Baja California peninsula. The upper ocean in the region was found to be homogeneous in winter and spring but subdivided into two regions in the summer and autumn. In the first case, the system typically shows relatively low-temperature and salinity waters, which give it a subarctic character. In the second, only the region north of Punta Eugenia (28N) maintains subarctic characteristics, while the southern region receives an inflow of tropical and subtropical waters that results from the weakening of northwesterly winds, which allows the poleward advection of surface waters. Also during this period, a positive wind stress curl promotes the zonal advection of North Pacific's eastern edge waters into the coast and to the north as a surface coastal flow. Average seasonal patterns of geostrophic flow at 200 dbar revealed that the differentiation into provinces is also evident at that depth, with two clearly defined cyclonic structures in summer and autumn, both separated at the latitude of Punta Eugenia. The analyses conducted also showed a clear continuity of the California undercurrent along the shelf break, with more diffuse currents in the winter. Poleward flows were observed throughout the water column, especially in summer and autumn, although the origin of the surface flow does not necessarily involve a surfacing of the California Undercurrent.

  19. Accumulation of current-use and organochlorine pesticides in crab embryos from Northern California, USA

    USGS Publications Warehouse

    Smalling, Kelly L.; Morgan, Steven; Kuivila, Kathryn K.

    2010-01-01

    Invertebrates have long been used as resident sentinels for assessing ecosystem health and productivity. The shore crabs, Hemigrapsus oregonensis and Pachygrapsus crassipes, are abundant in estuaries and beaches throughout northern California, USA and have been used as indicators of habitat conditions in several salt marshes. The overall objectives of the present study were to conduct a lab-based study to test the accumulation of current-use pesticides, validate the analytical method and to analyze field-collected crabs for a suite of 74 current-use and legacy pesticides. A simple laboratory uptake study was designed to determine if embryos could bioconcentrate the herbicide molinate over a 7-d period. At the end of the experiment, embryos were removed from the crabs and analyzed by gas chromatography/mass spectrometry. Although relatively hydrophilic (log KOW of 2.9), molinate did accumulate with an estimated bioconcentration factor (log BCF) of approximately 2.5. Following method validation, embryos were collected from two different Northern California salt marshes and analyzed. In field-collected embryos 18 current-use and eight organochlorine pesticides were detected including synthetic pyrethroids and organophosphate insecticides, as well as DDT and its degradates. Lipid-normalized concentrations of the pesticides detected in the field-collected crab embryos ranged from 0.1 to 4 ppm. Pesticide concentrations and profiles in crab embryos were site specific and could be correlated to differences in land-use practices. These preliminary results indicate that embryos are an effective sink for organic contaminants in the environment and have the potential to be good indicators of ecosystem health, especially when contaminant body burden analyses are paired with reproductive impairment assays.

  20. Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951-2000

    USGS Publications Warehouse

    Liu, J.; Vogelmann, J.E.; Zhu, Z.; Key, C.H.; Sleeter, B.M.; Price, D.T.; Chen, J.M.; Cochrane, M.A.; Eidenshink, J.C.; Howard, S.M.; Bliss, N.B.; Jiang, H.

    2011-01-01

    Land use change, natural disturbance, and climate change directly alter ecosystem productivity and carbon stock level. The estimation of ecosystem carbon dynamics depends on the quality of land cover change data and the effectiveness of the ecosystem models that represent the vegetation growth processes and disturbance effects. We used the Integrated Biosphere Simulator (IBIS) and a set of 30- to 60-m resolution fire and land cover change data to examine the carbon changes of California's forests, shrublands, and grasslands. Simulation results indicate that during 1951-2000, the net primary productivity (NPP) increased by 7%, from 72.2 to 77.1TgCyr-1 (1 teragram=1012g), mainly due to CO2 fertilization, since the climate hardly changed during this period. Similarly, heterotrophic respiration increased by 5%, from 69.4 to 73.1TgCyr-1, mainly due to increased forest soil carbon and temperature. Net ecosystem production (NEP) was highly variable in the 50-year period but on average equalled 3.0TgCyr-1 (total of 149TgC). As with NEP, the net biome production (NBP) was also highly variable but averaged -0.55TgCyr-1 (total of -27.3TgC) because NBP in the 1980s was very low (-5.34TgCyr-1). During the study period, a total of 126Tg carbon were removed by logging and land use change, and 50Tg carbon were directly removed by wildland fires. For carbon pools, the estimated total living upper canopy (tree) biomass decreased from 928 to 834TgC, and the understory (including shrub and grass) biomass increased from 59 to 63TgC. Soil carbon and dead biomass carbon increased from 1136 to 1197TgC. Our analyses suggest that both natural and human processes have significant influence on the carbon change in California. During 1951-2000, climate interannual variability was the key driving force for the large interannual changes of ecosystem carbon source and sink at the state level, while logging and fire were the dominant driving forces for carbon balances in several specific ecoregions. From a long-term perspective, CO2 fertilization plays a key role in maintaining higher NPP. However, our study shows that the increase in C sequestration by CO2 fertilization is largely offset by logging/land use change and wildland fires. ?? 2011 Elsevier B.V.

  1. Differential Distributions of Synechococcus Subgroups Across the California Current System

    PubMed Central

    Paerl, Ryan W.; Johnson, Kenneth S.; Welsh, Rory M.; Worden, Alexandra Z.; Chavez, Francisco P.; Zehr, Jonathan P.

    2011-01-01

    Synechococcus is an abundant marine cyanobacterial genus composed of different populations that vary physiologically. Synechococcus narB gene sequences (encoding for nitrate reductase in cyanobacteria) obtained previously from isolates and the environment (e.g., North Pacific Gyre Station ALOHA, Hawaii or Monterey Bay, CA, USA) were used to develop quantitative PCR (qPCR) assays. These qPCR assays were used to quantify populations from specific narB phylogenetic clades across the California Current System (CCS), a region composed of dynamic zones between a coastal-upwelling zone and the oligotrophic Pacific Ocean. Targeted populations (narB subgroups) had different biogeographic patterns across the CCS, which appear to be driven by environmental conditions. Subgroups C_C1, D_C1, and D_C2 were abundant in coastal-upwelling to coastal-transition zone waters with relatively high to intermediate ammonium, nitrate, and chl. a concentrations. Subgroups A_C1 and F_C1 were most abundant in coastal-transition zone waters with intermediate nutrient concentrations. E_O1 and G_O1 were most abundant at different depths of oligotrophic open-ocean waters (either in the upper mixed layer or just below). E_O1, A_C1, and F_C1 distributions differed from other narB subgroups and likely possess unique ecologies enabling them to be most abundant in waters between coastal and open-ocean waters. Different CCS zones possessed distinct Synechococcus communities. Core California current water possessed low numbers of narB subgroups relative to counted Synechococcus cells, and coastal-transition waters contained high abundances of Synechococcus cells and total number of narB subgroups. The presented biogeographic data provides insight on the distributions and ecologies of Synechococcus present in an eastern boundary current system. PMID:21833315

  2. The California current of the last glacial maximum: reconstruction at 42°N based on multiple proxies

    USGS Publications Warehouse

    Ortiz, Joseph D.; Mix, Alan C.; Hostetler, Steven W.; Kashgarian, Michaele

    1997-01-01

    Multiple paleoceanographic proxies in a zonal transect across the California Current near 42°N record modern and last glacial maximum (LGM) thermal and nutrient gradients. The offshore thermal gradient, derived from foraminiferal species assemblages and oxygen isotope data, was similar at the LGM to that at present (warmer offshore), but average temperatures were 3.3° ±1.5°C colder. Observed gradients require that the sites remained under the southward flow of the California Current, and thus that the polar front remained north of 42°N during the LGM. Carbon isotopic and foraminiferal flux data suggests enhanced nutrients and productivity of foraminfera in the northern California Current up to 650 km offshore. In contrast, marine organic carbon and coastal diatom burial rates decreased during the LGM. These seemingly contradictory results are reconciled by model simulations of the LGM wind- field, which suggest that wind stress curl at 42°N (and thus open-ocean upwelling) increased, while offshore Ekman transport (and thus coastal upwelling) decreased during the last ice age. The ecosystem of the northern California Current during the LGM approximated that of the modern Gulf of Alaska. Cooling and production in this region was thus driven by stronger open-ocean upwelling and/or southward flow of high-latitude water masses, rather than by coastal upwelling.

  3. Observed and Modeled Tsunami Currents on California's North Coast

    NASA Astrophysics Data System (ADS)

    Admire, A. R.; Dengler, L.; Crawford, G. B.; uslu, B. U.; Montoya, J.; Wilson, R. I.

    2011-12-01

    In 2009, a pilot project was implemented in Humboldt Bay, near Eureka, California to measure the currents produced by tsunamis. This area is susceptible to both near- and far-field tsunamis and has a historic record of damaging events. Crescent City Harbor, located about 100km north of Humboldt Bay, suffered 20 million in damages from strong currents produced by the 2006 Kuril Islands tsunami and an additional 16 million from the 2011 Tohoku-oki (Japan) tsunami. We deployed a Nortek Aquadopp 600kHz 2D Acoustic Doppler Current Profiler (ADCP) with a one-minute sampling interval in Humboldt Bay, near the NOAA tide gauge site. The instrument recorded the tsunami produced by the Mw 8.8 Chilean earthquake on February 27, 2010 as well as the Mw 9.0 Japanese earthquake on March 11, 2011. Currents from the 2010 tsunami persisted in Humboldt Bay for at least 30hrs with a peak current amplitude of 0.3m/s. The 2011 tsunami signal lasted for over 86hrs with a peak amplitude of 1.2m/s. Strongest currents corresponded to the maximum change in water level as recorded on the NOAA tide gauge, about 90min after the initial wave arrival. Tsunami currents associated with ebb tides (tidal currents flowing out of the bay) were about 25% larger than currents associated with flood tides. No damage was observed in Humboldt Bay for either event; the 2011 tsunami pulled one boat away from its moorings at the marina about six kilometers away from the instrument site. Although we have no instrument in Crescent City, we were able to estimate currents for the first three and a half hours of the Japan tsunami using security camera video footage from the Harbor Master building across from the entrance to the boat basin, about 70m away from the NOAA tide gauge site. Most of the damage occurred within this time window. The strongest currents reached 4.5m/s and six cycles exceeded 4m/s in the three and a half hours of data. We used the MOST (Method of Splitting Tsunamis) model to compare measured currents to numerical predictions. MOST does a reasonably good job of predicting peak amplitudes for the 2010 and 2011 events in Humboldt Bay and the 2011 tsunami in Crescent City. For Humboldt Bay, the model does a good job of replicating the first four hours of the signal although the ebb currents are slightly underestimated. The model predictions break down for the later part of the signal. This project shows that ADCPs can effectively record tsunami currents for small to moderate events. Data from this project will be used to validate and/or calibrate MOST so that realistic tsunami current hazard maps can be generated for California for use by harbor managers.

  4. Identifying Key Vulnerabilities in Current Management of California Central Valley for the California Water Plan

    NASA Astrophysics Data System (ADS)

    Bloom, E.; Groves, D.; Joyce, B. A.; Juricich, R.

    2012-12-01

    The California Department of Water Resources (DWR), for its 2013 Update of the California Water Plan (CWP), is building new analytic capabilities for developing and evaluating regional and state-wide water management strategies. These strategies are intended to address growing and diverse water needs coupled with uncertain future hydrologic conditions and available supplies. Recognizing the significant uncertainty about future water management conditions, DWR is utilizing new robust decision methods to identify robust and adaptive water management strategies. This talk will describe a recently completed application of Robust Decision Making (RDM) for long-term water planning as part of the 2013 CWP Update. This analysis utilizes a new hydrologic / water management model of the Sacramento River, San Joaquin River, and Tulare hydrologic regions, running the model under hundreds of potential futures. These futures consider potential variation in demographic growth, land-use patterns, drought length and timing, and other climate factors from projections generated by downscaled global circulation models. Cluster-finding "scenario discovery" algorithms, applied to the resulting database of simulation model results, identify the key characteristics of future conditions where current management fails to meet a wide range of policy objectives. These "vulnerabilities" provide the foundation for developing more robust and adaptive response packages and the considering tradeoffs between such response packages. This analysis will provide guidance for considering response packages to meet the challenges posed by future conditions in the California Central Valley and provides a widely applicable new approach for making water management plans more cognizant and responsive to a wide range of uncertainties.

  5. Coherence of long-term variations of zooplankton in two sectors of the California Current System

    NASA Astrophysics Data System (ADS)

    Lavaniegos, Bertha E.; Ohman, Mark D.

    2007-10-01

    We analyzed long-term (56-year) variations in springtime biomass of the zooplankton of the California Current System from two primary regions sampled by CalCOFI: Southern California (SC) and Central California (CC) waters. All organisms were enumerated from the plankton samples and converted to organic carbon biomass using length-carbon relationships, then aggregated into 19 major taxa. Planktonic copepods dominate the carbon biomass in both SC (59%) and CC (46%), followed by euphausiids (18% and 25% of mean biomass in SC and CC, respectively). Pelagic tunicates, especially salps and doliolids, constituted a higher fraction of the biomass in CC (13%) than in SC (5%). There was no long-term trend detectable in total zooplankton carbon biomass, in marked contrast to a decline in zooplankton displacement volume in both regions. The difference between these biomass metrics is accounted for by a long-term decline in pelagic tunicates (particularly salps), which have a relatively high ratio of biovolume:carbon. The decline in pelagic tunicates was accompanied by a long-term increase in water column density stratification. No other taxa showed a decline over the duration of the study, apart from salps and pyrosomes in SC and doliolids in CC. Some zooplankton taxa showed compensatory increases over the same time period (ostracods, large decapods, and calycophoran siphonophores in both SC and CC; appendicularians and polychaetes in SC). Two tests for ecosystem shifts, a sequential algorithm and the cumulative sum of anomalies (CuSum) approach, failed to detect changes in 1976-1977 in total carbon biomass, displacement volume, or most individual major taxa, suggesting that aggregated biomass is an insensitive indicator of climate forcing. In contrast, both techniques revealed a cluster of step-like changes associated with the La Niña of 1999. The major El Niño’s in the past half century have consistently depressed total zooplankton biomass and biomass of many major taxa in both SC and CC, although such effects are transitory. Much, but not all, of the interannual variability in zooplankton is shared between the Southern and Central California sectors of the California Current System.

  6. Ecosystem-phase interactions: aquatic eutrophication decreases terrestrial plant diversity in California vernal pools.

    PubMed

    Kneitel, Jamie M; Lessin, Carrie L

    2010-06-01

    Eutrophication has long been known to negatively affect aquatic and terrestrial ecosystems worldwide. In freshwater ecosystems, excessive nutrient input results in a shift from vascular plant dominance to algal dominance, while the nutrient-species richness relationship is found to be unimodal. Eutrophication studies are usually conducted in continuously aquatic or terrestrial habitats, but it is unclear how these patterns may be altered by temporal heterogeneity driven by precipitation and temperature variation. The California vernal pool (CVP) ecosystem consists of three distinct phases (aquatic, terrestrial, and dry) caused by variation in climatic conditions. The purpose of this study was to test the hypothesis that resource addition during the aquatic phase results in increased algal abundance, which reduces vascular plant cover and richness of the terrestrial phase upon desiccation. We used mesocosms layered with CVP soil, in which treatments consisted of five levels of nitrogen and phosphorous added every 2 weeks. Resource addition increased available phosphorus levels and algae cover during the aquatic phase. Increased algal crusts resulted in decreased vascular plant percent cover and species richness. Few significant patterns were observed with individual plant species and total biomass. The phosphorus-plant richness relationship was not significant, but species composition was significantly different among the low and high treatment comparisons. These results highlight a neglected effect of eutrophication in seasonal habitats. Interactions among ecosystem phases clearly require more attention empirically and theoretically. Management and restoration of temporally heterogeneous habitat, such as the endemic-rich CVP, need to consider the extensive effects of increased nutrient input. PMID:20012097

  7. Mesoscale structure and oceanographic determinants of krill hotspots in the California Current: Implications for trophic transfer and conservation

    NASA Astrophysics Data System (ADS)

    Santora, Jarrod A.; Sydeman, William J.; Schroeder, Isaac D.; Wells, Brian K.; Field, John C.

    2011-12-01

    Krill (crustaceans of the family Euphausiacea) comprise an important prey field for vast array of fish, birds, and marine mammals in the California Current and other large marine ecosystems globally. In this study, we test the hypothesis that mesoscale spatial organization of krill is related to oceanographic conditions associated with coastal upwelling. To test this, we compiled a climatology of krill distributions based on hydroacoustic surveys off California in May-June each year between 2000 and 2009 (missing 2007). Approximately 53,000 km of ocean habitat was sampled, resulting in a comprehensive geo-spatial data set from the Southern California Bight to Cape Mendocino. We determined the location and characteristics of eight definite and two probable krill “hotspots” of abundance. Directional-dependence analysis revealed that krill hotspots were oriented in a northwest-southeast (135°) direction, corresponding to the anisotropy of the 200-2000 m isobath. Krill hotspots were disassociated (inversely correlated) with three upwelling centers, Point Arena, Point Sur, and Point Conception, suggesting that krill may avoid locations of strong offshore transport or aggregate downstream from these locations. While current fisheries management considers the entire coast out to the 2000 m isobath critical habitat for krill in this ecosystem, we establish here smaller scale structuring of this critical mid-trophic level prey resource. Identifying mesoscale krill hotspots and their oceanographic determinants is significant as these smaller ecosystem divisions may warrant protection to ensure key ecosystem functions (i.e., trophic transfer) and resilience. Furthermore, delineating and quantifying krill hotspots may be important for conservation of krill-predators in this system.

  8. California State Waters Map Series: offshore of San Francisco, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Johnson, Samuel Y.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Endris, Charles A.; Manson, Michael W.; Sliter, Ray W.; Kvitek, Rikk G.; Watt, Janet Tilden; Ross, Stephanie L.; Bruns, Terry R.

    2015-01-01

    Circulation over the continental shelf in the Offshore of San Francisco map area is dominated by the southward-flowing California Current, an eastern limb of the North Pacific Gyre that flows from Oregon to Baja California. At its midpoint offshore of central California, the California Current transports subarctic surface waters southeastward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. Ocean temperatures offshore of central California have increased over the past 50 years, driving an ecosystem shift from the productive subarctic regime towards a depopulated subtropical environment.

  9. Spatial ecology of krill, micronekton and top predators in the central California Current: Implications for defining ecologically important areas

    NASA Astrophysics Data System (ADS)

    Santora, Jarrod A.; Field, John C.; Schroeder, Isaac D.; Sakuma, Keith M.; Wells, Brian K.; Sydeman, William J.

    2012-11-01

    Marine spatial planning and ecosystem models that aim to predict and protect fisheries and wildlife benefit greatly from syntheses of empirical information on physical and biological partitioning of marine ecosystems. Here, we develop spatially-explicit oceanographic and ecological descriptions of the central California Current region. To partition this region, we integrate data from 20 years of shipboard surveys with satellite remote-sensing to characterize local seascapes of ecological significance, focusing on krill, other micronekton taxa, and top predators (seabirds and marine mammals). Specifically, we investigate if micronekton and predator assemblages co-vary spatially with mesoscale oceanographic conditions. The first principal component of environmental and micronekton seascapes indicates significant coupling between physics, primary productivity, and secondary and tertiary marine consumers. Subsequent principal components indicate latitudinal variability in niche-community space due to varying habitat characteristics between Monterey Bay (deep submarine canyon system) and the Gulf of the Farallones (extensive continental shelf), even though both of these sub-regions are located downstream from upwelling centers. Overall, we identified five ecologically important areas based on spatial integration of environmental and biotic features. These areas, characterized by proximity to upwelling centers, shallow pycnoclines, and high chlorophyll-a and krill concentrations, are potential areas of elevated trophic focusing for specific epipelagic and mesopelagic communities. This synthesis will benefit ecosystem-based management approaches for the central California Current, a region long-impacted by anthropogenic factors.

  10. Diet variability of forage fishes in the Northern California Current System

    NASA Astrophysics Data System (ADS)

    Hill, Andrew D.; Daly, Elizabeth A.; Brodeur, Richard D.

    2015-06-01

    As fisheries management shifts to an ecosystem-based approach, understanding energy pathways and trophic relationships in the Northern California Current (NCC) will become increasingly important for predictive modeling and understanding ecosystem response to changing ocean conditions. In the NCC, pelagic forage fishes are a critical link between seasonal and interannual variation in primary production and upper trophic groups. We compared diets among dominant forage fish (sardines, anchovies, herring, and smelts) in the NCC collected in May and June of 2011 and June 2012, and found high diet variability between and within species on seasonal and annual time scales, and also on decadal scales when compared to results of past studies conducted in the early 2000s. Copepoda were a large proportion by weight of several forage fish diets in 2011 and 2012, which differed from a preponderance of Euphausiidae found in previous studies, even though all years exhibited cool ocean conditions. We also examined diet overlap among these species and with co-occurring subyearling Chinook salmon and found that surf smelt diets overlapped more with subyearling Chinook diets than any other forage fish. Herring and sardine diets overlapped the most with each other in our interdecadal comparisons and some prey items were common to all forage fish diets. Forage fish that show plasticity in diet may be more adapted to ocean conditions of low productivity or anomalous prey fields. These findings highlight the variable and not well-understood connections between ocean conditions and energy pathways within the NCC.

  11. Seasonal dynamics of physical and biological processes in the central California Current System: A modeling study

    NASA Astrophysics Data System (ADS)

    Guo, Lin; Chai, Fei; Xiu, Peng; Xue, Huijie; Rao, Shivanesh; Liu, Yuguang; Chavez, Francisco P.

    2014-08-01

    A 3-D physical and biological model is used to study the seasonal dynamics of physical and biological processes in the central California Current System. Comparisons of model results with remote sensing and in situ observations along CalCOFI Line 67 indicate our model can capture the spatial variations of key variables (temperature, nutrients, chlorophyll, and so on) on annual mean and seasonal cycle. In the coastal upwelling system, it is the alongshore wind stress that upwells high nutrients to surface from 60 m and stimulates enhanced plankton biomass and productivity in the upwelling season. As a result, coastal species peak in the late upwelling period (May-July), and oceanic species reach the annual maxima in the oceanic period (August-October). The annual maximum occurs in the late upwelling period for new production and in the oceanic period for regenerated production. From the late upwelling period to the oceanic period, stratification is intensified while coastal upwelling becomes weaker. Correspondingly, the coastal ecosystem retreats from ˜300 to ˜100 km offshore with significant decline in chlorophyll and primary production, and the oceanic ecosystem moves onshore. During this transition, the decline in phytoplankton biomass is due to the grazing pressure by mesozooplankton in the 0-150 km domain, but is regulated by low growth rates in the 150-500 km offshore domain. Meanwhile, the growth rates of phytoplankton increase in the coastal waters due to deeper light penetration, while the decrease in offshore growth rates is caused by lower nitrate concentrations.

  12. Sensitivity of the California Current nutrient supply to wind, heat, and remote ocean forcing

    NASA Astrophysics Data System (ADS)

    Jacox, Michael G.; Bograd, Steven J.; Hazen, Elliott L.; Fiechter, Jerome

    2015-07-01

    A regional ocean model is used to evaluate the roles of wind, surface heat flux, and basin-scale climate variability in regulating the upwelled nitrate supply in the California Current. A strong positive trend in nitrate flux from 1980 to 2010 was driven almost entirely by enhanced equatorward winds, negating a weak negative trend associated with increased surface heat flux. Increased upwelling and nitrate flux are consistent with cooler surface temperatures and higher phytoplankton concentrations observed over the same period. Changes in remote ocean forcing, resulting primarily from basin-scale climate variability (e.g., El Niño-Southern Oscillation and Pacific Decadal Oscillation), drive considerable interannual fluctuations and may dominate the ecosystem response on interannual to decadal time scales. However, comparison with previously published findings suggests that local wind intensification persists through changing basin-scale climate regimes. Understanding the different time scales of variability in forcing mechanisms, and their interactions with each other, is necessary to distinguish transient ecosystem impacts from secular trends.

  13. An individual-based model of the krill Euphausia pacifica in the California Current

    NASA Astrophysics Data System (ADS)

    Dorman, Jeffrey G.; Sydeman, William J.; Bograd, Steven J.; Powell, Thomas M.

    2015-11-01

    Euphausia pacifica is an abundant and important prey resource for numerous predators of the California Current and elsewhere in the North Pacific. We developed an individual-based model (IBM) for E. pacifica to study its bioenergetics (growth, stage development, reproduction, and mortality) under constant/ideal conditions as well as under varying ocean conditions and food resources. To model E. pacifica under varying conditions, we coupled the IBM to an oceanographic-ecosystem model over the period 2000-2008 (9 years). Model results under constant/ideal food conditions compare favorably with experimental studies conducted under food unlimited conditions. Under more realistic variable oceanographic conditions, mean growth rates over the continental shelf were positive only when individuals migrated diurnally to the depth of maximum phytoplankton layer during nighttime feeding. Our model only used phytoplankton as prey and coastal growth rates were lower than expected (0.01 mm d-1), suggesting that a diverse prey base (zooplankton, protists, marine snow) may be required to facilitate growth and survival of modeled E. pacifica in the coastal environment. This coupled IBM-ROMS modeling framework and its parameters provides a tool for understanding the biology and ecology of E. pacifica and could be developed to further the understanding of climatic effects on this key prey species and enhance an ecosystem approach to fisheries and wildlife management in this region.

  14. The impact of El Niño events on the pelagic food chain in the northern California Current.

    PubMed

    Fisher, Jennifer L; Peterson, William T; Rykaczewski, Ryan R

    2015-12-01

    The zooplankton of the northern California Current are typically characterized by an abundance of lipid-rich copepods that support rapid growth and survival of ecologically, commercially, and recreationally valued fish, birds, and mammals. Disruption of this food chain and reduced ecosystem productivity are often associated with climatic variability such as El Niño events. We examined the variability in timing, magnitude, and duration of positive temperature anomalies and changes in copepod species composition in the northern California Current in relation to 10 tropical El Niño events. Measurable impacts on mesozooplankton of the northern California Current were observed during seven of 10 of these events. The occurrence of anomalously warm water and the response of the copepod community was rapid (lag of zero to 2 months) following the initiation of canonical Eastern Pacific (EP) events, but delayed (lag of 2-8 months) following 'Modoki' Central Pacific (CP) events. The variable lags in the timing of a physical and biological response led to impacts in the northern California Current peaking in winter during EP events and in the spring during CP events. The magnitude and duration of the temperature and copepod anomalies were strongly and positively related to the magnitude and duration of El Niño events, but were also sensitive to the phase of the lower frequency Pacific Decadal Oscillation. When fisheries managers and biological oceanographers are faced with the prospect of a future El Niño event, prudent management and observation will require consideration of the background oceanographic conditions, the type of event, and both the magnitude and duration of the event when assessing the potential physical and biological impacts on the northern California Current. PMID:26220498

  15. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration

    USGS Publications Warehouse

    Lovich, J.E.; Bainbridge, D.

    1999-01-01

    Large areas of the southern California desert ecosystem have been negatively affected by off-highway vehicle use, overgrazing by domestic livestock, agriculture, urbanization, construction of roads and utility corridors, air pollution, military training exercises, and other activities. Secondary contributions to degradation include the proliferation of exotic plant species and a higher frequency of an- thropogenic fire. Effects of these impacts include alteration or destruction of macro- and micro- vegetation elements, establishment of annual plant communities dominated by exotic species, destruction of soil stabilizers, soil compaction, and increased erosion. Published estimates of recovery time are based on return to predisturbance levels of biomass, cover, density, community structure, or soil characteristics. Natural recovery rates depend on the nature and severity of the impact but are generally very slow. Recovery to predisturbance plant cover and biomass may take 50-300 years, while complete ecosystem recovery may require over 3000 years. Restorative intervention can be used to enhance the success and rate of recovery, but the costs are high and the probability for long-term success is low to moderate. Given the sensitivity of desert habitats to disturbance and the slow rate of natural recovery, the best management option is to limit the extent and intensity of impacts as much as possible.

  16. Transport and coastal zooplankton communities in the northern California Current system

    NASA Astrophysics Data System (ADS)

    Bi, Hongsheng; Peterson, William T.; Strub, Paul T.

    2011-06-01

    Alongshore transport was estimated from the gridded AVISO altimeter data and water level data from NOAA tide gauges (1993-2010) for the northern California Current (NCC) system. The biomass of the cold neritic copepods including Calanus marshallae, Pseudocalanus mimus and Acartia longiremis (dominants in the eastern Bering Sea, coastal Gulf of Alaska, and NCC) was estimated from a 15 year time series of zooplankton samples (1996-2010) collected biweekly at a coastal station 9 km off Newport Oregon U.S.A. The alongshore currents and the biomass of the cold neritic copepods exhibit a strong seasonal pattern and fluctuate in opposite phase: positive alongshore current (from south) leads to low biomass in winter and negative alongshore current (from north) leads to high biomass in summer. When the Pacific Decadal Oscillation (PDO) is positive, i.e., warm conditions around the northeast Pacific, there is more movement of water from the south in the NCC during winter. When the PDO is negative, there is more movement of water from the north during summer. The mean biomass of cold neritic copepods was positively correlated with the survival rate of juvenile coho salmon and cumulative transport was negatively correlated with coho salmon survival, i.e., in years when a greater portion of the source waters feeding the NCC enters from the north, the greater the salmon survival. We conclude that alongshore transport manifests PDO signals and serves as a linkage between large scale forcing to local ecosystem dynamics.

  17. Disturbance facilitates the coexistence of antagonistic ecosystem engineers in California estuaries.

    PubMed

    Castorani, Max C N; Hovel, Kevin A; Williams, Susan L; Baskett, Marissa L

    2014-08-01

    Ecological theory predicts that interactions between antagonistic ecosystem engineers can lead to local competitive exclusion, but disturbance can facilitate broader coexistence. However, few empirical studies have tested the potential for disturbance to mediate competition between engineers. We examined the capacity for disturbance and habitat modification to explain the disjunct distributions of two benthic ecosystem engineers, eelgrass Zostera marina and the burrowing ghost shrimp Neotrypaea californiensis, in two California estuaries. Sediment sampling in eelgrass and ghost shrimp patches revealed that ghost shrimp change benthic biogeochemistry over small scales (centimeters) but not patch scales (meters to tens of meters), suggesting a limited capacity for sediment modification to explain species distributions. To determine the relative competitive abilities of engineers, we conducted reciprocal transplantations of ghost shrimp and eelgrass. Local ghost shrimp densities declined rapidly following the addition of eelgrass, and transplanted eelgrass expanded laterally into the surrounding ghost shrimp-dominated areas. When transplanted into eelgrass patches, ghost shrimp failed to persist. Ghost shrimp were also displaced from plots with structural mimics of eelgrass rhizomes and roots, suggesting that autogenic habitat modification by eelgrass is an important mechanism determining ghost shrimp distributions. However, ghost shrimp were able to rapidly colonize experimental disturbances to eelgrass patch edges, which are common in shallow estuaries. We conclude that coexistence in this system is maintained by spatiotemporally asynchronous disturbances and a competition-colonization trade-off: eelgrass is a competitively superior ecosystem engineer, but benthic disturbances permit the coexistence of ghost shrimp at the landscape scale by modulating the availability of space. PMID:25230478

  18. Current Development at the Southern California Earthquake Data Center (SCEDC)

    NASA Astrophysics Data System (ADS)

    Appel, V. L.; Clayton, R. W.

    2005-12-01

    Over the past year, the SCEDC completed or is near completion of three featured projects: Station Information System (SIS) Development: The SIS will provide users with an interface into complete and accurate station metadata for all current and historic data at the SCEDC. The goal of this project is to develop a system that can interact with a single database source to enter, update and retrieve station metadata easily and efficiently. The system will provide accurate station/channel information for active stations to the SCSN real-time processing system, as will as station/channel information for stations that have parametric data at the SCEDC i.e., for users retrieving data via STP. Additionally, the SIS will supply information required to generate dataless SEED and COSMOS V0 volumes and allow stations to be added to the system with a minimum, but incomplete set of information using predefined defaults that can be easily updated as more information becomes available. Finally, the system will facilitate statewide metadata exchange for both real-time processing and provide a common approach to CISN historic station metadata. Moment Tensor Solutions: The SCEDC is currently archiving and delivering Moment Magnitudes and Moment Tensor Solutions (MTS) produced by the SCSN in real-time and post-processing solutions for events spanning back to 1999. The automatic MTS runs on all local events with magnitudes > 3.0, and all regional events > 3.5. The distributed solution automatically creates links from all USGS Simpson Maps to a text e-mail summary solution, creates a .gif image of the solution, and updates the moment tensor database tables at the SCEDC. Searchable Scanned Waveforms Site: The Caltech Seismological Lab has made available 12,223 scanned images of pre-digital analog recordings of major earthquakes recorded in Southern California between 1962 and 1992 at http://www.data.scec.org/research/scans/. The SCEDC has developed a searchable web interface that allows users to search the available files, select multiple files for download and then retrieve a zipped file containing the results. Scanned images of paper records for M>3.5 southern California earthquakes and several significant teleseisms are available for download via the SCEDC through this search tool.

  19. Measurement of Ecosystem Metabolism across Climatic and Vegetation Gradients in California

    NASA Astrophysics Data System (ADS)

    DuBois, S.; Serbin, S.; Desai, A. R.; Kruger, E.; Kingdon, C.; Goulden, M.; Townsend, P. A.

    2013-12-01

    Terrestrial ecosystem models require information on vegetation structure, phenology, demographics, biochemistry, radiation properties, and physiology in order to accurately simulate the responses of ecosystem functioning to global change and disturbances. These models generally depend on a small number of intensive, fine-scaled point-based measurements from eddy covariance towers, detailed vegetation surveys, literature values, and site-scale data assimilation techniques to improve model calibration. However, the limited geographic and/or temporal scope of measurements can lead to inadequate model generalizations of modeled carbon (C), water, and energy fluxes across broad regions and relevant time periods. Remote sensing approaches, particularly imaging spectroscopy (IS) and thermal infrared (TIR) data, have the potential to provide the broad-scale spatial and temporal dynamics in many important vegetation properties related to ecosystem functioning. As part of the ongoing NASA HyspIRI Airborne Campaign (http://hyspiri.jpl.nasa.gov/airborne) we are assessing the potential of IS+TIR to generate spatially explicit estimates of two important parameters characterizing plant photosynthetic capacity: the maximum rate of CO2 carboxylation by RuBisCo (Vcmax), and the maximum rate of electron transport required for the regeneration of RuBP needed in Calvin Cycle processes (Jmax). These estimates are based on recent evidence that both properties can be predicted at the leaf level using spectroscopy techniques (Ainsworth et al. 2013 [http://tinyurl.com/n5xnzjg]; Serbin et al. 2012 [http://tinyurl.com/mhocmlz]). It follows that estimation of these variables from remotely sensed IS+TIR (i.e. AVIRIS & MASTER) could facilitate the prediction of seasonal C assimilation across large areas using data from the anticipated HyspIRI satellite mission. Our research focuses on two climate-elevation transects in California, which span a vegetation gradient from coastal sage and chaparral to oak woodlands and closed-canopy coniferous forests, as well as agro-ecosystems located throughout the Central and Imperial Valleys. We are also comparing remotely sensed estimates of ecosystem photosynthetic capacity with C flux data from a series of 10 eddy covariance towers. Results from the 2013 field season highlight the large range in sampled vegetation structure, optical properties (i.e. reflectance and transmittance) and physiology (i.e. Vcmax, Jmax, and cholorphyll fluorescence). Using approaches similar to Serbin et al. (2012) we have confirmed the ability of spectroscopy to estimate Vcmax and Jmax across these diverse and structurally complex vegetation types. Ecosystem products, such as gross primary productivity, estimated from flux towers highlight the relationship between climatic parameters and vegetation productivity. Multiple data-years allow this relationship to be examined under various climatic forcings including drought and heat stress. Based on these preliminary results, our next step is to scale leaf-level information to AVIRIS footprints using radiative transfer and statistical modeling approaches with ecosystem modeling in order to assess the IS data products against flux tower observations.

  20. Topographic Controls on Southern California Ecosystem Function and Post-fire Recovery: a Satellite and Near-surface Remote Sensing Approach

    NASA Astrophysics Data System (ADS)

    Azzari, George

    Southern Californian wildfires can influence climate in a variety of ways, including changes in surface albedo, emission of greenhouse gases and aerosols, and the production of tropospheric ozone. Ecosystem post-fire recovery plays a key role in determining the strength, duration, and relative importance of these climate forcing agents. Southern California's ecosystems vary markedly with topography, creating sharp transitions with elevation, aspect, and slope. Little is known about the ways topography influences ecosystem properties and function, particularly in the context of post-fire recovery. We combined images from the USGS satellite Landsat 5 with flux tower measurements to analyze pre- and post-fire albedo and carbon exchanged by Southern California's ecosystems in the Santa Ana Mountains. We reduced the sources of external variability in Landsat images using several correction methods for topographic and bidirectional effects. We used time series of corrected images to infer the Net Ecosystem Exchange and surface albedo, and calculated the radiative forcing due to CO2 emissions and albedo changes. We analyzed the patterns of recovery and radiative forcing on north- and south-facing slopes, stratified by vegetation classes including grassland, coastal sage scrub, chaparral, and evergreen oak forest. We found that topography strongly influenced post-fire recovery and radiative forcing. Field observations are often limited by the difficulty of collecting ground validation data. Current instrumentation networks do not provide adequate spatial resolution for landscape-level analysis. The deployment of consumer-market technology could reduce the cost of near-surface measurements, allowing the installation of finer-scale instrument networks. We tested the performance of the Microsoft Kinect sensor for measuring vegetation structure. We used Kinect to acquire 3D vegetation point clouds in the field, and used these data to compute plant height, crown diameter, and volume. We found good agreement between Kinect-derived and manual measurements.

  1. Current California legislative and regulatory activity impacting geothermal hydrothermal commercialization: a monitoring report. Report No. 1017

    SciTech Connect

    Not Available

    1980-01-20

    Four key geothermal-impacting bills presently before the California legislature are described. Two deal with state financial backing for geothermal projects. The third relates to the use of the state's share of the BLM geothermal revenues and the fourth to the protection of sensitive hot springs. The current regulatory activities of the California Energy Commission, the California Division of Oil and Gas, and the counties are discussed. (MHR)

  2. Effects of Management on Soil Carbon Pools in California Rangeland Ecosystems

    NASA Astrophysics Data System (ADS)

    Silver, W. L.; Ryals, R.; Lewis, D. J.; Creque, J.; Wacker, M.; Larson, S.

    2008-12-01

    Rangeland ecosystems managed for livestock production represent the largest land-use footprint globally, covering more than one-quarter of the world's land surface (Asner et al. 2004). In California, rangelands cover an estimated 17 million hectares or approximately 40% of the land area (FRAP 2003). These ecosystems have considerable potential to sequester carbon (C) in soil and offset greenhouse gas emissions through changes in land management practices. Climate policies and C markets may provide incentives for rangeland managers to pursue strategies that optimize soil C storage, yet we lack a thorough understanding of the effects of management on soil C pools in rangelands over time and space. We sampled soil C pools on rangelands in a 260 km2 region of Marin and Sonoma counties to determine if patterns in soil C storage exist with management. Replicate soil samples were collected from 35 fields that spanned the dominant soil orders, plant communities, and management practices in the region while controlling for slope and bioclimatic zone (n = 1050). Management practices included organic amendments, intensive (dairy) and extensive (other) grazing practices, and subsoiling. Soil C pools ranged from approximately 50 to 140 Mg C ha-1 to 1 m depth, with a mean of 99 ± 22 (sd) Mg C ha-1. Differences among sites were due primarily to C concentrations, which exhibited a much larger coefficient of variation than bulk density at all depths. There were no statistically significant differences among the dominant soil orders. Subsoiling appeared to significantly increase soil C content in the top 50 cm, even though subsoiling had only occurred for the first time the previous Nov. Organic amendments also appeared to greatly increase soil C pools, and was the dominant factor that distinguished soil C pools in intensive and extensive land uses. Our results indicate that management has the potential to significantly increase soil C pools. Future research will determine the location of sequestered C within the soil matrix and its turnover time.

  3. Water Use in Los Angeles, California: Consumption Patterns, Ecosystem Response and Impact on Regional Water Budgets

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.

    2014-12-01

    The City of Los Angeles relies heavily on external water sources, primarily the Eastern Sierra, Northern California and the Colorado River, and approximately 90% of the City's water supply is snowpack dependent. In recent years, water conservation measures have been implemented in response to regional drought, which include a tiered pricing structure and watering restrictions. As a result of implemented conservation policies, Los Angeles reported the lowest water consumption per capita per day in 2011 among cities over 1 million people in the U.S. This presentation will highlight our ongoing work to better understand the coupling between humans, ecosystems and water across the City of Los Angeles, especially during the recent drought period. Our work is unique in that we integrate social, ecological, and hydrologic data, including ten years of residential water consumption data for the entire city of Los Angeles, extensive groundwater well data, socio-economic information and remote sensing to evaluate relationships as well as spatial and temporal patterns. Developed statistical models demonstrated that Single-Family Residential (SFR) water use across the City is primarily driven by household income, landscape greenness, water rates and water volume allocation,, with higher consumption rates in the northern, warmer and more affluent parts, and lower consumption rates in the less affluent neighborhoods near Downtown. Landscape use also varies greatly across the city, averaging 50% of total SFR. Our evaluation of conservation efforts shows that the combination of mandatory watering restrictions and price increase led to a water reduction of 23%, while voluntary restrictions led to only a 6% reduction in water use. Relationships of water use to ecosystems (greenness) and groundwater variability were also evaluated and will be highlighted. Our ultimate goal is to improve predictions of human-water interactions in order to drive policy change and guide future demand strategies under uncertain climate variability and a growing urban population.

  4. The diel patterns of soil respiration in four arid California ecosystems: fluxes, sources and hypotheses

    NASA Astrophysics Data System (ADS)

    Carbone, M.; Trumbore, S.; Winston, G.; Serio, D.

    2007-12-01

    Automated measurements provide the high-resolution information that enables us to analyze potential causes for diel variability in soil respiration. These diel patterns are the complex result of biological and physical processes that determine the production and diffusion of CO2 through the soil. We examined the diel patterns of soil respiration from four arid California ecosystems: (1) a pinon-juniper woodland in at the Burns Pinon Ridge Reserve near Joshua Tree National Park, (2) a cold desert shrub community and (3) a perennial grassland near the city of Bishop in the Owens Valley, and (4) a mixed oak-pine forest at the James Reserve in the San Jacinto Mountains. In addition to automated chamber and environmental measurements at these sites, we used isotopic (14C) partitioning techniques to separate the plant and microbial sources contributing to soil respiration at certain time points. Here we present the diel cycles of soil respiration and environmental variables, the source partitioning results, and hypotheses about what processes determine these diel patterns that both span, and are specific to the studied ecosystems. In these systems dominated by Mediterranean or desert climates, we observed that factors like relative humidity can dominate the diel variations in soil respiration for sites with very dry surface litter. At other sites and times of year, diel variation in soil respiration reflects photosynthetic and VPD influence on root respiration. The combination of automated chamber measurements with isotopes provides information useful for separating the plant and heterotrophic control on diel and seasonal soil respiration fluxes.

  5. Modeling the temperature-nitrate relationship in the coastal upwelling domain of the California Current

    NASA Astrophysics Data System (ADS)

    Palacios, Daniel M.; Hazen, Elliott L.; Schroeder, Isaac D.; Bograd, Steven J.

    2013-07-01

    Given the importance of nitrate in sustaining high primary production and fishery yields in eastern boundary current ecosystems, it is desirable to know the amounts of this nutrient reaching the euphotic zone through the upwelling process. Because such measurements are not routinely available, we developed predictive models of water-column (0-200 m) nitrate based on temperature for a region of the California Current System (30-47°N) within 50 km from the coast. Prediction was done using generalized additive models based on a compilation of 37,607 observations collected over the period 1959-2004 and validated with a separate set of 6430 observations for the period 2005-2011. A temperature-only model had relatively high explanatory power (explained deviance, D2 = 71.6%) but contained important depth, latitudinal, and seasonal biases. A model incorporating salinity in addition to temperature (D2 = 91.2%) corrected for the latitudinal and depth biases but not the seasonal bias. The best model included oxygen, temperature, and salinity (D2 = 96.6%) and adequately predicted nitrate temporal behavior at two widely separated locations (44°39.1'N and 32°54.6'N) with slight or no bias [root-mean-square error (RMSE) = 2.39 and 0.40 µM, respectively). For situations when only temperature is available, a model including depth, month, and latitude as proxy covariates corrects some of the biases, but it had lower predictive skill (RMSE = 2.50 and 5.22 μM, respectively). The results of this study have applications for the proxy derivation of nitrate availability for primary producers (phytoplankton, macroalgae) in upwelling regions and for biogeochemical and ecosystem modeling studies.

  6. Processes influencing seasonal hypoxia in the northern California Current System

    PubMed Central

    Connolly, T. P.; Hickey, B. M.; Geier, S. L.; Cochlan, W. P.

    2010-01-01

    This paper delineates the role of physical and biological processes contributing to hypoxia, dissolved oxygen (DO) < 1.4 mL/L, over the continental shelf of Washington State in the northern portion of the California Current System (CCS). In the historical record (1950–1986) during the summer upwelling season, hypoxia is more prevalent and severe off Washington than further south off northern Oregon. Recent data (2003–2005) show that hypoxia over the Washington shelf occurred at levels previously observed in the historical data. 2006 was an exception, with hypoxia covering ~5000 km2 of the Washington continental shelf and DO concentrations below 0.5 mL/L at the inner shelf, lower than any known previous observations at that location. In the four years studied, upwelling of low DO water and changes in source water contribute to interannual variability, but cannot account for seasonal decreases below hypoxic concentrations. Deficits of DO along salinity surfaces, indicating biochemical consumption of DO, vary significantly between surveys, accounting for additional decreases of 0.5–2.5 mL/L by late summer. DO consumption is associated with denitrification, an indicator of biochemical sediment processes. Mass balances of DO and nitrate show that biochemical processes in the water column and sediments each contribute ~50% to the total consumption of DO in near-bottom water. At shorter than seasonal time scales on the inner shelf, along-shelf advection of hypoxic patches and cross-shelf advection of seasonal gradients are both shown to be important, changing DO concentrations by 1.5 mL/L or more over five days. PMID:20463844

  7. ENSO and the California Current coastal upwelling response

    NASA Astrophysics Data System (ADS)

    Jacox, Michael G.; Fiechter, Jerome; Moore, Andrew M.; Edwards, Christopher A.

    2015-03-01

    A 31 year (1980-2010) sequence of historical analyses of the California Current System (CCS) is used to describe the central CCS (35-43˚N) coastal upwelling response to El Niño-Southern Oscillation (ENSO) variability. The analysis period captures 10 El Niño and 10 La Niña events, including the extreme El Niños of 1982-1983 and 1997-1998. Data-assimilative model runs and backward trajectory calculations of passive tracers are used to elucidate physical conditions and source water characteristics during the upwelling season of each year. In general, El Niño events produce anomalously weak upwelling and source waters that are unusually shallow, warm, and fresh, while La Niña conditions produce the opposite. Maximum vertical transport anomalies in the CCS occur ˜1 month after El Niño peaks in midwinter, and before the onset of the upwelling season. Source density anomalies peak later than transport anomalies and persist more strongly through the spring and summer, causing the former to impact the upwelling season more directly. As nitrate concentration covaries with density in the central CCS, El Niño may exert more influence over the nitrate concentration of upwelled waters than it does over vertical transport, although both factors are expected to reduce nitrate supply during El Niño events. Interannual comparison of individual diagnostics highlights their relative impacts during different ENSO events, as well as years deviating from the canonical response to ENSO variability. The net impact of ENSO on upwelling is explored through an "Upwelling Efficacy Index", which may be a useful indicator of bottom-up control on primary productivity.

  8. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California.

    PubMed

    Fenn, M E; Allen, E B; Weiss, S B; Jovan, S; Geiser, L H; Tonnesen, G S; Johnson, R F; Rao, L E; Gimeno, B S; Yuan, F; Meixner, T; Bytnerowicz, A

    2010-12-01

    Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km(2)) is estimated to be in excess of the N CL. Low CL values (3-8 kg N ha(-1) yr(-1)) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3-15% of the forested and chaparral land areas are estimated to be in exceedance of the NO(3)(-) leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha(-1) yr(-1). In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha(-1) yr(-1), and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha(-1) yr(-1). Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities. PMID:20705383

  9. Fog and Rain Water Influences on Tree Physiology and Ecosystem Function in a California Redwood Forest

    NASA Astrophysics Data System (ADS)

    Ewing, H. A.; Weathers, K. C.; Dawson, T. E.; Templer, P. H.; Firestone, M. K.; Elliott, A. M.; Boukili, V. K.

    2008-12-01

    Fog is thought to influence ecological function in coastal forests worldwide, yet few data are available that illuminate the mechanisms underlying this influence. In a California redwood forest we measured water fluxes from horizontally moving fog and vertically delivered rain as well as redwood tree function. The spatial heterogeneity of water fluxes, water availability, tree water use, and water movement varied greatly across seasons. Across the forest as a whole, 98% of water flux to the soil occurred in the rain season and was relatively even across the whole forest. In contrast, below-canopy flux of fog water declined exponentially from the windward edge to the forest interior. Following large fog events, soil moisture was greater at the windward edge than anywhere else in the forest. Physiological activity in redwoods reflected these differences in inputs across seasons: tree physiological responses did not vary spatially in the rain season, but in the fog season, water use was greater, yet water stress was less, in trees at the windward edge of the forest versus the interior. In both seasons, vertical passage through the forest changed the amount of water, revealing the role of both the tree canopy and roots in processing atmospheric inputs. While total fog water inputs were comparatively small, they may have important ecosystem functions, including relief of canopy water stress and, where there is fog drip, functional coupling of above- and below-ground processes.

  10. Increasing variance in North Pacific climate relates to unprecedented ecosystem variability off California.

    PubMed

    Sydeman, William J; Santora, Jarrod A; Thompson, Sarah Ann; Marinovic, Baldo; Di Lorenzo, Emanuele

    2013-06-01

    Changes in variance are infrequently examined in climate change ecology. We tested the hypothesis that recent high variability in demographic attributes of salmon and seabirds off California is related to increasing variability in remote, large-scale forcing in the North Pacific operating through changes in local food webs. Linear, indirect numerical responses between krill (primarily Thysanoessa spinifera) and juvenile rockfish abundance (catch per unit effort (CPUE)) explained >80% of the recent variability in the demography of these pelagic predators. We found no relationships between krill and regional upwelling, though a strong connection to the North Pacific Gyre Oscillation (NPGO) index was established. Variance in NPGO and related central Pacific warming index increased after 1985, whereas variance in the canonical ENSO and Pacific Decadal Oscillation did not change. Anthropogenic global warming or natural climate variability may explain recent intensification of the NPGO and its increasing ecological significance. Assessing non-stationarity in atmospheric-environmental interactions and placing greater emphasis on documenting changes in variance of bio-physical systems will enable insight into complex climate-marine ecosystem dynamics. PMID:23504918

  11. Current and Future Effects of Mexican Immigration in California. Executive Summary. R-3365/1-CR.

    ERIC Educational Resources Information Center

    McCarthy, Kevin F.; Valdez, R. Burciaga

    This study to assess the current situation of Mexican immigrants in California and project future possibilities constructs a demographic profile of the immigrants, examines their economic effects on the state, and describes their socioeconomic integration into California society. Models of immigration/integration processes are developed and used…

  12. Current status of Citrus tristeza virus in Central California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lindcove Research and Extension Center (LREC), Exeter, CA has 51 ha of citrus and is the field site and screenhouses for the University of California Citrus Clonal Protection Program (CCPP). LREC maintains a zero tolerance of Citrus tristeza virus (CTV) infected trees to protect the CCPP and re...

  13. Foraging ecology and movement patterns of jumbo squid (Dosidicus gigas) in the California Current System

    NASA Astrophysics Data System (ADS)

    Field, John C.; Elliger, Carl; Baltz, Ken; Gillespie, Graham E.; Gilly, William F.; Ruiz-Cooley, R. I.; Pearse, Devon; Stewart, Julia S.; Matsubu, William; Walker, William A.

    2013-10-01

    From 2002 to 2010, the jumbo squid (Dosidicus gigas) has been regularly encountered in large numbers throughout the California Current System (CCS). This species, usually found in subtropical waters, could affect coastal pelagic ecosystems and fisheries as both predator and prey. Neither the abundance of jumbo squid nor the optimal ocean conditions in which they flourish are well known. To understand better the potential impacts of this species on both commercial fisheries and on food-web structure we collected nearly 900 specimens from waters of the CCS, covering over 20° of latitude, over a range of depths and seasons. We used demographic information (size, sex, and maturity state) and analyzed stomach contents using morphological and molecular methods to best understand the foraging ecology of this species in different habitats of the CCS. Squid were found to consume a broad array of prey. Prey in offshore waters generally reflected the forage base reported in previous studies (mainly mesopelagic fishes and squids), whereas in more coastal waters (shelf, shelf break and slope habitats) squid foraged on a much broader mix that included substantial numbers of coastal pelagic fishes (Pacific herring and northern anchovy, as well as osmerids and salmonids in northern waters) and groundfish (Pacific hake, several species of rockfish and flatfish). We propose a seasonal movement pattern, based on size and maturity distributions along with qualitative patterns of presence or absence, and discuss the relevance of both the movement and distribution of jumbo squid over space and time. We find that jumbo squid are a generalist predator, which feeds primarily on small, pelagic or mesopelagic micronekton but also on larger fishes when they are available. We also conclude that interactions with and potential impacts on ecosystems likely vary over space and time, in response to both seasonal movement patterns and highly variable year-to-year abundance of the squid themselves.

  14. Predictive Relationships for pH and Carbonate Saturation in the Southern California Current System Using Oxygen and Temperature Data

    NASA Astrophysics Data System (ADS)

    Alin, S. R.; Feely, R. A.; Dickson, A. G.; Hernandez-Ayon, J. M.; Juranek, L. W.; Ohman, M. D.; Goericke, R.

    2010-12-01

    The California Current System is expected to experience the ecological impacts of ocean acidification earlier than most other ocean regions because marine waters in the North Pacific are among the oldest in the global oceans and natural upwelling processes in this eastern boundary current system bring CO2-rich water masses to the surface in coastal oceans during late spring-early fall months. We used a multiple linear regression (MLR) approach to generate predictive models using oxygen and temperature as proxy variables to reconstruct pH and carbonate saturation states in the Southern California Bight. The calibration data set included high-quality measurements of dissolved inorganic carbon, alkalinity, oxygen, temperature, salinity, and nutrients and was collected during a cruise from British Columbia to Baja California in May-June 2007. The resulting relationships predicting pH and aragonite and calcite saturation states (Ω) from oxygen and temperature data were robust, with r2 values >0.98 and root mean square errors of 0.020 (pH), 0.048 (Ωarag), and 0.075 (Ωcalc). Predicted vs. measured ocean acidification conditions (i.e. pH, Ωarag, and Ωcalc) matched very well for seven verification data sets collected between 2008 and 2010 during quarterly CalCOFI cruises in the Southern California Bight and during several sampling dates on an Ensenada transect occupied several times between 2006 and 2010. Over sub-decadal time scales, these predictive models provide a valuable tool for reconstructing historical time-series of ocean acidification conditions in the California Current Ecosystem where historical inorganic carbon measurements are scarce. Reconstructed pH and saturation state values based on CalCOFI oxygen and temperature data for all cruises between 2005 and 2010 reveal a seasonal cycle in the upper water column, with higher pH and Ω values present during the winter cruises, and stronger gradients including much lower pH and Ω values during spring through fall cruises. Deeper in the water column (~300 m), conditions are more stable throughout the annual cycle, with consistently low pH, undersaturation with respect to aragonite, and calcite saturation values <1.5. These predictive relationships can also be used to improve the performance of models used to “nowcast” and forecast ocean acidification in eastern boundary current systems like the California Current System.

  15. Abundance and distribution of large medusae in surface waters of the northern California Current

    NASA Astrophysics Data System (ADS)

    Suchman, Cynthia L.; Brodeur, Richard D.

    2005-01-01

    We used surface trawls to quantify abundance and distribution of four large medusae— Chrysaora fuscescens, Aurelia labiata, Phacellophora camtschatica, and Aequorea sp.—in the northern California Current, a coastal upwelling area, during June and August 2000 and 2002. C. fuscescens was most abundant, with a maximum of 77 per 1000 m 3 (or 64 mg C/m 3). Densities of A. labiata reached 10 per 1000 m 3 (26 mg C/m 3). Although medusae were widespread throughout the study region, a large proportion of the total catch of each species tended to be concentrated at relatively few stations. When we analyzed how the variability in distribution of medusae related to a suite of environmental parameters, latitude and either distance from shore or water depth proved important during each cruise. Analysis by species suggested habitat partitioning by C. fuscescens and A. labiata: C. fuscescens was more likely to be caught in nearshore shelf waters north of Cape Blanco, compared to A. labiata, which was more prevalent in south of Cape Blanco. These biological patterns were likely the result of a combination of physical processes, including advection and aggregation within regions of weak surface flow, coordinated behavior such as vertical migration, and location of benthic polyp stages. Studies such as this one provide important baseline information for ecosystem models and can be used to help evaluate impacts of jellyfish blooms in coastal upwelling regions.

  16. Microbial Enzymatic Response to Reduced Precipitation and Added Nitrogen in a Southern California Grassland Ecosystem

    NASA Astrophysics Data System (ADS)

    Alster, C. J.; German, D.; Allison, S. D.

    2011-12-01

    Microbial enzymes play a fundamental role in ecosystem processes and nutrient mineralization. Although there have been many studies concluding that global climate change affects plant communities, the effects on microbial communities in leaf litter have been much less studied. We measured extracellular enzyme activities in litter decomposing in plots with either reduced precipitation or increased nitrogen in a grassland ecosystem in Loma Ridge National Landmark in Southern California. We used a reciprocal transplant design to examine the effects of plot treatment, litter origin, and microbial community origin on litter decomposition and extracellular enzyme activity. Our hypothesis was that increased nitrogen would increase activity because nitrogen often limits microbial growth, while decreased precipitation would decrease activity due to lower litter moisture levels. Samples were collected in March 2011 and analyzed for the activities of cellobiohydrolase (CBH), β-glucosidase (BG), α-glucosidase (AG), N-acetyl-β-D-glucosaminidase (NAG), β-xylosidase (BX), acid phosphatase (AP), and leucine aminopeptidase (LAP). None of the factors in the nitrogen manipulation had a significant effect on any of the enzymes, although BG, CBH, and NAG increased marginally significantly in plots with nitrogen addition (p = 0.103, p = 0.082, and p = 0.114, respectively). For the precipitation manipulation, AG, BG, BX, CBH, and NAG significantly increased in plots with reduced precipitation (p = 0.015, p <0.001, p<0.001, and p<0.001, respectively) while LAP significantly decreased (p = 0.002). LAP catalyzes the hydrolysis of polypeptides, so reduced LAP activity could result in lower rates of enzyme turnover in the reduced precipitation treatment. We also observed that AP significantly increased (p = 0.014) in litter originating from reduced precipitation plots, while AG, BX, and LAP significantly decreased (p = 0.011, p = 0.031, and 0.005, respectively). There were no significant correlations found between fungal or bacterial mass and enzymatic activity with either of the treatment types. Our results suggest that increased enzymatic activity due to drought could mitigate negative effects of moisture limitation on decomposition. However, this mitigating effect may be offset by declines in enzyme activity due to changes in plant community composition and associated litter chemistry in response to drought.

  17. Indirect effects of conservation policies on the coupled human-natural ecosystem of the upper Gulf of California.

    PubMed

    Morzaria-Luna, Hem Nalini; Ainsworth, Cameron H; Kaplan, Isaac C; Levin, Phillip S; Fulton, Elizabeth A

    2013-01-01

    High bycatch of non-target species and species of conservation concern often drives the implementation of fisheries policies. However, species- or fishery-specific policies may lead to indirect consequences, positive or negative, for other species or fisheries. We use an Atlantis ecosystem model of the Northern Gulf of California to evaluate the effects of fisheries policies directed at reducing bycatch of vaquita (Phocoena sinus) on other species of conservation concern, priority target species, and metrics of ecosystem function and structure. Vaquita, a Critically Endangered porpoise endemic to the Upper Gulf of California, are frequently entangled by finfish gillnets and shrimp driftnets. We tested five fishery management scenarios, projected over 30 years (2008 to 2038), directed at vaquita conservation. The scenarios consider progressively larger spatial restrictions for finfish gillnets and shrimp driftnets. The most restrictive scenario resulted in the highest biomass of species of conservation concern; the scenario without any conservation measures in place resulted in the lowest. Vaquita experienced the largest population increase of any functional group; their biomass increased 2.7 times relative to initial (2008) levels under the most restrictive spatial closure scenario. Bycatch of sea lions, sea turtles, and totoaba decreased > 80% in shrimp driftnets and at least 20% in finfish gillnet fleets under spatial management. We found indirect effects on species and ecosystem function and structure as a result of vaquita management actions. Biomass and catch of forage fish declined, which could affect lower-trophic level fisheries, while other species such as skates, rays, and sharks increased in both biomass and catch. When comparing across performance metrics, we found that scenarios that increased ecosystem function and structure resulted in lower economic performance indicators, underscoring the need for management actions that consider ecological and economic tradeoffs as part of the integrated management of the Upper Gulf of California. PMID:23691155

  18. Indirect Effects of Conservation Policies on the Coupled Human-Natural Ecosystem of the Upper Gulf of California

    PubMed Central

    Morzaria-Luna, Hem Nalini; Ainsworth, Cameron H.; Kaplan, Isaac C.; Levin, Phillip S.; Fulton, Elizabeth A.

    2013-01-01

    High bycatch of non-target species and species of conservation concern often drives the implementation of fisheries policies. However, species- or fishery-specific policies may lead to indirect consequences, positive or negative, for other species or fisheries. We use an Atlantis ecosystem model of the Northern Gulf of California to evaluate the effects of fisheries policies directed at reducing bycatch of vaquita (Phocoena sinus) on other species of conservation concern, priority target species, and metrics of ecosystem function and structure. Vaquita, a Critically Endangered porpoise endemic to the Upper Gulf of California, are frequently entangled by finfish gillnets and shrimp driftnets. We tested five fishery management scenarios, projected over 30 years (2008 to 2038), directed at vaquita conservation. The scenarios consider progressively larger spatial restrictions for finfish gillnets and shrimp driftnets. The most restrictive scenario resulted in the highest biomass of species of conservation concern; the scenario without any conservation measures in place resulted in the lowest. Vaquita experienced the largest population increase of any functional group; their biomass increased 2.7 times relative to initial (2008) levels under the most restrictive spatial closure scenario. Bycatch of sea lions, sea turtles, and totoaba decreased > 80% in shrimp driftnets and at least 20% in finfish gillnet fleets under spatial management. We found indirect effects on species and ecosystem function and structure as a result of vaquita management actions. Biomass and catch of forage fish declined, which could affect lower-trophic level fisheries, while other species such as skates, rays, and sharks increased in both biomass and catch. When comparing across performance metrics, we found that scenarios that increased ecosystem function and structure resulted in lower economic performance indicators, underscoring the need for management actions that consider ecological and economic tradeoffs as part of the integrated management of the Upper Gulf of California. PMID:23691155

  19. Desegregating California Schools. California Current Review of Human Resources, Number 3, November 1969.

    ERIC Educational Resources Information Center

    California League of Women Voters, San Francisco.

    This bulletin, prepared by the League of Women Voters, attempts to summarize popularly used methods of desegregation and to make specific suggestions for use in the State of California. State responsibilities for desegregation are presented against the background of Federal and State court decisions. The status of racial imbalance in California…

  20. Current ecosystem processes in steppe near Lake Baikal

    NASA Astrophysics Data System (ADS)

    Vanteeva, Julia

    2015-04-01

    The steppes and forest steppes complexes of Priol'khonie at the Lake Baikal (southern Siberia, Russia) were studied in this research. Recreational activity has a significant impact on the Priol'khonie region. During soviet time this area was actively used for agriculture. Nowadays, this territory is the part of Pribaikalskyi National Park and special protection is needed. As the landscapes satisfy different human demands there are many land-management conflicts. The specific climate and soil conditions and human activity lead to erosion processes on study area. Sediment loads are transferred into the Lake Baikal and cause water pollution. Consequently, vegetation cover and phytomass play an important role for regulating hydrological processes in the ecosystems. The process of phytomass formation and its proactive role playing on sedimentation and mitigate silt detaching by rill and inter-rill erosion are considered in the research as important indicators of the ecosystem functions for steppe landscapes. These indicators were studied for the different land cover types identified on the area because the study area has a large variety of steppe and forest steppe complexes, differing in the form of relief, soil types, vegetation species composition and degree of land degradation. The fieldwork was conducted in the study area in the July and August of 2013. Thirty-two experimental sites (10 x 10 m) which characterized different types of ecosystem were established. The level of landscape degradation was estimated. The method of clipping was used for the valuation of above-ground herbaceous phytomass. The phytomass of tree stands was calculated using the volume-conversion rates for forest-steppe complexes. For the quantification of transferred silt by inter-rill erosion in different conditions (vegetation, slope, soil type, anthropogenic load) a portable rainfall simulator was created with taking into account the characteristics of the study area. The aboveground herbaceous phytomass of the steppe complexes varied from 0.4 to 2.64 t/ha. Apical stony and sloping grass-forb landscapes and areas of settlements and recreation facilities had the lowest values. Forest steppes were characterized by low crown density, non-large stand density, which was represented mainly by larch. Phytomass stock ranged from 30.78 to 282.24 t/ha. Maximum values corresponded to the forest steppe with larch on steep slopes. The maximum values of the silt matter transfer (up to 124 g /m2) corresponded to areas with a strong recreation pressure with the lower value of vegetation cover (from 0 to 45%) and aboveground herbaceous phytomass (0.4 - 0.6 t/ha). During experiment with using rainfall simulator defined different sensibility to soil erosion, for example, for Caragana steppe with sagebrush on the undisturbed area trapped silt is 12 g/m2 and for anthropogenic disturbed patch - 84 g/m2. For Sagebrush steppe trapped silt changed from 4 to 16 g/m2. The study shows strong landscapes transformation leading to loss of biodiversity, the reduction of phytomass production and water percolation.

  1. Application of a data-assimilative regional ocean modeling system for assessing California Current System ocean conditions, krill, and juvenile rockfish interannual variability

    NASA Astrophysics Data System (ADS)

    Schroeder, Isaac D.; Santora, Jarrod A.; Moore, Andrew M.; Edwards, Christopher A.; Fiechter, Jerome; Hazen, Elliott L.; Bograd, Steven J.; Field, John C.; Wells, Brian K.

    2014-08-01

    To be robust and informative, marine ecosystem models and assessments require parameterized biophysical relationships that rely on realistic water column characteristics at appropriate spatial and temporal scales. We examine how hydrographic properties off California from 1990 through 2010 during late winter and spring correspond to krill and juvenile rockfish (Sebastes spp.) abundances. We evaluated coherence among temperature, salinity, depth of 26.0 potential density isopycnal, and stratification strength at regionally and monthly time scales derived from shipboard and mooring observations, and a data-assimilative Regional Ocean Model System reanalysis. The reanalysis captures spatiotemporal physical variability of coastal ocean conditions in winter and spring months and elucidates mechanisms connecting the spatial and temporal upwelling and transport dynamics on observed krill and rockfish abundances in spring. This provides evidence for a mechanistic connection between the phenology of upwelling in the California Current System and seasonal development of the shelf ecosystem.

  2. Ecosystem impacts of compost and manure applications to California grazed grassland soils

    NASA Astrophysics Data System (ADS)

    DeLonge, M. S.; Silver, W. L.

    2012-12-01

    Organic matter amendments, such as compost and manure, are often applied to grasslands to improve soil conditions and enhance net primary productivity. It has been proposed that this land management strategy can sequester carbon (C) in soils and may therefore contribute to climate change mitigation. However, the net mitigation potential of organic amendments depends in part on the ecosystem response following land-application, which is likely to vary with the amendment chemical quality (C, N, C:N). To investigate the differences in ecosystem response to soil amendments of various qualities, we established research plots on three grazed annual grasslands in northern California. The study sites were sampled for soil chemical and physical properties (bulk density, temperature, and moisture), plant community composition, and peak season net primary productivity prior to and following treatment applications. In October 2011, before the rainy season, we applied a thin layer of organic amendments to the study plots. At each site, three replicate plots were treated with fresh manure (1.2 % N, 15.8 % C, C:N = 13.5), three plots were treated with a commercial plant-waste compost (2.4 % N, 26.6 % C, C:N = 11.1), and three plots were left untreated as controls. At one site, 3 additional plots received a thin layer of compost with a lower N concentration and a higher C:N ratio (1.9 % N, 27.4 % C, C:N = 14.5). All plots were sampled for greenhouse gas emissions (N2O, CH4, and CO2, n=3 per plot) using vented chambers shortly after the organic matter was applied, and then intensively following three rain events throughout the rainy season. Results showed that dry amendments were associated with negligible trace gas fluxes, but that these fluxes increased after rain events. Nitrous oxide emissions increased slightly after the first rain event and reached peak levels (approximately 20 ng N cm-1 h-1 for the manure and high N compost only) after three days, following second rain event. The emissions from the high N compost declined more quickly than the manure emissions during the dry-up period. The low N compost exhibited the lowest peak emissions (< 5 ng N cm-1 h-1). Nitrous oxide emissions for all amendments quickly declined and were negligible on both wet and dry days sampled during mid-rainy season. These results suggest that trace gas emissions may not strongly offset the mitigation potential for organic matter amendments. However, differences in the amendment type and quality can influence the offset magnitude. These findings will be presented within the context of other key ecosystem characteristics, such as plant community composition, net primary productivity, and soil conditions.

  3. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates

    USGS Publications Warehouse

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; `Ohukani`ohi`a Gon, Sam, III; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  4. The central California Current transition zone: A broad region exhibiting evidence for iron limitation

    NASA Astrophysics Data System (ADS)

    Biller, Dondra V.; Bruland, Kenneth W.

    2014-01-01

    The transition zone (TZ) of the central California Current upwelling system (cCCS) is the boundary between the cold, saline, coastally upwelled water and the warm, less saline, oligotrophic waters of the offshore California Current (CC). The TZ is a broad region that regularly exhibits chlorophyll concentrations of 1-2 ?g L-1 throughout the spring, summer, and fall seasons. Surface transect and vertical profile data from three cruises (May 2010, June 1999, and August 2011) between 34 and 42N show residual nitrate concentrations (5-15 ?M) and low Fe concentrations (most < 0.2 nmol kg-1) in the TZ. We therefore suggest that much of the TZ of the cCCS is an Fe-limited, high nutrient, lower than expected chlorophyll (HNLC) region. The main source of Fe to the cCCS is from upwelling through the benthic boundary layer (BBL) over the continental shelf sediments. Iron and NO3- in coastally upwelled water are transported via offshore moving filaments into the TZ. However, since some coastal upwelling regions with narrow continental shelves do not have much Fe to begin with, and since Fe is drawn down more rapidly relative to NO3- due to biological assimilation and scavenging, these filaments transport low concentrations of Fe relative to NO3- into the TZ. Weak wind curl-induced upwelling and vertical mixing in the TZ also deliver Fe and NO3- to the surface but at lower concentrations (and lower Fe :NO3-) than from strong coastal upwelling. Mesoscale cyclonic eddies in the TZ are important to consider with respect to offshore surface nutrient delivery because there is a marked shoaling of isopycnals and the nutricline within these eddies allowing higher nutrient concentrations to be closer to the surface. Since wind curl-induced upwelling and/or vertical mixing occurs seaward of the continental shelf, there is not enough Fe delivered to the surface to accompany the NO3-. By using Fe :NO3- ratios and calculated specific growth rates for diatoms, we demonstrate that the TZ of the cCCS shows evidence for Fe limitation of diatom blooms. The TZ also appears to progress further into Fe limitation as the upwelling season progresses from spring into late summer. This study provides some of the first field data to suggest that Fe is a critical bottom up control on the ecosystem in the TZ of the cCCS.

  5. Compound-Specific δ15N Amino Acid Measurements in Littoral Mussels in the California Upwelling Ecosystem: A New Approach to Generating Baseline δ15N Isoscapes for Coastal Ecosystems

    PubMed Central

    Vokhshoori, Natasha L.; McCarthy, Matthew D.

    2014-01-01

    We explored δ15N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ15N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ15N values showed a strong linear trend with latitude, increasing from North to South (from ∼7‰ to ∼12‰, R2 = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ15N trend is therefore most consistent with a baseline δ15N gradient, likely due to the mixing of two source waters: low δ15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ15N values of phenylalanine (δ15NPhe), the best AA proxy for baseline δ15N values. We hypothesize δ15NPhe values in intertidal mussels can approximate annual integrated δ15N values of coastal phytoplankton primary production. We therefore used δ15NPhe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ15N values. We propose that δ15NPhe isoscapes derived from filter feeders can directly characterize baseline δ15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  6. Integrated biochemical, molecular genetic, and bioacoustical analysis of mesoscale variability of the euphausiid Nematoscelis difficilis in the California Current

    NASA Astrophysics Data System (ADS)

    Bucklin, Ann; Wiebe, Peter H.; Smolenack, Sara B.; Copley, Nancy J.; Clarke, M. Elizabeth

    2002-03-01

    Integrated assessment of the euphausiid Nematoscelis difficilis (Crustacea; Euphausiacea) and the zooplankton assemblage of the California Current was designed to investigate individual, population, and community responses to mesoscale variability in biological and physical characters of the ocean. Zooplankton samples and observational data were collected along a cross-shelf transect of the California Current in association with the California Cooperative Fisheries Investigations (CalCOFI) Survey during October 1996. The transect crossed three domains defined by temperature and salinity: nearshore, mid-Current, and offshore. Individual N. difficilis differed in physiological condition along the transect, with higher size-corrected concentrations of four central metabolic enzymes (citrate synthetase, hexokinase, lactate dehydrogenase (LDH), and phosphoglucose isomerase (PGI)) for euphausiids collected in nearshore waters than in mid-Current and offshore waters. There was little variation in the DNA sequences of the genes encoding PGI and LDH (all DNA changes were either silent or heterozygous base substitutions), suggesting that differences in enzyme concentration did not result from underlying molecular genetic variation. The population genetic makeup of N. difficilis varied from sample to sample based on haplotype frequencies of mitochondrial cytochrome oxidase I (mtCOI; P=0.029). There were significant differences between pooled nearshore and offshore samples, based on allele frequencies at two sites of common substitutions in the mtCOI sequence ( P=0.020 and 0.026). Silhouette and bioacoustical backscattering measurements of the zooplankton assemblage of the top 100 m showed marked diel vertical migration of the scattering layer, of which euphausiids were a small but significant fraction. The biochemical and molecular assays are used as indices of complex physiological (i.e., growth and condition) and genetic (i.e., mortality) processes; the bioacoustical observations provide insight into the ecosystem context for the single-species measurements. All data are intended for integration into predictive models of secondary production and biomass concentration in the ocean.

  7. Benthic production and processes off Baja California, northwest Africa and Peru: a classification of benthic subsystems in upwelling ecosystems

    SciTech Connect

    Rowe, G.T.

    1983-01-01

    Estimates of the standing stocks, secondary production and metabolism of the benthos have been compared in the coastal upwelling ecosystems off northwest Africa, Baja California, and southern Peru. Northwest Africa is characterized by shelf break upwelling and as a result standing stocks, macrobenthic production and sediment organic matter are highest out at the shelf-slope boundary. Sediment microbial activity and biomass on the other hand are highest nearshore in the dynamic zone where aeolian silt and sand are being blown into the sea from the Sahara Desert. Baja California is dominated by the red crab, Pleuroncodes planipes, having high rates of growth and metabolic utilization of organic matter, both on bottom and in the water. Peru benthos and metabolism are very different from the above areas because of the low oxygen concentrations in the bottom water. Organic matter is far higher in the sediment and heterotrophic metabolism is principally anaerobic rather than aerobic. A normal offshore benthic fauna is replaced by a mat of sulfur bacteria with unknown production and metabolic rates. Benthic subsystems in upwelling ecosystems can be placed in two categories: those overloaded with organic matter, depleted of oxygen and dominated by sulfate reduction and those that are not overloaded and remain aerobic. Peru and southwest Africa typify overloaded systems whereas NW Africa and Baja California are examples of aerobic systems. Although benthic metabolism and ionorganic nutrient regeneration are high in both types of subsystems, all upwelling ecosystems, with their dynamic open boundaries, export organic particulate matter and import inorganic nutrients at rates that are far in excess of that consumed or produced by benthic metabolism. 42 refs., 7 figs., 8 tabs.

  8. Effects of Debris Flows on Stream Ecosystems of the Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; Delafuente, J. A.; Resh, V. H.

    2006-12-01

    We examined the long-term effects of debris flows on channel characteristics and aquatic food webs in steep (0.04-0.06 slope), small (4-6 m wide) streams. A large rain-on-snow storm event in January 1997 resulted in numerous landslides and debris flows throughout many basins in the Klamath Mountains of northern California. Debris floods resulted in extensive impacts throughout entire drainage networks, including mobilization of valley floor deposits and removal of vegetation. Comparing 5 streams scoured by debris flows in 1997 and 5 streams that had not been scoured as recently, we determined that debris-flows decreased channel complexity by reducing alluvial step frequency and large woody debris volumes. Unscoured streams had more diverse riparian vegetation, whereas scoured streams were dominated by dense, even-aged stands of white alder (Alnus rhombiflia). Benthic invertebrate shredders, especially nemourid and peltoperlid stoneflies, were more abundant and diverse in unscoured streams, reflecting the more diverse allochthonous resources. Debris flows resulted in increased variability in canopy cover, depending on degree of alder recolonization. Periphyton biomass was higher in unscoured streams, but primary production was greater in the recently scoured streams, suggesting that invertebrate grazers kept algal assemblages in an early successional state. Glossosomatid caddisflies were predominant scrapers in scoured streams; heptageniid mayflies were abundant in unscoured streams. Rainbow trout (Oncorhynchus mykiss) were of similar abundance in scoured and unscoured streams, but scoured streams were dominated by young-of-the-year fish while older juveniles were more abundant in unscoured streams. Differences in the presence of cold-water (Doroneuria) versus warm-water (Calineuria) perlid stoneflies suggest that debris flows have altered stream temperatures. Debris flows have long-lasting impacts on stream communities, primarily through the cascading effects of removal of riparian vegetation. Because debris flow frequency increases following road construction and timber harvest, the long-term biological effects of debris flows on stream ecosystems, including anadromous fish populations, needs to be considered in forest management decisions.

  9. Collapse of the California Current during glacial maxima linked to climate change on land.

    PubMed

    Herbert, T D; Schuffert, J D; Andreasen, D; Heusser, L; Lyle, M; Mix, A; Ravelo, A C; Stott, L D; Herguera, J C

    2001-07-01

    Time series of alkenone unsaturation indices gathered along the California margin reveal large (4 degrees to 8 degrees C) glacial-interglacial changes in sea surface temperature (SST) over the past 550,000 years. Interglacial times with SSTs equal to or exceeding that of the Holocene contain peak abundances in the pollen of redwood, the distinctive component of the temperate rainforest of the northwest coast of California. In the region now dominated by the California Current, SSTs warmed 10,000 to 15,000 years in advance of deglaciation at each of the past five glacial maxima. SSTs did not rise in advance of deglaciation south of the modern California Current front. Glacial warming along the California margin therefore is a regional signal of the weakening of the California Current during times when large ice sheets reorganized wind systems over the North Pacific. Both the timing and magnitude of the SST estimates suggest that the Devils Hole (Nevada) calcite record represents regional but not global paleotemperatures, and hence does not pose a fundamental challenge to the orbital ("Milankovitch") theory of the Ice Ages. PMID:11441174

  10. Linking Seasonal Foliar Chemistry to VSWIR-TIR Spectroscopy Across California Ecosystems

    NASA Astrophysics Data System (ADS)

    Meerdink, Susan Kay

    Potential ecological impacts of disturbance, land use, and climate change have driven many studies to evaluate ecosystem functions through the measurement of vegetation biochemical properties that provide integral information on nutrient cycling, litter decomposition, and plant productivity. The use of spectroscopy in quantifying vegetation biochemistry shows promise with faster analytical speed than traditional methods. Synergies between the Visible Near Infrared/ Short Wave Infrared (VSWIR) and Thermal Infrared (TIR) spectra for identifying plant species' foliar chemistry have been largely unexplored. Here we evaluate the capability of VSWIR and/or TIR spectra to predict leaf levels of lignin, cellulose, nitrogen, water content, and leaf mass per area. We specifically examined how these predictive relationships might change seasonally and among plant functional types. Lastly we determined whether these relationships between spectra and foliar chemistry could be extended to the reduced spectral resolution available in airborne sensors, including the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Hyperspectral Thermal Emission Spectrometer (HyTES), and the combined AVIRIS and MODIS/ASTER (MASTER) sensors used in the Hyperspectral Infrared Imager (HyspIRI) preparatory flight campaign. In the 2013 spring, summer, and fall seasons, fresh leaves from sixteen common shrub and tree species in California representing three broad plant functional types were sampled from the Sierra Nevada Mountains, the Central Valley at the Sedgwick Reserve, and coastal Santa Barbara. Partial least squares regression (PLSR) analysis was used to relate spectral response at wavelengths from 0.3 - 15.4 microm to laboratory-measured biochemical and biophysical properties. For each component, three PLSR models were fit using different portions of the spectrum: VSWIR (0.3 - 2.5 microm), TIR (2.5 - 15.4 microm), and the full spectrum (0.3 - 15.4 microm). Three additional models were fitted using spectra resampled to AVIRIS (0.4 - 2.5 microm), HyTES (7.5 - 12 microm), and the combined AVIRIS and MASTER (0.38 - 12 microm). The majority of the highest performing laboratory spectra models used either the TIR or full spectrum. When using simulated sensor spectra, the combined AVIRIS and MASTER produced the highest performing models, followed by HyTES. From both laboratory and sensor simulated model results, the combination of VSWIR and TIR increased the R2 value of regression models compared to VSWIR alone, signifying that the inclusion of TIR data would improve predictions of foliar chemistry. We also found that model precision varied by seasons and across plant functional types. Models developed for all seasons resulted in a decreased R2 value, but still had high precision (R2 > 0.85) and accuracy (RMSE < 10%) when predicting cellulose, nitrogen, and water content. These results indicate that the TIR could augment the VSWIR in advancing identification of leaf properties of the world's ecosystems by helping to set the foundation for future use of the full spectrum represented by the proposed HyspIRI space-borne sensor.

  11. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability.

    PubMed

    Medvigy, David; Wofsy, Steven C; Munger, J William; Moorcroft, Paul R

    2010-05-01

    We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning. PMID:20404190

  12. The Benguela Current: An ecosystem of four components

    NASA Astrophysics Data System (ADS)

    Hutchings, L.; van der Lingen, C. D.; Shannon, L. J.; Crawford, R. J. M.; Verheye, H. M. S.; Bartholomae, C. H.; van der Plas, A. K.; Louw, D.; Kreiner, A.; Ostrowski, M.; Fidel, Q.; Barlow, R. G.; Lamont, T.; Coetzee, J.; Shillington, F.; Veitch, J.; Currie, J. C.; Monteiro, P. M. S.

    2009-12-01

    The Benguela system is one of the four major eastern boundary upwelling systems of the world. It is unusual as there are two stratified subtropical or warm temperate boundary regions, on either side of the major wind-driven upwelling region(19-34°S), which itself is subdivided at 26°S by the powerful Luderitz upwelling cell. Important biological components cross the boundary areas at different stages to complete the life-history cycle. While the “Bakun triad” of factors responsible for the development of large pelagic fish populations (enrichment, concentration and retention) provide an important unifying principle for understanding the compromise implicit in adaptation to upwelling systems, the role of predation has been neglected, as has the fish yield relative to photosynthesis. The role global climate change will have in the Benguela in terms of shifting boundaries or weakening or intensifying gradients is being explored. The interannual and decadal signals are so strong in the region that long term trends are difficult to distinguish. Intensive resource utilisation and the collapse of several fish stocks occurred in the Benguela region during the 1960s and 1970s, with different recovery trajectories in the north and the south. The Angolan subsystem can be described as a subtropical transition zone between the wind-driven upwelling system and the Equatorial Atlantic, with gentle upwelling-favourable winds, well-defined seasons, intermediate productivity and moderate, declining fisheries. It is separated from the Namibian subsystem by the Angola-Benguela front. The northern Benguela shelf is a typical coastal upwelling system with equatorward winds, cool water, high plankton biomass and moderate to high fish biomass, which is currently in a depleted state. A shift from sardines to horse mackerel occurred during the period 1970-1990, while hake have never fully recovered from intensive fishing pressure up to 1990. Widespread oxygen-depleted waters and sulphur eruptions result from local and remote forcing, restricting the habitat available for pelagic and demersal fish species. The Luderitz-Orange River Cone is an intensive perennial upwelling cell where strong winds, high turbulence and strong offshore transport constitute a partial barrier to epipelagic fish species. Upwelling source water alters in salinity and oxygen, across this boundary zone. A decline in upwelling-favourable winds occurred between 1990 and 2005. The southern Benguela region is characterised by a pulsed, seasonal, wind-driven upwelling at discrete centres and warm Agulhas water offshore. High primary productivity forms a belt of enrichment along the coast, constrained by a front. Low-oxygen water, which only occurs close inshore, may adversely affect some resources. The west coast is primarily a nursery ground for several fish species which spawn on the Agulhas Bank and are transported by alongshore jet currents to the west coast. The Agulhas Bank forms the southern boundary of the Benguela system and it displays characteristics of both an upwelling and a temperate shallow shelf system, with seasonal stratification and mixing, coastal, shelf-edge and dynamic upwelling, moderate productivity and a well oxygenated shelf. A large biomass of fish occupies the Bank during the summer season, with some evidence for tight coupling between trophic levels. A cool ridge of upwelled water, with links to coastal upwelling and to the Agulhas Current, appears to play an important but poorly understood role affecting the distribution and productivity of pelagic fish. A boom in sardine and anchovy populations was accompanied by an eastward shift, followed by 5 years of poor recruitment by sardine but successful recruitment of anchovy, indicating changes in the early life-history patterns of these two species.

  13. Assessing Impacts of Climate Variability and Change on the Agro-ecosystems in California and Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Asrar, G. R.; El-Askary, H. M.; Hatzopoulos, N.; Hayhoe, K.; Kim, J.; Ziska, L.; Medvigy, D.; Prasad, A. K.; Tremback, C.; Walko, R. L.

    2011-12-01

    Climate variability and change affects natural and managed ecosystems, namely agriculture and rangelands, and the services they offer such as food, fiber, energy, fresh water, etc. we derive from them are among the highest concerns in quantifying the potential consequences of anthropogenic climate change. These impacts are expected to be ecosystem and region specific, thus requiring climate information at greater spatial and temporal resolution offered by the global climate models. In this study we are using a combination of climate downscaling and regional climate models in conjunction with ecosystem models to assess the impact of climate variability and change on the natural and managed ecosystems in California and Southwest region of the United States. In an attempt to generate reliable assessments of the impact of regional climate variability and change on the agro-ecosystems in the region, we have designed an impact assessment study in which multiple Regional Climate Models (RCMs) are used to develop downscaled climate information to in turn drive ecosystem models. We develop the climate scenarios for the region based on a combination of dynamical and statistical approaches. We evaluate the efficacy of the climate scenarios in hindcast mode against available historical observation records to build confidence in their future climate projections. We then use the derived climate information in the ecosystem models to assess how these ecosystems will function under the projected climate conditions. We will present some early results from the evaluation of three regional climate models in a long-term hindcast experiments, the fundamental step before performing regional climate projection. Model variables needed by agro-ecosystem models, daily precipitation and temperature extremes, from individual models and their ensembles, are being evaluated against the National Weather Service observation network and the global gridded analyses from NCEP. We also compare direct RCM simulations with a hybrid dynamical-statistical downscaling approach in order to expand our understanding of the limitations and strengths of various plausible approaches to generating high-resolution climate projections for agroecosystem impact analyses. The combination of Earth observations with model runs provides great opportunities for practical assessment of climate impacts at regional scales.

  14. Current developments in groundwater ecology--from biodiversity to ecosystem function and services.

    PubMed

    Griebler, Christian; Malard, Florian; Lefébure, Tristan

    2014-06-01

    Groundwater ecosystems constitute the largest terrestrial freshwater biome. They are dark, extremely low in energy and do not provide much space but they contain an unexpectedly high diversity of living forms showing characteristic adaptive features. The restricted accessibility along with the enormous 'invisible' heterogeneity challenged for a long time testing of scientific theories and unraveling of ecosystem functioning. Triggered by an improved interdisciplinarity, comprehensive sampling strategies and current developments in biotechnology and statistical analysis, groundwater ecology gains momentum entering a new era of research. We are only beginning to understand adaptive mechanisms, species distribution patterns and ecosystem functioning. Ninety-five percent of global liquid freshwater is stored in the terrestrial subsurface constituting a major source of water for drinking, irrigation and industrial purposes. There is an urgent need to integrate evolutionary and ecological research for developing a holistic perspective of the functional roles of biodiversity and ecosystem services and predicting global changes under alternative groundwater resource use scenarios. PMID:24590188

  15. Decadal changes in the Canary Current Upwelling Ecosystem

    NASA Astrophysics Data System (ADS)

    Santos, A. M.; Luis, J. M.; Relvas-Almeida, P.

    2013-12-01

    The Canary Current Upwelling System (CCUS) covers the latitudinal range 12-43 degrees N and has some singularities in relation to the other three major Eastern Boundary Upwelling Systems (EBUS), namely a major interruption in the continuity of the system at the Strait of Gibraltar and it is the only one with a sardine species from a different genus (Sardina vs Sardinops). Long-term trends in ocean temperature and coastal upwelling were investigated using the AVHRR Pathfinder SST (sea surface temperature) Version 5.1 dataset, in situ SST from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS), and upwelling indices from the Pacific Fisheries Environmental Laboratory (PFEL). The analysis is applied to the eastern boundary of the North Atlantic, from 10 to 45 degrees N extending until 30 degrees W, focusing mainly in the CCUS because the strong dynamic link between the atmosphere and the ocean makes upwelling regions highly sensitive to global change and ideal to monitor and investigate its effects. The detail in SST variability results in a large extent from the fine analysis and the numerical processing carefully designed to avoid trend bias in the climatological studies. The obtained fields of SST trends show a generalized warming of the entire region. However, alternate patches of significantly different warming rates are observed, ranging from large scale down to mesoscale. Known coastal upwelling features are seen to warm at a lower rate than corresponding offshore waters, pointing to an intensification of the upwelling in the last decades. Wind data are used to attempt to explain the variability of some upwelling structures. Our results evidence the main role that mesoscale processes play in the modulation of the spatial and temporal variability of SST, namely at the decadal scale. This result prevents any global conclusion about the intensification of the upwelling at the scale of the entire CCUS. The bulk of the sardine population is located in the southern part of CCUS off NW Africa. Important fluctuations in landings have been observed in the last 70 years but they seem to be out of phase between the two sub-regions - the northern CCUS (Iberia) and southern CCUS (NW Africa). The explanation for these fluctuations has been related, at least partially, to environmental drivers but also to changes in exploitation. Landing time series of sardine, anchovy and sardinella were used to perform an exploratory analysis to investigate the relationships between small pelagic fish species in the CCUS and decadal changes in SST and coastal upwelling. This is a contribution to FCT (Portuguese Science and Technology Foundation) funded projects LONGUP (PTDC/AAC-CLI/105296/2008) and MODELA (PTDC/MAR/098643/2008).

  16. Zooplankton community pattern associated with a California Current cold filament

    NASA Astrophysics Data System (ADS)

    Mackas, David L.; Washburn, Libe; Smith, Sharon L.

    1991-08-01

    In July 1988 we sampled upper layer zooplankton distributions in and around a major cold filament located off Point Arena, California. Average zooplankton biomass levels declined inshore to offshore, but relatively high levels extended seaward along the cool side of the filament jet. A series of transverse station lines shows strong shifts in community composition across the axis of the filament. The cross-filament compositional sequence was recognizably similar along each line, giving an impression (supported by cluster analysis and along-flow versus cross-flow spatial autocorrelation) of banding parallel to the filament axis. The "standard" sequence was characterized by local maxima of Dolioletta gegenbauri in nonfilament waters to the south and east, Euphausia pacifica along the southeast margin of the filament, Eucalanus californicus and euphausiid larvae within the cool core of the filament and extending partway across the strong seaward jet on the north and west margin of the filament, and heteropod larvae, chaetognaths, Dolioletta, and a mixture of small copepods (including several with southern and offshore faunal affinities) along the warm side of the jet and extending into nonfilament waters to the north and west. A "core" group of samples characterized by high abundance of Eucalanus matched the trajectories of drifters released at the upstream end of the filament. Both crossed geopotential anomaly contours (to larger Ф) as they moved out the filament, suggesting a cross-jet component of motion.

  17. Biogenic sedimentation beneath the California Current system for the past 30 kyr and its paleoceanographic significance

    USGS Publications Warehouse

    Gardner, J.V.; Dean, W.E.; Dartnell, P.

    1997-01-01

    A north-south transect of 17 cores was constructed along the eastern boundary of the California Current system from 33?? to 42?? N to investigate the changes in biogenic sedimentation over the past 30 kyr. Percentages and mass accumulation rates of CaCO3, Corg, and biogenic opal were assembled at 500 to 1000 years/sample to provide relatively high resolution. Time-space maps reveal a complex pattern of changes that do not follow a simple glacial-interglacial two-mode model. Biogenic sedimentation shows responses that are sometimes time-transgressive and sometimes coeval, and most of the responses show more consistency within a limited geographic area than any temporal consistency. Reconstructed conditions during late oxygen isotope stage 3 were more like early Holocene conditions than any other time during the last 30 kyr. Coastal upwelling and productivity during oxygen isotope stage 3 were relatively strong along the central California margin but were weak along the northern California margin. Precipitation increased during the last glacial interval in the central California region, and the waters of the southern California margin had relatively low productivity. Productivity on the southern Oregon margin was relatively low at the beginning of the last glacial interval, but by about 20 ka, productivity in this area significantly increased. This change suggests that the center of the divergence of the West Wind Drift shifted south at this time. The end of the last glacial interval was characterized by increased productivity in the southern California margin and increased upwelling along the central California margin but upwelling remained weak along the northern California margin. A sudden (<300 years) decrease in CaCO3, Corg, and biogenic opal occurred at 13 ka. The changes suggest a major reorientation of the atmospheric circulation in the North Pacific and western North America and the establishment of a strong seasonality in the central California region. A carbonate preservation event occurred at 10 ka that appears to reflect the uptake of CO2 by the terrestrial biosphere as the northern latitudes were reforested following retreat of the glaciers. The Holocene has been a period of relatively high productivity in the southern California margin, relatively strong coastal upwelling along the central California margin, relatively weak upwelling along the northern California margin, and the northward migration of the divergence zone of the West Wind Drift.

  18. Dynamic connectivity in the Southern California Bight and Georges Bank: Identifying ecosystem interactions using chaotic time series analysis

    NASA Astrophysics Data System (ADS)

    Ye, H.; Deyle, E. R.; Hsieh, C.; Sugihara, G.

    2012-12-01

    We used convergent cross mapping (CCM), a method grounded in nonlinear dynamical systems theory to analyze long-term time series of fish species from the California Cooperative Oceanic Fisheries Investigations ichthyoplankton (isolated to the Southern California Bight [SCB]) and NOAA National Marine Fisheries Service Northeast Fisheries Science Center trawl survey (isolated to the Georges Bank [GB] region) data sets. CCM gives a nonparametric indicator of the realized dynamic influence that one species has on another (i.e. how much the abundance of X at a particular time is dependent on the historical abundance of Y). We found there are more interactions between species in SCB compared to GB. An analysis of the interaction matrix showed that there is also more structure in the connectivity network of SCB compared to GB. We attribute this difference in connectivity to historical overexploitation of fish stocks in the North Atlantic, and reproduce this effect in simple multi-species fishery models. We discuss the implications of these results for ecosystem-based management and for restoration efforts.; Connectivity Networks for Fishes in the Southern California Bight (SCB) and Georges Bank (GB) as determined using cross-mapping.

  19. Fire and aquatic ecosystems of the western USA: Current knowledge and key questions

    USGS Publications Warehouse

    Bisson, P.A.; Rieman, B.; Luce, C.; Hessburg, Paul F.; Lee, D.; Kershner, J.; Reeves, G.H.; Gresswell, Robert E.

    2003-01-01

    Understanding of the effects of wildland fire and fire management on aquatic and riparian ecosystems is an evolving field, with many questions still to be resolved. Limitations of current knowledge, and the certainty that fire management will continue, underscore the need to summarize available information. Integrating fire and fuels management with aquatic ecosystem conservation begins with recognizing that terrestrial and aquatic ecosystems are linked and dynamic, and that fire can play a critical role in maintaining aquatic ecological diversity. To protect aquatic ecosystems we argue that it will be important to: (1) accommodate fire-related and other ecological processes that maintain aquatic habitats and biodiversity, and not simply control fires or fuels; (2) prioritize projects according to risks and opportunities for fire control and the protection of aquatic ecosystems; and (3) develop new consistency in the management and regulatory process. Ultimately, all natural resource management is uncertain; the role of science is to apply experimental design and hypothesis testing to management applications that affect fire and aquatic ecosystems. Policy-makers and the public will benefit from an expanded appreciation of fire ecology that enables them to implement watershed management projects as experiments with hypothesized outcomes, adequate controls, and replication.

  20. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    PubMed

    Vorsino, Adam E; Fortini, Lucas B; Amidon, Fred A; Miller, Stephen E; Jacobi, James D; Price, Jonathan P; 'Ohukani'ohi'a Gon, Sam; Koob, Gregory A

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions. PMID:24991934

  1. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    PubMed

    Vorsino, Adam E; Fortini, Lucas B; Amidon, Fred A; Miller, Stephen E; Jacobi, James D; Price, Jonathan P; Gon, Sam 'ohukani'ohi'a; Koob, Gregory A

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions. PMID:24805254

  2. Modeling Hawaiian Ecosystem Degradation due to Invasive Plants under Current and Future Climates

    PubMed Central

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; Gon, Sam 'Ohukani'ohi'a; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions. PMID:24805254

  3. Bottom current and sediment transport on San Pedro Shelf, California

    USGS Publications Warehouse

    Drake, David E.; Cacchione, David A.; Karl, Herman A.

    1985-01-01

    GEOPROBE (Geological Processes Bottom Environmental) tripods were used to measure bottom currents, pressure, and light transmission and scattering and to obtain time-series photographs of the sea floor at depths of 23 m and 67 m on San Pedro shelf between 18 April and 6 June 1978. Winds were light (< 5 m/s) with a mean direction from the southwest throughout the measurement period. Hourly averaged currents 1 m above the bottom never exceeded 21 cm/s; average speeds were about 5 cm/s at the 23-m site and 6.8 cm/s at 67 m, and the strongest currents were produced by the tides. The mean flow of bottom water was less than 3 cm/s at both GEOPROBES and was rather persistently southward (offshelf). Wave-generated bottom currents and bottom-pressure variations were sampled at hourly intervals; average wave period and wave height were 12.8 s and 0.44 m, respectively, at the 23-m site. Wave orbital velocities ranged from about 5 to 30 cm/s at 23 m and from 2 to 8 cm/s at 67 m. Bottom photographs at 67 m show that the relatively sluggish tide-generated and mean currents were below threshold velocity for the silty, very fine sand throughout the observational period. Threshold depth for wave rippling of very fine sand averaged about 28 m with a range from about 12 m to 50 m. Wave-generated currents were the only currents that exceeded threshold levels. The wave currents maintained relatively high concentrations of sediment in suspension near the bottom over the inner shelf (< 25 m), and this material (principally silt and clay) was transported offshore by the weak mean flow. Approximately 50% of this material was deposited as the bottom orbital velocities decreased to subthreshold values ( nearly equal 10-15 cm/s). The observed movement of fine sediment across the inner shelf can account for a portion of the mud content of the modern silty sands on the central shelf and on the outer shelf. However, it is clear that the sand fractions, which constitute greater than 70% of the central shelf substrate, must be transported during high-energy winter storms.

  4. Zooplankton anomalies in the California Current system before and during the warm ocean conditions of 2005

    NASA Astrophysics Data System (ADS)

    Mackas, D. L.; Peterson, W. T.; Ohman, M. D.; Lavaniegos, B. E.

    2006-11-01

    Zooplankton in the California Current had large anomalies in biomass and composition in 2005. The zone most strongly affected extended from northern California to southern British Columbia, where zooplankton biomass was low from spring through autumn, community composition showed reduced dominance by northern origin taxa, and life cycles of some species shifted to earlier in the year. Although similar anomalies have previously been observed over the entire California Current system during strong El Niño events, the 2005 zooplankton anomalies were more localized, initiated by a combination of very warm temperatures (since early 2003), plus weak and late upwelling, and low phytoplankton productivity in spring and early summer of 2005. However, the zooplankton anomalies persisted longer: through the remainder of 2005 and into 2006.

  5. Fine root production across a primary successional ecosystem chronosequence at Mt. Shasta, California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating changes in belowground biomass and production is essential for understanding fundamental patterns and processes during ecosystem development. We examined patterns of fine root production, aboveground litterfall, and forest floor accumulation during forest primary succession at the Mt. Sha...

  6. Quantitative Models Describing Past and Current Nutrient Fluxes and Associated Ecosystem Level Responses in the Narragansett Bay Ecosystem

    EPA Science Inventory

    Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem in Rhode Island/Massachusetts, USA. Managers are interested in understanding the timing and magnitude of these effects, and ecosystem responses to restoration actions. To provid...

  7. The State of the California Current in 1999-2000: Forward to a New Regime?

    NASA Technical Reports Server (NTRS)

    DiGiacomo, P.

    2000-01-01

    Following an extended absence, the reintroduction of ocean color sensors to space in the mid to late 1990's provided an invaluable opportunity for evaluating the biological impact of the 1997-99 El Nino/La Nina events in the California Current System (CCS).

  8. Using sensitive montane amphibian species as indicators of hydroclimatic change in meadow ecosystems of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Peek, R.; Viers, J.; Yarnell, S. M.

    2012-12-01

    Climate change can affect sensitive species and ecosystems in many ways, yet sparse data and the inability to apply various climate models at functional spatial scales often prevents relevant research from being utilized in conservation management plans. Climate change has been linked to declines and disturbances in a multitude of species and habitats, and in California, one of the greatest climatic concerns is the predicted reduction in mountain snowpack and associated snowmelt. These decreases in natural storage of water as snow in mountain regions can affect the timing and variability of critical snowmelt runoff periods—important seasonal signals that species in montane ecosystems have evolved life history strategies around—leading to greater intra-annual variability and diminished summer and fall stream flows. Although many species distribution models exist, few provide ways to integrate continually updated and revised Global Climate Models (GCMs), hydrologic data unique to a watershed, and ecological responses that can be incorporated into conservation strategies. This study documents a novel and applicable method of combining boosted regression tree (BRT) modeling and species distributions with hydroclimatic data as a potential management tool for conservation. Boosted regression trees are suitable for ecological distribution modeling because they can reduce both bias and variance, as well as handle sharp discontinuities common in sparsely sampled species or large study areas. This approach was used to quantify the effects of hydroclimatic changes on the distribution of key riparian-associated amphibian species in montane meadow habitats in the Sierra Nevada at the sub-watershed level. Based on modeling using current species range maps in conjunction with three climate scenarios (near, mid, and far), extreme range contractions were observed for all sensitive species (southern long-toed salamander, mountain yellow-legged frog, Yosemite toad) by the year 2100. Among many environmental and hydroclimatic variables used in the model, snowpack and snowmelt (runoff) variables were consistently among the most informative in predicting species occupancy. Few sub-watersheds contained greater than 50% probability of species occupancy throughout the modeled time period; however several core areas were identified as more resilient to climate change for each species. There was overlap among species in areas that were predicted to remain hydroclimatically stable, particularly in sub-watersheds that contain high meadow density. Quantifying these areas of habitat stability, or "resiliency", may ultimately be the most useful outcome of BRT modeling, with the flexibility to utilize multiple GCMs at varying scales. Ultimately managers need to consider both short term and long term conservation goals by identifying and protecting suitable habitat areas most resilient to climate change to give multiple species the best chance to persist. This approach provides a unique tool for conservation management which can be easily applied to a variety of data and species, and provides useful knowledge at both near and long term time scales.

  9. Cumulative Human Impacts on Mediterranean and Black Sea Marine Ecosystems: Assessing Current Pressures and Opportunities

    PubMed Central

    Micheli, Fiorenza; Halpern, Benjamin S.; Walbridge, Shaun; Ciriaco, Saul; Ferretti, Francesco; Fraschetti, Simonetta; Lewison, Rebecca; Nykjaer, Leo; Rosenberg, Andrew A.

    2013-01-01

    Management of marine ecosystems requires spatial information on current impacts. In several marine regions, including the Mediterranean and Black Sea, legal mandates and agreements to implement ecosystem-based management and spatial plans provide new opportunities to balance uses and protection of marine ecosystems. Analyses of the intensity and distribution of cumulative impacts of human activities directly connected to the ecological goals of these policy efforts are critically needed. Quantification and mapping of the cumulative impact of 22 drivers to 17 marine ecosystems reveals that 20% of the entire basin and 60–99% of the territorial waters of EU member states are heavily impacted, with high human impact occurring in all ecoregions and territorial waters. Less than 1% of these regions are relatively unaffected. This high impact results from multiple drivers, rather than one individual use or stressor, with climatic drivers (increasing temperature and UV, and acidification), demersal fishing, ship traffic, and, in coastal areas, pollution from land accounting for a majority of cumulative impacts. These results show that coordinated management of key areas and activities could significantly improve the condition of these marine ecosystems. PMID:24324585

  10. 77 FR 21721 - Sierra National Forest, Bass Lake Ranger District, California, Whisky Ecosystem Restoration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ...The Bass Lake Ranger District is proposing a series of ecological restoration treatments, east of the community of North Fork, California. This would be north of Cascadel Point, south of Shuteye Peak, and west of Whisky Ridge. Treatment areas have been initially identified to restore forest conditions to more closely resemble pre- 1900s stand structures which would result in forests that are......

  11. Hypoxia in high-resolution sediment records: reconstructing the California Current Oxygen Minimum Zone on multi-decadal timescales

    NASA Astrophysics Data System (ADS)

    Moffitt, S. E.; Hill, T. M.

    2012-12-01

    The recent deglaciation event is an ideal laboratory to study the rapid expansion of Oxygen Minimum Zones (OMZs) and the ecological ramifications of such events. Santa Barbara Basin (SBB) sediments are high-resolution archives of seafloor ecosystems, recording both global-scale climate and regional-scale hydrographic events. Seafloor hypoxia in the California Current Ecosystem (CCE) is caused by OMZs in intermediate water depths (300-1200 m), and produces striking evidence in SBB sediment archives. We construct a vertical transect of proxies across SBB (34° 15'N, 119° 45'W) using a core from 418 m water depth (MV0811-15JC), and previously investigated cores from 440 m (MD02-2504) and 570 m (MD02-2503) water depths. Benthic foraminiferal assemblages and planktonic δ18O proxies were quantified at all three depths, while benthic invertebrate communities were quantified in the shallowest core at a 1-cm resolution (~10 years). This high-resolution invertebrate record provides a window into rapid, decadal-scale environmental change in continental margin ecosystems. Seafloor biodiversity is highly variable on 10-10^4 year timescales (across Protist, Mollusc, Arthropod and Echinoderm taxonomic groups), and is tightly coupled to both regional-scale environmental change and global-scale climate events. Additionally, we provide evidence that strongly hypoxic waters shoaled to <300 m water depth at Termination 1A (14.7 ka), implying that the upper boundary of the regional OMZ can expand >150 m on multi-decadal timescales. These data confirm that OMZs have rapidly expanded in the CCE during previous events of global-scale warming, and that continental margin seafloor biodiversity is variable on previously undescribed timescales.

  12. Last Century Patterns of Sea Surface Temperature and Diatom Variability in the Southern California Current

    NASA Astrophysics Data System (ADS)

    Esparza-Alvarez, M.; Herguera, J.; Lange, C.

    2007-05-01

    A time series reconstruction for the last 100 years of the variability of diatoms from laminated sediments off the southern Baja California margin shows the sensitivity of this phytoplankton group to oceanographic variability in the California Current on different timescales. Here we show that cool (warm) years are associated with higher (lower) diatom accumulation values, a proxy for their export production from the water column to the seafloor. There is a clear direction in the changes of the larger opaline flora community structure throughout the past century that parallels the observed trend towards higher SSTs in the southern part of the California Current. The diatom succession is reflected in three types of assemblages that show a clear progression from cool spring to early summer bloom species in the earlier part of the century towards alternating cool California Current and warm subtropical waters during the mid-century, to subtropical and tropical assemblages reflecting more stratified oligotrophic conditions during the latter part of the last century. This association between opaline floral succession and the SST anomaly trend implies a long term change that cannot be explained by the same mechanisms that are commonly associated with the typical interannual or interdecadal oceanographic variability. A small group of diatom species appears to follow the periodic swings of the large scale Pacific Decadal Oscilation index. The Coscinodiscus argus/radiatus and Coscinodiscus decrescens/marginatus complexes, commonly found in the California Current waters, closely follow the inter-decadal variability patterns over the Pacific, although with a decreasing amplitude after the mid 1970s shift.

  13. Positive Effects of Non-Native Grasses on the Growth of a Native Annual in a Southern California Ecosystem

    PubMed Central

    Pec, Gregory J.; Carlton, Gary C.

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem. PMID:25379790

  14. Positive effects of non-native grasses on the growth of a native annual in a southern california ecosystem.

    PubMed

    Pec, Gregory J; Carlton, Gary C

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem. PMID:25379790

  15. ORGANIC POLLUTANT DEPOSITION TO THE SIERRA NEVADA (CALIFORNIA, USA) SNOWPACK AND ASSOCIATED LAKE AND STREAM ECOSYSTEM

    EPA Science Inventory

    High elevation ecosystems in the western USA and Canada are receiving deposition of persistent organic pollutants (POPs) that presumably originate in the USA as well as outside its borders. In April 1992 we obtained paired snowpack samples from each of two watersheds located in t...

  16. Cetacean distributions relative to ocean processes in the northern California Current System

    NASA Astrophysics Data System (ADS)

    Tynan, Cynthia T.; Ainley, David G.; Barth, John A.; Cowles, Timothy J.; Pierce, Stephen D.; Spear, Larry B.

    2005-01-01

    Associations between cetacean distributions, oceanographic features, and bioacoustic backscatter were examined during two process cruises in the northern California Current System (CCS) during late spring and summer 2000. Line-transect surveys of cetaceans were conducted across the shelf and slope, out to 150 km offshore from Newport, Oregon (44.6°N) to Crescent City, California (41.9°N), in conjunction with multidisciplinary mesoscale and fine-scale surveys of ocean and ecosystem structure. Occurrence patterns (presence/absence) of cetaceans were compared with hydrographic and ecological variables (e.g., sea surface salinity, sea surface temperature, thermocline depth, halocline depth, chlorophyll maximum, distance to the center of the equatorward jet, distance to the shoreward edge of the upwelling front, and acoustic backscatter at 38, 120, 200 and 420 kHz) derived from a towed, undulating array and a bioacoustic system. Using a multiple logistic regression model, 60.2% and 94.4% of the variation in occurrence patterns of humpback whales Megaptera novaeangliae during late spring and summer, respectively, were explained. Sea surface temperature, depth, and distance to the alongshore upwelling front were the most important environmental variables during June, when humpbacks occurred over the slope (200-2000 m). During August, when humpbacks concentrated over a submarine bank (Heceta Bank) and off Cape Blanco, sea surface salinity was the most important variable, followed by latitude and depth. Humpbacks did not occur in the lowest salinity water of the Columbia River plume. For harbor porpoise Phocoena phocoena, the model explained 79.2% and 70.1% of the variation in their occurrence patterns during June and August, respectively. During spring, latitude, sea surface salinity, and thermocline gradient were the most important predictors. During summer, latitude and distance to the inshore edge of the upwelling front were the most important variables. Typically a coastal species, harbor porpoises extended their distribution farther offshore at Heceta Bank and at Cape Blanco, where they were associated with the higher chlorophyll concentrations in these regions. Pacific white-sided dolphin Lagenorhynchus obliquidens was the most numerous small cetacean in early June, but was rare during August. The model explained 44.5% of the variation in their occurrence pattern, which was best described by distance to the upwelling front and acoustic backscatter at 38 kHz. The model of the occurrence pattern of Dall's porpoise Phocoenoides dalli was more successful when mesoscale variability in the CCS was higher during summer. Thus, the responses of cetaceans to biophysical features and upwelling processes in the northern CCS were both seasonally and spatially specific. Heceta Bank and associated flow-topography interactions were very important to a cascade of trophic dynamics that ultimately influenced the distribution of foraging cetaceans. The higher productivity associated with upwelling near Cape Blanco also had a strong influence on the distribution of cetaceans.

  17. Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy

    NASA Astrophysics Data System (ADS)

    Knox, Sara Helen; Matthes, Jaclyn Hatala; Sturtevant, Cove; Oikawa, Patricia Y.; Verfaillie, Joseph; Baldocchi, Dennis

    2016-03-01

    We present 6.5 years of eddy covariance measurements of fluxes of methane (FCH4) and carbon dioxide (FCO2) from a flooded rice paddy in Northern California, USA. A pronounced warming trend throughout the study associated with drought and record high temperatures strongly influenced carbon (C) budgets and provided insights into biophysical controls of FCO2 and FCH4. Wavelet analysis indicated that photosynthesis (gross ecosystem production, GEP) induced the diel pattern in FCH4, but soil temperature (Ts) modulated its amplitude. Forward stepwise linear models and neural networking modeling were used to assess the variables regulating seasonal FCH4. As expected due to their competence in modeling nonlinear relationships, neural network models explained considerably more of the variance in daily average FCH4 than linear models. During the growing season, GEP and water levels typically explained most of the variance in daily average FCH4. However, Ts explained much of the interannual variability in annual and growing season CH4 sums. Higher Ts also increased the annual and growing season ratio of FCH4 to GEP. The observation that the FCH4 to GEP ratio scales predictably with Ts may help improve global estimates of FCH4 from rice agriculture. Additionally, Ts strongly influenced ecosystem respiration, resulting in large interannual variability in the net C budget at the paddy, emphasizing the need for long-term measurements particularly under changing climatic conditions.

  18. Effects Of Topographic Corrections On Landsat-derived Phenology of Southern California Ecosystems

    NASA Astrophysics Data System (ADS)

    Azzari, G.; Goulden, M.

    2014-12-01

    Topographic features such as elevation, slope, and aspect create local environmental conditions that can influence ecosystem characteristics and function in semi-arid regions. Topography also changes illumination conditions, creating light artifacts that affect satellite-measured reflectance. Before extracting semi-arid ecosystems properties from satellite measurements, topographic illumination artifacts need to be removed without altering the true topographic variability of such ecosystems. Many corrections techniques have been proposed, and their performance in reducing reflectance spatial variance have been extensively analysed and compared. Very little information is available on how topographic corrections affect the temporal variability of reflectance, although this type of information is critical when reflectance measurements are used to extract phenology or track recovery. We used the Google Earth Engine API to apply four different topographic corrections to a 10-years-long time series of Landsat TM images. The deviation of reflectance seasonality from known phenological information was then estimated and compared across vegetation classes and also correction methods. We will show our results using the Santa Ana Mountains as a study site, and will demonstrate the importance of topographic corrections in phenological studies.

  19. The impact of antecedent fire area on burned area in southern California coastal ecosystems.

    PubMed

    Price, Owen F; Bradstock, Ross A; Keeley, Jon E; Syphard, Alexandra D

    2012-12-30

    Frequent wildfire disasters in southern California highlight the need for risk reduction strategies for the region, of which fuel reduction via prescribed burning is one option. However, there is no consensus about the effectiveness of prescribed fire in reducing the area of wildfire. Here, we use 29 years of historical fire mapping to quantify the relationship between annual wildfire area and antecedent fire area in predominantly shrub and grassland fuels in seven southern California counties, controlling for annual variation in weather patterns. This method has been used elsewhere to measure leverage: the reduction in wildfire area resulting from one unit of prescribed fire treatment. We found little evidence for a leverage effect (leverage = zero). Specifically our results showed no evidence that wildfire area was negatively influenced by previous fires, and only weak relationships with weather variables rainfall and Santa Ana wind occurrences, which were variables included to control for inter-annual variation. We conclude that this is because only 2% of the vegetation burns each year and so wildfires rarely encounter burned patches and chaparral shrublands can carry a fire within 1 or 2 years after previous fire. Prescribed burning is unlikely to have much influence on fire regimes in this area, though targeted treatment at the urban interface may be effective at providing defensible space for protecting assets. These results fit an emerging global model of fire leverage which position California at the bottom end of a continuum, with tropical savannas at the top (leverage = 1: direct replacement of wildfire by prescribed fire) and Australian eucalypt forests in the middle (leverage ~ 0.25). PMID:23064248

  20. Land Use Compounds Habitat Losses under Projected Climate Change in a Threatened California Ecosystem

    PubMed Central

    Riordan, Erin Coulter; Rundel, Philip W.

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning. PMID:24466116

  1. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    PubMed

    Riordan, Erin Coulter; Rundel, Philip W

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st) century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning. PMID:24466116

  2. Seasonal and nonseasonal variability of satellite-derived surface pigment concentration in the California Current

    NASA Technical Reports Server (NTRS)

    Strub, P. Ted; James, Corinne; Thomas, Andrew C.; Abbott, Mark R.

    1990-01-01

    The large-scale patterns of satellite-derived surface pigment concentration off the west coast of North America are presented and are averaged into monthly mean surface wind fields over the California Current system (CCS) for the July 1979 to June 1986 period. The patterns are discussed in terms of both seasonal and nonseasonal variability for the indicated time period. The large-scale seasonal characteristics of the California Current are summarized. The data and methods used are described, and the problems known to affect the satellite-derived pigment concentrations and the wind data used in the study are discussed. The statistical analysis results are then presented and discussed in light of past observations and theory. Details of the CZCS data processing are described, and details of the principal estimator pattern methodology used here are given.

  3. Carbon Sequestration and Nitrous Oxide Emissions from Urban Turfgrass Ecosystems in Southern California

    NASA Astrophysics Data System (ADS)

    Ampleman, M. D.; Czimczik, C. I.; Townsend-Small, A.; Trumbore, S. E.

    2008-12-01

    Irrigated turfgrass ecosystems sequester carbon in soil organic matter, but they may also release nitrous oxide, due to fertilization associated with intensive management practices. Nitrous oxide is an important green house gas with a global warming potential (GWP) of 300 times that of carbon dioxide on a 100 yr time horizon. Although regular irrigation and fertilization of turfgrass create favorable conditions for both C storage and N2O release via nitrification and denitrification by soil microbes, emissions from these highly managed ecosystems are poorly constrained. We quantified N2O emissions and C storage rates for turf grass in four urban parks in the city of Irvine, CA. The turf grass systems we studied were managed by the City of Irvine. Parks were established between 1975 and 2006 on former range land with the same initial parent material; are exposed to the same climate; and form a time series (chronosequence) for investigating rates of C accumulation. We also investigated the effects of management (e.g. grass species, fertilization rate), soil moisture and temperature, and park age on N2O emission from these parks. We quantified N2O emissions using static soil chamber with four 7 min. sampling intervals, and analyzed the samples using an electron capture gas chromatograph. Soil carbon accumulation rates were determined from the slope of the organic C inventory (from 0-20 cm depth) plotted against park age. C storage rates for soils in "leisure" areas were close to 2 Mg C ha-1 yr-1, similar to rates associated with forest regrowth in northeastern US forests. However, as park age and C storage increased, N2O emissions increased as well, such that emissions from the older parks (~20 ngN m-2 s-1) were comparable to published temperate agricultural fluxes. Initial estimates suggest that the GWP associated with N2O emissions approximately offsets the effect of C storage in these ecosystems.

  4. A Comparison between Value-Added School Estimates and Currently Used Metrics of School Accountability in California

    ERIC Educational Resources Information Center

    Fagioli, Loris P.

    2014-01-01

    This study compared a value-added approach to school accountability to the currently used metrics of accountability in California of Adequate Yearly Progress (AYP) and Academic Performance Index (API). Five-year student panel data (N?=?53,733) from 29 elementary schools in a large California school district were used to address the research…

  5. Current California legislative and regulatory activity impacting geothermal hydrothermal commercialization: monitoring report No. 2. Report No. 1020

    SciTech Connect

    Not Available

    1980-04-20

    The progress of four bills relating to geothermal energy is reported. The current regulatory activities of the California Energy Commission, the Lake County Planning Commission/Lake County Air Pollution Control District, the Governor's Office of Planning and Research, the State Lands' Commission, and the California Public Utilities Commission are reviewed. (MHR)

  6. Deposition and processing of airborne nitrogen pollutants in Mediterranean-type ecosystems of southern California

    SciTech Connect

    Riggan P.J.; Lockwood, R.N.; Lopez, E.N.

    1985-09-01

    Atmospheric nitrogen deposition, associated with chronic urban air pollution, has produced stream water nitrate concentrations as high as 7.0 mg of N L/sup -1/ in chaparral watershed in the San Gabriel Mountains of Los Angeles County, CA. Stream water (NO/sub 3//sup -/) and discharge were greatest at high flow and may contribute significantly to existing groundwater NO/sub 3//sup -/ pollution. Annual NO/sub 3//sup -/ discharge ranged from 0.04 to 10.0 kg of N ha/sup -1/ over 4 years. Canopy throughfall and precipitation inputs of 23.3 and 8.2 kg of N ha/sup -1/ year/sup -1/ were high relative to other undisturbed ecosystems nationwide. Dry deposition was apparently a major source of the throughfall nitrogen. NO/sub 3//sup -/ concentrations from nearby, relatively unpolluted watersheds were lower by 1-3 orders of magnitude. NO/sub 3//sup -/ yield was elevated on watersheds where chaparral was converted to grassland in 1960 and may be greatly accelerated after wildfire because of high postfire NH/sub 4//sup +/ concentrations and rapid nitrification in terrestrial and aquatic ecosystems.

  7. The impact of El Nino on island ecosystems in the gulf of California

    SciTech Connect

    Polis, G.A.; Hurd, S.D.

    1995-09-01

    The El Nino event of 1992-1993 had significant effects on all functional levels of the terrestrial food web of islands in the Gulf of California. These islands are normally very dry; however, during this El Nino event, annual precipitation was nearly five times the median annual precipitation. This caused tremendous increases in plant cover and a significant rise in aerial arthropod abundance. At first, spiders benefited from increased productivity: in 1992, spiders increased to their highest densities in the three years of the study. However, in 1993, despite continued high plant cover and insect prey abundance, spider densities dropped precipitously. This decrease appears to be due to the emergence of numerous parasitoid wasps that formed a hidden trophic influence. Wasps were ineffective at controlling spider densities during dry years due to the absence of their adult food, nectar and pollen from flowering land plants. Abundant flowers during El Nino allowed the wasp population to increase and reproduce successfully.

  8. Root distribution in a California semi-arid oak savanna ecosystem as determined by conventional sampling and ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Koteen, L. E.; Raz-Yaseef, N.; Baldocchi, D. D.

    2011-12-01

    Koteen, Laura E., Raz-Yaseef, Naama, and Dennis D. Baldocchi University of California, Berkeley California's blue oak, Quercus douglasii, is a unique tree in several ways. Despite the intense heat of California's central valley and Sierra foothills, and absence of precipitation during dry summer months, blue oaks are winter deciduous, and rely on a suite of drought adaptation measures for highly-efficient water use. To date, much more is known about aboveground dynamics in semi-arid oak savanna ecosystems than belowground. Yet, the root system is instrumental in ensuring oak survival and in determining the magnitude and timing of land-atmospheric fluxes via its control of water and nutrient supply to aboveground processes and soil moisture content. Tree root distribution is notoriously heterogeneous. Therefore a comprehensive sampling effort is needed in order to optimally represent it. To further understand the patterns of water use in oak savanna ecosystems in the Sierra foothills of California, we have sought to characterize the root system by depth. To accomplish this goal, we have sampled the root system using conventional sampling methods (i.e. pit and core sampling), in conjunction with ground penetrating radar (GPR). Using both methods together made it possible to compensate for the limitations of each: Fine roots can only be detected by conventional sampling, and involve time intensive work in the lab, limiting sample size. GPR, on the other hand, allows for much greater spatial coverage and therefore more comprehensive characterization of the coarse root component. An extensive field campaign was executed during May 2011. 7 tree areas where chosen, representing the range of tree sizes and composition at the research site: 2 small trees, 2 large trees and 2 tree clusters. One additional very large tree that has undergone extensive additional physiological measurements was also chosen in order to posit and test hypotheses about linkages among root, soil water and photosynthetic processes. We extracted root cores according to a radial sampling scheme, with a 5 cm diameter soil auger at distances of 0.5, 1 and 1.5 the mean canopy radius from the tree. Soil cores were removed in intervals from 0-10, 10-20, 20-40, 40-60, and 60 cm to bedrock, which varied in depth from 20 cm to 1 meter. Fine roots were rinsed of soil, separated from debris, dried and weighed. GPR measurements were conducted using Noggin1000 (Sensors and Software Inc.). Prior to measurements, 8 by 8 m grids were prepared, with line density of 20 cm. Following GPR measurements, 2 pits of size 60 by 100 cm were dug down to the bedrock. Coarse roots were removed in regular depth intervals, sieved and taken to the lab. In the lab, coarse roots were washed of soil, dried, sorted into size classes and weighed. GPR visual data was analyzed using appropriate software, and the number of pixels identified as roots was linked to root biomass from pits. Lastly, 3D imaging of the root structure was achieved through the use of visualization software. The knowledge we have gained through this research will be used to improve our understanding of tree water usage, and soil moisture dynamics in this semi-arid oak savanna system.

  9. Modeling the yield potential of dryland canola under current and future climates in California

    NASA Astrophysics Data System (ADS)

    George, N.; Kaffka, S.; Beeck, C.; Bucaram, S.; Zhang, J.

    2012-12-01

    Models predict that the climate of California will become hotter, drier and more variable under future climate change scenarios. This will lead to both increased irrigation demand and reduced irrigation water availability. In addition, it is predicted that most common Californian crops will suffer a concomitant decline in productivity. To remain productive and economically viable, future agricultural systems will need to have greater water use efficiency, tolerance of high temperatures, and tolerance of more erratic temperature and rainfall patterns. Canola (Brassica napus) is the third most important oilseed globally, supporting large and well-established agricultural industries in Canada, Europe and Australia. It is an agronomically useful and economically valuable crop, with multiple end markets, that can be grown in California as a dryland winter rotation with little to no irrigation demand. This gives canola great potential as a new crop for Californian farmers both now and as the climate changes. Given practical and financial limitations it is not always possible to immediately or widely evaluate a crop in a new region. Crop production models are therefore valuable tools for assessing the potential of new crops, better targeting further field research, and refining research questions. APSIM is a modular modeling framework developed by the Agricultural Production Systems Research Unit in Australia, it combines biophysical and management modules to simulate cropping systems. This study was undertaken to examine the yield potential of Australian canola varieties having different water requirements and maturity classes in California using APSIM. The objective of the work was to identify the agricultural regions of California most ideally suited to the production of Australian cultivars of canola and to simulate the production of canola in these regions to estimate yield-potential. This will establish whether the introduction and in-field evaluation of better-adapted canola varieties can be justified, and the potential value of a California canola industry both now and in the future. Winter annual crops like canola use rainfall in a Mediterranean climate like California more efficiently than spring or summer crops. Our results suggest that under current production costs and seed prices, dry farmed canola will have good potential in certain areas of the California. Canola yields decline with annual winter precipitation, however economically viable yields are still achieved at relatively precipitation levels (200 mm). Results from simulation, combined with related economic modeling (reported elsewhere) suggest that canola will be viable in a variety of production systems in the northern Sacramento Valley and some coastal locations, even under drier future climate scenarios. The in-field evaluation of Australian canola varieties should contribute to maintain or improving resource use efficiency and farm profitability.

  10. Particulate ?15N in laminated marine sediments as a proxy for mixing between the California Undercurrent and the California Current: A proof of concept

    NASA Astrophysics Data System (ADS)

    Tems, Caitlin E.; Berelson, William M.; Prokopenko, Maria G.

    2015-01-01

    measurements of particulate ?15N in coastal marine laminated sediments provide a high-resolution proxy for fluctuations in the intensity of denitrification in the water column. In the eastern tropical North Pacific oxygen minimum zone, this denitrification signal is transported northward by the California Undercurrent, thus serving as a tracer of ocean circulation. This is verified through comparisons between salinity in the thermocline off Southern California (Santa Monica Basin) and the difference between ?15Nsed within age equivalent sediments from a southern (Pescadero Slope) and northern (Santa Monica Basin) site. Trends in this parameter, ??15Nsed, relate to Pacific Decadal Oscillation (PDO) phase changes between 1900 and 1990. We hypothesize that the decline in ??15Nsed during warm PDO phases is due to a strengthening of the California Undercurrent transporting 15N-enriched nitrate from the eastern tropical North Pacific northward. The deviation from this trend after 1990 suggests recent changes in circulation and/or California Current water nutrient biogeochemistry.

  11. Holocene climate variability in the NE Pacific: Insight from connections between the Gulf of Alaska and the California Current System

    NASA Astrophysics Data System (ADS)

    Finney, B. P.; Addison, J. A.

    2009-12-01

    Historically, decadal-scale climatic change in the North Pacific region appears to be characterized by circulation modes with coherent and recognizable spatial patterns (i.e., PDO). Examination of trends in paleo-records from widespread regions, allow recognition of how these modes have varied over time. Changes in patterns of correlations of proxies between regions suggest several periods of reorganization of ocean-atmospheric circulation during the Holocene. Major shifts appear to have occurred during climatic transitions into the Neoglacial period (ca 4000 BP), and into and out of the Little Ice Age (LIA; ca. AD 1200 and 1850). Recent paleoclimatic studies from Mt, Logan ice cores and elsewhere suggest these transitions reflect shifts between atmospheric circulation modes of more zonal vs. more meridional flow. These shifts in climate can be tracked into variability in primary productivity and higher trophic levels, such as pelagic fish, in the North Pacific marine ecosystem. Within the Gulf of Alaska, new high-resolution reconstructions of ocean paleoproductivity based on multiproxy analysis of sediment cores suggest persistent variability over multidecadal scales, punctuated by abrupt state changes in overall productivity level. Such “mega-regime shifts” are of a different nature and larger amplitude than historical regime-shifts. Records of Alaskan salmon are generally positively correlated with Gulf of Alaska productivity. Interestingly, records of California Current sardine and anchovy abundance reveal different relationships to Alaska salmon abundance during the LIA relative to historical observations. It is likely that a different pattern of ocean-atmospheric circulation during the LIA, resulted in different relationships between these regional ecosystems.

  12. Quantification of Lateral Carbon Flux in a Chaparral Ecosystem in Southern California Alessandra Rossi, Walter Oechel, Patrick Murphy

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Oechel, W. C.; Murphy, P.

    2013-12-01

    The lateral transport of carbon is a horizontal transfer of carbon away from the area it was withdrawn from the atmosphere (Ciais et al. 2006). Research regarding horizontal C transport has received much less attention in arid and semi-arid regions compared to other types of ecosystems. Drylands represent around 47.2% (Lal 2004) of the global terrestrial area and despite characterized by relatively low carbon flux, drylands comprise approximately 15.5% of the world's total soil organic carbon (SOC) (Eswaran et al. 2000, Schlesinger, 1991). Moreover, these dry areas contain at least as much soil inorganic carbon (SIC) as SOC (Eswaran et al. 2000). Therefore, these areas potentially have a large contribution to the global carbon budget and they deserve attention. A long-term observation of CO2 flux with the eddy covariance technique has been conducted since 1997 at Sky Oaks Field Station in Southern California, an area of Mediterranean climate at the climatic transition between semiarid area and desert. The long term record of CO2 flux showed the area has been a sink of CO2 of over -0.2 kgCm-2yr-1. In addition to evaluating vertical carbon fluxes, we initiated a project to evaluate lateral carbon transports using litter traps, sediment fences and two small weirs adjacent to the eddy covariance site. Preliminary results indicate that the lateral transfer of C in the area may offset the vertical influx to this shrub ecosystem. However, it is still necessary to develop the methodology to compare vertical carbon flux and the lateral carbon fluxes more accurately.

  13. Spatiotemporal trends in fish mercury from a mine-dominated ecosystem: Clear Lake, California.

    PubMed

    Suchanek, Thomas H; Eagles-Smith, Collin A; Slotton, Darell G; Harner, E James; Colwell, Arthur E; Anderson, Norman L; Mullen, Lauri H; Flanders, John R; Adam, David P; McElroy, Kenneth J

    2008-12-01

    Clear Lake, California, USA, receives acid mine drainage and mercury (Hg) from the Sulphur Bank Mercury Mine, a U.S. Environmental Protection Agency (U.S. EPA) Superfund Site that was active intermittently from 1873 to 1957 and partially remediated in 1992. Mercury concentrations were analyzed primarily in four species of Clear Lake fishes: inland silversides (Menidia beryllina, planktivore), common carp (Cyprinus carpio, benthic scavenger/omnivore), channel catfish (Ictalurus punctatus, benthic omnivorous predator), and largemouth bass (Micropterus salmoides, piscivorous top predator). These data represent one of the largest fish Hg data sets for a single site, especially in California. Spatially, total Hg (TotHg) in silversides and bass declined with distance from the mine, indicating that the mine site represents a point source for Hg loading to Clear Lake. Temporally, fish Hg has not declined significantly over 12 years since mine site remediation. Mercury concentrations were variable throughout the study period, with no monotonic trends of increase or decrease, except those correlated with boom and bust cycles of an introduced fish, threadfin shad (Dorosoma petenense). However, stochastic events such as storms also influence juvenile largemouth bass Hg as evidenced during an acid mine drainage overflow event in 1995. Compared to other sites regionally and nationally, most fish in Clear Lake exhibit Hg concentrations similar to other Hg-contaminated sites, up to approximately 2.0 mg/kg wet mass (WM) TotHg in largemouth bass. However, even these elevated concentrations are less than would be anticipated from such high inorganic Hg loading to the lake. Mercury in some Clear Lake largemouth bass exceeded all human health fish consumption guidelines established over the past 25 years by the U.S. Food and Drug Administration (1.0 mg/kg WM), the National Academy of Sciences (0.5 mg/kg WM), and the U.S. EPA (0.3 mg/kg WM). Mercury in higher trophic level fishes exceeds ecotoxicological risk assessment estimates for concentrations that would be safe for wildlife, specifically the nonlisted Common Merganser and the recently delisted Bald Eagle. Fish populations of 11 out of 18 species surveyed exhibited a significant decrease in abundance with increasing proximity to the mine; this decrease is correlated with increasing water and sediment Hg. These trends may be related to Hg or other lake-wide gradients such as distribution of submerged aquatic vegetation. PMID:19475924

  14. Interannual variation in climate-potential net primary productivity relationships in differing ecosystems of California

    SciTech Connect

    Koch, G.W.; Randerson, J.T. )

    1994-06-01

    The seasonality and interannual variation in potential net primary production (NPP) were examined in differing vegetation types in California over three years of contrasting precipitation using co-registered maps of climate, vegetation, and 1km biweekly NDVI derived from high resolution satellite AVHRR data. Differences in seasonality of the vegetation types (annual grassland, chamise chaparral, deciduous oak woodland, and evergreen oak) were clearly evident and corresponded well to patterns observed in field studies. In years and locations having high precipitation the annual peak in NDVI occurred later in all vegetation classes. The annual sum of biweekly NDVI was correlated with annual precipitation in all vegetation types, although the slopes and intercepts of the regressions differed among types. Annual grassland showed the largest increase in sumNDVI per unit increase in total precipitation and most of the variation in grassland sumNDVI was explained by variation in autumn precipitation. In general the ratio of sumNDVI to annual precipitation was dependent on the temporal distribution of precipitation with respect to the long-term average pattern. Published relationships between precipitation and NPP were used to develop equations relating annual NDVI sum to NPP.

  15. Effects of Sewage Discharge on Trophic State and Water Quality in a Coastal Ecosystem of the Gulf of California

    PubMed Central

    Vargas-González, Héctor Hugo; Arreola-Lizárraga, José Alfredo; Mendoza-Salgado, Renato Arturo; Méndez-Rodríguez, Lía Celina; Lechuga-Deveze, Carlos Hernando; Padilla-Arredondo, Gustavo; Cordoba-Matson, Miguel

    2014-01-01

    This paper provides evidence of the effects of urban wastewater discharges on the trophic state and environmental quality of a coastal water body in a semiarid subtropical region in the Gulf of California. The concentrations of dissolved inorganic nutrients and organic matter from urban wastewater primary treatment were estimated. La Salada Cove was the receiving water body and parameters measured during an annual cycle were temperature, salinity, dissolved oxygen, nitrite, nitrate, ammonia, orthophosphate, and chlorophyll a. The effects of sewage inputs were determined by using Trophic State Index (TRIX) and the Arid Zone Coastal Water Quality Index (AZCI). It was observed that urban wastewater of the city of Guaymas provided 1,237 ton N yr−1 and 811 ton P yr−1 and TRIX indicated that the receiving water body showed symptoms of eutrophication from an oligotrophic state to a mesotrophic state; AZCI also indicated that the environmental quality of the water body was poor. The effects of urban wastewater supply with insufficient treatment resulted in symptoms of eutrophication and loss of ecological functions and services of the coastal ecosystem in La Salada Cove. PMID:24711731

  16. Swept away by a turbidity current in Mendocino submarine canyon, California

    NASA Astrophysics Data System (ADS)

    Sumner, E. J.; Paull, C. K.

    2014-11-01

    We present unique observations and measurements of a dilute turbidity current made with a remotely operated vehicle in 400 m water depth near the head of Mendocino Canyon, California. The flow had a two-layer structure with a thin (0.5 to 30 m), relatively dense (<0.04 vol %) and fast (up to ~1.7 m/s) wedge-shaped lower layer overlain by a thicker (up to 89 m) more dilute and slower current. The fast moving lower layer lagged the slow moving, dilute flow front by 14 min, which we infer resulted from the interaction of two initial pulses. The two layers were strongly coupled, and the sharp interface between the layers was characterized by a wave-like instability. This is the first field-scale data from a turbidity current to show (i) the complex dynamics of the head of a turbidity current and (ii) the presence of multiple layers within the same event.

  17. Environmental fate of fungicides and other current-use pesticides in a central California estuary

    USGS Publications Warehouse

    Smalling, Kelly L.; Kuivila, Kathryn M.; Orlando, James L.; Phillips, Bryn M.; Anderson, Brian S.; Siegler, Katie; Hunt, John W.; Hamilton, Mary

    2013-01-01

    The current study documents the fate of current-use pesticides in an agriculturally-dominated central California coastal estuary by focusing on the occurrence in water, sediment and tissue of resident aquatic organisms. Three fungicides (azoxystrobin, boscalid, and pyraclostrobin), one herbicide (propyzamide) and two organophosphate insecticides (chlorpyrifos and diazinon) were detected frequently. Dissolved pesticide concentrations in the estuary corresponded to the timing of application while bed sediment pesticide concentrations correlated with the distance from potential sources. Fungicides and insecticides were detected frequently in fish and invertebrates collected near the mouth of the estuary and the contaminant profiles differed from the sediment and water collected. This is the first study to document the occurrence of many current-use pesticides, including fungicides, in tissue. Limited information is available on the uptake, accumulation and effects of current-use pesticides on non-target organisms. Additional data are needed to understand the impacts of pesticides, especially in small agriculturally-dominated estuaries.

  18. Range Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ‘Range Ecosystems’ chapter in the ‘Ecosystems of California’ sourcebook provides an integrated picture of the social, economic, and biophysical aspects of lands grazed by livestock in California. Range forms a diverse class of managed ecosystems covering about a third of the state, primarily in ...

  19. Climate Effects on Soil Carbon Sequestration in a Grass, Oak and Conifer Ecosystem of California

    NASA Astrophysics Data System (ADS)

    Pittiglio, S. L.; Zasoski, R.

    2007-12-01

    Dissolved organic matter (DOM) leaching from decomposing detritus accumulated above mineral soils is an important carbon (C) and nitrogen (N) flux that influences biogeochemical processes, C sequestration and the health of individual ecosystems. Previous studies have shown that the main process controlling DOM mobility in soils is sorption in the mineral horizons that adds to stabilized organic matter pools. The objective of this study was to determine the effect of temperature and incubation time on DOC and DON biodegradation and sorption in the mineral soil. Surface litter from a grass, oak and a conifer site were leached with deionized water for 5, 15 or 96 hours at 4, 20 or 30oC. The resulting DOM solutions were characterized using 13C NMR, XAD-8 resin and UV-vis spectroscopy. The biodegradable fraction (BDOC) of these solutions was quantified using inoculum from A horizon soils. The DOM solutions were also used in sorption experiments on A horizon soils. Supernatant from the A horizon sorption experiment was then used in a sorption experiment on Bt horizon soils and analyzed for BDOC using Bt horizon inoculum. The ability of the soils to adsorb DOC increased with increasing aromaticity in the DOC solution. Therefore, conifer DOM exhibited greater sorption than oak and grass DOM due to higher aromaticity. In all horizons, we observed net release of indigenous OM when OM-free solution was added. Net release of OM was greatest from the soils from the pine site, which had the greatest OM content among the soils we studied. ***Results still pending***

  20. Seasonal and interannual variability of pigment concentrations across a California Current frontal zone

    NASA Technical Reports Server (NTRS)

    Thomas, A. C.; Strub, P. T.

    1990-01-01

    The seasonal and interannual variability of the latitudinal position of the California Current frontal zone was investigated by examining satellite images of phytoplankton pigment from the coastal-zone color scanner for the periods 1979-1983 and 1986. The pigment concentrations associated with the zonal front were also determined. A general seasonal cycle of pigment concentrations is was established. It was found that variations in the frontal structure are controlled primarily by changes in pigment concentration north of the front. Seasonal variations were found to be minimal south of the front, where pigment concentrations remain low throughout the spring, summer, and fall.

  1. Towards a study of synoptic-scale variability of the California current system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A West Coast satellite time series advisory group was established to consider the scientific rationale for the development of complete west coast time series of imagery of sea surface temperature (as derived by the Advanced Very High Resolution Radiometer on the NOAA polar orbiter, and near-surface phytoplankton pigment concentrations (as derived by the Coastal Zone Color Scanner on Nimbus 7). The scientific and data processing requirements for such time series are also considered. It is determined that such time series are essential if a number of scientific questions regarding the synoptic-scale dynamics of the California Current System are to be addressed. These questions concern both biological and physical processes.

  2. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    NASA Astrophysics Data System (ADS)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  3. Harmonic analysis of tides and tidal currents in South San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.

    1985-01-01

    Water level observations from tide stations and current observations from current-meter moorings in South San Francisco Bay (South Bay), California have been harmonically analysed. At each tide station, 13 harmonic constituents have been computed by a least-squares regression without inference. Tides in South Bay are typically mixed; there is a phase lag of approximately 1 h and an amplification of 1??5 from north to south for a mean semi-diurnal tide. Because most of the current-meter records are between 14 and 29 days, only the five most important harmonics have been solved for east-west and north-south velocity components. The eccentricity of tidal-current ellipse is generally very small, which indicates that the tidal current in South Bay is strongly bidirectional. The analyses further show that the principal direction and the magnitude of tidal current are well correlated with the basin bathymetry. Patterns of Eulerian residual circulation deduced from the current-meter data show an anticlockwise gyre to the west and a clockwise gyre to the east of the main channel in the summer months due to the prevailing westerly wind. Opposite trends have been observed during winter when the wind was variable. ?? 1985.

  4. Integrated climate/land use/hydrological change scenarios for assessing threats to ecosystem services on California rangelands

    NASA Astrophysics Data System (ADS)

    Byrd, K. B.; Flint, L. E.; Casey, C. F.; Alvarez, P.; Sleeter, B. M.; Sohl, T.

    2013-12-01

    In California there are over 18 million acres of rangelands in the Central Valley and the interior Coast Range, most of which are privately owned and managed for livestock production. Ranches provide extensive wildlife habitat and generate multiple ecosystem services that carry considerable market and non-market values. These rangelands are under pressure from urbanization and conversion to intensive agriculture, as well as from climate change that can alter the flow of these services. To understand the coupled and isolated impacts of land use and climate change on rangeland ecosystem services, we developed six spatially explicit (250 m) coupled climate/land use/hydrological change scenarios for the Central Valley and oak woodland regions of California consistent with three IPCC emission scenarios - A2, A1B and B1. Three land use land cover (LULC) change scenarios were each integrated with two downscaled global climate models (GCMs) (a warm, wet future and a hot, dry future) and related hydrologic data. We used these scenarios to quantify wildlife habitat, water supply (recharge potential and streamflow) and carbon sequestration on rangelands and to conduct an economic analysis associated with changes in these benefits. The USGS FOREcasting SCEnarios of land-use change model (FORE-SCE), which runs dynamically with downscaled GCM outputs, was used to generate maps of yearly LULC change for each scenario from 2006 to 2100. We used the USGS Basin Characterization Model (BCM), a regional water balance model, to generate change in runoff, recharge, and stream discharge based on land use change and climate change. Metrics derived from model outputs were generated at the landscape scale and for six case-study watersheds. At the landscape scale, over a quarter of the million acres set aside for conservation in the B1 scenario would otherwise be converted to agriculture in the A2 scenario, where temperatures increase by up to 4.5 °C compared to 1.3 °C in the B1 scenario. A comparison of two watersheds - Alameda Creek, an urbanized watershed, and Upper Stony Creek, impacted by intensified agriculture, demonstrates the relative contribution of urbanization and climate change to water supply. In Upper Stony Creek, where 24% of grassland is converted to agriculture in the A1B scenario, a hotter, dryer 4-year time period could lead to a 40% reduction in streamflow compared to present day. In Alameda Creek, for the same scenario, 47% of grassland is converted to urbanized lands and streamflow may increase by 11%, resulting in a recharge:runoff ratio of 0.26; though if urbanization does not take place, streamflow could decrease by 64% and the recharge:runoff ratio would be 1.2. Model outputs quantify the impact of urbanization on water supply and show the importance of soil storage capacity. Scenarios have applications for climate-smart conservation and land use planning by identifying outcomes associated with coupled future land use scenarios and more variable and extreme potential future climates.

  5. The role of environmental controls in determining sardine and anchovy population cycles in the California Current: Analysis of an end-to-end model

    NASA Astrophysics Data System (ADS)

    Fiechter, Jerome; Rose, Kenneth A.; Curchitser, Enrique N.; Hedstrom, Katherine S.

    2015-11-01

    Sardine and anchovy are two forage species of particular interest because of their low-frequency cycles in adult abundance in boundary current regions, combined with a commercially relevant contribution to the global marine food catch. While several hypotheses have been put forth to explain decadal shifts in sardine and anchovy populations, a mechanistic basis for how the physics, biogeochemistry, and biology combine to produce patterns of synchronous variability across widely separated systems has remained elusive. The present study uses a 50-year (1959-2008) simulation of a fully coupled end-to-end ecosystem model configured for sardine and anchovy in the California Current System to investigate how environmental processes control their population dynamics. The results illustrate that slightly different temperature and diet preferences can lead to significantly different responses to environmental variability. Simulated adult population fluctuations are associated with age-1 growth (via age-2 egg production) and prey availability for anchovy, while they depend primarily on age-0 survival and temperature for sardine. The analysis also hints at potential linkages to known modes of climate variability, whereby changes in adult abundance are related to ENSO for anchovy and to the PDO for sardine. The connection to the PDO and ENSO is consistent with modes of interannual and decadal variability that would alternatively favor anchovy during years of cooler temperatures and higher prey availability, and sardine during years of warmer temperatures and lower prey availability. While the end-to-end ecosystem model provides valuable insight on potential relationships between environmental conditions and sardine and anchovy population dynamics, understanding the complex interplay, and potential lags, between the full array of processes controlling their abundances in the California Current System remains an on-going challenge.

  6. Climatic modulation of recent trends in ocean acidification in the California Current System

    NASA Astrophysics Data System (ADS)

    Turi, G.; Lachkar, Z.; Gruber, N.; Münnich, M.

    2016-01-01

    We reconstruct the evolution of ocean acidification in the California Current System (CalCS) from 1979 through 2012 using hindcast simulations with an eddy-resolving ocean biogeochemical model forced with observation-based variations of wind and fluxes of heat and freshwater. We find that domain-wide pH and {{{Ω }}}{arag} in the top 60 m of the water column decreased significantly over these three decades by about -0.02 decade-1 and -0.12 decade-1, respectively. In the nearshore areas of northern California and Oregon, ocean acidification is reconstructed to have progressed much more rapidly, with rates up to 30% higher than the domain-wide trends. Furthermore, ocean acidification penetrated substantially into the thermocline, causing a significant domain-wide shoaling of the aragonite saturation depth of on average -33 m decade-1 and up to -50 m decade-1 in the nearshore area of northern California. This resulted in a coast-wide increase in nearly undersaturated waters and the appearance of waters with {{{Ω }}}{arag}\\lt 1, leading to a substantial reduction of habitat suitability. Averaged over the whole domain, the main driver of these trends is the oceanic uptake of anthropogenic CO2 from the atmosphere. However, recent changes in the climatic forcing have substantially modulated these trends regionally. This is particularly evident in the nearshore regions, where the total trends in pH are up to 50% larger and trends in {{{Ω }}}{arag} and in the aragonite saturation depth are even twice to three times larger than the purely atmospheric CO2-driven trends. This modulation in the nearshore regions is a result of the recent marked increase in alongshore wind stress, which brought elevated levels of dissolved inorganic carbon to the surface via upwelling. Our results demonstrate that changes in the climatic forcing need to be taken into consideration in future projections of the progression of ocean acidification in coastal upwelling regions.

  7. Observed and modeled tsunami current velocities in Humboldt Bay and Crescent City Harbor, northern California

    NASA Astrophysics Data System (ADS)

    Admire, A. R.; Dengler, L.; Crawford, G. B.; uslu, B. U.; Montoya, J.

    2012-12-01

    A pilot project was initiated in 2009 in Humboldt Bay, about 370 kilometers (km) north of San Francisco, California, to measure the currents produced by tsunamis. Northern California is susceptible to both near- and far-field tsunamis and has a historic record of damaging events. Crescent City Harbor, located approximately 100 km north of Humboldt Bay, suffered US 20 million in damages from strong currents produced by the 2006 Kuril Islands tsunami and an additional US 20 million from the 2011 Japan tsunami. In order to better evaluate these currents in northern California, we deployed a Nortek Aquadopp 600kHz 2D Acoustic Doppler Current Profiler (ADCP) with a one-minute sampling interval in Humboldt Bay, near the existing National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) tide gauge station. The instrument recorded the tsunamis produced by the Mw 8.8 Chile earthquake on February 27, 2010 and the Mw 9.0 Japan earthquake on March 11, 2011. Currents from the 2010 tsunami persisted in Humboldt Bay for at least 30 hours with peak amplitudes of about 0.3 meters per second (m/s). The 2011 tsunami signal lasted for over 86 hours with peak amplitude of 0.95 m/s. Strongest currents corresponded to the maximum change in water level as recorded on the NOAA NOS tide gauge, and occurred 90 minutes after the initial wave arrival. No damage was observed in Humboldt Bay for either event. In Crescent City, currents for the first three and a half hours of the 2011 Japan tsunami were estimated using security camera video footage from the Harbor Master building across from the entrance to the small boat basin, approximately 70 meters away from the NOAA NOS tide gauge station. The largest amplitude tide gauge water-level oscillations and most of the damage occurred within this time window. The currents reached a velocity of approximately 4.5 m/s and six cycles exceeded 3 m/s during this period. Measured current velocities both in Humboldt Bay and in Crescent City were compared to calculated velocities from the Method of Splitting Tsunamis (MOST) numerical model. For Humboldt Bay, the 2010 model tsunami frequencies matched the actual values for the first two hours after the initial arrival however the amplitudes were underestimated by approximately 65%. MOST replicated the first four hours of the 2011 tsunami signal in Humboldt Bay quite well although the peak flood currents were underestimated by about 50%. MOST predicted attenuation of the signal after four hours but the actual signal persisted at a nearly constant level for more than 48 hours. In Crescent City, the model prediction of the 2011 frequency agreed quite well with the observed signal for the first two and a half hours after the initial arrival with a 50% underestimation of the peak amplitude. The results from this project demonstrate that ADCPs can effectively record tsunami currents for small to moderate events and can be used to calibrate and validate models (i.e. MOST) in order to better predict hazardous tsunami conditions and improve planned responses to protect lives and property, especially within harbors. An ADCP will be installed in Crescent City Harbor and four additional ADCPs are being deployed in Humboldt Bay during the fall of 2012.

  8. Dissolved iron and macronutrient distributions in the southern California Current System

    NASA Astrophysics Data System (ADS)

    King, Andrew L.; Barbeau, Katherine A.

    2011-03-01

    The distribution of dissolved iron in the southern California Current System (sCCS) is presented from seven research cruises between 2002 and 2006. Dissolved iron concentrations were generally low in most of the study area (<0.5 nM), although high mixed layer and water column dissolved iron concentrations (up to 8 nM) were found to be associated with coastal upwelling, both along the continental margin and some island platforms. A significant supply of iron was probably not from a deep remineralized source but rather from the continental shelf and bottom boundary layer as identified in previous studies along the central and northern California coast. With distance offshore, dissolved iron decreased more rapidly relative to nitrate in a transition zone 10-250 km offshore during spring and summer, resulting in relatively high ratios of nitrate:dissolved iron. Higher nitrate:dissolved iron ratios could be the result of utilization and scavenging in addition to an overall lower supply of iron relative to nitrate in the offshore transition zones. The low supply of iron leads to phytoplankton iron limitation and a depletion in silicic acid relative to nitrate in the coastal upwelling and transition zones of the sCCS.

  9. Current California legislative and regulatory activity impacting geothermal hydrothermal commercialization: monitoring report No. 3. Report No. 1023

    SciTech Connect

    Not Available

    1980-07-20

    The current legislative activity covers the following: federal funds, state financial incentives, air quality bills, transmission line access, state energy agency reorganization, and state energy taxes. Current regulatory activities of the California Energy Commission, and the Lake County Air Pollution Control District are reviewed. (MHR)

  10. Overview of Current Quarantines and Management of Citrus Pests in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first line of defense against exotic pests is exclusion. For citrus, this is achieved by quarantines and a requirement that all citrus germplasm introduction to California pass through the California Citrus Clonal Protection Program, University of California, Riverside. Here, all new germplasm...

  11. Large-scale forcing of environmental conditions on subarctic copepods in the northern California Current system

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Bi, Hongsheng; Peterson, William T.

    2015-05-01

    In the ocean, dominant physical processes often change at various spatial and temporal scales. Here, we examined associations between large-scale physical forcing indexed by the Pacific Decadal Oscillation (PDO), regional ocean conditions including alongshore currents in relation to the abundance of two subarctic oceanic copepods, Neocalanus plumchrus, and N. cristatus in the offshore portions of the northern California Current (NCC) system in spring of 1998-2008. We found significant relationships between the abundance of copepods, water temperature, and alongshore currents with a lag of two or four months in response to the PDO in the NCC system. During the growth season in March/April both subarctic copepod species displayed consistent cross-shelf patterns with shoreward decreasing gradient in abundance, and were negatively correlated with the PDO, sea water temperature, and alongshore currents. Our studies highlight the responses of regional ocean conditions to large-scale physical forcing and illustrate the potential for Neocalanus copepods as unique vectors for a new understanding of the ecological response in the offshore oceanic waters of the NCC system to climate variability.

  12. Predicting the Vertical Structure of Tidal Current and Salinity in San Francisco Bay, California

    NASA Astrophysics Data System (ADS)

    Ford, Michael; Wang, Jia; Cheng, Ralph T.

    1990-05-01

    A two-dimensional laterally averaged numerical estuarine model is developed to study the vertical variations of tidal hydrodynamic properties in the central/north part of San Francisco Bay, California. Tidal stage data, current meter measurements, and conductivity, temperature, and depth profiling data in San Francisco Bay are used for comparison with model predictions. An extensive review of the literature is conducted to assess the success and failure of previous similar investigations and to establish a strategy for development of the present model. A σ plane transformation is used in the vertical dimension to alleviate problems associated with fixed grid model applications in the bay, where the tidal range can be as much as 20-25% of the total water depth. Model predictions of tidal stage and velocity compare favorably with the available field data, and prototype salinity stratification is qualitatively reproduced. Conclusions from this study as well as future model applications and research needs are discussed.

  13. /sup 234/Th: /sup 238/U disequilibria within the California Current

    SciTech Connect

    Coale, K.H.; Bruland, K.W.

    1985-01-01

    Profiles of dissolved and particulate /sup 234/Th were determined at several stations within the California Current. Modeling of the disequilibria between the /sup 234/Th and /sup 238/U within the surface waters provides for estimates of the residence time of dissolved thorium with respect to particle scavenging, the particle residence time, and the particulate /sup 234/Th flux exiting the surface layer. The model-derived, first-order scavenging rate constant for dissolved thorium is observed to be proportional to the rate of primary production. Particle residence times seem to be governed by the rate of zooplankton grazing and the types of zooplankton present. Model-derived particulate /sup 234/Th fluxes are in good agreement with direct measurements by sediment traps.

  14. Trophic structure and diversity in rocky intertidal upwelling ecosystems: A comparison of community patterns across California, Chile, South Africa and New Zealand

    NASA Astrophysics Data System (ADS)

    Blanchette, C. A.; Wieters, E. A.; Broitman, B. R.; Kinlan, B. P.; Schiel, D. R.

    2009-12-01

    The Benguela, California, and Humboldt represent three of the major eastern boundary upwelling ecosystems in the world. Upwelling ecosystems are highly productive, and this productivity forms the base of the food chain, potentially leading to ecosystems similar in trophic structure and diversity among upwelling regions. Here we compare the biological and trophic structure of rocky intertidal communities in each of these major upwelling regions. Our comparison includes a fourth region, New Zealand, which spans a similar latitudinal range, and experiences intermittent upwelling. The influence of oceanographic conditions on these communities was evaluated by using the long-term mean and standard deviation of satellite-based sea surface temperature (SST). Large differences emerged in the taxonomic richness in each of these systems, with California as the most and the Humboldt as the least taxonomically rich. Across all regions, richness tended to decrease progressively from lower trophic levels (macrophytes) to higher trophic levels (carnivores), and richness was inversely correlated with the proportion of variance in SST contained in the seasonal cycle, suggesting that strongly seasonal, predictable environments are relatively low in diversity. The functional and trophic structures were remarkably similar across these four regions of the world. Macrophytes were slightly dominant over filter-feeders in terms of space occupancy in all regions except the Benguela. Densities of herbivorous grazers were greatest in California and Benguela and far outnumbered carnivore densities in all regions. Despite some similarities, the overall structure of the communities from these regions differed significantly supporting the hypothesis that the biological and ecological consequences of similar physical forcing mechanisms (e.g. upwelling) are likely to be context-dependent.

  15. Constraining the timing of turbidity current driven sediment transport down Monterey Canyon, offshore California

    NASA Astrophysics Data System (ADS)

    McGann, M.; Stevens, T.; Paull, C. K.; Ussler, W.; Buylaert, J.

    2013-12-01

    Turbidity currents are responsible for transport of sand down the Monterey Submarine Canyon, offshore California, from the shoreline to Monterey Fan. However the timing of sediment transport events and their frequencies are not fully understood despite recent monitoring of canyon events and AMS 14C dating of foraminifera from hemipelagic sediments bracketing sand deposited during turbidity flows. Quartz optically stimulated luminescence (OSL) dating in sand sequences provides a complementary means of dating sand transport. OSL dates reflect the time interval since the sand grains were last exposed to sunlight. However, the technique has never been applied extensively to canyon sediments before. Here we report both quartz OSL ages of sand deposits and benthic foraminifera ages sampled from the axial channel within Monterey Submarine Canyon and Fan via ROV-collected vibracores. This allows a rare opportunity to directly test the frequency and timing of turbidity current events at different points in the canyon. We use both single-grain and small (~2 mm area) single aliquot regeneration OSL approaches on vibracore samples from various water depths to determine sand transport frequency. Within the upper canyon (<2,000 m water depths) the OSL data require sub-decadal to decadal transit times. Sand bearing fining upward sequences yielding middle Holocene to last few hundred year ages indicate turbidity currents occur at 150 to 250 year event frequencies within the fan channel out to 3,600 m water depth. We suggest that turbidity currents have been active during the current sea-level high stand and that the submarine fan has recorded turbidity currents over the entire Holocene. The increased age spread in single grain OSL dates with water depth provides evidence of sediment mixing and reworking during turbidity flows. Apparently, sand is stored within the canyon for various amounts of time while it is in route to its current location on the fan.

  16. Differences in dynamic response of California Current salmon species to changes in ocean conditions

    NASA Astrophysics Data System (ADS)

    Botsford, Louis W.; Lawrence, Cathryn A.; Forrest Hill, M.

    2005-01-01

    While changes in the northeast Pacific Ocean in the mid-1970s apparently caused changes in salmon population growth in the Gulf of Alaska and the California Current, the responses of California Current salmon species, coho salmon ( Oncorhynchus kisutch) and chinook salmon ( O. tshawytscha) differed. Coho salmon catches declined dramatically along the coasts of California, Oregon and Washington, while chinook salmon catches did not. This provides an opportunity for comparative analysis, a rarity in the study of long-term changes in the ocean. Here we test one possible explanation for that difference, that chinook salmon populations are inherently more persistent because chinook salmon populations spawn over a range of ages, while coho salmon spawn predominantly at age 3 yr. We extended a previous theoretical approach that had been used to assess the long-term response of salmon populations with various spawning age structures to different means and variances in environmental variability. New results indicate that populations with environmental variability at the age of return to freshwater have the same characteristic identified earlier for populations with variability in the age of entry: populations spawning at multiple ages are more persistent, but that increased persistence is gained in the first few percent of departure from all spawning at a single age. Thus, in both cases the results are too sensitive to values of uncertain parameters to depend on as an explanation of the differences in response. We also approached this question by subjecting model populations with coho and chinook salmon spawning age structures to an empirical estimate of actual marine survival of coho salmon over the years 1970-2002, asking the question, if chinook salmon had been subjected to the same ocean survivals would they have experienced the same decline. The differences in spawning age structure made little difference in population responses. The dominant factor influencing the response of these species to a decline in ocean survival was the behavior of the freshwater spawner/smolt relationship at low abundance, a factor that has recently been intensively studied for coho salmon, but is poorly known for chinook salmon. These results suggest that the GLOBEC NEP should focus attention on the ocean phase of salmon life, to explain the observed difference in population response to changes in physical conditions.

  17. Trophic modeling of the Northern Humboldt Current Ecosystem, Part II: Elucidating ecosystem dynamics from 1995 to 2004 with a focus on the impact of ENSO

    NASA Astrophysics Data System (ADS)

    Taylor, Marc H.; Tam, Jorge; Blaskovic, Vernica; Espinoza, Pepe; Michael Balln, R.; Wosnitza-Mendo, Claudia; Argelles, Juan; Daz, Erich; Purca, Sara; Ochoa, Noemi; Ayn, Patricia; Goya, Elisa; Gutirrez, Dimitri; Quipuzcoa, Luis; Wolff, Matthias

    2008-10-01

    The Northern Humboldt Current Ecosystem is one of the most productive in the world in terms of fish production. Its location near to the equator permits strong upwelling under relatively low winds, thus creating optimal conditions for the development of plankton communities. These communities ultimately support abundant populations of grazing fish such as the Peruvian anchoveta, Engraulis ringens. The ecosystem is also subject to strong inter-annual environmental variability associated with the El Nio Southern Oscillation (ENSO), which has major effects on nutrient structure, primary production, and higher trophic levels. Here our objective is to model the contributions of several external drivers (i.e. reconstructed phytoplankton changes, fish immigration, and fishing rate) and internal control mechanisms (i.e. predator-prey) to ecosystem dynamics over an ENSO cycle. Steady-state models and time-series data from the Instituto del Mar del Per (IMARPE) from 1995 to 2004 provide the base data for simulations conducted with the program Ecopath with Ecosim. In simulations all three external drivers contribute to ecosystem dynamics. Changes in phytoplankton quantity and composition (i.e. contribution of diatoms and dino- and silicoflagellates), as affected by upwelling intensity, were important in dynamics of the El Nio of 1997-98 and the subsequent 3 years. The expansion and immigration of mesopelagic fish populations during El Nio was important for dynamics in following years. Fishing rate changes were the most important of the three external drivers tested, helping to explain observed dynamics throughout the modeled period, and particularly during the post-El Nio period. Internal control settings show a mix of predator-prey control settings; however a wasp-waist control of the ecosystem by small pelagic fish is not supported.

  18. Lead pollution in subtropical ecosystems on the SE Gulf of California Coast: a study of concentrations and isotopic composition.

    PubMed

    Soto-Jiménez, Martin F; Páez-Osuna, Federico; Scelfo, Genine; Hibdon, Sharon; Franks, Rob; Aggarawl, Jugdeep; Flegal, A Russell

    2008-10-01

    Lead pollution was investigated in environmental matrices and biological indicators collected from two typical subtropical coastal ecosystems in the southeast Gulf of California, Mexico. Lead concentrations and isotopic compositions ((206)Pb/(207)Pb and (208)Pb/(207)Pb) were measured using high resolution inductively-coupled plasma-mass spectrometry (HR-ICP-MS) and thermal ionization mass spectrometry (TIMS), respectively. Lead in surface estuary sediments (10.0-34.2microgg(-1)) and particulate Pb (25.0-128.7microgg(-1), >98% of total Pb) in the water column were significantly higher than levels in natural bedrock soils (15.1+/-8.3microgg(-1)) and river runoff (1.9+/-1.4microgg(-1)). Aquatic plants had Pb concentrations between 2.5 and 7.2microgg(-1), while those in macroalgae ranged from 3 to 5microgg(-1). The ranges of mean Pb concentrations in the aquatic animals studied (ranges in microgg(-1)) were as follows: zooplankton 32+/-3, mussels 2.3-3.9, oysters 1.9-7.9, snail 2.0-7.7, barnacles 0.1-18.5, fish 1.4-8.9, crab 6.3-40.2 and polychaetae 8.5-16.7. Pb values in 20-40% of oyster and fish samples and in all samples of crab exceeded acceptable levels for a food source for human consumption. Pb isotope ratios (206)Pb/(207)Pb, (208)Pb/(207)Pb in biota ranged from 1.188 to 1.206 and 2.448 to 2.470, respectively. A plot of (206)Pb/(207)Pb versus (208)Pb/(207)Pb for the environmental and biological samples collected from two study areas indicates that they contain lead from ores mined in Mexico and used in the past to produce leaded gasoline in use until 1997, natural Pb weathered from the Sierra Madre Occidental mother rock, and the later influence of inputs from a more radiogenic source related to industrial activity in the United States. Statistical software IsoSource results revealed that the Pb contained in environmental matrices and biomonitors is mostly derived from gasoline (20-90%) and US emissions (10-40%). PMID:18789522

  19. Air-sea exchange of CO2 at a Northern California coastal site along the California Current upwelling system

    NASA Astrophysics Data System (ADS)

    Ikawa, H.; Faloona, I.; Kochendorfer, J.; Paw U, K. T.; Oechel, W. C.

    2012-12-01

    Uncertainty in the air-sea CO2 exchange (CO2 flux) in coastal upwelling zones is attributed to high temporal variability, which is caused by changes in ocean currents. Upwelling transports heterotrophic, CO2 enriched water to the surface and releases CO2 to the atmosphere, whereas the presence of nutrient-rich water at the surface supports high primary production and atmospheric CO2 uptake. To quantify the effects of upwelling on CO2 fluxes, we measured CO2 flux at a coastal upwelling site off of Bodega Bay, California, during the summer of 2007 and the fall of 2008 using the eddy covariance technique and the bulk method with pCO2 measurements from November 2010 to July 2011. Variations in sea surface temperatures (SST) and alongshore wind speeds suggest that the measurement period in 2007 coincided with a typical early-summer upwelling period and the measurement period in 2008 was during a typical fall relaxation period. A strong source of CO2 (~1.5 ± 7 SD (standard deviation) g C m-2 day-1) from the ocean to the atmosphere during the upwelling period was concurrent with high salinity, low SST, and low chlorophyll density. In contrast, a weak source of CO2 flux (~0.2 ± 3 SD g C m-2 day-1) was observed with low salinity, high SST and high chlorophyll density during the relaxation period. Similarly, the sink and source balance of CO2flux was highly related to salinity and SST during the pCO2 measurement periods; high salinity and low SST corresponded to high pCO2, and vice versa. We estimated that the coastal area off Bodega Bay was likely a source of CO2 to the atmosphere based on the following conclusions: (1) the overall CO2 flux estimated from both eddy covariance and pCO2 measurements showed a source of CO2; (2) although the relaxation period during the 2008 measurements were favorable to CO2 uptake, CO2 flux during this period was still a slight source, (3) salinity and SST were found to be good predictors of the CO2 flux for both eddy covariance and pCO2 measurements, and historical data of daily averaged SST and salinity between 1988 to 2011 show that 99% of the data falls within the range of our observation in May-June 2007, August-September 2008 and November 2010-July 2011 indicating that our data set was representative of the annual variations in the sea state. Based on the developed relationship between pCO2 and SST and salinity, the average annual CO2 flux between 1988 and 2011 was estimated to be ~35 mol C m-2 yr-1. The peak monthly CO2 flux of ~7 mol C m-2 month-1 accounted for about 30% of the dissolved inorganic carbon in the surface mixed-layer.

  20. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river

    NASA Astrophysics Data System (ADS)

    Warrick, Jonathan A.; Xu, Jingping; Noble, Marlene A.; Lee, Homa J.

    2008-05-01

    Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (˜5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (˜1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.

  1. Climatic impacts on phenology in chaparral- and coastal sage scrub-dominated ecosystems in southern California using MODIS-derived time series

    NASA Astrophysics Data System (ADS)

    Willis, K. S.; Gillespie, T.; Okin, G. S.; MacDonald, G. M.

    2013-12-01

    Remote sensing monitoring of vegetation phenology can be an important tool for detecting the impacts of climate change on whole ecosystem functioning at local to regional scales. This study elucidates climate-phenology relations and the changes occurring in the phenology of both chaparral and coastal sage scrub-dominated ecosystems in southern California. Whole ecosystem phenology is monitored for the period 2001-2012 using the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) derived from MODIS MOD13Q1. Changes in phenology are assessed through a comparison of the time series with temperature, precipitation, and Palmer Drought Severity Index (PDSI) data and by computing time series phenology metrics. Overall we find that the vegetation index values have fluctuated around a stable mean for vegetation types for the entire time period. However, interannual variability is high, likely due to annual variations in climate. The most significant statistical correlation in chaparral ecosystems were found between NDVI and PDSI, indicating that chaparral phenology is likely driven by drought and soil water deficit at the multi-monthly timescale. However, coastal sage scrub correlations were highest between NDVI and temperature + precipitation combined with no time lag. This reflects a more immediate response by these shallow rooted and deciduous species. The start of the growing season in both plant communities occurred early in rainy years, and later in years with lower PDSI (drought-associated). This suggests that future predicted climate change in southern California may cause increased interannual variability in chaparral phenology cycles, with early initiation of the growing season occurring in years following large rain events, and later initiation in drought years. Coastal sage scrub-dominated areas will be less influenced by lower frequency, long-term drought, but more immediately affected by discrete precipitation events and timing.

  2. Long-term change and stability in the California Current System: lessons from CalCOFI and other long-term data sets

    NASA Astrophysics Data System (ADS)

    Rebstock, Ginger A.

    2003-08-01

    The California Current System (CCS) is a highly variable system, both spatially and temporally, that is strongly affected by low-frequency climatic fluctuations. This paper reviews evidence for long-term (decadal-scale) change in the physics and biology of the CCS over the last 50-100 years, as well as evidence for stability in planktonic community structure and long-term persistence of populations. Increases in water temperature, thermocline depth and stratification in the CCS have been accompanied by changes in populations of kelp, diatoms, foraminifera, radiolarians, intertidal invertebrates, zooplankton, fish and seabirds. However, there is also evidence for stability in assemblages of larval fish, calanoid copepods and radiolarians. Statistical averaging (the portfolio effect) may explain some aspects of stability in assemblages. Advection of planktonic populations may account for rapid recovery of biomass and dominance structure following perturbations such as strong El Nio events. Planktonic populations in the CCS may be adapted to large-scale biotic and abiotic variability, through a combination of advection of populations and life history traits. Several lessons may be learned from the California Cooperative Oceanic Fisheries Investigations and other long-term data sets: (1) long time series are needed to understand the dynamics of the ecosystem; (2) life histories are important determinants of species responses to environmental forcing, even in the plankton; and (3) the CCS is simultaneously variable and stable, and these properties are not necessarily in conflict.

  3. Characterizing changes in streamflow under historical and current climates for the Russian River, California

    NASA Astrophysics Data System (ADS)

    Curtis, J.; Flint, L. E.

    2014-12-01

    Precipitation in California is naturally more variable than elsewhere in the United States, and climate change is expected to increase the frequency and severity of precipitation and streamflow anomalies. As part of a larger effort to assess flow conditions under historical, current, and future climates, we characterized the change in the Russian River's mainstem flows between two 30-year periods that represent historical (1951 to 1980) and current (1981 to 2010) climate conditions. Analyses included measured data from one mainstem gage (Ukiah) that represents natural flow conditions, and three mainstem gages (Hopland, Healdsburg, and Guerneville) regulated by diversion into the Russian River from the adjacent Eel River and by reservoir storage. Analysis of natural flows at the Ukiah gage under the current climate indicates statistically significant increases in low flow metrics that include: median monthly flows from July to October; number of zero flow days; and 1-, 3-, 5-, 7-, 30- and 90-day minimum flows. In contrast to the Ukiah gage, decreases in low flows under the current climate at the three regulated-streamflow gages varied with distance downstream. Statistically significant declines in median monthly flows occurred during the second period (1981-2010) from August to November at Hopland, September to November at Healdsburg and in October at Guerneville. Although mean annual flow declined at all four gages during the second period and median monthly low flows declined at the downstream gages, median monthly low flows and minimum flows at the Ukiah gage which represents natural flows increased during the driest months (July to October). Results from this study will be used to support ecological studies and water resource planning within the Russian River watershed. The relative importance of climate and watershed response on the quality and quantity of streamflow under historical and current climates will be assessed and results compared to analyses of unimpaired flows estimated using a basin-scale water balance model calibrated to low flow conditions.

  4. Estimating the impacts of fishing on dependent predators: a case study in the California Current.

    PubMed

    Field, J C; MacCall, A D; Bradley, R W; Sydeman, W J

    2010-12-01

    Juvenile rockfish (Sebastes spp.) are important prey to seabirds in the California Current System, particularly during the breeding season. Both seabird breeding success and the abundance of pelagic juvenile rockfish show high interannual variability. This covariation is largely a response to variable ocean conditions; however, fishing on adult rockfish may have had consequences for seabird productivity (e.g., the number of chicks fledged per breeding pair) by reducing the availability of juvenile rockfish to provisioning seabird parents. We tested the hypothesis that fishing has decreased juvenile rockfish availability and thereby limited seabird productivity over the past 30 years. We quantified relationships between observed juvenile rockfish relative abundance and seabird productivity, used fisheries stock assessment approaches to estimate the relative abundance of juvenile rockfish in the absence of fishing, and compared the differences in seabird productivity that would have resulted without rockfish fisheries. We examined the abundance of juvenile rockfish and the corresponding productivity of three seabird species breeding on Southeast Farallon Island (near San Francisco, California, USA) from the early 1980s to the present. Results show that while the relative abundance of juvenile rockfish has declined to approximately 50% of the estimated unfished biomass, seabirds achieved 75-95% of the estimated un-impacted levels of productivity, depending upon the species of bird and various model assumptions. These results primarily reflect seabirds with "conservative" life histories (one egg laid per year) and may be different for species with more flexible life history strategies (greater reproductive effort). Our results are consistent with the premise that the impacts of local rockfish fisheries on seabird productivity are less than impacts that have occurred to the prey resources themselves due to ocean climate and the ability of seabirds to buffer against changes in prey availability through prey-switching and other behavioral mechanisms. PMID:21265453

  5. Observations of the poleward undercurrent in the California Current System, 1995-2005

    NASA Astrophysics Data System (ADS)

    Pierce, S. D.; Kosro, P. M.; Wilson, C. D.; Hickey, B.; Fleischer, G. W.; Ressler, P. H.; Barth, J. A.

    2006-12-01

    As one of the oceanographic components of the joint US-Canada hake survey cruises in recent years, velocities were observed with shipboard acoustic Doppler current profiler. A series of velocity sections extending from mid-shelf to mid-slope at about 18 km meridional spacing were collected in 1995, 1998, 2001, and 2003 from Monterey to Vancouver Island (Monterey to Cape Mendocino in 2005). Tidal velocities are estimated and removed using OSU Tidal Inversion Software. Survey-means of all the cross-shore sections reveal significant subsurface poleward flow with a core of 0.1 m/s for each survey. The depth of the maximum poleward velocity varies from 200-300 m. Mean poleward transports range from 0.6-1.0 Sv. The undercurrent core is centered 20-30 km (10-15 km) off the shelf break in 1995 and 1998 (2001 and 2003). These observations generally confirm previous Eulerian as well as Lagrangian studies of the poleward undercurrent, increasing confidence in the robustness of the feature. The undercurrent is notably consistent, especially given the amount of interannual variability in the California Current System in general.

  6. Energy from California agriculture and forest resources: current and future potential and constraints

    SciTech Connect

    Sachs, R.H.

    1981-01-01

    More than 0.3 Quad of energy in the form of liquid, solid, and gaseous fuels can be produced from California forests and farms without altering significantly the supply of food, feed or fiber. The costs of biomass to fuels via direct combustion and gasification conversion systems is now lower than the petroleum or natural gas-derived fuels that they would replace. Yields of 10 tons dry matter per acre per year would be expected from all irrigated agricultural regions if the most productive crops such as corn, sorghum, sugar beets, certain forages and tree crops are grown. Double cropping, e.g., winter grain followed by corn or sorghum in the summer, may increase yields above 10 tons dry matter per year. As much as 4 tons per acre should be available as residues from corn or sorghum for energy conversion systems. With selected crop acreage and utilization schemes up to 5 billion gallons of fermentation ethanol can be produced annually from high starch and sugar crops. With little change in current crop production and utilization over 1 billion gallons of ethanol and methanol can be produced by conversion of current collectable crop, forestry and urban residues.

  7. Development of the California Current during the past 12,000 yr based on diatoms and silicoflagellates

    USGS Publications Warehouse

    Barron, John A.; Bukry, David

    2007-01-01

    Detailed diatom and silicoflagellates records in three cores from the offshore region of southern Oregon to central California reveal the evolution of the northern part of the California Current during the past 12,000 yr. The early Holocene, prior to ∼ 9 ka, was characterized by relatively warm sea surface temperatures (SST), owing to enhanced northerly flow of the subtropical waters comparable to the modern Davidson Current. Progressive strengthening of the North Pacific High lead to intensification of the southward flow of the California Current at ∼ 8 ka, resulting in increased coastal upwelling and relatively cooler SST which persisted until ∼ 5 ka. Reduced southward flow of the California Current between ∼ 4.8 ka and 3.6 ka may have been responsible for a period of decreased upwelling. Modern seasonal oceanographic cycles, as evidenced by increased spring–early summer coastal upwelling and warming of early fall SST evolved between 3.5 and 3.2 ka. Widespread occurrence of paleoceanographic and paleoclimatic change between ∼ 3.5–3.0 ka along the eastern margins of the North Pacific was likely a response to increasing ENSO variability in the tropical Pacific.

  8. The Relationship of Size to Current Expense of Education in California Single-College Public Junior College Districts.

    ERIC Educational Resources Information Center

    Ostrom, William Albert

    This study was an investigation of unit costs during the 1966-67 school year for single-college, California public junior college districts. The relationships between institutional size and total current expense of education, expenditures in seven major budget classifications, and expenditures in certain combinations of budgetary classes were…

  9. Fire effects on aquatic ecosystems: an assessment of the current state of the science

    USGS Publications Warehouse

    Rebecca J. Bixby; Scott D. Cooper; Gresswell, Bob; Lee E. Brown; Clifford N. Dahm; Kathleen A. Dwire

    2015-01-01

    Fire is a prevalent feature of many landscapes and has numerous and complex effects on geological, hydrological, ecological, and economic systems. In some regions, the frequency and intensity of wildfire have increased in recent years and are projected to escalate with predicted climatic and landuse changes. In addition, prescribed burns continue to be used in many parts of the world to clear vegetation for development projects, encourage desired vegetation, and reduce fuel loads. Given the prevalence of fire on the landscape, authors of papers in this special series examine the complexities of fire as a disturbance shaping freshwater ecosystems and highlight the state of the science. These papers cover key aspects of fire effects that range from vegetation loss and recovery in watersheds to effects on hydrology and water quality with consequences for communities (from algae to fish), food webs, and ecosystem processes (e.g., organic matter subsidies, nutrient cycling) across a range of scales. The results presented in this special series of articles expand our knowledge of fire effects in different biomes, water bodies, and geographic regions, encompassing aquatic population, community, and ecosystem responses. In this overview, we summarize each paper and emphasize its contributions to knowledge on fire ecology and freshwater ecosystems. This overview concludes with a list of 7 research foci that are needed to further our knowledge of fire effects on aquatic ecosystems, including research on: 1) additional biomes and geographic regions; 2) additional habitats, including wetlands and lacustrine ecosystems; 3) different fire severities, sizes, and spatial configurations; and 4) additional response variables (e.g., ecosystem processes) 5) over long (>5 y) time scales 6) with more rigorous study designs and data analyses, and 7) consideration of the effects of fire management practices and policies on aquatic ecosystems.

  10. Interannual variability in the Northern California Current food web structure: Changes in energy flow pathways and the role of forage fish, euphausiids, and jellyfish

    NASA Astrophysics Data System (ADS)

    Ruzicka, James J.; Brodeur, Richard D.; Emmett, Robert L.; Steele, John H.; Zamon, Jeannette E.; Morgan, Cheryl A.; Thomas, Andrew C.; Wainwright, Thomas C.

    2012-09-01

    The Northern California Current (NCC) is a seasonally productive and open ecosystem. It is home to both a diverse endemic community and to seasonally transient species. Productivity and food web structure vary seasonally, interannually, and decadally due to variability in coastal upwelling, climate-scale physical processes, and the migratory species entering the system. The composition of the pelagic community varies between years, including changes to mid-trophic level groups that represent alternate energy-transfer pathways between lower and upper trophic levels (forage fishes, euphausiids, jellyfish). Multiple data sets, including annual spring and summer mesoscale surveys of the zooplankton, pelagic fish, and seabird communities, were used to infer NCC trophic network arrangements and develop end-to-end models for each of the 2003-2007 upwelling seasons. Each model was used to quantify the interannual variability in energy-transfer efficiency from bottom to top trophic levels. When each model was driven under an identical nutrient input rate, substantial differences in the energy available to each functional group were evident. Scenario analyses were used to examine the roles of forage fishes, euphausiids, and jellyfish (small gelatinous zooplankton and large carnivorous jellyfish) as alternate energy transfer pathways. Euphausiids were the more important energy transfer pathway; a large proportion of the lower trophic production consumed was transferred to higher trophic levels. In contrast, jellyfish acted as a production loss pathway; little of the production consumed was passed upwards. Analysis of the range of ecosystem states observed interannually and understanding system sensitivity to variability among key trophic groups improves our ability to predict NCC ecosystem response to short- and long-term environmental change.

  11. Emergence of burrowing urchins from California continental shelf sediments-A response to alongshore current reversals?

    USGS Publications Warehouse

    Nichols, F.H.; Cacchione, D.A.; Drake, D.E.; Thompson, J.K.

    1989-01-01

    Two sequences of bottom photographs taken every two or four hours for two months during the Coastal Ocean Dynamics Experiment (CODE) off the Russian River, California, reveal the dynamic nature of interations between the water column, the sediments, and benthic organisms in the mid-shelf silt deposit. Time-lapse photographs taken between late spring and early summer in 1981 and 1982 show that the subsurface-dwelling urchin Brisaster latifrons (one of the largest invertebrates found in shelf-depth fine sediment off the U.S. Pacific coast) occasionally emerged from the sediment, plowed the sediment surface during the course of a few hours to several days, then buried themselves again. Frame-by-frame study of the film sequences shows that the urchins typically emerged following relaxation of coastal upwelling, periods characterized by current direction reversals and increases in bottom water turbidity. Among the possible causes of the emergence of urchins and the consequent bioturbation of the upper few cm of sediment, a response to an enhanced food supply seems most plausible. Circumstantial evidence suggests the possibility that phytoplankton sedimentation during periods of upwelling relaxation could provide a new source of food at the sediment surface. ?? 1989.

  12. California coast nearshore processes study. [nearshore currents, sediment transport, estuaries, and river discharge

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.

  13. Environmental control of living symbiotic and asymbiotic foraminifera of the California Current

    NASA Astrophysics Data System (ADS)

    Ortiz, J. D.; Mix, A. C.; Collier, R. W.

    1995-12-01

    Plankton tows from the northern California Current constrain biological and physical influences on living planktonic foraminifera. In this region, the dominant factors controlling the size and distribution of symbiotic and asymbiotic species are light and food. Food decreases offshore. Light, needed for symbiont photosynthesis, increases offshore as water turbidity lessens. Asymbiotic foraminifera (e.g., right-coiling Neogloboquadrina pachyderma, Globigerina quinqueloba, and Globigerina bulloides), which survive by grazing, dominate the coastal fauna. The most abundant of these species, right-coiling Neogloboquadrina pachyderma, did not change in size in response to increasing food. Species that benefit from symbiont photosynthesis (Orbulina universa, Neogloboquadrina dutertrei, Globigerinoides ruber, and Globigerinita glutinata) dominate the offshore fauna. Individuals of these species are rare and have smaller shells in turbid waters where light is limited. G. ruber, which is near its thermal tolerance limit of ≈14°C, is the only species to demonstrate a clear temperature response. Although temperature may control a foraminiferal species' distribution near the limits of its thermal tolerance, food and light appear to provide the primary control under more favorable thermal conditions. We infer that gradients in food and light can result in quantifiable sedimentary patterns related to oceanic productivity through changes in plankton biomass and turbidity.

  14. Temporal and sex-specific variability in Rhinoceros Auklet diet in the central California Current system

    NASA Astrophysics Data System (ADS)

    Carle, Ryan D.; Beck, Jessie N.; Calleri, David M.; Hester, Michelle M.

    2015-06-01

    We used stable isotopes (δ15N and δ13C) and compared prey provided to chicks by each sex to evaluate seasonal and sex-specific diets in Rhinoceros Auklets (Cerorhinca monocerata) in the central California Current system during 2012-2013. Mixing models indicated northern anchovy (Engraulis mordax) were important prey for adults during fall/winter and juvenile rockfishes (Sebastes spp.) were important prey during incubation both years. Adult trophic level increased between incubation and chick-rearing periods in both years. During 2012, δ15N and δ13C of chick-rearing males and females differed significantly; mixing models indicated that females ate more Pacific saury (Cololabis saira) and less market squid (Doryteuthis opalescens) than males. Likewise, females delivered significantly more Pacific saury and less market squid to chicks than males during 2012. Chick growth (g d- 1) and chick survival to fledging were significantly lower during 2012 than 2013, likely because chicks were fed lesser quality prey or fed less frequently in 2012. Lesser body mass of females during incubation in 2012 indicated sex-specific diet differences may have been related to female energetic constraints. The observed variability in Rhinoceros Auklet diet underscores the importance of managing multiple prey populations in this system so that generalist predators have sufficient resources through changing conditions.

  15. Mixed layer depth variability in the tropical boundary of the California Current, 1997-2007

    NASA Astrophysics Data System (ADS)

    Jeronimo, Gilberto; Gomez-Valdes, Jose

    2010-05-01

    The variability of the mixed layer depth (MLD) is examined over a decade (1997-2007) for the tropical boundary of the California Current (24-32°N), using conductivity-temperature-depth observations collected by quarterly survey cruises. Results indicate that salinity gradients control MLD rather than temperature gradients. The mean state of the upper ocean indicates that contours of constant MLD are parallel to the coast, with mixed layer thickness decreasing toward the coastal zone. The deepest (˜70 m) thickness is reached in January and the shallowest (˜15 m) occurs in July. The warmer conditions (summer) are reproduced for a simple thermal energy equation. The rest of the seasons are reproduced for a one-dimensional momentum balance for the upper ocean, which includes Ekman dynamics and stratification. This comparison indicates that the variability of MLD is mainly due to wind-driven phenomena except during the heating period. In particular, seasonal and interannual variability of the MLD are correlated with offshore Ekman transport. An abrupt MLD change occurs between January 1998 and January 2000 associated with the strong El Niño-La Niña cycle shift that occurred in this period.

  16. How have past fire disturbances contributed to the current carbon balance of boreal ecosystems?

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Zhu, D.; Wang, T.; Peng, S. S.; Piao, S. L.

    2016-02-01

    Boreal fires have immediate effects on regional carbon budgets by emitting CO2 into the atmosphere at the time of burning, but they also have legacy effects by initiating a long-term carbon sink during post-fire vegetation recovery. Quantifying these different effects on the current-day pan-boreal (44-84° N) carbon balance and quantifying relative contributions of legacy sinks by past fires is important for understanding and predicting the carbon dynamics in this region. Here we used the global dynamic vegetation model ORCHIDEE-SPITFIRE (Organising Carbon and Hydrology In Dynamic Ecosystems - SPread and InTensity of FIRE) to attribute the contributions by fires in different decades between 1850 and 2009 to the carbon balance of 2000-2009, taking into account the atmospheric CO2 change and climate change since 1850. The fire module of ORCHIDEE-SPITFIRE was turned off for each decade in turn and was also turned off before and after the decade in question in order to model the legacy carbon trajectory by fires in each past decade. We found that, unsurprisingly, fires that occurred in 2000-2009 are a carbon source (-0.17 Pg C yr-1) for the carbon balance of 2000-2009, whereas fires in all decades before 2000 contribute carbon sinks with a collective contribution of 0.23 Pg C yr-1. This leaves a net fire sink effect of 0.06 Pg C yr-1, or 6.3 % of the simulated regional carbon sink (0.95 Pg C yr-1). Further, fires with an age of 10-40 years (i.e., those that occurred during 1960-1999) contribute more than half of the total sink effect of fires. The small net sink effect of fires indicates that current-day fire emissions are roughly balanced out by legacy sinks. The future role of fires in the regional carbon balance remains uncertain and will depend on whether changes in fires and associated carbon emissions will exceed the enhanced sink effects of previous fires, both being strongly affected by global change.

  17. Top-down and bottom-up factors affecting seabird population trends in the California current system (1985-2006)

    NASA Astrophysics Data System (ADS)

    Ainley, David G.; David Hyrenbach, K.

    2010-03-01

    To characterize the environmental factors affecting seabird population trends in the central portion of the California current system (CCS), we analyzed standardized vessel-based surveys collected during the late spring (May-June) upwelling season over 22 yr (1985-2006). We tested the working hypothesis that population trends are related to species-specific foraging ecology, and predicted that temporal variation in population size should be most extreme in diving species with higher energy expenditure during foraging. We related variation in individual species abundance (number km -2) to seasonally lagged (late winter, early spring, late spring) and concurrent ocean conditions, and to long-term trends (using a proxy variable: year) during a multi-decadal period of major fluctuations in the El Niño-Southern oscillation (ENSO) and the Pacific decadal oscillation (PDO). We considered both remote (Multivariate ENSO Index, PDO) and local (coastal upwelling indices and sea-surface temperature) environmental variables as proxies for ocean productivity and prey availability. We also related seabird trends to those of potentially major trophic competitors, humpback ( Megaptera novaeangliae) and blue ( Balaenoptera musculus) whales, which increased in number 4-5-fold midway during our study. Cyclical oscillations in seabird abundance were apparent in the black-footed albatross ( Phoebastria nigripes), and decreasing trends were documented for ashy storm-petrel ( Oceanodroma homochroa), pigeon guillemot ( Cepphus columbus), rhinoceros auklet ( Cerorhinca monocerata), Cassin’s auklet ( Ptychoramphus aleuticus), and western gull ( Larus occidentalis); the sooty shearwater ( Puffinus griseus), exhibited a marked decline before signs of recovery at the end of the study period. The abundance of nine other focal species varied with ocean conditions, but without decadal or long-term trends. Six of these species have the largest global populations in the CCS, and four are highly energetic, diving foragers. Furthermore, three of the diving species trends were negatively correlated with the abundance of humpback whales in the study area, a direct competitor for the same prey. Therefore, on the basis of literature reviewed, we hypothesize that the seabirds were affected by the decreasing carrying capacity of the CCS, over-exploitation of some prey stocks and interference competition from the previously exploited, but now increasing, baleen whale populations. Overall, our study highlights the complexity of the ecological factors driving seabird population trends in the highly variable and rapidly changing CCS ecosystem.

  18. Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Powell, Jesse R.; Ohman, Mark D.

    2015-02-01

    Fronts represent sharp boundaries between water masses, but seasonal and interannual variation in their occurrence and effects on the distributions of pelagic organisms are poorly understood. This study reports results from six years of ocean front observations (2006-2011) along two transect lines across the Southern California Current System (SCCS) using autonomous Spray ocean gliders. During this time, 154 positive near-surface density fronts were identified within 124 completed transects consisting of nearly 23,000 vertical profiles. The incidence of surface density fronts showed distinct seasonality along line 80 off Pt. Conception, with fewer fronts occurring during winter months and more numerous fronts in the nearshore and during spring, summer and fall. On line 90, fronts were the least common nearshore and most frequent in a transitional region offshore. Horizontal density gradients in the surface layer (0-50 m) were significantly correlated with horizontal gradients in surface layer Chlorophyll-a (Chl-a) fluorescence, as well as with mean volume backscatter (MVBS) recorded by a 750 kHz acoustic Doppler profiler. Density fronts were not only zones of rapidly changing phytoplankton and zooplankton biomass concentrations, but also more likely to be zones of enhanced acoustic backscatter and Chl-a fluorescence than regions flanking the fronts. MVBS and Chl-a gradients were significantly correlated with gradients in other hydrographic variables such as temperature, salinity, and spiciness, and weakly with cross-track current velocity, though density gradients remained the single best predictor of strong MVBS and fluorescence gradients. Large mobile predators foraging in the vicinity of such features could locate habitat with higher zooplankton biomass concentrations up to 85% of the time by traveling up local density gradients (i.e., toward rather than away from denser surface waters). We discuss implications of these results in the context of long-term trends in ocean fronts in the SCCS.

  19. MICROBIAL INDICATORS OF AQUATIC ECOSYSTEM CHANGE: CURRENT APPLICATIONS TO EUTROPHICATION STUDIES. (R828677C001)

    EPA Science Inventory

    Human encroachment on aquatic ecosystems is increasing at an unprecedented rate. The impacts of human pollution and habitat alteration are most evident and of greatest concern at the microbial level, where a bulk of production and nutrient cycling takes place. Aquatic ecosyste...

  20. Bio-Optical Measurement and Modeling of the California Current and Polar Oceans. Chapter 13

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg

    2001-01-01

    This Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project contract supports in situ ocean optical observations in the California Current, Southern Ocean, Indian Ocean as well as merger of other in situ data sets we have collected on various global cruises supported by separate grants or contracts. The principal goals of our research are to validate standard or experimental products through detailed bio-optical and biogeochemical measurements, and to combine ocean optical observations with advanced radiative transfer modeling to contribute to satellite vicarious radiometric calibration and advanced algorithm development. In collaboration with major oceanographic ship-based observation programs funded by various agencies (CalCOFI, US JGOFS, NOAA AMLR, INDOEX and Japan/East Sea) our SIMBIOS effort has resulted in data from diverse bio-optical provinces. For these global deployments we generate a high-quality, methodologically consistent, data set encompassing a wide-range of oceanic conditions. Global data collected in recent years have been integrated with our on-going CalCOFI database and have been used to evaluate Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) algorithms and to carry out validation studies. The combined database we have assembled now comprises more than 700 stations and includes observations for the clearest oligotrophic waters, highly eutrophic blooms, red-tides and coastal case two conditions. The data has been used to validate water-leaving radiance estimated with SeaWiFS as well as bio optical algorithms for chlorophyll pigments. The comprehensive data is utilized for development of experimental algorithms (e.g., high-low latitude pigment transition, phytoplankton absorption, and cDOM).

  1. Thermohaline structure in the California Current System: Observations and modeling of spice variance

    NASA Astrophysics Data System (ADS)

    Todd, Robert E.; Rudnick, Daniel L.; Mazloff, Matthew R.; Cornuelle, Bruce D.; Davis, Russ E.

    2012-02-01

    Upper ocean thermohaline structure in the California Current System is investigated using sustained observations from autonomous underwater gliders and a numerical state estimate. Both observations and the state estimate show layers distinguished by the temperature and salinity variability along isopycnals (i.e., spice variance). Mesoscale and submesoscale spice variance is largest in the remnant mixed layer, decreases to a minimum below the pycnocline near 26.3 kg m-3, and then increases again near 26.6 kg m-3. Layers of high (low) meso- and submesoscale spice variance are found on isopycnals where large-scale spice gradients are large (small), consistent with stirring of large-scale gradients to produce smaller scale thermohaline structure. Passive tracer adjoint calculations in the state estimate are used to investigate possible mechanisms for the formation of the layers of spice variance. Layers of high spice variance are found to have distinct origins and to be associated with named water masses; high spice variance water in the remnant mixed layer has northerly origin and is identified as Pacific Subarctic water, while the water in the deeper high spice variance layer has southerly origin and is identified as Equatorial Pacific water. The layer of low spice variance near 26.3 kg m-3 lies between the named water masses and does not have a clear origin. Both effective horizontal diffusivity, κh, and effective diapycnal diffusivity, κv, are elevated relative to the diffusion coefficients set in the numerical simulation, but changes in κh and κv with depth are not sufficient to explain the observed layering of thermohaline structure.

  2. Bio-Optical Measurement and Modeling of the California Current and Polar Oceans

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Fargion, Giulietta S. (Technical Monitor)

    2001-01-01

    The principal goals of our research are to validate standard or experimental products through detailed bio-optical and biogeochemical measurements, and to combine ocean optical observations with advanced radiative transfer modeling to contribute to satellite vicarious radiometric calibration and advanced algorithm development. To achieve our goals requires continued efforts to execute complex field programs globally, as well as development of advanced ocean optical measurement protocols. We completed a comprehensive set of ocean optical observations in the California Current, Southern Ocean, Indian Ocean requiring a large commitment to instrument calibration, measurement protocols, data processing and data merger. We augmented separately funded projects of our own, as well as others, to acquire ill situ data sets we have collected on various global cruises supported by separate grants or contracts. In collaboration with major oceanographic ship-based observation programs funded by various agencies (CalCOFI, US JGOFS, NOAA AMLR, INDOEX and Japan/East Sea) our SIMBIOS effort has resulted in data from diverse bio-optical provinces. For these global deployments we generate a high-quality, methodologically consistent, data set encompassing a wide-range of oceanic conditions. Global data collected in recent years have been integrated with our on-going CalCOFI database and have been used to evaluate SeaWiFS algorithms and to carry out validation studies. The combined database we have assembled now comprises more than 700 stations and includes observations for the clearest oligotrophic waters, highly eutrophic blooms, red-tides and coastal case 2 conditions. The data has been used to validate water-leaving radiance estimated with SeaWiFS as well as bio-optical algorithms for chlorophyll pigments. The comprehensive data is utilized for development of experimental algorithms (e.g. high-low latitude pigment transition, phytoplankton absorption, and cDOM). During this period we completed 9 peer-reviewed publications in high quality journals, and presented aspects of our work at more than 10 scientific conferences.

  3. Tides, and tidal and residual currents in Suisun and San Pablo bays, California; results of measurements, 1986

    USGS Publications Warehouse

    Gartner, J.W.; Yost, B.T.

    1988-01-01

    Current meter data collected at 11 stations and water level data collected at one station in Suisun and San Pablo Bays, California, in 1986 are compiled in this report. Current-meter measurements include current speed and direction, and water temperature and salinity (computed from temperature and conductivity). For each of the 19 current-meter records, data are presented in two forms. These are: (1) results of harmonic analysis; and (2) plots of tidal current speed and direction versus time and plots of temperature and salinity versus time. Spatial distribution of the properties of tidal currents are given in graphic form. In addition, Eulerian residual currents have been compiled by using a vector-averaging technique. Water level data are presented in the form of a time-series plot and the results of harmonic analysis. (USGS)

  4. Observations of the geostrophic current and water mass characteristics off Point Sur, California, from May 1988 through November 1989

    NASA Astrophysics Data System (ADS)

    Tisch, Timothy D.; Ramp, Steven R.; Collins, Curtis A.

    1992-08-01

    The Point Sur transect (POST) has been occupied 6-8 times per year since 1988 to resolve the flow in the California Current system at seasonal and interannual time scales. The POST extends offshore, normal to bottom topography, along 3620'N, to 12301.7'W where it doglegs southwest along the California Cooperative Fisheries Investigation (CalCOFI) line 67. Hydrographic observations from seven cruises over 2 years have been used to study variations of alongshore geostrophic velocities and water mass characteristics within these time scales. The California Undercurrent was a prominent feature in six of the seven sections analyzed and was very weak during a period of strong equatorward wind stress. The position of the undercurrent core varied from 12 to 42 km from shore while its strength varied from less than 5 cm s-1 to 35 cm s-1, with the maximum flow occurring in winter. The undercurrent (core) over the continental slope was found from 70 to 460 m depth throughout these seven cruises. The nature of the alongshore geostrophic velocities and the location and spatial extent of the California Undercurrent appear strongly related to specific wind events, both local and remote. Remote wind forcing from the south was believed to cause anomalous, strong poleward flow throughout the entire water column above 1000 dbar during a period of local equatorward wind stress.

  5. Quantifying radaition and energy balances at a heterogeneous oak savanna ecosystem in California: a three dimensional modeling appraoch

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Baldocchi, D. D.; Ryu, Y.; Chen, Q.; Ma, S.; Osuna, J. L.; Ustin, S.

    2010-12-01

    Most land surface and ecosystem models assume that a vegetated canopy can be abstracted as a turbid medium when they compute mass, energy, and carbon exchange. Since savanna ecosystems are inherently complex and spatially heterogeneous, a turbid media models fail to simulate radiation environments at savanna ecosystems. In this study, we describe a three dimensional radiation budget model (Forest Light Environmental Simulator, FLiES) coupled with a soil and canopy energy balance and canopy physiology model (CANOAK). The model was able to simulate spatial and diurnal patterns of radiation properties both shortwave and longwave radiation as well as latent and sensible heat, and tree canopy photosynthesis. Explicit consideration of woody elements (branches and stems) is crucial for realistic computation of radiation environments in savanna ecosystems because of its nature of low LAI and a relatively high fraction of woody elements. We found that the heat storage term of woody elements could be non-negligible amount (12-17% of total net radiation). We found that all woodland components (tree leaves, understory grasses, woody materials, and the soil) cannot be negligible for modeling the radiation and energy balances as they all absorb a significant amount of the solar radiation.

  6. Air-sea exchange of CO2 at a Northern California coastal site along the California Current upwelling system

    NASA Astrophysics Data System (ADS)

    Ikawa, H.; Faloona, I.; Kochendorfer, J.; Paw U, K. T.; Oechel, W. C.

    2013-07-01

    It is not well understood whether coastal upwelling is a net CO2 source to the atmosphere or a net CO2 sink to the ocean due to high temporal variability of air-sea CO2 exchange (CO2 flux) in coastal upwelling zones. Upwelling transports heterotrophic, CO2 enriched water to the surface and releases CO2 to the atmosphere, whereas the presence of nutrient-rich water at the surface supports high primary production and atmospheric CO2 uptake. To quantify the effects of upwelling on CO2 flux, we measured CO2 flux at a coastal upwelling site off of Bodega Bay, California, with the eddy covariance technique during the summer of 2007 and the fall of 2008, and the bulk method with partial pressure of CO2 of surface water (pCO2) data from November 2010 to July 2011. Variations in sea surface temperatures (SST) and alongshore wind velocity suggest that the measurement period in 2007 coincided with a typical early summer upwelling period and the measurement period in 2008 was during a typical fall relaxation period. A strong source of CO2 (~ 1.5 ± 7 SD (standard deviation) g C m-2 day-1) from the ocean to the atmosphere during the upwelling period was concurrent with high salinity, low SST, and low chlorophyll density. In contrast, a weak source of CO2 flux (~ 0.2 ± 3 SD g C m-2 day-1) was observed with low salinity, high SST and high chlorophyll density during the relaxation period. Similarly, the sink and source balance of CO2 flux was highly related to salinity and SST during the pCO2 measurement periods; high salinity and low SST corresponded to high pCO2, and vice versa. We estimated that the coastal area off Bodega Bay was likely an overall source of CO2 to the atmosphere based on the following conclusions: (1) the overall CO2 flux estimated from both eddy covariance and pCO2 measurements showed a source of CO2; (2) although the relaxation period during the 2008 measurements were favorable to CO2 uptake, CO2 flux during this period was still a slight source; (3) salinity and SST were found to be good predictors of the CO2 flux for both eddy covariance and pCO2 measurements, and 99% of the historical SST and salinity data available between 1988 and 2011 fell within the range of our observations in May-June 2007, August-September 2008 and November 2010-July~2011, which indicates that our data set was representative of the annual variations in the sea state. Based on the developed relationship between pCO2, SST and salinity, the study area between 1988 and 2011 was estimated to be an annual source of CO2 of ~ 35 mol C m-2 yr-1. The peak monthly CO2 flux of ~ 7 mol C m-2 month-1 accounted for almost 30% of the dissolved inorganic carbon in the surface mixed layer.

  7. The importance of a Mediterranean type ecosystem in trace gas fluxes from the chaparral of Southern California

    NASA Astrophysics Data System (ADS)

    Luo, Hongyan

    Carbon flux measurements over a ca. 100-year old-growth chamise-dominated chaparral shrub ecosystem using eddy covariance techniques were conducted from 1996 to 2003. Results indicate carbon sinks, from -96 to -155 g C m-2 yr-1, under normal climate conditions, but were a weak sink of -18 g C m-2 yr-1 to a strong source of 207 g C m-2yr-1 as a consequence of a severe drought. The annual sink strength of carbon averaged -52 g C m -2 yr-1, which is comparable to many other ecosystems and indicates that, in contrast to previous thought, the old-growth chaparral shrub ecosystem can be a significant sink of carbon and, therefore, an important component of the global carbon budget. In the comparison experiments, a ca. 100-year chaparral stand (96 to 102-year old) demonstrated a substantial cumulative carbon sink of -391 g C m-2, while a ca. 10-year old chaparral (5 to 11-year old) stand exhibited a moderate carbon source of 114 g C m -2 over the measurement period. This caused the rejection to our hypothesis that young stand would be more productive than the old stand. The cumulative ET at the old stand was 2657 mm, which was higher than the value of 1885 mm at the young stand confirming earlier assumptions of lower water use in young stands. NEE and ET difference between the young stand and the old stand was likely due to the significantly higher soil temperature and higher soil moisture at the young stand than at the old stand. Measurements over the ca. 100-year chaparral ecosystem demonstrated that carbon uptake was largest in the growing season, but constrained in both the dry and winter seasons. The variability of water availability was the primary control on the intra and inter-annual variation of ecosystem carbon and water exchange. Air temperature increase resulted in a linear increase in seasonal carbon fixation and water loss during daytime. Nighttime ecosystem respiration increased as an exponential function with soil temperature in all seasons. Ecosystem dark respiration rates were similar in all seasons. The maximum carbon uptake rate was far larger in the growing season than other seasons.

  8. MULTILOCUS SIMPLE SEQUENCE REPEATS AND SINGLE NUCLEOTIDE POLYMORPHISM MARKERS FOR GENOTYPING AND ASSESSING GENETIC DIVERSITY OF XYLELLA FASTIDIOSA IN CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop effective disease management strategies, we need to understand population structure and genetic diversity of pathogens in agricultural ecosystems. Current information regarding population structure and genetic diversity of Xylella fastidiosa (Xf) in California is insufficient to adequate...

  9. Current stage of the restoration of Chernozems in rangeland ecosystems of the steppe zone

    NASA Astrophysics Data System (ADS)

    Rusanov, A. M.

    2015-06-01

    The results of two rounds of soil and geobotanic surveys of rangeland ecosystems in the steppe zone are presented. The same sites with southern chernozems (Calcic Chernozems) under steppe plant communities at different stages of pasture degradation were investigated at the end of the 1980s, when they suffered maximum anthropogenic loads, and in 2011-2013, after a long period of relative rest. In the 1980s, degradation of soil physical properties in rangeland ecosystems under the impact of long-term unsustainable management was noted. At the same time, it was found that the major qualitative and quantitative properties of humus in the chernozems were preserved independently from the level of pasture degradation. The following period of moderate grazing pressure had a favorable effect on the soil properties. Owing to the good characteristics of the soil humus, the restoration of the physical properties of chernozems-including their structural state, water permeability, and bulk density-took place in a relatively short period. It is argued that the soil bulk density is a natural regulator of the species composition of steppe vegetation, because true grasses (Poaceae)-typical representatives of the steppe flora-have a fibrous root system requiring the soils with low density values. The improvement of the properties of chernozems is related to the development of secondary ecosystems with a higher portion of grasses in place of damaged rangelands and to the increase in the area of nominal virgin phytocenoses.

  10. Using a Regional Cluster of AmeriFlux Sites in Central California to Advance Our Knowledge on Decadal-Scale Ecosystem-Atmosphere Carbon Dioxide Exchange

    SciTech Connect

    Baldocchi, Dennis

    2015-03-24

    Continuous eddy convariance measurements of carbon dioxide, water vapor and heat were measured continuously between an oak savanna and an annual grassland in California over a 4 year period. These systems serve as representative sites for biomes in Mediterranean climates and experience much seasonal and inter-annual variability in temperature and precipitation. These sites hence serve as natural laboratories for how whole ecosystem will respond to warmer and drier conditions. The savanna proved to be a moderate sink of carbon, taking up about 150 gC m-2y-1 compared to the annual grassland, which tended to be carbon neutral and often a source during drier years. But this carbon sink by the savanna came at a cost. This ecosystem used about 100 mm more water per year than the grassland. And because the savanna was darker and rougher its air temperature was about 0.5 C warmer. In addition to our flux measurements, we collected vast amounts of ancillary data to interpret the site and fluxes, making this site a key site for model validation and parameterization. Datasets consist of terrestrial and airborne lidar for determining canopy structure, ground penetrating radar data on root distribution, phenology cameras monitoring leaf area index and its seasonality, predawn water potential, soil moisture, stem diameter and physiological capacity of photosynthesis.

  11. An Examination of References for Ecosystems in a Watershed Context: Results of a Scientific Pulse in Redwood National and State Parks, California

    NASA Astrophysics Data System (ADS)

    Lisle, T. E.; Cummins, K.; Madej, M. A.

    2005-05-01

    A multidisciplinary pulse examined three pristine streams in old-growth redwood forests in northern California to motivate discussions about the characteristics of reference sites for stream and riparian ecosystems. We concluded that useful reference sites need not be pristine, but must be rich in data linking physical and biological processes and frame conditions in a watershed context. It is particularly important that the data constitute the present status of an historical array. Not requiring pristine conditions allows data-rich watersheds with a spectrum of conditions to be incorporated into a regional reference framework. Reference watersheds offer real-world examples of how ecosystems function over time. Reference parameters taken from various locations in a region offer first-cut comparisons that can lead to deeper, more contextual analyses. Analytical references can reveal disturbance-related departures from conditions predicted with simple assumptions about some aspects of system behavior. All three reference types (reference sites, reference parameters, analytical references) have their strengths and weaknesses and can be used in combination to inform management decisions regarding these complex systems.

  12. Influence of a multiyear event of low salinity on the zooplankton from Mexican eco-regions of the California Current

    NASA Astrophysics Data System (ADS)

    Lavaniegos, Bertha E.

    2009-12-01

    Data are presented from the southern part of the California Current System (CCS) for the period 1997-2007, derived from the IMECOCAL monitoring program. Apart from El Niño 1997 to 1998, and La Niña 1998-1999 the strongest perturbation occurred in 2002 due to an intrusion of subarctic water affecting all the CCS. The response of zooplankton biomass to the strong cooling and freshening of the upper layer was an immediate drop followed by a progressive recovery between 2003 and 2007. Though the low salinity influence ended in 2006, the increased zooplankton trend continued, reinforced by increased upwelling activity beginning 2005 off north Baja California region (30-32°N) and beginning 2006 off central Baja California (24-30°N). Multiple regression analysis was done between regional variables and Upwelling Index (UI) and two basin-scale proxies: the North Pacific Gyre Oscillation (NPGO), and Pacific Decadal Oscillation (PDO). The significant influence of the NPGO on surface salinity, salinity stratification, zooplankton volume and secondary consumers (zooplankton carnivores) suggests a basin scale control on these variables more than local mechanisms. The signature of the NPGO was also evident in the base of the trophic web, but more related to the group of crustacean herbivores in the north eco-region, and the tunicates in central Baja California. In this last region, the effect from NPGO on the zooplankton volume and tunicates was antagonist with UI indicative of similar importance of basin and local processes. However, when the time interval is limited to the post-subarctic intrusion (2003-2007) the significance of multiple regression models and physical variables was lost. Therefore, though data and bio-physical coupling analysis off Baja California suggest a better relation with NPGO compared to PDO, it is still not sufficient to explain the magnitude of the perturbation observed in 2002.

  13. Climate change, reproductive performance and diet composition of marine birds in the southern California Current system, 1969 1997

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Hester, Michelle M.; Thayer, Julie A.; Gress, Franklin; Martin, Paige; Buffa, Joelle

    We studied the effects of low-frequency climate change on the reproductive performance of 11 species of marine bird in the southern California Current system, 1969-1997. Reproductive performance of Brown Pelican ( Pelecanus occidentalis) and Double-crested Cormorant ( Phalacrocrax auritus) in southern California demonstrated an increase in the 1970s and early 1980s, attributable to recovery from organochlorine contamination (primarily DDE). Brandt's Cormorant ( Phalacrocorax penicillatus) in central California was the only species to demonstrate a secular increase in performance through time, a pattern that remains unexplained. Ashy Storm-petrel ( Oceanodroma homochroa) and Pelagic Cormorant ( Phalacrocorax pelagicus) demonstrated curvilinear patterns of change, with decreasing reproductive performance in the past decade. All other species including Western Gull ( Larus occidentalis), Pigeon Guillemot ( Cepphus columba), Xantus's Murrelet ( Synthiloboramphus hypoleucus), Common Murre ( Uria aalge), Cassin's Auklet ( Ptychoramphus aleuticus) and Rhinoceros Auklet ( Cerorhinca monocerata) showed diminishing reproductive performance through time. Patterns of change for the murre and auklets were not significant, presumably because of a lack of reproductive variation for these species, which display a conservative breeding effort (i.e. single-egg clutches). Changes in the birds' abilities to provision young and maintain chick survival during May-July each year appeared most closely related to overall changes in reproductive performance. Dietary change indicated a decline in use of juvenile rockfish ( Sebastes spp.) by marine birds in central California. There was also significant interannual variability in consumption of juvenile rockfish and the euphausiid Thysanoessa spinifera. Patterns of change in marine bird reproductive performance were generally concordant between southern and central California after considering the period of recovery for Brown Pelican and Double-crested Cormorant. The decline in reproductive performance and changes in diet composition do not appear directly related to the polarity reversal of the Pacific Decadal Oscillation in 1976/1977. Instead, reproductive performance and dietary characteristics indicate substantial change in the late 1980s, suggesting another regime-shift at that time.

  14. Epipelagic and mesopelagic fishes in the southern California Current System: Ecological interactions and oceanographic influences on their abundance

    NASA Astrophysics Data System (ADS)

    Koslow, J. Anthony; Davison, Peter; Lara-Lopez, Ana; Ohman, Mark D.

    2014-10-01

    We use zooplankton and ichthyoplankton data from the ~ 60-year CalCOFI time series to examine relationships of mesopelagic (i.e. midwater) fishes in the California Current System with midwater predators, potential competitors (epipelagic planktivorous fishes) and zooplankton prey, within the context of local and basin-scale oceanography. Equilibrium-based near-steady state models and the “wasp-waist” paradigm for eastern boundary currents predict tightly-coupled trophic interactions, with negative correlations between the abundance of planktivorous competitors and between dominant planktivores and their prey. Testing these hypotheses with the CalCOFI time series, we found them to be generally invalid. Potential competitors within the mesopelagic community (planktivorous vertical migrators (VMs) and non-migrators (NMs)) were highly positively correlated, as were these groups with the mesopelagic piscivores (e.g. dragonfishes) that prey on them. In addition, the abundance of VMs was mostly positively correlated with that of epipelagic planktivores, such as anchovy, mackerels and hake. The VMs and epipelagic planktivores were negatively correlated with key potential planktonic prey groups, indicating a lack of bottom-up forcing. However, neither do these negative correlations appear to signify top-down forcing, since they seem to be mediated through correlations with key environmental drivers, such as the Pacific Decadal Oscillation (PDO), sea surface temperature, and the relative strength of the California Current. We suggest that the web of correlations linking key meso- and epipelagic planktivores, their predators and prey is mediated through common links with basin-scale oceanographic drivers, such as the PDO and ENSO cycles. Thus, the abundance of mesopelagic fishes in the California Current is closely tied to variation in the oxygen minimum zone, whose dynamics have been linked to the PDO. The PDO and other drivers are also linked to the transport of the California Current System, which influences the abundance of many dominant taxa off southern California that have broad biogeographic distributions linked to water masses that extend to the north (Transition Zone/sub-Arctic faunas) or the south (tropical/subtropical faunas).

  15. Changes in production and respiration during a spring phytoplankton bloom in San Francisco Bay, California, USA: Implications for net ecosystem metabolism

    USGS Publications Warehouse

    Caffrey, J.M.; Cloern, J.E.; Grenz, C.

    1998-01-01

    We present results of an intensive sampling program designed to measure weekly changes in ecosystem respiration (oxygen consumption in the water column and sediments) around the 1996 spring bloom in South San Francisco Bay, California, USA. Measurements were made at a shallow site (2 m, where mean photic depth was 60% of the water column height) and a deep site (15 m, mean photic depth was only 20% of the water column). We also estimated phytoplankton primary production weekly at both sites to develop estimates of net oxygen flux as the sum of pelagic production (PP), pelagic respiration (PR) and benthic respiration (BR). Over the 14 wk period from February 5 to May 14, PP ranged from 2 to 210, PR from 9 to 289, and BR from 0.1 to 48 mmol O2 m-2 d-1, illustrating large variability of estuarine oxygen fluxes at the weekly time scale. Pelagic production exceeded total respiration at the shallow site, but not at the deep site, demonstrating that the shallow domains are net autotrophic but the deep domains are net heterotrophic, even during the period of the spring bloom. If we take into account the potential primary production by benthic microalgae, the estuary as a whole is net autotrophic during spring, net heterotrophic during the nonbloom seasons, and has a balanced net metabolism over a full annual period. The seasonal shift from net autotrophy to heterotrophy during the transition from spring to summer was accompanied by a large shift from dominance by pelagic respiration to dominance by benthic respiration. This suggests that changes in net ecosystem metabolism can reflect changes in the pathways of energy flow in shallow coastal ecosystems.

  16. Keeping California School Districts Fiscally Healthy: Current Practices and Ongoing Challenges. Report

    ERIC Educational Resources Information Center

    EdSource, 2007

    2007-01-01

    When people talk about school district efficiency, their first thoughts are about financial management. Are districts balancing their budgets, paying bills on time, and maximizing their revenues? This report takes a closer look at financial management in California school districts. The report is a summary of the 2006 research study, "School…

  17. Ecosystem scenarios shape fishermen spatial behavior. The case of the Peruvian anchovy fishery in the Northern Humboldt Current System

    NASA Astrophysics Data System (ADS)

    Joo, Rocio; Bertrand, Arnaud; Bouchon, Marilu; Chaigneau, Alexis; Demarcq, Hervé; Tam, Jorge; Simier, Monique; Gutiérrez, Dimitri; Gutiérrez, Mariano; Segura, Marceliano; Fablet, Ronan; Bertrand, Sophie

    2014-11-01

    A major goal in marine ecology is the understanding of the interactions between the dynamics of the different ecosystem components, from physics to top predators. While fishermen are among the main top predators at sea, almost none of the existing studies on ecology from physics to top predators contemplate fishermen as part of the system. The present work focuses on the coastal processes in the Northern Humboldt Current System, which encompasses both an intense climatic variability and the largest monospecific fishery of the world. From concomitant satellite, acoustic survey and Vessel Monitoring System data (∼90,000 fishing trips) for a ten-year period (2000-2009), we quantify the associations between the dynamics of the spatial behavior of fishermen, environmental conditions and anchovy (Engraulis ringens) biomass and spatial distribution. Using multivariate statistical analyses we show that environmental and anchovy conditions do significantly shape fishermen spatial behavior and present evidences that environmental fluctuations smoothed out along trophic levels. We propose a retrospective analysis of the study period in the light of the ecosystem scenarios evidenced and we finally discuss the potential use of fishermen spatial behavior as ecosystem indicator.

  18. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges

    USGS Publications Warehouse

    Solomon, Christopher T.; Jones, Stuart E.; Weidel, Brian C.; Buffam, Ishi; Fork, Megan L; Karlsson, Jan; Larsen, Soren; Lennon, Jay T.; Read, Jordan S.; Sadro, Steven; Saros, Jasmine E.

    2015-01-01

    Lake ecosystems and the services that they provide to people are profoundly influenced by dissolved organic matter derived from terrestrial plant tissues. These terrestrial dissolved organic matter (tDOM) inputs to lakes have changed substantially in recent decades, and will likely continue to change. In this paper, we first briefly review the substantial literature describing tDOM effects on lakes and ongoing changes in tDOM inputs. We then identify and provide examples of four major challenges which limit predictions about the implications of tDOM change for lakes, as follows: First, it is currently difficult to forecast future tDOM inputs for particular lakes or lake regions. Second, tDOM influences ecosystems via complex, interacting, physical-chemical-biological effects and our holistic understanding of those effects is still rudimentary. Third, non-linearities and thresholds in relationships between tDOM inputs and ecosystem processes have not been well described. Fourth, much understanding of tDOM effects is built on comparative studies across space that may not capture likely responses through time. We conclude by identifying research approaches that may be important for overcoming those challenges in order to provide policy- and management-relevant predictions about the implications of changing tDOM inputs for lakes.

  19. Measuring and Modeling Ecosystem Photosynthetic Productivity and Respiration in Responses to Climatic Fluctuations in the Past 60 Years at an Oak-Grass Savanna in California

    NASA Astrophysics Data System (ADS)

    Ma, S.; Baldocchi, D. D.

    2008-12-01

    To predict ecosystem sustainability in future climate scenarios, one of essential questions are how and why current plant species are adaptable to the climate that they have experienced. Based on multi-year measurements of ecosystem CO2 exchange with the eddy-covariance technique at an oak-grass savanna, we were interested in comparing seasonal and inter-annual patterns between oak tree canopy and annual grassland and understanding biogeophysical reasons underlying differences in patterns. With these understanding, we further inferred to the two dominant vegetation layers in response to historical climate fluctuations and teleconnection events. We also examine the Century Model to understand uncertainty in predicting ecosystem photosynthetic productivity and respiration in response to climate fluctuations with considerations of soil carbon and nitrogen dynamics. Modeling results were also compared with empirical analyses. This study provided a practicable approach to examine the potential effects of climate fluctuations and extreme events on ecosystem CO2 exchange, implying assessment of longer-term ecological and biometeorological measurements.

  20. Comparison of the seasonal and interannual variability of phytoplankton pigment concentrations in the Peru and California Current systems

    NASA Technical Reports Server (NTRS)

    Thomas, A. C.; Huang, F.; Strub, P. T.; James, C.

    1994-01-01

    Monthly composite images from the global coastal zone color scanner (CZCS) data set are used to provide an initial illustration and comparison of seasonal and interannual variability of phytoplankton pigment concentration along the western coasts of South and North America in the Peru Current system (PCS) and California Current system (CCS). The analysis utilizes the entire time series of available data (November 1978 to June 1986) to form a mean annual cycle and an index of interannual variability for a series of both latitudinal and cross-shelf regions within each current system. Within 100 km of the coast, the strongest seasonal cycles in the CCS are in two regions, one between 34 deg and 45 deg N and the second between 24 deg and 29 deg N, each with maximum concentrations (greater than 3.0 mg m(exp-3)) in May-June. Weaker seasonal variability is present north of 45 deg N and in the Southern California Bight region (32 deg N). Within the PCS, in the same 100-km-wide coastal region, highest (greater than 45 deg S) and lowest (less than 20 deg S) latitude regions have a similar seasonal cycle with maximum concentrations (greater than 1.5 mg m(exp -3)) during the austral spring, summer, and fall, matching that evident throughout the CCS. Between these regions, off northern and central Chile, the seasonal maximum occurs during July-August (austral winter), contrary to the influence of upwelling favorable winds. Within the CCS, the dominant feature of interannual variability in the 8-year time series is a strong negative concentration anomaly in 1983, an El Nino year. The relative value of this negative anomaly is strongest off central California and is followed by an even stronger negative anomaly is strongest off central California and is followed by an even stronger negative anomaly in 1984 off Baja, California. In the PCS, strong negative anomalies during the 1982-1983 El Nino period are evident only off the Peruvian coast and are evident there only in the regions 100 km or more from the coast. Although negative anomalies associated with the El Nino were not present at higher latitudes (more than approximately 20 deg S) in the PCS, the extremely sparse sampling weakens our confidence in the results of the interannual analysis in this region. An upper estimate of the systematic winter bias remaining in the global CZCS data after reprocessing with the multiple scattering algorithm is given in the appendix.

  1. Patterns of co-variability among California Current chinook salmon, coho salmon, Dungeness crab, and physical oceanographic conditions

    NASA Astrophysics Data System (ADS)

    Botsford, L. W.; Lawrence, C. A.

    One of the primary motivations for the GLOBEC NEP program was the apparent inverse relationship between the increase in salmon populations in the Gulf of Alaska since the mid-1970s and concurrent declines in salmon populations in the California Current. The increase in abundance of some salmon species in the Gulf of Alaska can be plausibly explained based on mechanisms involving changes in physical structure, biological productivity, and salmon survival. To assess concurrent changes in salmon populations in the California Current and their possible physical and biological bases we examined temporal and spatial patterns of co-variability between biological variables and physical descriptors along the coasts of Washington, Oregon and California, from 1950 to 1990. The biological variables were catch records of coho salmon, chinook salmon and an ecologically related species, Dungeness crab. The physical variables were sea surface temperature, sea surface height (SSH) and the upwelling index (UWI). We found that while California Current coho salmon declined uniformly in the mid-1970s, consistent with the proposed inverse relationship, chinook salmon did not. All three species appear to be driven by the dominant mode of co-variability in the three physical variables, an indicator of warm/cool water conditions, but in different ways. In general, warm conditions have a negative effect on salmon at the age of ocean entry and spawning return, and Dungeness crab during the larval stage, while cool conditions have a positive effect. Differences in spatio-temporal variability between the two salmon species suggest they may respond to ocean conditions differently: coho salmon vary synchronously along the coast on annual time scales, while chinook salmon vary on slightly longer time scales in a specific spatial pattern. Dungeness crab vary on 10-year time scales, synchronously along the coast, except for the most southern areas (central California) where populations collapsed in the late 1950s. The dominant, warm/cool mode of physical co-variability, which drives these populations regionally, is related to basin-scale indices; it appeared to follow these indices in the 1950s and 1975-1990, but differs from them1960-1975, in ways that may be biologically important.

  2. Measurements of slope currents and internal tides on the Continental Shelf and slope off Newport Beach, California

    USGS Publications Warehouse

    Rosenberger, Kurt J.; Noble, Marlene A.; Norris, Benjamin

    2014-01-01

    An array of seven moorings housing current meters and oceanographic sensors was deployed for 6 months at 5 sites on the Continental Shelf and slope off Newport Beach, California, from July 2011 to January 2012. Full water-column profiles of currents were acquired at all five sites, and a profile of water-column temperature was also acquired at two of the five sites for the duration of the deployment. In conjunction with this deployment, the Orange County Sanitation District deployed four bottom platforms with current meters on the San Pedro Shelf, and these meters provided water-column profiles of currents. The data from this program will provide the basis for an investigation of the interaction between the deep water flow over the slope and the internal tide on the Continental Shelf.

  3. Is tourism damaging ecosystems in the Andes? Current knowledge and an agenda for future research.

    PubMed

    Barros, Agustina; Monz, Christopher; Pickering, Catherine

    2015-03-01

    Despite the popularity of tourism and recreation in the Andes in South America and the regions conservation value, there is limited research on the ecological impacts of these types of anthropogenic use. Using a systematic quantitative literature review method, we found 47 recreation ecology studies from the Andes, 25 of which used an experimental design. Most of these were from the Southern Andes in Argentina (13 studies) or Chile (eight studies) with only four studies from the Northern Andes. These studies documented a range of impacts on vegetation, birds and mammals; including changes in plant species richness, composition and vegetation cover and the tolerance of wildlife of visitor use. There was little research on the impacts of visitors on soils and aquatic systems and for some ecoregions in the Andes. We identify research priorities across the region that will enhance management strategies to minimise visitor impacts in Andean ecosystems. PMID:25201299

  4. Preliminary evaluation of the performance, water use, and current application trends of evaporative coolers in California climates

    SciTech Connect

    Huang, Y.J.; Hanford, J.W.; Wu, H.F.

    1992-09-01

    This paper describes the latest results of an ongoing analysis investigating the potential for evaporative cooling as an energy-efficient alternative to standard air-conditioning in California residences. In particular, the study uses detailed numerical models of evaporative coolers linked with the DOE-2 building energy simulation program to study the issues of indoor comfort, energy and peak demand savings with and without supplemental air-conditioning and consumptive water use. In addition, limited surveys are used to assess the current market availability of evaporative cooling in California, typical contractor practices and costs, and general acceptance of the technology among engineers, contractors, and manufacturers. The results show that evaporative coolers can provide significant energy and peak demand savings in California residences, but the impact of the increased indoor humidity on human comfort remains an unanswered question that requires further research and clarification. Evaluated against ASHRAE comfort standards developed primarily for air-conditioning both direct and two-stage evaporative coolers would not maintain comfort at peak cooling conditions due to excessive humidity. However, using bioclimatic charts that place human comfort at the 80% relative humidity line, the study suggests that direct evaporative coolers will work in mild coastal climates, while two-stage models should provide adequate comfort in Title 24 houses throughout California, except in the Imperial Valley. The study also shows that evaporative coolers will increase household water consumption by less than 6% on an annual basis, and as much as 23% during peak cooling months, and that the increases in water cost are minimal compared to the electricity savings. Lastly, a survey of engineers and contractors revealed generally positive experiences with evaporative coolers, with operational cost savings, improved comfort, unproved air quality as the primary benefits in their use.

  5. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile.

    PubMed

    Gutiérrez, Marcelo H; Jara, Ana M; Pantoja, Silvio

    2016-05-01

    This is the first report of fungal parasitism of diatoms in a highly productive coastal upwelling ecosystem, based on a year-round time series of diatom and parasitic Chytridiomycota abundance in the Humboldt Current System off Chile (36°30.80'S-73°07.70'W). Our results show co-variation in the presence of Skeletonema, Thalassiosira and Chaetoceros diatoms with attached and detached chytrid sporangia. High abundance of attached sporangia was observed during the austral spring, coinciding with a predominance of Thalassiosira and Skeletonema under active upwelling conditions. Towards the end of austral spring, a decreasing proportion of attached sporangia was accompanied by a decline in abundance of Skeletonema and Thalassiosira and the predominance of Chaetoceros, suggesting specificity and host density dependence of chytrid infection. The new findings on fungal parasitism of diatoms provide further support for the inclusion of Fungi in the current model of the role played by the marine microbial community in the coastal ocean. We propose a conceptual model where Fungi contribute to controlling the dynamics of phytoplankton populations, as well as the release of organic matter and the transfer of organic carbon through the pelagic trophic web in coastal upwelling ecosystems. PMID:26914416

  6. The Current Ecosystem of Learning Management Systems in Higher Education: Student, Faculty, and IT Perspectives

    ERIC Educational Resources Information Center

    Dahlstrom, Eden; Brooks, D. Christopher; Bichsel, Jacqueline

    2014-01-01

    This study explores faculty and student perspectives on learning management systems (LMSs) in the context of current institutional investments. In 2013, nearly 800 institutions participated in the EDUCAUSE Core Data Service (CDS) survey, sharing their current information technology practices and metrics across all IT service domains. In 2014, more…

  7. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California

    PubMed Central

    Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.; Malfatti, Stephanie; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Glavina del Rio, Tijana; Foster, Brian; Copeland, Alex; Jansson, Janet; Pati, Amrita; Tringe, Susannah; Gilbert, Jack A.; Lorenson, Thomas D.; Hess, Matthias

    2014-01-01

    Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of its main constituents. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders – and their metabolic capabilities – may be fundamental to the ecology of the SBC oil seep. PMID:25197496

  8. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California

    SciTech Connect

    Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.; Malfatti, Stephanie; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; del Rio, Tijana G.; Foster, Brian; Copeland, A.; Jansson, Janet K.; Pati, Amrita; Gilbert, Jack A.; Tringe, Susannah G.; Lorenson, Thomas D.; Hess, Matthias

    2014-01-02

    Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of the main constituents of crude oil. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders and their metabolic capabilities may be fundamental to the ecology of the SBC oil seep.

  9. Climate warming and the decline of zooplankton in the California current

    SciTech Connect

    Roemmich, D.; McGowan, J.

    1995-03-03

    Since 1951, the biomass of macrozooplankton in waters off southern California has decreased by 80 percent. During the same period, the surface layer warmed-by more than 1.5{degrees}C in some places-and the temperature differences across the thermocline increased. Increased stratification resulted in less lifting of the thermocline by wind-driven upwelling. A shallower source of upwelled waters provided less inorganic nutrient for new biological production and hence supported a smaller zooplankton population. Continued warming could lead to further decline of zooplankton. 10 refs., 5 figs.

  10. Does the current fungicide risk assessment provide sufficient protection for key drivers in aquatic ecosystem functioning?

    PubMed

    Zubrod, Jochen P; Englert, Dominic; Feckler, Alexander; Koksharova, Natalia; Konschak, Marco; Bundschuh, Rebecca; Schnetzer, Nadja; Englert, Katja; Schulz, Ralf; Bundschuh, Mirco

    2015-01-20

    The level of protection provided by the present environmental risk assessment (ERA) of fungicides in the European Union for fungi is unknown. Therefore, we assessed the structural and functional implications of five fungicides with different modes of action (azoxystrobin, carbendazim, cyprodinil, quinoxyfen, and tebuconazole) individually and in mixture on communities of aquatic hyphomycetes. This is a polyphyletic group of fungi containing key drivers in the breakdown of leaf litter, governing both microbial leaf decomposition and the palatability of leaves for leaf-shredding macroinvertebrates. All fungicides impaired leaf palatability to the leaf-shredder Gammarus fossarum and caused structural changes in fungal communities. In addition, all compounds except for quinoxyfen altered microbial leaf decomposition. Our results suggest that the European Union’s first-tier ERA provides sufficient protection for the tested fungicides, with the exception of tebuconazole and the mixture, while higher-tier ERA does not provide an adequate level of protection for fungicides in general. Therefore, our results show the need to incorporate aquatic fungi as well as their functions into ERA testing schemes to safeguard the integrity of aquatic ecosystems. PMID:25517729

  11. Geomorphology of mesophotic coral ecosystems: current perspectives on morphology, distribution, and mapping strategies

    NASA Astrophysics Data System (ADS)

    Locker, S. D.; Armstrong, R. A.; Battista, T. A.; Rooney, J. J.; Sherman, C.; Zawada, D. G.

    2010-06-01

    This paper presents a general review of the distribution of mesophotic coral ecosystems (MCEs) in relationship to geomorphology in US waters. It was specifically concerned with the depth range of 30-100 m, where more than 186,000 km2 of potential seafloor area was identified within the US Gulf of Mexico/Florida, Caribbean, and main Hawaiian Islands. The geomorphology of MCEs was largely inherited from a variety of pre-existing structures of highly diverse origins, which, in combination with environmental stress and physical controls, restrict the distribution of MCEs. Sea-level history, along with depositional and erosional processes, played an integral role in formation of MCE settings. However, mapping the distribution of both potential MCE topography/substrate and existing MCE habitat is only beginning. Mapping techniques pertinent to understanding morphology and MCE distributions are discussed throughout this paper. Future investigations need to consider more cost-effective and remote methods (such as autonomous underwater vehicles (AUVs) and acoustics) in order to assess the distribution and extent of MCE habitat. Some understanding of the history of known MCEs through coring studies would help understand their initiation and response to environmental change over time, essential for assessing how they may be impacted by future environmental change.

  12. Wildfire and abrupt ecosystem disruption on California's Northern Channel Islands at the Ållerød-Younger Dryas boundary (13.0-12.9 ka)

    NASA Astrophysics Data System (ADS)

    Kennett, D. J.; Kennett, J. P.; West, G. J.; Erlandson, J. M.; Johnson, J. R.; Hendy, I. L.; West, A.; Culleton, B. J.; Jones, T. L.; Stafford, Thomas W., Jr.

    2008-12-01

    Sedimentary records from California's Northern Channel Islands and the adjacent Santa Barbara Basin (SBB) indicate intense regional biomass burning (wildfire) at the Ållerød-Younger Dryas boundary (˜13.0-12.9 ka) (All age ranges in this paper are expressed in thousands of calendar years before present [ka]. Radiocarbon ages will be identified and clearly marked " 14C years".). Multiproxy records in SBB Ocean Drilling Project (ODP) Site 893 indicate that these wildfires coincided with the onset of regional cooling and an abrupt vegetational shift from closed montane forest to more open habitats. Abrupt ecosystem disruption is evident on the Northern Channel Islands at the Ållerød-Younger Dryas boundary with the onset of biomass burning and resulting mass sediment wasting of the landscape. These wildfires coincide with the extinction of Mammuthus exilis [pygmy mammoth]. The earliest evidence for human presence on these islands at 13.1-12.9 ka (˜11,000-10,900 14C years) is followed by an apparent 600-800 year gap in the archaeological record, which is followed by indications of a larger-scale colonization after 12.2 ka. Although a number of processes could have contributed to a post 18 ka decline in M. exilis populations (e.g., reduction of habitat due to sea-level rise and human exploitation of limited insular populations), we argue that the ultimate demise of M. exilis was more likely a result of continental scale ecosystem disruption that registered across North America at the onset of the Younger Dryas cooling episode, contemporaneous with the extinction of other megafaunal taxa. Evidence for ecosystem disruption at 13-12.9 ka on these offshore islands is consistent with the Younger Dryas boundary cosmic impact hypothesis [Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., Belgya, T., Kennett, D.J., Erlandson, J.M., Dickenson, O.J., Goodyear, A.A., Harris, R.S., Howard, G.A., Kloosterman, J.B., Lechler, P., Mayewski, P.A., Montgomery, J., Poreda, R., Darrah, T., Que Hee, S.S., Smith, A.R., Stich, A., Topping, W., Wittke, J.H. Wolbach, W.S., 2007. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and Younger Dryas cooling. Proceedings of the National Academy of Sciences 104, 16016-16021.].

  13. Decadal Changes in Ozone and Emissions in Central California and Current Issues

    NASA Astrophysics Data System (ADS)

    Tanrikulu, S.; Beaver, S.; Soong, S.; Tran, C.; Cordova, J.; Palazoglu, A.

    2011-12-01

    The relationships among ozone, emissions, and meteorology are very complex in central California, and must be well studied and understood in order to facilitate better air quality planning. Factors significantly impacting changes in emissions such as economic and population growth, and adopted emission controls make the matter even more complex. Here we review the history of ozone pollution in central California since the 1970s to plan for the future. Since the 1970s, changes in emissions have been accompanied by likewise dramatic changes in region-to-region differences in air quality. We focus on the coastal San Francisco Bay Area (SFBA) and the inland San Joaquin Valley (SJV). In the 1970s, the SFBA population was approaching 5 million people while the considerably larger and more rural SJV population remained below 2 million. The SFBA population was mostly confined to coastal locations. Peak ozone levels occurred mostly around the population centers and especially over the Bay itself. Hourly average ozone levels routinely approached 160 ppb. These high ozone levels promoted regulations under which SFBA emissions were continuously reduced through the present. By the 1990s, SFBA emissions had been reduced considerably despite the region's population growing to around 6 million. Relative to the 1970s, in 1990s the SFBA had lower peak ozone levels that were shifted to inland locations where much of the population growth was occurring. The SFBA still exceeded the federal 1-hour standard. A rapidly changing economic landscape in the 1970s promoted vast changes in the central California population distribution. In the SJV, the OPEC oil crisis promoted significant development of petroleum resources. Meanwhile, family farms were quickly being replaced with commercial-scale farming operations. The SJV population rapidly expanded to around 3 million people by the early 1990s. During this time, SJV emissions increased considerably, largely from increases in mobile source activities. The previously sparsely populated SJV had quickly developed an even more severe ozone problem than previous years. From 1990 to 2010, the SFBA population expanded to inland locations and then even further into the sheltered SJV. SFBA emissions for ROG and NOx were decreased around 40% and 15%, respectively during this period. High ozone levels became rather infrequent for coastal SFBA locations. During the same period, the SJV population continued to expand rapidly while emissions decreased, especially for ROG. Peak ozone levels remained around 100 ppb and shifted to locations downwind of Fresno and Bakersfield. Central California has experienced perhaps the most dramatic population growth and shifts in the United States during the contemporary economic era. These changes in population have led to some of the most difficult air quality management problems faced by regulators in the United States. Lessons learned from central California highlight the potential benefits of acting early and also the necessity for a long-term, flexible approach using sustained regulations to accompany population changes.

  14. Modeling long-term change of planktonic ecosystems in the northern South China Sea and the upstream Kuroshio Current

    NASA Astrophysics Data System (ADS)

    Li, Qian P.; Wang, Yanjun; Dong, Yuan; Gan, Jianping

    2015-06-01

    Field studies suggested that the biogeochemical settings and community structures are substantial different between the central Northern South China Sea (NSCS) and the upstream Kuroshio Current (KC). In particular, the water column of KC is characterized by substantially lower nutrients and productivity but higher Trichodesmium abundance and nitrogen fixation compared to the NSCS. The mechanism driving the difference of the two marine ecosystems, however, remains inadequately understood. Here, a one-dimensional biogeochemical model was developed to simulate the long-term variability of lower-trophic planktonic ecosystem for two pelagic stations in the NSCS and the KC near the Luzon Strait. The physical model included the vertical mixing driven by air-sea interaction and the Ekman pumping induced by wind stress curl. The biological model was constructed by modifying a nitrogen-based NPZD model with the incorporation of phosphorus cycle and diazotroph nitrogen fixation. After validation by several field data sets, the model was used to study the impact of long-term physical forcing on ecosystem variability in the two distinct stations. Our results suggested that nutrient transport above nitracline during summer was largely controlled by vertical turbulent mixing, while Ekman pumping was important for nutrient transport below the nitracline. Our results also indicated that diazotroph community structure and N2 fixation in the NSCS and the KC could be strongly influenced by physical processes through the impacts on vertical nutrient fluxes. The disadvantage of diazotroph in the NSCS in compared to the KC during the summer could be attributed to its high nitrate fluxes from subsurface leading to outcompete of diazotrophs by faster growing nondiazotroph phytoplankton.

  15. The California Current System: A multiscale overview and the development of a feature-oriented regional modeling system (FORMS)

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Lermusiaux, Pierre F. J.; Rosenfeld, Leslie; Robinson, Allan R.; Calado, Leandro; Kim, Hyun Sook; Leslie, Wayne G.; Haley, Patrick J.

    2011-09-01

    Over the past decade, the feature-oriented regional modeling methodology has been developed and applied in several ocean domains, including the western North Atlantic and tropical North Atlantic. This methodology is model-independent and can be utilized with or without satellite and/or in situ observations. Here we develop new feature-oriented models for the eastern North Pacific from 36° to 48°N - essentially, most of the regional eastern boundary current. This is the first time feature-modeling has been applied to a complex eastern boundary current system. As a prerequisite to feature modeling, prevalent features that comprise the multiscale and complex circulation in the California Current system (CCS) are first overviewed. This description is based on contemporary understanding of the features and their dominant space and time scales of variability. A synergistic configuration of circulation features interacting with one another on multiple and sometimes overlapping space and time scales as a meander-eddy-upwelling system is presented. The second step is to define the feature-oriented regional modeling system (FORMS). The major multiscale circulation features include the mean flow and southeastward meandering jet(s) of the California Current (CC), the poleward flowing California Undercurrent (CUC), and six upwelling regions along the coastline. Next, the typical synoptic width, location, vertical extent, and core characteristics of these features and their dominant scales of variability are identified from past observational, theoretical and modeling studies. The parameterized features are then melded with the climatology, in situ and remotely sensed data, as available. The methodology is exemplified here for initialization of primitive-equation models. Dynamical simulations are run as nowcasts and short-term (4-6 weeks) forecasts using these feature models (FM) as initial fields and the Princeton Ocean Model (POM) for dynamics. The set of simulations over a 40-day period illustrate the applicability of FORMS to a transient eastern boundary current region such as the CCS. Comparisons are made with simulations initialized from climatology only. The FORMS approach increases skill in several factors, including the: (i) maintenance of the low-salinity pool in the core of the CC; (ii) representation of eddy activity inshore of the coastal transition zone; (iii) realistic eddy kinetic energy evolution; (iv) subsurface (intermediate depth) mesoscale feature evolution; and (v) deep poleward flow evolution.

  16. Effect of soil temperature and soil water content on fine root turnover rate in a California mixed conifer ecosystem

    NASA Astrophysics Data System (ADS)

    Kitajima, Kuni; Anderson, Kurt E.; Allen, Michael F.

    2010-12-01

    Measurement of fine root production and turnover rate, the reciprocal of mean life span of a root population, is crucial to the understanding of the carbon cycle of an ecosystem as fine roots account for up to 30% of global terrestrial net primary production. Our goal was to characterize fine root production, mortality, standing crop, and turnover rate in a Mediterranean climate. Using simulations, we established that our sampling interval must be less than monthly to keep the turnover rate error to less than 10%. Adhering to this interval, we measured fine root turnover rate by mark-recapture modeling methods and compared predicted with observed turnover rates. The best selected model indicated that these rates were a function of diameter, length, soil temperature, and soil water content. Turnover rate increased with decreasing diameter and length and increasing soil temperature and soil water content. We found a yearly pattern of hysteresis between fine root production, mortality, and turnover rate relative to soil temperature. This was explained by soil temperature-moisture hysteresis using our best selected model. Production and turnover rate were greater in spring to early summer when both soil temperature and soil moisture were high, resulting in a seasonal variation of belowground net primary production. We suggest that this behavior could be a result of fine roots' strategy to cope with a limited growing season of a semiarid Mediterranean climate.

  17. Soil nitrogen dynamics during seasonal transitions: N retention and loss in ecosystems of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Miller, A. E.; Sickman, J. O.; Schimel, J. P.; Melack, J. M.; Meixner, T.

    2003-12-01

    The maintenance of nitrogen (N) limitation in many terrestrial ecosystems may be mediated by N losses that occur during seasonal transitions. In the southern Sierra Nevada, short-duration nitrate pulses associated with spring snowmelt in the alpine, and with fall rains at lower elevations, may account for greater than 90% of annual DIN export. To evaluate the role of microbial processes in mediating such losses of N, we examined overwinter variation in soil N dynamics at a high (2800 m) and low (750 m) elevation site. The fall transition marked a period of intense nitrifier activity at both sites: field incubations showed five-fold to 30-fold increases in soil NO3- pools with the onset of fall freeze-thaw and rewetting events, followed by 60%-75% decreases in total soil inorganic N and net N mineralization rates. Nitrogen held in microbial biomass decreased significantly at the alpine site but recovered to growing-season levels under snowpack, indicating biotic sequestration of N. With the onset of spring snowmelt, microbial biomass again decreased, producing an increase in soil inorganic N concentrations and a shift from net N2O consumption to production. These results, paired with results of laboratory incubations, indicate that physical disturbances incurred during seasonal transitions may enhance nitrification and gaseous losses from soil, and that large fluctuations in microbial biomass may regulate N production and export in these systems.

  18. Marine environmental monitoring in the shelf zone of the Black Sea: Assessment of the current state of the pelagic ecosystem

    NASA Astrophysics Data System (ADS)

    Arashkevich, E. G.; Louppova, N. E.; Nikishina, A. B.; Pautova, L. A.; Chasovnikov, V. K.; Drits, A. V.; Podymov, O. I.; Romanova, N. D.; Stanichnaya, R. R.; Zatsepin, A. G.; Kuklev, S. B.; Flint, M. V.

    2015-11-01

    The state of the shelf pelagic ecosystem has been assessed based on multidisciplinary monitoring performed in the northeastern Black Sea in 2005-2014. Seasonal and interannual variations in sea surface temperature (SST) and chlorophyll a (Chl-a) concentration have been analyzed along with the concentration of nutrients (silicate, nitrogen, and phosphate), biomass, and taxonomic compositions of phytoplankton, zooplankton, and gelatinous macroplankton. The linear trend shows an increase in the annual average SST by 0.9°C over the last decade. An increase in the winter SST is accompanied by a decrease in the concentration of silicates in spring ( p < 0.05) and an increase in summer SST, by a decrease in Chl-a concentration and biomass of diatoms in the period of summer to fall ( p < 0.05). A decrease in the phosphate concentration also has a negative effect on the development of diatoms ( p < 0.01). The decrease in diatom biomass caused a decrease in herbivorous zooplankton biomass in the second half of the year ( p = 0.05). Correlation analysis shows no significant dependence between the biomass of gelatinous top predators and mesozooplankton biomass. The assessed current state of the shelf pelagic ecosystem is regarded as stable; however, trends of a decrease in biomass and a change in the taxonomic composition of phytoplankton and zooplankton are observed during the last 2 years; the latter is likely to result from both direct and indirect effects of temperature increase in the upper sea layer.

  19. Recovery strategies for the California clapper rail (Rallus longirostris obsoletus) in the heavily-urbanized San Francisco estuarine ecosystem

    USGS Publications Warehouse

    Foin, T.C.; Garcia, E.J.; Gill, R.E.; Culberson, S.D.; Collins, J.N.

    1997-01-01

    The California clapper rail (Rallus longirostris obsoletus), a Federal- and State-listed endangered marsh bird, has a geographic range restricted to one of the most heavily-urbanized estuaries in the world. The rail population has long been in a state of decline, although the exact contribution of each of the many contributing causes remains unclear. The rail is one of the key targets of emerging plans to conserve and restore tidal marshlands. Reduction of tidal marsh habitat, estimated at 85-95%, has been the major historical cause of rail decline. Increased predation intensity may be the more important present problem, because habitat fragmentation and alteration coupled with the invasion of the red fox have made the remaining populations more vulnerable to predators. Population viability analysis shows that adult survivorship is the key demographic variable; reversals in population fate occur over a narrow range of ecologically realistic values. Analysis of habitat requirements and population dynamics of the clapper rail in the San Francisco Estuary shows that decreased within-marsh habitat quality, particularly reduction of tidal flows and alteration of drainage, is an important barrier to population recovery. Management and restoration activities should emphasize the development of well-channelized high tidal marsh, because this is the key requirement of rail habitat. Developing effective restoration programs depends upon having information that field research will not provide. The effect of spatial pattern of reserves requires accurate estimation of the effects of predation and inter-marsh movement, both of which are practically impossible to measure adequately. It will be necessary to develop and use simulation models that can be applied to geographic data to accomplish this task.

  20. Variability of pigment biomass in the California Current system as determined by satellite imagery. I - Spatial variability

    NASA Technical Reports Server (NTRS)

    Smith, Raymond C.; Zhang, Xueyun; Michaelsen, Joel

    1988-01-01

    Spatial variability of chlorophyll in the California Current system was analyzed using Coastal Zone Color Scanner (CZCS) imagery. A total of 48 images were analyzed to produce seasonal averages and variances, gradients, and power spectra. Roughly one third to one half of the variance in pigment biomass can be explained by consistent, large-scale gradients. In general, biomass is higher in the north and in nearshore areas. Nearshore areas also have proportionally more small-scale variability than the areas offshore. Slopes of the power spectra for nearshore areas are about -2.2 (for spatial scales of 10-100 km), while slopes for offshore areas are about -3. In addition, the power spectra show evidence of a change in slope at about 10 km, with slopes of about -1 for shorter-length scales. This may indicate that biological processes dominate the smaller scales, while mesoscale eddies and geostrophic currents dominate the larger scales.

  1. Tidal and residual currents measured by an acoustic doppler current profiler at the west end of Carquinez Strait, San Francisco Bay, California, March to November 1988

    USGS Publications Warehouse

    Burau, J.R.; Simpson, M.R.; Cheng, R.T.

    1993-01-01

    Water-velocity profiles were collected at the west end of Carquinez Strait, San Francisco Bay, California, from March to November 1988, using an acoustic Doppler current profiler (ADCP). These data are a series of 10-minute-averaged water velocities collected at 1-meter vertical intervals (bins) in the 16.8-meter water column, beginning 2.1 meters above the estuary bed. To examine the vertical structure of the horizontal water velocities, the data are separated into individual time-series by bin and then used for time-series plots, harmonic analysis, and for input to digital filters. Three-dimensional graphic renditions of the filtered data are also used in the analysis. Harmonic analysis of the time-series data from each bin indicates that the dominant (12.42 hour or M2) partial tidal currents reverse direction near the bottom, on average, 20 minutes sooner than M2 partial tidal currents near the surface. Residual (nontidal) currents derived from the filtered data indicate that currents near the bottom are pre- dominantly up-estuary during the neap tides and down-estuary during the more energetic spring tides.

  2. Geochemical Characterization of Moisture Sources Supplying a Forested Ecosystem in an Unchanneled Hillslope in the Northern California Coast Range

    NASA Astrophysics Data System (ADS)

    Druhan, J. L.; Dietrich, W. E.; Conrad, M. E.; Dawson, T. E.; Fung, I.; Depaolo, D. J.

    2008-12-01

    Coastal California annually experiences periods of nearly 6 months without rain, yet dense coniferous forests commonly develop on steep hillslopes mantled with thin soil. Much of the coast range is underlain by marine sandstones and mudstones that are intensely fractured in the near-surface environment. We hypothesize that the coniferous forest might meet its transpiration water demands not just from the thin soil layer, but supplemented by residual winter moisture residing in the underlying fractured rock. This "rock moisture" is undocumented and difficult to measure directly. In order to explore this and other hypotheses, an intensive monitoring program was initiated on a 2600 m2 unchanneled valley (mean slope 25 degrees) developed mostly on vertically bedded mudstones that drains into Elder Creek at the Angelo Coast Range Reserve. Annual precipitation averages 216 cm per year and falls almost entirely between October and April. Six wells were drilled, some extending nearly 30 m below the surface, and numerous soil moisture monitoring stations were established. In parallel with this effort, a water chemistry sampling program was initiated to identify chemical tracers of water sources and pathways. Preliminary aqueous geochemical samples have been collected in February and July, 2008 and include groundwater, surface water from Elder Creek, moisture samples from the upper 10 cm of soil and from cores taken at depths up to 1.9 m into the underlying saprolite, and xylem moisture from four Douglas-firs spaced along the drainage path. Sulfate, calcium and strontium analyzed in groundwater and stream samples show a general increase in concentration with distance from the top of the drainage basin to the creek. A temporal variation is also observed, with increased concentrations in dry summer samples relative to wet winter samples. Stable isotopes of hydrogen and oxygen analyzed in all groundwater, stream, soil moisture and xylem waters fall within a range of -70 to - 40‰ for δD and -11 to -4‰ for δ18O. Groundwater, stream and saprolite moisture samples plot along the Global Meteoric Water Line (GMWL), with characteristic evaporative trends exhibited in the surface soil of both winter and summer samples. Xylem water from both sample sets falls below the GMWL. The distinct spatial and temporal variations in chemistry show promise in documenting the importance of rock moisture to forest maintenance and in revealing the primary flow pathways through such systems.

  3. Subtidal currents over the central California slope: Evidence for offshore veering of the undercurrent and for direct, wind-driven slope currents

    USGS Publications Warehouse

    Noble, M.A.; Ramp, S.R.

    2000-01-01

    In February 1991, an array of six current-meter moorings was deployed for one year across the central California outer shelf and slope. The main line of the array extended 30 km offshore of the shelf break, out to water depths of 1400 m. A more sparsely-instrumented line, displaced 30 km to the northwest, extended 14 km offshore. Though shorter, the northern line spanned similar water depths because the gradient of the topography steepened in the northern region. A poleward flow pattern, typical of the California undercurrent, was seen across both lines in the array over most of the year. The poleward flow was surface intensified. In general, the portion of the undercurrent that crossed the southern line had larger amplitudes and penetrated more deeply into the water column than the portion that crossed the northern line. Transport over the year ranged from 0 to 2.5 Sverdrups (Sv) poleward across the southern line; 0 to 1 Sv poleward across the northern line. We suggest the difference in transport was caused by topographic constraints, which tended to force the poleward flow offshore of the northern measurement sites. The slope of the topography steepened too abruptly to allow the poleward flow to follow isobaths when currents were strong. When current velocities lessened, a more coherent flow pattern was seen across both lines in the array. In general, the poleward flow patterns in the undercurrent were not affected by local winds or by the local alongshore pressure gradient. Nor was a strong seasonal pattern evident. Rather unexpectedly, a small but statistically significant fraction of the current variance over the mid- and outer slope was driven by the surface wind stress. An alongshelf wind stress caused currents to flow along the slope, parallel to the wind field, down to depths of 400 m below the surface and out to distances of 2 Rossby radii past the shelf break. The transfer functions were weak, 3-4 cm/s per dyn cm-2, but comparable to wind-driven current amplitudes of 4-6 cm/s per unit wind stress over the middle shelf. Equatorward, alongshelf winds also caused water from 200-300 m over the slope to upwell onto the shelf as the surface water moved offshore.

  4. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California

    NASA Astrophysics Data System (ADS)

    Cloern, James E.

    1996-05-01

    Phytoplankton blooms are prominent features of biological variability in shallow coastal ecosystems such as estuaries, lagoons, bays, and tidal rivers. Long-term observation and research in San Francisco Bay illustrates some patterns of phytoplankton spatial and temporal variability and the underlying mechanisms of this variability. Blooms are events of rapid production and accumulation of phytoplankton biomass that are usually responses to changing physical forcings originating in the coastal ocean (e.g., tides), the atmosphere (wind), or on the land surface (precipitation and river runoff). These physical forcings have different timescales of variability, so algal blooms can be short-term episodic events, recurrent seasonal phenomena, or rare events associated with exceptional climatic or hydrologic conditions. The biogeochemical role of phytoplankton primary production is to transform and incorporate reactive inorganic elements into organic forms, and these transformations are rapid and lead to measurable geochemical change during blooms. Examples include the depletion of inorganic nutrients (N, P, Si), supersaturation of oxygen and removal of carbon dioxide, shifts in the isotopic composition of reactive elements (C, N), production of climatically active trace gases (methyl bromide, dimethylsulfide), changes in the chemical form and toxicity of trace metals (As, Cd, Ni, Zn), changes in the biochemical composition and reactivity of the suspended particulate matter, and synthesis of organic matter required for the reproduction and growth of heterotrophs, including bacteria, zooplankton, and benthic consumer animals. Some classes of phytoplankton play special roles in the cycling of elements or synthesis of specific organic molecules, but we have only rudimentary understanding of the forces that select for and promote blooms of these species. Mounting evidence suggests that the natural cycles of bloom variability are being altered on a global scale by human activities including the input of toxic contaminants and nutrients, manipulation of river flows, and translocation of species. This hypothesis will be a key component of our effort to understand global change at the land-sea interface. Pursuit of this hypothesis will require creative approaches for distinguishing natural and anthropogenic sources of phytoplankton population variability, as well as recognition that the modes of human disturbance of coastal bloom cycles operate interactively and cannot be studied as isolated processes.

  5. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California

    USGS Publications Warehouse

    Cloern, James E.

    1996-01-01

    Phytoplankton blooms are prominent features of biological variability in shallow coastal ecosystems such as estuaries, lagoons, bays, and tidal rivers. Long-term observation and research in San Francisco Bay illustrates some patterns of phytoplankton spatial and temporal variability and the underlying mechanisms of this variability. Blooms are events of rapid production and accumulation of phytoplankton biomass that are usually responses to changing physical forcings originating in the coastal ocean (e.g., tides), the atmosphere (wind), or on the land surface (precipitation and river runoff). These physical forcings have different timescales of variability, so algal blooms can be short-term episodic events, recurrent seasonal phenomena, or rare events associated with exceptional climatic or hydrologic conditions. The biogeochemical role of phytoplankton primary production is to transform and incorporate reactive inorganic elements into organic forms, and these transformations are rapid and lead to measurable geochemical change during blooms. Examples include the depletion of inorganic nutrients (N, P, Si), supersaturation of oxygen and removal of carbon dioxide, shifts in the isotopic composition of reactive elements (C, N), production of climatically active trace gases (methyl bromide, dimethylsulfide), changes in the chemical form and toxicity of trace metals (As, Cd, Ni, Zn), changes in the biochemical composition and reactivity of the suspended particulate matter, and synthesis of organic matter required for the reproduction and growth of heterotrophs, including bacteria, zooplankton, and benthic consumer animals. Some classes of phytoplankton play special roles in the cycling of elements or synthesis of specific organic molecules, but we have only rudimentary understanding of the forces that select for and promote blooms of these species. Mounting evidence suggests that the natural cycles of bloom variability are being altered on a global scale by human activities including the input of toxic contaminants and nutrients, manipulation of river flows, and translocation of species. This hypothesis will be a key component of our effort to understand global change at the land-sea interface. Pursuit of this hypothesis will require creative approaches for distinguishing natural and anthropogenic sources of phytoplankton population variability, as well as recognition that the modes of human disturbance of coastal bloom cycles operate interactively and cannot be studied as isolated processes.

  6. Changes in forage fish community indicated by the diet of the Brandt's cormorant (Phalacrocorax penicillatus) in the central California Current

    NASA Astrophysics Data System (ADS)

    Elliott, Meredith L.; Bradley, Russell W.; Robinette, Dan P.; Jahncke, Jaime

    2015-06-01

    The population, productivity and diet of two Brandt's cormorant (Phalacrocorax penicillatus) colonies located in the central California Current were compared. The offshore colony on Southeast Farallon Island has experienced a declining population over time and anomalously low productivity in recent years. The nearshore colony near Point Arguello has been increasing and its productivity has remained stable. The diets of cormorants at the two colonies elucidated by analysis of regurgitated pellets, while different, have shown similar decreases in the consumption of northern anchovy (Engraulis mordax) since 2008, followed by increased consumption of rockfish (Sebastes spp.) and flatfish (order Pleuronectiformes). By using the diet results from another seabird nesting in central California, the rhinoceros auklet (Cerorhinca monocerata), and one from which whole fish can be obtained, we found that the rockfish species assemblage has changed with offshore rockfish species decreasing while nearshore ones have increased. This change in the rockfish species has negatively impacted Brandt's cormorants at the offshore colony by forcing them to make longer foraging trips to meet energy needs of themselves and their chicks; this has led to low breeding success and a declining population at this site. On the other hand, the nearshore colony has abundant nearby food resources, and it has prospered. These results underscore the value of using seabird data from multiple colonies to better understand changes occurring in the marine environment.

  7. Variability of pigment biomass in the California Current system as determined by satellite imagery. II - Temporal variability

    NASA Technical Reports Server (NTRS)

    Michaelsen, Joel; Zhang, Xueyun; Smith, Raymond C.

    1988-01-01

    Characteristics of temporal variability in the California Current system are analyzed using a 30-month time series of CZCS imagery. About 20-25 percent of the variance is produced by a periodic annual cycle with peak values in winter. Analysis of ship-based chlorophyll measurements indicates that the winter peak is only characteristic of the upper portion of the euphotic zone and that total water column chlorophyll peaks during the spring upwelling season. Satellite studies of intraannual variability are modulated by strong 5- to 6-day oscillation in the availability of usable imagery, resulting from a combination of satellite orbital dynamics, which produces images of the study area roughly 4 out of every 6 days, and an oscillation in cloud cover, which controls the availability of clear imagery. The cloud cover oscillation, which is also present in coastal winds, undoubtedly affects the ocean surface and biases the data obtained by satellites. Analysis of data using a 5-day time step indicates that the predominant mode of nonseasonal variability is characterized by in-phase fluctuations throughout the southern and central California coastal region.

  8. Examining Current and Proposed Home Language Surveys in California in Relation to Initial English Language Proficiency Assessment Results: An Exploratory Study

    ERIC Educational Resources Information Center

    Haas, Eric; Tran, Loan; Linquanti, Robert; Bailey, Alison

    2015-01-01

    The purpose of this exploratory study was to examine the extent to which a proposed home language survey in California could better identify possible English learner and multilingual students than the current home language survey. The responses to a proposed and current survey were examined for students registering for kindergarten through grade…

  9. How past fire disturbances have contributed to the current carbon balance of boreal ecosystems?

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Zhu, D.; Wang, T.; Peng, S. S.; Piao, S. L.

    2015-09-01

    Boreal fires have immediate effects on regional carbon budgets by emitting CO2 into the atmosphere at the time of burning, but also have legacy effects by initiating a long-term carbon sink during post-fire vegetation recovery. Quantifying these different effects on the current-day pan-boreal (44-84° N) carbon balance and relative contributions of legacy sinks by past fires is important for understanding and predicting the carbon dynamics in this region. Here we used the global dynamic vegetation model ORCHIDEE-SPITFIRE to attribute the contributions by fires in different decades of 1850-2009 to the carbon balance of 2000-2009, taking into account the atmospheric CO2 change and climate change since 1850. The fire module of ORCHIDEE-SPITFIRE was turned off in each decade sequentially, and turned on before and after, to model the legacy carbon trajectory by fires in each past decade. We found that, unsurprisingly, fires that occured in 2000-2009 are a carbon source (-0.17 Pg C yr-1) for the 2000s-decade carbon balance, whereas fires in all decades before 2000 contribute carbon sinks with a collective contribution of 0.23 Pg C yr-1. This leaves a net fire sink effect of 0.06 Pg C yr-1, or 6.3 % of the simulated regional carbon sink (0.95 Pg C yr-1). Further, fires with an age of 10-40 years (i.e. those occurred during 1960-1999) contribute more than half of the total sink effect of fires. The small net sink effect of fires indicates that current-day fire emissions are roughly in balance with legacy sinks. The future role of fires in the regional carbon balance remains uncertain and will depend on whether changes in fires and associated carbon emissions will exceed the enhanced sink effects of previous fires, both being strongly affected by global change.

  10. Kaiser Permanente Northern California: current experiences with internet, mobile, and video technologies.

    PubMed

    Pearl, Robert

    2014-02-01

    The US health care system has been slow to adopt Internet, mobile, and video technologies, which have the capability to engage patients in their own care, increase patients' access to providers, and possibly improve the quality of care while reducing costs. Nevertheless, there are some pockets of progress, including Kaiser Permanente Northern California (KPNC). In 2008 KPNC implemented an inpatient and ambulatory care electronic health record system for its 3.4 million members and developed a suite of patient-friendly Internet, mobile, and video tools. KPNC has achieved many successes. For example, the number of virtual "visits" grew from 4.1 million in 2008 to an estimated 10.5 million in 2013. This article describes KPNC's experience with Internet, mobile, and video technologies and the obstacles faced by other health care providers interested in embracing them. The obstacles include the predominant fee-for-service payment model, which does not reimburse for virtual visits; the considerable investment needed to deploy these technologies; and physician buy-in. PMID:24493768

  11. On Lagrangian residual currents with applications in south San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo

    1982-01-01

    The Lagrangian residual circulation has often been introduced as the sum of the Eulerian residual circulation and the Stokes' drift. Unfortunately, this definition of the Lagrangian residual circulation is conceptually incorrect because both the Eulerian residual circulation and the Stokes' drift are Eulerian variables. In this paper a classification of various residual variables are reviewed and properly defined. The Lagrangian residual circulation is then studied by means of a two-stage formulation of a computer model. The tidal circulation is first computed in a conventional Eulerian way, and then the Lagrangian residual circulation is determined by a method patterned after the method of markers and cells. To demonstrate properties of the Lagrangian residual circulation, application of this approach in South San Francisco Bay, California, is considered. With the aid of the model results, properties of the Eulerian and Lagrangian residual circulation are examined. It can be concluded that estimation of the Lagrangian residual circulation from Eulerian data may lead to unacceptable error, particularly in a tidal estuary where the tidal excursion is of the same order of magnitude as the length scale of the basin. A direction calculation of the Lagrangian residual circulation must be made and has been shown to be feasible.

  12. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate

    NASA Astrophysics Data System (ADS)

    Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C.

    2015-10-01

    Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.

  13. Currents at the sills bounding Delfin Basin in the northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Lopez, M.; Candela, J.

    2013-05-01

    One-year-long currents at the two sills bounding Delfin basin (maximum depth ˜900 m), are analyzed. The Delfin (DEL) sill (˜400 m depth) has the largest mean velocities near the bottom in an overflow that discharges water into the Delfin Basin (roughly towards the head of the gulf), whereas the Ballenas Channel (BC) sill (˜600 m depth) has the largest mean velocities close to the surface which also flow towards the head of the gulf. The energy of the subinertial current fluctuations is also quite different. Most of the energy at the DEL sill is concentrated in the lowest frequencies (periods > 15 days). In the case of the BC sill, the spectra are not red and much of the energy is concentrated at periods ≤ 15 days except close to the surface, where most the energy is also concentrated in the lowest frequencies associated with the current fluctuations of the mean near-surface current towards the head of the gulf. Near-bottom current fluctuations towards the head of the gulf at the overflow of the DEL sill are well correlated with intermediate and deeper currents towards the mouth of the gulf, as well as with surface currents towards the head of the gulf at the BC sill for periods ≥ 20 days. Transport of the overflow also has the largest coherences with near-surface currents at the BC sill for periods ≥ 20 days, but there is also significant coherence with deeper currents at the same low frequencies. The relationship between the overflow and the exchange at the BC sill is also clearly borne out by the first empirical mode of currents at both locations. This is interpreted as part of the exchange of the northern gulf by which fluctuations of the near-bottom flow into the deepest basins are compensated by fluctuations of the near-surface flow out of the same basins. In addition, near-bottom transport and currents at the DEL sill are coherent with deep currents at the CB sill at the shorter periods of 10 and 3.2 days. At these periods, there is also good coherence between currents at the DEL and CB sills, with temperature fluctuations at the latter site. The overflow has a significant fortnightly modulation, which may not be the result of direct forcing by tidal currents but rather, a fortnightly tidal modulation of the currents and transport at the San Esteban sill, which lies about 140 km to the southeast and supplies the water for the overflow at the DEL sill.

  14. Landscape anthropogenic disturbance in the Mediterranean ecosystem: is the current landscape sustainable?

    NASA Astrophysics Data System (ADS)

    Biondi, Guido; D'Andrea, Mirko; Fiorucci, Paolo; Franciosi, Chiara; Lima, Marco

    2013-04-01

    Mediterranean landscape during the last centuries has been subject to strong anthropogenic disturbances who shifted natural vegetation cover in a cultural landscape. Most of the natural forest were destroyed in order to allow cultivation and grazing activities. In the last century, fast growing conifer plantations were introduced in order to increase timber production replacing slow growing natural forests. In addition, after the Second World War most of the grazing areas were changed in unmanaged mediterranean conifer forest frequently spread by fires. In the last decades radical socio economic changes lead to a dramatic abandonment of the cultural landscape. One of the most relevant result of these human disturbances, and in particular the replacement of deciduous forests with coniferous forests, has been the increasing in the number of forest fires, mainly human caused. The presence of conifers and shrubs, more prone to fire, triggered a feedback mechanism that makes difficult to return to the stage of potential vegetation causing huge economic, social and environmental damages. The aim of this work is to investigate the sustainability of the current landscape. A future landscape scenario has been simulated considering the natural succession in absence of human intervention assuming the current fire regime will be unaltered. To this end, a new model has been defined, implementing an ecological succession model coupled with a simply Forest Fire Model. The ecological succession model simulates the vegetation dynamics using a rule-based approach discrete in space and time. In this model Plant Functional Types (PFTs) are used to describe the landscape. Wildfires are randomly ignited on the landscape, and their propagation is simulated using a stochastic cellular automata model. The results show that the success of the natural succession toward a potential vegetation cover is prevented by the frequency of fire spreading. The actual landscape is then unsustainable because of the high cost of fire fighting activities. The right path to success consists in development of suitable land use planning and forest management to mitigate the consequences of past anthropogenic disturbances.

  15. Seasonal to Decadal-Scale Variability in Satellite Ocean Color and Sea Surface Temperature for the California Current System

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Kahru, Mati; Marra, John (Technical Monitor)

    2002-01-01

    Support for this project was used to develop satellite ocean color and temperature indices (SOCTI) for the California Current System (CCS) using the historic record of CZCS West Coast Time Series (WCTS), OCTS, WiFS and AVHRR SST. The ocean color satellite data have been evaluated in relation to CalCOFI data sets for chlorophyll (CZCS) and ocean spectral reflectance and chlorophyll OCTS and SeaWiFS. New algorithms for the three missions have been implemented based on in-water algorithm data sets, or in the case of CZCS, by comparing retrieved pigments with ship-based observations. New algorithms for absorption coefficients, diffuse attenuation coefficients and primary production have also been evaluated. Satellite retrievals are being evaluated based on our large data set of pigments and optics from CalCOFI.

  16. Fog as an ecosystem service: Quantifying fog-mediated reductions in maximum temperature across coastal to inland transects in northern California

    NASA Astrophysics Data System (ADS)

    Torregrosa, A.; Flint, L. E.; Flint, A. L.; Combs, C.; Peters, J.

    2013-12-01

    Several studies have documented the human benefits of temperature cooling derived from coastal fog such as the reduction in the number of hospital visits/emergency response requests from heat stress-vulnerable population sectors or decreased energy consumption during periods when summer maximum temperatures are lower than normal. In this study we quantify the hourly, daily, monthly and seasonal thermal effect of fog and low clouds (FLC) hours on maximum summer temperatures across a northern California landscape. The FLC data summaries are calculated from the CIRA (Cooperative Institute for Research in the Atmosphere) 10 year archive that were derived from hourly night and day images using channels 1 (Visible), 2 (3.6 μm) and 4 (10.7 μm) NOAA GOES (Geostationary Operational Environmental Satellite). The FLC summaries were analyzed with two sets of site based data, meteorological (met) station-based measurements and downscaled interpolated PRISM data for selected point locations spanning a range of coastal to inland geographic conditions and met station locations. In addition to finding a 0.4 degree C per hour of FLC effect, our results suggest variability related to site specific thermal response. For example, sites closest to the coast have less thermal variability between low cloud and sunny days than sites further from the coast suggesting a much stronger influence of ocean temperature than of FLC thermal dynamics. The thermal relief provided by summertime FLC is equivalent in magnitude to the temperature increase projected by the driest and hottest of regional downscaled climate models using the A2 ('worst') IPCC scenario. Extrapolating these thermal calculations can facilitate future quantifications of the ecosystem service provided by summertime low clouds and fog.

  17. Observed and Modeled Currents from the Tohoku-oki, Japan and other Recent Tsunamis in Northern California

    NASA Astrophysics Data System (ADS)

    Admire, Amanda R.; Dengler, Lori A.; Crawford, Gregory B.; Uslu, Burak U.; Borrero, Jose C.; Greer, S. Dougal; Wilson, Rick I.

    2014-12-01

    We investigate the currents produced by recent tsunamis in Humboldt Bay and Crescent City, California. The region is susceptible to both near-field and far-field tsunamis and has a historic record of damaging events. Crescent City Harbor, located approximately 100 kms north of Humboldt Bay, suffered US 28 million in damages from strong currents produced by the 2006 Kuril Islands tsunami and an additional US 26 million from the 2011 Japan tsunami. In order to better evaluate these currents in northern California, we deployed a Nortek Aquadopp 600 kHz 2D acoustic Doppler current profiler (ADCP) with a 1-min sampling interval in Humboldt Bay, near the existing National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) tide gauge station. The instrument recorded the tsunamis produced by the Mw 8.8 Chile earthquake on February 27, 2010 and the Mw 9.0 Japan earthquake on March 11, 2011. One other tsunami was recorded on the Humboldt Bay tide gauge during the period of ADCP operation, but was not visible on the ADCP, suggesting a threshold water level value of about 0.2 m to produce an observable ADCP record. The 2010 tsunami currents persisted in Humboldt Bay for approximately 30 h with peak amplitudes of about 0.35 m/s. The 2011 tsunami signal lasted for over 40 h with peak amplitude of 0.84 m/s. The strongest currents corresponded to the maximum change in water level approximately 67 min after the initial wave arrival. No damage was observed in Humboldt Bay for either event. In Crescent City, currents for the first three and one-half hours of the 2011 Japan tsunami were estimated using security camera video footage from the Harbor Master, approximately 70 m away from the NOAA-NOS tide gauge station. The largest amplitude tide gauge water-level oscillations and most of the damage occurred within this time window. The currents reached a velocity of approximately 4.5 m/s and six cycles exceeded 3 m/s during this period. Measured current velocities both in Humboldt Bay and in Crescent City were compared to calculated velocities from the Method of Splitting Tsunamis (MOST) numerical model. The frequency and pattern of current amplification and decay at both locations are replicated by the MOST model for the first several hours after the tsunami onset. MOST generally underestimates 2011 peak current velocities by about 10-30 %, with a few peaks by as much as 50 %. At Humboldt Bay, MOST predicted attenuation of the signal after 4 h but the actual signal persisted at a nearly constant level for at least twice as long. The results from this project demonstrate that ADCPs can effectively record tsunami currents for small to moderate events and can be used to calibrate and validate models (i.e., MOST) in order to better understand hazardous tsunami conditions within harbors.

  18. Biogeochemical Response to Mesoscale Physical Forcing in the California Current System

    NASA Technical Reports Server (NTRS)

    Niiler, Pearn P.; Letelier, Ricardo; Moisan, John R.; Marra, John A. (Technical Monitor)

    2001-01-01

    In the first part of the project, we investigated the local response of the coastal ocean ecosystems (changes in chlorophyll, concentration and chlorophyll, fluorescence quantum yield) to physical forcing by developing and deploying Autonomous Drifting Ocean Stations (ADOS) within several mesoscale features along the U.S. west coast. Also, we compared the temporal and spatial variability registered by sensors mounted in the drifters to that registered by the sensors mounted in the satellites in order to assess the scales of variability that are not resolved by the ocean color satellite. The second part of the project used the existing WOCE SVP Surface Lagrangian drifters to track individual water parcels through time. The individual drifter tracks were used to generate multivariate time series by interpolating/extracting the biological and physical data fields retrieved by remote sensors (ocean color, SST, wind speed and direction, wind stress curl, and sea level topography). The individual time series of the physical data (AVHRR, TOPEX, NCEP) were analyzed against the ocean color (SeaWiFS) time-series to determine the time scale of biological response to the physical forcing. The results from this part of the research is being used to compare the decorrelation scales of chlorophyll from a Lagrangian and Eulerian framework. The results from both parts of this research augmented the necessary time series data needed to investigate the interactions between the ocean mesoscale features, wind, and the biogeochemical processes. Using the historical Lagrangian data sets, we have completed a comparison of the decorrelation scales in both the Eulerian and Lagrangian reference frame for the SeaWiFS data set. We are continuing to investigate how these results might be used in objective mapping efforts.

  19. Analysis of current-use pesticides in aquatic and terrestrial organisms collected throughout California, USA

    USGS Publications Warehouse

    Smalling, Kelly L.; Kuivila, Kathyrn M.

    2010-01-01

    A wide variety of pesticides are applied concurrently in agricultural and urban areas and transported off site dissolved in water and bound to sediments. But the exposure of aquatic and terrestrial organisms to current-use pesticides and the resulting effects are not well understood. One approach is to directly analyze tissue concentrations of contaminants. The overall objective of this study was to develop a sensitive method to analyze current-use pesticides with a wide range of Kow's in tissue to better understand the accumulation of these contaminants in different aquatic and terrestrial organisms. This method was then used to analyze current-use pesticides in tissues from a variety of organisms from sites with different land-use practices.

  20. Modeling the response of the California Current system to global greenhouse warming. Final report to the National Institute for Global Environmental Change (August 1993)

    SciTech Connect

    Pares-Sierra, A.; Somerville, R.C.J.

    1993-12-31

    This is the final report for the project ``Modeling the Response of the California Current System to Global Greenhouse Warming,`` supported 1990 and 1991 by NIGEC. The scientists involved are Dr. Richard C.J. Somerville and Alejandro Paries-Sierra of Scripps Institution of Oceanography, UCSD. A copy of papers submitted to the Journal of Physical Oceanography, and Geofisica Internacional that were supported in part or whole by WEST-GEC, as well as a summary of a talk delivered at the XX General Assembly of the IUGG, Vienna (1991) are appended to this report. The objective of the research was to improve the understanding of the response of the California Current system to the large-scale anomalous forcing thought to be associated with greenhouse warming. The authors viewed this as a necessary initial step in the study of the California climate response to global change.

  1. Seasonal and Interannual Variability in the California Current System over the Washington Continental Slope observed with Seagliders

    NASA Astrophysics Data System (ADS)

    Eriksen, C. C.; Lee, C. M.; Perry, M. J.

    2008-12-01

    Nearly continuous Seaglider repeat sections over the Washington continental slope since August 2003 reveal seasonal and interannual patterns of circulation, oxygen and phytoplankton distribution. Structure in the upper 1 km of the water column has been resolved to ~5 km along sections completed roughly fortnightly using Seaglider long-range autonomous underwater vehicles. More than 11,000 profiles of temperature, salinity, dissolved oxygen, chlorophyll fluorescence and optical backscatter on over 25,000 km of survey track have been collected in 5 years along a pair of sections normal to the coast. Both seasonal and interannual signals are prominent in the observations. Isopycnal tilts delineating the equatorward California Current offshore and the poleward inshore countercurrent reverse seasonally. Alongshore current fluctuations as well as property surfaces tend to propagate offshore near the speed of a gravest mode long Rossby wave. Annual signals are nearly oppositely phased from the continental shelf edge to the end of the survey track, 220-240 km offshore. Interannual differences in water type and depth averaged transport in the upper 1 km are apparent. Alongshore transport variations are strongly interannual, amounting to a few Sverdrups poleward or equatorward in different years. A particularly large equatorward transport pulse was observed over a several month episode centered on January 2007, where average transports exceeded 10 Sverdrups with a few fortnightly estimates exceeding 20 Sverdrups.

  2. Optimized multi-satellite merger of primary production estimates in the California Current using inherent optical properties

    NASA Astrophysics Data System (ADS)

    Kahru, Mati; Jacox, Michael G.; Lee, Zhongping; Kudela, Raphael M.; Manzano-Sarabia, Marlenne; Mitchell, B. Greg

    2015-07-01

    Building a multi-decadal time series of large-scale estimates of net primary production (NPP) requires merging data from multiple ocean color satellites. The primary product of ocean color sensors is spectral remote sensing reflectance (Rrs). We found significant differences (13-18% median absolute percent error) between Rrs estimates at 443 nm of different satellite sensors. These differences in Rrs are transferred to inherent optical properties and further on to estimates of NPP. We estimated NPP for the California Current region from three ocean color sensors (SeaWiFS, MODIS-Aqua and MERIS) using a regionally optimized absorption based primary production model (Aph-PP) of Lee et al. (2011). Optimization of the Aph-PP model was required for each individual satellite sensor in order to make NPP estimates from different sensors compatible with each other. While the concept of Aph-PP has advantages over traditional chlorophyll-based NPP models, in practical application even the optimized Aph-PP model explained less than 60% of the total variance in NPP which is similar to other NPP algorithms. Uncertainties in satellite Rrs estimates as well as uncertainties in parameters representing phytoplankton depth distribution and physiology are likely to be limiting our current capability to accurately estimate NPP from space. Introducing a generic vertical profile for phytoplankton improved slightly the skill of the Aph-PP model.

  3. Current Status of Western Yellow-Billed Cuckoo along the Sacramento and Feather Rivers, California

    PubMed Central

    2015-01-01

    To evaluate the current status of the western population of the Yellow-billed Cuckoo (Coccyzus americanus) along the Sacramento and Feather rivers in California’s Sacramento Valley, we conducted extensive call playback surveys in 2012 and 2013. We also quantified the amount and distribution of potential habitat. Our survey transects were randomly located and spatially balanced to sample representative areas of the potential habitat. We estimated that the total area of potential habitat was 8,134 ha along the Sacramento River and 2,052 ha along the Feather River, for a total of 10,186 ha. Large-scale restoration efforts have created potential habitat along both of these rivers. Despite this increase in the amount of habitat, the number of cuckoos we detected was extremely low. There were 8 detection occasions in 2012 and 10 occasions in 2013 on the Sacramento River, in both restored and remnant habitat. We had no detections on the Feather River in either year. We compared our results to 10 historic studies from as far back as 1972 and found that the Yellow-billed Cuckoo had unprecedentedly low numbers in 2010, 2012, and 2013. The current limiting factor for the Yellow-billed Cuckoo in the Sacramento Valley is likely not the amount of appropriate vegetation, as restoration has created more habitat over the last 30 years. Reasons for the cuckoo decline on the Sacramento and Feather rivers are unclear. PMID:25915801

  4. Seasonal and spatial variation of bug flux in a northern California drainage network under a Mediterranean climate: implications for reciprocal subsidies between coupled ecosystems

    NASA Astrophysics Data System (ADS)

    Power, M. E.; Moreno-Mateos, D.; Uno, H.; Bode, C.; Rainey, W.

    2010-12-01

    Background/Question/Methods. Network configuration of river drainages affects ecological exchange between mainstem channels and smaller tributaries, and between coupled terrestrial and aquatic habitats. Seasonal complementarity of fluxes may enhance predator densities and persistence in linked habitats under continental climate regimes (Nakano and Murakami 2001). In a Mediterranean watershed (the upper South Fork Eel River of Northern California (39°44’N, 123°37’W)), we studied spatial and seasonal patterns in insect fluxes among river, wetland, and forest habitats. We quantified insect emergence with vertical traps, and lateral fluxes between six wetland and eight river reaches and the upland forest adjacent to each. Insect horizontal fluxes were sampled using sticky traps along 50-150 m transects from the moister to the dryer habitats. We also studied vertical gradients of insect fluxes over rivers (up to 7 m) and in the forest (up to 40 m). Ca. 1800 traps and 40,000 insects were quantified. Results/Conclusions. In contrast to linked forest-river ecosystems in Hokkaido, peaks of insect fluxes in aquatic versus terrestrial habitats of the Eel River basin were less offset, and the seasonality of terrestrial versus river peaks was reversed. From late April through May, when the whole landscape was moist, there was no spatial variation in insect abundance-activity along forest, wetland, or river transects, and abundances averaged 315 insects m-2d-1. As the uplands dried out, from June to September, insect abundance peaked in wetlands and near the river, but dropped in the forest to average 32 insects m-2d-1 . The wetlands, with three abundance peaks distributed through spring, summer, and fall, maintained insect fluxes when river and forest fluxes were low. Vertically arrayed sticky traps over the river documented maximal insect activity-abundance near the water surface. In some positions, movements appeared random (equal downstream and upstream fluxes), but at other sites movements were strongly directional. For example, Amaletus mayflies that reared as larvae in the productive mainstem swarmed as adults into a small, dark, steep tributary, where extensive crusts of dead adults over tributary pools suggested that they mated and died. We are investigating how insectivorous birds and bats track and respond to these seasonal shifts in food supply points and spatial fluxes through the basin network of linked habitats.

  5. Is it restoration or reconciliation? California's experience restoring the Sacramento - San Joaquin River Delta provides lessons learned and pathways forward to sustain critical ecosystem functions and services in a highly managed riverine delta.

    NASA Astrophysics Data System (ADS)

    Viers, J. H.; Kelsey, R.

    2014-12-01

    Reconciling the needs of nature and people in California's Sacramento - San Joaquin River Delta represents one of the most critical ecosystem management imperatives in western North America. Over 150 years the Delta has been managed for near-term human benefits and in the process 95% of riverine and deltaic wetlands have been lost throughout the region. Despite extensive land conversion and alteration of hydrological and physical processes, the Delta remains important habitat for migratory birds and is home to over 60% of California's native fish species. It is also the waterwheel for the state's vast water distribution network and is maintained by a system of constructed levees that are at risk from catastrophic failure due to sea level rise, floods, and/or seismic activity. Such a collapse would have dire consequences for > 25M humans and world's 10th largest economy that depend on its freshwater. Thus, the ultimate cost of this ecosystem alteration and simplification is a riverscape that is no longer reliable for nature or people. For 30 years, attempts to 'restore' Delta ecosystems and improve reliability have met with mixed results. For example, reconnection of floodplains to floodwaters has resulted in improved ecological health for native fishes and recharge to localized aquifers. Uncoordinated releases of discharges below dams, however, have resulted in diminished water quality and populations of indicator species. Attempts to create wildlife friendly farms have been countered by an increase in perennial agriculture and commensurate increases in irrigation water demand. From these lessons learned, we demonstrate three key components of a reconciled Delta that will be necessary in the future: 1) full restoration of critical habitats, reconnecting land and water to rebuild ecosystem function; 2) landscape redesign, incorporating natural and engineered infrastructure to create a biologically diverse, resilient landscape to support both agriculture and natural ecosystems, while reducing the impacts of climate change; and 3) recognition that some ecosystem components, including less resilient species, may be lost and other novel components may emerge. These findings serve to reconcile conflicting demands and restoring ecosystem functions in highly altered wetland landscapes worldwide.

  6. Salton Sea ecosystem monitoring and assessment plan

    USGS Publications Warehouse

    Case(compiler), H. L., III; Boles, Jerry; Delgado, Arturo; Nguyen, Thang; Osugi, Doug; Barnum, Douglas A.; Decker, Drew; Steinberg, Steven; Steinberg, Sheila; Keene, Charles; White, Kristina; Lupo, Tom; Gen, Sheldon; Baerenklau, Ken A.

    2013-01-01

    The Salton Sea, California’s largest lake, provides essential habitat for several fish and wildlife species and is an important cultural and recreational resource. It has no outlet, and dissolved salts contained in the inflows concentrate in the Salton Sea through evaporation. The salinity of the Salton Sea, which is currently nearly one and a half times the salinity of ocean water, has been increasing as a result of evaporative processes and low freshwater inputs. Further reductions in inflows from water conservation, recycling, and transfers will lower the level of the Salton Sea and accelerate the rate of salinity increases, reduce the suitability of fish and wildlife habitat, and affect air quality by exposing lakebed playa that could generate dust. Legislation enacted in 2003 to implement the Quantification Settlement Agreement (QSA) stated the Legislature’s intent for the State of California to undertake the restoration of the Salton Sea ecosystem. As required by the legislation, the California Resources Agency (now California Natural Resources Agency) produced the Salton Sea Ecosystem Restoration Study and final Programmatic Environmental Impact Report (PEIR; California Resources Agency, 2007) with the stated purpose to “develop a preferred alternative by exploring alternative ways to restore important ecological functions of the Salton Sea that have existed for about 100 years.” A decision regarding a preferred alternative currently resides with the California State Legislature (Legislature), which has yet to take action. As part of efforts to identify an ecosystem restoration program for the Salton Sea, and in anticipation of direction from the Legislature, the California Department of Water Resources (DWR), California Department of Fish and Wildlife (CDFW), U.S. Bureau of Reclamation (Reclamation), and U.S. Geological Survey (USGS) established a team to develop a monitoring and assessment plan (MAP). This plan is the product of that effort. The goal of the MAP is to provide a guide for data collection, analysis, management, and reporting to inform management actions for the Salton Sea ecosystem. Monitoring activities are directed at species and habitats that could be affected by or drive future restoration activities. The MAP is not intended to be a prescriptive document. Rather, it is envisioned to be a flexible, program-level guide that articulates high-level goals and objectives, and establishes broad sideboards within which future project-level investigations and studies will be evaluated and authorized. As such, the MAP, by design, does not, for example, include detailed protocols describing how investigations will be implemented. It is anticipated that detailed study proposals will be prepared as part of an implementation plan that will include such things as specific sampling objectives, sampling schemes, and statistical and spatial limits.

  7. Linkages Between Upwelling and Shell Characteristics of Mytilus californianus: Morphology and Stable Isotope (δ13C, δ18O) Signatures of a Carbonate Archive from the California Current

    NASA Astrophysics Data System (ADS)

    Hosfelt, J. D.; Hill, T. M.; Russell, A. D.; Bean, J. R.; Sanford, E.; Gaylord, B.

    2014-12-01

    Many calcareous organisms are known to record the ambient environmental conditions in which they grow, and their calcium carbonate skeletons are often valuable archives of climate records. Mytilus californianus, a widely distributed species of intertidal mussel, experiences a spatial mosaic of oceanographic conditions as it grows within the California Current System. Periodic episodes of upwelling bring high-CO2 waters to the surface, during which California coastal waters are similar to projected conditions and act as a natural analogue to future ocean acidification. To examine the link between upwelling and shell characteristics of M. californianus, we analyzed the morphology and stable isotope (δ13C, δ18O) signatures of mussel specimens collected live from seven study sites within the California Current System. Morphometric analyses utilized a combination of elliptic Fourier analysis and shell thickness measurements to determine the influence of low pH waters on the growth morphology and ecological fitness of M. californianus. These geochemical and morphological analyses were compared with concurrent high-resolution environmental (T, S, pH, TA, DIC) records from these seven study sites from 2010-2013. With appropriate calibration, new archives from modern M. californianus shells could provide a valuable tool to enable environmental reconstructions within the California Current System. These archives could in turn be used to predict the future consequences of continuing ocean acidification, as well as reconstruct past (archeological) conditions.

  8. Current Status and Future Prospects for the Assessment of Marine and Coastal Ecosystem Services: A Systematic Review

    PubMed Central

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G.; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Background Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. Methodology/Principal Findings We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. Conclusions/Significance This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies. PMID:23844080

  9. Changes in zooplankton habitat, behavior, and acoustic scattering characteristics across glider-resolved fronts in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Powell, Jesse R.; Ohman, Mark D.

    2015-05-01

    We report cross-frontal changes in the characteristics of plankton proxy variables measured by autonomous Spray ocean gliders operating within the Southern California Current System (SCCS). A comparison of conditions across the 154 positive frontal gradients (i.e., where density of the surface layer decreased in the offshore direction) identified from six years of continuous measurements showed that waters on the denser side of the fronts typically showed higher Chl-a fluorescence, shallower euphotic zones, and higher acoustic backscatter than waters on the less dense side. Transitions between these regions were relatively abrupt. For positive fronts the amplitude of Diel Vertical Migration (DVM), inferred from a 3-beam 750 kHz acoustic Doppler profiler, increased offshore of fronts and covaried with optical transparency of the water column. Average interbeam variability in acoustic backscatter also changed across many positive fronts within 3 depth strata (0-150 m, 150-400 m, and 400-500 m), revealing a front-related change in the acoustic scattering characteristics of the assemblages. The extent of vertical stratification of distinct scattering assemblages was also more pronounced offshore of positive fronts. Depth-stratified zooplankton samples collected by Mocness nets corroborated the autonomous measurements, showing copepod-dominated assemblages and decreased zooplankton body sizes offshore and euphausiid-dominated assemblages with larger median body sizes inshore of major frontal features.

  10. Anomalously warm July 2005 in the northern California Current: Historical context and the significance of cumulative wind stress

    NASA Astrophysics Data System (ADS)

    Pierce, Stephen D.; Barth, John A.; Thomas, Rebecca E.; Fleischer, Guy W.

    2006-10-01

    In the northern California Current, the onset of the 2005 upwelling season was five weeks later than usual, and well-established upwelling with a cold surface signature did not occur until about seven weeks after this. As part of the joint US-Canada Pacific hake survey, from 14-16 July 2005 we occupied the Newport Hydrographic line at 44.65°N, from the Oregon coast to 83 km offshore. Instead of the cold surface layer expected in July, we observed anomalously warm water. For example, 10-m temperature at the shelf station NH-5 was the warmest ever recorded in July at this location: 6.2°C above average, with observations back to 1961. We explore the pivotal role played by cumulative (time-integrated) wind forcing in the development of upwelling, in both 2005 and previous years. We find that 80% of July surface layer (0-30 m) interannual temperature variance can be explained by cumulative upwelling index from the spring transition.

  11. The evolution of the stress state in Southern California based on the geomechanical model and current seismicity

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.; Garagash, I. A.; Gokhberg, M. B.; Rodkin, M. V.

    2016-01-01

    A three-dimensional geomechanical model of Southern California, which includes the mountain topography, fault tectonics, and main structural boundaries (the top of the lower crust and the Moho), is developed. The main stress state of the model is determined by the own weight of the rocks and by the horizontal tectonic motions identified from the GPS observations. The model enables tracking the changes which occur in the stress-strain state of the crust due to the evolution of the seismic process. As the input data, the model uses the current seismicity and treats each earthquake as a new defect in the Earth's crust which brings about the redistribution of strains, elastic energy density, and yield stress of the crust. Monitoring the variations in the stress state of the crust and lithosphere arising in response to the seismic process shows that the model is suitable for forecasting the enhancement in seismic activity of the region and delineating the earthquake-prone areas with a reasonable probability on a given time interval.

  12. Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current

    NASA Astrophysics Data System (ADS)

    Brzezinski, Mark A.; Krause, Jeffrey W.; Bundy, Randelle M.; Barbeau, Katherine A.; Franks, Peter; Goericke, Ralf; Landry, Michael R.; Stukel, Michael R.

    2015-07-01

    Nutrient dynamics, phytoplankton rate processes, and export were examined in a frontal region between an anticyclone and a pair of cyclones 120 km off the coast in the southern California Current System (sCCS). Low silicic acid: nitrate ratios (Si:N) and high nitrate to iron ratios (N:Fe) characteristic of Fe-limiting conditions in the sCCS were associated with the northern cyclone and with the transition zone between the cyclones and the anticyclone. Phytoplankton growth in low-Si:N, high-N:Fe waters responded strongly to added Fe, confirming growth limitation by Fe of the diatom-dominated phytoplankton community. Low Si:N waters had low biogenic silica content, intermediate productivity, but high export compared to intermediate Si:N waters indicating increased export efficiency under Fe stress. Biogenic silica and particulate organic carbon (POC) export were both high beneath low Si:N waters with biogenic silica export being especially enhanced. This suggests that relatively high POC export from low Si:N waters was supported by silica ballasting from Fe-limited diatoms. Higher POC export efficiency in low Si:N waters may have been further enhanced by lower rates of organic carbon remineralization due to reduced grazing of more heavily armored diatoms growing under Fe stress. The results imply that Fe stress can enhance carbon export, despite lowering productivity, by driving higher export efficiency.

  13. Is the current increase in fire recurrence causing a shift in the soil fertility of Iberian ecosystems?

    NASA Astrophysics Data System (ADS)

    Mayor, Ángeles G.; Keizer, Jan Jacob; González-Pelayo, Óscar; Valdecantos, Alejandro; Vallejo, Ramón; de Ruiter, Peter

    2015-04-01

    Since the mid of the last century fire recurrence has increased in the Iberian peninsula and the overall Mediterranean basin due to changes in land use and climate. The warmer and drier climate projected for this region will further increase the risk of wildfire occurrence and of increasing fire recurrence. Although the impact of wildfires on soil nutrient content in this region has been extensively studied, still few works have assessed this impact on the basis of fire recurrence. This study assesses the changes in soil nutrient status of two Iberian ecosystems, Várzea (N Portugal) and Valencia (E Spain), affected by different levels of fire recurrence and where short inter-fire periods have promoted a transition from pine woodlands to shrublands. Trends towards soil fertility loss with increasing fire recurrence (one, two, three or four fires in 37 years) were observed in the two study sites. The sites differed when soil fertility of areas burned several times were compared with long unburned references. In Valencia, overall soil fertility of the surface mineral soil was lower in areas burned two or three times than in long unburned areas, twenty and eight years after the last fire, respectively. On the contrary, total organic matter in Várzea was higher in burned than in unburned soils one year after the occurrence of one or four fires. However, a negative impact of fire was observed for integrated indicators of soil quality, such as hot-water carbon and potentially mineralizable nitrogen, suggesting that fire also had an adverse effect on substrate quality in Várzea. Our results suggest that the current trend of increasing fire recurrence in Southern Europe may result in losses or alterations of soil organic matter, particularly when fire promotes a transition from pine woodland to shrubland.

  14. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    USGS Publications Warehouse

    Hanson, Randall T.; Lockwood, Brian; Schmid, Wolfgang

    2014-01-01

    The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and assumptions of 2009 urban water demand and land use. Water supplied directly from precipitation, and indirectly from reuse, captured local runoff, and groundwater is necessary but inadequate to satisfy agricultural demand without coastal and regional storage depletion that facilitates seawater intrusion. These facilities reduce potential seawater intrusion by about 45% with groundwater levels in the four regions served by the CDS projected to recover to levels a few feet above sea level. The projected recoveries are not high enough to prevent additional seawater intrusion during dry-year periods or in the deeper aquifers where pumpage is greater. While these facilities could reduce coastal pumpage by about 55% of the historical 2000–2009 pumpage for these regions, and some of the water is delivered in excess of demand, other coastal regions continue to create demands on coastal pumpage that will need to be replaced to reduce seawater intrusion. In addition, inland urban and agricultural demands continue to sustain water levels below sea level causing regional landward gradients that also drive seawater intrusion. Seawater intrusion is reduced by about 45% but it supplies about 55% of the recovery of groundwater levels in the coastal regions served by the CDS. If economically feasible, water from summer agricultural runoff and tile-drain returnflows could be another potential local source of water that, if captured and reused, could offset the imbalance between supply and demand as well as reducing discharge of agricultural runoff into the National Marine Sanctuary of Monterey Bay. A BMP update (2012) identifies projects and programs that will fund a conservation program and will provide additional, alternative water sources to reduce or replace coastal and inland pumpage, and to replenish the aquifers with managed aquifer recharge in an inland portion of the Pajaro Valley.

  15. Measuring Possible Tsunami Currents from the April 1, 2014 Mw 8.2 Chile Earthquake in Crescent City, California

    NASA Astrophysics Data System (ADS)

    Admire, A. R.; Crawford, G. B.; Dengler, L. A.

    2014-12-01

    Crescent City, California has a long history of damaging tsunamis. Thirty-nine tsunamis have been recorded since 1933, including five that caused damage. Crescent City's harbor and small boat basin are particularly vulnerable to strong currents. Humboldt State University has installed Acoustic Doppler Profilers (ADPs) in order to directly measure water pressure fluctuations and currents caused by tsunamis. An instrument in Humboldt Bay, ~100 km south of Crescent City, recorded tsunamis generated by the 2010 Mw 8.7 Chile and 2011 Mw 9.0 Japan earthquakes and demonstrated the usefulness of ADPs in measuring tsunami currents. In 2013, an ADP was deployed in Crescent City's harbor adjacent to the NOAA tide gauge. On April 1, 2014, a Mw 8.2 earthquake occurred in northern Chile, producing a modest Pacific-wide tsunami and a 16 cm peak amplitude on the Crescent City tide gauge. We analyze the ADP data before and during the expected arrival of the April 2 tsunami to see if a tsunami signal is present. Tidal currents are generally small (5 cm/s or less). For two months before the tsunami, intermittent, high-frequency variability is present in velocity and pressure at periods on the order of 20, 9 and 5 min, which compare favorably to modal periods predicted using some simplified models of open-ended basins. For several hours after the tsunami arrival on April 2, spectral power levels in velocity and pressure around the 20 min period are notably enhanced. These results suggest that: (1) the observed periods of enhanced variability represent the first three modes (n=0, 1 and 2) of free oscillations in the harbor, (2) the dominant period of (non-tidal) oscillations observed during the April 2, 2014 tsunami (~20 min) and during previous tsunamis (e.g., the water level record for the March 11, 2011 tsunami; also ~20 min) represents harbor resonance corresponding to the lowest order mode, and (3) this event is very near the ADP limit of detectability with peak tsunami currents of 5-10 cm/s and higher frequency variability and instrument noise root-mean-squared amplitude of 4-5 cm/s.

  16. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. T.; Lockwood, B.; Schmid, Wolfgang

    2014-11-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori. The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and assumptions of 2009 urban water demand and land use. Water supplied directly from precipitation, and indirectly from reuse, captured local runoff, and groundwater is necessary but inadequate to satisfy agricultural demand without coastal and regional storage depletion that facilitates seawater intrusion. These facilities reduce potential seawater intrusion by about 45% with groundwater levels in the four regions served by the CDS projected to recover to levels a few feet above sea level. The projected recoveries are not high enough to prevent additional seawater intrusion during dry-year periods or in the deeper aquifers where pumpage is greater. While these facilities could reduce coastal pumpage by about 55% of the historical 2000-2009 pumpage for these regions, and some of the water is delivered in excess of demand, other coastal regions continue to create demands on coastal pumpage that will need to be replaced to reduce seawater intrusion. In addition, inland urban and agricultural demands continue to sustain water levels below sea level causing regional landward gradients that also drive seawater intrusion. Seawater intrusion is reduced by about 45% but it supplies about 55% of the recovery of groundwater levels in the coastal regions served by the CDS. If economically feasible, water from summer agricultural runoff and tile-drain returnflows could be another potential local source of water that, if captured and reused, could offset the imbalance between supply and demand as well as reducing discharge of agricultural runoff into the National Marine Sanctuary of Monterey Bay. A BMP update (2012) identifies projects and programs that will fund a conservation program and will provide additional, alternative water sources to reduce or replace coastal and inland pumpage, and to replenish the aquifers with managed aquifer recharge in an inland portion of the Pajaro Valley.

  17. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California

    USGS Publications Warehouse

    Gartner, J.W.

    2004-01-01

    The estimation of mass concentration of suspended solids is one of the properties needed to understand the characteristics of sediment transport in bays and estuaries. However, useful measurements or estimates of this property are often problematic when employing the usual methods of determination from collected water samples or optical sensors. Analysis of water samples tends to undersample the highly variable character of suspended solids, and optical sensors often become useless from biological fouling in highly productive regions. Acoustic sensors, such as acoustic Doppler current profilers that are now routinely used to measure water velocity, have been shown to hold promise as a means of quantitatively estimating suspended solids from acoustic backscatter intensity, a parameter used in velocity measurement. To further evaluate application of this technique using commercially available instruments, profiles of suspended solids concentrations are estimated from acoustic backscatter intensity recorded by 1200- and 2400-kHz broadband acoustic Doppler current profilers located at two sites in San Francisco Bay, California. ADCP backscatter intensity is calibrated using optical backscatterance data from an instrument located at a depth close to the ADCP transducers. In addition to losses from spherical spreading and water absorption, calculations of acoustic transmission losses account for attenuation from suspended sediment and correction for nonspherical spreading in the near field of the acoustic transducer. Acoustic estimates of suspended solids consisting of cohesive and noncohesive sediments are found to agree within about 8-10% (of the total range of concentration) to those values estimated by a second optical backscatterance sensor located at a depth further from the ADCP transducers. The success of this approach using commercially available Doppler profilers provides promise that this technique might be appropriate and useful under certain conditions in spite of some theoretical limitations of the method. ?? 2004 Elsevier B.V. All rights reserved.

  18. Direct-Current Resistivity Profiling at the Pecos River Ecosystem Project Study Site near Mentone, Texas, 2006

    USGS Publications Warehouse

    Teeple, Andrew P.; McDonald, Alyson K.; Payne, Jason D.; Kress, Wade H.

    2009-01-01

    The U.S. Geological Survey, in cooperation with Texas A&M University AgriLife, did a surface geophysical investigation at the Pecos River Ecosystem Project study site near Mentone in West Texas intended to determine shallow (to about 14 meters below the water [river] surface) subsurface composition (lithology) in and near treated (eradicated of all saltcedar) and control (untreated) riparian zone sites during June-August 2006. Land-based direct-current resistivity profiling was applied in a 240-meter section of the riverbank at the control site, and waterborne direct-current continuous resistivity profiling (CRP) was applied along a 2.279-kilometer reach of the river adjacent to both sites to collect shallow subsurface resistivity data. Inverse modeling was used to obtain a nonunique estimate of the true subsurface resistivity from apparent resistivity calculated from the field measurements. The land-based survey showed that the sub-surface at the control site generally is of relatively low resis-tivity down to about 4 meters below the water surface. Most of the section from about 4 to 10 meters below the water surface is of relatively high resistivity. The waterborne CRP surveys convey essentially the same electrical representation of the lithology at the control site to 10 meters below the water surface; but the CRP surveys show considerably lower resistivity than the land-based survey in the subsection from about 4 to 10 meters below the water surface. The CRP surveys along the 2.279-kilometer reach of the river adjacent to both the treated and control sites show the same relatively low resistivity zone from the riverbed to about 4 meters below the water surface evident at the control site. A slightly higher resistivity zone is observed from about 4 to 14 meters below the water surface along the upstream approximately one-half of the profile than along the downstream one-half. The variations in resistivity could not be matched to variations in lithology because sufficient rock samples were not available.

  19. Long-term trends and variability in the larvae of Pacific sardine and associated fish species of the California Current region

    NASA Astrophysics Data System (ADS)

    Smith, Paul E.; Moser, H. Geoffrey

    2003-08-01

    Fifty-year ichthyoplankton and oceanographic time series of the California Cooperative Oceanic Fisheries Investigations were used to describe changes in larval fish abundance and associated habitat features in the Southern California Bight region, extending seaward to the limits of the California Current. The ichthyoplankton data set for this analysis was based on single tows taken at all CalCOFI survey stations occupied within the current sampling pattern from 1951 to 2000 and consisted of a total of 11,917 samples from which 1,365,988 fish larvae were identified. The analysis included data on habitat temperature, macrozooplankton volumes, and 14 taxa of larval fishes, some of commercial interest (Pacific sardine, Pacific hake, Pacific and jack mackerel, and rockfishes), and a group of important mesopelagic species that represent specific habitats in the California Current region. Data are presented in a series of graphs showing changes in average abundance, triennial abundance ratios, and normalized quarterly abundance (1988-2000 only). Larval data clearly track the decline and recovery of the Pacific sardine population. Mesopelagic larvae of southern offshore species had the greatest response to the regime shift of 1976-77, increasing markedly in the Southern California Bight region after 1977. Likewise, this group of species showed the greatest response to the 1957-59 El Niño. There was no consistent response in larval abundance of Subarctic-Transitional mesopelagic species and nearshore taxa to the 1976-77 regime shift. Most of the species showed a negative shift in triennial larval abundance ratios in relation to hypothesized 1989-90 and 1998-99 regime shifts. These changes are discussed in relation to changes in temperature and macrozooplankton volumes.

  20. Water Management Adaptations for Aquatic Ecosystem Services Under a Changing Climate. Analytical Framework and Case Study for Chinook Salmon in California

    NASA Astrophysics Data System (ADS)

    Escobar, M.; Mosser, C. M.; Thompson, L. C.; Purkey, D.; Moyle, P. B.

    2010-12-01

    Spring-run Chinook salmon (Oncorhynchus tshawytscha) are vulnerable to climate change because, before spawning in autumn, adults hold in river pools where temperature increases during summer. As these species naturally experience temperatures close to tolerable thresholds, climate-induced flow and temperature changes can increase their vulnerability. Our objective was to assemble an analytical framework to assess temperature and streamflow thresholds that would lead to critical reductions in spring-run Chinook salmon abundance, and to evaluate management adaptations to ameliorate these impacts. The analytical framework coupled climate data with watershed hydrology and salmon population dynamics models. We used WEAP, an integrated watershed hydrology, water management, and temperature model; and SALMOD, a spatially explicit and size/stage structured model that predicts population dynamics of salmon in freshwater systems. The models simulated weekly mean streamflow, temperature, and salmon abundance in Butte Creek, California. We calibrated and validated the models to adequately fit historical data. With the analytical framework built, we used bias-corrected and spatially downscaled climate data from six General Circulation Models and two emission scenarios for the period 2010 - 2099 to run the two linked models, and generated a range of potential future outcomes. WEAP predicted that summer base flows were lower, and water temperatures were higher for climate scenarios vs. historical conditions. SALMOD predicted increased summer thermal mortality of adult salmon; the population was predicted to decline for all climate scenarios and model combinations. We tested management adaptations, including cessation of water diverted for power production, and storage of cold reservoir water upstream for release during hot weather. Some adaptations resulted in cooler temperatures, more adults surviving to spawn, and extended population survival time. The coupled models, together with climate data, constitute a framework able to predict streamflow- and temperature-related mortality of spring-run Chinook salmon, and to evaluate water management adaptations to ameliorate negative climate impacts on fish in current or future scenarios.

  1. Carbon and Nitrogen Isotopes from Top Predator Amino Acids Reveal Rapidly Shifting Ocean Biochemistry in the Outer California Current

    PubMed Central

    Ruiz-Cooley, Rocio I.; Koch, Paul L.; Fiedler, Paul C.; McCarthy, Matthew D.

    2014-01-01

    Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure. PMID:25329915

  2. Dominant role of eddies and filaments in the offshore transport of carbon and nutrients in the California Current System

    NASA Astrophysics Data System (ADS)

    Nagai, Takeyoshi; Gruber, Nicolas; Frenzel, Hartmut; Lachkar, Zouhair; McWilliams, James C.; Plattner, Gian-Kasper

    2015-08-01

    The coastal upwelling region of the California Current System (CalCS) is a well-known site of high productivity and lateral export of nutrients and organic matter, yet neither the magnitude nor the governing processes of this offshore transport are well quantified. Here we address this gap using a high-resolution (5 km) coupled physical-biogeochemical numerical simulation (ROMS). The results reveal (i) that the offshore transport is a very substantial component of any material budget in this region, (ii) that it reaches more than 800 km into the offshore domain, and (iii) that this transport is largely controlled by mesoscale processes, involving filaments and westward propagating eddies. The process starts in the nearshore areas, where nutrient and organic matter-rich upwelled waters pushed offshore by Ekman transport are subducted at the sharp lateral density gradients of upwelling fronts and filaments located at ˜25-100 km from the coast. The filaments are very effective in transporting the subducted material further offshore until they form eddies at their tips at about 100-200 km from the shore. The cyclonic eddies tend to trap the cold, nutrient, and organic matter-rich waters of the filaments, whereas the anticyclones formed nearby encapsulate the low nutrient and low organic matter waters around the filament. After their detachment, both types of eddies propagate further in offshore direction, with a speed similar to that of the first baroclinic mode Rossby waves, providing the key mechanism for long-range transport of nitrate and organic matter from the coast deep into the offshore environment.

  3. Carbon and nitrogen isotopes from top predator amino acids reveal rapidly shifting ocean biochemistry in the outer California Current.

    PubMed

    Ruiz-Cooley, Rocio I; Koch, Paul L; Fiedler, Paul C; McCarthy, Matthew D

    2014-01-01

    Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure. PMID:25329915

  4. Links between carbonate productivity and ENSO variability in the southern California Current System for the past 2 Kyrs

    NASA Astrophysics Data System (ADS)

    Abella-Gutiérrez, J. L.; Herguera, J. C.

    2014-12-01

    San Lázaro Basin (SLB) is a suboxic basin characteristic for its very high sedimentation rates (1mm/yr) and is located in the dynamic southern boundary of the California Current System (CCS). This southern boundary of the CCS generally extends further south during spring into early summer and retracts towards the north during fall and winter, and this pattern is further amplified or reduced on different time scales, (e.i. interannual timescales by El Niño and La Niña events, or multidecadal ones by the Pacific Decadal Oscillation (PDO)). These oceanographic conditions are related with important differences in the base of the food chain; when the boundary migrates to northern latitudes, the presence of relatively warmer tropical and subtropical waters further stratify the water column, a period when coccolithophorids dominate the microplankton web structure. On the other side, diatoms flourish when the wind-driven circulation expand the subarctic water masses of the CCS to the south and upwelling cells are generated. We find in our cores XRF Ca counts (1 mm resolution) highly correlate with CaCO3 measurements (R=0.56), this last one showing a general decreasing trend over the past 2 Kyrs. The Ca spectrum analysis shows significant peaks for periods centered at 28, 40, 60, 120 yr. The centennial mode of variability of the Ca record shows correlations with Drought area Index from North America. When the variance of this mode is considered, similarities arises with intensity and number of ENSO events from Equatorial archives. Decadal variations of the record are highly correlated (R>0.8) with instrumental measurements of Kaplan sea surface temperature, and the PDO. We will discuss the implications of these periods in the carbonate record and the links between them and other paleoceanographic records in the Pacific.

  5. SAFRR tsunami scenario: impacts on California ecosystems, species, marine natural resources, and fisheries: Chapter G in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Brosnan, Deborah; Wein, Anne; Wilson, Rick

    2014-01-01

    We evaluate the effects of the SAFRR Tsunami Scenario on California’s ecosystems, species, natural resources, and fisheries. We discuss mitigation and preparedness approaches that can be useful in Tsunami planning. The chapter provides an introduction to the role of ecosystems and natural resources in tsunami events (Section 1). A separate section focuses on specific impacts of the SAFRR Tsunami Scenario on California’s ecosystems and endangered species (Section 2). A section on commercial fisheries and the fishing fleet (Section 3) documents the plausible effects on California’s commercial fishery resources, fishing fleets, and communities. Sections 2 and 3 each include practical preparedness options for communities and suggestions on information needs or research. Our evaluation indicates that many low-lying coastal habitats, including beaches, marshes and sloughs, rivers and waterways connected to the sea, as well as nearshore submarine habitats will be damaged by the SAFRR Tsunami Scenario. Beach erosion and complex or high volumes of tsunami-generated debris would pose major challenges for ecological communities. Several endangered species and protected areas are at risk. Commercial fisheries and fishing fleets will be affected directly by the tsunami and indirectly by dependencies on infrastructure that is damaged. There is evidence that in some areas intact ecosystems, notably sand dunes, will act as natural defenses against the tsunami waves. However, ecosystems do not provide blanket protection against tsunami surge. The consequences of ecological and natural resource damage are estimated in the millions of dollars. These costs are driven partly by the loss of ecosystem services, as well as cumulative and follow-on impacts where, for example, increased erosion during the tsunami can in turn lead to subsequent damage and loss to coastal properties. Recovery of ecosystems, natural resources and fisheries is likely to be lengthy and expensive. Preparedness is key to enhancing resilience to ecological impacts.

  6. Trophic modeling of the Northern Humboldt Current Ecosystem, Part I: Comparing trophic linkages under La Niña and El Niño conditions

    NASA Astrophysics Data System (ADS)

    Tam, Jorge; Taylor, Marc H.; Blaskovic, Verónica; Espinoza, Pepe; Michael Ballón, R.; Díaz, Erich; Wosnitza-Mendo, Claudia; Argüelles, Juan; Purca, Sara; Ayón, Patricia; Quipuzcoa, Luis; Gutiérrez, Dimitri; Goya, Elisa; Ochoa, Noemí; Wolff, Matthias

    2008-10-01

    The El Niño of 1997-98 was one of the strongest warming events of the past century; among many other effects, it impacted phytoplankton along the Peruvian coast by changing species composition and reducing biomass. While responses of the main fish resources to this natural perturbation are relatively well known, understanding the ecosystem response as a whole requires an ecotrophic multispecies approach. In this work, we construct trophic models of the Northern Humboldt Current Ecosystem (NHCE) and compare the La Niña (LN) years in 1995-96 with the El Niño (EN) years in 1997-98. The model area extends from 4°S-16°S and to 60 nm from the coast. The model consists of 32 functional groups of organisms and differs from previous trophic models of the Peruvian system through: (i) division of plankton into size classes to account for EN-associated changes and feeding preferences of small pelagic fish, (ii) increased division of demersal groups and separation of life history stages of hake, (iii) inclusion of mesopelagic fish, and (iv) incorporation of the jumbo squid ( Dosidicus gigas), which became abundant following EN. Results show that EN reduced the size and organization of energy flows of the NHCE, but the overall functioning (proportion of energy flows used for respiration, consumption by predators, detritus and export) of the ecosystem was maintained. The reduction of diatom biomass during EN forced omnivorous planktivorous fish to switch to a more zooplankton-dominated diet, raising their trophic level. Consequently, in the EN model the trophic level increased for several predatory groups (mackerel, other large pelagics, sea birds, pinnipeds) and for fishery catch. A high modeled biomass of macrozooplankton was needed to balance the consumption by planktivores, especially during EN condition when observed diatoms biomass diminished dramatically. Despite overall lower planktivorous fish catches, the higher primary production required-to-catch ratio implied a stronger ecological impact of the fishery and stresses the need for precautionary management of fisheries during and after EN. During EN energetic indicators such as the lower primary production/total biomass ratio suggest a more energetically efficient ecosystem, while reduced network indicators such as the cycling index and relative ascendency indicate of a less organized state of the ecosystem. Compared to previous trophic models of the NHCE we observed: (i) a shrinking of ecosystem size in term of energy flows, (ii) slight changes in overall functioning (proportion of energy flows used for respiration, consumption by predators and detritus), and (iii) the use of alternate pathways leading to a higher ecological impact of the fishery for planktivorous fish.

  7. Ecosystem services: Valuing ecosystems for climate

    NASA Astrophysics Data System (ADS)

    Hungate, Bruce A.; Hampton, Haydee M.

    2012-03-01

    Ecosystems regulate climate through biogeochemistry and biophysics, but current policies only recognize biogeochemical influences. A new proposal to include biophysical effects changes the climate value of ecosystems, and sets the stage to expand the suite of climate regulation services considered in global policies and carbon markets.

  8. Spatiotemporal variability and drivers of pCO2 and air-sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    NASA Astrophysics Data System (ADS)

    Turi, G.; Lachkar, Z.; Gruber, N.

    2013-08-01

    We quantify the CO2 source/sink nature of the California Current System (CalCS) and determine the drivers and processes behind the mean and spatiotemporal variability of the partial pressure of CO2 (pCO2) in the surface ocean. To this end, we analyze eddy-resolving, climatological simulations of a coupled physical-ecosystem-biogeochemical ocean model on the basis of the Regional Oceanic Modeling System (ROMS). The model-simulated pCO2 agrees very well with in situ observations over the entire domain with virtually no bias, but the model overestimates pCO2 in the nearshore 100 km, and underestimates the observed temporal variability. In the annual mean, the entire CalCS within 800 km of the coast and from ~ 33° N to 46° N is essentially neutral with regard to atmospheric CO2. The model simulates an integrated uptake flux of -0.9 Tg C yr-1, corresponding to a very small average flux density of -0.05 mol C m-2 yr-1, with an uncertainty of the order of ±0.20 mol C m-2 yr-1. This near zero flux is a consequence of an almost complete regional compensation between the strong outgassing in the nearshore region (first 100 km), with flux densities of more than 3 mol C m-2 yr-1 and a weaker, but more widespread uptake flux in the offshore region with an average flux density of -0.17 mol C m-2 yr-1. This pattern is primarily a result of the interaction between upwelling in the nearshore that brings waters with high concentrations of dissolved inorganic carbon (DIC) to the surface, and an intense biological drawdown of this DIC, driven by the nutrients that are upwelled together with the DIC. The biological drawdown occurs too slowly to prevent the escape of a substantial amount of CO2 into the atmosphere, but this is compensated by the biological generation of undersaturated conditions offshore of 100 km, permitting the CalCS to take up most of the escaped CO2. Thus, the biological pump over the entire CalCS is essentially 100% efficient, making the preformed DIC and nutrient concentrations of the upwelled waters a primary determinant of the overall source/sink nature of the CalCS. The comparison of the standard simulation with one for preindustrial conditions show that the CalCS is taking up anthropogenic CO2 at a rate of about -1 mol C m-2 yr-1, implying that the region was a small source of CO2 to the atmosphere in preindustrial times. The air-sea CO2 fluxes vary substantially in time, both on seasonal and sub-seasonal timescales, largely driven by variations in surface ocean pCO2. There are important differences among the subregions. Notably, the total variance of the fluxes in the central nearshore CalCS is roughly 4-5 times larger than elsewhere. Most of the variability in pCO2 is associated with the seasonal cycle, except in the nearshore, where sub-seasonal variations driven by mesoscale processes dominate. In the regions offshore of 100 km, changes in surface temperature are the main driver, while in the nearshore region, changes in surface temperature, as well as anomalies in DIC and alkalinity (Alk) owing to changes in circulation, biological productivity and air-sea CO2 fluxes dominate. The dominance of eddy-driven variability in the nearshore 100 km leads to a complex spatiotemporal mosaic of surface ocean pCO2 and air-sea CO2 fluxes that require a substantial observational effort to determine the source/sink nature of this region reliably.

  9. California Workforce: California Faces a Skills Gap

    ERIC Educational Resources Information Center

    Public Policy Institute of California, 2011

    2011-01-01

    California's education system is not keeping up with the changing demands of the state's economy--soon, California will face a shortage of skilled workers. Projections to 2025 suggest that the economy will continue to need more and more highly educated workers, but that the state will not be able to meet that demand. If current trends persist,…

  10. California Workforce: California Faces a Skills Gap

    ERIC Educational Resources Information Center

    Public Policy Institute of California, 2011

    2011-01-01

    California's education system is not keeping up with the changing demands of the state's economy--soon, California will face a shortage of skilled workers. Projections to 2025 suggest that the economy will continue to need more and more highly educated workers, but that the state will not be able to meet that demand. If current trends persist,

  11. Ecosystem Health in Mineralized Terrane-Data from Podiform Chromite (Chinese Camp Mining District, California), Quartz Alunite (Castle Peak and Masonic Mining Districts, Nevada/California), and Mo/Cu Porphyry (Battle Mountain Mining District, Nevada) Deposits

    USGS Publications Warehouse

    Blecker, Steve W.; Stillings, Lisa L.; Amacher, Michael C.; Ippolito, James A.; DeCrappeo, Nicole M.

    2010-01-01

    The myriad definitions of soil/ecosystem quality or health are often driven by ecosystem and management concerns, and they typically focus on the ability of the soil to provide functions relating to biological productivity and/or environmental quality. A variety of attempts have been made to create indices that quantify the complexities of soil quality and provide a means of evaluating the impact of various natural and anthropogenic disturbances. Though not without their limitations, indices can improve our understanding of the controls behind ecosystem processes and allow for the distillation of information to help link scientific and management communities. In terrestrial systems, indices were initially developed and modified for agroecosystems; however, the number of studies implementing such indices in nonagricultural systems is growing. Soil quality indices (SQIs) are typically composed of biological (and sometimes physical and chemical) parameters that attempt to reduce the complexity of a system into a metric of a soil's ability to carry out one or more functions. The indicators utilized in SQIs can be as varied as the studies themselves, reflecting the complexity of the soil and ecosystems in which they function. Regardless, effective soil quality indicators should correlate well with soil or ecosystem processes, integrate those properties and processes, and be relevant to management practices. Commonly applied biological indicators include measures associated with soil microbial activity or function (for example, carbon and nitrogen mineralization, respiration, microbial biomass, enzyme activity. Cost, accessibility, ease of interpretation, and presence of existing data often dictate indicator selection given the number of available measures. We employed a large number of soil biological, chemical, and physical measures, along with measures of vegetation cover, density, and productivity, in order to test the utility and sensitivity of these measures within various mineralized terranes. We were also interested in examining these relations in the context of determining appropriate reference conditions with which to compare reclamation efforts. The purpose of this report is to present the data used to develop indices of soil and ecosystem quality associated with mineralized terranes (areas enriched in metal-bearing minerals), specifically podiform chromite, quartz alunite, and Mo/Cu porphyry systems. Within each of these mineralized terranes, a nearby unmineralized counterpart was chosen for comparison. The data consist of soil biological, chemical, and physical parameters, along with vegetation measurements for each of the sites described below. Synthesis of these data and index development will be the subject of future publications.

  12. Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ?

    NASA Astrophysics Data System (ADS)

    Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; De Kauwe, Martin G.; Asao, Shinichi; Hickler, Thomas; Parton, William; Ricciuto, Daniel M.; Wang, Ying-Ping; Wârlind, David; Norby, Richard J.

    2015-04-01

    Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO2. Free-Air CO2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluate whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. In addition, self-thinning assumptions had a substantial impact on C sequestration in two models. Accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO2.

  13. Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ?

    DOE PAGESBeta

    Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; De Kauwe, Martin G.; Asao, Shinichi; Hickler, Thomas; Parton, William; Ricciuto, Daniel M.; Wang, Ying -Ping; Wårlind, David; et al

    2015-01-01

    Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO2. Free-Air CO2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluate whether these assumptions can bemore » constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO2.« less

  14. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    SciTech Connect

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate-vegetation interactions.

  15. Climatic Impacts and resilience of coastal ecosystems and fisheries

    NASA Astrophysics Data System (ADS)

    Micheli, F.

    2012-12-01

    Marine and coastal ecosystems and human communities around the world are impacted by local anthropogenic pressures and by climate change, resulting in decreased ocean productivity, altered food web dynamics, habitat degradation, economic losses, and health and safety risks as a consequence of the changing and more variable climate. Climatic impacts occur both through altered physical conditions and variability, e.g., seawater temperature and sea level, and through a suite of chemical changes, including ocean acidification and hypoxia. In particular, time series analyses have highlighted declines in dissolved oxygen (DO) concentration in the ocean over the last several decades. In addition to these global trends of decreasing DO, hypoxic conditions have been documented at several coastal locations within productive upwelling-driven ecosystems, including the California Current region, resulting in high mortality of ecologically and commercially important nearshore marine species and significant economic losses. The capacity of local ecosystems and associated human communities to adapt to these pressures depends on their resilience, that is the ability of ecosystems to absorb disturbance while retaining function and continuing to provide ecosystem services, and the ability of people to adapt to change in their environment by altering their behaviors and interactions. I will present global assessments of the cumulative impacts of climatic and local anthropogenic pressures on marine ecosystems, and results of interdisciplinary research investigating the current impacts of climate change on coastal marine ecosystems and human communities of the Pacific coast of Baja California, Mexico, and the influences of local and global feedbacks on the resilience and adaptive capacity of these systems.

  16. Dansgaard-Oeschger Cycles and the California Current System: Planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, Ocean Drilling Program Hole 893A

    NASA Astrophysics Data System (ADS)

    Hendy, Ingrid L.; Kennett, James P.

    2000-02-01

    High-resolution planktonic foraminiferal census data from Santa Barbara Basin (Ocean Drilling Program hole 893A) demonstrate major assemblage switches between 25 and 60 ka that were associated with Dansgaard-Oeschger cycles. Stadials dominated by Neogloboquadrina pachyderma (sinistral), and Globigerinoides glutinata suggest a strong subpolar California Current influence, while interstadials marked by abundant N. pachyderma (dextral) and G. bulloides indicate a relative increase in subtropical countercurrent influence. Modern analog technique and transfer function (F-20RSC) temperature reconstructions support δ18O evidence of large rapid (70 years or less) sea surface temperature shifts (3° to 5°C) between stadials and interstadials. Changes in the vertical temperature gradient and water column structure (thermocline depth) are recorded by planktonic faunal oscillations suggest bimodal stability in the organization of North Pacific surface ocean circulation. Santa Barbara Basin surface water demonstrates the rapid response of the California Current System to reorganization of North Pacific atmospheric circulation during rapid climate change. Supporting assemblage data are, available on diskette or via Anonymous FTP from Kosmos.agu.org, Directory APEND (username = anonymous, Password = guest). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009 or by phone at 800-966-2481; $5.00. Payment must accompany order.

  17. Facilitating Next Generation Science Collaboration: Respecting and Mediating Vocabularies with Semantics in Ecosystems Assessments.

    NASA Astrophysics Data System (ADS)

    Fox, P. A.; Maffei, A. R.; Ecoop Team

    2011-12-01

    A newly funded initiative is developing and deploying an integrated ecosystem assessment (IEA) system using an information science and semantic technologies. The intention is to advance the capacity of an IEA to provide the foundation for synthesis and quantitative analysis of natural and socio-economic ecosystem information to support ecosystem-based management. In particular, the initiative is create the capacity to assess the impacts of changing climate on two large marine ecosystems: the northeast U.S. and the California Current. These assessments will be essential parts of the science-based decision-support tools used to develop adaptive management measures. Enhanced collaboration is required to achieve these goals: interaction and information sharing within and among diverse data providers, analysis tool developers and user groups that constitute the broader coastal and marine ecosystem science application community. This presentation indicates how semantic solutions are fundamental to this initiative.

  18. Water, Energy, and Ecosystems: A Case Study of California's Sierra Nevada to Assess Vulnerability to Climate Change and Opportunities for Adaptation

    NASA Astrophysics Data System (ADS)

    Viers, J. H.; Null, S.; Ligare, S. T.; Rheinheimer, D. E.; Williams, J. N.

    2010-12-01

    We report here on a major effort to define and quantify metrics of vulnerability to climate change for the west-slope of California’s Sierra Nevada. We have defined the vulnerability of flowing surface waters used for human and ecological purposes as a function of exposure and sensitivity to anticipated hydrologic alteration mediated by regional climate warming and as measured by changes in the flow regime. This effort includes the development, parameterization, and calibration of the WEAP21 water management model to depict climate warming scenarios for fifteen major west-slope basins of the Sierra Nevada at the sub-watershed scale. The outcomes of this modeling effort include dimensions of water delivery, hydropower energy production, recreation, and aquatic ecosystem functioning. For example, our previously reported simulations indicated that, with uniform +6° C warming in surface air temperature, hydrologic alteration would be non-uniformly distributed across basins, with variance driven by latitude and basin hypsography. By incorporating a variable climatic time series, we were able to identify basins with substantial reductions in mean annual discharge, progressive negative shifts in annual hydrographic center of mass, and increased duration of low flow events. We found that basins with the greatest simulated change from baseline conditions were also the most variable across water years, presenting challenges to future water management schemes. Further, when simulated hydrologic alterations were studied for changes to hydropower energy production - assuming that operating rules remain stationary - we determined that, while wetter months generated on average more hydropower, annual discharge losses reduced overall generation capacity with dramatic decreases in dry months that are both hotter and experience greater energy demand. These simulated alterations to baseline hydrology with warming scenarios also indicated cascading impacts on other beneficial uses of water, such as substantial reductions in whitewater kayaking opportunities in unregulated rivers during summer months. With respect to ecohydrological conditions in the Sierra Nevada, stream water temperatures are perhaps the most important, as this water quality parameter not only helps govern ecosystem productivity, but can also represent sub-lethal and lethal conditions when biotic thresholds are surpassed. To better understand vulnerability of ecosystems, we contrast unimpaired and regulated simulations of hydrology and concomitant water temperatures to isolate the effects of ecosystem management, and evaluate departures from baseline conditions. The net result of modeled simulations, when viewed in the context of vulnerability, is a number of thematic metrics that can be evaluated within a spatiotemporal framework to assess opportunities for science-based adaptive resource management. We explore these opportunities for institutional adaptation by reviewing policy options that address inefficiencies and conflicts in water management with a specific focus on the relicensing of dams, environmental flow requirements, and management of the water, energy, and ecosystem nexus.

  19. Current progress in using multiple electromagnetic indicators to determine location, time, and magnitude of earthquakes in California and Peru (Invited)

    NASA Astrophysics Data System (ADS)

    Bleier, T. E.; Dunson, C.; Roth, S.; Heraud, J.; Freund, F. T.; Dahlgren, R.; Bryant, N.; Bambery, R.; Lira, A.

    2010-12-01

    Since ultra-low frequency (ULF) magnetic anomalies were discovered prior to the 1989 Loma Prieta, Ca. M7.0 earthquake, QuakeFinder, a small R&D group based in Palo Alto California has systematically monitored ULF magnetic signals with a network of 3-axis induction magnetometers since 2000 in California. This raw magnetometer data was collected at 20-50 samples per sec., with no preprocessing, in an attempt to collect an accurate time history of electromagnetic waveforms prior to, during, and after large earthquakes within 30 km. of these sensors. Finally in October 2007, the QuakeFinder team observed a series of strange magnetic pulsations at the Alum Rock, California site, 14 days prior to M5.4 earthquake. These magnetic signals observed were relatively short, random pulsations, not continuous waveform signals like Pc1 or Pc3 micropulsations. The magnetic pulses have a characteristic uni-polar shapes and 0.5 sec. to 30 sec. durations, much longer than lightning signals. In May of 2010, very similar pulses were observed at Tacna, Peru, 13 days prior to a M6.2 earthquake, using a QuakeFinder station jointly operated under collaboration with the Catholic University in Lima Peru (PUCP). More examples of these pulsations were sought, and a historical review of older California magnetic data discovered fewer but similar pulsations occurred at the Hollister, Ca. site operated by UC Berkeley (e.g. San Juan Bautista M5.1 earthquake on August 12, 1998). Further analysis of the direction of arrival of the magnetic pulses showed an interesting “azimuth clustering” observed in both Alum Rock, Ca. and Tacna, Peru data. The complete time series of the Alum Rock data allowed the team to analyze subsequent changes observed in magnetometer “filter banks” (0.001 Hz to 10 Hz filter bands, similar to those used by Fraser-Smith in 1989), but this time using time-adjusted limits based on time of day, time of year, Kp, and site background noise. These site-customized limits showed similar increases in 30 minute averaged energy excursions, but the 30 minute averages had a disadvantage in that they reduced the signal to noise ratio over the individual pulse counting method. In other electromagnetic monitoring methods, air conductivity instrumentation showed major changes in positive air-borne ions observed near the Alum Rock and Tacna sites, peaking during the 24 hours prior to the earthquake. The use of GOES (geosynchronous) satellite infra red (IR) data showed that an unusual apparent “night time heating” occurred in an extended area within 40+ km. of the Alum Rock site, and this IR signature peaked around the time of the magnetic pulse count peak. The combination of these 3 indicators (magnetic pulse counts, air conductivity, and IR night time heating) may be the start in determining the time (within 1-2 weeks), location (within 20-40km) and magnitude (within +/- 1 increment of Richter magnitude) of earthquake greater than M5.4

  20. Current status of the greenhouse whitefly, Trialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in southern California.

    PubMed

    Bi, Jian L; Toscano, Nick C

    2007-08-01

    Since 1998, the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae), has emerged as a major insect pest of many horticultural crops in coastal California. Control of this pest has been heavily dependent upon chemical insecticides. Objectives of this study were to determine the status of the greenhouse whitefly susceptibility to neonicotinoid and conventional insecticides on strawberries in Oxnard/Ventura, a year-round intensive horticultural production area of southern California. For bioassay tests, adult whiteflies were collected from commercial strawberry crops, and immatures were directly developed from eggs laid by these adults. LD(50) values of soil-applied imidacloprid, thiamethoxam and dinotefuran were respectively 8.7, 3.2 and 4.9 times higher for the adults, 1.8, 1.2 and 1.5 times higher for the first-instar nymphs and 89.4, 390 and 10.4 times higher for the third-instar nymphs than their top label rates. LC(50) values of foliar-applied imidacloprid, thiamethoxam and acetamiprid were respectively 6.1, 6.0 and 1.7 times higher for the adults and 3.8, 8.7 and 4.4 times higher for the second-instar nymphs than their top label rates. For the adults, LC(90) values of endosulfan, malathion, methomyl, bifenthrin and fenpropathrin were 2.2, 1.2, 1.9, 2.3 and 4.9 times lower than their respective top label rates. Chlorpyrifos was not very effective against the adults, as indicated by its LC(90) being 120% higher than its top label rate. The present results strongly emphasize the need to develop resistance management strategies in the region. PMID:17591729

  1. Trapped diurnal internal tides, propagating semidiurnal internal tides, and mixing estimates in the California Current System from sustained glider observations, 2006-2012

    NASA Astrophysics Data System (ADS)

    Johnston, T. M. Shaun; Rudnick, Daniel L.

    2015-02-01

    From 2006-2012, along 3 repeated cross-shore transects (California Cooperative Oceanic Fisheries Investigations lines 66.7, 80, and 90) in the California Current System, 33 609 shear and 39 737 strain profiles from 66 glider missions are used to estimate mixing via finescale parameterizations from a dataset containing over 52 000 profiles. Elevated diffusivity estimates and energetic diurnal (D1) and semidiurnal (D2) internal tides are found: (a) within 100 km of the coast on lines 66.7 and 80 and (b) over the Santa Rosa-Cortes Ridge (SRCR) in the Southern California Bight (SCB) on line 90. While finding elevated mixing near topography and associated with internal tides is not novel, the combination of resolution and extent in this ongoing data collection is unmatched in the coastal ocean to our knowledge. Both D1 and D2 internal tides are energy sources for mixing. At these latitudes, the D1 internal tide is subinertial. On line 90, D1 and D2 tides are equally energetic over the SRCR, the main site of elevated mixing within the SCB. Numerous sources of internal tides at the rough topography in the SCB produce standing and/or partially-standing waves. On lines 66.7 and 80, the dominant energy source below about 100 m for mixing is the D1 internal tide, which has an energy density of the D2 internal tide. On line 80, estimated diffusivity, estimated dissipation, and D1 energy density peak in summer. The D1 energy density shows an increasing trend from 2006 to 2012. Its amplitude and phase are mostly consistent with topographically-trapped D1 internal tides traveling with the topography on their right. The observed offshore decay of the diffusivity estimates is consistent with the exponential decay of a trapped wave with a mode-1 Rossby radius of 20-30 km. Despite the variable mesoscale, it is remarkable that coherent internal tidal phase is found.

  2. CARBON DIOXIDE SEQUESTRATION IN TERRESTRIAL ECOSYSTEMS

    EPA Science Inventory

    The terrestrial biosphere plays a prominent role in the global carbon (C) cycle. errestrial ecosystems are currently accumulating C and it appears feasible to manage existing terrestrial (forest, agronomic, desert) ecosystems to maintain or increase C storage. orest ecosystems ca...

  3. Effects of Recent Debris Flows on Stream Ecosystems and Food Webs in Small Watersheds in the Central Klamath Mountains, NW California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; de La Fuente, J.

    2008-12-01

    Debris flows are common erosional processes in steep mountain areas throughout the world, but little is known about the long-term ecological effects of debris flows on stream ecosystems. Based on debris flow histories that were developed for each of ten tributary basins, we classified channels as having experienced recent (1997) or older (pre-1997) debris flows. Of the streams classified as older debris flow streams, three streams experienced debris flows during floods in 1964 or 1974, while two streams showed little or no evidence of debris flow activity in the 20th century. White alder (Alnus rhombifolia) was the dominant pioneer tree species in recent debris flow streams, forming localized dense patches of canopy cover. Maximum temperatures and daily temperature ranges were significantly higher in recent debris flow streams than in older debris flow streams. Debris flows resulted in a shift in food webs from allochthonous to autochthonous energy sources. Primary productivity, as measured by oxygen change during the day, was greater in recent debris flow streams, resulting in increased abundances of grazers such as the armored caddisfly Glossosoma spp. Detritivorous stoneflies were virtually absent in recent debris flow streams because of the lack of year-round, diverse sources of leaf litter. Rainbow trout (Oncorhynchus mykiss) were abundant in four of the recent debris flow streams. Poor recolonizers, such as the Pacific giant salamander (Dicamptodon tenebrosus), coastal tailed frog (Ascaphus truei), and signal crayfish (Pacifistacus leniusculus), were virtually absent in recent debris flow streams. Forest and watershed managers should consider the role of forest disturbances, such as road networks, on debris flow frequency and intensity, and the resulting ecological effects on stream ecosystems.

  4. A new climate regime in northeast pacific ecosystems

    NASA Astrophysics Data System (ADS)

    Peterson, William T.; Schwing, Franklin B.

    2003-09-01

    Following a strong El Niño, the climate of the North Pacific underwent a rapid and striking transition in late 1998. Upwelling-favorable winds strengthened over the California Current (CC), and winds weakened in the Gulf of Alaska (GOA). Coastal waters of the CC and GOA cooled by several degrees, and the Pacific Decadal Oscillation (PDO) reversed sign and remained negative through summer 2002. Zooplankton biomass in the northern CC doubled and switched from warm to cold water species dominance, coho and chinook salmon stocks rebounded, and anchovy and osmeriids increased. Persistent changes in atmosphere and upper ocean fields and ecosystem structure suggest a climate regime shift has occurred, similar (opposite) to shifts observed in 1947 (1925 and 1976). If the 1998 regime shift in the northern CC is completely analogous to earlier shifts, then ecosystem structure should have changed in the GOA. Recent surveys indicate this ecosystem has transformed as well.

  5. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from Marine Boundary Layer over the California Current

    SciTech Connect

    William R. Wiley Environmental Sciences Laboratory, Pacific Northwest National Laboratory; Gilles, Mary K; Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, Tolek; Gilles, Mary K.; Laskin, Alexander

    2008-03-12

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na>0.10 and CH3SO3-/nss-SO42->0.6.

  6. Chemical speciation of sulfur in marine cloud droplets and particles: Analysis of individual particles from the marine boundary layer over the California current

    NASA Astrophysics Data System (ADS)

    Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, Tolek; Gilles, Mary K.; Laskin, Alexander

    2008-02-01

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. On the basis of composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea-salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na > 0.10 and CH3SO3-/nss-SO42- > 0.6.

  7. Variability in biomass yields of large marine ecosystems (LMEs) during climate change

    SciTech Connect

    Sherman, K. )

    1993-06-01

    Results of ecosystem studies relating to variations in biomass yields are examined in relation to principle driving forces including climate change, coastal pollution, habitat degradation, and overexploitation of living marine resources. Among the ecosystems compared with regard to the different prime driving forces, affecting sustainability of biomass yields, are the Black Sea, the Baltic Sea, the Barents Sea, Kuroshio Current, California Current, Great Barrier Reef, Gulf of Mexico, Yellow Sea, Icelandic Shelf, and Northeast US Shelf ecosystems. The designation and management of large marine ecosystems (LMEs) is, at present, an evolving scientific and geopolitical process. Sufficient progress has been made to allow for useful comparisons among different processes influencing large-scale changes in the biomass yields of LMEs. The most severely impacted LMEs are off the coasts of the continents.

  8. Phycoerythrin-containing picoplankton in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Collier, Jackie L.; Palenik, Brian

    2003-08-01

    Flow cytometry was used to examine the distribution of phycoerythrin-rich picophytoplankton, referred to here as Synechococcus, off the Southern California coast during six California Cooperative Oceanic Fisheries Investigations (CalCOFI) cruises. Depth profiles revealed that Synechococcus was most abundant in the surface mixed layer, gradually disappearing with depth below the thermocline. Within the surface mixed layer, Synechococcus abundance was generally greater and more variable at stations shoreward of the California Current than at stations offshore of it. In waters associated with the California Current not impacted by upwelling, Synechococcus abundance increased with increasing bulk chlorophyll. In contrast, Synechococcus abundance declined with increasing bulk chlorophyll at stations that were impacted by upwelling. Synechococcus at stations impacted by upwelling also had more phycoerythrin per cell than at non-upwelling stations. Offshore of the California Current, Synechococcus cells in waters intruding from the Central North Pacific displayed higher side-scatter relative to forward scatter than did Synechococcus cells elsewhere in the region. Flow cytometrically distinct Synechococcus cell types were also detected below the thermocline at most of the stations where depth profiles were analyzed. These patterns in Synechococcus abundance and cellular characteristics might reflect physiological and/or genetic differences among Synechococcus associated with the various water masses that comprise the CalCOFI region. The data presented here provide a framework from which to launch more detailed and mechanistic studies examining the role of Synechococcus in the CalCOFI ecosystem.

  9. COMPARISON OF RECORDING CURRENT METERS USED FOR MEASURING VELOCITIES IN SHALLOW WATERS OF SAN FRANCISCO BAY, CALIFORNIA.

    USGS Publications Warehouse

    Gartner, Jeffrey W.; Oltmann, Richard N.

    1985-01-01

    The authors determine the feasibility of collecting reliable current-meter data in shallow water under natural conditions. The study involved field testing four types of recording current meters (different speed sensors) and comparing data recorded by the meters under different field conditions. Speeds recorded by the current meters at slack water and during maximum flows were compared during calm and windy conditions at various tide levels.

  10. The Central California Coastal Circulation Study

    NASA Astrophysics Data System (ADS)

    Chelton, Dudley B.; Bernstein, Robert L.; Bratkovich, Alan; Kosro, P. Michael

    The Central California Coastal Circulation Study (CCCCS) was an 18-month field program designed to study the variability of water mass characteristics and the velocity field on the continental shelf and upper continental slope of California from Point Conception to San Francisco. This study was funded by the U.S. Department of Interior, Minerals Management Service (MMS), as part of an overall assessment of the impact of development of oil and gas resources on the ecosystem of coastal California. The Santa Maria Basin area, which extends from Point Conception to Point Buchon (100 km to the north) and about 50 km offshore, is of particular interest, as this area will be the focus of oil and gas exploration and production over the next decade. However, MMS is also interested in how the ocean variability in this region relates to the large-scale flow of the California Current System. The field work for CCCCS was conducted from February 1984 through July 1985 by Raytheon Service Company. This paper summarizes some of the preliminary results from analysis of the CCCCS data.

  11. Connections Among the Spatial and Temporal Structures in Tidal Currents, Internal Bores, and Surficial Sediment Distributions Over the Shelf off Palos Verdes, California

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt J.; Xu, Jingping; Signell, Richard P.; Steele, Alex

    2009-01-01

    The topography of the Continental Shelf in the central portion of the Southern California Bight has rapid variations over relatively small spatial scales. The width of the shelf off the Palos Verdes peninsula, just northwest of Los Angeles, California, is only 1 to 3 km. About 7 km southeast of the peninsula, the shelf within San Pedro Bay widens to about 20 km. In 2000, the Los Angeles County Sanitation District began deploying a dense array of moorings in this complex region of the central Southern California Bight to monitor local circulation patterns. Moorings were deployed at 13 sites on the Palos Verdes shelf and within the northwestern portion of San Pedro Bay. At each site, a mooring supported a string of thermistors and an adjacent bottom platform housed an Acoustic Doppler Current Profiler. These instruments collected vertical profiles of current and temperature data continuously for one to two years. The variable bathymetry in the region causes rapid changes in the amplitudes and spatial structures of barotropic tidal currents, internal tidal currents, and in the associated nonlinear baroclinic currents that occur at approximate tidal frequencies. The largest barotropic tidal constituent is M2, the principal semidiurnal tide. The amplitude of this tidal current changes over fairly short along-shelf length scales. Tidal-current amplitudes are largest in the transition region between the two shelves; they increase from about 5 cm/s over the northern San Pedro shelf to nearly 10 cm/s on the southern portion of the Palos Verdes Shelf. Tidal-current amplitudes are then reduced to less than 2 cm/s over the very narrow section of the northern Palos Verdes shelf that lies just 6 km upcoast of the southern sites. Models suggest that the amplitude of the barotropic M2 tidal currents, which propagate toward the northwest primarily as a Kelvin wave, is adjusting to the short topographic length scales in the region. Semidiurnal sea-level oscillations are, as expected, independent of these topographic variations; they have a uniform amplitude and phase structure over the entire region. Because the cross-shelf angle of the seabed over most of the Palos Verdes shelf is 1 to 3 degrees, which is critical for the local generation and/or enhancement of nonlinear characteristics in semidiurnal internal tides, some internal tidal-current events have strong asymmetric current oscillations that are enhanced near the seabed. Near-bottom currents in these events are directed primarily offshore with amplitudes that exceed 30 cm/s. The spatial patterns in these energetic near-bottom currents have fairly short-length scales. They are largest over the inner shelf and in the transition region between the Palos Verdes and San Pedro shelves. This spatial pattern is similar to that found in the barotropic tidal currents. Because these baroclinic currents have an approximate tidal frequency, an asymmetric vertical structure, and a somewhat stable phase, they can produce a non-zero depth-mean flow for periods of a few months. These baroclinic currents can interact with the barotropic tidal current and cause an apparent increase (or decrease) in the estimated barotropic tidal-current amplitude. The apparent amplitude of the barotropic tidal current may change by 30 to 80 percent or more in a current record that is less than three months long. The currents and surficial sediments in this region are in dynamic equilibrium in that the spatial patterns in bottom stresses generated by near-bed currents from surface tides, internal tides, and internal bores partly control the spatial patterns in the local sediments. Coarser sediments are found in the regions with enhanced bottom stresses (that is, over the inner shelf and in the region between the Palos Verdes and San Pedro shelves). Finer sediments are found over the northwestern portion of the Palos Verdes shelf, where near-bottom currents are relatively weak. The nonlinear asymmetries in the i

  12. Persistent organic pollutants in forage fish prey of rhinoceros auklets breeding in Puget Sound and the northern California Current.

    PubMed

    Good, Thomas P; Pearson, Scott F; Hodum, Peter; Boyd, Daryle; Anulacion, Bernadita F; Ylitalo, Gina M

    2014-09-15

    Organochlorine contaminants in upper trophic-level consumers inhabiting Puget Sound are consistently higher than in those species inhabiting other west coast locations. We analyzed persistent organic pollutants (POPs) in the six most common fish prey of rhinoceros auklets breeding on Protection Island (Puget Sound), Tatoosh Island (WA coast), and Destruction Island (WA coast). Wet-weight concentrations of POPs ranged widely (PCBs: 1.6-25.0 ng/g; DDTs: 0.2-56.0 ng/g; PBDEs:ecosystem. PMID:25103902

  13. The integrated control concept and its relevance to current integrated pest management in California fresh market grapes.

    PubMed

    Bentley, Walter J

    2009-12-01

    The foundation of an integrated pest management program involves valid treatment thresholds, accurate and simple monitoring methods, effective natural controls, selective pesticides and trained individuals who can implement the concept. The Integrated Control Concept written by Stern, Smith, van den Bosch and Hagen elucidated each of these points in an alfalfa ecosystem. Alfalfa hay (Medicago sativa L.) has a low per acre value, requires little hand labor and is primarily marketed in the USA. In contrast, fresh market table grape (Vitis vinifera L.) has a high per acre value, requires frequent hand labor operations, suffers unacceptable cosmetic damage and is marketed throughout both the USA and the world. Each of the components of a working IPM program is present in table grape production. Marketing grapes to foreign countries presents special problems with pests considered invasive and where residue tolerances for some selective insecticides are lacking. However, fresh market grape farmers are still able to deal with these special problems and utilize an IPM program that has resulted in a 42% reduction in broad-spectrum insecticide use from 1995 to 2007. PMID:19731261

  14. Air-sea CO2 fluxes in the near-shore and intertidal zones influenced by the California Current

    NASA Astrophysics Data System (ADS)

    Reimer, Janet J.; Vargas, Rodrigo; Smith, Stephen V.; Lara-Lara, Ruben; Gaxiola-Castro, Gilberto; Martín Hernández-Ayón, J.; Castro, Angel; Escoto-Rodriguez, Martin; Martínez-Osuna, Juan

    2013-10-01

    The study of air-sea CO2 fluxes (FCO2) in the coastal region is needed to better understand the processes that influence the direction and magnitude of FCO2 and to constrain the global carbon budget. We implemented a 1 year (January through December 2009) paired study to measure FCO2 in the intertidal zone (the coastline to 1.6 km offshore) and the near-shore (˜3 km offshore) off the north-western coast of Baja California (Mexico); a region influenced by year-round upwelling. FCO2 was determined in the intertidal zone via eddy covariance; while in the near-shore using mooring buoy sensors then calculated with the bulk method. The near-shore region was a weak annual net source of CO2 to the atmosphere (0.043 mol CO2 m-2 y-1); where 91% of the outgassed FCO2 was contributed during the upwelling season. Sea surface temperature (SST) and ΔpCO2 (from upwelling) showed the strongest relationship with FCO2 in the near-shore, suggesting the importance of meso-scale processes (upwelling). FCO2 in the intertidal zone were up to four orders of magnitude higher than FCO2 in the near-shore. Wind speed showed the strongest relationship with FCO2 in the intertidal zone, suggesting the relevance of micro-scale processes. Results show that there are substantial spatial and temporal differences in FCO2 between the near-shore and intertidal zone; likely a result of heterogeneity. We suggest that detailed spatial and temporal measurements are needed across the coastal oceans and continental margins to better understand the mechanisms which control FCO2, as well as reduce uncertainties and constrain regional and global ocean carbon balances.

  15. The late 1980s regime shift in the ecosystem of Tsushima warm current in the Japan/East Sea: Evidence from historical data and possible mechanisms

    NASA Astrophysics Data System (ADS)

    Tian, Yongjun; Kidokoro, Hideaki; Watanabe, Tatsuro; Iguchi, Naoki

    2008-05-01

    A climatic regime shift, an abrupt change from cooling to warming in the Japan/East Sea (JES), particularly in the Tsushima warm current (TWC) region, occurred in the late 1980s. The ecosystem of the JES responded strongly to the changing thermal regime. Many, but not all biological components of the ecosystem, spanning from plankton to predatory fishes, and including both warm-water pelagic and cold-water demersal species responded to this late 1980s climatic regime shift in the JES. Diatom abundance (cell number) in spring from a monitoring line located in the central part of JES showed decadal variations with a step change from positive to negative anomalies in 1991. Zooplankton biomass in spring and autumn was high in the 1970s, declined during the 1980s, and returned to higher, but quite variable levels during the 1990s. Japanese sardine catch increased after 1974 to its peak level in 1989 and then declined dramatically to 1974 levels by 1997 with step changes in 1979 and 1994. Conversely, catches of other small pelagic species such as Japanese anchovy and common squid, and several higher-trophic fishes, such as yellowtail and tunas increased markedly in the 1990s compared to the early-mid 1980s. Step changes were detected in these pelagic species during 1989-1992. Catch of demersal species (crab, pink shrimp, Pacific cod and walleye pollock) were high during most of the 1970-1980s, but declined at various times in the late 1980s to generally low catches in the 1990s. Detailed analysis of the demersal fish assemblage composition, abundance and distribution indicated a shift in the late 1980s with several years lag in the time of change. Cold-water species (e.g., walleye pollock, Pacific cod) decreased in abundance and the regions in which their abundances remained high became greatly reduced in extent. Conversely, warm-water species (e.g., pointhead flounder, shotted halibut) increased in abundance and/or extended their spatial range (as indicated by trawl catch) during the warm 1990s. A principal component analysis for pelagic and demersal fish assemblages, suggested decadal variation patterns with a step change during 1986-1988. Abundance changes were identified not only in the plankton, but also in small pelagic fishes, and in predatory fishes. These changes were reflected in fish community indicators, and suggest an ecosystem regime shift occurred in the TWC region as a result of the late 1980s climatic regime shift. A hypothesis on the ecological response process to the late 1980s climatic regime shift was proposed.

  16. Diet diversity of jack and chub mackerels and ecosystem changes in the northern Humboldt Current system: A long-term study

    NASA Astrophysics Data System (ADS)

    Alegre, Ana; Bertrand, Arnaud; Espino, Marco; Espinoza, Pepe; Dioses, Teobaldo; Ñiquen, Miguel; Navarro, Iván; Simier, Monique; Ménard, Frédéric

    2015-09-01

    Jack mackerel Trachurus murphyi (JM) and chub mackerel Scomber japonicus (CM) are medium size pelagic fish predators and highly exploited resources. Here we investigated the spatiotemporal patterns of JM and CM diet composition using a large dataset of stomach samples collected from 1973 to 2013 along the Peruvian coast. In total 47,535 stomachs (18,377 CM and 29,158 JM) were analysed, of which 23,570 (12,476 CM and 11,094 JM) were non-empty. Results show that both species are opportunistic and present a trophic overlap. However, despite their smaller maximal size, CM consumed more fish than JM. Both diets presented high spatiotemporal variability. Spatially, the shelf break appears as a strong biogeographical barrier affecting prey species distribution and thus CM and JM diet. Opportunistic foragers are often considered as actual indicators of ecosystem changes; we show here that diet composition of CM and JM reveal ecosystem changes but is not always a good indicator of changes in prey biomass as prey accessibility and energy content can also play an important role. In addition we found that El Niño events have a surprisingly weak effect on stomach fullness and diet. Finally our results show that the classic paradigm of positive correlation between diversity and temperature is unlikely to occur in the Humboldt Current system where productivity seems to be the main driver. We show how energy content of forage species and the strength of the oxygen minimum zone most likely play an important role prey diversity and accessibility, and thus in fish foraging behaviour.

  17. California State Waters Map Series: offshore of San Gregorio, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in the northern and southern parts of the map area are the result of right-lateral motion on strands of the San Gregorio Fault system. In the south, headlands near Pescadero Point have been uplifted by motion along the west strand of the San Gregorio Fault (also called the Frijoles Fault), which separates rocks of the Pigeon Point Formation south of the fault from rocks of the Purisima Formation north of the fault. The regional uplift in this map area has caused relatively shallow water depths within California's State Waters and, thus, little accommodation space for sediment accumulation. Sediment is observed offshore in the central part of the map area, in the shelter of the headlands north of the east strand of the San Gregorio Fault (also called the Coastways Fault) around Miramontes Point (about 5 km north of the map area) and also on the outer half of the California's State Waters shelf in the south where depths exceed 40 m. Sediment in the outer shelf of California's State Waters is rippled, indicating some mobility. The Offshore of San Gregorio map area lies within the cold-temperate biogeographic zone that is called either the "Oregonian province" or the "northern California ecoregion." This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, an eastern limb of the North Pacific subtropical gyre that flows from Oregon to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 350 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off of central California has experienced a warming over the last 50 years that is driving an ecosystem shift away from the productive subarctic regime towards a depopulated subtropical environment. Seafloor habitats in the Offshore of San Gregorio map area, which lies within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deep water. Biological productivity resulting from coastal upwelling supports diverse populations of sea birds such as Sooty Shearwater, Western Gull, Common Murre, Cassin's Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of "bull kelp," which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.

  18. Defining trade-offs among conservation, profitability, and food security in the California current bottom-trawl fishery.

    PubMed

    Hilborn, Ray; Stewart, Ian J; Branch, Trevor A; Jensen, Olaf P

    2012-04-01

    Although it is recognized that marine wild-capture fisheries are an important source of food for much of the world, the cost of sustainable capture fisheries to species diversity is uncertain, and it is often questioned whether industrial fisheries can be managed sustainably. We evaluated the trade-off among sustainable food production, profitability, and conservation objectives in the groundfish bottom-trawl fishery off the U.S. West Coast, where depletion (i.e., reduction in abundance) of six rockfish species (Sebastes) is of particular concern. Trade-offs are inherent in this multispecies fishery because there is limited capacity to target species individually. From population models and catch of 34 stocks of bottom fish, we calculated the relation between harvest rate, long-term yield (i.e., total weight of fish caught), profit, and depletion of each species. In our models, annual ecosystem-wide yield from all 34 stocks was maximized with an overall 5.4% harvest rate, but profit was maximized at a 2.8% harvest rate. When we reduced harvest rates to the level (2.2% harvest rate) at which no stocks collapsed (<10% of unfished levels), biomass harvested was 76% of the maximum sustainable yield and profit 89% of maximum. A harvest rate under which no stocks fell below the biomass that produced maximum sustainable yield (1% harvest rate), resulted in 45% of potential yield and 67% of potential profit. Major reductions in catch in the late 1990s led to increase in the biomass of the most depleted stocks, but this rebuilding resulted in the loss of >30% of total sustainable yield, whereas yield lost from stock depletion was 3% of total sustainable yield. There are clear conservation benefits to lower harvest rates, but avoiding overfishing of all stocks in a multispecies fishery carries a substantial cost in terms of lost yield and profit. PMID:22443131

  19. Field Surveys of Rare Plants on Santa Cruz Island, California, 2003-2006: Historical Records and Current Distributions

    USGS Publications Warehouse

    McEachern, A. Kathryn; Chess, Katherine A.; Niessen, Ken

    2010-01-01

    Santa Cruz Island is the largest of the northern Channel Islands located off the coast of California. It is owned and managed as a conservation reserve by The Nature Conservancy and the Channel Islands National Park. The island is home to nine plant taxa listed in 1997 as threatened or endangered under the federal Endangered Species Act, because of declines related to nearly 150 years of ranching on the island. Feral livestock were removed from the island as a major conservation step, which was part of a program completed in early 2007 with the eradication of pigs and turkeys. For the first time in more than a century, the rare plants of Santa Cruz Island have a chance to recover in the wild. This study provides survey information and living plant materials needed for recovery management of the listed taxa. We developed a database containing information about historical collections of the nine taxa and used it to plan a survey strategy. Our objectives were to relocate as many of the previously known populations as possible, with emphasis on documenting sites not visited in several decades, sites that were poorly documented in the historical record, and sites spanning the range of environmental conditions inhabited by the taxa. From 2003 through 2006, we searched for and found 39 populations of the taxa, indicating that nearly 80 percent of the populations known earlier in the 1900s still existed. Most populations are small and isolated, occupying native-dominated habitat patches in a highly fragmented and invaded landscape; they are still at risk of declining through population losses. Most are not expanding beyond the edges of their habitat patches. However, most taxa appeared to have good seed production and a range of size classes in populations, indicating a good capacity for plant recruitment and population growth in these restricted sites. For these taxa, seed collection and outplanting might be a good strategy to increase numbers of populations for species recovery. Several taxa have particular problems evidenced by lack of fruit set, very small population sizes, or unstable habitats. We collected seeds of all but two taxa for seed banking, and live cuttings of two clonal shrubs for cultivation at the Santa Barbara Botanic Garden. The survey data, seeds and cuttings provide a baseline and a foundation for planning, conducting, and tracking recovery of the nine federally listed plant taxa of Santa Cruz Island.

  20. Comparison of shelf currents off central California prior to and during the 1997-1998 El Nino

    USGS Publications Warehouse

    Ryan, H.F.; Noble, M.A.

    2005-01-01

    Moored current, temperature, salinity, and pressure data were collected at three sites that transect the narrow continental shelf offshore of Davenport, CA, starting in August 1996 and continuing to the spring of 1998. This data set allowed a comparison of oceanographic conditions prior to (8/96-3/97) and during (8/97-3/98) the last major El Nin??o. During this El Nin??o, mean temperatures over the 8-month time period were about 3??C warmer than during the prior year at all of the sites. Correlations between near-surface and near-bottom temperatures, and between near-surface temperature and wind stress decreased during the El Nin??o compared to conditions the year before. The mean alongshore currents were more strongly poleward during El Nin??o at sites over the mid-shelf and near the shelf break. There was a general tendency for the energy in alongshore currents to move toward lower frequencies during the El Nin??o, particularly at the sites farther offshore. The processes that forced the shelf flows changed in relative importance throughout the study. The local alongshore wind stress was less important in driving shelf currents during the El Nin??o when much of the wind-induced upwelling was confined to less than 5 km of the coast. The observed strong poleward shelf currents on the mid- to outer-shelf were not clearly tied to local forcing, but were remotely driven, most likely by slope currents. The response of the Davenport shelf to an El Nin??o event may differ from other areas since the shelf is narrow, the wind forcing is weaker than areas to the north and south, and the shelf may be at times isolated by fronts that form at strong upwelling centers. In the winter, strong storm-related winds are important in driving currents at periods not only in the synoptic wind band, but also for periods on the order of 20 d and longer.

  1. Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005-2011)

    NASA Astrophysics Data System (ADS)

    Alin, Simone R.; Feely, Richard A.; Dickson, Andrew G.; HernáNdez-Ayón, J. MartíN.; Juranek, Lauren W.; Ohman, Mark D.; Goericke, Ralf

    2012-05-01

    The California Current System (CCS) is expected to experience the ecological impacts of ocean acidification (OA) earlier than most other ocean regions because coastal upwelling brings old, CO2-rich water relatively close to the surface ocean. Historical inorganic carbon measurements are scarce, so the progression of OA in the CCS is unknown. We used a multiple linear regression approach to generate empirical models using oxygen (O2), temperature (T), salinity (S), and sigma theta (σθ) as proxy variables to reconstruct pH, carbonate saturation states, carbonate ion concentration ([CO32-]), dissolved inorganic carbon (DIC) concentration, and total alkalinity (TA) in the southern CCS. The calibration data included high-quality measurements of carbon, oxygen, and other hydrographic variables, collected during a cruise from British Columbia to Baja California in May-June 2007. All resulting empirical relationships were robust, withr2values >0.92 and low root mean square errors. Estimated and measured carbon chemistry matched very well for independent data sets from the CalCOFI and IMECOCAL programs. Reconstructed CCS pH and saturation states for 2005-2011 reveal a pronounced seasonal cycle and inter-annual variability in the upper water column. Deeper in the water column, conditions are stable throughout the annual cycle, with perennially low pH and saturation states. Over sub-decadal time scales, these empirical models provide a valuable tool for reconstructing carbonate chemistry related to ocean acidification where direct observations are limited. However, progressive increases in anthropogenic CO2 content of southern CCS water masses must be carefully addressed to apply the models over longer time scales.

  2. Ecosystem Journalism

    ERIC Educational Resources Information Center

    Robertson, Amy; Mahlin, Kathryn

    2005-01-01

    If the organisms in a prairie ecosystem created a newspaper, what would it look like? What important news topics of the ecosystem would the organisms want to discuss? Imaginative and enthusiastic third-grade students were busy pondering these questions as they tried their hands at "ecosystem journalism." The class had recently completed a study of

  3. Natural ecosystems

    USGS Publications Warehouse

    Fleishman, Erica; Belnap, Jayne; Cobb, Neil; Enquist, Carolyn A.F.; Ford, Karl; MacDonald, Glen; Pellant, Mike; Schoennagel, Tania; Schmit, Lara M.; Schwartz, Mark; van Drunick, Suzanne; Westerling, Anthony LeRoy; Keyser, Alisa; Lucas, Ryan

    2013-01-01

    Natural Ecosystems analyzes the association of observed changes in climate with changes in the geographic distributions and phenology (the timing of blossoms or migrations of birds) for Southwestern ecosystems and their species, portraying ecosystem disturbances—such as wildfires and outbreaks of forest pathogens—and carbon storage and release, in relation to climate change.

  4. Ecosystem Journalism

    ERIC Educational Resources Information Center

    Robertson, Amy; Mahlin, Kathryn

    2005-01-01

    If the organisms in a prairie ecosystem created a newspaper, what would it look like? What important news topics of the ecosystem would the organisms want to discuss? Imaginative and enthusiastic third-grade students were busy pondering these questions as they tried their hands at "ecosystem journalism." The class had recently completed a study of…

  5. Ecosystem Jenga!

    ERIC Educational Resources Information Center

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  6. Ecosystem Jenga!

    ERIC Educational Resources Information Center

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be

  7. Long-term, high-frequency current and temperature measurements along central California: Insights into upwelling/relaxation and internal waves on the inner shelf

    USGS Publications Warehouse

    Storlazzi, C.D.; McManus, M.A.; Figurski, J.D.

    2003-01-01

    Thermistor chains and acoustic Doppler current profilers were deployed at the northern and southern ends of Monterey Bay to examine the thermal and hydrodynamic structure of the inner (h ??? 20 m) shelf of central California. These instruments sampled temperature and current velocity at 2-min intervals over a 13-month period from June 2000 to July 2001. Time series of these data, in conjunction with SST imagery and CODAR sea surface current maps, helped to establish the basic hydrography for Monterey Bay. Analysis of time series data revealed that depth integrated flow at both sites was shore parallel (northwest-southeast) with net flows out of the Bay (northwest). The current and temperature records were dominated by semi-diurnal and diurnal tidal signals that lagged the surface tides by 3 h on average. Over the course of an internal tidal cycle these flows were asymmetric, with the flow during the flooding internal tide to the southeast typically lasting only one-third as long as the flow to the northwest during the ebbing internal tide. The transitions from ebb to flood were rapid and bore-like in nature; they were also marked by rapid increases in temperature and high shear. During the spring and summer, when thermal stratification was high, we observed almost 2000 high-frequency (Tp ??? 4-20 min) internal waves in packets of 8-10 following the heads of these bore-like features. Previous studies along the West Coast of the US have concluded that warm water bores and high-frequency internal waves may play a significant role in the onshore transport of larvae.

  8. On tide-induced Lagrangian residual current and residual transport: 2. Residual transport with application in south San Francisco Bay, California

    USGS Publications Warehouse

    Feng, Shizuo; Cheng, Ralph T.; Pangen, Xi

    1986-01-01

    The transports of solutes and other tracers are fundamental to estuarine processes. The apparent transport mechanisms are convection by tidal current and current-induced shear effect dispersion for processes which take place in a time period of the order of a tidal cycle. However, as emphasis is shifted toward the effects of intertidal processes, the net transport is mainly determined by tide-induced residual circulation and by residual circulation due to other processes. The commonly used intertidal conservation equation takes the form of a convection-dispersion equation in which the convective velocity is the Eulerian residual current, and the dispersion terms are often referred to as the phase effect dispersion or, sometimes, as the “tidal dispersion.” The presence of these dispersion terms is merely the result of a Fickian type hypothesis. Since the actual processes are not Fickian, thus a Fickian hypothesis obscures the physical significance of this equation. Recent research results on residual circulation have suggested that long-term transport phenomena are closely related to the Lagrangian residual current or the Lagrangian residual transport. In this paper a new formulation of an intertidal conservation equation is presented and examined in detail. In a weakly nonlinear tidal estuary the resultant intertidal transport equation also takes the form of a convection-dispersion equation without the ad hoc introduction of phase effect dispersion in a form of dispersion tensor. The convective velocity in the resultant equation is the first-order Lagrangian residual current (the sum of the Eulerian residual current and the Stokes drift). The remaining dispersion terms are important only in higher-order solutions; they are due to shear effect dispersion and turbulent mixing. There exists a dispersion boundary layer adjacent to shoreline boundaries. An order of magnitude estimate of the properties in the dispersion boundary layer is given. The present treatment of intertidal transport processes is illustrated by an analytical solution for an amphidromic system and by a numerical application in South San Francisco Bay, California. The present formulation reveals that the mechanism for long-term transport of solutes is mainly convection due to the Lagrangian residual current in the interior of a tidal estuary. This result also points out the weakness in the tidal dispersion formulation, and explains the large variability of the observed values for tidal dispersion coefficients. Further research on properties of the dispersion boundary layer is needed.

  9. California Dust

    Atmospheric Science Data Center

    2014-05-15

    ... dramatically when forced through narrow canyons and mountain passes. Due to Southern California's uneven terrain, the strength of ... from a small fire located near the southern flank of Palomar Mountain in Southern California. This image was acquired during Terra orbit ...

  10. [Urban ecosystem services: A review].

    PubMed

    Mao, Qi-zheng; Huang, Gan-lin; Wu, Jian-guo

    2015-04-01

    Maintaining and improving ecosystem services in urban areas and human well-being are essential for sustainable development and therefore constitute an important topic in urban ecology. Here we reviewed studies on ecosystem services in urban areas. Based on the concept and classification of urban ecosystem services, we summarized characteristics of urban ecosystem services, including the human domination, high demand of ecosystem services in urban areas, spatial heterogeneity and temporal dynamics of ecosystem services supply and demand in urban areas, multi-services of urban green infrastructures, the socio-economic dimension of ecosystem services supply and ecosystem disservices in urban areas. Among different urban ecosystem services, the regulating service and cultural service are particularly indispensable to benefit human health. We pointed out that tradeoffs among different types of ecosystem services mostly occur between supportive service and cultural service, as well as regulating service and cultural service. In particular, we emphasized the relationship between landscape design (i.e. green infrastructure) and ecosystem services supply. Finally, we discussed current gaps to link urban ecosystem services studies to landscape design and management and pointed out several directions for future research in urban ecosystem services. PMID:26259442

  11. Resilience and stability of a pelagic marine ecosystem.

    PubMed

    Lindegren, Martin; Checkley, David M; Ohman, Mark D; Koslow, J Anthony; Goericke, Ralf

    2016-01-13

    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS. PMID:26763697

  12. California Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Smoke Blankets Northern California     View Larger Image ... strikes sparked more than a thousand fires in northern California. This image was captured by the Multi-angle Imaging ... June 27, 2008 - Smoke from fires in northern California. project:  MISR category:  gallery ...

  13. Annual Report to the Bonneville Power Administration, Reporting Period: April 2008 - February 2009 [re: "Survival and Growth in the Columbia River Plume and north California Current"].

    SciTech Connect

    Northwest Fisheries Science Center, NOAA Fisheries; Cooperative Institute for Marine Resources Studies, Oregon State University; OGI School of Science & Engineering, Oregon Health Sciences University.

    2009-07-17

    We have made substantial progress toward our objectives outlined in our BPA supported proposal entitled 'Columbia River Basin Juvenile Salmonids: Survival and Growth in the Columbia River Plume and northern California Current' which we report on herein. During 2008, we were able to successfully conduct 3 mesoscale cruises. We also were able to conduct 7 biweekly predator cruises, along with substantial shore-based visual observations of seabirds. Detailed results of the mesoscale cruises are available in the Cruise Reports and summarized in the next section. We have taken a proactive approach to getting the results of our research to fisheries managers and the general public. We have begun to make annual predictions based on ocean conditions of the relative survival of juvenile coho and Chinook salmon well before they return as adults. This is based on both biological and physical indicators that we measure during our surveys or collect from outside data sources. Examples of our predictions for 2009 and 2010 are available on the following web site: http://www.nwfsc.noaa.gov/research/divisions/fed/oeip/a-ecinhome.cfm.

  14. Changes in the diet of hake associated with El Niño 1997-1998 in the northern Humboldt Current ecosystem

    NASA Astrophysics Data System (ADS)

    Tam, J.; Purca, S.; Duarte, L. O.; Blaskovic, V.; Espinoza, P.

    2006-01-01

    Hake (Merluccius gayi peruanus) predation plays an important role in the dynamics of the Humboldt Current ecosystem (HCE). Changes in the hake trophic habits associated with physical variability are expected to impact prey populations and to propagate through the food web. Time series (1995-2002) of (a) stomach contents of hake, (b) biomass estimations of fish prey species of hake, and (c) depth of the 15°C isotherm was analysed with the aim of exploring the impacts of El Niño 1997-1998 on the diet of hake. Biomass estimations of fish prey species were used to indicate resource availability, and depth of the 15°C isotherm to represent variability associated with the ENSO cycle in the physical environment of hake. The richness of prey species increased during the months when 15°C isotherm reached its deepest position, supporting the hypothesis of increased biodiversity (tropicalization) of the HCE during El Niño events. An increased variability in stomach fullness of hake was detected after 1999 which could indicate high heterogeneity in the food supply as a consequence of impacts of the warm event in the biotic community structure of the HCE, a physiological impairment of hake or an effect of the abrupt reduction in the mean total length of hake, postulated as a compensatory response to fishery pressure. Hake can be characterized as an opportunist predator according to the observed changes in its diet during 1995-2002. Overall, the diet of hake in the northern HCE exhibited transitory (e.g. increased richness of prey species in the stomach contents) and medium term (e.g. increased variability in feeding activity) responses associated with El Niño 1997-1998, which should be incorporated both in population dynamics and food web analyses.

  15. Ecoregions of California

    USGS Publications Warehouse

    Griffith, Glenn E.; Omernik, James M.; Smith, David W.; Cook, Terry D.; Tallyn, Ed; Moseley, Kendra; Johnson, Colleen B.

    2016-01-01

    Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance (Bryce and others, 1999). These general purpose regions are critical for structuring and implementing ecosystem management strategies across Federal agencies, State agencies, and nongovernment organizations that are responsible for different types of resources in the same geographical areas (Omernik and others, 2000).The approach used to compile this map is based on the premise that ecological regions are hierarchical and can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity (Wiken, 1986; Omernik, 1987, 1995). These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997, map revised 2006). At level III, the continental United States contains 105 ecoregions and the conterminous United States has 85 ecoregions (U.S. Environmental Protection Agency, 2013). Level IV, depicted here for California, is a further refinement of level III ecoregions. Explanations of the methods used to define these ecoregions are given in Omernik (1995), Omernik and others (2000), and Omernik and Griffith (2014).California has great ecological and biological diversity. The State contains offshore islands and coastal lowlands, large alluvial valleys, forested mountain ranges, deserts, and various aquatic habitats. There are 13 level III ecoregions and 177 level IV ecoregions in California and most continue into ecologically similar parts of adjacent States of the United States or Mexico (Bryce and others, 2003; Thorson and others, 2003; Griffith and others, 2014).The California ecoregion map was compiled at a scale of 1:250,000. It revises and subdivides an earlier national ecoregion map that was originally compiled at a smaller scale (Omernik, 1987; U.S. Environmental Protection Agency, 2013). This poster is the result of a collaborative project primarily between U.S. Environmental Protection Agency (USEPA) Region IX, USEPA National Health and Environmental Effects Research Laboratory (Corvallis, Oregon), California Department of Fish and Wildlife (DFW), U.S. Department of Agriculture (USDA)–Natural Resources Conservation Service (NRCS), U.S. Department of the Interior–Geological Survey (USGS), and other State of California agencies and universities.The project is associated with interagency efforts to develop a common framework of ecological regions (McMahon and others, 2001). Reaching that objective requires recognition of the differences in the conceptual approaches and mapping methodologies applied to develop the most common ecoregion-type frameworks, including those developed by the USDA–Forest Service (Bailey and others, 1994; Miles and Goudy, 1997; Cleland and others, 2007), the USEPA (Omernik 1987, 1995), and the NRCS (U.S. Department of Agriculture–Soil Conservation Service, 1981; U.S. Department of Agriculture–Natural Resources Conservation Service, 2006). As each of these frameworks is further refined, their differences are becoming less discernible. Regional collaborative projects such as this one in California, where some agreement has been reached among multiple resource-management agencies, are a step toward attaining consensus and consistency in ecoregion frameworks for the entire nation.

  16. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  17. The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems . Part II - Performance and application to the California Current System

    NASA Astrophysics Data System (ADS)

    Moore, Andrew M.; Arango, Hernan G.; Broquet, Gregoire; Edwards, Chris; Veneziani, Milena; Powell, Brian; Foley, Dave; Doyle, James D.; Costa, Dan; Robinson, Patrick

    2011-10-01

    The Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation systems have been systematically applied to the mesoscale circulation environment of the California Current to demonstrate the performance and practical utility of the various components of ROMS 4D-Var. In particular, we present a comparison of three approaches to 4D-Var, namely: the primal formulation of the incremental strong constraint approach; the dual formulation “physical-space statistical analysis system”; and the dual formulation indirect representer approach. In agreement with theoretical considerations all three approaches converge to the same ocean circulation estimate when using the same observations and prior information. However, the rate of convergence of the dual formulation was found to be inferior to that of the primal formulation. Other aspects of the 4D-Var performance that relate to the use of multiple outer-loops, preconditioning, and the weak constraint are also explored. A systematic evaluation of the impact of the various components of the 4D-Var control vector (i.e. the initial conditions, surface forcing and open boundary conditions) is also presented. It is shown that correcting for uncertainties in the model initial conditions exerts the largest influence on the ability of the model to fit the available observations. Various important diagnostics of 4D-Var are also examined, including estimates of the posterior error, the information content of the observation array, and innovation-based consistency checks on the prior error assumptions. Using these diagnostic tools, we find that more than 90% of the observations assimilated into the model provide redundant information. This is a symptom of the large percentage of satellite data that are used and to some extent the nature of the data processing employed. This is the second in a series of three papers describing the ROMS 4D-Var systems.

  18. Anomalous ichthyoplankton distributions and concentrations in the northern California Current during the 2010 El Niño and La Niña events

    NASA Astrophysics Data System (ADS)

    Auth, Toby D.; Brodeur, Richard D.; Peterson, Jay O.

    2015-09-01

    In late spring of 2010, the northern California Current (NCC) experienced a transition from El Niño to La Niña conditions resulting in anomalous distributions and concentrations within the ichthyoplankton community. We analyzed larval fish data collected during the four months before and after this transition and compared them to data from three previous studies conducted in the NCC. In one comparison, concentrations of larvae collected during winter from stations 2 to 46 km offshore along the central Oregon coast were higher in 2010 than in any other year from 1998 to 2011. In a second comparison of nearshore larvae collected during six periods (1971-1972, 1978, 1983, 1998, 1999-2002, and 2003-2005) previous to 2010, concentrations of total larvae and most dominant larval taxa were higher during the winter/spring and lower during the summer/fall seasons in 2010 (corresponding to the shift from El Niño to La Niña conditions) than during similar seasons in any other annual period. In a third comparison, larvae collected from stations 21 to 102 km offshore along the southern Washington to south-central Oregon coast in May 2010, at the end of the El Niño event, were found in higher concentrations than during any May from 2004 to 2009 and 2011. The high concentration of larvae in the winter and spring of 2010 was likely the direct result of El Niño and warm-ocean conditions (high values of the MEI, NOI, and PDO) along with strong downwelling and onshore transport that increased the abundance of offshore taxa over the shelf. Continued monitoring of the NCC is warranted as El Niño effects on larval fish observed in the past may not be indicative of future effects.

  19. Hydrological Controls on Ecosystem CO2 and CH4 Exchange in a MIXED Tundra and a FEN within an Arctic Landscape UNDER Current and Future Climates

    NASA Astrophysics Data System (ADS)

    Grant, R. F.; Humphreys, E.; Lafleur, P.

    2014-12-01

    Variation in CO2 and CH4 exchange in years with contrasting weather is strongly affected by hydrology in landscapes underlain by permafrost. Hypotheses for this variation were incorporated into the ecosystem model ecosys which simulated CO2 and CH4 fluxes along a topographic gradient within an arctic landscape at Daring Lake, NWT, Canada. Fluxes modelled at mixed tundra and fen sites within the gradient were compared with CO2 fluxes measured at eddy covariance towers from 2006 to 2009, and with CH4 fluxes measured with surface chambers in 2008. Slopes and correlation coefficients from regressions of modelled vs. measured CO2 fluxes were 1.0 ± 0.1 and 0.7 - 0.8 for both sites in all years. At the mixed tundra site, rises in net CO2 uptake in warmer years with earlier snowmelt were constrained by midafternoon declines in CO2 influxes when vapor pressure deficits (D) exceeded 1.5 kPa, and by rises in CO2 effluxes with greater active layer depth (ALD). Consequently annual net CO2 uptake at this site rose little with warming. At the fen site, CO2 influxes declined less with D and CO2 effluxes rose less with warming, so that rises in net CO2 uptake in warmer years were greater than those at the mixed tundra site. The greater declines in CO2 influxes with warming at the mixed tundra site were modelled from greater soil-plant-atmosphere water potential gradients that developed in drier soil, and the smaller rises in CO2 effluxes with warming at the fen site were modelled from O2 constraints to heterotrophic and below-ground autotrophic respiration that limited their responses to greater ALD. Modelled and measured CH4 exchange during July and August indicated very small influxes at the mixed tundra site, and larger emissions at the fen site. Emissions of CH4 modelled during soil freezing in October - November contributed about one-third of the annual total, and so should be included in estimates of annual emissions. These contrasting responses to warming under current climate modelled and measured at the mixed tundra and fen sites were apparent in their contrasting responses modelled under long-term climate change.

  20. Female Superintendent Longevity in California

    ERIC Educational Resources Information Center

    Rohlfing, Tracy

    2011-01-01

    The purpose of this study was to investigate, through narrative inquiry (Clandinin & Connelly, 2000), the leadership evolution of five female superintendents in California with longevity of 5 or more years in their current school district positions. The research question addressed was, "How do California female superintendents evolve to…

  1. Financing Postsecondary Education in California.

    ERIC Educational Resources Information Center

    California State Legislature, Sacramento. Joint Committee on the Master Plan for Higher Education.

    This document presents an overview of the financial aspects of postsecondary educational institutions in California and suggests some recommendations for the alleviation of financial problems. The study consisted of extensive research of the current literature on financing, gathering key data on the California system, reviewing the pertinent…

  2. Female Superintendent Longevity in California

    ERIC Educational Resources Information Center

    Rohlfing, Tracy

    2011-01-01

    The purpose of this study was to investigate, through narrative inquiry (Clandinin & Connelly, 2000), the leadership evolution of five female superintendents in California with longevity of 5 or more years in their current school district positions. The research question addressed was, "How do California female superintendents evolve to

  3. California Condor

    California condors are one of the most endangered birds in North America. In the early 1990s, captive-bred condors were reintroduced into the wild in California. As of January 2010, about 190 condors now live in the wild and more reintroductions are being considered. To facilitate this, USGS researc...

  4. Carbon dioxide and terrestrial ecosystems

    SciTech Connect

    Koch, G.W.; Mooney, H.A.

    1996-12-31

    This book is a summary of the current research which addresses the effects of elevated carbon dioxide on terrestrial ecosystems and an identification of significant unresolved issues. Chapters address the carbon dioxide effects on trees and forests, unmanaged herbaceous ecosystems, and crops. Included are experimental studies, conceptual models, general mathematical models, dynamic simulation models.

  5. Obscuring ecosystem function with application of the ecosystem services concept.

    PubMed

    Peterson, Markus J; Hall, Damon M; Feldpausch-Parker, Andrea M; Peterson, Tarla Rai

    2010-02-01

    Conservationists commonly have framed ecological concerns in economic terms to garner political support for conservation and to increase public interest in preserving global biodiversity. Beginning in the early 1980s, conservation biologists adapted neoliberal economics to reframe ecosystem functions and related biodiversity as ecosystem services to humanity. Despite the economic success of programs such as the Catskill/Delaware watershed management plan in the United States and the creation of global carbon exchanges, today's marketplace often fails to adequately protect biodiversity. We used a Marxist critique to explain one reason for this failure and to suggest a possible, if partial, response. Reframing ecosystem functions as economic services does not address the political problem of commodification. Just as it obscures the labor of human workers, commodification obscures the importance of the biota (ecosystem workers) and related abiotic factors that contribute to ecosystem functions. This erasure of work done by ecosystems impedes public understanding of biodiversity. Odum and Odum's radical suggestion to use the language of ecosystems (i.e., emergy or energy memory) to describe economies, rather than using the language of economics (i.e., services) to describe ecosystems, reverses this erasure of the ecosystem worker. Considering the current dominance of economic forces, however, implementing such solutions would require social changes similar in magnitude to those that occurred during the 1960s. Niklas Luhmann argues that such substantive, yet rapid, social change requires synergy among multiple societal function systems (i.e., economy, education, law, politics, religion, science), rather than reliance on a single social sphere, such as the economy. Explicitly presenting ecosystem services as discreet and incomplete aspects of ecosystem functions not only allows potential economic and environmental benefits associated with ecosystem services, but also enables the social and political changes required to ensure valuation of ecosystem functions and related biodiversity in ways beyond their measurement on an economic scale. PMID:19659684

  6. Projecting California's Fiscal Future.

    ERIC Educational Resources Information Center

    Carroll, Stephen; And Others

    This paper presents findings of a study that analyzed the trends that will shape the California budget over the next decade. The study assumed that current demographic and economic trends, tax policies, and mandated spending programs will continue through the next decade, and projects their implications for state general-fund revenues and spending…

  7. California's Future: Higher Education

    ERIC Educational Resources Information Center

    Johnson, Hans

    2015-01-01

    California's higher education system is not keeping up with the changing economy. Projections suggest that the state's economy will continue to need more highly educated workers. In 2025, if current trends persist, 41 percent of jobs will require at least a bachelor's degree and 36 percent will require some college education short of a bachelor's…

  8. Conservation Planning for Ecosystem Services

    PubMed Central

    Chan, Kai M. A; Shaw, M. Rebecca; Cameron, David R; Underwood, Emma C; Daily, Gretchen C

    2006-01-01

    Despite increasing attention to the human dimension of conservation projects, a rigorous, systematic methodology for planning for ecosystem services has not been developed. This is in part because flows of ecosystem services remain poorly characterized at local-to-regional scales, and their protection has not generally been made a priority. We used a spatially explicit conservation planning framework to explore the trade-offs and opportunities for aligning conservation goals for biodiversity with six ecosystem services (carbon storage, flood control, forage production, outdoor recreation, crop pollination, and water provision) in the Central Coast ecoregion of California, United States. We found weak positive and some weak negative associations between the priority areas for biodiversity conservation and the flows of the six ecosystem services across the ecoregion. Excluding the two agriculture-focused servicescrop pollination and forage productioneliminates all negative correlations. We compared the degree to which four contrasting conservation network designs protect biodiversity and the flow of the six services. We found that biodiversity conservation protects substantial collateral flows of services. Targeting ecosystem services directly can meet the multiple ecosystem services and biodiversity goals more efficiently but cannot substitute for targeted biodiversity protection (biodiversity losses of 44% relative to targeting biodiversity alone). Strategically targeting only biodiversity plus the four positively associated services offers much promise (relative biodiversity losses of 7%). Here we present an initial analytical framework for integrating biodiversity and ecosystem services in conservation planning and illustrate its application. We found that although there are important potential trade-offs between conservation for biodiversity and for ecosystem services, a systematic planning framework offers scope for identifying valuable synergies. PMID:17076586

  9. Review of current Southern California edison load management programs and proposal for a new market-driven, mass-market, demand-response program

    SciTech Connect

    Weller, G.H.

    2002-01-01

    Utility load management programs, including direct load control and interruptible load programs, constitute a large installed base of controllable loads that are employed by utilities as system reliability resources. In response to energy supply shortfalls expected during the summer of 2001, the California Public Utilities Commission in spring 2001 authorized new utility load management programs as well as revisions to existing programs. This report provides an independent review of the designs of these new programs for a large utility (Southern California Edison) and suggests possible improvements to enhance the price responsiveness of the customer actions influenced by these programs. The report also proposes a new program to elicit a mass-market demand response to utility price signals.

  10. Stable Isotope Analysis Challenges Wasp-Waist Food Web Assumptions in an Upwelling Pelagic Ecosystem

    PubMed Central

    Madigan, Daniel J.; Carlisle, Aaron B.; Dewar, Heidi; Snodgrass, Owyn E.; Litvin, Steven Y.; Micheli, Fiorenza; Block, Barbara A.

    2012-01-01

    Eastern boundary currents are often described as ‘wasp-waist’ ecosystems in which one or few mid-level forage species support a high diversity of larger predators that are highly susceptible to fluctuations in prey biomass. The assumption of wasp-waist control has not been empirically tested in all such ecosystems. This study used stable isotope analysis to test the hypothesis of wasp-waist control in the southern California Current large marine ecosystem (CCLME). We analyzed prey and predator tissue for δ13C and δ15N and used Bayesian mixing models to provide estimates of CCLME trophic dynamics from 2007–2010. Our results show high omnivory, planktivory by some predators, and a higher degree of trophic connectivity than that suggested by the wasp-waist model. Based on this study period, wasp-waist models oversimplify trophic dynamics within the CCLME and potentially other upwelling, pelagic ecosystems. Higher trophic connectivity in the CCLME likely increases ecosystem stability and resilience to perturbations. PMID:22977729

  11. Demonstration of a fully-coupled end-to-end model for small pelagic fish using sardine and anchovy in the California Current

    NASA Astrophysics Data System (ADS)

    Rose, Kenneth A.; Fiechter, Jerome; Curchitser, Enrique N.; Hedstrom, Kate; Bernal, Miguel; Creekmore, Sean; Haynie, Alan; Ito, Shin-ichi; Lluch-Cota, Salvador; Megrey, Bernard A.; Edwards, Chris A.; Checkley, Dave; Koslow, Tony; McClatchie, Sam; Werner, Francisco; MacCall, Alec; Agostini, Vera

    2015-11-01

    We describe and document an end-to-end model of anchovy and sardine population dynamics in the California Current as a proof of principle that such coupled models can be developed and implemented. The end-to-end model is 3-dimensional, time-varying, and multispecies, and consists of four coupled submodels: hydrodynamics, Eulerian nutrient-phytoplankton-zooplankton (NPZ), an individual-based full life cycle anchovy and sardine submodel, and an agent-based fishing fleet submodel. A predator roughly mimicking albacore was included as individuals that consumed anchovy and sardine. All submodels were coded within the ROMS open-source community model, and used the same resolution spatial grid and were all solved simultaneously to allow for possible feedbacks among the submodels. We used a super-individual approach and solved the coupled models on a distributed memory parallel computer, both of which created challenging but resolvable bookkeeping challenges. The anchovy and sardine growth, mortality, reproduction, and movement, and the fishing fleet submodel, were each calibrated using simplified grids before being inserted into the full end-to-end model. An historical simulation of 1959-2008 was performed, and the latter 45 years analyzed. Sea surface height (SSH) and sea surface temperature (SST) for the historical simulation showed strong horizontal gradients and multi-year scale temporal oscillations related to various climate indices (PDO, NPGO), and both showed responses to ENSO variability. Simulated total phytoplankton was lower during strong El Nino events and higher for the strong 1999 La Nina event. The three zooplankton groups generally corresponded to the spatial and temporal variation in simulated total phytoplankton. Simulated biomasses of anchovy and sardine were within the historical range of observed biomasses but predicted biomasses showed much less inter-annual variation. Anomalies of annual biomasses of anchovy and sardine showed a switch in the mid-1990s from anchovy to sardine dominance. Simulated averaged weights- and lengths-at-age did not vary much across decades, and movement patterns showed anchovy located close to the coast while sardine were more dispersed and farther offshore. Albacore predation on anchovy and sardine was concentrated near the coast in two pockets near the Monterey Bay area and equatorward of Cape Mendocino. Predation mortality from fishing boats was concentrated where sardine age-1 and older individuals were located close to one of the five ports. We demonstrated that it is feasible to perform multi-decadal simulations of a fully-coupled end-to-end model, and that this can be done for a model that follows individual fish and boats on the same 3-dimensional grid as the hydrodynamics. Our focus here was on proof of principle and our results showed that we solved the major technical, bookkeeping, and computational issues. We discuss the next steps to increase computational speed and to include important biological differences between anchovy and sardine. In a companion paper (Fiechter et al., 2015), we further analyze the historical simulation in the context of the various hypotheses that have been proposed to explain the sardine and anchovy cycles.

  12. Facilitating Next Generation Science Collaboration: Respecting and Mediating Vocabularies with Information Model Driven Semantics in Ecosystems Assessments.

    NASA Astrophysics Data System (ADS)

    Fox, P.; Maffei, A.

    2012-04-01

    In Earth and space science, there is steady evolution away from isolated and single purpose data 'systems' toward systems of systems, data ecosystems, or data frameworks that provide access to highly heterogeneous data repositories. As a result, common informatics approaches are being sought for the development and implementation of newer architectures. One clear need is a repeatable method for modeling, implementing and evolving the information architectures. A newly funded U.S. initiative is developing and deploying integrated ecosystem assessment (IEA) capability for marine ecosystems using an information science and semantic technologies. The intention is to advance the capacity of an IEA to provide the foundation for synthesis and quantitative analysis of natural and socio-economic ecosystem information to support ecosystem-based management. The initiative is creating capacity to assess the impacts of changing climate on two large marine ecosystems: the northeast U.S. and the California Current. These assessments will be essential parts of the science-based decision-support tools used to develop adaptive management measures. Enhanced collaboration is required to achieve these goals: interaction and information sharing within and among diverse data providers, analysis tool developers and user groups that constitute the broader coastal and marine ecosystem science application community. This presentation outlines new component design approaches and sets of information model and semantic encodings for mediation.

  13. Status of the Sierra Nevada: the Sierra Nevada Ecosystem Project

    USGS Publications Warehouse

    Erman, Don C., (Edited By); SNEP team

    1997-01-01

    The Sierra Nevada ecosystem project was requested by Congress in the Conference Report for Interior and related Agencies 1993 Appropriation Act, which authorized funds for a scientific review of the remaining old growth in the national forests of the Sierra Nevada in California, and for a study of the entire Sierra Nevada ecosystem by an independent panel of scientists, with expertise in diverse areas related to this issue. This CD-ROM is a digital version of the set of reports titled 'Sierra Nevada Ecosystem Project, final report to Congress' published in paper form by the Centers for Water and Wildland Resources of the University of California, Davis.

  14. Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ?

    SciTech Connect

    Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; De Kauwe, Martin G.; Asao, Shinichi; Hickler, Thomas; Parton, William; Ricciuto, Daniel M.; Wang, Ying -Ping; Wårlind, David; Norby, Richard J.

    2015-04-27

    Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO2. Free-Air CO2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluate whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO2.

  15. Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ?

    SciTech Connect

    Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; De Kauwe, Martin G.; Asao, Shinichi; Hickler, Thomas; Parton, William; Ricciuto, Daniel M.; Wang, Ying -Ping; Wårlind, David; Norby, Richard J.

    2015-01-01

    Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO2. Free-Air CO2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluate whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO2.

  16. California's Accountability System and the API. Expert Report. Submitted for: Eliezer Williams vs. State of California.

    ERIC Educational Resources Information Center

    Russell, Michael

    This paper was presented as expert testimony in the Williams vs. State of California class action lawsuit. That case, filed on behalf of California public schoolchildren, charged the State with denying thousands of students the basic tools for a sound education. This paper addresses whether California's current output-based accountability system…

  17. Satellite data analysis and ecosystem modeling for carbon sequestration assessments in the western United States

    NASA Astrophysics Data System (ADS)

    Potter, Christopher; Fladeland, Matthew; Klooster, Steven; Genovese, Vanessa; Hiatt, Seth; Gross, Peggy

    The active management of long-term carbon pools in terrestrial vegetation and soils is an important tool for mitigating the rise in atmospheric CO2 concentrations. This paper demonstrates the use of remote sensing, climate records, and a vegetation-soil model National Aeronautics and Space Administration-Carnegie-Ames-Stanford Approach to estimate the past and future carbon balance in vegetation and soils. Using the western United States (WUS) as a case study, we describe spatially detailed (<10-km resolution) terrestrial carbon budgets for ecosystems of the Rocky Mountain and Pacific regions of the country. Net primary production increased on a western region-wide basis during the 1990s to 0.9 ± 0.1 Pg C/year, but the total terrestrial sink in all western U.S. ecosystems did not exceed 0.01 Pg C/year between 1982 and 1997. Over the entire period of 1982-1997, the total estimated net ecosystem production (NEP) flux from WUS ecosystems was 1.3 Pg C lost to the atmosphere (1 Pg = 1 billion metric tons). Forested mountain areas of the Cascades, the Sierra Nevada Range, the northern California Coast Range, and the southern Rockies were estimated as the only consistent ecosystem carbon sinks up to 1997. Most of the remaining vegetated (nondesert) lands of the western states were estimated to lose between 50 and 350 g C m-2 as net ecosystem fluxes were summed over the period 1982-1997. Future climate scenario tests imply major ecosystem carbon losses in the west will continue in all but the most isolated forest areas of the mountain regions. Carbon pools in surface soils and woody litter pools in all WUS ecosystems are estimated currently at 12 Pg C. These baseline carbon pools are likely to become more susceptible to loss under climate model predictions for the western states over the next 50-100 years.

  18. Pelagic amphipod assemblage associated with subarctic water off the West Coast of the Baja California peninsula

    NASA Astrophysics Data System (ADS)

    Lavaniegos, Bertha E.

    2014-04-01

    The California Current system is a large marine ecosystem with transition gradients between subarctic and tropical biomes containing diverse habitats. Biogeographic species groups must be carefully analyzed in order to detect tendencies shifting the ecosystem toward a more temperate or tropical state. Species composition of hyperiid amphipods was analyzed in July 2002 for evidence of subarctic water intrusion and for signals of the El Niño event developing in the equatorial Pacific. Multivariate analysis showed a dominance of “transition zone” species typical of the California Current. The main evidence of subarctic water intrusion was the extended distribution of Themisto pacifica, which reached as far south as 27°N, with particularly high abundances at 30-32°N. The intrusion of subarctic water took place despite evidence that an El Niño event was in progress. The zonal advection due to El Niño intersected the equatorward flow of the subarctic intrusion and probably produced a large cyclonic eddy off Baja California. This eddy maintained a limited El Niño influence at a few offshore stations near its southern boundary. The main environmental variables influencing the amphipod assemblage structure were water temperature and the abundance of salps. T. pacifica, a species with cool water affinity, was more sensitive to temperature, whereas subtropical species, such as Vibilia armata, were strongly correlated with the availability of salps.

  19. Quantifying Water Flow within Aquatic Ecosystems Using Load Cell Sensors: A Profile of Currents Experienced by Coral Reef Organisms around Lizard Island, Great Barrier Reef, Australia

    PubMed Central

    Johansen, Jacob L.

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (<$150) to provide a detailed current velocity profile of the coral-reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms−1 and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm−2 allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: Currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms−1, while tidal currents rarely exceed 5.5 cms−1. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats. PMID:24421878

  20. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Johansen, Jacob L

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (<$150) to provide a detailed current velocity profile of the coral-reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats. PMID:24421878

  1. California Dreaming

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    After getting her master's degree from UCLA, Nancy Wills dreamed of starting a school-based guitar program so she could teach students to make music on the instrument she'd loved since she was a kid growing up outside of Yosemite, California. She had a strong belief that guitar was perfect for schools, ideal for individualized playing but also…

  2. CALIFORNIA DAIRIES

    EPA Science Inventory

    These dairy records were collected by the California Department of Food and Agriculture (CDFA) as part of a trial for disease surveillance and prevention purposes. Some records contain GPS coordinates, while the remaining records were obtained through address matching methods u...

  3. California Coast

    Atmospheric Science Data Center

    2014-05-15

    ... shades of red. The distinctive chevron shape of the Mojave Desert is bordered by the San Andreas Fault on the south and the Garlock Fault ... March 14, 2000 - Southern California with the Mojave Desert and surrounding area. project:  MISR ...

  4. California Dreaming

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    After getting her master's degree from UCLA, Nancy Wills dreamed of starting a school-based guitar program so she could teach students to make music on the instrument she'd loved since she was a kid growing up outside of Yosemite, California. She had a strong belief that guitar was perfect for schools, ideal for individualized playing but also

  5. What next for California

    SciTech Connect

    Lang, P.

    1982-11-01

    The effect of Governor Jerry Brown on the solar industry in California is reviewed. It is pointed out that currently there are 7000 solar businesses; before Gov. Brown's administration there were virtually none. The effect of Gov. Brown's administration on the use of solar and renewable energy sources, as well as energy conservation are reviewed. Specific topics include: (1) political action; (2) business sense; (3) increased competition; (4) marketing; and (5) consumer protection. (MJJ)

  6. Fish communities of the Sacramento River Basin: Implications for conservation of native fishes in the Central Valley, California

    USGS Publications Warehouse

    May, J.T.; Brown, L.R.

    2002-01-01

    The associations of resident fish communities with environmental variables and stream condition were evaluated at representative sites within the Sacramento River Basin, California between 1996 and 1998 using multivariate ordination techniques and by calculating six fish community metrics. In addition, the results of the current study were compared with recent studies in the San Joaquin River drainage to provide a wider perspective of the condition of resident fish communities in the Central Valley of California as a whole. Within the Sacramento drainage, species distributions were correlated with elevational and substrate size gradients; however, the elevation of a sampling site was correlated with a suite of water-quality and habitat variables that are indicative of land use effects on physiochemical stream parameters. Four fish community metrics - percentage of native fish, percentage of intolerant fish, number of tolerant species, and percentage of fish with external anomalies - were responsive to environmental quality. Comparisons between the current study and recent studies in the San Joaquin River drainage suggested that differences in water-management practices may have significant effects on native species fish community structure. Additionally, the results of the current study suggest that index of biotic integrity-type indices can be developed for the Sacramento River Basin and possibly the entire Central Valley, California. The protection of native fish communities in the Central Valley and other arid environments continues to be a conflict between human needs for water resources and the requirements of aquatic ecosystems; preservation of these ecosystems will require innovative management strategies.

  7. A perspective on modern pesticides, pelagic fish declines, and unknown ecological resilience in highly managed ecosystems

    USGS Publications Warehouse

    Scholz, Nathaniel L.; Fleishman, Erica; Brown, Larry; Werner, Inge; Johnson, Michael L.; Brooks, Marjorie L.; Mitchelmore, Carys L.; Schlenk, Daniel

    2012-01-01

    Pesticides applied on land are commonly transported by runoff or spray drift to aquatic ecosystems, where they are potentially toxic to fishes and other nontarget organisms. Pesticides add to and interact with other stressors of ecosystem processes, including surface-water diversions, losses of spawning and rearing habitats, nonnative species, and harmful algal blooms. Assessing the cumulative effects of pesticides on species or ecological functions has been difficult for historical, legal, conceptual, and practical reasons. To explore these challenges, we examine current-use (modern) pesticides and their potential connections to the abundances of fishes in the San Francisco Estuary (California). Declines in delta smelt (Hypomesus transpacificus), Chinook salmon (Oncorhynchus tshawytscha), and other species have triggered mandatory and expensive management actions in the urbanizing estuary and agriculturally productive Central Valley. Our inferences are transferable to other situations in which toxics may drive changes in ecological status and trends.

  8. The California Current System as a transmitter of millennial scale climate change on the northeastern Pacific margin from 10 to 50 ka

    NASA Astrophysics Data System (ADS)

    Taylor, M. A.; Hendy, I. L.; Pak, D. K.

    2015-09-01

    A high-resolution record of δ18O and Mg/Ca-based temperatures spanning 10-50 ka has been reconstructed from the Vancouver margin of the northeastern Pacific Ocean (MD02-2496) from two planktonic foraminiferal species, Neogloboquadrina pachyderma (s.) and Globigerina bulloides. While δ18Ocalcite appears synchronous with Dansgaard-Oeschger Interstadials throughout the record, millennial scale variability in sea surface temperatures and reconstructed δ18Oseawater are frequently out of phase with Greenland climate. Changes in water mass characteristics such as δ18Ocalcite and enriched δ15N events apparently responded to millennial-scale climate change during Marine Isotope Stage 3 (MIS 3), such that negative δ18Ocalcite excursions coincided with heavier δ15N. These water mass characteristic shifts are suggestive of the presence of surface water advected from the Eastern Tropical North Pacific by relative strengthening of the California Undercurrent (CUC) bringing warm, salty tropical waters poleward. The linkage between the strength of the CUC on the NE Pacific margin and millennial-scale climate change may be related to increased sea surface heights off Central America as the Intertropical Convergence Zone shifted northward in response to changes in North Atlantic Ocean circulation. Poor correlations between proxies exist through late MIS 3 into MIS 2. Ice sheet growth could have disrupted the linkage between CUC and the NE Pacific margin as the Laurentide Ice sheet disrupted atmospheric circulation and the Cordilleran Ice Sheet increasingly influenced regional paleoceanography.

  9. The Papoose Flat pluton, Inyo Mountains, California: A reassessment of the kinematics of deformation and emplacement history in the light of current fabric data

    SciTech Connect

    Law, R.D. . Dept. of Geological Sciences); Morgan, S.S. . Dept. of Geology and Geophysics); Sylvester, A.G. . Dept. of Geology); Nyman, M. . Dept. of Geology and Geophysics)

    1993-04-01

    The Papoose Flat pluton of eastern California is characterized by intense crystal plastic deformation and dynamic recrystallization accompanied by stratigraphic attenuation around its western margin. Previously reported microstructures and crystal fabrics within quartz veins from the pluton's gneissic border facies and quartzites within the overlying aureole, indicated a dominant top-to-the-SE shear sense. Models proposed to account for this shear sense in these quartz-rich L-S tectonites have included: (a) magmatic wedging towards the NW beneath a static cover of sedimentary rocks, (b) SE directed overthrusting of the cover rocks during the pluton's cooling stage, and (c) synchronous magmatic wedging and overthrusting. New fabric analyses based on a more detailed field sampling program indicate that while the aureole quartzites display either symmetrical c-axis fabrics or asymmetric fabrics indicating a top-to-the-SE shear sense, the quartz veins in the gneissic border facies are characterized by asymmetric fabrics indicating a domainal (km scale) distribution of top-to-the-SE and top-to-the-NW shear senses. This domainal variation in shear sense is difficult to reconcile with a simple overthrusting model, but could be explained by a more complex model involving NW directed magmatic wedging accompanied and/or postdated by localized magma chamber inflation. Such localized inflation could result in a top-to-the-NW shear sense being superimposed on gneissic border facies quartz veins located beneath the NW dipping areas of the pluton's roof.

  10. Gaseous N fluxes in Mediterranean catchments: from low elevation chaparral to high elevation subalpine ecosystems

    NASA Astrophysics Data System (ADS)

    Homyak, P. M.; Sickman, J. O.

    2010-12-01

    Recent studies on gaseous N emissions from soils in semiarid ecosystems have highlighted the importance of these losses for terrestrial ecosystems. Losses tend to be relatively large during seasonal transitions where soil rewetting results in a “hot moment” of increased biological nitrification and gaseous N flux. To gain better understanding of chaparral N-dynamics, we measured NO and N2O emissions for one year in a chamise-dominated watershed located in the foothills of the Sierra Nevada (California) whose previous nitrogen budget suggested net N retention (i.e., N inputs from atmospheric deposition > hydrologic outputs). We are also making additional gas flux measurements along an elevational gradient (300 to 2800 m) to determine if NO and N2O fluxes vary across ecosystems (chaparral, mixed conifer, and subalpine) with varying capacity for assimilation of N deposition. Gaseous N fluxes measured at the chaparral site through the one-year period are in agreement with other studies of semiarid ecosystems showing a pulse of NO (as high as 100 ng N m-2 s-1) immediately after rewetting of dry soils. The hot moment decreases by about half 24-hours after rewetting and decreases in magnitude with increasing frequency of rewetting episodes during the winter rainy season. As with other studies in semiarid ecosystems, NO emissions decreased significantly with decreases in temperature averaging about 0.03 ng N m-2 s-1 and sometimes becoming negative during the cool winter. Measurements of the magnitude of the hot moment along the altitudinal gradient are in progress, and to the best of our knowledge, will be the first field measurement to include nitric oxide fluxes in subalpine ecosystems. Based on our current data, it is clear that gaseous N fluxes are an important component in N budgets for ecosystems experiencing a strong seasonal transition in soil physico-chemical conditions.

  11. Refocusing Mussel Watch on contaminants of emerging concern (CECs): the California pilot study (2009-10).

    PubMed

    Maruya, Keith A; Dodder, Nathan G; Schaffner, Rebecca A; Weisberg, Stephen B; Gregorio, Dominic; Klosterhaus, Susan; Alvarez, David A; Furlong, Edward T; Kimbrough, Kimani L; Lauenstein, Gunnar G; Christensen, John D

    2014-04-30

    To expand the utility of the Mussel Watch Program, local, regional and state agencies in California partnered with NOAA to design a pilot study that targeted contaminants of emerging concern (CECs). Native mussels (Mytilus spp.) from 68 stations, stratified by land use and discharge scenario, were collected in 2009-10 and analyzed for 167 individual pharmaceuticals, industrial and commercial chemicals and current use pesticides. Passive sampling devices (PSDs) and caged Mytilus were co-deployed to expand the list of CECs, and to assess the ability of PSDs to mimic bioaccumulation by Mytilus. A performance-based quality assurance/quality control (QA/QC) approach was developed to ensure a high degree of data quality, consistency and comparability. Data management and analysis were streamlined and standardized using automated software tools. This pioneering study will help shape future monitoring efforts in California's coastal ecosystems, while serving as a model for monitoring CECs within the region and across the nation. PMID:23886247

  12. Astronomical Ecosystems

    NASA Astrophysics Data System (ADS)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  13. Southern Antarctic Circumpolar Current Front to the northeast of South Georgia: Horizontal advection of krill and its role in the ecosystem

    NASA Astrophysics Data System (ADS)

    Murphy, E. J.; Watkins, J. L.; Meredith, M. P.; Ward, P.; Trathan, P. N.; Thorpe, S. E.

    2004-01-01

    During December 2000 and January 2001 we conducted a high-resolution hydrographic and bioacoustic transect (RRS James Clark Ross cruise 57) that extended across the South Georgia shelf from close to Cumberland Bay, across the shelf break and slope and into the deep waters of the Georgia Basin beyond. We observed a high biomass of zooplankton between 53.8° and 53.4°S associated with the inshore, northwestward flow of the Southern Antarctic Circumpolar Current Front (SACCF) that occurred in around 2500 m of water close to the base of the slope. There was very little zooplankton biomass present in the more offshore, eastward flowing waters where a second manifestation of the SACCF was also present on the section. The region of enhanced zooplankton biomass was over 50 km in horizontal extent with the highest densities (>10 g m-3) in the area of strongest flow (>35 cm s-1). The majority of the zooplankton present on the section was Antarctic krill and most of it occurred in the upper 100 m. The rate of physically mediated transport of Antarctic krill across the off-shelf sections (˜10 km) of the transect showed marked variation, with highest rates (>106 g s-1) associated with the northwestward flow of the SACCF. Farther offshore, where the krill biomass and flow rates were much reduced, the flux of krill was very low. The integrated horizontal flux of krill across the offshore sections was large (192 × 103 t d-1) and to the northwest. A second occupation of the transect showed that the krill flux is highly variable, and we discuss the various physical and biological factors that will generate such variability. We show that horizontal flux of krill in ocean currents is a major factor in determining the abundance of krill around South Georgia.

  14. Anthropogenic warming has increased drought risk in California

    PubMed Central

    Diffenbaugh, Noah S.; Swain, Daniel L.; Touma, Danielle

    2015-01-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California. PMID:25733875

  15. Anthropogenic warming has increased drought risk in California.

    PubMed

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California. PMID:25733875

  16. Nitrous oxide emissions and isotopic composition in urban and agricultural systems in southern California

    NASA Astrophysics Data System (ADS)

    Townsend-Small, Amy; Pataki, Diane E.; Czimczik, Claudia I.; Tyler, Stanley C.

    2011-03-01

    Nitrous oxide (N2O) is a powerful greenhouse gas increasing in atmospheric mixing ratio and linked to increasing amounts of reactive N in the environment, particularly fertilizer use in agriculture. The consequences of urbanization of agricultural land for global and regional N2O emissions are unclear, due to high spatial and temporal variability of fluxes from different ecosystems and relatively few studies of urban ecosystems. We measured fluxes and the stable isotope composition (δ15N and δ18O) of N2O over 1 year in urban (ornamental lawns and athletic fields) and agricultural (corn and vegetable fields) ecosystems near Los Angeles, California, United States. We found that urban landscapes (lawns and athletic fields) have annual N2O fluxes equal to or greater than agricultural fields. Fertilization rates of urban landscapes were equal to or greater than agricultural fields, with comparable N2O emissions factors. δ15N and δ18O of N2O varied widely in all ecosystems, and were not consistent with ecosystem type, season, soil moisture, or temperature. There was, however, a consistent response of δ15N-N2O to pulses of N2O emission following fertilization, with an initial depletion in δ15N relative to prefertilization values, then gradual enrichment to background values within about 1 week. Preliminary scaling calculations indicated that N2O emissions from urban landscapes are approximately equal to or greater than agricultural emissions in urbanized areas of southern California, which further implies that current estimates of regional N2O emissions (based on agricultural land area) may be too low.

  17. Endangered species management and ecosystem restoration: Finding the common ground

    USGS Publications Warehouse

    Casazza, Michael L.; Overton, Cory T.; Bui, Thuy-Vy D.; Hull, Joshua M.; Albertson, Joy D.; Bloom, Valary K.; Bobzien, Steven; McBroom, Jennifer; Latta, Marilyn; Olofson, Peggy; Rohmer, Tobias M.; Schwarzbach, Steven E.; Strong, Donald R.; Grijalva, Erik; Wood, Julian K.; Skalos, Shannon; Takekawa, John

    2016-01-01

    Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway’s Rail (Rallus obsoletus obsoletus; hereafter, California rail), a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora). California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa) boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora × S. foliosa) readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict and propose strategies for moderating harmful effects of restoration while meeting the needs of both endangered species and the imperiled native marsh ecosystem.

  18. Sustaining the Landscape: A Method for Comparing Current and Desired Future Conditions of Forest Ecosystems in the North Cumberland Plateau and Mountains

    SciTech Connect

    Druckenbrod, D.L.

    2004-12-22

    This project initiates an integrated-landscape conservation approach within the Northern Cumberlands Project Area in Tennessee and Kentucky. The mixed mesophytic forests within the Cumberland Plateau and Mountains are among the most diverse in North America; however, these forests have been impacted by and remain threatened from changes in land use across this landscape. The integrated-landscape conservation approach presented in this report outlines a sequence of six conservation steps. This report considers the first three of these steps in two, successive stages. Stage 1 compares desired future conditions (DFCs) and current prevailing conditions (CPCs) at the landscape-scale utilizing remote sensing imagery, remnant forests, and descriptions of historical forest types within the Cumberland Plateau. Subsequently, Stage 2 compares DFCs and CPCs for at-risk forest types identified in Stage 1 utilizing structural, compositional, or functional attributes from USFS Forest Inventory and Analysis data. Ecological indicators will be developed from each stage that express the gaps between these two realizations of the landscape. The results from these first three steps will directly contribute to the final three steps of the integrated-landscape conservation approach by providing guidance for the generation of new conservation strategies in the Northern Cumberland Plateau and Mountains.

  19. Eruptive History and Chemical Evolution of the Precaldera and Postcaldera Basalt-Dacite Sequences, Long Valley, California: Implications for Magma Sources, Current Seismic Unrest, and Future Volcanism

    USGS Publications Warehouse

    Bailey, Roy A.

    2004-01-01

    The Long Valley Volcanic Field in east-central California straddles the East Sierran frontal fault zone, overlapping the Sierra Nevada and western Basin and Range Provinces. The volcanic field overlies a mature mid-Tertiary erosional surface that truncates a basement composed mainly of Mesozoic plutons and associated roof pendants of Mesozoic metavolcanic and Paleozoic metasedimentary rocks. Long Valley volcanism began about 4 Ma during Pliocene time and has continued intermittently through the Holocene. The volcanism is separable into two basalt-rhyolite episodes: (1) an earlier, precaldera episode related to Long Valley Caldera that climaxed with eruption of the Bishop Tuff and collapse of the caldera; and (2) a later, postcaldera episode structurally related to the north-south-trending Mono-Inyo Craters fissure system, which extends from the vicinity of Mammoth Mountain northward through the west moat of the caldera to Mono Lake. Eruption of the basalt-dacite sequence of the precaldera basalt-rhyolite episode peaked volumetrically between 3.8 and 2.5 Ma; few basalts were erupted during the following 1.8 m.y. (2.5?0.7 Ma). Volcanism during this interval was dominated by eruption of the voluminous rhyolites of Glass Mountain (2.2?0.8 Ma) and formation of the Bishop Tuff magma chamber. Catastrophic rupture of the roof of this magma chamber caused eruption of the Bishop Tuff and collapse of Long Valley Caldera (760 ka), after which rhyolite eruptions resumed on the subsided caldera floor. The earliest postcaldera rhyolite flows (700?500 ka) contain quenched globular basalt enclaves (mafic magmatic inclusions), indicating that basaltic magma had reentered shallow parts of the magmatic system after a 1.8-m.y. hiatus. Later, at about 400 ka, copious basalts, as well as dacites, began erupting from vents mainly in the west moat of the caldera. These later eruptions initiated the postcaldera basalt-rhyolite episode related to the Mono-Inyo Craters fissure system, which has been active through late Pleistocene and Holocene time.

  20. Impacts of climate change on coastal benthic ecosystems: assessing the current risk of mortality outbreaks associated with thermal stress in NW Mediterranean coastal areas

    NASA Astrophysics Data System (ADS)

    Pairaud, Ivane Lilian; Bensoussan, Nathaniel; Garreau, Pierre; Faure, Vincent; Garrabou, Joaquim

    2014-01-01

    In the framework of climate change, the increase in ocean heat wave frequency is expected to impact marine life. Large-scale positive temperature anomalies already occurred in the northwestern Mediterranean Sea in 1999, 2003 and 2006. These anomalies were associated with mass mortality events of macrobenthic species in coastal areas (0-40 m in depth). The anomalies were particularly severe in 1999 and 2003 when thousands of kilometres of coasts and about 30 species were affected. The aim of this study was to develop a methodology to assess the current risk of mass mortality associated with temperature increase along NW Mediterranean continental coasts. A 3D regional ocean model was used to obtain the temperature conditions for the period 2001-2010, for which the model outputs were validated by comparing them with in situ observations in affected areas. The model was globally satisfactory, although extremes were underestimated and required correction. Combined with information on the thermo-tolerance of a key species (the red gorgonian P. clavata) as well as its spatial distribution, the modelled temperature conditions were then used to assess the risk of mass mortality associated with thermal stress for the first time. Most of the known areas of observed mass mortality were found using the model, although the degree of risk in certain areas was underestimated. Using climatic IPCC scenarios, the methodology could be applied to explore the impacts of expected climate change in the NW Mediterranean. This is a key issue for the development of sound management and conservation plans to protect Mediterranean marine biodiversity in the face of climate change.

  1. Pathways for School Finance in California

    ERIC Educational Resources Information Center

    Rose, Heather; Sonstelie, Jon; Weston, Margaret

    2010-01-01

    California's budget crisis has diminished educational resources for the state's current cohort of public school students. Because school districts have less revenue, class sizes are larger and struggling students receive less assistance. Under these circumstances, it seems beside the point to suggest that California should begin planning for the

  2. Multicultural Graduation Requirements among California's Community Colleges

    ERIC Educational Resources Information Center

    Hess, Shelly L.; Uerling, Donald F.; Piland, William E.

    2012-01-01

    This examination of the current status of multicultural education among California community colleges emerged from a perspective that the inclusion of multicultural education has become a major goal of California's leaders within the past five years. The literature revealed minority students tend to have lower retention rates because they become…

  3. Pathways for School Finance in California

    ERIC Educational Resources Information Center

    Rose, Heather; Sonstelie, Jon; Weston, Margaret

    2010-01-01

    California's budget crisis has diminished educational resources for the state's current cohort of public school students. Because school districts have less revenue, class sizes are larger and struggling students receive less assistance. Under these circumstances, it seems beside the point to suggest that California should begin planning for the…

  4. Multicultural Graduation Requirements among California's Community Colleges

    ERIC Educational Resources Information Center

    Hess, Shelly L.; Uerling, Donald F.; Piland, William E.

    2012-01-01

    This examination of the current status of multicultural education among California community colleges emerged from a perspective that the inclusion of multicultural education has become a major goal of California's leaders within the past five years. The literature revealed minority students tend to have lower retention rates because they become

  5. Valuation of rangeland ecosystem services

    USGS Publications Warehouse

    Gascoigne, W.R.

    2011-01-01

    Economic valuation lends itself well to the anthropocentric orientation of ecosystem services. An economic perspective on ecosystems portrays them as natural assets providing a flow of goods and services valuable to individuals and society collectively. A few examples include the purification of drinking water, reduced risk from flooding and other extreme events, pollination of agricultural crops, climate regulation, and recreation opportunities from plant and animal habitat maintenance, among many others. Once these goods and services are identified and quantified, they can be monetized to complete the valuation process. The monetization of ecosystem goods and services (in the form of dollars) provides a common metric that allows for cross-comparison of attributes and evaluation of differing ecological scenarios. Complicating the monetization process is the fact that most of these goods and services are public and non-market in nature; meaning they are non-rival and non-exclusive and are typically not sold in a traditional market setting where monetary values are revealed. Instead, one must employ non-market valuation techniques, with primary valuation methods typically being very time and resource consuming, intimidating to non-economists, and often impractical. For these reasons, benefit transfer methods have gained popularity. This methodology harnesses the primary collection results of existing studies to make inferences about the economic values of non-market goods and services at an alternative policy site (in place and/or in time). For instance, if a primary valuation study on oak reestablishment on rangelands in southern California yielded a value of $30 per-acre associated with water regulation, this result can be transferred, with some adjustments, to say something about the value of an acre of oaks on rangelands in northern portions of the state. The economic valuation of rangeland ecosystem services has many roles. Economic values may be used as input into analyzing the costs and benefits associated with policies being proposed, or possibly already implemented. For example, with monetized values acting as a common metric, one could compare the 'benefits' of converting a rangeland ecosystem for commercial development (perhaps estimated at the market value of the developed land) with the foregone ecosystem service values (in addition to any land income lost) resulting from that land conversion. Similarly, ecosystem service values can be used to determine the level of return on an investment. rhis is a primary objective for private land conservation organizations who typically have very limited resources. Ecosystem service valuation can also have a role in damage assessments from incidents that require compensation such as oil spills. Additionally, valuation can be very informative when investigating regulatory programs that trade ecological assets such as wetland mitigation programs. Typically these programs are based simply on an 'acre for acre' criterion, and do not take into consideration varying welfare values associated with that ecosystem. Lastly, and most fundamental, ecosystem service valuation serves as a recognition tool for people of all backgrounds. Identifying and valuing ecosystem goods and services on rangelands brings to light the value these natural assets have to human welfare that often remain hidden do to their public and non-market attributes. This type of recognition is vital to the preservation of rangeland ecosystems in the future and the many ecological benefits they provide.

  6. Fishing for Novel Approaches to Ecosystem Service Forecasts

    EPA Science Inventory

    The ecosystem service concept provides a powerful framework for conserving species and the environments they depend upon. Describing current distributions of ecosystem services and forecasting their future distributions have therefore become central objectives in many conservati...

  7. Are hotspots of evolutionary potential adequately protected in southern California?

    USGS Publications Warehouse

    Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N.

    2008-01-01

    Reserves are often designed to protect rare habitats, or "typical" exemplars of ecoregions and geomorphic provinces. This approach focuses on current patterns of organismal and ecosystem-level biodiversity, but typically ignores the evolutionary processes that control the gain and loss of biodiversity at these and other levels (e.g., genetic, ecological). In order to include evolutionary processes in conservation planning efforts, their spatial components must first be identified and mapped. We describe a GIS-based approach for explicitly mapping patterns of genetic divergence and diversity for multiple species (a "multi-species genetic landscape"). Using this approach, we analyzed mitochondrial DNA datasets from 21 vertebrate and invertebrate species in southern California to identify areas with common phylogeographic breaks and high intrapopulation diversity. The result is an evolutionary framework for southern California within which patterns of genetic diversity can be analyzed in the context of historical processes, future evolutionary potential and current reserve design. Our multi-species genetic landscapes pinpoint six hotspots where interpopulation genetic divergence is consistently high, five evolutionary hotspots within which genetic connectivity is high, and three hotspots where intrapopulation genetic diversity is high. These 14 hotspots can be grouped into eight geographic areas, of which five largely are unprotected at this time. The multi-species genetic landscape approach may provide an avenue to readily incorporate measures of evolutionary process into GIS-based systematic conservation assessment and land-use planning.

  8. Brown v. Plata: prison overcrowding in California.

    PubMed

    Newman, William J; Scott, Charles L

    2012-01-01

    California's prisons are currently designed to house approximately 85,000 inmates. At the time of the U.S. Supreme Court's 2011 decision in Brown v. Plata, the California prison system housed nearly twice that many (approximately 156,000 inmates). The Supreme Court held that California's prison system violated inmates' Eighth Amendment rights. The Court upheld a three-judge panel's order to decrease the population of California's prisons by an estimated 46,000 inmates. They determined that overcrowding was the primary cause of the inmates' inadequate medical and mental health care. As a result, the California Department of Corrections and Rehabilitation (CDCR) has been working to redistribute inmates and parolees safely and decrease the overall population to the mandated levels. These large-scale adjustments to California's penal system create potential opportunities to study the long-term effects on affected inmates. PMID:23233477

  9. Columbia River Estuary Ecosystem Classification Ecosystem Complex

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith Marcoe

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub-catena". The extent of detailed mapping is the interpreted Holocene geologic floodplain of the tidal Columbia River and its tributaries to the estimated head of tide. The extent of this dataset also includes tributary valleys that are not mapped in detail. The upstream extents of tributary valleys are an estimation of the limit of Columbia River influence and are for use as containers in future analyses. The geologic floodplain is the geomorphic surface that is actively accumulating sediment through occasional overbank deposition. Most features within the geologic floodplain are considered to be formed during the recent (Holocene-epoch) climatic regime. There are bedrock and pre-Holocene sedimentary deposits included where they are surrounded by Holocene sediment accumulations or have been shaped by Holocene floods. In some places, Holocene landforms such as landslides, tributary fans, and coastal dunes are mapped that extend outside of the modern floodplain. This map is not a floodplain hazard map or delineation of actual flood boundaries. Although wetlands are included in the Classification, they are based on different criteria than jurisdictional wetlands. The extent of mapping may differ from the actual limit of tidal influence.

  10. Oceanographic Observations in the Mexican Pacific Ocean to Understand the Pelagic Ecosystem Response to the Climate Variability and Climate Change (1997-2006)

    NASA Astrophysics Data System (ADS)

    Gaxiola-Castro, G.; Lavaniegos, B.; Durazo, R.; Lara-Lara, R.; Aguirre-Gomez, R.; Gomez-Valdez, J.; Carriquiry, J.; Pares-Sierra, A.

    2007-05-01

    In the northeastern Pacific Ocean we are developing a long-term oceanographic program (IMECOCAL) to understand the pelagic ecosystem response to the climate variability and climate change. The IMECOCAL program began in October 1997, and we are expecting to continue until at least 2008 year, with the CONACYT (Mexican Council of Science and Technology) and CICESE supports. The IMECOCAL program is quarterly visiting an oceanographic area of the southern California Current region off Baja California, with approximately 80 hydrographic stations. Also, we are planning two continuous sampling sites, one in northern, and another in the south of the Baja California Peninsula. One of our main goals is understand the interannual variability of the physical-biological interactions in the pelagic ecosystem, with the study of major oceanic physical processes, together with temporal changes of temperature and salinity in the water column, and their relationships with plankton fluctuations. Also, we are searching the long term signature of the climate change over the ocean, with sediments analysis collected at San Lazaro Basin, one of the few anoxic basins of the eastern Pacific Ocean. The program will be modeled the effects of climate variability on the structure of the pelagic ecosystem, selecting some planktonic key species. Also, using hydrographic and remote sensed information (SST, Color, and SSH), global models will be feed with local estimated phytoplankton photosynthetic parameters, to realize statistical analyses in order to define spatial and temporal variability of plankton biomass and primary production in this area.

  11. California earthquake history

    USGS Publications Warehouse

    Toppozada, T.; Branum, D.

    2004-01-01

    This paper presents an overview of the advancement in our knowledge of California's earthquake history since ??? 1800, and especially during the last 30 years. We first review the basic statewide research on earthquake occurrences that was published from 1928 through 2002, to show how the current catalogs and their levels of completeness have evolved with time. Then we review some of the significant new results in specific regions of California, and some of what remains to be done. Since 1850, 167 potentially damaging earthquakes of M ??? 6 or larger have been identified in California and its border regions, indicating an average rate of 1.1 such events per year. Table I lists the earthquakes of M ??? 6 to 6.5 that were also destructive since 1812 in California and its border regions, indicating an average rate of one such event every ??? 5 years. Many of these occurred before 1932 when epicenters and magnitudes started to be determined routinely using seismographs in California. The number of these early earthquakes is probably incomplete in sparsely populated remote parts of California before ??? 1870. For example, 6 of the 7 pre-1873 events in table I are of M ??? 7, suggesting that other earthquakes of M 6.5 to 6.9 occurred but were not properly identified, or were not destructive. The epicenters and magnitudes (M) of the pre-instrumental earthquakes were determined from isoseismal maps that were based on the Modified Mercalli Intensity of shaking (MMI) at the communities that reported feeling the earthquakes. The epicenters were estimated to be in the regions of most intense shaking, and values of M were estimated from the extent of the areas shaken at various MMI levels. MMI VII or greater shaking is the threshold of damage to weak buildings. Certain areas in the regions of Los Angeles, San Francisco, and Eureka were each shaken repeatedly at MMI VII or greater at least six times since ??? 1812, as depicted by Toppozada and Branum (2002, fig. 19).

  12. Measuring the contribution of benthic ecosystem engineering species to the ecosystem services of an estuary: A case study of burrowing shrimps in Yaquina Estuary, Oregon

    EPA Science Inventory

    Burrowing shrimps are regarded as ecosystem engineering species in many coastal ecosystems worldwide, including numerous estuaries of the west coast of North America (Baja California to British Columbia). In estuaries of the U.S. Pacific Northwest, two species of large burrowing...

  13. Measuring the contribution of benthic ecosystem engineering species to the ecosystem services of an estuary: A case study of burrowing shrimps in Yaquina Estuary, Oregon - April 2009

    EPA Science Inventory

    Burrowing shrimps are regarded as ecosystem engineering species in many coastal ecosystems worldwide, including numerous estuaries of the west coast of North America (Baja California to British Columbia). In estuaries of the U.S. Pacific Northwest, two species of large burrowing...

  14. Pathways for School Finance in California. Technical Appendix

    ERIC Educational Resources Information Center

    Rose, Heather; Sonstelie, Jon; Weston, Margaret

    2010-01-01

    This is a technical appendix for the report, "Pathways for School Finance in California" (ED515651). "Pathways for School Finance in California" simulates alternatives to California's current school finance system. This appendix provides more information about the revenues used in those simulations. The first section describes the districts and

  15. Pathways for School Finance in California. Technical Appendix

    ERIC Educational Resources Information Center

    Rose, Heather; Sonstelie, Jon; Weston, Margaret

    2010-01-01

    This is a technical appendix for the report, "Pathways for School Finance in California" (ED515651). "Pathways for School Finance in California" simulates alternatives to California's current school finance system. This appendix provides more information about the revenues used in those simulations. The first section describes the districts and…

  16. Postharvest dried apricot color degradation of three California apricot accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Californias dry apricot industry has provided high quality products for nearly a century, annually accounting for approximately 20% of available tonnage. The Patterson cultivar currently dominates California dry apricot sales, but the cultivar is not without faults. Newer cultivars and breeding a...

  17. A Conceptual Model for Floodplains in California's Central Valley and a Method for Identifying Representative Floods and Floodplains

    NASA Astrophysics Data System (ADS)

    Opperman, J. J.; Andrews, E.; Bozkurt, S.; Mount, J. F.; Moyle, P. B.

    2005-05-01

    Currently, significant resources are being invested in restoring native species and ecosystems in California's Central Valley and the Sacramento-San Joaquin Delta, led by the California Bay-Delta Authority (CBDA). Functioning floodplains provide numerous ecological benefits and floodplain restoration is emerging as important component of ecosystem restoration in this region. We developed a conceptual model that describes the linkages between physical (hydrologic and geomorphic) processes and ecosystem processes and responses on Central Valley floodplains. Central to this model is the role of hydrological variability in driving topographic diversity, ecosystem heterogeneity and ecological processes. We attempt to capture the extremely complex linkages between hydrological variability and ecosystem response through `representative floods.' A representative flood encompasses a set of hydrological variables, such as frequency and duration, which produce a characteristic suite of ecological benefits. For example, frequent, long duration flooding in the spring provides spawning and rearing habitat for native fish and promotes high phytoplankton productivity which can be exported to riverine and delta ecosystems. Less frequent, higher magnitude floods drive extensive geomorphic change upon the floodplain, creating topographic and, ultimately, ecological heterogeneity. Here we describe a process to define, map, and quantify the area inundated by a particular representative flood in the Sacramento River valley. To illustrate we identify the area inundated by a frequent (exceedance probability of 67%), long duration (> 7 days) flood that occurs in the spring. We used paired gauges to find the stage corresponding to the representative flood parameters and compared a plane connecting the gauges to topography in the intervening reach of river. We found that this type of representative flood inundates very little area in the Sacramento Valley; primary areas of inundation are within the Yolo Bypass, an engineered floodplain that flanks the Sacramento River. This analysis can be used to identify areas of floodplain that potentially provide the ecological benefits described in the conceptual model and can guide restoration programs seeking to increase these benefits.

  18. California Tsunami Policy Working Group

    NASA Astrophysics Data System (ADS)

    Real, C. R.; Johnson, L. A.

    2012-12-01

    California has established a Tsunami Policy Working Group of specialists from government and industry, from diverse fields including tsunami, seismic, and flood hazards, local and regional planning, structural engineering, natural hazard policy, and coastal engineering that have come together to facilitate the development of policy recommendations for tsunami hazard mitigation. The group is acting on findings from two major efforts: the USGS SAFRR (Science Application for Risk Reduction) Project - Tsunami Scenario, a comprehensive impact analysis of a large credible tsunami originating from a M 9.0 earthquake on the Aleutian Islands striking California's Coastline, and the State's Tsunami Hazard Mitigation and Education Program carried out by the California Emergency Management Agency and the California Geological Survey. The latter program is currently involved with several projects to help coastal communities reduce their tsunami risk, including two pilot projects (Crescent City in Del Norte County and the City of Huntington Beach in Orange County) where tsunami risk is among the highest in California, and a third pilot study focusing on the maritime community. The pilot projects are developing and testing probabilistic tsunami hazard products that will assist land-use and construction decisions for coastal development. The role of the policy group is to identify gaps and issues in current tsunami hazard mitigation, make recommendations that will help eliminate these impediments and to provide advice that will assist in the development and implementation of effective tsunami hazard products that will help coastal communities improve tsunami resiliency.

  19. A nitrogen mass balance for California

    NASA Astrophysics Data System (ADS)

    Liptzin, D.; Dahlgren, R. A.

    2010-12-01

    Human activities have greatly altered the global nitrogen cycle and these changes are apparent in water quality, air quality, ecosystem and human health. However, the relative magnitude of the sources of new reactive nitrogen and the fate of this nitrogen is not well established. Further, the biogeochemical aspects of the nitrogen cycle are often studied in isolation from the economic and social implications of all the transformations of nitrogen. The California Nitrogen Assessment is an interdisciplinary project whose aim is evaluating the current state of nitrogen science, practice, and policy in the state of California. Because of the close proximity of large population centers, highly productive and diverse agricultural lands and significant acreage of undeveloped land, California is a particularly interesting place for this analysis. One component of this assessment is developing a mass balance of nitrogen as well as identifying gaps in knowledge and quantifying uncertainty. The main inputs of new reactive nitrogen to the state are 1) synthetic nitrogen fertilizer, 2) biological nitrogen fixation, and 3) atmospheric nitrogen deposition. Permanent losses of nitrogen include 1) gaseous losses (N2, N2O, NHx, NOy), 2) riverine discharge, 3) wastewater discharge to the ocean, and 4) net groundwater recharge. A final term is the balance of food, feed, and fiber to support the human and animal populations. The largest input of new reactive nitrogen to California is nitrogen fertilizer, but both nitrogen fixation and atmospheric deposition contribute significantly. Non-fertilizer uses, such as the production of nylon and polyurethane, constitutes about 5% of the synthetic N synthesized production. The total nitrogen fixation in California is roughly equivalent on the 400,000 ha of alfalfa and the approximately 40 million ha of natural lands. In addition, even with highly productive agricultural lands, the large population of livestock, in particular dairy cows, requires a net influx of N in feed to the state. In terms of exports, the riverine N loads are smaller than many more mesic climates. Because many of the large population centers are on the coast, N discharged directly from wastewater treatment plants into the ocean is almost four times greater than the N discharge of all of the watersheds in the state combined. Gas losses are estimated through a combination of bottom up approaches using field data, emissions inventories, and numerical models. The largest uncertainties are in emissions of N2 and NH3. Calculated by difference, groundwater N loading represents the largest loss term in the mass balance. Contamination of groundwater with nitrates is a serious concern in many areas of the state. Given the long residence time of groundwater in many aquifers like the Central Valley the current and past N inputs to groundwater pose a hazard to drinking water supplies for decades to come. These calculations along with the analysis of management and policy tools will help elucidate the spatial location or activities that would be best to target to reduce the negative consequences of human alteration of the nitrogen cycle.

  20. California Coast Seafloor

    Photograph showing the seafloor off the California coast. This photograph supports the California Seafloor Mapping Program (CSMP), which was initiated in 2007 by the California Ocean Protection Council. Data collected during this project reveal the seafloor offshore of the California coast in unprec...

  1. Biodiversity and Resilience of Ecosystem Functions.

    PubMed

    Oliver, Tom H; Heard, Matthew S; Isaac, Nick J B; Roy, David B; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C David L; Petchey, Owen L; Proença, Vânia; Raffaelli, David; Suttle, K Blake; Mace, Georgina M; Martín-López, Berta; Woodcock, Ben A; Bullock, James M

    2015-11-01

    Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin. PMID:26437633

  2. California Endangered Species Resource Guide.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Los Angeles.

    This document was developed in response to California Senate Bill No. 885, "The Endangered Species Education Project," that called for a statewide program in which schools adopt a local endangered species, research past and current efforts to preserve the species' habitat, develop and implement an action plan to educate the community about the…

  3. Education for California's Changing Economy.

    ERIC Educational Resources Information Center

    Hubbard, Pat Hill

    There is an increased need for state and private sector support to expand the capacity of California's community colleges and universities to graduate the number of engineers and technicians necessary for the projected expansion of the state's high technology industries. Current estimates indicate that there will be a national shortfall of 22,000…

  4. The California School Psychologist, 2002.

    ERIC Educational Resources Information Center

    Jimerson, Shane R., Ed.

    2002-01-01

    This volume of the journal for the California Association of School Psychologists provides current information on a broad array of topics related to the work of school psychologists. Articles in this volume provide information addressing an assortment of important issues in the field, including: the translations and validation of an assessment for…

  5. The California School Psychologist, 2001.

    ERIC Educational Resources Information Center

    Jimerson, Shane R., Ed.; Wilson, Marilyn, Ed.

    2001-01-01

    This volume of the journal for the California Association of School Psychologists provides current information on a broad array of topics related to the work of school psychologists. The articles contribute important information on contemporary issues in the field, such as using a strength-based perspective when assessing students, student support…

  6. CALIFORNIA RCRA TSD FACILITY BO