Science.gov

Sample records for california current ecosystem

  1. Mesopelagic fish biomass in the southern California current ecosystem

    NASA Astrophysics Data System (ADS)

    Davison, Peter; Lara-Lopez, Ana; Anthony Koslow, J.

    2015-02-01

    Mesopelagic fishes are the most common vertebrates on Earth, forming an important link between lower trophic levels and higher predators, and also between surface production and the deep sea. The biomass of these fishes is a key parameter for ecological modeling of oceanic ecosystems, but it is poorly known. The two most common methods to estimate the biomass of these fishes, acoustic and trawl surveys, are both sensitive to the ability of fishes to avoid nets. We show that size-dependent changes in trawl capture efficiency can affect acoustic estimates of biomass estimates 5-fold. We used both acoustic and trawl-based methods (informed by morphological data and acoustic modeling of individual backscattering) to estimate the biomass of mesopelagic fishes of southern California to be 25-37 g m-2 of ocean surface, a comparable density to that of inshore epipelagic zooplanktivorous fishes. Our results indicate that mesopelagic fishes are likely to play a major role in regional food webs.

  2. Impact of assimilating physical oceanographic data on modeled ecosystem dynamics in the California Current System

    NASA Astrophysics Data System (ADS)

    Raghukumar, Kaustubha; Edwards, Christopher A.; Goebel, Nicole L.; Broquet, Gregoire; Veneziani, Milena; Moore, Andrew M.; Zehr, Jon P.

    2015-11-01

    A method to model ocean ecosystems using data-constrained physical circulation estimates is investigated. Physical oceanographic data is assimilated into a Regional Ocean Modeling System implementation of the California Current System using an incremental 4-Dimensional Variational method. The resulting state estimate drives a complex, self-assembling ocean ecosystem model for the year 2003, and results are evaluated against SeaWiFS surface and CalCOFI subsurface observations and with ecosystem model output driven by an unconstrained physical model. While physical data assimilation improves correlation with observations, this method also drives elevated levels of phytoplankton standing stock, leading to a large bias particularly in regions of low mean concentration. We identify two causes for this increase: biological rectification of fluctuating vertical nutrient transport due to gravity wave generation at assimilation cycle initialization and increased nutrient variance on density surfaces. We investigate one and propose other possible remedies for these deleterious side-effects of this data assimilation method.

  3. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current.

    PubMed

    Fleming, Alyson H; Clark, Casey T; Calambokidis, John; Barlow, Jay

    2016-03-01

    Large, migratory predators are often cited as sentinel species for ecosystem processes and climate-related changes, but their utility as indicators is dependent upon an understanding of their response to environmental variability. Documentation of the links between climate variability, ecosystem change and predator dynamics is absent for most top predators. Identifying species that may be useful indicators and elucidating these mechanistic links provides insight into current ecological dynamics and may inform predictions of future ecosystem responses to climatic change. We examine humpback whale response to environmental variability through stable isotope analysis of diet over a dynamic 20-year period (1993-2012) in the California Current System (CCS). Humpback whale diets captured two major shifts in oceanographic and ecological conditions in the CCS. Isotopic signatures reflect a diet dominated by krill during periods characterized by positive phases of the North Pacific Gyre Oscillation (NPGO), cool sea surface temperature (SST), strong upwelling and high krill biomass. In contrast, humpback whale diets are dominated by schooling fish when the NPGO is negative, SST is warmer, seasonal upwelling is delayed and anchovy and sardine populations display increased biomass and range expansion. These findings demonstrate that humpback whales trophically respond to ecosystem shifts, and as a result, their foraging behavior is a synoptic indicator of oceanographic and ecological conditions across the CCS. Multi-decadal examination of these sentinel species thus provides insight into biological consequences of interannual climate fluctuations, fundamental to advancing ecosystem predictions related to global climate change. PMID:26599719

  4. Introduction to CCE-LTER: Responses of the California Current Ecosystem to climate forcing

    NASA Astrophysics Data System (ADS)

    Goericke, R.; Ohman, M. D.

    2015-02-01

    The California Current Ecosystem Long Term Ecological Research (CCE-LTER) site has been in existence since 2004. One of its primary objectives is to understand the response of the southern California Current ecosystem to climate forcing. The CCE-LTER site cooperates with the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program and complements CalCOFI's work through more extensive observations, process studies, and a modeling program. This special issue is focused on the long-term observations made by the CCE-LTER and CalCOFI programs, describing and understanding long-term changes in the physical, chemical, and biotic environment in the region. The papers in this issue highlight the climatological conditions during recent years and employ modeling to diagnose the principal forcing of meridional currents and eddy transport, both of which affect biotic responses. Changes in source waters in the region, and altered flushing of the Santa Barbara Basin, are considered. Temporal variations in inherent optical properties and in higher trophic levels, including seabirds and marine mammals, are presented. Key methodological developments presented include the incorporation of subsurface phytoplankton and light distributions in order to improve remotely sensed measures of primary production, and the validation of multi-frequency acoustic estimates of mesopelagic fish biomass. Results also highlight significant spatial differences across the CCE-LTER region, including cross-shore trends in microbial assemblages, and glider-resolved frontal features and zones of mixing associated with abrupt topography. Alterations to the spatial structure of the pelagic ecosystem must also be considered when evaluating future climate-related changes.

  5. Screening California Current fishery management scenarios using the Atlantis end-to-end ecosystem model

    NASA Astrophysics Data System (ADS)

    Kaplan, Isaac C.; Horne, Peter J.; Levin, Phillip S.

    2012-09-01

    End-to-end marine ecosystem models link climate and oceanography to the food web and human activities. These models can be used as forecasting tools, to strategically evaluate management options and to support ecosystem-based management. Here we report the results of such forecasts in the California Current, using an Atlantis end-to-end model. We worked collaboratively with fishery managers at NOAA’s regional offices and staff at the National Marine Sanctuaries (NMS) to explore the impact of fishery policies on management objectives at different spatial scales, from single Marine Sanctuaries to the entire Northern California Current. In addition to examining Status Quo management, we explored the consequences of several gear switching and spatial management scenarios. Of the scenarios that involved large scale management changes, no single scenario maximized all performance metrics. Any policy choice would involve trade-offs between stakeholder groups and policy goals. For example, a coast-wide 25% gear shift from trawl to pot or longline appeared to be one possible compromise between an increase in spatial management (which sacrificed revenue) and scenarios such as the one consolidating bottom impacts to deeper areas (which did not perform substantially differently from Status Quo). Judged on a coast-wide scale, most of the scenarios that involved minor or local management changes (e.g. within Monterey Bay NMS only) yielded results similar to Status Quo. When impacts did occur in these cases, they often involved local interactions that were difficult to predict a priori based solely on fishing patterns. However, judged on the local scale, deviation from Status Quo did emerge, particularly for metrics related to stationary species or variables (i.e. habitat and local metrics of landed value or bycatch). We also found that isolated management actions within Monterey Bay NMS would cause local fishers to pay a cost for conservation, in terms of reductions in landed

  6. Shearwaters as ecosystem indicators: Towards fishery-independent metrics of fish abundance in the California Current

    NASA Astrophysics Data System (ADS)

    Lyday, Shannon E.; Ballance, Lisa T.; Field, David B.; David Hyrenbach, K.

    2015-06-01

    Shearwaters are ideal for monitoring ocean conditions in the California Current because these predators are abundant, conspicuous, and responsive to oceanographic variability. Herein we evaluated black-vented (Puffinus opisthomelas), Buller's (P. bulleri), flesh-footed (P. carneipes), pink-footed (P. creatopus), short-tailed (P. tenuirostris), and sooty (P. griseus) shearwaters as fishery-independent indicators of predatory or prey fish availability. We analyzed four years (1996, 2001, 2005, 2008) of monthly (August-November) National Oceanic and Atmospheric Administration seabird surveys, and United States Geological Survey Pacific Coast Fisheries Database catch, from the California coast to 200 nm offshore. An ordination of shearwater abundance and fish catch revealed that the shearwaters and 11 fish/squid species were significantly correlated with one or more of three principal components, which explained 86% of the variation and revealed distinct species assemblages. We evaluated multiple linear regression models for 19 fisheries using five shearwater metrics: density, aggregation, and behavior (traveling, stationary, feeding), three oceanographic indices, and latitude. Eight of these models had a shearwater metric as the primary predictor. In particular, feeding black-vented shearwater abundance explained 75% of dolphinfish (Coryphaena hippurus) longline catch. This research illustrates the utility of shearwaters as ecosystem indicators, with direct application for predicting fishery catch of commercial importance.

  7. Declining Abundance of Beaked Whales (Family Ziphiidae) in the California Current Large Marine Ecosystem

    PubMed Central

    Moore, Jeffrey E.; Barlow, Jay P.

    2013-01-01

    Beaked whales are among the most diverse yet least understood groups of marine mammals. A diverse set of mostly anthropogenic threats necessitates improvement in our ability to assess population status for this cryptic group. The Southwest Fisheries Science Center (NOAA) conducted six ship line-transect cetacean abundance surveys in the California Current off the contiguous western United States between 1991 and 2008. We used a Bayesian hidden-process modeling approach to estimate abundance and population trends of beaked whales using sightings data from these surveys. We also compiled records of beaked whale stranding events (3 genera, at least 8 species) on adjacent beaches from 1900 to 2012, to help assess population status of beaked whales in the northern part of the California Current. Bayesian posterior summaries for trend parameters provide strong evidence of declining beaked whale abundance in the study area. The probability of negative trend for Cuvier's beaked whale (Ziphius cavirostris) during 1991–2008 was 0.84, with 1991 and 2008 estimates of 10771 (CV = 0.51) and ≈7550 (CV = 0.55), respectively. The probability of decline for Mesoplodon spp. (pooled across species) was 0.96, with 1991 and 2008 estimates of 2206 (CV = 0.46) and 811 (CV = 0.65). The mean posterior estimates for average rate of decline were 2.9% and 7.0% per year. There was no evidence of abundance trend for Baird's beaked whale (Berardius bairdii), for which annual abundance estimates in the survey area ranged from ≈900 to 1300 (CV≈1.3). Stranding data were consistent with the survey results. Causes of apparent declines are unknown. Direct impacts of fisheries (bycatch) can be ruled out, but impacts of anthropogenic sound (e.g., naval active sonar) and ecosystem change are plausible hypotheses that merit investigation. PMID:23341907

  8. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem

    PubMed Central

    Asch, Rebecca G.

    2015-01-01

    Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends. PMID:26159416

  9. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.

    PubMed

    Asch, Rebecca G

    2015-07-28

    Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends. PMID:26159416

  10. Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew G.; Landry, Michael R.; Selph, Karen E.; Wokuluk, John J.

    2015-02-01

    As part of the California Current Ecosystem Long Term Ecological Research (CCE-LTER) Program, samples for epifluorescence microscopy and flow cytometry (FCM) were collected at ten 'cardinal' stations on the California Cooperative Oceanic Fisheries Investigations (CalCOFI) grid during 25 quarterly cruises from 2004 to 2010 to investigate the biomass, composition and size-structure of microbial communities within the southern CCE. Based on our results, we divided the region into offshore, and inshore northern and southern zones. Mixed-layer phytoplankton communities in the offshore had lower biomass (16±2 μg C L-1; all errors represent the 95% confidence interval), smaller size-class cells and biomass was more stable over seasonal cycles. Offshore phytoplankton biomass peaked during the winter months. Mixed-layer phytoplankton communities in the northern and southern inshore zones had higher biomass (78±22 and 32±9 μg C L-1, respectively), larger size-class cells and stronger seasonal biomass patterns. Inshore communities were often dominated by micro-size (20-200 μm) diatoms; however, autotrophic dinoflagellates dominated during late 2005 to early 2006, corresponding to a year of delayed upwelling in the northern CCE. Biomass trends in mid and deep euphotic zone samples were similar to those seen in the mixed-layer, but with declining biomass with depth, especially for larger size classes in the inshore regions. Mixed-layer ratios of autotrophic carbon to chlorophyll a (AC:Chl a) had a mean value of 51.5±5.3. Variability of nitracline depth, bin-averaged AC:Chl a in the mixed-layer ranged from 40 to 80 and from 22 to 35 for the deep euphotic zone, both with significant positive relationships to nitracline depth. Total living microbial carbon, including auto- and heterotrophs, consistently comprised about half of particulate organic carbon (POC).

  11. Species associations and redundancy in relation to biological hotspots within the northern California Current ecosystem

    NASA Astrophysics Data System (ADS)

    Reese, Douglas C.; Brodeur, Richard D.

    2015-06-01

    The dynamic nature of biological hotspots, while well recognized, is not well understood. We hypothesize that the persistence of hotspots in the northern California Current System (CCS), despite seasonal and annual changes in the nekton community species composition, is related to associations among species and their functional redundancy. To address this hypothesis, sampling was conducted during June and August of 2000 and 2002 within two hotspots occurring between Newport, Oregon and Crescent City, California in the coastal CCS. Associations were examined to identify potentially complementary and redundant species. The strongest negative associations were between jellyfish and fish species, with strong positive associations evident among several fish species. Dominant species varied seasonally and annually, although evidence indicated replacement of dominant species by other similar species with respect to functional group and preferred habitat. This finding suggests that the persistence of these biological hotspots is related to species redundancy and is an important attribute contributing to stability within this highly variable system.

  12. Do inverse ecosystem models accurately reconstruct plankton trophic flows? Comparing two solution methods using field data from the California Current

    NASA Astrophysics Data System (ADS)

    Stukel, Michael R.; Landry, Michael R.; Ohman, Mark D.; Goericke, Ralf; Samo, Ty; Benitez-Nelson, Claudia R.

    2012-03-01

    Despite the increasing use of linear inverse modeling techniques to elucidate fluxes in undersampled marine ecosystems, the accuracy with which they estimate food web flows has not been resolved. New Markov Chain Monte Carlo (MCMC) solution methods have also called into question the biases of the commonly used L2 minimum norm (L 2MN) solution technique. Here, we test the abilities of MCMC and L 2MN methods to recover field-measured ecosystem rates that are sequentially excluded from the model input. For data, we use experimental measurements from process cruises of the California Current Ecosystem (CCE-LTER) Program that include rate estimates of phytoplankton and bacterial production, micro- and mesozooplankton grazing, and carbon export from eight study sites varying from rich coastal upwelling to offshore oligotrophic conditions. Both the MCMC and L 2MN methods predicted well-constrained rates of protozoan and mesozooplankton grazing with reasonable accuracy, but the MCMC method overestimated primary production. The MCMC method more accurately predicted the poorly constrained rate of vertical carbon export than the L 2MN method, which consistently overestimated export. Results involving DOC and bacterial production were equivocal. Overall, when primary production is provided as model input, the MCMC method gives a robust depiction of ecosystem processes. Uncertainty in inverse ecosystem models is large and arises primarily from solution under-determinacy. We thus suggest that experimental programs focusing on food web fluxes expand the range of experimental measurements to include the nature and fate of detrital pools, which play large roles in the model.

  13. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem

    PubMed Central

    Bednaršek, N.; Feely, R. A.; Reum, J. C. P.; Peterson, B.; Menkel, J.; Alin, S. R.; Hales, B.

    2014-01-01

    Few studies to date have demonstrated widespread biological impacts of ocean acidification (OA) under conditions currently found in the natural environment. From a combined survey of physical and chemical water properties and biological sampling along the Washington–Oregon–California coast in August 2011, we show that large portions of the shelf waters are corrosive to pteropods in the natural environment. We show a strong positive correlation between the proportion of pteropod individuals with severe shell dissolution damage and the percentage of undersaturated water in the top 100 m with respect to aragonite. We found 53% of onshore individuals and 24% of offshore individuals on average to have severe dissolution damage. Relative to pre-industrial CO2 concentrations, the extent of undersaturated waters in the top 100 m of the water column has increased over sixfold along the California Current Ecosystem (CCE). We estimate that the incidence of severe pteropod shell dissolution owing to anthropogenic OA has doubled in near shore habitats since pre-industrial conditions across this region and is on track to triple by 2050. These results demonstrate that habitat suitability for pteropods in the coastal CCE is declining. The observed impacts represent a baseline for future observations towards understanding broader scale OA effects. PMID:24789895

  14. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System

    PubMed Central

    Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.

    2016-01-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260

  15. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System

    NASA Astrophysics Data System (ADS)

    Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.

    2016-06-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change.

  16. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System.

    PubMed

    Jacox, Michael G; Hazen, Elliott L; Bograd, Steven J

    2016-01-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998-1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260

  17. Estimates of the Direct Effect of Seawater pH on the Survival Rate of Species Groups in the California Current Ecosystem.

    PubMed

    Busch, D Shallin; McElhany, Paul

    2016-01-01

    Ocean acidification (OA) has the potential to restructure ecosystems due to variation in species sensitivity to the projected changes in ocean carbon chemistry. Ecological models can be forced with scenarios of OA to help scientists, managers, and other stakeholders understand how ecosystems might change. We present a novel methodology for developing estimates of species sensitivity to OA that are regionally specific, and applied the method to the California Current ecosystem. To do so, we built a database of all published literature on the sensitivity of temperate species to decreased pH. This database contains 393 papers on 285 species and 89 multi-species groups from temperate waters around the world. Research on urchins and oysters and on adult life stages dominates the literature. Almost a third of the temperate species studied to date occur in the California Current. However, most laboratory experiments use control pH conditions that are too high to represent average current chemistry conditions in the portion of the California Current water column where the majority of the species live. We developed estimates of sensitivity to OA for functional groups in the ecosystem, which can represent single species or taxonomically diverse groups of hundreds of species. We based these estimates on the amount of available evidence derived from published studies on species sensitivity, how well this evidence could inform species sensitivity in the California Current ecosystem, and the agreement of the available evidence for a species/species group. This approach is similar to that taken by the Intergovernmental Panel on Climate Change to characterize certainty when summarizing scientific findings. Most functional groups (26 of 34) responded negatively to OA conditions, but when uncertainty in sensitivity was considered, only 11 groups had relationships that were consistently negative. Thus, incorporating certainty about the sensitivity of species and functional groups to

  18. Estimates of the Direct Effect of Seawater pH on the Survival Rate of Species Groups in the California Current Ecosystem

    PubMed Central

    Busch, D. Shallin; McElhany, Paul

    2016-01-01

    Ocean acidification (OA) has the potential to restructure ecosystems due to variation in species sensitivity to the projected changes in ocean carbon chemistry. Ecological models can be forced with scenarios of OA to help scientists, managers, and other stakeholders understand how ecosystems might change. We present a novel methodology for developing estimates of species sensitivity to OA that are regionally specific, and applied the method to the California Current ecosystem. To do so, we built a database of all published literature on the sensitivity of temperate species to decreased pH. This database contains 393 papers on 285 species and 89 multi-species groups from temperate waters around the world. Research on urchins and oysters and on adult life stages dominates the literature. Almost a third of the temperate species studied to date occur in the California Current. However, most laboratory experiments use control pH conditions that are too high to represent average current chemistry conditions in the portion of the California Current water column where the majority of the species live. We developed estimates of sensitivity to OA for functional groups in the ecosystem, which can represent single species or taxonomically diverse groups of hundreds of species. We based these estimates on the amount of available evidence derived from published studies on species sensitivity, how well this evidence could inform species sensitivity in the California Current ecosystem, and the agreement of the available evidence for a species/species group. This approach is similar to that taken by the Intergovernmental Panel on Climate Change to characterize certainty when summarizing scientific findings. Most functional groups (26 of 34) responded negatively to OA conditions, but when uncertainty in sensitivity was considered, only 11 groups had relationships that were consistently negative. Thus, incorporating certainty about the sensitivity of species and functional groups to

  19. Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem.

    PubMed

    Pespeni, M H; Chan, F; Menge, B A; Palumbi, S R

    2013-11-01

    results illustrate that purple sea urchins may be adapted to local pH and suggest that this species may possess the genetic capacity for rapid evolution in response to acidification. This adaptive capacity likely comes from standing genetic variation maintained in nature by balancing selection across the spatial and temporal environmental mosaic that characterizes the California Current Ecosystem. PMID:23980118

  20. El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems

    NASA Astrophysics Data System (ADS)

    Arntz, W. E.; Gallardo, V. A.; Gutiérrez, D.; Isla, E.; Levin, L. A.; Mendo, J.; Neira, C.; Rowe, G. T.; Tarazona, J.; Wolff, M.

    2006-03-01

    To a certain degree, Eastern Boundary Current (EBC) ecosystems are similar: Cold bottom water from moderate depths, rich in nutrients, is transported to the euphotic zone by a combination of trade winds, Coriolis force and Ekman transport. The resultant high primary production fuels a rich secondary production in the upper pelagic and nearshore zones, but where O2 exchange is restricted, it creates oxygen minimum zones (OMZs) at shelf and upper slope (Humboldt and Benguela Current) or slope depths (California Current). These hypoxic zones host a specifically adapted, small macro- and meiofauna together with giant sulphur bacteria that use nitrate to oxydise H2S. In all EBC, small polychaetes, large nematodes and other opportunistic benthic species have adapted to the hypoxic conditions and co-exist with sulphur bacteria, which seem to be particularly dominant off Peru and Chile. However, a massive reduction of macrobenthos occurs in the core of the OMZ. In the Humboldt Current area the OMZ ranges between <100 and about 600 m, with decreasing thickness in a poleward direction. The OMZ merges into better oxygenated zones towards the deep sea, where large cold-water mega- and macrofauna occupy a dominant role as in the nearshore strip. The Benguela Current OMZ has a similar upper limit but remains shallower. It also hosts giant sulphur bacteria but little is known about the benthic fauna. However, sulphur eruptions and intense hypoxia might preclude the coexistence of significant mega- und macrobenthos. Conversely, off North America the upper limit of the OMZ is considerably deeper (e.g., 500-600 m off California and Oregon), and the lower boundary may exceed 1000m. The properties described are valid for very cold and cold (La Niña and "normal") ENSO conditions with effective upwelling of nutrient-rich bottom water. During warm (El Niño) episodes, warm water masses of low oxygen concentration from oceanic and equatorial regions enter the upwelling zones, bringing a

  1. Delta Revival: Restoring a California Ecosystem

    USGS Publications Warehouse

    U.S. Geological Survey; California Bay Delta Authority

    2003-01-01

    'Delta Revival: Restoring a California Ecosystem' shows scientists from many disciplines working together to guide the unprecendented restoration of the Sacramento- San Joaquin Delta east of San Francisco Bay.

  2. Mapping Groundwater Dependent Ecosystems in California

    PubMed Central

    Howard, Jeanette; Merrifield, Matt

    2010-01-01

    Background Most groundwater conservation and management efforts focus on protecting groundwater for drinking water and for other human uses with little understanding or focus on the ecosystems that depend on groundwater. However, groundwater plays an integral role in sustaining certain types of aquatic, terrestrial and coastal ecosystems, and their associated landscapes. Our aim was to illuminate the connection between groundwater and surface ecosystems by identifying and mapping the distribution of groundwater dependent ecosystems (GDEs) in California. Methodology/Principal Findings To locate where groundwater flow sustains ecosystems we identified and mapped groundwater dependent ecosystems using a GIS. We developed an index of groundwater dependency by analyzing geospatial data for three ecosystem types that depend on groundwater: (1) springs and seeps; (2) wetlands and associated vegetation alliances; and (3) stream discharge from groundwater sources (baseflow index). Each variable was summarized at the scale of a small watershed (Hydrologic Unit Code-12; mean size = 9,570 ha; n = 4,621), and then stratified and summarized to 10 regions of relative homogeneity in terms of hydrologic, ecologic and climatic conditions. We found that groundwater dependent ecosystems are widely, although unevenly, distributed across California. Although different types of GDEs are clustered more densely in certain areas of the state, watersheds with multiple types of GDEs are found in both humid (e.g. coastal) and more arid regions. Springs are most densely concentrated in the North Coast and North Lahontan, whereas groundwater dependent wetlands and associated vegetation alliances are concentrated in the North and South Lahontan and Sacramento River hydrologic regions. The percentage of land area where stream discharge is most dependent on groundwater is found in the North Coast, Sacramento River and Tulare Lake regions. GDE clusters are located at the highest percentage

  3. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Yack, Tina M.

    The objectives of this research were to test available automated detection methods for passive acoustic monitoring and integrate the best available method into standard marine mammal monitoring protocols for ship based surveys. The goal of the first chapter was to evaluate the performance and utility of PAMGUARD 1.0 Core software for use in automated detection of marine mammal acoustic signals during towed array surveys. Three different detector configurations of PAMGUARD were compared. These automated detection algorithms were evaluated by comparing them to the results of manual detections made by an experienced bio-acoustician (author TMY). This study provides the first detailed comparisons of PAMGUARD automated detection algorithms to manual detection methods. The results of these comparisons clearly illustrate the utility of automated detection methods for odontocete species. Results of this work showed that the majority of whistles and click events can be reliably detected using PAMGUARD software. The second chapter moves beyond automated detection to examine and test automated classification algorithms for beaked whale species. Beaked whales are notoriously elusive and difficult to study, especially using visual survey methods. The purpose of the second chapter was to test, validate, and compare algorithms for detection of beaked whales in acoustic line-transect survey data. Using data collected at sea from the PAMGUARD classifier developed in Chapter 2 it was possible to measure the clicks from visually verified Baird's beaked whale encounters and use this data to develop classifiers that could discriminate Baird's beaked whales from other beaked whale species in future work. Echolocation clicks from Baird's beaked whales, Berardius bairdii, were recorded during combined visual and acoustic shipboard surveys of cetacean populations in the California Current Ecosystem (CCE) and with autonomous, long-term recorders at four different sites in the Southern

  4. California current system - Predators and the preyscape

    NASA Astrophysics Data System (ADS)

    Ainley, David G.; Adams, Peter B.; Jahncke, Jaime

    2015-06-01

    The preyscape of the California Current System (CCS), one of the most productive marine areas on Earth (Glantz and Thompson, 1981), is highly variable, as evidenced by the papers in this issue, and as such presents a challenge to Ecosystem-based fishery management (EBFM), which attempts to integrate ecosystem considerations as part of fishery management and conservation decisions. Approaches to EBFM for the waters off Washington, Oregon, and California, the CCS, have been initiated (PFMC, 2007, 2013), and are continually being developed. To inform this process, a workshop was held in September 2013 to: i) gather together the existing information on forage fish and predator dynamics in the CCS; ii) consider temporal (seasonal, annual, decadal) and spatial availability of prey complexes and why these patterns of availability occur and change; iii) summarize and present that information for discussion to a large range of experts in oceanography, fish and fisheries management, seabirds, marine mammals, and ecosystem management; and, iv) synthesize this information to be useable by fishery agencies. The papers in this special Journal of Marine Systems issue address these four points. While the full results and recommendations can be found here - "http://www.pointblue.org/uploads/assets/calcurrent/REPORT_Forage_Fish_Workshop_FINAL.pdf"

  5. Predictability of the California Current System

    NASA Technical Reports Server (NTRS)

    Miller, Arthur J.; Chereskin, T.; Cornuelle, B. D.; Niiler, P. P.; Moisan, J. R.; Lindstrom, Eric (Technical Monitor)

    2001-01-01

    The physical and biological oceanography of the Southern California Bight (SCB), a highly productive subregion of the California Current System (CCS) that extends from Point Conception, California, south to Ensenada, Mexico, continues to be extensively studied. For example, the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has sampled this region for over 50 years, providing an unparalleled time series of physical and biological data. However, our understanding of what physical processes control the large-scale and mesoscale variations in these properties is incomplete. In particular, the non-synoptic and relatively coarse spatial sampling (70km) of the hydrographic grid does not completely resolve the mesoscale eddy field (Figure 1a). Moreover, these unresolved physical variations exert a dominant influence on the evolution of the ecosystem. In recent years, additional datasets that partially sample the SCB have become available. Acoustic Doppler Current Profiler (ADCP) measurements, which now sample upper-ocean velocity between stations, and sea level observations along TOPEX tracks give a more complete picture of the mesoscale variability. However, both TOPEX and ADCP are well-sampled only along the cruise or orbit tracks and coarsely sampled in time and between tracks. Surface Lagrangian drifters also sample the region, although irregularly in time and space. SeaWiFS provides estimates of upper-ocean chlorophyll-a (chl-alpha), usually giving nearly complete coverage for week-long intervals, depending on cloud coverage. Historical ocean color data from the Coastal Zone Color Scanner (CZCS) has been used extensively to determine phytoplankton patterns and variability, characterize the primary production across the SCB coastal fronts, and describe the seasonal and interannual variability in pigment concentrations. As in CalCOFI, these studies described much of the observed structures and their variability over relatively large space and

  6. Taxonomic Distinctness of Demersal Fishes of the California Current: Moving Beyond Simple Measures of Diversity for Marine Ecosystem-Based Management

    PubMed Central

    Tolimieri, Nick; Anderson, Marti J.

    2010-01-01

    Background Large-scale patterns or trends in species diversity have long interested ecologists. The classic pattern is for diversity (e.g., species richness) to decrease with increasing latitude. Taxonomic distinctness is a diversity measure based on the relatedness of the species within a sample. Here we examined patterns of taxonomic distinctness in relation to latitude (ca. 32–48 °N) and depth (ca. 50–1220 m) for demersal fishes on the continental shelf and slope of the US Pacific coast. Methodology/Principal Findings Both average taxonomic distinctness (AvTD) and variation in taxonomic distinctness (VarTD) changed with latitude and depth. AvTD was highest at approximately 500 m and lowest at around 200 m bottom depth. Latitudinal trends in AvTD were somewhat weaker and were depth-specific. AvTD increased with latitude on the shelf (50–150 m) but tended to decrease with latitude at deeper depths. Variation in taxonomic distinctness (VarTD) was highest around 300 m. As with AvTD, latitudinal trends in VarTD were depth-specific. On the shelf (50–150 m), VarTD increased with latitude, while in deeper areas the patterns were more complex. Closer inspection of the data showed that the number and distribution of species within the class Chondrichthyes were the primary drivers of the overall patterns seen in AvTD and VarTD, while the relatedness and distribution of species in the order Scorpaeniformes appeared to cause the relatively low observed values of AvTD at around 200 m. Conclusions/Significance These trends contrast to some extent the patterns seen in earlier studies for species richness and evenness in demersal fishes along this coast and add to our understanding of diversity of the demersal fishes of the California Current. PMID:20498727

  7. Through the stomach of a predator: Regional patterns of forage in the diet of albacore tuna in the California Current System and metrics needed for ecosystem-based management

    NASA Astrophysics Data System (ADS)

    Glaser, Sarah M.; Waechter, Katrina E.; Bransome, Nicole C.

    2015-06-01

    Foraging habits of predators can reveal patterns in prey ecology and guide ecosystem-based management by informing species interactions. This study describes the diet habits of albacore tuna in three regions (north, central, south) of the California Current System (CCS) and estimates the total predation mortality imposed on twenty prey taxa. The northern CCS was defined by predation on decapods, euphausiids, anchovy and hake. The central CCS was defined by predation on squid, hake and Pacific saury. The southern CCS was defined by predation on anchovy. We estimate North Pacific albacore consumed each year, on average, 54,000 mt of decapods and euphausiids, 43,000 mt of cephalopods, 84,000 mt of juvenile hake, 1600 mt of myctophids, 21,000 mt of juvenile sardine, 10,000 mt of juvenile rockfishes, almost 43,000 mt of Pacific saury, and over 107,000 mt of juvenile anchovy. While variability in predation certainly exists, this and prior studies show that diet habits of albacore are fairly stable through time. The northern CCS appears to be a more significant source of energy for albacore. When designing ecosystem-based approaches to the management of CCS-based fisheries, we recommend that the forage contribution of saury, hake and anchovy to the albacore population be considered.

  8. Water use efficiency variability and controls across ten California ecosystems

    NASA Astrophysics Data System (ADS)

    Kelly, A. E.; Goulden, M.

    2014-12-01

    Intensification of the hydrologic cycle is predicted with future climate change, and the consequences for ecosystem carbon cycling is a critical question in predicting ecohydrological feedbacks. We analyzed eddy covariance measurements to understand how interannual and inter-site variability in precipitation affects gross primary production, evapotranspiration, and ecosystem water use efficiency (WUE) across diverse ecosystems. Measurements came from ten California sites and spanned a mean annual temperature range of 5 to 23°C and mean annual precipitation range of 100 to 1400 mm, from Mojave Desert scrub to subalpine lodgepole forest. All ten ecosystems exhibited similar patterns in water use efficiency: ecosystem WUE declined sharply as annual precipitation dropped below 500 mm, and WUE plateaued with annual precipitation greater than 500 mm. Surface evaporation and flexible plant physiology contributed to sensitive WUE with low annual precipitation, while limited surface evaporation and "ecosystem inertia" diminished sensitivity of WUE with high annual precipitation.

  9. Where California Meets Alaska: Ecosystem Response in a Transition Zone

    NASA Astrophysics Data System (ADS)

    Crawford, W.; Pena, A.; Irvine, J. R.

    2008-12-01

    Ecosystems along the west coast of Vancouver Island share features with those of the northern California Current and also with the southern part of the Alaska Coastal Current, and provide the richest fisheries of these two regimes. Studies of the past few decades reveal surprisingly consistent biological responses to changes in ocean temperatures, partly due to the extreme warm and cool years since 1998. Zooplankton populations, migrating salmon, and fledgling seabirds are rapidly affected by changing ocean conditions, whereas the biomass of resident fish stocks responds over several years or even decades. The specific mechanisms responsible for these temperature-related changes vary from species to species, and many are unknown. We will present examples of how influx of predators, timing of food availability, and wind and coastal weather contribute to the response of coastal populations. Results are based on statistical analyses of many decades of observations and also on biophysical models. The responses to past temperature variability suggest which species will eventually thrive with climate warming and the speed with which these changes might occur. One unresolved factor is the ability of cold water species to survive and rebound after warm years, and of warm-water species to recover after cold years. These responses will be increasingly important, because the IPCC models suggest increasing local ocean temperature variability during this century.

  10. Ecosystem restoration on the California Channel Islands

    USGS Publications Warehouse

    Halvorson, W.L.

    2004-01-01

    Restoration of natural habitat has become increasingly important over the last three decades in the United States, first as mitigation for development (especially in wetlands), and more recently in natural areas. This latter restoration has come about as land managing agencies have seen the need to reverse the impact of past land uses and agencies like the National Park Service have taken on the responsibility for less-than-pristine lands. Restorations have typically been carried out with little prior study and with no follow-up monitoring. On the Channel Islands, the need for restoration is great, but the desire is to base this restoration on sound ecological understanding. By conducting surveys, implementing long-term research and monitoring, and by conducting population and community dynamics research, the necessary data is obtained to arrive at such an understanding. Once management actions have been taken to effect restoration, monitoring is used to determine the success of those actions. The intention is to gain enough of an understanding of the islands' ecosystems that we can manage to restore, not just populations of native plants and animals, but also the processes of a naturally functioning ecosystem. ?? International Scientific Publications, New Delhi.

  11. Maintaining ecosystem services through continued livestock production on California rangelands

    NASA Astrophysics Data System (ADS)

    Barry, S.; Becchetti, T.

    2015-12-01

    Nearly 40% of California is rangeland comprising the largest land type in California and providing forage for livestock, primarily beef cattle. In addition to forage, rangelands provide a host of ecosystem systems services, including habitat for common and endangered species, fire fuels management, pollination services, clean water, viewsheds, and carbon sequestration. Published research has documented that most of these ecosystem services are positively impacted by managed livestock grazing and rancher stewardship. Ranchers typically do not receive any monetary reimbursement for their stewardship in providing these ecosystem services to the public. Markets have been difficult to establish with limited ability to adequately monitor and measure services provided. At the same time, rangelands have been experiencing rapid conversion to urbanization and more profitable and intensive forms of agriculture such as almond and walnut orchards. To prevent further conversion of rangelands and the loss of the services they provide, there needs to be a mechanism to identify and compensate landowners for the value of all products and services being received from rangelands. This paper considers two methods (opportunity cost and avoided cost) to determine the value of Payment for Ecosystem Services (PES) for rangelands. PES can raise the value of rangelands, making them more competitive financially. Real estate values and University of California Cooperative Extension Cost Studies, were used to demonstrate the difference in value (lost opportunity cost) between the primary products of rangelands (livestock production) and the products of the converted rangelands (almond and walnut orchards). Avoided costs for vegetation management and habitat creation and maintenance were used to establish the value of managed grazing. If conversion is to be slowed or stopped and managed grazing promoted to protect the ecosystem services rangelands provide, this value could be compensated through

  12. Future scenarios of impacts to ecosystem services on California rangelands

    USGS Publications Warehouse

    Byrd, Kristin; Alvarez, Pelayo; Flint, Lorraine; Flint, Alan

    2014-01-01

    The 18 million acres of rangelands in the Central Valley of California provide multiple benefits or “ecosystem services” to people—including wildlife habitat, water supply, open space, recreation, and cultural resources. Most of this land is privately owned and managed for livestock production. These rangelands are vulnerable to land-use conversion and climate change. To help resource managers assess the impacts of land-use change and climate change, U.S. Geological Survey scientists and their cooperators developed scenarios to quantify and map changes to three main rangeland ecosystem services—wildlife habitat, water supply, and carbon sequestration. Project results will help prioritize strategies to conserve these rangelands and the ecosystem services that they provide.

  13. Interannual Variability in FPAR and NPP across California's Ecosystems

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Goulden, M. L.; Randerson, J. T.

    2005-12-01

    Quantifying the response of ecosystems to climate is particularly important for understanding California's regional carbon budget because of large year-to-year changes in precipitation and because of large changes in temperature and precipitation that are predicted to occur across the western U.S. during the 21st century. Here, we examined how net primary production (NPP) varies with precipitation and how this ecosystem process contributes to the changes in carbon storage on interannual timescales. We used FPAR derived from NOAA AVHRR satellite observations during 1982-2003 and from MODIS observations during 2000-2005 as inputs to the CASA biogeochemical model. We found that mean annual integrals of NDVI, FPAR, and NPP were closely linked with mean annual precipitation levels across the state. The sensitivity of NPP to interannual variability in precipitation depended on ecosystem type. Desert shrub and grassland ecosystems responded the most to interannual changes in precipitation, whereas forests showed little or no response. In semiarid ecosystems, the site-level temporal sensitivity of NPP to variations in precipitation was found to be lower than the sensitivity of NPP to precipitation derived from a spatial model, suggesting that other constraints such as plant structure or nitrogen availability may limit NPP responses to short-term precipitation transients.

  14. Climate-ecosystem change off southern California: Time-dependent seabird predator-prey numerical responses

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Thompson, Sarah Ann; Santora, Jarrod A.; Koslow, J. Anthony; Goericke, Ralf; Ohman, Mark D.

    2015-02-01

    Climate change may increase both stratification and upwelling in marine ecosystems, but these processes may affect productivity in opposing or complementary ways. For the Southern California region of the California Current Ecosystem (CCE), we hypothesized that changes in stratification and upwelling have affected marine bird populations indirectly through changes in prey availability. To test this hypothesis, we derived trends and associations between stratification and upwelling, the relative abundance of potential prey including krill and forage fish, and seabirds based on the long-term, multi-disciplinary CalCOFI/CCE-LTER program. Over the period 1987 through 2011, spring and summer seabird density (all species combined) declined by ~2% per year, mostly in the northern sector of the study region. Krill showed variable trends with two species increasing and one deceasing, resulting in community reorganization. Nearshore forage fish, dominated by northern anchovy (Engraulis mordax) as well as offshore mesopelagic species, show declines in relative abundance over this period. The unidirectional decline in springtime seabird density is largely explained by declining nearshore fish abundance in the previous season (winter). Interannual variability in seabird density, especially in the 2000s, is explained by variability in krill abundance. Changes in the numerical responses of seabirds to prey abundance correspond to a putative ecosystem shift in 1998-1999 and support aspects of optimal foraging (diet) theory. Predator-prey interactions and numerical responses clearly explain aspects of the upper trophic level patterns of change in the pelagic ecosystem off southern California.

  15. Observing and modeling the California Current System

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; McWilliams, J. C.; Schneider, N.; Allen, J. S.; Barth, J. A.; Beardsley, R. C.; Chavez, F. P.; Chereskin, T. K.; Edwards, C. A.; Haney, R. L.; Kelly, K. A.; Kindle, J. C.; Ly, L. N.; Moisan, J. R.; Noble, M. A.; Niiler, P. P.; Oey, L. Y.; Schwing, F. B.; Shearman, R. K.; Swenson, M. S.

    The California Current System (CCS) is one of the best sampled ocean regions, yet it remains obscurely understood and inadequately sampled.Technological advances in ocean modeling and observational techniques can now change this situation.Enhanced understanding of the features and dynamics of the CCS can aid fisheries and wildlife management, prediction and abatement of pollution and toxic phytoplankton blooms, atmospheric and climate change forecasts, and shipping and military operations.

  16. Whither the Rangeland?: Protection and Conversion in California's Rangeland Ecosystems

    PubMed Central

    Cameron, D. Richard; Marty, Jaymee; Holland, Robert F.

    2014-01-01

    Land use change in rangeland ecosystems is pervasive throughout the western United States with widespread ecological, social and economic implications. In California, rangeland habitats have high biodiversity value, provide significant habitat connectivity and form the foundation for a number of ecosystem services. To comprehensively assess the conservation status of these habitats, we analyzed the extent and drivers of habitat loss and the degree of protection against future loss across a 13.5 M ha study area in California. We analyzed rangeland conversion between 1984 and 2008 using time series GIS data and classified resulting land uses with aerial imagery. In total, over 195,000 hectares of rangeland habitats were converted during this period. The majority of conversions were to residential and associated commercial development (49% of the area converted), but agricultural intensification was surprisingly extensive and diverse (40% across six categories). Voluntary enrollment in an agricultural tax incentive program provided widespread protection from residential and commercial conversions across 37% of the remaining rangeland habitat extent (7.5 M ha), though this program did not protect rangeland from conversion to more intensive agricultural uses. Additionally, 24% of the remaining rangeland was protected by private conservation organizations or public agencies through land or easement ownership while 38% had no protection status at all. By developing a spatial method to analyze the drivers of loss and patterns of protection, this study demonstrates a novel approach to prioritize conservation strategies and implementation locations to avert habitat conversion. We propose that this approach can be used in other ecosystem types, and can serve as a regional conservation baseline assessment to focus strategies to effect widespread, cost-effective conservation solutions. PMID:25141171

  17. Avian Conservation Practices Strengthen Ecosystem Services in California Vineyards

    PubMed Central

    Jedlicka, Julie A.; Greenberg, Russell; Letourneau, Deborah K.

    2011-01-01

    Insectivorous Western Bluebirds (Sialia mexicana) occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without nest boxes. The average species richness of avian insectivores increased by over 50 percent compared to controls. Insectivorous bird density nearly quadrupled, primarily due to a tenfold increase in Western Bluebird abundance. In contrast, there was no significant difference in the abundance of omnivorous or granivorous bird species some of which opportunistically forage on grapes. In a sentinel prey experiment, 2.4 times more live beet armyworms (Spodoptera exigua) were removed in the nest box treatment than in the control. As an estimate of the maximum foraging services provided by insectivorous birds, we found that larval removal rates measured immediately below occupied boxes averaged 3.5 times greater than in the control. Consequently the presence of Western Bluebirds in vineyard nest boxes strengthened ecosystem services to winegrape growers, illustrating a benefit of agroecological conservation practices. Predator addition and sentinel prey experiments lack some disadvantages of predator exclusion experiments and were robust methodologies for detecting ecosystem services. PMID:22096555

  18. Biogeochemical properties of eddies in the California Current System

    NASA Astrophysics Data System (ADS)

    Chenillat, Fanny; Franks, Peter J. S.; Combes, Vincent

    2016-06-01

    The California Current System (CCS) has intense mesoscale activity that modulates and exports biological production from the coastal upwelling system. To characterize and quantify the ability of mesoscale eddies to affect the local and regional planktonic ecosystem of the CCS, we analyzed a 10 year-long physical-biological model simulation, using eddy detection and tracking to isolate the dynamics of cyclonic and anticyclonic eddies. As they propagate westward across the shelf, cyclonic eddies efficiently transport coastal planktonic organisms and maintain locally elevated production for up to 1 year (800 km offshore). Anticyclonic eddies, on the other hand, have a limited impact on local production over their ~6 month lifetime as they propagate 400 km offshore. At any given time ~8% of the model domain was covered by eddy cores. Though the eddies cover a small area, they explain ~50 and 20% of the transport of nitrate and plankton, respectively.

  19. The Gulf of California: Review of ecosystem status and sustainability challenges

    NASA Astrophysics Data System (ADS)

    Lluch-Cota, Salvador E.; Aragón-Noriega, Eugenio A.; Arreguín-Sánchez, Francisco; Aurioles-Gamboa, David; Jesús Bautista-Romero, J.; Brusca, Richard C.; Cervantes-Duarte, Rafael; Cortés-Altamirano, Roberto; Del-Monte-Luna, Pablo; Esquivel-Herrera, Alfonso; Fernández, Guillermo; Hendrickx, Michel E.; Hernández-Vázquez, Sergio; Herrera-Cervantes, Hugo; Kahru, Mati; Lavín, Miguel; Lluch-Belda, Daniel; Lluch-Cota, Daniel B.; López-Martínez, Juana; Marinone, Silvio G.; Nevárez-Martínez, Manuel O.; Ortega-García, Sofia; Palacios-Castro, Eduardo; Parés-Sierra, Alejandro; Ponce-Díaz, Germán; Ramírez-Rodríguez, Mauricio; Salinas-Zavala, Cesar A.; Schwartzlose, Richard A.; Sierra-Beltrán, Arturo P.

    2007-04-01

    The Gulf of California is unique because of its geographical location and conformation. It hosts diverse ecosystems and important fisheries that support industry and provide livelihood to coastal settlements. It is also the site of interests and problems, and an intense interaction among managers, producers, and conservationists. In this report, we scrutinize the abiotic (hydrography, climate, ocean circulation, and chemistry) and biotic (phyto- and zooplankton, fish, invertebrates, marine mammals, birds, and turtles) components of the marine ecosystem, and some particular aspects of climate variability, endemisms, harmful algal blooms, oxygen minimum layer, and pollution. We also review the current conditions and conflicts around the main fisheries (shrimp, small and large pelagic fishes, squid, artisanal and sportfishing), the most important human activity in the Gulf of California. We cover some aspects of management and conservation of fisheries, especially the claimed overexploitation of fish resources and the ecosystems, and review proposals for creating networks of marine protected areas. We conclude by identifying main needs for information and research, particularly the integration of data bases, the implementation of models and paleoreconstructions, establishment of monitoring programs, and the evaluation of fishing impacts and management actions.

  20. Assessment of potential aquatic herbicide impacts to California aquatic ecosystems.

    PubMed

    Siemering, Geoffrey S; Hayworth, Jennifer D; Greenfield, Ben K

    2008-10-01

    A series of legal decisions culminated in 2002 with the California State Water Resources Control Board funding the San Francisco Estuary Institute to develop and implement a 3-year monitoring program to determine the potential environmental impacts of aquatic herbicide applications. The monitoring program was intended to investigate the behavior of all aquatic pesticides in use in California, to determine potential impacts in a wide range of water-body types receiving applications, and to help regulators determine where to direct future resources. A tiered monitoring approach was developed to achieve a balance between program goals and what was practically achievable within the project time and budget constraints. Water, sediment, and biota were collected under "worst-case" scenarios in close association with herbicide applications. Applications of acrolein, copper sulfate, chelated copper, diquat dibromide, glyphosate, fluridone, triclopyr, and 2,4-D were monitored. A range of chemical analyses, toxicity tests, and bioassessments were conducted. At each site, risk quotients were calculated to determine potential impacts. For sediment-partitioning herbicides, sediment quality triad analysis was performed. Worst-case scenario monitoring and special studies showed limited short-term and no long-term toxicity directly attributable to aquatic herbicide applications. Risk quotient calculations called for additional risk characterizations; these included limited assessments for glyphosate and fluridone and more extensive risk assessments for diquat dibromide, chelated copper products, and copper sulfate. Use of surfactants in conjunction with aquatic herbicides was positively associated with greater ecosystem impacts. Results therefore warrant full risk characterization for all adjuvant compounds. PMID:18293029

  1. Persistence of chlorinated hydrocarbon contamination in a California marine ecosystem

    SciTech Connect

    Young, D.R.; Gossett, R.W.; Heesen, T.C.

    1989-01-01

    Despite major reductions in the dominant DDT and polychlorinated biphenyls (PCB) input off Los Angeles (California, U.S.A.) in the early 1970s, the levels of these pollutants decreased only slightly from 1972 to 1975 both in surficial bottom sediments and in a flatfish bioindicator (Dover sole, Microstomus pacificus) collected near the submarine outfall. Concentrations of these pollutants in the soft tissues of the mussel Mytilus californianus, collected intertidally well inshore of the highly contaminated bottom sediments, followed much more closely the decreases in the outfall discharges. These observations suggest that contaminated sediments on the seafloor were the principal (although not necessarily direct) cause of the relatively high and persistent concentrations of DDT and PCB residues in tissues. The study indicated that residues of the higher-molecular-weight chlorinated hydrocarbons, such as DDT and PCB, can be highly persistent once released to coastal marine ecosystems and that their accumulation in surficial bottom sediments is the most likely cause of this persistence observed in the biota of the discharge zone.

  2. Ecosystem Change in California Grasslands: Impacts of Species Invasion

    NASA Astrophysics Data System (ADS)

    Koteen, L. E.; Harte, J.; Baldocchi, D. D.

    2009-12-01

    Grassland ecosystems of California have undergone dramatic changes, resulting in the almost complete replacement of native perennial grasses by non-native annuals across millions of hectares of grassland habitat. Our research investigates the effects of this community shift on carbon, water and energy cycles at two sites in northern coastal California. Our goal was to understand how changes to California’s grasslands have affected climate through 1. shifting the balance of carbon storage between terrestrial stocks and the atmosphere, and 2. altering the water and energy regimes that heat or cool the earth's surface. To compare the processes that govern material exchange before and after annual grass invasion, we made use of sites where native vegetation is found adjacent to locations that have undergone non-native invasion. In plots of each vegetation type, we monitored whole plant productivity, root and litter decay rates and soil respiration, as well as soil climatic controls on these processes. At one site, we also measured surface albedo and the components of the surface energy balance in each grass community, using the surface renewal method. Although seemingly subtle, the shift in California grassland communities from native perennial to non-native annual grass dominance has had profound consequences for ecosystem biogeochemical, radiative and hydrological cycles. Soil carbon storage was found to be significantly greater in native perennial grass communities. Across both study sites, we found that non-native grass invasion has resulted in the transfer of from 3 to 6 tons of carbon per hectare from the soil to the atmosphere, dependent on site and species. A soil density fractionation and a radiocarbon analysis also revealed the carbon to be more recalcitrant in native grass dominated locations. The primary plant traits that help explain why soil carbon losses follow annual grass invasion are: 1. differences between annual and perennial grasses in above

  3. Accessing Current Information on California Indians.

    ERIC Educational Resources Information Center

    Carter, Trina

    As California Indians confront contemporary issues, their need for timely information is vital. The library at California State University (CSU), Fresno, serves students enrolled in Native American studies courses as well as members of the San Joaquin valley community. Information sources include both recorded information and the "invisible…

  4. Predator-Driven Nutrient Recycling in California Stream Ecosystems

    PubMed Central

    Munshaw, Robin G.; Palen, Wendy J.; Courcelles, Danielle M.; Finlay, Jacques C.

    2013-01-01

    Nutrient recycling by consumers in streams can influence ecosystem nutrient availability and the assemblage and growth of photoautotrophs. Stream fishes can play a large role in nutrient recycling, but contributions by other vertebrates to overall recycling rates remain poorly studied. In tributaries of the Pacific Northwest, coastal giant salamanders (Dicamptodon tenebrosus) occur at high densities alongside steelhead trout (Oncorhynchus mykiss) and are top aquatic predators. We surveyed the density and body size distributions of D. tenebrosus and O. mykiss in a California tributary stream, combined with a field study to determine mass-specific excretion rates of ammonium (N) and total dissolved phosphorus (P) for D. tenebrosus. We estimated O. mykiss excretion rates (N, P) by bioenergetics using field-collected data on the nutrient composition of O. mykiss diets from the same system. Despite lower abundance, D. tenebrosus biomass was 2.5 times higher than O. mykiss. Mass-specific excretion summed over 170 m of stream revealed that O. mykiss recycle 1.7 times more N, and 1.2 times more P than D. tenebrosus, and had a higher N:P ratio (8.7) than that of D. tenebrosus (6.0), or the two species combined (7.5). Through simulated trade-offs in biomass, we estimate that shifts from salamander biomass toward fish biomass have the potential to ease nutrient limitation in forested tributary streams. These results suggest that natural and anthropogenic heterogeneity in the relative abundance of these vertebrates and variation in the uptake rates across river networks can affect broad-scale patterns of nutrient limitation. PMID:23520520

  5. The Economic Value of Coastal Ecosystems in California

    EPA Science Inventory

    The status of marine ecosystems affects the well being of human societies. These ecosystems include but are not limited to estuaries, lagoons, reefs, and systems further offshore such as deep ocean vents. The coastal regions that connect terrestrial and marine ecosystems are of p...

  6. A long term monitoring of Net Ecosystem Exchanges of the chaparral ecosystem in Southern California

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Oechel, W. C.; Murphy, P.; Ikawa, H.; Sturtevant, C. S.

    2012-12-01

    Arid and semiarid woody shrublands represent approximately 35% of the global terrestrial surface area and 24% of the global soil organic carbon, and 16% of the global aboveground biomass (Atjay et al., 1979; Shmida, 1985). Therefore, these areas potentially have a large contribution to the global carbon budget. However, the assessment of carbon uptake for the old-growth shrubland has remained largely unexplored. Therefore, a long-term observation of CO2 flux with the eddy covariance technique has started since 1997 at Sky Oaks Field Station in Southern California. The research site is categorized at the climatic gradient between desert and semiarid area and that experiences a Mediterranean climate. The long term record of CO2 flux showed the area has been a sink of CO2 of up to -0.2 kgCm-2yr-1. In addition to evaluating vertical carbon fluxes, we initiated a project to evaluate lateral carbon transports using litter traps, sediment fences and two small weirs adjacent to the eddy covariance site in 2011. Preliminary results indicate that the lateral carbon efflux from the system may offset the vertical influx to the shrub ecosystem. However, it is still necessary to develop the methodology to compare vertical carbon flux and the lateral carbon fluxes more accurately.

  7. Carbon Cycling Studies in Forest and Rangeland Ecosystems of Northern and Central Coastal California

    NASA Astrophysics Data System (ADS)

    Potter, C.; Klooster, S.; Gross, P.; Hiatt, S.; Genovese, V.

    2008-12-01

    The varied topography and micro-climates of northern and central coastal California result in high biodiversity and many different levels of primary production driving regional carbon cycles. Coastal mountains trap moisture from low clouds and fog in summer to supplement rainfall in winter. This creates a favorable micro-environment for coniferous forests, including the southernmost habitat of the coast redwood (Sequoia sempervirens), which grows mainly on lower north-facing slopes in Big Sur. In rain shadows, forests transition to open oak woodland, and then into the more fire-tolerant chaparral and coast scrub. Field sites for our on-going climate change studies on the California northern and central coasts currently include the University of California Santa Cruz Campus Natural Reserve, the US Forest Service Brazil Ranch, and the University of California Big Creek Reserve. We are conducting research at each of these sites to better understand possible impacts of climate change, including: (1) biological and physical capacity of soils to capture carbon and retain plant-essential nutrients; (2) rates of plant-soil water and carbon cycling and energy flow; and (3) recovery mechanisms for disturbances such as invasive weed species, grazing, and wildfire. The NASA-CASA simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate carbon cycling for much of the central coast as far north as Mendocino County. Net primary production (NPP) of all vegetation cover was mapped at 30-meter resolution for selected years by combining MODIS and Landsat images across the region. Results show annual NPP predictions of between 200-400 grams C per square meter for coastal scrub and 800-1200 grams C per square meter for coastal evergreen forests, Net ecosystem fluxes of carbon will be presented for the region based on NASA-CASA modeling and field measurements of soil respiration fluxes.

  8. Evaluating Ecosystem Services Provided by Non-Native Species: An Experimental Test in California Grasslands

    PubMed Central

    Stein, Claudia; Hallett, Lauren M.; Harpole, W. Stanley; Suding, Katharine N.

    2014-01-01

    The concept of ecosystem services – the benefits that nature provides to human's society – has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem. PMID:25222028

  9. Interactions Between Climate Change, Fire and Invasive Plants in California Ecosystems

    NASA Astrophysics Data System (ADS)

    Keeley, J. E.

    2007-12-01

    Changes in fire regimes are predicted in many climate change scenarios. The types of changes are greatly affected by the fuel structure of the ecosystem and different trajectories of change are expected in surface fire regimes than in crown fire regimes. However, in the multi-factorial world of natural ecosystems, climate is only one of the drivers of future change and some of the known threats to ecosystem stability are expected to push the system over particular thresholds of tolerance very rapidly. Invasive species have been widely recognized as drivers of ecosystem change, often generating feedback effects that alter fuel structure and future fire behavior. Human demographic changes, and the concomitant changes in anthropogenic fire ignitions are an additional threat to future ecosystem stability. I will address how these factors might interact with climate change in ecosystems of very different fuel structure, including surface fire ponderosa pine forests and crown fire chaparral shrublands in California.

  10. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current

    PubMed Central

    Reimer, Janet J.; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J. Martin; Lara-Lara, Ruben

    2015-01-01

    Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could

  11. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current.

    PubMed

    Reimer, Janet J; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J Martin; Lara-Lara, Ruben

    2015-01-01

    Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could

  12. PERSISTENCE OF CHLORINATED HYDROCARBON CONTAMINATION IN A CALIFORNIA MARINE ECOSYSTEM

    EPA Science Inventory

    Despite major reductions in the dominant DDT and polychlorinated biphenyls (PCB) input off Los Angeles (California, USA) in the early 1970s, the levels of these pollutants decreased only slightly from 1972 to 1975 both in surficial bottom sediments and in a flatfish bioindicator ...

  13. In the Schools: California Treat: Three Days in Five Ecosystems.

    ERIC Educational Resources Information Center

    Rigby, Jennifer A.

    1986-01-01

    Describes a 3-day program sponsored by the Orange County Marine Institute that provides biological, cultural, and historical learning experiences. Discusses the setting and activities of the five ecosystems explored by the students. The Chaparral to Ocean Science Camp includes chaparral, riparian, woodland, intertidal, and pelagic environments.…

  14. 2013. Wetlands. In: Mooney, H. and Zavaleta, E., editors. Ecosystems of California: A Source Book. Berkeley, CA: University of California Press, p.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication is an introduction to wetland ecosystems in California, their geographic distribution, and historical ecology. Hydroclimatology and hydrology are explained as key drivers and patterns of variability in wetland habitats and biological communities. Primary wetland types are describe...

  15. 2013. Wetlands. In: Mooney, H. and Zavaleta, E., editors. Ecosystems of California: A Source Book. Berkeley, CA: University of California Press

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication is an introduction to wetland ecosystems in California, their geographic distribution, and historical ecology. Hydroclimatology and hydrology are explained as key drivers and patterns of variability in wetland habitats and biological communities. Primary wetland types are describe...

  16. Where the wild things are: Predicting hotspots of seabird aggregations in the California Current System

    USGS Publications Warehouse

    Nur, N.; Jahncke, J.; Herzog, M.P.; Howar, J.; Hyrenbach, K.D.; Zamon, J.E.; Ainley, D.G.; Wiens, J.A.; Morgan, K.; Balance, L.T.; Stralberg, D.

    2011-01-01

    Marine Protected Areas (MPAs) provide an important tool for conservation of marine ecosystems. To be most effective, these areas should be strategically located in a manner that supports ecosystem function. To inform marine spatial planning and support strategic establishment of MPAs within the California Current System, we identified areas predicted to support multispecies aggregations of seabirds ("hotspot????). We developed habitat-association models for 16 species using information from at-sea observations collected over an 11-year period (1997-2008), bathymetric data, and remotely sensed oceanographic data for an area from north of Vancouver Island, Canada, to the USA/Mexico border and seaward 600 km from the coast. This approach enabled us to predict distribution and abundance of seabirds even in areas of few or no surveys. We developed single-species predictive models using a machine-learning algorithm: bagged decision trees. Single-species predictions were then combined to identify potential hotspots of seabird aggregation, using three criteria: (1) overall abundance among species, (2) importance of specific areas ("core area????) to individual species, and (3) predicted persistence of hotspots across years. Model predictions were applied to the entire California Current for four seasons (represented by February, May, July, and October) in each of 11 years. Overall, bathymetric variables were often important predictive variables, whereas oceanographic variables derived from remotely sensed data were generally less important. Predicted hotspots often aligned with currently protected areas (e.g., National Marine Sanctuaries), but we also identified potential hotspots in Northern California/Southern Oregon (from Cape Mendocino to Heceta Bank), Southern California (adjacent to the Channel Islands), and adjacent to Vancouver Island, British Columbia, that are not currently included in protected areas. Prioritization and identification of multispecies hotspots

  17. California Coastal Upwelling Onset Variability: Cross-Shore and Bottom-Up Propagation in the Planktonic Ecosystem

    PubMed Central

    Chenillat, Fanny; Rivière, Pascal; Capet, Xavier; Franks, Peter J. S.; Blanke, Bruno

    2013-01-01

    The variability of the California Current System (CCS) is primarily driven by variability in regional wind forcing. In particular, the timing of the spring transition, i.e., the onset of upwelling-favorable winds, varies considerably in the CCS with changes in the North Pacific Gyre Oscillation. Using a coupled physical-biogeochemical model, this study examines the sensitivity of the ecosystem functioning in the CCS to a lead or lag in the spring transition. An early spring transition results in an increased vertical nutrient flux at the coast, with the largest ecosystem consequences, both in relative amplitude and persistence, hundreds of kilometers offshore and at the highest trophic level of the modeled food web. A budget analysis reveals that the propagation of the perturbation offshore and up the food web is driven by remineralization and grazing/predation involving both large and small plankton species. PMID:23690935

  18. Appreciation, Use, and Management of Biodiversity and Ecosystem Services in California's Working Landscapes

    NASA Astrophysics Data System (ADS)

    Plieninger, Tobias; Ferranto, Shasta; Huntsinger, Lynn; Kelly, Maggi; Getz, Christy

    2012-09-01

    "Working landscapes" is the concept of fostering effective ecosystem stewardship and conservation through active human presence and management and integrating livestock, crop, and timber production with the provision of a broad range of ecosystem services at the landscape scale. Based on a statewide survey of private landowners of "working" forests and rangelands in California, we investigated whether owners who are engaged in commercial livestock or timber production appreciate and manage biodiversity and ecosystem services on their land in different ways than purely residential owners. Both specific uses and management practices, as well as underlying attitudes and motivations toward biodiversity and ecosystem services, were assessed. Correlation analysis showed one bundle of ecosystem goods and services (e.g., livestock, timber, crops, and housing) that is supported by some landowners at the community level. Another closely correlated bundle of biodiversity and ecosystem services includes recreation, hunting/fishing, wildlife habitat, and fire prevention. Producers were more likely to ally with the first bundle and residential owners with the second. The survey further confirmed that cultural ecosystem services and quality-of-life aspects are among the primary amenities that motivate forest and rangeland ownership regardless of ownership type. To live near natural beauty was the most important motive for both landowner groups. Producers were much more active in management for habitat improvement and other environmental goals than residential owners. As the number of production-oriented owners decreases, developing strategies for encouraging environment-positive management by all types of landowners is crucial.

  19. Environmental conditions impacting juvenile Chinook salmon growth off central California: An ecosystem model analysis

    NASA Astrophysics Data System (ADS)

    Fiechter, J.; Huff, D. D.; Martin, B. T.; Jackson, D. W.; Edwards, C. A.; Rose, K. A.; Curchitser, E. N.; Hedstrom, K. S.; Lindley, S. T.; Wells, B. K.

    2015-04-01

    A fully coupled ecosystem model is used to identify the effects of environmental conditions and upwelling variability on growth of juvenile Chinook salmon in central California coastal waters. The ecosystem model framework consists of an ocean circulation submodel, a biogeochemical submodel, and an individual-based submodel for salmon. Simulation results indicate that years favorable for juvenile salmon growth off central California are characterized by particularly intense early season upwelling (i.e., March through May), leading to enhanced krill concentrations during summer near the location of ocean entry (i.e., Gulf of the Farallones). Seasonally averaged growth rates in the model are generally consistent with observed values and suggest that juvenile salmon emigrating later in the season (i.e., late May and June) achieve higher weight gains during their first 90 days of ocean residency.

  20. Material properties of zooplankton and nekton from the California current

    NASA Astrophysics Data System (ADS)

    Becker, Kaylyn

    This study measured the material properties of zooplankton, Pacific hake (Merluccius productus), Humboldt squid (Dosidicus gigas), and two species of myctophids (Symbolophorus californiensis and Diaphus theta) collected from the California Current ecosystem. The density contrast (g) was measured for euphausiids, decapods (Sergestes similis), amphipods (Primno macropa, Phronima sp., and Hyperiid spp.), siphonophore bracts, chaetognaths, larval fish, crab megalopae, larval squid, and medusae. Morphometric data (length, width, and height) were collected for these taxa. Density contrasts varied within and between zooplankton taxa. The mean and standard deviation for euphausiid density contrast were 1.059 +/- 0.009. Relationships between zooplankton density contrast and morphometric measurements, geographic location, and environmental conditions were investigated. Site had a significant effect on euphausiid density contrast. Density contrasts of euphausiids collected in the same geographic area approximately 4-10 days apart were significantly higher (p < 0.001). Sound speed contrast (h) was measured for euphausiids and pelagic decapods (S. similis) and it varied between taxa. The mean and standard deviation for euphausiid sound speed were 1.019 +/- 0.009. Euphausiid mass was calculated from density measurements and volume, and a relationship between euphausiid mass and length was produced. We determined that euphausiid from volumes could be accurately estimated two dimensional measurements of animal body shape, and that biomass (or biovolume) could be accurately calculated from digital photographs of animals. Density contrast (g) was measured for zooplankton, pieces of hake flesh, myctophid flesh, and of the following Humboldt squid body parts: mantle, arms, tentacle, braincase, eyes, pen, and beak. The density contrasts varied within and between fish taxa, as well as among squid body parts. Effects of animal length and environmental conditions on nekton density

  1. Concentrations, deposition, and effects of nitrogenous pollutants in selected California ecosystems.

    PubMed

    Bytnerowicz, A; Padgett, P E; Parry, S D; Fenn, M E; Arbaugh, M J

    2001-11-28

    Atmospheric deposition of nitrogen (N) in California ecosystems is ecologically significant and highly variable, ranging from about 1 to 45 kg/ha/year. The lowest ambient concentrations and deposition values are found in the eastern and northern parts of the Sierra Nevada Mountains and the highest in parts of the San Bernardino and San Gabriel Mountains that are most exposed to the Los Angeles air pollution plume. In the Sierra Nevada Mountains, N is deposited mostly in precipitation, although dry deposition may also provide substantial amounts of N. On the western slopes of the Sierra Nevada, the majority of airborne N is in reduced forms as ammonia (NH3) and particulate ammonium (NH4+) from agricultural activities in the California Central Valley. In southern California, most of the N air pollution is in oxidized forms as nitrogen oxides (NOx), nitric acid (HNO3), and particulate nitrate (NO3-) resulting from fossil fuel combustion and subsequent complex photochemical reactions. In southern California, dry deposition of gases and particles provides most (up to 95%) of the atmospheric N to forests and other ecosystems. In the mixed-conifer forest zone, elevated deposition of N may initially benefit growth of vegetation, but chronic effects may be expressed as deterioration of forest health and sustainability. HNO3 vapor alone has a potential for toxic effects causing damage of foliar surfaces of pines and oaks. In addition, dry deposition of predominantly HNO3 has lead to changes in vegetation composition and contamination of ground- and stream water where terrestrial N loading is high. Long-term, complex interactions between N deposition and other environmental stresses such as elevated ozone (O3), drought, insect infestations, fire suppression, or intensive land management practices may affect water quality and sustainability of California forests and other ecosystems. PMID:12805794

  2. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  3. California's Summer and Winter Coastal Upwelling Impact on the Terrestrial Ecosystem

    NASA Astrophysics Data System (ADS)

    Garcia Reyes, M.; Sydeman, W. J.; Black, B.

    2014-12-01

    The terrestrial ecosystem along the California coastal region depends on the water that winter rain and year-round fog brings. The location and strength of the North Pacific Ocean high pressure system off the California coast determine the amount of rain during winter by blocking or allowing the pass of winter storms through the region. It also determines the strength and timing of alongshore winds that drive coastal upwelling, which in turns lead to cool coastal water during the spring and summer that is closely relate to fog formation. Timing and intensity of coastal upwelling vary year to year due to a number of climate processes impacting the high pressure system and the coastal atmospheric and ocean conditions. Notably, persistent summer upwelling varies independently from the sporadic winter/early spring upwelling events (as well as other weather patterns), and in turn they impact differently the marine and terrestrial ecosystems. Here, we review the variability and source of variability of the North Pacific High, its impact on the upwelling conditions along the California coast, and investigate their influence on terrestrial rain and fog during winter and summer, highlighting their impact on coastal and terrestrial ecosystems.

  4. The California Current system off Monterey, California: physical and biological coupling

    NASA Astrophysics Data System (ADS)

    Collins, C. A.; Pennington, J. T.; Castro, C. G.; Rago, T. A.; Chavez, F. P.

    2003-08-01

    Repeated hydrobiological surveys over the period 1988-2002 perpendicular to the central California coast indicate strong coupling between physical circulation and biological production. An equatorward-flowing jet about 100-200 km from shore marked the inshore edge of the California Current (CC). This "CC Jet" had its highest velocities during late winter and spring. The jet divided inshore, biologically productive waters from offshore, low-production waters. Mean flow in the inshore waters is poleward. However, this flow is interrupted in late spring and summer by a surface-enhanced, equatorward-flowing, coastal upwelling jet. The upwelling jet coincides with maxima of nutrients, chlorophyll- a and primary production. Annual variability in the inshore zone is related to (1) vertical pycnocline movements associated with geostrophic adjustments to accelerations of the California Current system, and (2) coastal upwelling. In offshore waters, the annual cycle accounted for a small fraction of the variability, indicating the dominance of eddies and meanders in this zone (J. Geophys. Res. 92 (1987) 12 947). The offshore regime was mesotrophic to oligotrophic, with a subsurface chlorophyll- a maximum above the nutricline. Considerable subduction may occur under the California Current jet and be an important process in the export of biogenic material to the deep sea.

  5. Patterns and processes in the California Current System

    NASA Astrophysics Data System (ADS)

    Checkley, David M., Jr.; Barth, John A.

    2009-12-01

    The California Current System (CCS) is forced by the distribution of atmospheric pressure and associated winds in relation to the west coast of North America. In this paper, we begin with a simplified case of winds and a linear coast, then consider variability characteristic of the CCS, and conclude by considering future change. The CCS extends from the North Pacific Current (∼50°N) to off Baja California, Mexico (∼15-25°N) with a major discontinuity at Point Conception (34.5°N). Variation in atmospheric pressure affects winds and thus upwelling. Coastal, wind-driven upwelling results in nutrification and biological production and a southward coastal jet. Offshore, curl-driven upwelling results in a spatially large, productive habitat. The California Current flows equatorward and derives from the North Pacific Current and the coastal jet. Dominant modes of spatial and temporal variability in physical processes and biological responses are discussed. High surface production results in deep and bottom waters depleted in oxygen and enriched in carbon dioxide. Fishing has depleted demersal stocks more than pelagic stocks, and marine mammals, including whales, are recovering. Krill, squid, and micronekton are poorly known and merit study. Future climate change will differ from past change and thus prediction of the CCS requires an understanding of its dynamics. Of particular concern are changes in winds, stratification, and ocean chemistry.

  6. Multi-decadal variations in calcareous holozooplankton in the California Current System: Thecosome pteropods, heteropods, and foraminifera

    NASA Astrophysics Data System (ADS)

    Ohman, Mark D.; Lavaniegos, Bertha E.; Townsend, Annie W.

    2009-09-01

    We examine long-term (1951-2008) variability of three major taxa of calcareous holozooplankton (aragonite-secreting thecosome pteropods and heteropods, and calcite-secreting large planktonic foraminifera) in light of recent interest in the impingement of waters undersaturated with respect to aragonite onto continental shelf depths in the California Current System. We assess interannual variability in springtime abundances of zooplankton sampled in the epipelagic layer, using CalCOFI (California Cooperative Oceanic Fisheries Investigations) zooplankton samples from two regions: Southern California (SC) and Central California (CC). Thecosome pteropods show no evidence of recent declines in abundance in SC or CC waters. In SC, sampling was sufficient to conclude that heteropods and large foraminifera also show no evidence of declines in abundance in recent years. These results do not preclude as-yet undetected changes in vertical distributions or shell morphology, and underscore the importance of sustained in situ measurement programs in order to detect and understand changes to pelagic ecosystems.

  7. Land use change and effects on water quality and ecosystem health in the Lake Tahoe basin, Nevada and California

    USGS Publications Warehouse

    Forney, William; Richards, Lora; Adams, Kenneth D.; Minor, Timothy B.; Rowe, Timothy G.; Smith, J. LaRue; Raumann, Christian G.

    2001-01-01

    Human activity in the Lake Tahoe Basin has increased substantially in the past four decades, causing significant impacts on the quality and clarity of the lake's famous deep, clear water. Protection of Lake Tahoe and the surrounding environment has become an important activity in recent years. A variety of agencies, including the Tahoe Regional Planning Agency, Tahoe Research Group of the University of California at Davis, Desert Research Institute of the University and Community College System of Nevada, U.S. Geological Survey (USGS), and a host of State (both Nevada and California) and local agencies have been monitoring and conducting research in the Basin in order to understand how the lake functions and to what extent humans have affected its landscape and ecosystem processes. In spite of all of these activities, there remains a lack of comprehensive land use change data and analysis for the Basin. A project is underway that unites the land cover mapping expertise of the USGS National Mapping Discipline with the hydrologic expertise of the Water Resources Discipline to assess the impacts of urban growth and land use change in the Lake Tahoe Basin. Three activities are planned over the next 3 years: (1) mapping the current and historic state of the land surface, (2) conducting analysis to document patterns, rates, and trends in urbanization, land use change, and ecosystem health, and (3) assessing the causes and consequences of land use change with regard to water quality and ecosystem health. We hypothesize that changes in the extent of urban growth and the corresponding increases in impervious surfaces and decreases in natural vegetation have resulted in severe impacts on ecosystem health and integrity, riparian zones and water quality over time. We are acting on multiple fronts to test this hypothesis through the quantification of landscape disturbances and impacts.

  8. 77 FR 21721 - Sierra National Forest, Bass Lake Ranger District, California, Whisky Ecosystem Restoration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... purpose of this Project is to promote ecosystem resilience, sustainability, and health under current and... depleted soil moisture. Stocking levels (stand densities) have reached or are reaching density levels...

  9. Mechanisms Controlling the Effects of Weather and Climate on California's Ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Goulden, M.; Kelly, A. E.; Fellows, A.; Winston, G.

    2010-12-01

    We combined observations and manipulations along topographic gradients in southern and central California to understand how climate controls ecosystem function. California's topography causes large temperature and precipitation gradients as a result of orographic, rain-shadow, atmospheric lapse, and sea breeze effects. These gradients lead to a wide diversity of ecosystem types and provide a natural laboratory for understanding the controls on plant community composition and ecosystem function. Findings include: (1) Natural climate gradients drive large changes in species composition, plant phenology, growing season length, and primary production. The growing season at low, dry, and warm locations is limited by summer drought, resulting in low primary production. The growing season at high, wet, and cold locations is limited by winter cold, resulting in low primary production. The growing season at mid elevation is limited by neither summer drought nor winter cold, resulting in year-round and high primary production. (2) The relative importance of plant species within a community shifts rapidly in response to changes in water input, caused by either natural variability or experimental manipulation. Species that are intolerant of drier conditions decline rapidly with reduced water input, and may disappear locally; species that are tolerant of drier conditions increase rapidly in extent. (3) Inward plant migration, and the establishment of new species at a location, is a comparatively slow process. The initial phases of climate change will likely reshuffle the importance of existing species within the community, resulting in only modest changes in ecosystem function but possibly extirpating species that are intolerant of warmer and drier conditions, and reducing biodiversity. These declines in biodiversity and delays in species immigration may ultimately limit the ability of ecosystems to respond to subsequent interannual and decadal variations in weather, and to

  10. Effects of selenium supplementation in cattle on aquatic ecosystems in northern California

    SciTech Connect

    Norman, B.; Nader, G.; Oliver, M.; Delmas, R.; Drake, D.; George, H. )

    1992-09-15

    The potential impact on aquatic ecosystems of supplementing the diets of beef cattle with selenium (Se) was studied on 4 northern California ranches. All study sites included an area of concentrated use by cattle that had diets supplemented with Se. In each case, a stream flowed through the site and provided a control sampling area upstream and a treated sampling area downstream. Specimens of water, sediment, algae, aquatic plants, aquatic invertebrates, and fish were analyzed fluorometrically for total Se content. Significant differences in Se concentration were not found between specimens from upstream control areas and those from downstream areas subjected to use by Se-treated cattle. Evidence was not found that Se supplementation in cattle at maximal permitted concentrations caused Se accumulation in associated aquatic ecosystems.

  11. Seasonality of the transitional region of the California Current System off Baja California

    NASA Astrophysics Data System (ADS)

    Durazo, Reginaldo

    2015-02-01

    Hydrographic data collected over the period 1997-2013 are analyzed to investigate the seasonality of hydrographic features and associated geostrophic flows off the Baja California peninsula. The upper ocean in the region was found to be homogeneous in winter and spring but subdivided into two regions in the summer and autumn. In the first case, the system typically shows relatively low-temperature and salinity waters, which give it a subarctic character. In the second, only the region north of Punta Eugenia (28°N) maintains subarctic characteristics, while the southern region receives an inflow of tropical and subtropical waters that results from the weakening of northwesterly winds, which allows the poleward advection of surface waters. Also during this period, a positive wind stress curl promotes the zonal advection of North Pacific's eastern edge waters into the coast and to the north as a surface coastal flow. Average seasonal patterns of geostrophic flow at 200 dbar revealed that the differentiation into provinces is also evident at that depth, with two clearly defined cyclonic structures in summer and autumn, both separated at the latitude of Punta Eugenia. The analyses conducted also showed a clear continuity of the California undercurrent along the shelf break, with more diffuse currents in the winter. Poleward flows were observed throughout the water column, especially in summer and autumn, although the origin of the surface flow does not necessarily involve a surfacing of the California Undercurrent.

  12. Regime shifts in the Humboldt Current ecosystem [review article

    NASA Astrophysics Data System (ADS)

    Alheit, Jürgen; Niquen, Miguel

    2004-02-01

    Of the four major eastern boundary currents, the Humboldt Current (HC) stands out because it is extremely productive, dominated by anchovy dynamics and subject to frequent direct environmental perturbations of the El Niño Southern Oscillation (ENSO). The long-term dynamics of the HC ecosystem are controlled by shifts between alternating anchovy and sardine regimes that restructure the entire ecosystem from phytoplankton to the top predators. These regime shifts are caused by lasting periods of warm or cold temperature anomalies related to the approach or retreat of warm subtropical oceanic waters to the coast of Peru and Chile. Phases with mainly negative temperature anomalies parallel anchovy regimes (1950-1970; 1985 to the present) and the rather warm period from 1970 to 1985 was characterized by sardine dominance. The transition periods (turning points) from one regime to the other were 1968-1970 and 1984-1986. Like an El Nino, the warm periods drastically change trophic relationships in the entire HC ecosystem, exposing the Peruvian anchovy to a multitude of adverse conditions. Positive temperature anomalies off Peru drive the anchovy population close to the coast as the coastal upwelling cells usually offer the coolest environment, thereby substantially decreasing the extent of the areas of anchovy distribution and spawning. This enhances the effects of negative density-dependent processes such as egg and larval cannibalism and dramatically increases its catchability. Increased spatial overlap between anchovies and the warmer water preferring sardines intensifies anchovy egg mortality further as sardines feed heavily on anchovy eggs. Food sources for juvenile and adult anchovies which prey on a mixed diet of phyto- and zooplankton are drastically reduced because of decreased plankton production due to restricted upwelling in warm years, as demonstrated by lower zooplankton and phytoplankton volumes and the diminution of the fraction of large copepods, their

  13. Accumulation of current-use and organochlorine pesticides in crab embryos from Northern California, USA

    USGS Publications Warehouse

    Smalling, Kelly L.; Morgan, Steven; Kuivila, Kathryn K.

    2010-01-01

    Invertebrates have long been used as resident sentinels for assessing ecosystem health and productivity. The shore crabs, Hemigrapsus oregonensis and Pachygrapsus crassipes, are abundant in estuaries and beaches throughout northern California, USA and have been used as indicators of habitat conditions in several salt marshes. The overall objectives of the present study were to conduct a lab-based study to test the accumulation of current-use pesticides, validate the analytical method and to analyze field-collected crabs for a suite of 74 current-use and legacy pesticides. A simple laboratory uptake study was designed to determine if embryos could bioconcentrate the herbicide molinate over a 7-d period. At the end of the experiment, embryos were removed from the crabs and analyzed by gas chromatography/mass spectrometry. Although relatively hydrophilic (log KOW of 2.9), molinate did accumulate with an estimated bioconcentration factor (log BCF) of approximately 2.5. Following method validation, embryos were collected from two different Northern California salt marshes and analyzed. In field-collected embryos 18 current-use and eight organochlorine pesticides were detected including synthetic pyrethroids and organophosphate insecticides, as well as DDT and its degradates. Lipid-normalized concentrations of the pesticides detected in the field-collected crab embryos ranged from 0.1 to 4 ppm. Pesticide concentrations and profiles in crab embryos were site specific and could be correlated to differences in land-use practices. These preliminary results indicate that embryos are an effective sink for organic contaminants in the environment and have the potential to be good indicators of ecosystem health, especially when contaminant body burden analyses are paired with reproductive impairment assays.

  14. Anthropogenic Degradation of the Southern California Desert Ecosystem and Prospects for Natural Recovery and Restoration.

    PubMed

    Lovich; Bainbridge

    1999-10-01

    / Large areas of the southern California desert ecosystem have been negatively affected by off-highway vehicle use, overgrazing by domestic livestock, agriculture, urbanization, construction of roads and utility corridors, air pollution, military training exercises, and other activities. Secondary contributions to degradation include the proliferation of exotic plant species and a higher frequency of anthropogenic fire. Effects of these impacts include alteration or destruction of macro- and micro-vegetation elements, establishment of annual plant communities dominated by exotic species, destruction of soil stabilizers, soil compaction, and increased erosion. Published estimates of recovery time are based on return to predisturbance levels of biomass, cover, density, community structure, or soil characteristics. Natural recovery rates depend on the nature and severity of the impact but are generally very slow. Recovery to predisturbance plant cover and biomass may take 50-300 years, while complete ecosystem recovery may require over 3000 years. Restorative intervention can be used to enhance the success and rate of recovery, but the costs are high and the probability for long-term success is low to moderate. Given the sensitivity of desert habitats to disturbance and the slow rate of natural recovery, the best management option is to limit the extent and intensity of impacts as much as possible.KEY WORDS: Mojave Desert; Colorado Desert; California; Human impacts; Recovery; Restorationhttp://link.springer-ny.com/link/service/journals/00267/bibs/24n3p309.html PMID:10486042

  15. SAFRR Tsunami Scenario. Preparedness and Resilience for California's ecosystems, natural resources, and the communities that depend on them

    NASA Astrophysics Data System (ADS)

    Brosnan, D. M.

    2013-12-01

    The SAFRR Tsunami Scenario models a plausible 9.1MP earthquake occuring off the Alaskan coast, that generates a tsunami forecast to strike California between 4-6 hour after the event. California's diverse ecosystems, natural resources, and sensitive species will be significantly affected. Although often overlooked in disaster risk reduction, damage to ecosystems and natural resources during hazards including tsunamis, has often resulted in serious impacts to natural systems and on humans who depend on them. SAFRR tsunami scenario forecasts of wave amplitude, water velocity and inundation and overlain on GIS maps were analyzed to identify plausible impacts on California's ecosystems including beaches, marshes, nearshore subtidal habitats, as well as parks and reserves. The effect on natural resources including fisheries was evaluated. Recovery times and consequences were analyzed. The results illustrate the value and vulnerability of these resources and guidelines for preparation and mitigation are discussed.

  16. Differential distributions of synechococcus subgroups across the california current system.

    PubMed

    Paerl, Ryan W; Johnson, Kenneth S; Welsh, Rory M; Worden, Alexandra Z; Chavez, Francisco P; Zehr, Jonathan P

    2011-01-01

    Synechococcus is an abundant marine cyanobacterial genus composed of different populations that vary physiologically. Synechococcus narB gene sequences (encoding for nitrate reductase in cyanobacteria) obtained previously from isolates and the environment (e.g., North Pacific Gyre Station ALOHA, Hawaii or Monterey Bay, CA, USA) were used to develop quantitative PCR (qPCR) assays. These qPCR assays were used to quantify populations from specific narB phylogenetic clades across the California Current System (CCS), a region composed of dynamic zones between a coastal-upwelling zone and the oligotrophic Pacific Ocean. Targeted populations (narB subgroups) had different biogeographic patterns across the CCS, which appear to be driven by environmental conditions. Subgroups C_C1, D_C1, and D_C2 were abundant in coastal-upwelling to coastal-transition zone waters with relatively high to intermediate ammonium, nitrate, and chl. a concentrations. Subgroups A_C1 and F_C1 were most abundant in coastal-transition zone waters with intermediate nutrient concentrations. E_O1 and G_O1 were most abundant at different depths of oligotrophic open-ocean waters (either in the upper mixed layer or just below). E_O1, A_C1, and F_C1 distributions differed from other narB subgroups and likely possess unique ecologies enabling them to be most abundant in waters between coastal and open-ocean waters. Different CCS zones possessed distinct Synechococcus communities. Core California current water possessed low numbers of narB subgroups relative to counted Synechococcus cells, and coastal-transition waters contained high abundances of Synechococcus cells and total number of narB subgroups. The presented biogeographic data provides insight on the distributions and ecologies of Synechococcus present in an eastern boundary current system. PMID:21833315

  17. Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951-2000

    USGS Publications Warehouse

    Liu, J.; Vogelmann, J.E.; Zhu, Z.; Key, C.H.; Sleeter, B.M.; Price, D.T.; Chen, J.M.; Cochrane, M.A.; Eidenshink, J.C.; Howard, S.M.; Bliss, N.B.; Jiang, H.

    2011-01-01

    Land use change, natural disturbance, and climate change directly alter ecosystem productivity and carbon stock level. The estimation of ecosystem carbon dynamics depends on the quality of land cover change data and the effectiveness of the ecosystem models that represent the vegetation growth processes and disturbance effects. We used the Integrated Biosphere Simulator (IBIS) and a set of 30- to 60-m resolution fire and land cover change data to examine the carbon changes of California's forests, shrublands, and grasslands. Simulation results indicate that during 1951-2000, the net primary productivity (NPP) increased by 7%, from 72.2 to 77.1TgCyr-1 (1 teragram=1012g), mainly due to CO2 fertilization, since the climate hardly changed during this period. Similarly, heterotrophic respiration increased by 5%, from 69.4 to 73.1TgCyr-1, mainly due to increased forest soil carbon and temperature. Net ecosystem production (NEP) was highly variable in the 50-year period but on average equalled 3.0TgCyr-1 (total of 149TgC). As with NEP, the net biome production (NBP) was also highly variable but averaged -0.55TgCyr-1 (total of -27.3TgC) because NBP in the 1980s was very low (-5.34TgCyr-1). During the study period, a total of 126Tg carbon were removed by logging and land use change, and 50Tg carbon were directly removed by wildland fires. For carbon pools, the estimated total living upper canopy (tree) biomass decreased from 928 to 834TgC, and the understory (including shrub and grass) biomass increased from 59 to 63TgC. Soil carbon and dead biomass carbon increased from 1136 to 1197TgC. Our analyses suggest that both natural and human processes have significant influence on the carbon change in California. During 1951-2000, climate interannual variability was the key driving force for the large interannual changes of ecosystem carbon source and sink at the state level, while logging and fire were the dominant driving forces for carbon balances in several specific

  18. Identifying Key Vulnerabilities in Current Management of California Central Valley for the California Water Plan

    NASA Astrophysics Data System (ADS)

    Bloom, E.; Groves, D.; Joyce, B. A.; Juricich, R.

    2012-12-01

    The California Department of Water Resources (DWR), for its 2013 Update of the California Water Plan (CWP), is building new analytic capabilities for developing and evaluating regional and state-wide water management strategies. These strategies are intended to address growing and diverse water needs coupled with uncertain future hydrologic conditions and available supplies. Recognizing the significant uncertainty about future water management conditions, DWR is utilizing new robust decision methods to identify robust and adaptive water management strategies. This talk will describe a recently completed application of Robust Decision Making (RDM) for long-term water planning as part of the 2013 CWP Update. This analysis utilizes a new hydrologic / water management model of the Sacramento River, San Joaquin River, and Tulare hydrologic regions, running the model under hundreds of potential futures. These futures consider potential variation in demographic growth, land-use patterns, drought length and timing, and other climate factors from projections generated by downscaled global circulation models. Cluster-finding "scenario discovery" algorithms, applied to the resulting database of simulation model results, identify the key characteristics of future conditions where current management fails to meet a wide range of policy objectives. These "vulnerabilities" provide the foundation for developing more robust and adaptive response packages and the considering tradeoffs between such response packages. This analysis will provide guidance for considering response packages to meet the challenges posed by future conditions in the California Central Valley and provides a widely applicable new approach for making water management plans more cognizant and responsive to a wide range of uncertainties.

  19. Interannual forcing mechanisms of California Current transports II: Mesoscale eddies

    NASA Astrophysics Data System (ADS)

    Davis, Andrew; Di Lorenzo, Emanuele

    2015-02-01

    Mesoscale eddies exert dominant control of cross-shelf exchanges, yet the forcing dynamics underlying their interannual and decadal variability remain uncertain. Using an ensemble of high-resolution ocean model hindcasts of the central and eastern North Pacific from 1950 to 2010 we diagnose the forcing mechanisms of low-frequency eddy variability in the California Current System (CCS). We quantify eddy activity by developing eddy counts based on closed contours of the Okubo-Weiss parameter and find that the spatial and temporal features of model-derived counts largely reproduce the short AVISO observational record. Comparison of model ensemble members allows us to separate the intrinsic and deterministic fractions of eddy variability in the northern CCS (34.5-50°N) and in the southern CCS (28.5-34.5°N). In the North, a large fraction of low-frequency eddy variability (30% anticyclones, 20% cyclones) is deterministic and shared with satellite observations. We develop a diagnostic model based on indices of the large-scale barotropic and baroclinic states of the CCS which recovers this deterministic variance. This model also strongly correlates with local atmospheric forcing. In contrast to the North, Southern CCS eddy counts exhibit very little deterministic variance, and eddy formation closely resembles a red-noise process. This new understanding of the external forcings of eddy variability allows us to better estimate how climate variability and change impact mesoscale transports in the California Current. The skill of our diagnostic model and its close association with local wind stress curl indicate that local atmospheric forcing is the dominant driver of eddy activity on interannual and decadal time scales north of pt. conception (~33°N).

  20. Mesoscale structure and oceanographic determinants of krill hotspots in the California Current: Implications for trophic transfer and conservation

    NASA Astrophysics Data System (ADS)

    Santora, Jarrod A.; Sydeman, William J.; Schroeder, Isaac D.; Wells, Brian K.; Field, John C.

    2011-12-01

    Krill (crustaceans of the family Euphausiacea) comprise an important prey field for vast array of fish, birds, and marine mammals in the California Current and other large marine ecosystems globally. In this study, we test the hypothesis that mesoscale spatial organization of krill is related to oceanographic conditions associated with coastal upwelling. To test this, we compiled a climatology of krill distributions based on hydroacoustic surveys off California in May-June each year between 2000 and 2009 (missing 2007). Approximately 53,000 km of ocean habitat was sampled, resulting in a comprehensive geo-spatial data set from the Southern California Bight to Cape Mendocino. We determined the location and characteristics of eight definite and two probable krill “hotspots” of abundance. Directional-dependence analysis revealed that krill hotspots were oriented in a northwest-southeast (135°) direction, corresponding to the anisotropy of the 200-2000 m isobath. Krill hotspots were disassociated (inversely correlated) with three upwelling centers, Point Arena, Point Sur, and Point Conception, suggesting that krill may avoid locations of strong offshore transport or aggregate downstream from these locations. While current fisheries management considers the entire coast out to the 2000 m isobath critical habitat for krill in this ecosystem, we establish here smaller scale structuring of this critical mid-trophic level prey resource. Identifying mesoscale krill hotspots and their oceanographic determinants is significant as these smaller ecosystem divisions may warrant protection to ensure key ecosystem functions (i.e., trophic transfer) and resilience. Furthermore, delineating and quantifying krill hotspots may be important for conservation of krill-predators in this system.

  1. California State Waters Map Series: offshore of San Francisco, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Johnson, Samuel Y.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Endris, Charles A.; Manson, Michael W.; Sliter, Ray W.; Kvitek, Rikk G.; Watt, Janet Tilden; Ross, Stephanie L.; Bruns, Terry R.

    2015-01-01

    Circulation over the continental shelf in the Offshore of San Francisco map area is dominated by the southward-flowing California Current, an eastern limb of the North Pacific Gyre that flows from Oregon to Baja California. At its midpoint offshore of central California, the California Current transports subarctic surface waters southeastward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. Ocean temperatures offshore of central California have increased over the past 50 years, driving an ecosystem shift from the productive subarctic regime towards a depopulated subtropical environment.

  2. California's Adjudicated Groundwater Basins: History, Current Conditions, Potential Reforms

    NASA Astrophysics Data System (ADS)

    Langridge, R.; Brown, A.; Rudestam, K.; Conrad, E.

    2015-12-01

    Groundwater adjudications are one approach to managing a groundwater basin in California. While the 2014 Sustainable Groundwater Management Act (SGMA) established new management requirements for 127 high and medium priority groundwater basins, it exempted all 26 of the state's adjudicated groundwater basins from the Act. The State Water Resources Control Board prioritized the evaluation of these adjudicated basins to assist in aligning the processes and outcomes of adjudication with SGMA's goals for the sustainable management of groundwater. Working with the Board, our research evaluated the history and current condition of all of California's adjudicated basins along with potential future improvements to the adjudication process. Our presentation will provide a summary of our findings and highlight some successful features of the adjudication process along with the challenges adjudicated basins face to achieve long-term sustainable groundwater management. Our discussion will include a review of: whether most adjudications result in groundwater extractions at or near a basins' designated safe yield; whether overdraft conditions are reduced or eliminated over the long term; and the degree of collaboration and inclusion of community stakeholders in the adjudication process. In addition to this overview, we will highlight 3-4 basins with particularly interesting management challenges and solutions. For each of these basins, we will describe the problem that precipitated the need for the adjudication and how adjudication outcomes were influenced by: how the judgment defined and distributed water rights; the management structure and strategies to manage the basin; how safe yield and overdraft are defined and determined; and, importantly, the effectiveness of the adjudication in halting or reversing groundwater overdraft.

  3. Spatial ecology of krill, micronekton and top predators in the central California Current: Implications for defining ecologically important areas

    NASA Astrophysics Data System (ADS)

    Santora, Jarrod A.; Field, John C.; Schroeder, Isaac D.; Sakuma, Keith M.; Wells, Brian K.; Sydeman, William J.

    2012-11-01

    Marine spatial planning and ecosystem models that aim to predict and protect fisheries and wildlife benefit greatly from syntheses of empirical information on physical and biological partitioning of marine ecosystems. Here, we develop spatially-explicit oceanographic and ecological descriptions of the central California Current region. To partition this region, we integrate data from 20 years of shipboard surveys with satellite remote-sensing to characterize local seascapes of ecological significance, focusing on krill, other micronekton taxa, and top predators (seabirds and marine mammals). Specifically, we investigate if micronekton and predator assemblages co-vary spatially with mesoscale oceanographic conditions. The first principal component of environmental and micronekton seascapes indicates significant coupling between physics, primary productivity, and secondary and tertiary marine consumers. Subsequent principal components indicate latitudinal variability in niche-community space due to varying habitat characteristics between Monterey Bay (deep submarine canyon system) and the Gulf of the Farallones (extensive continental shelf), even though both of these sub-regions are located downstream from upwelling centers. Overall, we identified five ecologically important areas based on spatial integration of environmental and biotic features. These areas, characterized by proximity to upwelling centers, shallow pycnoclines, and high chlorophyll-a and krill concentrations, are potential areas of elevated trophic focusing for specific epipelagic and mesopelagic communities. This synthesis will benefit ecosystem-based management approaches for the central California Current, a region long-impacted by anthropogenic factors.

  4. An individual-based model of the krill Euphausia pacifica in the California Current

    NASA Astrophysics Data System (ADS)

    Dorman, Jeffrey G.; Sydeman, William J.; Bograd, Steven J.; Powell, Thomas M.

    2015-11-01

    Euphausia pacifica is an abundant and important prey resource for numerous predators of the California Current and elsewhere in the North Pacific. We developed an individual-based model (IBM) for E. pacifica to study its bioenergetics (growth, stage development, reproduction, and mortality) under constant/ideal conditions as well as under varying ocean conditions and food resources. To model E. pacifica under varying conditions, we coupled the IBM to an oceanographic-ecosystem model over the period 2000-2008 (9 years). Model results under constant/ideal food conditions compare favorably with experimental studies conducted under food unlimited conditions. Under more realistic variable oceanographic conditions, mean growth rates over the continental shelf were positive only when individuals migrated diurnally to the depth of maximum phytoplankton layer during nighttime feeding. Our model only used phytoplankton as prey and coastal growth rates were lower than expected (0.01 mm d-1), suggesting that a diverse prey base (zooplankton, protists, marine snow) may be required to facilitate growth and survival of modeled E. pacifica in the coastal environment. This coupled IBM-ROMS modeling framework and its parameters provides a tool for understanding the biology and ecology of E. pacifica and could be developed to further the understanding of climatic effects on this key prey species and enhance an ecosystem approach to fisheries and wildlife management in this region.

  5. Seasonal dynamics of physical and biological processes in the central California Current System: A modeling study

    NASA Astrophysics Data System (ADS)

    Guo, Lin; Chai, Fei; Xiu, Peng; Xue, Huijie; Rao, Shivanesh; Liu, Yuguang; Chavez, Francisco P.

    2014-08-01

    A 3-D physical and biological model is used to study the seasonal dynamics of physical and biological processes in the central California Current System. Comparisons of model results with remote sensing and in situ observations along CalCOFI Line 67 indicate our model can capture the spatial variations of key variables (temperature, nutrients, chlorophyll, and so on) on annual mean and seasonal cycle. In the coastal upwelling system, it is the alongshore wind stress that upwells high nutrients to surface from 60 m and stimulates enhanced plankton biomass and productivity in the upwelling season. As a result, coastal species peak in the late upwelling period (May-July), and oceanic species reach the annual maxima in the oceanic period (August-October). The annual maximum occurs in the late upwelling period for new production and in the oceanic period for regenerated production. From the late upwelling period to the oceanic period, stratification is intensified while coastal upwelling becomes weaker. Correspondingly, the coastal ecosystem retreats from ˜300 to ˜100 km offshore with significant decline in chlorophyll and primary production, and the oceanic ecosystem moves onshore. During this transition, the decline in phytoplankton biomass is due to the grazing pressure by mesozooplankton in the 0-150 km domain, but is regulated by low growth rates in the 150-500 km offshore domain. Meanwhile, the growth rates of phytoplankton increase in the coastal waters due to deeper light penetration, while the decrease in offshore growth rates is caused by lower nitrate concentrations.

  6. Diet variability of forage fishes in the Northern California Current System

    NASA Astrophysics Data System (ADS)

    Hill, Andrew D.; Daly, Elizabeth A.; Brodeur, Richard D.

    2015-06-01

    As fisheries management shifts to an ecosystem-based approach, understanding energy pathways and trophic relationships in the Northern California Current (NCC) will become increasingly important for predictive modeling and understanding ecosystem response to changing ocean conditions. In the NCC, pelagic forage fishes are a critical link between seasonal and interannual variation in primary production and upper trophic groups. We compared diets among dominant forage fish (sardines, anchovies, herring, and smelts) in the NCC collected in May and June of 2011 and June 2012, and found high diet variability between and within species on seasonal and annual time scales, and also on decadal scales when compared to results of past studies conducted in the early 2000s. Copepoda were a large proportion by weight of several forage fish diets in 2011 and 2012, which differed from a preponderance of Euphausiidae found in previous studies, even though all years exhibited cool ocean conditions. We also examined diet overlap among these species and with co-occurring subyearling Chinook salmon and found that surf smelt diets overlapped more with subyearling Chinook diets than any other forage fish. Herring and sardine diets overlapped the most with each other in our interdecadal comparisons and some prey items were common to all forage fish diets. Forage fish that show plasticity in diet may be more adapted to ocean conditions of low productivity or anomalous prey fields. These findings highlight the variable and not well-understood connections between ocean conditions and energy pathways within the NCC.

  7. The impact of El Niño events on the pelagic food chain in the northern California Current.

    PubMed

    Fisher, Jennifer L; Peterson, William T; Rykaczewski, Ryan R

    2015-12-01

    The zooplankton of the northern California Current are typically characterized by an abundance of lipid-rich copepods that support rapid growth and survival of ecologically, commercially, and recreationally valued fish, birds, and mammals. Disruption of this food chain and reduced ecosystem productivity are often associated with climatic variability such as El Niño events. We examined the variability in timing, magnitude, and duration of positive temperature anomalies and changes in copepod species composition in the northern California Current in relation to 10 tropical El Niño events. Measurable impacts on mesozooplankton of the northern California Current were observed during seven of 10 of these events. The occurrence of anomalously warm water and the response of the copepod community was rapid (lag of zero to 2 months) following the initiation of canonical Eastern Pacific (EP) events, but delayed (lag of 2-8 months) following 'Modoki' Central Pacific (CP) events. The variable lags in the timing of a physical and biological response led to impacts in the northern California Current peaking in winter during EP events and in the spring during CP events. The magnitude and duration of the temperature and copepod anomalies were strongly and positively related to the magnitude and duration of El Niño events, but were also sensitive to the phase of the lower frequency Pacific Decadal Oscillation. When fisheries managers and biological oceanographers are faced with the prospect of a future El Niño event, prudent management and observation will require consideration of the background oceanographic conditions, the type of event, and both the magnitude and duration of the event when assessing the potential physical and biological impacts on the northern California Current. PMID:26220498

  8. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration

    USGS Publications Warehouse

    Lovich, J.E.; Bainbridge, D.

    1999-01-01

    Large areas of the southern California desert ecosystem have been negatively affected by off-highway vehicle use, overgrazing by domestic livestock, agriculture, urbanization, construction of roads and utility corridors, air pollution, military training exercises, and other activities. Secondary contributions to degradation include the proliferation of exotic plant species and a higher frequency of an- thropogenic fire. Effects of these impacts include alteration or destruction of macro- and micro- vegetation elements, establishment of annual plant communities dominated by exotic species, destruction of soil stabilizers, soil compaction, and increased erosion. Published estimates of recovery time are based on return to predisturbance levels of biomass, cover, density, community structure, or soil characteristics. Natural recovery rates depend on the nature and severity of the impact but are generally very slow. Recovery to predisturbance plant cover and biomass may take 50-300 years, while complete ecosystem recovery may require over 3000 years. Restorative intervention can be used to enhance the success and rate of recovery, but the costs are high and the probability for long-term success is low to moderate. Given the sensitivity of desert habitats to disturbance and the slow rate of natural recovery, the best management option is to limit the extent and intensity of impacts as much as possible.

  9. Transport and coastal zooplankton communities in the northern California Current system

    NASA Astrophysics Data System (ADS)

    Bi, Hongsheng; Peterson, William T.; Strub, Paul T.

    2011-06-01

    Alongshore transport was estimated from the gridded AVISO altimeter data and water level data from NOAA tide gauges (1993-2010) for the northern California Current (NCC) system. The biomass of the cold neritic copepods including Calanus marshallae, Pseudocalanus mimus and Acartia longiremis (dominants in the eastern Bering Sea, coastal Gulf of Alaska, and NCC) was estimated from a 15 year time series of zooplankton samples (1996-2010) collected biweekly at a coastal station 9 km off Newport Oregon U.S.A. The alongshore currents and the biomass of the cold neritic copepods exhibit a strong seasonal pattern and fluctuate in opposite phase: positive alongshore current (from south) leads to low biomass in winter and negative alongshore current (from north) leads to high biomass in summer. When the Pacific Decadal Oscillation (PDO) is positive, i.e., warm conditions around the northeast Pacific, there is more movement of water from the south in the NCC during winter. When the PDO is negative, there is more movement of water from the north during summer. The mean biomass of cold neritic copepods was positively correlated with the survival rate of juvenile coho salmon and cumulative transport was negatively correlated with coho salmon survival, i.e., in years when a greater portion of the source waters feeding the NCC enters from the north, the greater the salmon survival. We conclude that alongshore transport manifests PDO signals and serves as a linkage between large scale forcing to local ecosystem dynamics.

  10. Current Development at the Southern California Earthquake Data Center (SCEDC)

    NASA Astrophysics Data System (ADS)

    Appel, V. L.; Clayton, R. W.

    2005-12-01

    Over the past year, the SCEDC completed or is near completion of three featured projects: Station Information System (SIS) Development: The SIS will provide users with an interface into complete and accurate station metadata for all current and historic data at the SCEDC. The goal of this project is to develop a system that can interact with a single database source to enter, update and retrieve station metadata easily and efficiently. The system will provide accurate station/channel information for active stations to the SCSN real-time processing system, as will as station/channel information for stations that have parametric data at the SCEDC i.e., for users retrieving data via STP. Additionally, the SIS will supply information required to generate dataless SEED and COSMOS V0 volumes and allow stations to be added to the system with a minimum, but incomplete set of information using predefined defaults that can be easily updated as more information becomes available. Finally, the system will facilitate statewide metadata exchange for both real-time processing and provide a common approach to CISN historic station metadata. Moment Tensor Solutions: The SCEDC is currently archiving and delivering Moment Magnitudes and Moment Tensor Solutions (MTS) produced by the SCSN in real-time and post-processing solutions for events spanning back to 1999. The automatic MTS runs on all local events with magnitudes > 3.0, and all regional events > 3.5. The distributed solution automatically creates links from all USGS Simpson Maps to a text e-mail summary solution, creates a .gif image of the solution, and updates the moment tensor database tables at the SCEDC. Searchable Scanned Waveforms Site: The Caltech Seismological Lab has made available 12,223 scanned images of pre-digital analog recordings of major earthquakes recorded in Southern California between 1962 and 1992 at http://www.data.scec.org/research/scans/. The SCEDC has developed a searchable web interface that allows

  11. Nine endangered taxa, one recovering ecosystem: Identifying common ground for recovery on Santa Cruz Island, California

    USGS Publications Warehouse

    McEachern, A. Kathryn; Wilken, Dieter H.

    2011-01-01

    It is not uncommon to have several rare and listed taxa occupying habitats in one landscape or management area where conservation amounts to defense against the possibility of further loss. It is uncommon and extremely exciting, however, to have several listed taxa occupying one island that is managed cooperatively for conservation and recovery. On Santa Cruz Island, the largest of the northern California island group in the Santa Barbara Channel, we have a golden opportunity to marry ecological knowledge and institutional "good will" in a field test of holistic rare plant conservation. Here, the last feral livestock have been removed, active weed control is underway, and management is focused on understanding and demonstrating system response to conservation management. Yet funding limitations still exist and we need to plan the most fiscally conservative and marketable approach to rare plant restoration. We still experience the tension between desirable quick results and the ecological pace of system recovery. Therefore, our research has focused on identifying fundamental constraints on species recovery at individual, demographic, habitat, and ecosystem levels, and then developing suites of actions that might be taken across taxa and landscapes. At the same time, we seek a performance middle ground that balances an institutional need for quick demonstration of hands-on positive results with a contrasting approach that allows ecosystem recovery to facilitate species recovery in the long term. We find that constraints vary across breeding systems, life-histories, and island locations. We take a hybrid approach in which we identify several actions that we can take now to enhance population size or habitat occupancy for some taxa by active restoration, while allowing others to recover at the pace of ecosystem change. We make our recommendations on the basis of data we have collected over the last decade, so that management is firmly grounded in ecological observation.

  12. Disturbance facilitates the coexistence of antagonistic ecosystem engineers in California estuaries.

    PubMed

    Castorani, Max C N; Hovel, Kevin A; Williams, Susan L; Baskett, Marissa L

    2014-08-01

    Ecological theory predicts that interactions between antagonistic ecosystem engineers can lead to local competitive exclusion, but disturbance can facilitate broader coexistence. However, few empirical studies have tested the potential for disturbance to mediate competition between engineers. We examined the capacity for disturbance and habitat modification to explain the disjunct distributions of two benthic ecosystem engineers, eelgrass Zostera marina and the burrowing ghost shrimp Neotrypaea californiensis, in two California estuaries. Sediment sampling in eelgrass and ghost shrimp patches revealed that ghost shrimp change benthic biogeochemistry over small scales (centimeters) but not patch scales (meters to tens of meters), suggesting a limited capacity for sediment modification to explain species distributions. To determine the relative competitive abilities of engineers, we conducted reciprocal transplantations of ghost shrimp and eelgrass. Local ghost shrimp densities declined rapidly following the addition of eelgrass, and transplanted eelgrass expanded laterally into the surrounding ghost shrimp-dominated areas. When transplanted into eelgrass patches, ghost shrimp failed to persist. Ghost shrimp were also displaced from plots with structural mimics of eelgrass rhizomes and roots, suggesting that autogenic habitat modification by eelgrass is an important mechanism determining ghost shrimp distributions. However, ghost shrimp were able to rapidly colonize experimental disturbances to eelgrass patch edges, which are common in shallow estuaries. We conclude that coexistence in this system is maintained by spatiotemporally asynchronous disturbances and a competition-colonization trade-off: eelgrass is a competitively superior ecosystem engineer, but benthic disturbances permit the coexistence of ghost shrimp at the landscape scale by modulating the availability of space. PMID:25230478

  13. Characterizing conditions of California sage scrub communities in Mediterranean-type ecosystems using remote sensing

    NASA Astrophysics Data System (ADS)

    Hamada, Yuki

    Biodiversity loss is an urgent global issue. For California's Mediterranean-type ecosystems, protecting biologically diverse vegetation communities such as the California sage scrub (CSS) community type is vital to conserving rare, threatened, or endangered species, as well as overall species richness of the southern and Baja California region. While existing monitoring methods such as field surveys and vegetation type mapping provide ecologically valuable information, they do not provide information about internal conditions of CSS communities. Fractional cover of plant life forms is frequently utilized to examine conditions of (semi-)arid vegetation communities. For the CSS community type, however, the utility of life-form fractional cover has not received adequate attention as an effective monitoring variable indicating ecological integrity; thus, no reliable, cost-effective methods have been developed. This dissertation investigates the effectiveness of fractional cover of true shrub, subshrub, herb, and bare ground for quantifying CSS community conditions, tests remote sensing approaches to obtain spatially comprehensive life-form cover fractions, and explores the utility of life-form fractional cover maps for sustainable, effective long-term monitoring of CSS communities of southern California. Past studies indicate that fractional cover of plant life forms is an effective measure for quantifying CSS community integrity, and remote sensing is the only means to estimate spatially exhaustive cover fractions cost-effectively over large extent. Among the remote sensing approaches tested, object-based image analysis using pansharpened QuickBird imagery shows the most promise for estimating life-form fractional cover within CSS communities because of its high accuracy (e.g., RMSE as low as 6.4%) and robustness in estimating cover fractions and ability of providing life-form-level landscape metrics. Multiple Endmember Spectral Mixture Analysis using SPOT imagery is

  14. Measurement of Ecosystem Metabolism across Climatic and Vegetation Gradients in California

    NASA Astrophysics Data System (ADS)

    DuBois, S.; Serbin, S.; Desai, A. R.; Kruger, E.; Kingdon, C.; Goulden, M.; Townsend, P. A.

    2013-12-01

    Terrestrial ecosystem models require information on vegetation structure, phenology, demographics, biochemistry, radiation properties, and physiology in order to accurately simulate the responses of ecosystem functioning to global change and disturbances. These models generally depend on a small number of intensive, fine-scaled point-based measurements from eddy covariance towers, detailed vegetation surveys, literature values, and site-scale data assimilation techniques to improve model calibration. However, the limited geographic and/or temporal scope of measurements can lead to inadequate model generalizations of modeled carbon (C), water, and energy fluxes across broad regions and relevant time periods. Remote sensing approaches, particularly imaging spectroscopy (IS) and thermal infrared (TIR) data, have the potential to provide the broad-scale spatial and temporal dynamics in many important vegetation properties related to ecosystem functioning. As part of the ongoing NASA HyspIRI Airborne Campaign (http://hyspiri.jpl.nasa.gov/airborne) we are assessing the potential of IS+TIR to generate spatially explicit estimates of two important parameters characterizing plant photosynthetic capacity: the maximum rate of CO2 carboxylation by RuBisCo (Vcmax), and the maximum rate of electron transport required for the regeneration of RuBP needed in Calvin Cycle processes (Jmax). These estimates are based on recent evidence that both properties can be predicted at the leaf level using spectroscopy techniques (Ainsworth et al. 2013 [http://tinyurl.com/n5xnzjg]; Serbin et al. 2012 [http://tinyurl.com/mhocmlz]). It follows that estimation of these variables from remotely sensed IS+TIR (i.e. AVIRIS & MASTER) could facilitate the prediction of seasonal C assimilation across large areas using data from the anticipated HyspIRI satellite mission. Our research focuses on two climate-elevation transects in California, which span a vegetation gradient from coastal sage and chaparral

  15. Topographic Controls on Southern California Ecosystem Function and Post-fire Recovery: a Satellite and Near-surface Remote Sensing Approach

    NASA Astrophysics Data System (ADS)

    Azzari, George

    Southern Californian wildfires can influence climate in a variety of ways, including changes in surface albedo, emission of greenhouse gases and aerosols, and the production of tropospheric ozone. Ecosystem post-fire recovery plays a key role in determining the strength, duration, and relative importance of these climate forcing agents. Southern California's ecosystems vary markedly with topography, creating sharp transitions with elevation, aspect, and slope. Little is known about the ways topography influences ecosystem properties and function, particularly in the context of post-fire recovery. We combined images from the USGS satellite Landsat 5 with flux tower measurements to analyze pre- and post-fire albedo and carbon exchanged by Southern California's ecosystems in the Santa Ana Mountains. We reduced the sources of external variability in Landsat images using several correction methods for topographic and bidirectional effects. We used time series of corrected images to infer the Net Ecosystem Exchange and surface albedo, and calculated the radiative forcing due to CO2 emissions and albedo changes. We analyzed the patterns of recovery and radiative forcing on north- and south-facing slopes, stratified by vegetation classes including grassland, coastal sage scrub, chaparral, and evergreen oak forest. We found that topography strongly influenced post-fire recovery and radiative forcing. Field observations are often limited by the difficulty of collecting ground validation data. Current instrumentation networks do not provide adequate spatial resolution for landscape-level analysis. The deployment of consumer-market technology could reduce the cost of near-surface measurements, allowing the installation of finer-scale instrument networks. We tested the performance of the Microsoft Kinect sensor for measuring vegetation structure. We used Kinect to acquire 3D vegetation point clouds in the field, and used these data to compute plant height, crown diameter, and

  16. Current California legislative and regulatory activity impacting geothermal hydrothermal commercialization: a monitoring report. Report No. 1017

    SciTech Connect

    Not Available

    1980-01-20

    Four key geothermal-impacting bills presently before the California legislature are described. Two deal with state financial backing for geothermal projects. The third relates to the use of the state's share of the BLM geothermal revenues and the fourth to the protection of sensitive hot springs. The current regulatory activities of the California Energy Commission, the California Division of Oil and Gas, and the counties are discussed. (MHR)

  17. Processes influencing seasonal hypoxia in the northern California Current System

    PubMed Central

    Connolly, T. P.; Hickey, B. M.; Geier, S. L.; Cochlan, W. P.

    2010-01-01

    This paper delineates the role of physical and biological processes contributing to hypoxia, dissolved oxygen (DO) < 1.4 mL/L, over the continental shelf of Washington State in the northern portion of the California Current System (CCS). In the historical record (1950–1986) during the summer upwelling season, hypoxia is more prevalent and severe off Washington than further south off northern Oregon. Recent data (2003–2005) show that hypoxia over the Washington shelf occurred at levels previously observed in the historical data. 2006 was an exception, with hypoxia covering ~5000 km2 of the Washington continental shelf and DO concentrations below 0.5 mL/L at the inner shelf, lower than any known previous observations at that location. In the four years studied, upwelling of low DO water and changes in source water contribute to interannual variability, but cannot account for seasonal decreases below hypoxic concentrations. Deficits of DO along salinity surfaces, indicating biochemical consumption of DO, vary significantly between surveys, accounting for additional decreases of 0.5–2.5 mL/L by late summer. DO consumption is associated with denitrification, an indicator of biochemical sediment processes. Mass balances of DO and nitrate show that biochemical processes in the water column and sediments each contribute ~50% to the total consumption of DO in near-bottom water. At shorter than seasonal time scales on the inner shelf, along-shelf advection of hypoxic patches and cross-shelf advection of seasonal gradients are both shown to be important, changing DO concentrations by 1.5 mL/L or more over five days. PMID:20463844

  18. Molecular hydrogen uptake by soils in forest, desert, and marsh ecosystems in California

    NASA Astrophysics Data System (ADS)

    Smith-Downey, Nicole V.; Randerson, James T.; Eiler, John M.

    2008-09-01

    The mechanism and environmental controls on soil hydrogen (H2) uptake are not well understood but are essential for understanding the atmospheric H2 budget. Field observations of soil H2 uptake are limited, and here we present the results from a series of measurements in forest, desert, and marsh ecosystems in southern California. We measured soil H2 fluxes using flux chambers from September 2004 to July 2005. Mean H2 flux rates and standard deviations were -7.9 + -4.2, -7.6 + -5.3 and -7.5 + -3.4 nmol m-2 s-1 for the forest, desert, and marsh, respectively (corresponding to deposition velocities of 0.063 + -0.029, 0.051 + -0.036, 0.035 + -0.013 cm s-1). Soil profile measurements showed that H2 mixing ratios were between 3% and 51% of atmospheric levels at 10 cm and that the penetration of H2 into deeper soil layers increased with soil drying. Soil removal experiments in the forest demonstrated that the litter layer did not actively consume H2, the removal of this layer increased uptake by deeper soil layers, and the exposure of subsurface soil layers to ambient atmospheric H2 levels substantially increased their rate of uptake. Similar soil removal experiments at the desert site showed that extremely dry surface soils did not consume H2 and that fluxes at the surface increased when these inactive layers were removed. We present a model of soil H2 fluxes and show that the diffusivity of soils, along with the vertical distribution of layers that actively consume H2 regulate surface fluxes. We found that soil organic matter, CO2 fluxes, and ecosystem type were not strong controllers of H2 uptake. Our experiments highlight H2 diffusion into soils as an important limit on fluxes and that minimum moisture level is needed to initiate microbial uptake.

  19. The diel patterns of soil respiration in four arid California ecosystems: fluxes, sources and hypotheses

    NASA Astrophysics Data System (ADS)

    Carbone, M.; Trumbore, S.; Winston, G.; Serio, D.

    2007-12-01

    Automated measurements provide the high-resolution information that enables us to analyze potential causes for diel variability in soil respiration. These diel patterns are the complex result of biological and physical processes that determine the production and diffusion of CO2 through the soil. We examined the diel patterns of soil respiration from four arid California ecosystems: (1) a pinon-juniper woodland in at the Burns Pinon Ridge Reserve near Joshua Tree National Park, (2) a cold desert shrub community and (3) a perennial grassland near the city of Bishop in the Owens Valley, and (4) a mixed oak-pine forest at the James Reserve in the San Jacinto Mountains. In addition to automated chamber and environmental measurements at these sites, we used isotopic (14C) partitioning techniques to separate the plant and microbial sources contributing to soil respiration at certain time points. Here we present the diel cycles of soil respiration and environmental variables, the source partitioning results, and hypotheses about what processes determine these diel patterns that both span, and are specific to the studied ecosystems. In these systems dominated by Mediterranean or desert climates, we observed that factors like relative humidity can dominate the diel variations in soil respiration for sites with very dry surface litter. At other sites and times of year, diel variation in soil respiration reflects photosynthetic and VPD influence on root respiration. The combination of automated chamber measurements with isotopes provides information useful for separating the plant and heterotrophic control on diel and seasonal soil respiration fluxes.

  20. Effects of Management on Soil Carbon Pools in California Rangeland Ecosystems

    NASA Astrophysics Data System (ADS)

    Silver, W. L.; Ryals, R.; Lewis, D. J.; Creque, J.; Wacker, M.; Larson, S.

    2008-12-01

    Rangeland ecosystems managed for livestock production represent the largest land-use footprint globally, covering more than one-quarter of the world's land surface (Asner et al. 2004). In California, rangelands cover an estimated 17 million hectares or approximately 40% of the land area (FRAP 2003). These ecosystems have considerable potential to sequester carbon (C) in soil and offset greenhouse gas emissions through changes in land management practices. Climate policies and C markets may provide incentives for rangeland managers to pursue strategies that optimize soil C storage, yet we lack a thorough understanding of the effects of management on soil C pools in rangelands over time and space. We sampled soil C pools on rangelands in a 260 km2 region of Marin and Sonoma counties to determine if patterns in soil C storage exist with management. Replicate soil samples were collected from 35 fields that spanned the dominant soil orders, plant communities, and management practices in the region while controlling for slope and bioclimatic zone (n = 1050). Management practices included organic amendments, intensive (dairy) and extensive (other) grazing practices, and subsoiling. Soil C pools ranged from approximately 50 to 140 Mg C ha-1 to 1 m depth, with a mean of 99 ± 22 (sd) Mg C ha-1. Differences among sites were due primarily to C concentrations, which exhibited a much larger coefficient of variation than bulk density at all depths. There were no statistically significant differences among the dominant soil orders. Subsoiling appeared to significantly increase soil C content in the top 50 cm, even though subsoiling had only occurred for the first time the previous Nov. Organic amendments also appeared to greatly increase soil C pools, and was the dominant factor that distinguished soil C pools in intensive and extensive land uses. Our results indicate that management has the potential to significantly increase soil C pools. Future research will determine the

  1. Water Use in Los Angeles, California: Consumption Patterns, Ecosystem Response and Impact on Regional Water Budgets

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.

    2014-12-01

    The City of Los Angeles relies heavily on external water sources, primarily the Eastern Sierra, Northern California and the Colorado River, and approximately 90% of the City's water supply is snowpack dependent. In recent years, water conservation measures have been implemented in response to regional drought, which include a tiered pricing structure and watering restrictions. As a result of implemented conservation policies, Los Angeles reported the lowest water consumption per capita per day in 2011 among cities over 1 million people in the U.S. This presentation will highlight our ongoing work to better understand the coupling between humans, ecosystems and water across the City of Los Angeles, especially during the recent drought period. Our work is unique in that we integrate social, ecological, and hydrologic data, including ten years of residential water consumption data for the entire city of Los Angeles, extensive groundwater well data, socio-economic information and remote sensing to evaluate relationships as well as spatial and temporal patterns. Developed statistical models demonstrated that Single-Family Residential (SFR) water use across the City is primarily driven by household income, landscape greenness, water rates and water volume allocation,, with higher consumption rates in the northern, warmer and more affluent parts, and lower consumption rates in the less affluent neighborhoods near Downtown. Landscape use also varies greatly across the city, averaging 50% of total SFR. Our evaluation of conservation efforts shows that the combination of mandatory watering restrictions and price increase led to a water reduction of 23%, while voluntary restrictions led to only a 6% reduction in water use. Relationships of water use to ecosystems (greenness) and groundwater variability were also evaluated and will be highlighted. Our ultimate goal is to improve predictions of human-water interactions in order to drive policy change and guide future demand

  2. Partial decoupling of primary productivity from upwelling in the California Current system

    NASA Astrophysics Data System (ADS)

    Renault, Lionel; Deutsch, Curtis; McWilliams, James C.; Frenzel, Hartmut; Liang, Jun-Hong; Colas, François

    2016-07-01

    Coastal winds and upwelling of deep nutrient-rich water along subtropical eastern boundaries yield some of the ocean's most productive ecosystems. Simple indices of coastal wind strength have been extensively used to estimate the timing and magnitude of biological productivity on seasonal and interannual timescales and underlie the prediction that anthropogenic climate warming will increase the productivity by making coastal winds stronger. The effect of wind patterns on regional net primary productivity is not captured by such indices and is poorly understood. Here we present evidence, using a realistic model of the California Current system and satellite measurements, that the observed slackening of the winds near the coast has little effect on near-shore phytoplankton productivity despite a large reduction in upwelling velocity. On the regional scale the wind drop-off leads to substantially higher production even when the total upwelling rate remains the same. This partial decoupling of productivity from upwelling results from the impact of wind patterns on alongshore currents and the eddies they generate. Our results imply that productivity in eastern boundary upwelling systems will be better predicted from indices of the coastal wind that account for its offshore structure.

  3. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California.

    PubMed

    Fenn, M E; Allen, E B; Weiss, S B; Jovan, S; Geiser, L H; Tonnesen, G S; Johnson, R F; Rao, L E; Gimeno, B S; Yuan, F; Meixner, T; Bytnerowicz, A

    2010-12-01

    Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km(2)) is estimated to be in excess of the N CL. Low CL values (3-8 kg N ha(-1) yr(-1)) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3-15% of the forested and chaparral land areas are estimated to be in exceedance of the NO(3)(-) leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha(-1) yr(-1). In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha(-1) yr(-1), and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha(-1) yr(-1). Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or

  4. The Foundations and Current Impact of California's Proposition 227.

    ERIC Educational Resources Information Center

    Purcell, John

    California's Proposition 227 requires that all children be taught English by being taught in English. This proposition, which basically outlaws bilingual education, is the newest chapter in the history of how non-English speaking and limited English proficient (LEP) students should be educated. After presenting the historical, social, political,…

  5. Current status of Citrus tristeza virus in Central California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lindcove Research and Extension Center (LREC), Exeter, CA has 51 ha of citrus and is the field site and screenhouses for the University of California Citrus Clonal Protection Program (CCPP). LREC maintains a zero tolerance of Citrus tristeza virus (CTV) infected trees to protect the CCPP and re...

  6. Foraging ecology and movement patterns of jumbo squid (Dosidicus gigas) in the California Current System

    NASA Astrophysics Data System (ADS)

    Field, John C.; Elliger, Carl; Baltz, Ken; Gillespie, Graham E.; Gilly, William F.; Ruiz-Cooley, R. I.; Pearse, Devon; Stewart, Julia S.; Matsubu, William; Walker, William A.

    2013-10-01

    From 2002 to 2010, the jumbo squid (Dosidicus gigas) has been regularly encountered in large numbers throughout the California Current System (CCS). This species, usually found in subtropical waters, could affect coastal pelagic ecosystems and fisheries as both predator and prey. Neither the abundance of jumbo squid nor the optimal ocean conditions in which they flourish are well known. To understand better the potential impacts of this species on both commercial fisheries and on food-web structure we collected nearly 900 specimens from waters of the CCS, covering over 20° of latitude, over a range of depths and seasons. We used demographic information (size, sex, and maturity state) and analyzed stomach contents using morphological and molecular methods to best understand the foraging ecology of this species in different habitats of the CCS. Squid were found to consume a broad array of prey. Prey in offshore waters generally reflected the forage base reported in previous studies (mainly mesopelagic fishes and squids), whereas in more coastal waters (shelf, shelf break and slope habitats) squid foraged on a much broader mix that included substantial numbers of coastal pelagic fishes (Pacific herring and northern anchovy, as well as osmerids and salmonids in northern waters) and groundfish (Pacific hake, several species of rockfish and flatfish). We propose a seasonal movement pattern, based on size and maturity distributions along with qualitative patterns of presence or absence, and discuss the relevance of both the movement and distribution of jumbo squid over space and time. We find that jumbo squid are a generalist predator, which feeds primarily on small, pelagic or mesopelagic micronekton but also on larger fishes when they are available. We also conclude that interactions with and potential impacts on ecosystems likely vary over space and time, in response to both seasonal movement patterns and highly variable year-to-year abundance of the squid themselves.

  7. Predictive Relationships for pH and Carbonate Saturation in the Southern California Current System Using Oxygen and Temperature Data

    NASA Astrophysics Data System (ADS)

    Alin, S. R.; Feely, R. A.; Dickson, A. G.; Hernandez-Ayon, J. M.; Juranek, L. W.; Ohman, M. D.; Goericke, R.

    2010-12-01

    The California Current System is expected to experience the ecological impacts of ocean acidification earlier than most other ocean regions because marine waters in the North Pacific are among the oldest in the global oceans and natural upwelling processes in this eastern boundary current system bring CO2-rich water masses to the surface in coastal oceans during late spring-early fall months. We used a multiple linear regression (MLR) approach to generate predictive models using oxygen and temperature as proxy variables to reconstruct pH and carbonate saturation states in the Southern California Bight. The calibration data set included high-quality measurements of dissolved inorganic carbon, alkalinity, oxygen, temperature, salinity, and nutrients and was collected during a cruise from British Columbia to Baja California in May-June 2007. The resulting relationships predicting pH and aragonite and calcite saturation states (Ω) from oxygen and temperature data were robust, with r2 values >0.98 and root mean square errors of 0.020 (pH), 0.048 (Ωarag), and 0.075 (Ωcalc). Predicted vs. measured ocean acidification conditions (i.e. pH, Ωarag, and Ωcalc) matched very well for seven verification data sets collected between 2008 and 2010 during quarterly CalCOFI cruises in the Southern California Bight and during several sampling dates on an Ensenada transect occupied several times between 2006 and 2010. Over sub-decadal time scales, these predictive models provide a valuable tool for reconstructing historical time-series of ocean acidification conditions in the California Current Ecosystem where historical inorganic carbon measurements are scarce. Reconstructed pH and saturation state values based on CalCOFI oxygen and temperature data for all cruises between 2005 and 2010 reveal a seasonal cycle in the upper water column, with higher pH and Ω values present during the winter cruises, and stronger gradients including much lower pH and Ω values during spring through

  8. Trends in primary production in the California Current detected with satellite data

    NASA Astrophysics Data System (ADS)

    Kahru, Mati; Kudela, Raphael; Manzano-Sarabia, Marlenne; Mitchell, B. Greg

    2009-02-01

    Several ocean primary production algorithms using satellite data were evaluated on a large archive of net primary production (NPP) and chlorophyll-a (Chl-a) measurements collected by the California Cooperative Fisheries Investigations program in the California Current. The best algorithm matching in situ data was found by empirically adjusting the Behrenfeld-Falkowski Vertically Generalized Production Model. Satellite-derived time series of NPP were calculated for the California Current area. Significant increase in NPP and Chl-a annual peak levels, i.e., the "bloom magnitude," were found along the coasts of the California Current as well as other major eastern boundary currents for the period of modern ocean color data (1997-2007). The reasons for this increase are not clear but are associated with various environmental conditions.

  9. Material properties of Pacific hake, Humboldt squid, and two species of myctophids in the California Current.

    PubMed

    Becker, Kaylyn N; Warren, Joseph D

    2015-05-01

    Material properties of the flesh from three fish species (Merluccius productus, Symbolophorus californiensis, and Diaphus theta), and several body parts of the Humboldt squid (Dosidicus gigas) collected from the California Current ecosystem were measured. The density contrast relative to seawater varied within and among taxa for fish flesh (0.9919-1.036), squid soft body parts (mantle, arms, tentacle, braincase, eyes; 1.009-1.057), and squid hard body parts (beak and pen; 1.085-1.459). Effects of animal length and environmental conditions on nekton density contrast were investigated. The sound speed contrast relative to seawater varied within and among taxa for fish flesh (0.986-1.027) and Humboldt squid mantle and braincase (0.937-1.028). Material properties in this study are similar to values from previous studies on species with similar life histories. In general, the sound speed and density of soft body parts of fish and squid were 1%-3% and 1%-6%, respectively, greater than the surrounding seawater. Hard parts of the squid were significantly more dense (6%-46%) than seawater. The material properties reported here can be used to improve target strength estimates from acoustic scattering models, which could increase the accuracy of biomass estimates from acoustic surveys for these nekton. PMID:25994685

  10. Microbial Enzymatic Response to Reduced Precipitation and Added Nitrogen in a Southern California Grassland Ecosystem

    NASA Astrophysics Data System (ADS)

    Alster, C. J.; German, D.; Allison, S. D.

    2011-12-01

    Microbial enzymes play a fundamental role in ecosystem processes and nutrient mineralization. Although there have been many studies concluding that global climate change affects plant communities, the effects on microbial communities in leaf litter have been much less studied. We measured extracellular enzyme activities in litter decomposing in plots with either reduced precipitation or increased nitrogen in a grassland ecosystem in Loma Ridge National Landmark in Southern California. We used a reciprocal transplant design to examine the effects of plot treatment, litter origin, and microbial community origin on litter decomposition and extracellular enzyme activity. Our hypothesis was that increased nitrogen would increase activity because nitrogen often limits microbial growth, while decreased precipitation would decrease activity due to lower litter moisture levels. Samples were collected in March 2011 and analyzed for the activities of cellobiohydrolase (CBH), β-glucosidase (BG), α-glucosidase (AG), N-acetyl-β-D-glucosaminidase (NAG), β-xylosidase (BX), acid phosphatase (AP), and leucine aminopeptidase (LAP). None of the factors in the nitrogen manipulation had a significant effect on any of the enzymes, although BG, CBH, and NAG increased marginally significantly in plots with nitrogen addition (p = 0.103, p = 0.082, and p = 0.114, respectively). For the precipitation manipulation, AG, BG, BX, CBH, and NAG significantly increased in plots with reduced precipitation (p = 0.015, p <0.001, p<0.001, and p<0.001, respectively) while LAP significantly decreased (p = 0.002). LAP catalyzes the hydrolysis of polypeptides, so reduced LAP activity could result in lower rates of enzyme turnover in the reduced precipitation treatment. We also observed that AP significantly increased (p = 0.014) in litter originating from reduced precipitation plots, while AG, BX, and LAP significantly decreased (p = 0.011, p = 0.031, and 0.005, respectively). There were no significant

  11. Current ecosystem processes in steppe near Lake Baikal

    NASA Astrophysics Data System (ADS)

    Vanteeva, Julia

    2015-04-01

    The steppes and forest steppes complexes of Priol'khonie at the Lake Baikal (southern Siberia, Russia) were studied in this research. Recreational activity has a significant impact on the Priol'khonie region. During soviet time this area was actively used for agriculture. Nowadays, this territory is the part of Pribaikalskyi National Park and special protection is needed. As the landscapes satisfy different human demands there are many land-management conflicts. The specific climate and soil conditions and human activity lead to erosion processes on study area. Sediment loads are transferred into the Lake Baikal and cause water pollution. Consequently, vegetation cover and phytomass play an important role for regulating hydrological processes in the ecosystems. The process of phytomass formation and its proactive role playing on sedimentation and mitigate silt detaching by rill and inter-rill erosion are considered in the research as important indicators of the ecosystem functions for steppe landscapes. These indicators were studied for the different land cover types identified on the area because the study area has a large variety of steppe and forest steppe complexes, differing in the form of relief, soil types, vegetation species composition and degree of land degradation. The fieldwork was conducted in the study area in the July and August of 2013. Thirty-two experimental sites (10 x 10 m) which characterized different types of ecosystem were established. The level of landscape degradation was estimated. The method of clipping was used for the valuation of above-ground herbaceous phytomass. The phytomass of tree stands was calculated using the volume-conversion rates for forest-steppe complexes. For the quantification of transferred silt by inter-rill erosion in different conditions (vegetation, slope, soil type, anthropogenic load) a portable rainfall simulator was created with taking into account the characteristics of the study area. The aboveground

  12. Desegregating California Schools. California Current Review of Human Resources, Number 3, November 1969.

    ERIC Educational Resources Information Center

    California League of Women Voters, San Francisco.

    This bulletin, prepared by the League of Women Voters, attempts to summarize popularly used methods of desegregation and to make specific suggestions for use in the State of California. State responsibilities for desegregation are presented against the background of Federal and State court decisions. The status of racial imbalance in California…

  13. Indirect Effects of Conservation Policies on the Coupled Human-Natural Ecosystem of the Upper Gulf of California

    PubMed Central

    Morzaria-Luna, Hem Nalini; Ainsworth, Cameron H.; Kaplan, Isaac C.; Levin, Phillip S.; Fulton, Elizabeth A.

    2013-01-01

    High bycatch of non-target species and species of conservation concern often drives the implementation of fisheries policies. However, species- or fishery-specific policies may lead to indirect consequences, positive or negative, for other species or fisheries. We use an Atlantis ecosystem model of the Northern Gulf of California to evaluate the effects of fisheries policies directed at reducing bycatch of vaquita (Phocoena sinus) on other species of conservation concern, priority target species, and metrics of ecosystem function and structure. Vaquita, a Critically Endangered porpoise endemic to the Upper Gulf of California, are frequently entangled by finfish gillnets and shrimp driftnets. We tested five fishery management scenarios, projected over 30 years (2008 to 2038), directed at vaquita conservation. The scenarios consider progressively larger spatial restrictions for finfish gillnets and shrimp driftnets. The most restrictive scenario resulted in the highest biomass of species of conservation concern; the scenario without any conservation measures in place resulted in the lowest. Vaquita experienced the largest population increase of any functional group; their biomass increased 2.7 times relative to initial (2008) levels under the most restrictive spatial closure scenario. Bycatch of sea lions, sea turtles, and totoaba decreased > 80% in shrimp driftnets and at least 20% in finfish gillnet fleets under spatial management. We found indirect effects on species and ecosystem function and structure as a result of vaquita management actions. Biomass and catch of forage fish declined, which could affect lower-trophic level fisheries, while other species such as skates, rays, and sharks increased in both biomass and catch. When comparing across performance metrics, we found that scenarios that increased ecosystem function and structure resulted in lower economic performance indicators, underscoring the need for management actions that consider ecological and

  14. Indirect effects of conservation policies on the coupled human-natural ecosystem of the upper Gulf of California.

    PubMed

    Morzaria-Luna, Hem Nalini; Ainsworth, Cameron H; Kaplan, Isaac C; Levin, Phillip S; Fulton, Elizabeth A

    2013-01-01

    High bycatch of non-target species and species of conservation concern often drives the implementation of fisheries policies. However, species- or fishery-specific policies may lead to indirect consequences, positive or negative, for other species or fisheries. We use an Atlantis ecosystem model of the Northern Gulf of California to evaluate the effects of fisheries policies directed at reducing bycatch of vaquita (Phocoena sinus) on other species of conservation concern, priority target species, and metrics of ecosystem function and structure. Vaquita, a Critically Endangered porpoise endemic to the Upper Gulf of California, are frequently entangled by finfish gillnets and shrimp driftnets. We tested five fishery management scenarios, projected over 30 years (2008 to 2038), directed at vaquita conservation. The scenarios consider progressively larger spatial restrictions for finfish gillnets and shrimp driftnets. The most restrictive scenario resulted in the highest biomass of species of conservation concern; the scenario without any conservation measures in place resulted in the lowest. Vaquita experienced the largest population increase of any functional group; their biomass increased 2.7 times relative to initial (2008) levels under the most restrictive spatial closure scenario. Bycatch of sea lions, sea turtles, and totoaba decreased > 80% in shrimp driftnets and at least 20% in finfish gillnet fleets under spatial management. We found indirect effects on species and ecosystem function and structure as a result of vaquita management actions. Biomass and catch of forage fish declined, which could affect lower-trophic level fisheries, while other species such as skates, rays, and sharks increased in both biomass and catch. When comparing across performance metrics, we found that scenarios that increased ecosystem function and structure resulted in lower economic performance indicators, underscoring the need for management actions that consider ecological and

  15. Decadal variability in abundances of the dominant euphausiid species in southern sectors of the California Current

    NASA Astrophysics Data System (ADS)

    Brinton, Edward; Townsend, Annie

    2003-08-01

    Euphausiid abundance data from broadly based California Cooperative Oceanic Fisheries Investigation surveys in California and Baja California sectors of the California Current provided a time series distinguishing periodic, rhythmic and irregular species patterns. Comparisons with environmental indexes indicate significant correlations with warm-water species, most notably in coastal Nyctiphanes simplex. Oceanic warm-water species were similarly, but less extremely, allied with an index. Coastal warm-water N. simplex was uncommon off southern California before the atmospheric regime shift of the 1970s. It assumed a post-1978 pattern of rhythmic biannual abundance increases and decreases during 1981-2000. The near-tropical oceanic Euphausia eximia and Pacific Central subtropicals patterned similarly, but was more periodic than rhythmic. Euphausia pacifica, the most dominant and broadly ranging Euphausia species, peaked at irregular but distinct bi-decadal abundances during 6 strong La Niña episodes. The peaks uniformly collapsed by 90%, becoming El Niño-associated minima. The cold-water coastal northern species Thysanoessa spinifera frequently ranged far south off Baja California before 1960 but became limited to Central California in the 1980s. The importance of T. spinifera off the Californias is small compared with northern regions, but it extends to southern upwelling centers contributing to dominance, here, by cold-water euphausiids. Decadal periodicity of species abundances decreased in the 1990s, when trends became more common. Differences among sectors were minimal between the two Californias, but were often distinct between southern California and Central Baja California. Species abundances, comparing pre- and post-climate shift species averages, differed insignificantly for all species when logarithmic values were used. With arithmetic values, most 1977-1998 average values were the greater, but with large standard deviations.

  16. Ecosystem impacts of compost and manure applications to California grazed grassland soils

    NASA Astrophysics Data System (ADS)

    DeLonge, M. S.; Silver, W. L.

    2012-12-01

    Organic matter amendments, such as compost and manure, are often applied to grasslands to improve soil conditions and enhance net primary productivity. It has been proposed that this land management strategy can sequester carbon (C) in soils and may therefore contribute to climate change mitigation. However, the net mitigation potential of organic amendments depends in part on the ecosystem response following land-application, which is likely to vary with the amendment chemical quality (C, N, C:N). To investigate the differences in ecosystem response to soil amendments of various qualities, we established research plots on three grazed annual grasslands in northern California. The study sites were sampled for soil chemical and physical properties (bulk density, temperature, and moisture), plant community composition, and peak season net primary productivity prior to and following treatment applications. In October 2011, before the rainy season, we applied a thin layer of organic amendments to the study plots. At each site, three replicate plots were treated with fresh manure (1.2 % N, 15.8 % C, C:N = 13.5), three plots were treated with a commercial plant-waste compost (2.4 % N, 26.6 % C, C:N = 11.1), and three plots were left untreated as controls. At one site, 3 additional plots received a thin layer of compost with a lower N concentration and a higher C:N ratio (1.9 % N, 27.4 % C, C:N = 14.5). All plots were sampled for greenhouse gas emissions (N2O, CH4, and CO2, n=3 per plot) using vented chambers shortly after the organic matter was applied, and then intensively following three rain events throughout the rainy season. Results showed that dry amendments were associated with negligible trace gas fluxes, but that these fluxes increased after rain events. Nitrous oxide emissions increased slightly after the first rain event and reached peak levels (approximately 20 ng N cm-1 h-1 for the manure and high N compost only) after three days, following second rain event

  17. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates

    USGS Publications Warehouse

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; `Ohukani`ohi`a Gon, Sam, III; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  18. Integrated biochemical, molecular genetic, and bioacoustical analysis of mesoscale variability of the euphausiid Nematoscelis difficilis in the California Current

    NASA Astrophysics Data System (ADS)

    Bucklin, Ann; Wiebe, Peter H.; Smolenack, Sara B.; Copley, Nancy J.; Clarke, M. Elizabeth

    2002-03-01

    Integrated assessment of the euphausiid Nematoscelis difficilis (Crustacea; Euphausiacea) and the zooplankton assemblage of the California Current was designed to investigate individual, population, and community responses to mesoscale variability in biological and physical characters of the ocean. Zooplankton samples and observational data were collected along a cross-shelf transect of the California Current in association with the California Cooperative Fisheries Investigations (CalCOFI) Survey during October 1996. The transect crossed three domains defined by temperature and salinity: nearshore, mid-Current, and offshore. Individual N. difficilis differed in physiological condition along the transect, with higher size-corrected concentrations of four central metabolic enzymes (citrate synthetase, hexokinase, lactate dehydrogenase (LDH), and phosphoglucose isomerase (PGI)) for euphausiids collected in nearshore waters than in mid-Current and offshore waters. There was little variation in the DNA sequences of the genes encoding PGI and LDH (all DNA changes were either silent or heterozygous base substitutions), suggesting that differences in enzyme concentration did not result from underlying molecular genetic variation. The population genetic makeup of N. difficilis varied from sample to sample based on haplotype frequencies of mitochondrial cytochrome oxidase I (mtCOI; P=0.029). There were significant differences between pooled nearshore and offshore samples, based on allele frequencies at two sites of common substitutions in the mtCOI sequence ( P=0.020 and 0.026). Silhouette and bioacoustical backscattering measurements of the zooplankton assemblage of the top 100 m showed marked diel vertical migration of the scattering layer, of which euphausiids were a small but significant fraction. The biochemical and molecular assays are used as indices of complex physiological (i.e., growth and condition) and genetic (i.e., mortality) processes; the bioacoustical

  19. Compound-Specific δ15N Amino Acid Measurements in Littoral Mussels in the California Upwelling Ecosystem: A New Approach to Generating Baseline δ15N Isoscapes for Coastal Ecosystems

    PubMed Central

    Vokhshoori, Natasha L.; McCarthy, Matthew D.

    2014-01-01

    We explored δ15N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ15N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ15N values showed a strong linear trend with latitude, increasing from North to South (from ∼7‰ to ∼12‰, R2 = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ15N trend is therefore most consistent with a baseline δ15N gradient, likely due to the mixing of two source waters: low δ15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ15N values of phenylalanine (δ15NPhe), the best AA proxy for baseline δ15N values. We hypothesize δ15NPhe values in intertidal mussels can approximate annual integrated δ15N values of coastal phytoplankton primary production. We therefore used δ15NPhe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ15N values. We propose that δ15NPhe isoscapes derived from filter feeders can directly characterize baseline δ15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  20. Benthic production and processes off Baja California, northwest Africa and Peru: a classification of benthic subsystems in upwelling ecosystems

    SciTech Connect

    Rowe, G.T.

    1983-01-01

    Estimates of the standing stocks, secondary production and metabolism of the benthos have been compared in the coastal upwelling ecosystems off northwest Africa, Baja California, and southern Peru. Northwest Africa is characterized by shelf break upwelling and as a result standing stocks, macrobenthic production and sediment organic matter are highest out at the shelf-slope boundary. Sediment microbial activity and biomass on the other hand are highest nearshore in the dynamic zone where aeolian silt and sand are being blown into the sea from the Sahara Desert. Baja California is dominated by the red crab, Pleuroncodes planipes, having high rates of growth and metabolic utilization of organic matter, both on bottom and in the water. Peru benthos and metabolism are very different from the above areas because of the low oxygen concentrations in the bottom water. Organic matter is far higher in the sediment and heterotrophic metabolism is principally anaerobic rather than aerobic. A normal offshore benthic fauna is replaced by a mat of sulfur bacteria with unknown production and metabolic rates. Benthic subsystems in upwelling ecosystems can be placed in two categories: those overloaded with organic matter, depleted of oxygen and dominated by sulfate reduction and those that are not overloaded and remain aerobic. Peru and southwest Africa typify overloaded systems whereas NW Africa and Baja California are examples of aerobic systems. Although benthic metabolism and ionorganic nutrient regeneration are high in both types of subsystems, all upwelling ecosystems, with their dynamic open boundaries, export organic particulate matter and import inorganic nutrients at rates that are far in excess of that consumed or produced by benthic metabolism. 42 refs., 7 figs., 8 tabs.

  1. Collapse of the California Current during glacial maxima linked to climate change on land.

    PubMed

    Herbert, T D; Schuffert, J D; Andreasen, D; Heusser, L; Lyle, M; Mix, A; Ravelo, A C; Stott, L D; Herguera, J C

    2001-07-01

    Time series of alkenone unsaturation indices gathered along the California margin reveal large (4 degrees to 8 degrees C) glacial-interglacial changes in sea surface temperature (SST) over the past 550,000 years. Interglacial times with SSTs equal to or exceeding that of the Holocene contain peak abundances in the pollen of redwood, the distinctive component of the temperate rainforest of the northwest coast of California. In the region now dominated by the California Current, SSTs warmed 10,000 to 15,000 years in advance of deglaciation at each of the past five glacial maxima. SSTs did not rise in advance of deglaciation south of the modern California Current front. Glacial warming along the California margin therefore is a regional signal of the weakening of the California Current during times when large ice sheets reorganized wind systems over the North Pacific. Both the timing and magnitude of the SST estimates suggest that the Devils Hole (Nevada) calcite record represents regional but not global paleotemperatures, and hence does not pose a fundamental challenge to the orbital ("Milankovitch") theory of the Ice Ages. PMID:11441174

  2. Effects of Debris Flows on Stream Ecosystems of the Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; Delafuente, J. A.; Resh, V. H.

    2006-12-01

    We examined the long-term effects of debris flows on channel characteristics and aquatic food webs in steep (0.04-0.06 slope), small (4-6 m wide) streams. A large rain-on-snow storm event in January 1997 resulted in numerous landslides and debris flows throughout many basins in the Klamath Mountains of northern California. Debris floods resulted in extensive impacts throughout entire drainage networks, including mobilization of valley floor deposits and removal of vegetation. Comparing 5 streams scoured by debris flows in 1997 and 5 streams that had not been scoured as recently, we determined that debris-flows decreased channel complexity by reducing alluvial step frequency and large woody debris volumes. Unscoured streams had more diverse riparian vegetation, whereas scoured streams were dominated by dense, even-aged stands of white alder (Alnus rhombiflia). Benthic invertebrate shredders, especially nemourid and peltoperlid stoneflies, were more abundant and diverse in unscoured streams, reflecting the more diverse allochthonous resources. Debris flows resulted in increased variability in canopy cover, depending on degree of alder recolonization. Periphyton biomass was higher in unscoured streams, but primary production was greater in the recently scoured streams, suggesting that invertebrate grazers kept algal assemblages in an early successional state. Glossosomatid caddisflies were predominant scrapers in scoured streams; heptageniid mayflies were abundant in unscoured streams. Rainbow trout (Oncorhynchus mykiss) were of similar abundance in scoured and unscoured streams, but scoured streams were dominated by young-of-the-year fish while older juveniles were more abundant in unscoured streams. Differences in the presence of cold-water (Doroneuria) versus warm-water (Calineuria) perlid stoneflies suggest that debris flows have altered stream temperatures. Debris flows have long-lasting impacts on stream communities, primarily through the cascading effects of

  3. Linking Seasonal Foliar Chemistry to VSWIR-TIR Spectroscopy Across California Ecosystems

    NASA Astrophysics Data System (ADS)

    Meerdink, Susan Kay

    Potential ecological impacts of disturbance, land use, and climate change have driven many studies to evaluate ecosystem functions through the measurement of vegetation biochemical properties that provide integral information on nutrient cycling, litter decomposition, and plant productivity. The use of spectroscopy in quantifying vegetation biochemistry shows promise with faster analytical speed than traditional methods. Synergies between the Visible Near Infrared/ Short Wave Infrared (VSWIR) and Thermal Infrared (TIR) spectra for identifying plant species' foliar chemistry have been largely unexplored. Here we evaluate the capability of VSWIR and/or TIR spectra to predict leaf levels of lignin, cellulose, nitrogen, water content, and leaf mass per area. We specifically examined how these predictive relationships might change seasonally and among plant functional types. Lastly we determined whether these relationships between spectra and foliar chemistry could be extended to the reduced spectral resolution available in airborne sensors, including the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Hyperspectral Thermal Emission Spectrometer (HyTES), and the combined AVIRIS and MODIS/ASTER (MASTER) sensors used in the Hyperspectral Infrared Imager (HyspIRI) preparatory flight campaign. In the 2013 spring, summer, and fall seasons, fresh leaves from sixteen common shrub and tree species in California representing three broad plant functional types were sampled from the Sierra Nevada Mountains, the Central Valley at the Sedgwick Reserve, and coastal Santa Barbara. Partial least squares regression (PLSR) analysis was used to relate spectral response at wavelengths from 0.3 - 15.4 microm to laboratory-measured biochemical and biophysical properties. For each component, three PLSR models were fit using different portions of the spectrum: VSWIR (0.3 - 2.5 microm), TIR (2.5 - 15.4 microm), and the full spectrum (0.3 - 15.4 microm). Three additional models were

  4. Current net ecosystem exchange of CO2 in a young mixed forest: any heritage from the previous ecosystem?

    NASA Astrophysics Data System (ADS)

    Violette, Aurélie; Heinesch, Bernard; Erpicum, Michel; Carnol, Monique; Aubinet, Marc; François, Louis

    2013-04-01

    For 15 years, networks of flux towers have been developed to determine accurate carbon balance with the eddy-covariance method and determine if forests are sink or source of carbon. However, for prediction of the evolution of carbon cycle and climate, major uncertainties remain on the ecosystem respiration (Reco, which includes the respiration of above ground part of trees, roots respiration and mineralization of the soil organic matter), the gross primary productivity (GPP) and their difference, the net ecosystem exchange (NEE) of forests. These uncertainties are consequences of spatial and inter-annual variability, driven by previous and current climatic conditions, as well as by the particular history of the site (management, diseases, etc.). In this study we focus on the carbon cycle in two mixed forests in the Belgian Ardennes. The first site, Vielsalm, is a mature stand mostly composed of beeches (Fagus sylvatica) and douglas fir (Pseudotsuga menziesii) from 80 to 100 years old. The second site, La Robinette, was covered before 1995 with spruces. After an important windfall and a clear cutting, the site was replanted, between 1995 and 2000, with spruces (Piceas abies) and deciduous species (mostly Betula pendula, Aulnus glutinosa and Salix aurita). The challenge here is to highlight how initial conditions can influence the current behavior of the carbon cycle in a growing stand compared to a mature one, where initial conditions are supposed to be forgotten. A modeling approach suits particularly well for sensitivity tests and estimation of the temporal lag between an event and the ecosystem response. We use the forest ecosystem model ASPECTS (Rasse et al., Ecological Modelling 141, 35-52, 2001). This model predicts long-term forest growth by calculating, over time, hourly NEE. It was developed and already validated on the Vielsalm forest. Modelling results are confronted to eddy-covariance data on both sites from 2006 to 2011. The main difference between both

  5. The Benguela Current: An ecosystem of four components

    NASA Astrophysics Data System (ADS)

    Hutchings, L.; van der Lingen, C. D.; Shannon, L. J.; Crawford, R. J. M.; Verheye, H. M. S.; Bartholomae, C. H.; van der Plas, A. K.; Louw, D.; Kreiner, A.; Ostrowski, M.; Fidel, Q.; Barlow, R. G.; Lamont, T.; Coetzee, J.; Shillington, F.; Veitch, J.; Currie, J. C.; Monteiro, P. M. S.

    2009-12-01

    The Benguela system is one of the four major eastern boundary upwelling systems of the world. It is unusual as there are two stratified subtropical or warm temperate boundary regions, on either side of the major wind-driven upwelling region(19-34°S), which itself is subdivided at 26°S by the powerful Luderitz upwelling cell. Important biological components cross the boundary areas at different stages to complete the life-history cycle. While the “Bakun triad” of factors responsible for the development of large pelagic fish populations (enrichment, concentration and retention) provide an important unifying principle for understanding the compromise implicit in adaptation to upwelling systems, the role of predation has been neglected, as has the fish yield relative to photosynthesis. The role global climate change will have in the Benguela in terms of shifting boundaries or weakening or intensifying gradients is being explored. The interannual and decadal signals are so strong in the region that long term trends are difficult to distinguish. Intensive resource utilisation and the collapse of several fish stocks occurred in the Benguela region during the 1960s and 1970s, with different recovery trajectories in the north and the south. The Angolan subsystem can be described as a subtropical transition zone between the wind-driven upwelling system and the Equatorial Atlantic, with gentle upwelling-favourable winds, well-defined seasons, intermediate productivity and moderate, declining fisheries. It is separated from the Namibian subsystem by the Angola-Benguela front. The northern Benguela shelf is a typical coastal upwelling system with equatorward winds, cool water, high plankton biomass and moderate to high fish biomass, which is currently in a depleted state. A shift from sardines to horse mackerel occurred during the period 1970-1990, while hake have never fully recovered from intensive fishing pressure up to 1990. Widespread oxygen-depleted waters and

  6. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability

    PubMed Central

    Medvigy, David; Wofsy, Steven C.; Munger, J. William; Moorcroft, Paul R.

    2010-01-01

    We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning. PMID:20404190

  7. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability.

    PubMed

    Medvigy, David; Wofsy, Steven C; Munger, J William; Moorcroft, Paul R

    2010-05-01

    We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning. PMID:20404190

  8. Current developments in groundwater ecology--from biodiversity to ecosystem function and services.

    PubMed

    Griebler, Christian; Malard, Florian; Lefébure, Tristan

    2014-06-01

    Groundwater ecosystems constitute the largest terrestrial freshwater biome. They are dark, extremely low in energy and do not provide much space but they contain an unexpectedly high diversity of living forms showing characteristic adaptive features. The restricted accessibility along with the enormous 'invisible' heterogeneity challenged for a long time testing of scientific theories and unraveling of ecosystem functioning. Triggered by an improved interdisciplinarity, comprehensive sampling strategies and current developments in biotechnology and statistical analysis, groundwater ecology gains momentum entering a new era of research. We are only beginning to understand adaptive mechanisms, species distribution patterns and ecosystem functioning. Ninety-five percent of global liquid freshwater is stored in the terrestrial subsurface constituting a major source of water for drinking, irrigation and industrial purposes. There is an urgent need to integrate evolutionary and ecological research for developing a holistic perspective of the functional roles of biodiversity and ecosystem services and predicting global changes under alternative groundwater resource use scenarios. PMID:24590188

  9. Decadal changes in the Canary Current Upwelling Ecosystem

    NASA Astrophysics Data System (ADS)

    Santos, A. M.; Luis, J. M.; Relvas-Almeida, P.

    2013-12-01

    The Canary Current Upwelling System (CCUS) covers the latitudinal range 12-43 degrees N and has some singularities in relation to the other three major Eastern Boundary Upwelling Systems (EBUS), namely a major interruption in the continuity of the system at the Strait of Gibraltar and it is the only one with a sardine species from a different genus (Sardina vs Sardinops). Long-term trends in ocean temperature and coastal upwelling were investigated using the AVHRR Pathfinder SST (sea surface temperature) Version 5.1 dataset, in situ SST from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS), and upwelling indices from the Pacific Fisheries Environmental Laboratory (PFEL). The analysis is applied to the eastern boundary of the North Atlantic, from 10 to 45 degrees N extending until 30 degrees W, focusing mainly in the CCUS because the strong dynamic link between the atmosphere and the ocean makes upwelling regions highly sensitive to global change and ideal to monitor and investigate its effects. The detail in SST variability results in a large extent from the fine analysis and the numerical processing carefully designed to avoid trend bias in the climatological studies. The obtained fields of SST trends show a generalized warming of the entire region. However, alternate patches of significantly different warming rates are observed, ranging from large scale down to mesoscale. Known coastal upwelling features are seen to warm at a lower rate than corresponding offshore waters, pointing to an intensification of the upwelling in the last decades. Wind data are used to attempt to explain the variability of some upwelling structures. Our results evidence the main role that mesoscale processes play in the modulation of the spatial and temporal variability of SST, namely at the decadal scale. This result prevents any global conclusion about the intensification of the upwelling at the scale of the entire CCUS. The bulk of the sardine population is located

  10. How stakeholders frame dam removal: The role of current and anticipated future ecosystem service use

    NASA Astrophysics Data System (ADS)

    Reilly, Kate; Adamowski, Jan

    2016-04-01

    Many river restoration projects, including dam removal, are controversial and can trigger conflicts between stakeholders who are for and against the proposed project. The study of environmental conflicts suggests that differences in how stakeholders 'frame', or make sense of a situation based on their prior knowledge and experiences, can perpetuate conflicts. Understanding different stakeholders' frames, particularly how they converge, can form the basis of successful conflict resolution. In the case of dam removals, it is often assumed that emphasising increased provision of ecosystem services can be a point of convergence between those advocating for ecological restoration and those opposed to removal because of negative human impacts. However, how exactly stakeholders frame a contentious proposed dam removal and how those frames relate to ecosystem services has been little studied. Here we used the case of a potential dam removal in New Brunswick to investigate how people frame the issue and how that relates to their current and anticipated future use of ecosystem services. Based on in-depth interviews with 30 stakeholders in the area, including both people for and against dam removal, we found that both groups currently used ecosystem services and were in favour of ecosystem protection. However, they differed in how they framed the issue of the potential dam removal. The group against dam removal framed the issue as one of loss and risk - they thought that any potential benefits to the ecosystem would be outweighed by the high risk of negative social impacts caused by a loss of access to ecosystem services, such as recreation and aesthetic enjoyment. By contrast, the group in favour of the dam framed the issue as one of opportunity and justice. They thought that following a short transition period, all stakeholders would benefit from the restored river, particularly from a restored salmon fishery, improved aesthetic appeal and the long-term sustainability of an

  11. Biogenic sedimentation beneath the California Current system for the past 30 kyr and its paleoceanographic significance

    USGS Publications Warehouse

    Gardner, J.V.; Dean, W.E.; Dartnell, P.

    1997-01-01

    A north-south transect of 17 cores was constructed along the eastern boundary of the California Current system from 33?? to 42?? N to investigate the changes in biogenic sedimentation over the past 30 kyr. Percentages and mass accumulation rates of CaCO3, Corg, and biogenic opal were assembled at 500 to 1000 years/sample to provide relatively high resolution. Time-space maps reveal a complex pattern of changes that do not follow a simple glacial-interglacial two-mode model. Biogenic sedimentation shows responses that are sometimes time-transgressive and sometimes coeval, and most of the responses show more consistency within a limited geographic area than any temporal consistency. Reconstructed conditions during late oxygen isotope stage 3 were more like early Holocene conditions than any other time during the last 30 kyr. Coastal upwelling and productivity during oxygen isotope stage 3 were relatively strong along the central California margin but were weak along the northern California margin. Precipitation increased during the last glacial interval in the central California region, and the waters of the southern California margin had relatively low productivity. Productivity on the southern Oregon margin was relatively low at the beginning of the last glacial interval, but by about 20 ka, productivity in this area significantly increased. This change suggests that the center of the divergence of the West Wind Drift shifted south at this time. The end of the last glacial interval was characterized by increased productivity in the southern California margin and increased upwelling along the central California margin but upwelling remained weak along the northern California margin. A sudden (<300 years) decrease in CaCO3, Corg, and biogenic opal occurred at 13 ka. The changes suggest a major reorientation of the atmospheric circulation in the North Pacific and western North America and the establishment of a strong seasonality in the central California region. A

  12. Fire and aquatic ecosystems of the western USA: Current knowledge and key questions

    USGS Publications Warehouse

    Bisson, P.A.; Rieman, B.; Luce, C.; Hessburg, Paul F.; Lee, D.; Kershner, J.; Reeves, G.H.; Gresswell, Robert E.

    2003-01-01

    Understanding of the effects of wildland fire and fire management on aquatic and riparian ecosystems is an evolving field, with many questions still to be resolved. Limitations of current knowledge, and the certainty that fire management will continue, underscore the need to summarize available information. Integrating fire and fuels management with aquatic ecosystem conservation begins with recognizing that terrestrial and aquatic ecosystems are linked and dynamic, and that fire can play a critical role in maintaining aquatic ecological diversity. To protect aquatic ecosystems we argue that it will be important to: (1) accommodate fire-related and other ecological processes that maintain aquatic habitats and biodiversity, and not simply control fires or fuels; (2) prioritize projects according to risks and opportunities for fire control and the protection of aquatic ecosystems; and (3) develop new consistency in the management and regulatory process. Ultimately, all natural resource management is uncertain; the role of science is to apply experimental design and hypothesis testing to management applications that affect fire and aquatic ecosystems. Policy-makers and the public will benefit from an expanded appreciation of fire ecology that enables them to implement watershed management projects as experiments with hypothesized outcomes, adequate controls, and replication.

  13. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    PubMed

    Vorsino, Adam E; Fortini, Lucas B; Amidon, Fred A; Miller, Stephen E; Jacobi, James D; Price, Jonathan P; Gon, Sam 'ohukani'ohi'a; Koob, Gregory A

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions. PMID:24805254

  14. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    PubMed

    Vorsino, Adam E; Fortini, Lucas B; Amidon, Fred A; Miller, Stephen E; Jacobi, James D; Price, Jonathan P; 'Ohukani'ohi'a Gon, Sam; Koob, Gregory A

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions. PMID:24991934

  15. Modeling Hawaiian Ecosystem Degradation due to Invasive Plants under Current and Future Climates

    PubMed Central

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; Gon, Sam 'Ohukani'ohi'a; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions. PMID:24805254

  16. Bottom current and sediment transport on San Pedro Shelf, California

    USGS Publications Warehouse

    Drake, David E.; Cacchione, David A.; Karl, Herman A.

    1985-01-01

    GEOPROBE (Geological Processes Bottom Environmental) tripods were used to measure bottom currents, pressure, and light transmission and scattering and to obtain time-series photographs of the sea floor at depths of 23 m and 67 m on San Pedro shelf between 18 April and 6 June 1978. Winds were light (< 5 m/s) with a mean direction from the southwest throughout the measurement period. Hourly averaged currents 1 m above the bottom never exceeded 21 cm/s; average speeds were about 5 cm/s at the 23-m site and 6.8 cm/s at 67 m, and the strongest currents were produced by the tides. The mean flow of bottom water was less than 3 cm/s at both GEOPROBES and was rather persistently southward (offshelf). Wave-generated bottom currents and bottom-pressure variations were sampled at hourly intervals; average wave period and wave height were 12.8 s and 0.44 m, respectively, at the 23-m site. Wave orbital velocities ranged from about 5 to 30 cm/s at 23 m and from 2 to 8 cm/s at 67 m. Bottom photographs at 67 m show that the relatively sluggish tide-generated and mean currents were below threshold velocity for the silty, very fine sand throughout the observational period. Threshold depth for wave rippling of very fine sand averaged about 28 m with a range from about 12 m to 50 m. Wave-generated currents were the only currents that exceeded threshold levels. The wave currents maintained relatively high concentrations of sediment in suspension near the bottom over the inner shelf (< 25 m), and this material (principally silt and clay) was transported offshore by the weak mean flow. Approximately 50% of this material was deposited as the bottom orbital velocities decreased to subthreshold values ( nearly equal 10-15 cm/s). The observed movement of fine sediment across the inner shelf can account for a portion of the mud content of the modern silty sands on the central shelf and on the outer shelf. However, it is clear that the sand fractions, which constitute greater than 70% of the

  17. Quantitative Models Describing Past and Current Nutrient Fluxes and Associated Ecosystem Level Responses in the Narragansett Bay Ecosystem

    EPA Science Inventory

    Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem in Rhode Island/Massachusetts, USA. Managers are interested in understanding the timing and magnitude of these effects, and ecosystem responses to restoration actions. To provid...

  18. Fine root production across a primary successional ecosystem chronosequence at Mt. Shasta, California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating changes in belowground biomass and production is essential for understanding fundamental patterns and processes during ecosystem development. We examined patterns of fine root production, aboveground litterfall, and forest floor accumulation during forest primary succession at the Mt. Sha...

  19. Integrated Carbon Observation System (ICOS) ecosystem network: current state and future perspectives

    NASA Astrophysics Data System (ADS)

    Gielen, B.; Op de Beeck, M.; Ceulemans, R.; Janssens, I.; Loustau, D.; Valentini, R.; Papale, D.

    2013-12-01

    Atmospheric concentrations of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) are increasing due to emissions related to human activity, affecting the global climate. Natural sinks remove a fraction of the GHG anthropogenic excess at the global level. The characterization of greenhouse gases atmospheric burden and fluxes, both anthropogenic and natural, are needed at the global and regional scale, making use of all available information in an integrated framework. The Integrated Carbon Observation System (ICOS) research infrastructure will address this issue by providing the community with systematic measurements of a suite of atmospheric, terrestrial ecosystem and oceanic measurements. The ecosystem network comprises three station classes, for which variables are collected with different intensity. These stations are well distributed among the major European ecosystem types and cover most climatic zones in Europe. The Ecosystem Thematic Center (ETC) is coordinating the ICOS ecosystem network providing assistance with instruments and methods, testing and developing new measurement techniques and associated processing algorithms; also ensuring a high level of data standardization, uncertainty analysis and database services in coordination with the ICOS carbon portal. The ETC is also coordinating the drafting of the protocols describing in detail how measurements will be collected at all ecosystem stations, in order to guarantee inter comparability. This is done in close collaboration with experts in the field and with the other existing ecological and meteorological networks (NEON, Ameriflux, ICP -forests, MWO, TERN, ...). This presentation will focus on the current state of the ICOS ecosystem network, on the data products and the potential user community.

  20. Discriminating plant species across California's diverse ecosystems using airborne VSWIR and TIR imagery

    NASA Astrophysics Data System (ADS)

    Meerdink, S.; Roberts, D. A.; Roth, K. L.

    2015-12-01

    Accurate knowledge of the spatial distribution of plant species is required for many research and management agendas that track ecosystem health. Because of this, there is continuous development of research focused on remotely-sensed species classifications for many diverse ecosystems. While plant species have been mapped using airborne imaging spectroscopy, the geographic extent has been limited due to data availability and spectrally similar species continue to be difficult to separate. The proposed Hyperspectral Infrared Imager (HyspIRI) space-borne mission, which includes a visible near infrared/shortwave infrared (VSWIR) imaging spectrometer and thermal infrared (TIR) multi-spectral imager, would present an opportunity to improve species discrimination over a much broader scale. Here we evaluate: 1) the capability of VSWIR and/or TIR spectra to discriminate plant species; 2) the accuracy of species classifications within an ecosystem; and 3) the potential for discriminating among species across a range of ecosystems. Simulated HyspIRI imagery was acquired in spring/summer of 2013 spanning from Santa Barbara to Bakersfield, CA with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER) instruments. Three spectral libraries were created from these images: AVIRIS (224 bands from 0.4 - 2.5 µm), MASTER (8 bands from 7.5 - 12 µm), and AVIRIS + MASTER. We used canonical discriminant analysis (CDA) as a dimension reduction technique and then classified plant species using linear discriminant analysis (LDA). Our results show the inclusion of TIR spectra improved species discrimination, but only for plant species with emissivities departing from that of a gray body. Ecosystems with species that have high spectral contrast had higher classification accuracies. Mapping plant species across all ecosystems resulted in a classification with lower accuracies than a single ecosystem due to the complex nature of

  1. Using sensitive montane amphibian species as indicators of hydroclimatic change in meadow ecosystems of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Peek, R.; Viers, J.; Yarnell, S. M.

    2012-12-01

    Climate change can affect sensitive species and ecosystems in many ways, yet sparse data and the inability to apply various climate models at functional spatial scales often prevents relevant research from being utilized in conservation management plans. Climate change has been linked to declines and disturbances in a multitude of species and habitats, and in California, one of the greatest climatic concerns is the predicted reduction in mountain snowpack and associated snowmelt. These decreases in natural storage of water as snow in mountain regions can affect the timing and variability of critical snowmelt runoff periods—important seasonal signals that species in montane ecosystems have evolved life history strategies around—leading to greater intra-annual variability and diminished summer and fall stream flows. Although many species distribution models exist, few provide ways to integrate continually updated and revised Global Climate Models (GCMs), hydrologic data unique to a watershed, and ecological responses that can be incorporated into conservation strategies. This study documents a novel and applicable method of combining boosted regression tree (BRT) modeling and species distributions with hydroclimatic data as a potential management tool for conservation. Boosted regression trees are suitable for ecological distribution modeling because they can reduce both bias and variance, as well as handle sharp discontinuities common in sparsely sampled species or large study areas. This approach was used to quantify the effects of hydroclimatic changes on the distribution of key riparian-associated amphibian species in montane meadow habitats in the Sierra Nevada at the sub-watershed level. Based on modeling using current species range maps in conjunction with three climate scenarios (near, mid, and far), extreme range contractions were observed for all sensitive species (southern long-toed salamander, mountain yellow-legged frog, Yosemite toad) by the year

  2. Cumulative Human Impacts on Mediterranean and Black Sea Marine Ecosystems: Assessing Current Pressures and Opportunities

    PubMed Central

    Micheli, Fiorenza; Halpern, Benjamin S.; Walbridge, Shaun; Ciriaco, Saul; Ferretti, Francesco; Fraschetti, Simonetta; Lewison, Rebecca; Nykjaer, Leo; Rosenberg, Andrew A.

    2013-01-01

    Management of marine ecosystems requires spatial information on current impacts. In several marine regions, including the Mediterranean and Black Sea, legal mandates and agreements to implement ecosystem-based management and spatial plans provide new opportunities to balance uses and protection of marine ecosystems. Analyses of the intensity and distribution of cumulative impacts of human activities directly connected to the ecological goals of these policy efforts are critically needed. Quantification and mapping of the cumulative impact of 22 drivers to 17 marine ecosystems reveals that 20% of the entire basin and 60–99% of the territorial waters of EU member states are heavily impacted, with high human impact occurring in all ecoregions and territorial waters. Less than 1% of these regions are relatively unaffected. This high impact results from multiple drivers, rather than one individual use or stressor, with climatic drivers (increasing temperature and UV, and acidification), demersal fishing, ship traffic, and, in coastal areas, pollution from land accounting for a majority of cumulative impacts. These results show that coordinated management of key areas and activities could significantly improve the condition of these marine ecosystems. PMID:24324585

  3. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities.

    PubMed

    Micheli, Fiorenza; Halpern, Benjamin S; Walbridge, Shaun; Ciriaco, Saul; Ferretti, Francesco; Fraschetti, Simonetta; Lewison, Rebecca; Nykjaer, Leo; Rosenberg, Andrew A

    2013-01-01

    Management of marine ecosystems requires spatial information on current impacts. In several marine regions, including the Mediterranean and Black Sea, legal mandates and agreements to implement ecosystem-based management and spatial plans provide new opportunities to balance uses and protection of marine ecosystems. Analyses of the intensity and distribution of cumulative impacts of human activities directly connected to the ecological goals of these policy efforts are critically needed. Quantification and mapping of the cumulative impact of 22 drivers to 17 marine ecosystems reveals that 20% of the entire basin and 60-99% of the territorial waters of EU member states are heavily impacted, with high human impact occurring in all ecoregions and territorial waters. Less than 1% of these regions are relatively unaffected. This high impact results from multiple drivers, rather than one individual use or stressor, with climatic drivers (increasing temperature and UV, and acidification), demersal fishing, ship traffic, and, in coastal areas, pollution from land accounting for a majority of cumulative impacts. These results show that coordinated management of key areas and activities could significantly improve the condition of these marine ecosystems. PMID:24324585

  4. Response of biological production and air-sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Gruber, Nicolas

    2013-01-01

    Upwelling-favorable winds have increased in most Eastern Boundary Upwelling Systems (EBUS) in the last decades, and it is likely that they increase further in response to global climate change. Here, we explore the response of biological production and air-sea CO2 fluxes to upwelling intensification in two of the four major EBUS, namely the California Current System (California CS) and Canary Current System (Canary CS). To this end, we use eddy-resolving regional ocean models on the basis of the Regional Oceanic Modeling System (ROMS) to which we have coupled a NPZD-type ecosystem model and a biogeochemistry module describing the carbon cycle and subject these model configurations to an idealized increase in the wind stress. We find that a doubling of the wind-stress doubles net primary production (NPP) in the southern California CS and central and northern Canary CS, while it leads to an increase of less than 50% in the central and northern California CS as well as in the southern Canary CS. This differential response is a result of i) different nutrient limitation states with higher sensitivity to upwelling intensification in regions where nutrient limitation is stronger and ii) more efficient nutrient assimilation by biology in the Canary CS relative to the California CS because of a faster nutrient-replete growth rate and longer nearshore water residence times. In the regions where production increases commensurably with upwelling intensification, the enhanced net biological uptake of CO2 compensates the increase in upwelling driven CO2 outgassing, resulting in only a small change in the biological pump efficiency and hence in a small sensitivity of air-sea CO2 fluxes to upwelling intensification. In contrast, in the central California CS as well as in the southern Canary CS around Cape Blanc, the reduced biological efficiency enhances the CO2 outgassing and leads to a substantial sensitivity of the air-sea CO2 fluxes to upwelling intensification.

  5. Hypoxia in high-resolution sediment records: reconstructing the California Current Oxygen Minimum Zone on multi-decadal timescales

    NASA Astrophysics Data System (ADS)

    Moffitt, S. E.; Hill, T. M.

    2012-12-01

    The recent deglaciation event is an ideal laboratory to study the rapid expansion of Oxygen Minimum Zones (OMZs) and the ecological ramifications of such events. Santa Barbara Basin (SBB) sediments are high-resolution archives of seafloor ecosystems, recording both global-scale climate and regional-scale hydrographic events. Seafloor hypoxia in the California Current Ecosystem (CCE) is caused by OMZs in intermediate water depths (300-1200 m), and produces striking evidence in SBB sediment archives. We construct a vertical transect of proxies across SBB (34° 15'N, 119° 45'W) using a core from 418 m water depth (MV0811-15JC), and previously investigated cores from 440 m (MD02-2504) and 570 m (MD02-2503) water depths. Benthic foraminiferal assemblages and planktonic δ18O proxies were quantified at all three depths, while benthic invertebrate communities were quantified in the shallowest core at a 1-cm resolution (~10 years). This high-resolution invertebrate record provides a window into rapid, decadal-scale environmental change in continental margin ecosystems. Seafloor biodiversity is highly variable on 10-10^4 year timescales (across Protist, Mollusc, Arthropod and Echinoderm taxonomic groups), and is tightly coupled to both regional-scale environmental change and global-scale climate events. Additionally, we provide evidence that strongly hypoxic waters shoaled to <300 m water depth at Termination 1A (14.7 ka), implying that the upper boundary of the regional OMZ can expand >150 m on multi-decadal timescales. These data confirm that OMZs have rapidly expanded in the CCE during previous events of global-scale warming, and that continental margin seafloor biodiversity is variable on previously undescribed timescales.

  6. ORGANIC POLLUTANT DEPOSITION TO THE SIERRA NEVADA (CALIFORNIA, USA) SNOWPACK AND ASSOCIATED LAKE AND STREAM ECOSYSTEM

    EPA Science Inventory

    High elevation ecosystems in the western USA and Canada are receiving deposition of persistent organic pollutants (POPs) that presumably originate in the USA as well as outside its borders. In April 1992 we obtained paired snowpack samples from each of two watersheds located in t...

  7. Positive Effects of Non-Native Grasses on the Growth of a Native Annual in a Southern California Ecosystem

    PubMed Central

    Pec, Gregory J.; Carlton, Gary C.

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem. PMID:25379790

  8. Cetacean distributions relative to ocean processes in the northern California Current System

    NASA Astrophysics Data System (ADS)

    Tynan, Cynthia T.; Ainley, David G.; Barth, John A.; Cowles, Timothy J.; Pierce, Stephen D.; Spear, Larry B.

    2005-01-01

    Associations between cetacean distributions, oceanographic features, and bioacoustic backscatter were examined during two process cruises in the northern California Current System (CCS) during late spring and summer 2000. Line-transect surveys of cetaceans were conducted across the shelf and slope, out to 150 km offshore from Newport, Oregon (44.6°N) to Crescent City, California (41.9°N), in conjunction with multidisciplinary mesoscale and fine-scale surveys of ocean and ecosystem structure. Occurrence patterns (presence/absence) of cetaceans were compared with hydrographic and ecological variables (e.g., sea surface salinity, sea surface temperature, thermocline depth, halocline depth, chlorophyll maximum, distance to the center of the equatorward jet, distance to the shoreward edge of the upwelling front, and acoustic backscatter at 38, 120, 200 and 420 kHz) derived from a towed, undulating array and a bioacoustic system. Using a multiple logistic regression model, 60.2% and 94.4% of the variation in occurrence patterns of humpback whales Megaptera novaeangliae during late spring and summer, respectively, were explained. Sea surface temperature, depth, and distance to the alongshore upwelling front were the most important environmental variables during June, when humpbacks occurred over the slope (200-2000 m). During August, when humpbacks concentrated over a submarine bank (Heceta Bank) and off Cape Blanco, sea surface salinity was the most important variable, followed by latitude and depth. Humpbacks did not occur in the lowest salinity water of the Columbia River plume. For harbor porpoise Phocoena phocoena, the model explained 79.2% and 70.1% of the variation in their occurrence patterns during June and August, respectively. During spring, latitude, sea surface salinity, and thermocline gradient were the most important predictors. During summer, latitude and distance to the inshore edge of the upwelling front were the most important variables. Typically a

  9. Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy

    NASA Astrophysics Data System (ADS)

    Knox, Sara Helen; Matthes, Jaclyn Hatala; Sturtevant, Cove; Oikawa, Patricia Y.; Verfaillie, Joseph; Baldocchi, Dennis

    2016-03-01

    We present 6.5 years of eddy covariance measurements of fluxes of methane (FCH4) and carbon dioxide (FCO2) from a flooded rice paddy in Northern California, USA. A pronounced warming trend throughout the study associated with drought and record high temperatures strongly influenced carbon (C) budgets and provided insights into biophysical controls of FCO2 and FCH4. Wavelet analysis indicated that photosynthesis (gross ecosystem production, GEP) induced the diel pattern in FCH4, but soil temperature (Ts) modulated its amplitude. Forward stepwise linear models and neural networking modeling were used to assess the variables regulating seasonal FCH4. As expected due to their competence in modeling nonlinear relationships, neural network models explained considerably more of the variance in daily average FCH4 than linear models. During the growing season, GEP and water levels typically explained most of the variance in daily average FCH4. However, Ts explained much of the interannual variability in annual and growing season CH4 sums. Higher Ts also increased the annual and growing season ratio of FCH4 to GEP. The observation that the FCH4 to GEP ratio scales predictably with Ts may help improve global estimates of FCH4 from rice agriculture. Additionally, Ts strongly influenced ecosystem respiration, resulting in large interannual variability in the net C budget at the paddy, emphasizing the need for long-term measurements particularly under changing climatic conditions.

  10. Changing sources and sinks of carbon in boreal ecosystems of Interior Alaska: Current and future perspectives

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.; Jones, M.; Hiemstra, C. A.

    2012-12-01

    Future climate scenarios predict a roughly 5°C increase in mean annual air temperatures for the Alaskan Interior over the next 80 years. Increasing temperatures and greater frequency and severity of climate-induced disturbances such as wildfires will be enough to initiate permafrost degradation in many areas of Alaska, leading to major changes in surface hydrology and ecosystem structure and function. This, in turn, is expected to alter the current inventories of carbon sources and sinks in the region and provide a management challenge for carbon itemization efforts. To assist land managers in adapting and planning for potential changes in Interior Alaska carbon cycling we synthesize information on climate, ecosystem processes, vegetation, and soil, permafrost, and hydrologic regimes in Interior Alaska. Our goal is to provide an assessment of the current and likely future regime of Interior Alaska carbon sources and sinks. For our carbon assessment we: 1) synthesize the most recent results from numerous studies on the carbon cycle with a focus on research from the Alaskan boreal biome, 2) assemble a summary of estimates of carbon sources in soil and vegetation in Interior Alaska, 3) categorize carbon sources and sinks for predominant Interior Alaska ecosystems, and 4) identify expected changes in sources and sinks with climate change and human activities. This information is used to provide recommendations on potential actions land managers can take to minimize carbon export from the boreal forest. Though the results from our project are geared primarily toward policy makers and land managers we also provide recommendations for filling research gaps that currently present uncertainty in our understanding of the carbon cycle in boreal forest ecosystems of Interior Alaska.

  11. Seasonal and nonseasonal variability of satellite-derived surface pigment concentration in the California Current

    NASA Technical Reports Server (NTRS)

    Strub, P. Ted; James, Corinne; Thomas, Andrew C.; Abbott, Mark R.

    1990-01-01

    The large-scale patterns of satellite-derived surface pigment concentration off the west coast of North America are presented and are averaged into monthly mean surface wind fields over the California Current system (CCS) for the July 1979 to June 1986 period. The patterns are discussed in terms of both seasonal and nonseasonal variability for the indicated time period. The large-scale seasonal characteristics of the California Current are summarized. The data and methods used are described, and the problems known to affect the satellite-derived pigment concentrations and the wind data used in the study are discussed. The statistical analysis results are then presented and discussed in light of past observations and theory. Details of the CZCS data processing are described, and details of the principal estimator pattern methodology used here are given.

  12. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    PubMed

    Riordan, Erin Coulter; Rundel, Philip W

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st) century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize

  13. The impact of antecedent fire area on burned area in southern California coastal ecosystems.

    PubMed

    Price, Owen F; Bradstock, Ross A; Keeley, Jon E; Syphard, Alexandra D

    2012-12-30

    Frequent wildfire disasters in southern California highlight the need for risk reduction strategies for the region, of which fuel reduction via prescribed burning is one option. However, there is no consensus about the effectiveness of prescribed fire in reducing the area of wildfire. Here, we use 29 years of historical fire mapping to quantify the relationship between annual wildfire area and antecedent fire area in predominantly shrub and grassland fuels in seven southern California counties, controlling for annual variation in weather patterns. This method has been used elsewhere to measure leverage: the reduction in wildfire area resulting from one unit of prescribed fire treatment. We found little evidence for a leverage effect (leverage = zero). Specifically our results showed no evidence that wildfire area was negatively influenced by previous fires, and only weak relationships with weather variables rainfall and Santa Ana wind occurrences, which were variables included to control for inter-annual variation. We conclude that this is because only 2% of the vegetation burns each year and so wildfires rarely encounter burned patches and chaparral shrublands can carry a fire within 1 or 2 years after previous fire. Prescribed burning is unlikely to have much influence on fire regimes in this area, though targeted treatment at the urban interface may be effective at providing defensible space for protecting assets. These results fit an emerging global model of fire leverage which position California at the bottom end of a continuum, with tropical savannas at the top (leverage = 1: direct replacement of wildfire by prescribed fire) and Australian eucalypt forests in the middle (leverage ~ 0.25). PMID:23064248

  14. Land Use Compounds Habitat Losses under Projected Climate Change in a Threatened California Ecosystem

    PubMed Central

    Riordan, Erin Coulter; Rundel, Philip W.

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the

  15. Prototyping global Earth System Models at high resolution: Representation of climate, ecosystems, and acidification in Eastern Boundary Currents

    NASA Astrophysics Data System (ADS)

    Dunne, J. P.; John, J. G.; Stock, C. A.

    2013-12-01

    The world's major Eastern Boundary Currents (EBC) such as the California Current Large Marine Ecosystem (CCLME) are critically important areas for global fisheries. Computational limitations have divided past EBC modeling into two types: high resolution regional approaches that resolve the strong meso-scale structures involved, and coarse global approaches that represent the large scale context for EBCs, but only crudely resolve only the largest scales of their manifestation. These latter global studies have illustrated the complex mechanisms involved in the climate change and acidification response in these regions, with the CCLME response dominated not by local adjustments but large scale reorganization of ocean circulation through remote forcing of water-mass supply pathways. While qualitatively illustrating the limitations of regional high resolution studies in long term projection, these studies lack the ability to robustly quantify change because of the inability of these models to represent the baseline meso-scale structures of EBCs. In the present work, we compare current generation coarse resolution (one degree) and a prototype next generation high resolution (1/10 degree) Earth System Models (ESMs) from NOAA's Geophysical Fluid Dynamics Laboratory in representing the four major EBCs. We review the long-known temperature biases that the coarse models suffer in being unable to represent the timing and intensity of upwelling-favorable winds, along with lack of representation of the observed high chlorophyll and biological productivity resulting from this upwelling. In promising contrast, we show that the high resolution prototype is capable of representing not only the overall meso-scale structure in physical and biogeochemical fields, but also the appropriate offshore extent of temperature anomalies and other EBC characteristics. Results for chlorophyll were mixed; while high resolution chlorophyll in EBCs were strongly enhanced over the coarse resolution

  16. Challenging the current strategy of radiological protection of the environment: arguments for an ecosystem approach.

    PubMed

    Brèchignac, F; Doi, Masahiro

    2009-12-01

    The system of radiological protection of the environment that is currently under development is one contribution to the general need to adequately protect the environment against stress. Dominated by operational goals, it emphasizes conceptual and methodological approaches that are readily accessible today: reference organisms supported by individual-based traditional ecotoxicological data. Whilst there are immediate advantages to this approach (pragmatism, consistency with other approaches in use for man and biota), there are also clear limitations, especially in a longer run perspective, that need to be acknowledged and further considered. One can mention a few: uncertainties generated by the need for various extrapolations (from lower to higher levels of biological organisation, ...), various features missed such as potential ecological impact through impairment of ecosystem processes, trans-generational impacts as mediated through genomic instability, indirect effects mediated through trophic interactions or disruption of ecological balances,... Such limitations have already been faced in other fields of environmental protection against other stressors, pushing a number of environment professionals to assign stronger emphasis on more systemic approaches. This review discusses the advantages and limitations of the current approach designed for the radiological protection of non-human biota in the broader context of environment protection as a whole, with especial reference to upcoming trends and evolutions. This leads in particular to advocating the need to boost scientific and methodological approaches featuring the ecosystem concept as a mean to access a unified goal of protection: preserving life sustainability through protection of ecosystem structure and functioning. PMID:19643514

  17. Current California legislative and regulatory activity impacting geothermal hydrothermal commercialization: monitoring report No. 2. Report No. 1020

    SciTech Connect

    Not Available

    1980-04-20

    The progress of four bills relating to geothermal energy is reported. The current regulatory activities of the California Energy Commission, the Lake County Planning Commission/Lake County Air Pollution Control District, the Governor's Office of Planning and Research, the State Lands' Commission, and the California Public Utilities Commission are reviewed. (MHR)

  18. A Comparison between Value-Added School Estimates and Currently Used Metrics of School Accountability in California

    ERIC Educational Resources Information Center

    Fagioli, Loris P.

    2014-01-01

    This study compared a value-added approach to school accountability to the currently used metrics of accountability in California of Adequate Yearly Progress (AYP) and Academic Performance Index (API). Five-year student panel data (N?=?53,733) from 29 elementary schools in a large California school district were used to address the research…

  19. Modeling the yield potential of dryland canola under current and future climates in California

    NASA Astrophysics Data System (ADS)

    George, N.; Kaffka, S.; Beeck, C.; Bucaram, S.; Zhang, J.

    2012-12-01

    -adapted canola varieties can be justified, and the potential value of a California canola industry both now and in the future. Winter annual crops like canola use rainfall in a Mediterranean climate like California more efficiently than spring or summer crops. Our results suggest that under current production costs and seed prices, dry farmed canola will have good potential in certain areas of the California. Canola yields decline with annual winter precipitation, however economically viable yields are still achieved at relatively precipitation levels (200 mm). Results from simulation, combined with related economic modeling (reported elsewhere) suggest that canola will be viable in a variety of production systems in the northern Sacramento Valley and some coastal locations, even under drier future climate scenarios. The in-field evaluation of Australian canola varieties should contribute to maintain or improving resource use efficiency and farm profitability.

  20. The impact of El Nino on island ecosystems in the gulf of California

    SciTech Connect

    Polis, G.A.; Hurd, S.D.

    1995-09-01

    The El Nino event of 1992-1993 had significant effects on all functional levels of the terrestrial food web of islands in the Gulf of California. These islands are normally very dry; however, during this El Nino event, annual precipitation was nearly five times the median annual precipitation. This caused tremendous increases in plant cover and a significant rise in aerial arthropod abundance. At first, spiders benefited from increased productivity: in 1992, spiders increased to their highest densities in the three years of the study. However, in 1993, despite continued high plant cover and insect prey abundance, spider densities dropped precipitously. This decrease appears to be due to the emergence of numerous parasitoid wasps that formed a hidden trophic influence. Wasps were ineffective at controlling spider densities during dry years due to the absence of their adult food, nectar and pollen from flowering land plants. Abundant flowers during El Nino allowed the wasp population to increase and reproduce successfully.

  1. Root distribution in a California semi-arid oak savanna ecosystem as determined by conventional sampling and ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Koteen, L. E.; Raz-Yaseef, N.; Baldocchi, D. D.

    2011-12-01

    Koteen, Laura E., Raz-Yaseef, Naama, and Dennis D. Baldocchi University of California, Berkeley California's blue oak, Quercus douglasii, is a unique tree in several ways. Despite the intense heat of California's central valley and Sierra foothills, and absence of precipitation during dry summer months, blue oaks are winter deciduous, and rely on a suite of drought adaptation measures for highly-efficient water use. To date, much more is known about aboveground dynamics in semi-arid oak savanna ecosystems than belowground. Yet, the root system is instrumental in ensuring oak survival and in determining the magnitude and timing of land-atmospheric fluxes via its control of water and nutrient supply to aboveground processes and soil moisture content. Tree root distribution is notoriously heterogeneous. Therefore a comprehensive sampling effort is needed in order to optimally represent it. To further understand the patterns of water use in oak savanna ecosystems in the Sierra foothills of California, we have sought to characterize the root system by depth. To accomplish this goal, we have sampled the root system using conventional sampling methods (i.e. pit and core sampling), in conjunction with ground penetrating radar (GPR). Using both methods together made it possible to compensate for the limitations of each: Fine roots can only be detected by conventional sampling, and involve time intensive work in the lab, limiting sample size. GPR, on the other hand, allows for much greater spatial coverage and therefore more comprehensive characterization of the coarse root component. An extensive field campaign was executed during May 2011. 7 tree areas where chosen, representing the range of tree sizes and composition at the research site: 2 small trees, 2 large trees and 2 tree clusters. One additional very large tree that has undergone extensive additional physiological measurements was also chosen in order to posit and test hypotheses about linkages among root, soil

  2. Using the Terrestrial Observation and Prediction System (TOPS) to Analyze Impacts of Climate Change on California Ecosystems

    NASA Astrophysics Data System (ADS)

    Little, M.; Pitts, K.; Loewenstein, M.; Iraci, L. T.; Milesi, C.; Schmidt, C.; Skiles, J. W.

    2011-12-01

    The projected impacts of climate change on California ecosystems using model outputs from the Terrestrial Observation and Prediction System (TOPS) for the period 1950-2099 based on 1km downscaled climate data from the Geophysical Fluid Dynamics Laboratory (GFDL) model were analyzed in this study. The impacts were analyzed using Special Report Emissions Scenarios (SRES) A1B and A2, maintaining present levels of urbanization constant and under projected urban expansion. The state data was separated into regions of similar climate, and watersheds of interest. A statistical analysis was completed for time series of temperature, precipitation, gross primary productivity (GPP), evapotranspiration, soil runoff, and vapor pressure deficit for the years 1950 through 2099. Trends produced from this analysis showed that increases in maximum and minimum temperatures lead to declines in peak GPP, length of growing seasons, and overall declines in runoff. However, changes in climate coupled with increases in impervious area due to intense urbanization are associated with an increase in winter runoff in scenario A2. The analysis is in support of the Climate Adaptation Science Investigation at NASA Ames Research Center, which is located within the Coyote Watershed of California. One result for this watershed shows that with projections of increased temperatures and increased urbanization there would be an extended dry summer season, which could threaten water availability. To counter this risk at NASA Ames Research Center, a study of the irrigation system was done to evaluate the amount of total water used for irrigation alone, and possible options for water conservation at the Center are considered to build a sustainable facility in a changing environment.

  3. Ecosystem Modeling in the South Central US: A Synthesis of Current Models toward the Development of Coupled Models

    NASA Astrophysics Data System (ADS)

    Kc, M.

    2015-12-01

    Ecosystem services and products are the foundation of sustainability for regional and global economy since we are directly or indirectly dependent on the ecosystem services like food, livestock, water, air, wildlife etc. It has been increasingly recognized that for sustainability concerns, the conservation problems need to be addressed in the context of entire ecosystems. This approach known as the ecosystem approach is fundamental to managing earth's finite resources since it addresses the interactions that link biotic systems, of which human, flora and fauna are integral parts, with the physical systems on which they depend. This approach is even more vital in the 21st century with formidable increasing human population and rapid changes in global environment. This study is being conducted to find the state of the science of ecosystem models in the South-Central region of US. The propose of the project is to conduct a systematic review and synthesize relevant information on the current state of the science of ecosystem modeling in the South-Central region of US toward coupling these models with climate, agronomic, hydrologic, economic or management models to better represent ecosystem dynamics as affected by climate change and human activities; and hence gain more reliable predictions of future ecosystem functions and service in the region. Better understandings of such processes will increase our ability to predict the ecosystem responses and feedbacks to environmental and human induced change in the region so that decision makers can make an informed management decisions of the ecosystem.

  4. Holocene climate variability in the NE Pacific: Insight from connections between the Gulf of Alaska and the California Current System

    NASA Astrophysics Data System (ADS)

    Finney, B. P.; Addison, J. A.

    2009-12-01

    Historically, decadal-scale climatic change in the North Pacific region appears to be characterized by circulation modes with coherent and recognizable spatial patterns (i.e., PDO). Examination of trends in paleo-records from widespread regions, allow recognition of how these modes have varied over time. Changes in patterns of correlations of proxies between regions suggest several periods of reorganization of ocean-atmospheric circulation during the Holocene. Major shifts appear to have occurred during climatic transitions into the Neoglacial period (ca 4000 BP), and into and out of the Little Ice Age (LIA; ca. AD 1200 and 1850). Recent paleoclimatic studies from Mt, Logan ice cores and elsewhere suggest these transitions reflect shifts between atmospheric circulation modes of more zonal vs. more meridional flow. These shifts in climate can be tracked into variability in primary productivity and higher trophic levels, such as pelagic fish, in the North Pacific marine ecosystem. Within the Gulf of Alaska, new high-resolution reconstructions of ocean paleoproductivity based on multiproxy analysis of sediment cores suggest persistent variability over multidecadal scales, punctuated by abrupt state changes in overall productivity level. Such “mega-regime shifts” are of a different nature and larger amplitude than historical regime-shifts. Records of Alaskan salmon are generally positively correlated with Gulf of Alaska productivity. Interestingly, records of California Current sardine and anchovy abundance reveal different relationships to Alaska salmon abundance during the LIA relative to historical observations. It is likely that a different pattern of ocean-atmospheric circulation during the LIA, resulted in different relationships between these regional ecosystems.

  5. Quantification of Lateral Carbon Flux in a Chaparral Ecosystem in Southern California Alessandra Rossi, Walter Oechel, Patrick Murphy

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Oechel, W. C.; Murphy, P.

    2013-12-01

    The lateral transport of carbon is a horizontal transfer of carbon away from the area it was withdrawn from the atmosphere (Ciais et al. 2006). Research regarding horizontal C transport has received much less attention in arid and semi-arid regions compared to other types of ecosystems. Drylands represent around 47.2% (Lal 2004) of the global terrestrial area and despite characterized by relatively low carbon flux, drylands comprise approximately 15.5% of the world's total soil organic carbon (SOC) (Eswaran et al. 2000, Schlesinger, 1991). Moreover, these dry areas contain at least as much soil inorganic carbon (SIC) as SOC (Eswaran et al. 2000). Therefore, these areas potentially have a large contribution to the global carbon budget and they deserve attention. A long-term observation of CO2 flux with the eddy covariance technique has been conducted since 1997 at Sky Oaks Field Station in Southern California, an area of Mediterranean climate at the climatic transition between semiarid area and desert. The long term record of CO2 flux showed the area has been a sink of CO2 of over -0.2 kgCm-2yr-1. In addition to evaluating vertical carbon fluxes, we initiated a project to evaluate lateral carbon transports using litter traps, sediment fences and two small weirs adjacent to the eddy covariance site. Preliminary results indicate that the lateral transfer of C in the area may offset the vertical influx to this shrub ecosystem. However, it is still necessary to develop the methodology to compare vertical carbon flux and the lateral carbon fluxes more accurately.

  6. Spatiotemporal trends in fish mercury from a mine-dominated ecosystem: Clear Lake, California.

    PubMed

    Suchanek, Thomas H; Eagles-Smith, Collin A; Slotton, Darell G; Harner, E James; Colwell, Arthur E; Anderson, Norman L; Mullen, Lauri H; Flanders, John R; Adam, David P; McElroy, Kenneth J

    2008-12-01

    Clear Lake, California, USA, receives acid mine drainage and mercury (Hg) from the Sulphur Bank Mercury Mine, a U.S. Environmental Protection Agency (U.S. EPA) Superfund Site that was active intermittently from 1873 to 1957 and partially remediated in 1992. Mercury concentrations were analyzed primarily in four species of Clear Lake fishes: inland silversides (Menidia beryllina, planktivore), common carp (Cyprinus carpio, benthic scavenger/omnivore), channel catfish (Ictalurus punctatus, benthic omnivorous predator), and largemouth bass (Micropterus salmoides, piscivorous top predator). These data represent one of the largest fish Hg data sets for a single site, especially in California. Spatially, total Hg (TotHg) in silversides and bass declined with distance from the mine, indicating that the mine site represents a point source for Hg loading to Clear Lake. Temporally, fish Hg has not declined significantly over 12 years since mine site remediation. Mercury concentrations were variable throughout the study period, with no monotonic trends of increase or decrease, except those correlated with boom and bust cycles of an introduced fish, threadfin shad (Dorosoma petenense). However, stochastic events such as storms also influence juvenile largemouth bass Hg as evidenced during an acid mine drainage overflow event in 1995. Compared to other sites regionally and nationally, most fish in Clear Lake exhibit Hg concentrations similar to other Hg-contaminated sites, up to approximately 2.0 mg/kg wet mass (WM) TotHg in largemouth bass. However, even these elevated concentrations are less than would be anticipated from such high inorganic Hg loading to the lake. Mercury in some Clear Lake largemouth bass exceeded all human health fish consumption guidelines established over the past 25 years by the U.S. Food and Drug Administration (1.0 mg/kg WM), the National Academy of Sciences (0.5 mg/kg WM), and the U.S. EPA (0.3 mg/kg WM). Mercury in higher trophic level fishes

  7. Lagrangian studies of phytoplankton growth and grazing relationships in a coastal upwelling ecosystem off Southern California

    NASA Astrophysics Data System (ADS)

    Landry, Michael R.; Ohman, Mark D.; Goericke, Ralf; Stukel, Michael R.; Tsyrklevich, Kate

    2009-12-01

    Experimental studies of phytoplankton growth and grazing processes were conducted in the coastal upwelling system off Point Conception, California to test the hypothesis that phytoplankton growth and grazing losses determine, to first order, the local dynamics of phytoplankton in the upwelling circulation. Eight experiments of 3-5 days each were conducted over the course of two cruises in May-June 2006 and April 2007 following the trajectories of satellite-tracked drifters. Rates of phytoplankton growth and microzooplankton grazing were determined by daily in situ dilution incubations at 8 depths spanning the euphotic zone. Mesozooplankton grazing was assessed by gut fluorescence analysis of animals collected from net tows through the euphotic zone. We compared directly the net rates of change observed for the ambient phytoplankton community to the net growth rates predicted from experimental determinations of each process rate. The resulting relationship accounted for 91% of the variability observed, providing strong support for the growth-grazing hypothesis. In addition, grazing by mesozooplankton was unexpectedly high and variable, driving a substantial positive to negative shift in phytoplankton net rate of change between years despite comparable environmental conditions and similar high growth rates and suggesting strong top-down control potential. The demonstrated agreement between net ambient and experimental community changes is an important point of validation for using field data to parameterize models. Data sets of this type may provide an important source of new information and rate constraints for developing better coupled biological-physical models of upwelling system dynamics.

  8. Interannual variation in climate-potential net primary productivity relationships in differing ecosystems of California

    SciTech Connect

    Koch, G.W.; Randerson, J.T. )

    1994-06-01

    The seasonality and interannual variation in potential net primary production (NPP) were examined in differing vegetation types in California over three years of contrasting precipitation using co-registered maps of climate, vegetation, and 1km biweekly NDVI derived from high resolution satellite AVHRR data. Differences in seasonality of the vegetation types (annual grassland, chamise chaparral, deciduous oak woodland, and evergreen oak) were clearly evident and corresponded well to patterns observed in field studies. In years and locations having high precipitation the annual peak in NDVI occurred later in all vegetation classes. The annual sum of biweekly NDVI was correlated with annual precipitation in all vegetation types, although the slopes and intercepts of the regressions differed among types. Annual grassland showed the largest increase in sumNDVI per unit increase in total precipitation and most of the variation in grassland sumNDVI was explained by variation in autumn precipitation. In general the ratio of sumNDVI to annual precipitation was dependent on the temporal distribution of precipitation with respect to the long-term average pattern. Published relationships between precipitation and NPP were used to develop equations relating annual NDVI sum to NPP.

  9. An adaptive, comprehensive monitoring strategy for chemicals of emerging concern (CECs) in California's Aquatic Ecosystems.

    PubMed

    Maruya, Keith A; Schlenk, Daniel; Anderson, Paul D; Denslow, Nancy D; Drewes, Jörg E; Olivieri, Adam W; Scott, Geoffrey I; Snyder, Shane A

    2014-01-01

    A scientific advisory panel was convened by the State of California to recommend monitoring for chemicals of emerging concern (CECs) in aquatic systems that receive discharge of municipal wastewater treatment plant (WWTP) effluent and stormwater runoff. The panel developed a risk-based screening framework that considered environmental sources and fate of CECs observed in receiving waters across the State. Using existing occurrence and risk threshold data in water, sediment, and biological tissue, the panel applied the framework to identify a priority list of CECs for initial monitoring in three representative receiving water scenarios. The initial screening list of 16 CECs identified by the panel included consumer and commercial chemicals, flame retardants, pesticides, pharmaceuticals and personal care products, and natural hormones. The panel designed an iterative, phased strategy with interpretive guidelines that direct and update management actions commensurate with potential risk identified using the risk-based framework and monitoring data. Because of the ever-changing nature of chemical use, technology, and management practices, the panel offered recommendations to improve CEC monitoring, including development of bioanalytical screening methods whose responses integrate exposure to complex mixtures and that can be linked to higher-order effects; development or refinement of models that predict the input, fate, and effects of future chemicals; and filling of key data gaps on CEC occurrence and toxicity. Finally, the panel stressed the need for adaptive management, allowing for future review of, and if warranted, modifications to the strategy to incorporate the latest science available to the water resources community. PMID:24129960

  10. Swept away by a turbidity current in Mendocino submarine canyon, California

    NASA Astrophysics Data System (ADS)

    Sumner, E. J.; Paull, C. K.

    2014-11-01

    We present unique observations and measurements of a dilute turbidity current made with a remotely operated vehicle in 400 m water depth near the head of Mendocino Canyon, California. The flow had a two-layer structure with a thin (0.5 to 30 m), relatively dense (<0.04 vol %) and fast (up to ~1.7 m/s) wedge-shaped lower layer overlain by a thicker (up to 89 m) more dilute and slower current. The fast moving lower layer lagged the slow moving, dilute flow front by 14 min, which we infer resulted from the interaction of two initial pulses. The two layers were strongly coupled, and the sharp interface between the layers was characterized by a wave-like instability. This is the first field-scale data from a turbidity current to show (i) the complex dynamics of the head of a turbidity current and (ii) the presence of multiple layers within the same event.

  11. Environmental fate of fungicides and other current-use pesticides in a central California estuary

    USGS Publications Warehouse

    Smalling, Kelly L.; Kuivila, Kathryn M.; Orlando, James L.; Phillips, Bryn M.; Anderson, Brian S.; Siegler, Katie; Hunt, John W.; Hamilton, Mary

    2013-01-01

    The current study documents the fate of current-use pesticides in an agriculturally-dominated central California coastal estuary by focusing on the occurrence in water, sediment and tissue of resident aquatic organisms. Three fungicides (azoxystrobin, boscalid, and pyraclostrobin), one herbicide (propyzamide) and two organophosphate insecticides (chlorpyrifos and diazinon) were detected frequently. Dissolved pesticide concentrations in the estuary corresponded to the timing of application while bed sediment pesticide concentrations correlated with the distance from potential sources. Fungicides and insecticides were detected frequently in fish and invertebrates collected near the mouth of the estuary and the contaminant profiles differed from the sediment and water collected. This is the first study to document the occurrence of many current-use pesticides, including fungicides, in tissue. Limited information is available on the uptake, accumulation and effects of current-use pesticides on non-target organisms. Additional data are needed to understand the impacts of pesticides, especially in small agriculturally-dominated estuaries.

  12. Clams (Corbicula fluminea) as bioindicators of fecal contamination with Cryptosporidium and Giardia spp. in freshwater ecosystems in California.

    PubMed

    Miller, Woutrina A; Atwill, Edward R; Gardner, Ian A; Miller, Melissa A; Fritz, Heather M; Hedrick, Ronald P; Melli, Ann C; Barnes, Nicole M; Conrad, Patricia A

    2005-05-01

    This study evaluated clams as bioindicators of fecal protozoan contamination using three approaches: (i) clam tissue spiking experiments to compare several detection techniques; (ii) clam tank exposure experiments to evaluate clams that had filtered Cryptosporidium oocysts from inoculated water under a range of simulated environmental conditions; (iii) sentinel clam outplanting to assess the distribution and magnitude of fecal contamination in three riverine systems in California. Our spiking and tank experiments showed that direct fluorescent antibody (DFA), immunomagnetic separation (IMS) in combination with DFA, and PCR techniques could be used to detect Cryptosporidium in clam tissues. The most analytically sensitive technique was IMS concentration with DFA detection of oocysts in clam digestive gland tissues, which detected 10 oocysts spiked into a clam digestive gland 83% of the time. In the tank experiment, oocyst dose and clam collection time were significant predictors for detecting Cryptosporidium parvum oocysts in clams. In the wild clam study, Cryptosporidium and Giardia were detected in clams from all three study regions by IMS-DFA analysis of clam digestive glands, with significant variation by sampling year and season. The presence of C. parvum DNA in clams from riverine ecosystems was confirmed with PCR and DNA sequence analysis. PMID:15862580

  13. Effects of Sewage Discharge on Trophic State and Water Quality in a Coastal Ecosystem of the Gulf of California

    PubMed Central

    Vargas-González, Héctor Hugo; Arreola-Lizárraga, José Alfredo; Mendoza-Salgado, Renato Arturo; Méndez-Rodríguez, Lía Celina; Lechuga-Deveze, Carlos Hernando; Padilla-Arredondo, Gustavo; Cordoba-Matson, Miguel

    2014-01-01

    This paper provides evidence of the effects of urban wastewater discharges on the trophic state and environmental quality of a coastal water body in a semiarid subtropical region in the Gulf of California. The concentrations of dissolved inorganic nutrients and organic matter from urban wastewater primary treatment were estimated. La Salada Cove was the receiving water body and parameters measured during an annual cycle were temperature, salinity, dissolved oxygen, nitrite, nitrate, ammonia, orthophosphate, and chlorophyll a. The effects of sewage inputs were determined by using Trophic State Index (TRIX) and the Arid Zone Coastal Water Quality Index (AZCI). It was observed that urban wastewater of the city of Guaymas provided 1,237 ton N yr−1 and 811 ton P yr−1 and TRIX indicated that the receiving water body showed symptoms of eutrophication from an oligotrophic state to a mesotrophic state; AZCI also indicated that the environmental quality of the water body was poor. The effects of urban wastewater supply with insufficient treatment resulted in symptoms of eutrophication and loss of ecological functions and services of the coastal ecosystem in La Salada Cove. PMID:24711731

  14. Towards a study of synoptic-scale variability of the California current system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A West Coast satellite time series advisory group was established to consider the scientific rationale for the development of complete west coast time series of imagery of sea surface temperature (as derived by the Advanced Very High Resolution Radiometer on the NOAA polar orbiter, and near-surface phytoplankton pigment concentrations (as derived by the Coastal Zone Color Scanner on Nimbus 7). The scientific and data processing requirements for such time series are also considered. It is determined that such time series are essential if a number of scientific questions regarding the synoptic-scale dynamics of the California Current System are to be addressed. These questions concern both biological and physical processes.

  15. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    NASA Astrophysics Data System (ADS)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  16. Seasonal and interannual variability of pigment concentrations across a California Current frontal zone

    NASA Technical Reports Server (NTRS)

    Thomas, A. C.; Strub, P. T.

    1990-01-01

    The seasonal and interannual variability of the latitudinal position of the California Current frontal zone was investigated by examining satellite images of phytoplankton pigment from the coastal-zone color scanner for the periods 1979-1983 and 1986. The pigment concentrations associated with the zonal front were also determined. A general seasonal cycle of pigment concentrations is was established. It was found that variations in the frontal structure are controlled primarily by changes in pigment concentration north of the front. Seasonal variations were found to be minimal south of the front, where pigment concentrations remain low throughout the spring, summer, and fall.

  17. Climate Effects on Soil Carbon Sequestration in a Grass, Oak and Conifer Ecosystem of California

    NASA Astrophysics Data System (ADS)

    Pittiglio, S. L.; Zasoski, R.

    2007-12-01

    Dissolved organic matter (DOM) leaching from decomposing detritus accumulated above mineral soils is an important carbon (C) and nitrogen (N) flux that influences biogeochemical processes, C sequestration and the health of individual ecosystems. Previous studies have shown that the main process controlling DOM mobility in soils is sorption in the mineral horizons that adds to stabilized organic matter pools. The objective of this study was to determine the effect of temperature and incubation time on DOC and DON biodegradation and sorption in the mineral soil. Surface litter from a grass, oak and a conifer site were leached with deionized water for 5, 15 or 96 hours at 4, 20 or 30oC. The resulting DOM solutions were characterized using 13C NMR, XAD-8 resin and UV-vis spectroscopy. The biodegradable fraction (BDOC) of these solutions was quantified using inoculum from A horizon soils. The DOM solutions were also used in sorption experiments on A horizon soils. Supernatant from the A horizon sorption experiment was then used in a sorption experiment on Bt horizon soils and analyzed for BDOC using Bt horizon inoculum. The ability of the soils to adsorb DOC increased with increasing aromaticity in the DOC solution. Therefore, conifer DOM exhibited greater sorption than oak and grass DOM due to higher aromaticity. In all horizons, we observed net release of indigenous OM when OM-free solution was added. Net release of OM was greatest from the soils from the pine site, which had the greatest OM content among the soils we studied. ***Results still pending***

  18. Pattern and persistence of a nearshore planktonic ecosystem off Southern California

    NASA Astrophysics Data System (ADS)

    Barnett, Arthur M.; Jahn, Andrew E.

    1987-01-01

    Three related data sets from a baseline environmental survey on the continental shelf at San Onofre, California, consisting of: (1) zooplankton pumped from discrete depths on transects between the 8- and 30-m contours, sampled from 1976 to 1980; (2) zooplankton from oblique net hauls on a transect from 8 to 100 m sampled at 2-week intervals for 1 y, 1978-1979; and (3) vertical profiles of temperature, nutrients and plant pigments corresponding closely in time and space to the oblique net hauls, are used to describe cross-shelf zooplankton abundance patterns, community composition, and seasonal and shorter-term variations in cross-shelf zonation and their relation to variations in physical and chemical measures. Of 15 taxa tested for multiyear average patterns, three—the copepods Acartia clausi and Oithona oculata, and barnacle larvae—had centers of abundance shoreward of the 30-m contour and near the bottom. No differences were detected in the cross-shelf pattern between San Onofre and a transect 12 km southeast. Throughout the year, nearshore and offshore assemblages were distinguishable, the change occurring at about the 30-m contour. The offshore one, represented by the copepods Calanus pacificus, Eucalanus californicus and Rhincalanus nasutus, occupied water having less chlorophyll and less near-surface nutrient, i.e. of more oceanic character. In spring and summer, most nearshore taxa shifted slightly seaward, leaving a third assemblage, characterized by a very high abundance of Acartia spp. copepodids and maximum abundances of A. clausi and O. oculata near the beach. Three upwelling episodes resulted in marked increases in chlorophyll and nutrients, but not in cross-shelf gradients of these properties, as were noted at most other times. Maximum disturbance of cross-shelf zooplankton zonation was observed during a wintertime intrusion of offshore surface water, but the zonation was never obliterated. Nearshore zooplankton patterns appear to be protected

  19. Terrestrial Scavenging of Marine Mammals: Cross-Ecosystem Contaminant Transfer and Potential Risks to Endangered California Condors (Gymnogyps californianus).

    PubMed

    Kurle, Carolyn M; Bakker, Victoria J; Copeland, Holly; Burnett, Joe; Jones Scherbinski, Jennie; Brandt, Joseph; Finkelstein, Myra E

    2016-09-01

    The critically endangered California condor (Gymnogyps californianus) has relied intermittently on dead-stranded marine mammals since the Pleistocene, and this food source is considered important for their current recovery. However, contemporary marine mammals contain persistent organic pollutants that could threaten condor health. We used stable carbon and nitrogen isotope, contaminant, and behavioral data in coastal versus noncoastal condors to quantify contaminant transfer from marine mammals and created simulation models to predict the risk of reproductive impairment for condors from exposure to DDE (p,p'-DDE), a major metabolite of the chlorinated pesticide DDT. Coastal condors had higher whole blood isotope values and mean concentrations of contaminants associated with marine mammals, including mercury (whole blood), sum chlorinated pesticides (comprised of ∼95% DDE) (plasma), sum polychlorinated biphenyls (PCBs) (plasma), and sum polybrominated diphenyl ethers (PBDEs) (plasma), 12-100-fold greater than those of noncoastal condors. The mean plasma DDE concentration for coastal condors was 500 ± 670 (standard deviation) (n = 22) versus 24 ± 24 (standard deviation) (n = 8) ng/g of wet weight for noncoastal condors, and simulations predicted ∼40% of breeding-age coastal condors have DDE levels associated with eggshell thinning in other avian species. Our analyses demonstrate potentially harmful levels of marine contaminant transfer to California condors, which could hinder the recovery of this terrestrial species. PMID:27434394

  20. Harmonic analysis of tides and tidal currents in South San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.

    1985-01-01

    Water level observations from tide stations and current observations from current-meter moorings in South San Francisco Bay (South Bay), California have been harmonically analysed. At each tide station, 13 harmonic constituents have been computed by a least-squares regression without inference. Tides in South Bay are typically mixed; there is a phase lag of approximately 1 h and an amplification of 1??5 from north to south for a mean semi-diurnal tide. Because most of the current-meter records are between 14 and 29 days, only the five most important harmonics have been solved for east-west and north-south velocity components. The eccentricity of tidal-current ellipse is generally very small, which indicates that the tidal current in South Bay is strongly bidirectional. The analyses further show that the principal direction and the magnitude of tidal current are well correlated with the basin bathymetry. Patterns of Eulerian residual circulation deduced from the current-meter data show an anticlockwise gyre to the west and a clockwise gyre to the east of the main channel in the summer months due to the prevailing westerly wind. Opposite trends have been observed during winter when the wind was variable. ?? 1985.

  1. Swept Away by a Turbidity Current in Mendocino Submarine Canyon, California

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.

    2015-12-01

    Direct observations of turbidity currents in the ocean are rare, yet essential for validating and developing conceptual models of these enigmatic flows. We present a novel set of observations and measurements collected by a remotely operated vehicle entrained within a turbidity current in Mendocino Canyon, California. The flow had a two layer structure with a thin (0.5 to 30 m), relatively dense (<0.04 vol %) and fast (up to ~1.7 m/s) wedge-shaped lower layer overlain by a thicker (up to 89m) more dilute and slower current. The fast moving lower layer lagged the slow moving, dilute flow front by 14 min, which we infer resulted from the interaction of two initial pulses. The two layers were strongly coupled, and the sharp interface between the layers was characterized by a wave-like instability. This is the first field-scale data from a turbidity current to show (i) the complex dynamics of the head of a turbidity current and (ii) the presence of multiple layers within the same event. This data set provides a new perspective on the character of turbidity currents in the ocean. The data pose challenges not simply for understanding the dynamics of turbidity currents but also for how we interpret existing data based on cable breaks and how we might measure similar flows in the future.

  2. How stratification changes affect primary production in the California Current System.

    NASA Astrophysics Data System (ADS)

    Kim, H.; Miller, A. J.

    2006-12-01

    Warming of the California Current for the recent several decades was observed and buoyancy frequency increased by the warming, which might alter the upwelling cell and nutrient supply in the California Current System (CCS). Coastal upwelling plays an important role in bringing nutrients into euphotic zone for photosynthesis in the CCS. It is well known that bottom stress plays a significant role for the coastal upwelling. However, Lentz and Chapman (2004) proposed a new theory that nonlinear cross-shelf momentum flux can be more important than the bottom stress so onshore returning flow in the bottom boundary layer is less than interior cross-shelf momentum flux. The importance of interior flow depends on Burger number, which is a function of buoyancy frequency. Thus, we hypothesized that intensified stratification observed in the CCS, consequently increased Burger number can result in stronger interior return flow, which has less nutrient than bottom boundary return flow, and presumably less primary production and zooplankton biomass. To address this hypothesis modeling effort has been conducted using Regional Ocean Modeling System (ROMS) with biological tracers.

  3. Integrated climate/land use/hydrological change scenarios for assessing threats to ecosystem services on California rangelands

    NASA Astrophysics Data System (ADS)

    Byrd, K. B.; Flint, L. E.; Casey, C. F.; Alvarez, P.; Sleeter, B. M.; Sohl, T.

    2013-12-01

    In California there are over 18 million acres of rangelands in the Central Valley and the interior Coast Range, most of which are privately owned and managed for livestock production. Ranches provide extensive wildlife habitat and generate multiple ecosystem services that carry considerable market and non-market values. These rangelands are under pressure from urbanization and conversion to intensive agriculture, as well as from climate change that can alter the flow of these services. To understand the coupled and isolated impacts of land use and climate change on rangeland ecosystem services, we developed six spatially explicit (250 m) coupled climate/land use/hydrological change scenarios for the Central Valley and oak woodland regions of California consistent with three IPCC emission scenarios - A2, A1B and B1. Three land use land cover (LULC) change scenarios were each integrated with two downscaled global climate models (GCMs) (a warm, wet future and a hot, dry future) and related hydrologic data. We used these scenarios to quantify wildlife habitat, water supply (recharge potential and streamflow) and carbon sequestration on rangelands and to conduct an economic analysis associated with changes in these benefits. The USGS FOREcasting SCEnarios of land-use change model (FORE-SCE), which runs dynamically with downscaled GCM outputs, was used to generate maps of yearly LULC change for each scenario from 2006 to 2100. We used the USGS Basin Characterization Model (BCM), a regional water balance model, to generate change in runoff, recharge, and stream discharge based on land use change and climate change. Metrics derived from model outputs were generated at the landscape scale and for six case-study watersheds. At the landscape scale, over a quarter of the million acres set aside for conservation in the B1 scenario would otherwise be converted to agriculture in the A2 scenario, where temperatures increase by up to 4.5 °C compared to 1.3 °C in the B1 scenario

  4. The role of environmental controls in determining sardine and anchovy population cycles in the California Current: Analysis of an end-to-end model

    NASA Astrophysics Data System (ADS)

    Fiechter, Jerome; Rose, Kenneth A.; Curchitser, Enrique N.; Hedstrom, Katherine S.

    2015-11-01

    Sardine and anchovy are two forage species of particular interest because of their low-frequency cycles in adult abundance in boundary current regions, combined with a commercially relevant contribution to the global marine food catch. While several hypotheses have been put forth to explain decadal shifts in sardine and anchovy populations, a mechanistic basis for how the physics, biogeochemistry, and biology combine to produce patterns of synchronous variability across widely separated systems has remained elusive. The present study uses a 50-year (1959-2008) simulation of a fully coupled end-to-end ecosystem model configured for sardine and anchovy in the California Current System to investigate how environmental processes control their population dynamics. The results illustrate that slightly different temperature and diet preferences can lead to significantly different responses to environmental variability. Simulated adult population fluctuations are associated with age-1 growth (via age-2 egg production) and prey availability for anchovy, while they depend primarily on age-0 survival and temperature for sardine. The analysis also hints at potential linkages to known modes of climate variability, whereby changes in adult abundance are related to ENSO for anchovy and to the PDO for sardine. The connection to the PDO and ENSO is consistent with modes of interannual and decadal variability that would alternatively favor anchovy during years of cooler temperatures and higher prey availability, and sardine during years of warmer temperatures and lower prey availability. While the end-to-end ecosystem model provides valuable insight on potential relationships between environmental conditions and sardine and anchovy population dynamics, understanding the complex interplay, and potential lags, between the full array of processes controlling their abundances in the California Current System remains an on-going challenge.

  5. Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem

    PubMed Central

    Attrill, Martin J.; Becker, Peter H.; Egevang, Carsten; Furness, Robert W.; Grémillet, David; Kopp, Matthias; Lescroël, Amélie; Matthiopoulos, Jason; Peter, Hans-Ulrich; Phillips, Richard A.

    2016-01-01

    Upwelling regions are highly productive habitats targeted by wide-ranging marine predators and industrial fisheries. In this study, we track the migratory movements of eight seabird species from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME) and determine the habitat characteristics that drive this association. Our results indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and more than 70% of individuals used this upwelling region. Relative species richness peaked in areas where sea surface temperature averaged between 15 and 20°C, and correlated positively with chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research reveals the significance of the CCLME for seabird populations from across the Atlantic, making it a priority for conservation action. PMID:27531154

  6. Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem.

    PubMed

    Grecian, W James; Witt, Matthew J; Attrill, Martin J; Bearhop, Stuart; Becker, Peter H; Egevang, Carsten; Furness, Robert W; Godley, Brendan J; González-Solís, Jacob; Grémillet, David; Kopp, Matthias; Lescroël, Amélie; Matthiopoulos, Jason; Patrick, Samantha C; Peter, Hans-Ulrich; Phillips, Richard A; Stenhouse, Iain J; Votier, Stephen C

    2016-08-01

    Upwelling regions are highly productive habitats targeted by wide-ranging marine predators and industrial fisheries. In this study, we track the migratory movements of eight seabird species from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME) and determine the habitat characteristics that drive this association. Our results indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and more than 70% of individuals used this upwelling region. Relative species richness peaked in areas where sea surface temperature averaged between 15 and 20°C, and correlated positively with chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research reveals the significance of the CCLME for seabird populations from across the Atlantic, making it a priority for conservation action. PMID:27531154

  7. Remote versus local influence of ENSO on the California Current System

    NASA Astrophysics Data System (ADS)

    Frischknecht, M.; Münnich, M.; Gruber, N.

    2015-02-01

    Much of the observed interannual variability in the physical and biogeochemical state of the California Current System (CalCS) is associated with El Niño Southern Oscillation. Yet it is unclear whether this is primarily a result of atmospheric teleconnections forcing the ocean locally through changes in wind and fluxes of heat and freshwater, or whether this is a consequence of oceanic interior processes that transport tropical variability through, e.g., coastally trapped waves to the region. Here we investigate the relative contribution of these two mechanisms in the CalCS using a novel setup of the Regional Oceanic Modeling System coupled to a biogeochemical/ecological model. We conducted a hindcast simulation over the period 1979-2013 and contrast the results with those from sensitivity simulations with climatological atmospheric boundary conditions either for the U.S. West Coast or the rest of the Pacific. We find that remote forcing dominates the variability of the physical state in the nearshore region of the CalCS, explaining up to 80% of monthly mean sea-surface height and temperature variability. In contrast, local processes tend to drive variations in the biogeochemical/ecological state, particularly along central and northern California, explaining up to 50% of the observed surface variability. Most of the remote forcing is a consequence of coastally trapped waves that travel northward at speeds of approximately 230 km d-1, and thereby alter sea-level height, thermocline structure, and upwelling along California. Biogeochemically active tracers respond to this remote forcing as well, especially at depth, but are more strongly modulated by local atmospheric forcing, especially variations in upwelling-favorable winds.

  8. Climatic modulation of recent trends in ocean acidification in the California Current System

    NASA Astrophysics Data System (ADS)

    Turi, G.; Lachkar, Z.; Gruber, N.; Münnich, M.

    2016-01-01

    We reconstruct the evolution of ocean acidification in the California Current System (CalCS) from 1979 through 2012 using hindcast simulations with an eddy-resolving ocean biogeochemical model forced with observation-based variations of wind and fluxes of heat and freshwater. We find that domain-wide pH and {{{Ω }}}{arag} in the top 60 m of the water column decreased significantly over these three decades by about -0.02 decade-1 and -0.12 decade-1, respectively. In the nearshore areas of northern California and Oregon, ocean acidification is reconstructed to have progressed much more rapidly, with rates up to 30% higher than the domain-wide trends. Furthermore, ocean acidification penetrated substantially into the thermocline, causing a significant domain-wide shoaling of the aragonite saturation depth of on average -33 m decade-1 and up to -50 m decade-1 in the nearshore area of northern California. This resulted in a coast-wide increase in nearly undersaturated waters and the appearance of waters with {{{Ω }}}{arag}\\lt 1, leading to a substantial reduction of habitat suitability. Averaged over the whole domain, the main driver of these trends is the oceanic uptake of anthropogenic CO2 from the atmosphere. However, recent changes in the climatic forcing have substantially modulated these trends regionally. This is particularly evident in the nearshore regions, where the total trends in pH are up to 50% larger and trends in {{{Ω }}}{arag} and in the aragonite saturation depth are even twice to three times larger than the purely atmospheric CO2-driven trends. This modulation in the nearshore regions is a result of the recent marked increase in alongshore wind stress, which brought elevated levels of dissolved inorganic carbon to the surface via upwelling. Our results demonstrate that changes in the climatic forcing need to be taken into consideration in future projections of the progression of ocean acidification in coastal upwelling regions.

  9. A nowcast model for tides and tidal currents in San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Smith, Richard E.

    1998-01-01

    National Oceanographic and Atmospheric Administration (NOAA) installed Physical Oceanographic Real-Time System (PORTS) in San Francisco Bay, California to provide observations of tides, tidal currents, and meteorological conditions. PORTS data are used for optimizing vessel operations, increasing margin of safety for navigation, and guiding hazardous material spill prevention and response. Because tides and tidal currents in San Francisco Bay are extremely complex, limited real-time observations are insufficient to provide spatial resolution for variations of tides and tidal currents. To fill the information gaps, a highresolution, robust, semi-implicit, finite-difference nowcast numerical model has been implemented for San Francisco Bay. The model grid and water depths are defined on coordinates based on Mercator projection so the model outputs can be directly superimposed on navigation charts. A data assimilation algorithm has been established to derive the boundary conditions for model simulations. The nowcast model is executed every hour continuously for tides and tidal currents starting from 24 hours before the present time (now) covering a total of 48 hours simulation. Forty-eight hours of nowcast model results are available to the public at all times through the World Wide Web (WWW). Users can view and download the nowcast model results for tides and tidal current distributions in San Francisco Bay for their specific applications and for further analysis.

  10. Overview of Current Quarantines and Management of Citrus Pests in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first line of defense against exotic pests is exclusion. For citrus, this is achieved by quarantines and a requirement that all citrus germplasm introduction to California pass through the California Citrus Clonal Protection Program, University of California, Riverside. Here, all new germplasm...

  11. Predicting the vertical structure of tidal current and salinity in San Francisco Bay, California

    USGS Publications Warehouse

    Ford, Michael; Wang, Jia; Cheng, Ralph T.

    1990-01-01

    A two-dimensional laterally averaged numerical estuarine model is developed to study the vertical variations of tidal hydrodynamic properties in the central/north part of San Francisco Bay, California. Tidal stage data, current meter measurements, and conductivity, temperature, and depth profiling data in San Francisco Bay are used for comparison with model predictions. An extensive review of the literature is conducted to assess the success and failure of previous similar investigations and to establish a strategy for development of the present model. A σ plane transformation is used in the vertical dimension to alleviate problems associated with fixed grid model applications in the bay, where the tidal range can be as much as 20–25% of the total water depth. Model predictions of tidal stage and velocity compare favorably with the available field data, and prototype salinity stratification is qualitatively reproduced. Conclusions from this study as well as future model applications and research needs are discussed.

  12. Differences in dynamic response of California Current salmon species to changes in ocean conditions

    NASA Astrophysics Data System (ADS)

    Botsford, Louis W.; Lawrence, Cathryn A.; Forrest Hill, M.

    2005-01-01

    While changes in the northeast Pacific Ocean in the mid-1970s apparently caused changes in salmon population growth in the Gulf of Alaska and the California Current, the responses of California Current salmon species, coho salmon ( Oncorhynchus kisutch) and chinook salmon ( O. tshawytscha) differed. Coho salmon catches declined dramatically along the coasts of California, Oregon and Washington, while chinook salmon catches did not. This provides an opportunity for comparative analysis, a rarity in the study of long-term changes in the ocean. Here we test one possible explanation for that difference, that chinook salmon populations are inherently more persistent because chinook salmon populations spawn over a range of ages, while coho salmon spawn predominantly at age 3 yr. We extended a previous theoretical approach that had been used to assess the long-term response of salmon populations with various spawning age structures to different means and variances in environmental variability. New results indicate that populations with environmental variability at the age of return to freshwater have the same characteristic identified earlier for populations with variability in the age of entry: populations spawning at multiple ages are more persistent, but that increased persistence is gained in the first few percent of departure from all spawning at a single age. Thus, in both cases the results are too sensitive to values of uncertain parameters to depend on as an explanation of the differences in response. We also approached this question by subjecting model populations with coho and chinook salmon spawning age structures to an empirical estimate of actual marine survival of coho salmon over the years 1970-2002, asking the question, if chinook salmon had been subjected to the same ocean survivals would they have experienced the same decline. The differences in spawning age structure made little difference in population responses. The dominant factor influencing the

  13. An evaluation of the latitudinal gradient of chlorophyll in the California Current

    NASA Astrophysics Data System (ADS)

    Dietrich, W.; Broughton, J.; Kudela, R. M.

    2013-12-01

    Tracking of spatial and temporal trends in phytoplankton abundance and distribution is an important step toward understanding large-scale macroecological processes in the ocean. Measurements of ocean radiance from satellite-borne sensors, such as SeaWiFS and MODIS, can be used to estimate surface chlorophyll concentration, which is a good indicator of phytoplankton biomass. The primary goal of this study was to evaluate the latitudinal gradient in chlorophyll concentration within the California Current first reported by Ware and Thomson (2005). They found that average chlorophyll concentration tended to increase steadily from 32-48°N latitude. This concentration gradient was reevaluated using a longer dataset and an algorithm refined for the region. Radiance data from the MODIS-Aqua instrument were obtained for every year from 2002 through 2013. Data included annual averages of remote sensing radiance as well as monthly averages for February, April, and August. These months were chosen to represent each of the three oceanographic seasons present in the California Current. Estimates of chlorophyll concentration were derived from these data using the CALFIT algorithm developed by Kahru et al. (2012). The resulting maps of chlorophyll concentration were processed in MATLAB and linear regressions were performed using SYSTAT 13 software. A statistically significant (p < 0.05) latitudinal trend in chlorophyll was observed in the annual averaged data as well as in the averaged seasonal data from February and August. No significant trend was observed in the averaged April data. Chlorophyll concentration was positively correlated with latitude in every instance, except in April 2003 and April 2005, where a negative correlation was observed. The positive latitudinal trend was strongest during August and weakest during April. Strong peaks in chlorophyll were observed near San Francisco Bay and the mouth of the Columbia River, suggesting that river-borne nutrient input may be

  14. Trophic modeling of the Northern Humboldt Current Ecosystem, Part II: Elucidating ecosystem dynamics from 1995 to 2004 with a focus on the impact of ENSO

    NASA Astrophysics Data System (ADS)

    Taylor, Marc H.; Tam, Jorge; Blaskovic, Verónica; Espinoza, Pepe; Michael Ballón, R.; Wosnitza-Mendo, Claudia; Argüelles, Juan; Díaz, Erich; Purca, Sara; Ochoa, Noemi; Ayón, Patricia; Goya, Elisa; Gutiérrez, Dimitri; Quipuzcoa, Luis; Wolff, Matthias

    2008-10-01

    The Northern Humboldt Current Ecosystem is one of the most productive in the world in terms of fish production. Its location near to the equator permits strong upwelling under relatively low winds, thus creating optimal conditions for the development of plankton communities. These communities ultimately support abundant populations of grazing fish such as the Peruvian anchoveta, Engraulis ringens. The ecosystem is also subject to strong inter-annual environmental variability associated with the El Niño Southern Oscillation (ENSO), which has major effects on nutrient structure, primary production, and higher trophic levels. Here our objective is to model the contributions of several external drivers (i.e. reconstructed phytoplankton changes, fish immigration, and fishing rate) and internal control mechanisms (i.e. predator-prey) to ecosystem dynamics over an ENSO cycle. Steady-state models and time-series data from the Instituto del Mar del Perú (IMARPE) from 1995 to 2004 provide the base data for simulations conducted with the program Ecopath with Ecosim. In simulations all three external drivers contribute to ecosystem dynamics. Changes in phytoplankton quantity and composition (i.e. contribution of diatoms and dino- and silicoflagellates), as affected by upwelling intensity, were important in dynamics of the El Niño of 1997-98 and the subsequent 3 years. The expansion and immigration of mesopelagic fish populations during El Niño was important for dynamics in following years. Fishing rate changes were the most important of the three external drivers tested, helping to explain observed dynamics throughout the modeled period, and particularly during the post-El Niño period. Internal control settings show a mix of predator-prey control settings; however a “wasp-waist” control of the ecosystem by small pelagic fish is not supported.

  15. Trophic structure and diversity in rocky intertidal upwelling ecosystems: A comparison of community patterns across California, Chile, South Africa and New Zealand

    NASA Astrophysics Data System (ADS)

    Blanchette, C. A.; Wieters, E. A.; Broitman, B. R.; Kinlan, B. P.; Schiel, D. R.

    2009-12-01

    The Benguela, California, and Humboldt represent three of the major eastern boundary upwelling ecosystems in the world. Upwelling ecosystems are highly productive, and this productivity forms the base of the food chain, potentially leading to ecosystems similar in trophic structure and diversity among upwelling regions. Here we compare the biological and trophic structure of rocky intertidal communities in each of these major upwelling regions. Our comparison includes a fourth region, New Zealand, which spans a similar latitudinal range, and experiences intermittent upwelling. The influence of oceanographic conditions on these communities was evaluated by using the long-term mean and standard deviation of satellite-based sea surface temperature (SST). Large differences emerged in the taxonomic richness in each of these systems, with California as the most and the Humboldt as the least taxonomically rich. Across all regions, richness tended to decrease progressively from lower trophic levels (macrophytes) to higher trophic levels (carnivores), and richness was inversely correlated with the proportion of variance in SST contained in the seasonal cycle, suggesting that strongly seasonal, predictable environments are relatively low in diversity. The functional and trophic structures were remarkably similar across these four regions of the world. Macrophytes were slightly dominant over filter-feeders in terms of space occupancy in all regions except the Benguela. Densities of herbivorous grazers were greatest in California and Benguela and far outnumbered carnivore densities in all regions. Despite some similarities, the overall structure of the communities from these regions differed significantly supporting the hypothesis that the biological and ecological consequences of similar physical forcing mechanisms (e.g. upwelling) are likely to be context-dependent.

  16. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river

    NASA Astrophysics Data System (ADS)

    Warrick, Jonathan A.; Xu, Jingping; Noble, Marlene A.; Lee, Homa J.

    2008-05-01

    Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (˜5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (˜1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.

  17. Lead pollution in subtropical ecosystems on the SE Gulf of California Coast: a study of concentrations and isotopic composition.

    PubMed

    Soto-Jiménez, Martin F; Páez-Osuna, Federico; Scelfo, Genine; Hibdon, Sharon; Franks, Rob; Aggarawl, Jugdeep; Flegal, A Russell

    2008-10-01

    Lead pollution was investigated in environmental matrices and biological indicators collected from two typical subtropical coastal ecosystems in the southeast Gulf of California, Mexico. Lead concentrations and isotopic compositions ((206)Pb/(207)Pb and (208)Pb/(207)Pb) were measured using high resolution inductively-coupled plasma-mass spectrometry (HR-ICP-MS) and thermal ionization mass spectrometry (TIMS), respectively. Lead in surface estuary sediments (10.0-34.2microgg(-1)) and particulate Pb (25.0-128.7microgg(-1), >98% of total Pb) in the water column were significantly higher than levels in natural bedrock soils (15.1+/-8.3microgg(-1)) and river runoff (1.9+/-1.4microgg(-1)). Aquatic plants had Pb concentrations between 2.5 and 7.2microgg(-1), while those in macroalgae ranged from 3 to 5microgg(-1). The ranges of mean Pb concentrations in the aquatic animals studied (ranges in microgg(-1)) were as follows: zooplankton 32+/-3, mussels 2.3-3.9, oysters 1.9-7.9, snail 2.0-7.7, barnacles 0.1-18.5, fish 1.4-8.9, crab 6.3-40.2 and polychaetae 8.5-16.7. Pb values in 20-40% of oyster and fish samples and in all samples of crab exceeded acceptable levels for a food source for human consumption. Pb isotope ratios (206)Pb/(207)Pb, (208)Pb/(207)Pb in biota ranged from 1.188 to 1.206 and 2.448 to 2.470, respectively. A plot of (206)Pb/(207)Pb versus (208)Pb/(207)Pb for the environmental and biological samples collected from two study areas indicates that they contain lead from ores mined in Mexico and used in the past to produce leaded gasoline in use until 1997, natural Pb weathered from the Sierra Madre Occidental mother rock, and the later influence of inputs from a more radiogenic source related to industrial activity in the United States. Statistical software IsoSource results revealed that the Pb contained in environmental matrices and biomonitors is mostly derived from gasoline (20-90%) and US emissions (10-40%). PMID:18789522

  18. Towards Sustaining Water Resources and Aquatic Ecosystems: Forecasting Watershed Risks to Current and Future Land Use Change

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.; Newburn, D.; Opperman, J. J.; Brooks, C.; Merenlender, A.

    2005-05-01

    Sustaining aquatic resources requires managing existing threats and anticipating future impacts. Resource managers and planners often have limited understanding of the relative effects of human activities on stream conditions and how these effects will change over time. Here we assess and forecast the relative impacts of land use on sediment concentrations in Mediterranean-climate watersheds in California. We focus on the Russian River basin, which supports threatened salmonid populations vulnerable to high levels of fine sediment. We ask the following questions: (1) What are the relative impacts of three different land uses (urban, exurban and agriculture) on the patterns of fine sediment in streams? (2) What is the relative contribution of past and current changes in land use activities on these patterns? and (3) What are the effects of future development on these sediment levels? First, we characterized land use at the parcel scale to calibrate the relative impacts of exurban and urban land use on stream substrate quality, characterized by the concentration of fine sediment surrounding spawning gravels (`embeddedness') in 105 stream reaches. Second, we built multiple ordinal logistic regression models on a subset of watersheds (n=64) and then evaluated substrate quality predictions against observed data from another set of watersheds (n=41). Finally, we coupled these models with spatially explicit land use change models to project future stream conditions and associated uncertainties under different development scenarios for the year 2010. We found that the percent of urban housing and agriculture were significant predictors of in-stream embeddedness. Model results from parcel-level land use data indicated that changes in development were better predictors of fine sediment than total development in a single time period. In addition, our results indicate that exurban development is an important threat to stream systems; increases in the percent of total exurban

  19. Characterizing changes in streamflow under historical and current climates for the Russian River, California

    NASA Astrophysics Data System (ADS)

    Curtis, J.; Flint, L. E.

    2014-12-01

    Precipitation in California is naturally more variable than elsewhere in the United States, and climate change is expected to increase the frequency and severity of precipitation and streamflow anomalies. As part of a larger effort to assess flow conditions under historical, current, and future climates, we characterized the change in the Russian River's mainstem flows between two 30-year periods that represent historical (1951 to 1980) and current (1981 to 2010) climate conditions. Analyses included measured data from one mainstem gage (Ukiah) that represents natural flow conditions, and three mainstem gages (Hopland, Healdsburg, and Guerneville) regulated by diversion into the Russian River from the adjacent Eel River and by reservoir storage. Analysis of natural flows at the Ukiah gage under the current climate indicates statistically significant increases in low flow metrics that include: median monthly flows from July to October; number of zero flow days; and 1-, 3-, 5-, 7-, 30- and 90-day minimum flows. In contrast to the Ukiah gage, decreases in low flows under the current climate at the three regulated-streamflow gages varied with distance downstream. Statistically significant declines in median monthly flows occurred during the second period (1981-2010) from August to November at Hopland, September to November at Healdsburg and in October at Guerneville. Although mean annual flow declined at all four gages during the second period and median monthly low flows declined at the downstream gages, median monthly low flows and minimum flows at the Ukiah gage which represents natural flows increased during the driest months (July to October). Results from this study will be used to support ecological studies and water resource planning within the Russian River watershed. The relative importance of climate and watershed response on the quality and quantity of streamflow under historical and current climates will be assessed and results compared to analyses of

  20. Long-term change and stability in the California Current System: lessons from CalCOFI and other long-term data sets

    NASA Astrophysics Data System (ADS)

    Rebstock, Ginger A.

    2003-08-01

    The California Current System (CCS) is a highly variable system, both spatially and temporally, that is strongly affected by low-frequency climatic fluctuations. This paper reviews evidence for long-term (decadal-scale) change in the physics and biology of the CCS over the last 50-100 years, as well as evidence for stability in planktonic community structure and long-term persistence of populations. Increases in water temperature, thermocline depth and stratification in the CCS have been accompanied by changes in populations of kelp, diatoms, foraminifera, radiolarians, intertidal invertebrates, zooplankton, fish and seabirds. However, there is also evidence for stability in assemblages of larval fish, calanoid copepods and radiolarians. Statistical averaging (the portfolio effect) may explain some aspects of stability in assemblages. Advection of planktonic populations may account for rapid recovery of biomass and dominance structure following perturbations such as strong El Niño events. Planktonic populations in the CCS may be adapted to large-scale biotic and abiotic variability, through a combination of advection of populations and life history traits. Several lessons may be learned from the California Cooperative Oceanic Fisheries Investigations and other long-term data sets: (1) long time series are needed to understand the dynamics of the ecosystem; (2) life histories are important determinants of species responses to environmental forcing, even in the plankton; and (3) the CCS is simultaneously variable and stable, and these properties are not necessarily in conflict.

  1. The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies

    NASA Astrophysics Data System (ADS)

    Montecino, Vivian; Lange, Carina B.

    2009-12-01

    In the Humboldt Current System (HCS), biological and non-biological components, ecosystem processes, and fisheries are known to be affected by multi-decadal, inter-annual, annual, and intra-seasonal scales. The interplay between atmospheric variability, the poleward undercurrent, the shallow oxygen minimum zone (OMZ), and the fertilizing effect of coastal upwelling and overall high primary production rates drive bio-physical interactions, the carbon biomass, and fluxes of gases and particulate and dissolved matter through the water column. Coastal upwelling (permanent and seasonally modulated off Peru and northern Chile, and markedly seasonal between 30°S and 40°S) is the key process responsible for the high biological productivity in the HCS. At present, the western coast of South America produces more fish per unit area than any other region in the world ocean (i.e. ∼7.5 × 10 6 t of anchoveta were landed in 2007). Climate changes on different temporal scales lead to alterations in the distribution ranges of anchoveta and sardine populations and shifts in their dominance throughout the HCS. The factors affecting the coastal marine ecosystem that reverberate in the fisheries are crucial from a social perspective, since the economic consequences of mismanagement can be severe. Fish remains are often well-preserved in sediment settings under the hypoxic conditions of the OMZ off Peru and Chile, and reveal multi-decadal variability and centennial-scale changes in fish populations. Sediment studies from the Chilean continental margin encompassing the last 20,000 years of deposition reveal changes in sub-surface conditions in the HCS during deglaciation, interpreted to include: a major reorganization of the OMZ; a deglacial increase in denitrification decoupled from local marine productivity; and higher deglacial and Holocene paleoproductivities compared to the Last Glacial Maximum in central-south Chile (35-37°S) while this scheme is reversed for north

  2. Energy from California agriculture and forest resources: current and future potential and constraints

    SciTech Connect

    Sachs, R.H.

    1981-01-01

    More than 0.3 Quad of energy in the form of liquid, solid, and gaseous fuels can be produced from California forests and farms without altering significantly the supply of food, feed or fiber. The costs of biomass to fuels via direct combustion and gasification conversion systems is now lower than the petroleum or natural gas-derived fuels that they would replace. Yields of 10 tons dry matter per acre per year would be expected from all irrigated agricultural regions if the most productive crops such as corn, sorghum, sugar beets, certain forages and tree crops are grown. Double cropping, e.g., winter grain followed by corn or sorghum in the summer, may increase yields above 10 tons dry matter per year. As much as 4 tons per acre should be available as residues from corn or sorghum for energy conversion systems. With selected crop acreage and utilization schemes up to 5 billion gallons of fermentation ethanol can be produced annually from high starch and sugar crops. With little change in current crop production and utilization over 1 billion gallons of ethanol and methanol can be produced by conversion of current collectable crop, forestry and urban residues.

  3. Current Status of Western Yellow-Billed Cuckoo along the Sacramento and Feather Rivers, California.

    PubMed

    Dettling, Mark D; Seavy, Nathaniel E; Howell, Christine A; Gardali, Thomas

    2015-01-01

    To evaluate the current status of the western population of the Yellow-billed Cuckoo (Coccyzus americanus) along the Sacramento and Feather rivers in California's Sacramento Valley, we conducted extensive call playback surveys in 2012 and 2013. We also quantified the amount and distribution of potential habitat. Our survey transects were randomly located and spatially balanced to sample representative areas of the potential habitat. We estimated that the total area of potential habitat was 8,134 ha along the Sacramento River and 2,052 ha along the Feather River, for a total of 10,186 ha. Large-scale restoration efforts have created potential habitat along both of these rivers. Despite this increase in the amount of habitat, the number of cuckoos we detected was extremely low. There were 8 detection occasions in 2012 and 10 occasions in 2013 on the Sacramento River, in both restored and remnant habitat. We had no detections on the Feather River in either year. We compared our results to 10 historic studies from as far back as 1972 and found that the Yellow-billed Cuckoo had unprecedentedly low numbers in 2010, 2012, and 2013. The current limiting factor for the Yellow-billed Cuckoo in the Sacramento Valley is likely not the amount of appropriate vegetation, as restoration has created more habitat over the last 30 years. Reasons for the cuckoo decline on the Sacramento and Feather rivers are unclear. PMID:25915801

  4. Transport patterns of Pacific sardine Sardinops sagax eggs and larvae in the California Current System

    NASA Astrophysics Data System (ADS)

    Weber, Edward D.; Chao, Yi; Chai, Fei; McClatchie, Sam

    2015-06-01

    We simulated transport of Pacific sardine eggs captured offshore of California in spring of 2001-2012 using a regional ocean circulation model. Eggs were assumed to have developed into larvae within a few days and were modeled using five behavioral patterns: passive transport, diel vertical migration, diel vertical migration combined with swimming against the current, diel migration combined with migration toward shore, and diel migration combined with migration toward the best habitat. Simulated larvae with no swimming behavior were advected far offshore to poor habitat where they were unlikely to survive. Diel vertical migration resulted in less offshore transport because larvae were less affected by surface currents during the day. However, in half the years simulated nearly all juveniles were also located in poor habitat by late summer in this scenario. Swimming against the current combined with diel vertical migration resulted in similar transport patterns to the diel-vertical-migration scenario because currents dominated the transport of eggs and small larvae during the spring and early summer. Migration toward shore resulted in a large fraction of juveniles being located in appropriate habitat during late summer in all years. Migration toward the best habitat was the best strategy modeled. This strategy resulted in a slightly greater proportion of larvae being located in appropriate habitat at the end of summer than the swimming-toward-shore scenario, despite the fact that most larvae were located farther offshore. These results suggest that larval sardine might use directed horizontal swimming behavior to remain in suitable habitat conditions. A large fraction of larvae were transported south into Mexican waters by late summer in all five scenarios. Surveying juvenile sardines in fall near the border of the U.S. and Mexico may be an efficient means of estimating recruitment because the advection pattern of eggs and larvae to the south is opposite the adult

  5. Development of the California Current during the past 12,000 yr based on diatoms and silicoflagellates

    USGS Publications Warehouse

    Barron, John A.; Bukry, David

    2007-01-01

    Detailed diatom and silicoflagellates records in three cores from the offshore region of southern Oregon to central California reveal the evolution of the northern part of the California Current during the past 12,000 yr. The early Holocene, prior to ∼ 9 ka, was characterized by relatively warm sea surface temperatures (SST), owing to enhanced northerly flow of the subtropical waters comparable to the modern Davidson Current. Progressive strengthening of the North Pacific High lead to intensification of the southward flow of the California Current at ∼ 8 ka, resulting in increased coastal upwelling and relatively cooler SST which persisted until ∼ 5 ka. Reduced southward flow of the California Current between ∼ 4.8 ka and 3.6 ka may have been responsible for a period of decreased upwelling. Modern seasonal oceanographic cycles, as evidenced by increased spring–early summer coastal upwelling and warming of early fall SST evolved between 3.5 and 3.2 ka. Widespread occurrence of paleoceanographic and paleoclimatic change between ∼ 3.5–3.0 ka along the eastern margins of the North Pacific was likely a response to increasing ENSO variability in the tropical Pacific.

  6. Impacts of the 2015-2016 El Niño on the California Current System: Early assessment and comparison to past events

    NASA Astrophysics Data System (ADS)

    Jacox, Michael G.; Hazen, Elliott L.; Zaba, Katherine D.; Rudnick, Daniel L.; Edwards, Christopher A.; Moore, Andrew M.; Bograd, Steven J.

    2016-07-01

    The 2015-2016 El Niño is by some measures one of the strongest on record, comparable to the 1982-1983 and 1997-1998 events that triggered widespread ecosystem change in the northeast Pacific. Here we describe impacts of the 2015-2016 El Niño on the California Current System (CCS) and place them in historical context using a regional ocean model and underwater glider observations. Impacts on the physical state of the CCS are weaker than expected based on tropical sea surface temperature anomalies; temperature and density fields reflect persistence of multiyear anomalies more than El Niño. While we anticipate El Niño-related impacts on spring/summer 2016 productivity to be similarly weak, their combination with preexisting anomalous conditions likely means continued low phytoplankton biomass. This study highlights the need for regional metrics of El Niño's effects and demonstrates the potential to assess these effects before the upwelling season, when altered ecosystem functioning is most apparent.

  7. Interannual variability in the Northern California Current food web structure: Changes in energy flow pathways and the role of forage fish, euphausiids, and jellyfish

    NASA Astrophysics Data System (ADS)

    Ruzicka, James J.; Brodeur, Richard D.; Emmett, Robert L.; Steele, John H.; Zamon, Jeannette E.; Morgan, Cheryl A.; Thomas, Andrew C.; Wainwright, Thomas C.

    2012-09-01

    The Northern California Current (NCC) is a seasonally productive and open ecosystem. It is home to both a diverse endemic community and to seasonally transient species. Productivity and food web structure vary seasonally, interannually, and decadally due to variability in coastal upwelling, climate-scale physical processes, and the migratory species entering the system. The composition of the pelagic community varies between years, including changes to mid-trophic level groups that represent alternate energy-transfer pathways between lower and upper trophic levels (forage fishes, euphausiids, jellyfish). Multiple data sets, including annual spring and summer mesoscale surveys of the zooplankton, pelagic fish, and seabird communities, were used to infer NCC trophic network arrangements and develop end-to-end models for each of the 2003-2007 upwelling seasons. Each model was used to quantify the interannual variability in energy-transfer efficiency from bottom to top trophic levels. When each model was driven under an identical nutrient input rate, substantial differences in the energy available to each functional group were evident. Scenario analyses were used to examine the roles of forage fishes, euphausiids, and jellyfish (small gelatinous zooplankton and large carnivorous jellyfish) as alternate energy transfer pathways. Euphausiids were the more important energy transfer pathway; a large proportion of the lower trophic production consumed was transferred to higher trophic levels. In contrast, jellyfish acted as a production loss pathway; little of the production consumed was passed upwards. Analysis of the range of ecosystem states observed interannually and understanding system sensitivity to variability among key trophic groups improves our ability to predict NCC ecosystem response to short- and long-term environmental change.

  8. Temporal and sex-specific variability in Rhinoceros Auklet diet in the central California Current system

    NASA Astrophysics Data System (ADS)

    Carle, Ryan D.; Beck, Jessie N.; Calleri, David M.; Hester, Michelle M.

    2015-06-01

    We used stable isotopes (δ15N and δ13C) and compared prey provided to chicks by each sex to evaluate seasonal and sex-specific diets in Rhinoceros Auklets (Cerorhinca monocerata) in the central California Current system during 2012-2013. Mixing models indicated northern anchovy (Engraulis mordax) were important prey for adults during fall/winter and juvenile rockfishes (Sebastes spp.) were important prey during incubation both years. Adult trophic level increased between incubation and chick-rearing periods in both years. During 2012, δ15N and δ13C of chick-rearing males and females differed significantly; mixing models indicated that females ate more Pacific saury (Cololabis saira) and less market squid (Doryteuthis opalescens) than males. Likewise, females delivered significantly more Pacific saury and less market squid to chicks than males during 2012. Chick growth (g d- 1) and chick survival to fledging were significantly lower during 2012 than 2013, likely because chicks were fed lesser quality prey or fed less frequently in 2012. Lesser body mass of females during incubation in 2012 indicated sex-specific diet differences may have been related to female energetic constraints. The observed variability in Rhinoceros Auklet diet underscores the importance of managing multiple prey populations in this system so that generalist predators have sufficient resources through changing conditions.

  9. Mixed layer depth variability in the tropical boundary of the California Current, 1997-2007

    NASA Astrophysics Data System (ADS)

    Jeronimo, Gilberto; Gomez-Valdes, Jose

    2010-05-01

    The variability of the mixed layer depth (MLD) is examined over a decade (1997-2007) for the tropical boundary of the California Current (24-32°N), using conductivity-temperature-depth observations collected by quarterly survey cruises. Results indicate that salinity gradients control MLD rather than temperature gradients. The mean state of the upper ocean indicates that contours of constant MLD are parallel to the coast, with mixed layer thickness decreasing toward the coastal zone. The deepest (˜70 m) thickness is reached in January and the shallowest (˜15 m) occurs in July. The warmer conditions (summer) are reproduced for a simple thermal energy equation. The rest of the seasons are reproduced for a one-dimensional momentum balance for the upper ocean, which includes Ekman dynamics and stratification. This comparison indicates that the variability of MLD is mainly due to wind-driven phenomena except during the heating period. In particular, seasonal and interannual variability of the MLD are correlated with offshore Ekman transport. An abrupt MLD change occurs between January 1998 and January 2000 associated with the strong El Niño-La Niña cycle shift that occurred in this period.

  10. California coast nearshore processes study. [nearshore currents, sediment transport, estuaries, and river discharge

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.

  11. How have past fire disturbances contributed to the current carbon balance of boreal ecosystems?

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Zhu, D.; Wang, T.; Peng, S. S.; Piao, S. L.

    2016-02-01

    Boreal fires have immediate effects on regional carbon budgets by emitting CO2 into the atmosphere at the time of burning, but they also have legacy effects by initiating a long-term carbon sink during post-fire vegetation recovery. Quantifying these different effects on the current-day pan-boreal (44-84° N) carbon balance and quantifying relative contributions of legacy sinks by past fires is important for understanding and predicting the carbon dynamics in this region. Here we used the global dynamic vegetation model ORCHIDEE-SPITFIRE (Organising Carbon and Hydrology In Dynamic Ecosystems - SPread and InTensity of FIRE) to attribute the contributions by fires in different decades between 1850 and 2009 to the carbon balance of 2000-2009, taking into account the atmospheric CO2 change and climate change since 1850. The fire module of ORCHIDEE-SPITFIRE was turned off for each decade in turn and was also turned off before and after the decade in question in order to model the legacy carbon trajectory by fires in each past decade. We found that, unsurprisingly, fires that occurred in 2000-2009 are a carbon source (-0.17 Pg C yr-1) for the carbon balance of 2000-2009, whereas fires in all decades before 2000 contribute carbon sinks with a collective contribution of 0.23 Pg C yr-1. This leaves a net fire sink effect of 0.06 Pg C yr-1, or 6.3 % of the simulated regional carbon sink (0.95 Pg C yr-1). Further, fires with an age of 10-40 years (i.e., those that occurred during 1960-1999) contribute more than half of the total sink effect of fires. The small net sink effect of fires indicates that current-day fire emissions are roughly balanced out by legacy sinks. The future role of fires in the regional carbon balance remains uncertain and will depend on whether changes in fires and associated carbon emissions will exceed the enhanced sink effects of previous fires, both being strongly affected by global change.

  12. Biogeography and phenology of satellite-measured phytoplankton seasonality in the California current

    NASA Astrophysics Data System (ADS)

    Foukal, Nicholas P.; Thomas, Andrew C.

    2014-10-01

    Thirteen years (1998-2010) of satellite-measured chlorophyll a are used to establish spatial patterns in climatological phytoplankton biomass seasonality across the California Current System (CCS) and its interannual variability. Multivariate clustering based on the shape of the local climatological seasonal cycle divides the study area into four groups: two with spring-summer maxima representing the northern and southern coastal upwelling zones, one with a summer minimum offshore in mid-latitudes and a fourth with very weak seasonality in between. Multivariate clustering on the seasonal cycles from all 13 years produces the same four seasonal cycle types and provides a view of the interannual variability in seasonal biogeography. Over the study period these seasonal cycles generally appear in similar locations as the climatological clusters. However, considerable interannual variability in the geography of the seasonal cycles is evident across the CCS, the most spatially extensive of which are associated with the 1997-1999 El Niño-Southern Oscillation (ENSO) signal and the 2005 delayed spring transition off the Oregon and northern and central California coasts. We quantify linear trends over the study period in the seasonal timing of the two seasonal cycles that represent the biologically productive coastal upwelling zones using four different metrics of phenology. In the northern upwelling region, the date of the spring maximum is delaying (1.34 days yr-1) and the central tendency of the summer elevated chlorophyll period is advancing (0.63 days yr-1). In the southern coastal upwelling region, both the initiation and cessation of the spring maximum are delaying (1.78 days yr-1 and 2.44 days yr-1, respectively) and the peak is increasing in duration over the study period. Connections between observed interannual shifts in phytoplankton seasonality and physical forcing, expressed as either basin-scale climate signals or local forcing, show phytoplankton

  13. Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Powell, Jesse R.; Ohman, Mark D.

    2015-02-01

    Fronts represent sharp boundaries between water masses, but seasonal and interannual variation in their occurrence and effects on the distributions of pelagic organisms are poorly understood. This study reports results from six years of ocean front observations (2006-2011) along two transect lines across the Southern California Current System (SCCS) using autonomous Spray ocean gliders. During this time, 154 positive near-surface density fronts were identified within 124 completed transects consisting of nearly 23,000 vertical profiles. The incidence of surface density fronts showed distinct seasonality along line 80 off Pt. Conception, with fewer fronts occurring during winter months and more numerous fronts in the nearshore and during spring, summer and fall. On line 90, fronts were the least common nearshore and most frequent in a transitional region offshore. Horizontal density gradients in the surface layer (0-50 m) were significantly correlated with horizontal gradients in surface layer Chlorophyll-a (Chl-a) fluorescence, as well as with mean volume backscatter (MVBS) recorded by a 750 kHz acoustic Doppler profiler. Density fronts were not only zones of rapidly changing phytoplankton and zooplankton biomass concentrations, but also more likely to be zones of enhanced acoustic backscatter and Chl-a fluorescence than regions flanking the fronts. MVBS and Chl-a gradients were significantly correlated with gradients in other hydrographic variables such as temperature, salinity, and spiciness, and weakly with cross-track current velocity, though density gradients remained the single best predictor of strong MVBS and fluorescence gradients. Large mobile predators foraging in the vicinity of such features could locate habitat with higher zooplankton biomass concentrations up to 85% of the time by traveling up local density gradients (i.e., toward rather than away from denser surface waters). We discuss implications of these results in the context of long-term trends

  14. Current and emerging models of residential psychiatric treatment, with special reference to the California situation.

    PubMed

    Atkinson, R M

    1975-04-01

    The author reviews the steps that have led to the progressive deemphasis of psychiatric hospitalization in California and surveys the empirical basis for rejecting the usefulness of hospitalization. He discusses the four alternative residential models that have emerged in California as substitutes for state mental hospitals--general hospital psychiatric units, board and care homes, private psychiatric facilities available through vendor contracts, and convalescent hospitals. The author also touches briefly upon some important problems, including the possible fate of public general hospital psychiatric units, community mental health services, and the commitment law in California. PMID:1091160

  15. Top-down and bottom-up factors affecting seabird population trends in the California current system (1985-2006)

    NASA Astrophysics Data System (ADS)

    Ainley, David G.; David Hyrenbach, K.

    2010-03-01

    To characterize the environmental factors affecting seabird population trends in the central portion of the California current system (CCS), we analyzed standardized vessel-based surveys collected during the late spring (May-June) upwelling season over 22 yr (1985-2006). We tested the working hypothesis that population trends are related to species-specific foraging ecology, and predicted that temporal variation in population size should be most extreme in diving species with higher energy expenditure during foraging. We related variation in individual species abundance (number km -2) to seasonally lagged (late winter, early spring, late spring) and concurrent ocean conditions, and to long-term trends (using a proxy variable: year) during a multi-decadal period of major fluctuations in the El Niño-Southern oscillation (ENSO) and the Pacific decadal oscillation (PDO). We considered both remote (Multivariate ENSO Index, PDO) and local (coastal upwelling indices and sea-surface temperature) environmental variables as proxies for ocean productivity and prey availability. We also related seabird trends to those of potentially major trophic competitors, humpback ( Megaptera novaeangliae) and blue ( Balaenoptera musculus) whales, which increased in number 4-5-fold midway during our study. Cyclical oscillations in seabird abundance were apparent in the black-footed albatross ( Phoebastria nigripes), and decreasing trends were documented for ashy storm-petrel ( Oceanodroma homochroa), pigeon guillemot ( Cepphus columbus), rhinoceros auklet ( Cerorhinca monocerata), Cassin’s auklet ( Ptychoramphus aleuticus), and western gull ( Larus occidentalis); the sooty shearwater ( Puffinus griseus), exhibited a marked decline before signs of recovery at the end of the study period. The abundance of nine other focal species varied with ocean conditions, but without decadal or long-term trends. Six of these species have the largest global populations in the CCS, and four are highly

  16. MICROBIAL INDICATORS OF AQUATIC ECOSYSTEM CHANGE: CURRENT APPLICATIONS TO EUTROPHICATION STUDIES. (R828677C001)

    EPA Science Inventory

    Human encroachment on aquatic ecosystems is increasing at an unprecedented rate. The impacts of human pollution and habitat alteration are most evident and of greatest concern at the microbial level, where a bulk of production and nutrient cycling takes place. Aquatic ecosyste...

  17. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    NASA Astrophysics Data System (ADS)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  18. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    NASA Astrophysics Data System (ADS)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  19. Bio-Optical Measurement and Modeling of the California Current and Polar Oceans. Chapter 13

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg

    2001-01-01

    This Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project contract supports in situ ocean optical observations in the California Current, Southern Ocean, Indian Ocean as well as merger of other in situ data sets we have collected on various global cruises supported by separate grants or contracts. The principal goals of our research are to validate standard or experimental products through detailed bio-optical and biogeochemical measurements, and to combine ocean optical observations with advanced radiative transfer modeling to contribute to satellite vicarious radiometric calibration and advanced algorithm development. In collaboration with major oceanographic ship-based observation programs funded by various agencies (CalCOFI, US JGOFS, NOAA AMLR, INDOEX and Japan/East Sea) our SIMBIOS effort has resulted in data from diverse bio-optical provinces. For these global deployments we generate a high-quality, methodologically consistent, data set encompassing a wide-range of oceanic conditions. Global data collected in recent years have been integrated with our on-going CalCOFI database and have been used to evaluate Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) algorithms and to carry out validation studies. The combined database we have assembled now comprises more than 700 stations and includes observations for the clearest oligotrophic waters, highly eutrophic blooms, red-tides and coastal case two conditions. The data has been used to validate water-leaving radiance estimated with SeaWiFS as well as bio optical algorithms for chlorophyll pigments. The comprehensive data is utilized for development of experimental algorithms (e.g., high-low latitude pigment transition, phytoplankton absorption, and cDOM).

  20. Bio-Optical Measurement and Modeling of the California Current and Polar Oceans

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Fargion, Giulietta S. (Technical Monitor)

    2001-01-01

    The principal goals of our research are to validate standard or experimental products through detailed bio-optical and biogeochemical measurements, and to combine ocean optical observations with advanced radiative transfer modeling to contribute to satellite vicarious radiometric calibration and advanced algorithm development. To achieve our goals requires continued efforts to execute complex field programs globally, as well as development of advanced ocean optical measurement protocols. We completed a comprehensive set of ocean optical observations in the California Current, Southern Ocean, Indian Ocean requiring a large commitment to instrument calibration, measurement protocols, data processing and data merger. We augmented separately funded projects of our own, as well as others, to acquire ill situ data sets we have collected on various global cruises supported by separate grants or contracts. In collaboration with major oceanographic ship-based observation programs funded by various agencies (CalCOFI, US JGOFS, NOAA AMLR, INDOEX and Japan/East Sea) our SIMBIOS effort has resulted in data from diverse bio-optical provinces. For these global deployments we generate a high-quality, methodologically consistent, data set encompassing a wide-range of oceanic conditions. Global data collected in recent years have been integrated with our on-going CalCOFI database and have been used to evaluate SeaWiFS algorithms and to carry out validation studies. The combined database we have assembled now comprises more than 700 stations and includes observations for the clearest oligotrophic waters, highly eutrophic blooms, red-tides and coastal case 2 conditions. The data has been used to validate water-leaving radiance estimated with SeaWiFS as well as bio-optical algorithms for chlorophyll pigments. The comprehensive data is utilized for development of experimental algorithms (e.g. high-low latitude pigment transition, phytoplankton absorption, and cDOM). During this period

  1. Tides, and tidal and residual currents in Suisun and San Pablo bays, California; results of measurements, 1986

    USGS Publications Warehouse

    Gartner, J.W.; Yost, B.T.

    1988-01-01

    Current meter data collected at 11 stations and water level data collected at one station in Suisun and San Pablo Bays, California, in 1986 are compiled in this report. Current-meter measurements include current speed and direction, and water temperature and salinity (computed from temperature and conductivity). For each of the 19 current-meter records, data are presented in two forms. These are: (1) results of harmonic analysis; and (2) plots of tidal current speed and direction versus time and plots of temperature and salinity versus time. Spatial distribution of the properties of tidal currents are given in graphic form. In addition, Eulerian residual currents have been compiled by using a vector-averaging technique. Water level data are presented in the form of a time-series plot and the results of harmonic analysis. (USGS)

  2. Multiyear Multiseasonal Changes in Leaf and Canopy Traits Measured by AVIRIS over Ecosystems with Different Functional Type Characteristics Through the Progressive California Drought 2013-2015

    NASA Astrophysics Data System (ADS)

    Ustin, S.; Roth, K. L.; Huesca, M.; Casas, A.; Adeline, K.; Drewry, D.; Koltunov, A.; Ramirez, C.

    2015-12-01

    Given the known heterogeneity in ecological processes within plant communities in California, we questioned whether the concept of conventional plant functional types (cPFTs) was adequate to characterize the functionality of the dominant species in these communities. We examined seasonal (spring, summer, fall) airborne AVIRIS and MASTER imagery collected during three years of progressive drought in California, and airborne LiDAR acquired once, for ecosystems that represent a wide range of plant functional types, from annual agriculture and herbaceous perennial wetlands, to forests and shrublands, including broadleaf deciduous and evergreen species and conifer species. These data were used to determine the extent to which changes in canopy chemistry could be detected, quantified, and related to leaf and canopy traits that are indicators of physiological functioning (water content, Leaf Mass Area, total C, N, and pigments (chlorophyll a, b, and carotenoids). At the canopy scale we measured leaf area index, and for forests — species, height, canopy area, DBH, deciduous or evergreen, broadleaf or needleleaf, and gap size. Strong correlations between leaf and canopy traits were predictable and quantifiable from spectroscopy data. Key structural properties of canopy height, biomass and complexity, a measure of spatial and vertical heterogeneity, were predicted by AVIRIS and validated against LiDAR data. Our data supports the hypothesis that optical sensors provide more detailed information about the distribution and variability in leaf and canopy traits related to plant functionality than cPFTs.

  3. Influence of a multiyear event of low salinity on the zooplankton from Mexican eco-regions of the California Current

    NASA Astrophysics Data System (ADS)

    Lavaniegos, Bertha E.

    2009-12-01

    Data are presented from the southern part of the California Current System (CCS) for the period 1997-2007, derived from the IMECOCAL monitoring program. Apart from El Niño 1997 to 1998, and La Niña 1998-1999 the strongest perturbation occurred in 2002 due to an intrusion of subarctic water affecting all the CCS. The response of zooplankton biomass to the strong cooling and freshening of the upper layer was an immediate drop followed by a progressive recovery between 2003 and 2007. Though the low salinity influence ended in 2006, the increased zooplankton trend continued, reinforced by increased upwelling activity beginning 2005 off north Baja California region (30-32°N) and beginning 2006 off central Baja California (24-30°N). Multiple regression analysis was done between regional variables and Upwelling Index (UI) and two basin-scale proxies: the North Pacific Gyre Oscillation (NPGO), and Pacific Decadal Oscillation (PDO). The significant influence of the NPGO on surface salinity, salinity stratification, zooplankton volume and secondary consumers (zooplankton carnivores) suggests a basin scale control on these variables more than local mechanisms. The signature of the NPGO was also evident in the base of the trophic web, but more related to the group of crustacean herbivores in the north eco-region, and the tunicates in central Baja California. In this last region, the effect from NPGO on the zooplankton volume and tunicates was antagonist with UI indicative of similar importance of basin and local processes. However, when the time interval is limited to the post-subarctic intrusion (2003-2007) the significance of multiple regression models and physical variables was lost. Therefore, though data and bio-physical coupling analysis off Baja California suggest a better relation with NPGO compared to PDO, it is still not sufficient to explain the magnitude of the perturbation observed in 2002.

  4. Climate change, reproductive performance and diet composition of marine birds in the southern California Current system, 1969 1997

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Hester, Michelle M.; Thayer, Julie A.; Gress, Franklin; Martin, Paige; Buffa, Joelle

    We studied the effects of low-frequency climate change on the reproductive performance of 11 species of marine bird in the southern California Current system, 1969-1997. Reproductive performance of Brown Pelican ( Pelecanus occidentalis) and Double-crested Cormorant ( Phalacrocrax auritus) in southern California demonstrated an increase in the 1970s and early 1980s, attributable to recovery from organochlorine contamination (primarily DDE). Brandt's Cormorant ( Phalacrocorax penicillatus) in central California was the only species to demonstrate a secular increase in performance through time, a pattern that remains unexplained. Ashy Storm-petrel ( Oceanodroma homochroa) and Pelagic Cormorant ( Phalacrocorax pelagicus) demonstrated curvilinear patterns of change, with decreasing reproductive performance in the past decade. All other species including Western Gull ( Larus occidentalis), Pigeon Guillemot ( Cepphus columba), Xantus's Murrelet ( Synthiloboramphus hypoleucus), Common Murre ( Uria aalge), Cassin's Auklet ( Ptychoramphus aleuticus) and Rhinoceros Auklet ( Cerorhinca monocerata) showed diminishing reproductive performance through time. Patterns of change for the murre and auklets were not significant, presumably because of a lack of reproductive variation for these species, which display a conservative breeding effort (i.e. single-egg clutches). Changes in the birds' abilities to provision young and maintain chick survival during May-July each year appeared most closely related to overall changes in reproductive performance. Dietary change indicated a decline in use of juvenile rockfish ( Sebastes spp.) by marine birds in central California. There was also significant interannual variability in consumption of juvenile rockfish and the euphausiid Thysanoessa spinifera. Patterns of change in marine bird reproductive performance were generally concordant between southern and central California after considering the period of recovery for Brown Pelican and

  5. Epipelagic and mesopelagic fishes in the southern California Current System: Ecological interactions and oceanographic influences on their abundance

    NASA Astrophysics Data System (ADS)

    Koslow, J. Anthony; Davison, Peter; Lara-Lopez, Ana; Ohman, Mark D.

    2014-10-01

    We use zooplankton and ichthyoplankton data from the ~ 60-year CalCOFI time series to examine relationships of mesopelagic (i.e. midwater) fishes in the California Current System with midwater predators, potential competitors (epipelagic planktivorous fishes) and zooplankton prey, within the context of local and basin-scale oceanography. Equilibrium-based near-steady state models and the “wasp-waist” paradigm for eastern boundary currents predict tightly-coupled trophic interactions, with negative correlations between the abundance of planktivorous competitors and between dominant planktivores and their prey. Testing these hypotheses with the CalCOFI time series, we found them to be generally invalid. Potential competitors within the mesopelagic community (planktivorous vertical migrators (VMs) and non-migrators (NMs)) were highly positively correlated, as were these groups with the mesopelagic piscivores (e.g. dragonfishes) that prey on them. In addition, the abundance of VMs was mostly positively correlated with that of epipelagic planktivores, such as anchovy, mackerels and hake. The VMs and epipelagic planktivores were negatively correlated with key potential planktonic prey groups, indicating a lack of bottom-up forcing. However, neither do these negative correlations appear to signify top-down forcing, since they seem to be mediated through correlations with key environmental drivers, such as the Pacific Decadal Oscillation (PDO), sea surface temperature, and the relative strength of the California Current. We suggest that the web of correlations linking key meso- and epipelagic planktivores, their predators and prey is mediated through common links with basin-scale oceanographic drivers, such as the PDO and ENSO cycles. Thus, the abundance of mesopelagic fishes in the California Current is closely tied to variation in the oxygen minimum zone, whose dynamics have been linked to the PDO. The PDO and other drivers are also linked to the transport of the

  6. Using a Regional Cluster of AmeriFlux Sites in Central California to Advance Our Knowledge on Decadal-Scale Ecosystem-Atmosphere Carbon Dioxide Exchange

    SciTech Connect

    Baldocchi, Dennis

    2015-03-24

    Continuous eddy convariance measurements of carbon dioxide, water vapor and heat were measured continuously between an oak savanna and an annual grassland in California over a 4 year period. These systems serve as representative sites for biomes in Mediterranean climates and experience much seasonal and inter-annual variability in temperature and precipitation. These sites hence serve as natural laboratories for how whole ecosystem will respond to warmer and drier conditions. The savanna proved to be a moderate sink of carbon, taking up about 150 gC m-2y-1 compared to the annual grassland, which tended to be carbon neutral and often a source during drier years. But this carbon sink by the savanna came at a cost. This ecosystem used about 100 mm more water per year than the grassland. And because the savanna was darker and rougher its air temperature was about 0.5 C warmer. In addition to our flux measurements, we collected vast amounts of ancillary data to interpret the site and fluxes, making this site a key site for model validation and parameterization. Datasets consist of terrestrial and airborne lidar for determining canopy structure, ground penetrating radar data on root distribution, phenology cameras monitoring leaf area index and its seasonality, predawn water potential, soil moisture, stem diameter and physiological capacity of photosynthesis.

  7. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System

    NASA Astrophysics Data System (ADS)

    Hauri, C.; Gruber, N.; Vogt, M.; Doney, S. C.; Feely, R. A.; Lachkar, Z.; Leinweber, A.; McDonnell, A. M. P.; Munnich, M.; Plattner, G.-K.

    2013-01-01

    Due to seasonal upwelling, the upper ocean waters of the California Current System (CCS) have a naturally low pH and aragonite saturation state (Ωarag), making this region particularly prone to the effects of ocean acidification. Here, we use the Regional Oceanic Modeling System (ROMS) to conduct preindustrial and transient (1995-2050) simulations of ocean biogeochemistry in the CCS. The transient simulations were forced with increasing atmospheric pCO2 and increasing oceanic dissolved inorganic carbon concentrations at the lateral boundaries, as projected by the NCAR CSM 1.4 model for the IPCC SRES A2 scenario. Our results show a large seasonal variability in pH (range of ~ 0.14) and Ωarag (~ 0.2) for the nearshore areas (50 km from shore). This variability is created by the interplay of physical and biogeochemical processes. Despite this large variability, we find that present-day pH and Ωarag have already moved outside of their simulated preindustrial variability envelopes (defined by ±1 temporal standard deviation) due to the rapidly increasing concentrations of atmospheric CO2. The nearshore surface pH of the northern and central CCS are simulated to move outside of their present-day variability envelopes by the mid-2040s and late 2030s, respectively. This transition may occur even earlier for nearshore surface Ωarag, which is projected to depart from its present-day variability envelope by the early- to mid-2030s. The aragonite saturation horizon of the central CCS is projected to shoal into the upper 75 m within the next 25 yr, causing near-permanent undersaturation in subsurface waters. Due to the model's overestimation of Ωarag, this transition may occur even earlier than simulated by the model. Overall, our study shows that the CCS joins the Arctic and Southern oceans as one of only a few known ocean regions presently approaching the dual threshold of widespread and near-permanent undersaturation with respect to aragonite and a departure from its

  8. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System

    NASA Astrophysics Data System (ADS)

    Hauri, C.; Gruber, N.; Vogt, M.; Doney, S. C.; Feely, R. A.; Lachkar, Z.; Leinweber, A.; McDonnell, A. M. P.; Munnich, M.; Plattner, G.-K.

    2012-08-01

    Due to seasonal upwelling, the upper ocean waters of the California Current System (CCS) have a naturally low pH and aragonite saturation state (Ωarag), making this region particularly prone to the effects of ocean acidification. Here, we use the Regional Oceanic Modeling System (ROMS) to conduct preindustrial and transient (1995-2050) simulations of ocean biogeochemistry in the CCS. The transient simulations were forced with increasing atmospheric pCO2 as projected by the NCAR CSM 1.4 model run under either the IPCC SRES A2 or B1 scenarios. Using ROMS, we investigate the timing of transition decades during which pH and Ωarag depart from their modeled preindustrial (1750) and present-day (2011) variability envelopes. We report these transition decades by noting the midpoint of the ten-year transition periods. In addition, we also analyze the timing of near permanent aragonite undersaturation in the upper 100 m of the water column. Our results show that an interplay of physical and biogeochemical processes create large seasonal variability in pH (∼ 0.14) and Ωarag (∼ 0.2). Despite this large variability, we find that present-day pH and Ωarag have already moved out of their preindustrial variability envelopes due to the rapidly increasing concentrations of atmospheric CO2. The simulations following the A2 emissions scenario suggest that nearshore surface pH of the northern and central CCS will move out of their present-day variability envelopes by 2045 and 2037, respectively. However, surface Ωarag of the northern and central CCS subregions are projected to depart from their present-day variability envelopes sooner, by 2030 and 2035, respectively. By 2025, the aragonite saturation horizon of the central CCS is projected to shoal into the upper 75 m for the duration of the annual cycle, causing near permanent undersaturation in subsurface waters. Overall, our study shows that the CCS joins the Arctic and Southern Oceans as one of only a few known ocean

  9. Corrections to ocean surface forcing in the California Current System using 4D variational data assimilation

    NASA Astrophysics Data System (ADS)

    Broquet, G.; Moore, A. M.; Arango, H. G.; Edwards, C. A.

    The option for surface forcing correction, recently developed in the 4D-variational (4DVAR) data assimilation systems of the Regional Ocean Model System (ROMS), is presented. Assimilation of remotely-sensed (satellite sea surface height anomaly and sea surface temperature) and in situ (from mechanical and expendable bathythermographs, Argo floats and CTD profiles) oceanic observations has been applied in a realistic, high resolution configuration of the California Current System (CCS) to sequentially correct model initial conditions and surface forcing, using the Incremental Strong constraint version of ROMS-4DVAR (ROMS-IS4DVAR). Results from both twin and real data experiments are presented where it is demonstrated that ROMS-IS4DVAR always reduces the difference between the model and the observations that are assimilated. However, without corrections to the surface forcing, the assimilation of surface data can degrade the temperature structure at depth. When using surface forcing adjustment in ROMS-IS4DVAR the system does not degrade the temperature structure at depth, because differences between the model and surface observations can be reduced through corrections to surface forcing rather than to temperature at depth. However, corrections to surface forcing can generate abnormal spatial and temporal variability in the structure of the wind stress or surface heat flux fields if not properly constrained. This behavior can be partially controlled via the choice of decorrelation length scales that are assumed for the forcing errors. Abnormal forcing corrections may also arise due to the effects of model error which are not accounted for in IS4DVAR. In particular, data assimilation tends to weaken the alongshore wind stress in an attempt to reduce the rate of coastal upwelling, which seems to be too strong due to other sources of error. However, corrections to wind stress and surface heat flux improve systematically the ocean state analyses. Trends in the correction

  10. Changes in production and respiration during a spring phytoplankton bloom in San Francisco Bay, California, USA: Implications for net ecosystem metabolism

    USGS Publications Warehouse

    Caffrey, J.M.; Cloern, J.E.; Grenz, C.

    1998-01-01

    We present results of an intensive sampling program designed to measure weekly changes in ecosystem respiration (oxygen consumption in the water column and sediments) around the 1996 spring bloom in South San Francisco Bay, California, USA. Measurements were made at a shallow site (2 m, where mean photic depth was 60% of the water column height) and a deep site (15 m, mean photic depth was only 20% of the water column). We also estimated phytoplankton primary production weekly at both sites to develop estimates of net oxygen flux as the sum of pelagic production (PP), pelagic respiration (PR) and benthic respiration (BR). Over the 14 wk period from February 5 to May 14, PP ranged from 2 to 210, PR from 9 to 289, and BR from 0.1 to 48 mmol O2 m-2 d-1, illustrating large variability of estuarine oxygen fluxes at the weekly time scale. Pelagic production exceeded total respiration at the shallow site, but not at the deep site, demonstrating that the shallow domains are net autotrophic but the deep domains are net heterotrophic, even during the period of the spring bloom. If we take into account the potential primary production by benthic microalgae, the estuary as a whole is net autotrophic during spring, net heterotrophic during the nonbloom seasons, and has a balanced net metabolism over a full annual period. The seasonal shift from net autotrophy to heterotrophy during the transition from spring to summer was accompanied by a large shift from dominance by pelagic respiration to dominance by benthic respiration. This suggests that changes in net ecosystem metabolism can reflect changes in the pathways of energy flow in shallow coastal ecosystems.

  11. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges

    USGS Publications Warehouse

    Solomon, Christopher T.; Jones, Stuart E.; Weidel, Brian C.; Buffam, Ishi; Fork, Megan L; Karlsson, Jan; Larsen, Soren; Lennon, Jay T.; Read, Jordan S.; Sadro, Steven; Saros, Jasmine E.

    2015-01-01

    Lake ecosystems and the services that they provide to people are profoundly influenced by dissolved organic matter derived from terrestrial plant tissues. These terrestrial dissolved organic matter (tDOM) inputs to lakes have changed substantially in recent decades, and will likely continue to change. In this paper, we first briefly review the substantial literature describing tDOM effects on lakes and ongoing changes in tDOM inputs. We then identify and provide examples of four major challenges which limit predictions about the implications of tDOM change for lakes, as follows: First, it is currently difficult to forecast future tDOM inputs for particular lakes or lake regions. Second, tDOM influences ecosystems via complex, interacting, physical-chemical-biological effects and our holistic understanding of those effects is still rudimentary. Third, non-linearities and thresholds in relationships between tDOM inputs and ecosystem processes have not been well described. Fourth, much understanding of tDOM effects is built on comparative studies across space that may not capture likely responses through time. We conclude by identifying research approaches that may be important for overcoming those challenges in order to provide policy- and management-relevant predictions about the implications of changing tDOM inputs for lakes.

  12. Ecosystem scenarios shape fishermen spatial behavior. The case of the Peruvian anchovy fishery in the Northern Humboldt Current System

    NASA Astrophysics Data System (ADS)

    Joo, Rocio; Bertrand, Arnaud; Bouchon, Marilu; Chaigneau, Alexis; Demarcq, Hervé; Tam, Jorge; Simier, Monique; Gutiérrez, Dimitri; Gutiérrez, Mariano; Segura, Marceliano; Fablet, Ronan; Bertrand, Sophie

    2014-11-01

    A major goal in marine ecology is the understanding of the interactions between the dynamics of the different ecosystem components, from physics to top predators. While fishermen are among the main top predators at sea, almost none of the existing studies on ecology from physics to top predators contemplate fishermen as part of the system. The present work focuses on the coastal processes in the Northern Humboldt Current System, which encompasses both an intense climatic variability and the largest monospecific fishery of the world. From concomitant satellite, acoustic survey and Vessel Monitoring System data (∼90,000 fishing trips) for a ten-year period (2000-2009), we quantify the associations between the dynamics of the spatial behavior of fishermen, environmental conditions and anchovy (Engraulis ringens) biomass and spatial distribution. Using multivariate statistical analyses we show that environmental and anchovy conditions do significantly shape fishermen spatial behavior and present evidences that environmental fluctuations smoothed out along trophic levels. We propose a retrospective analysis of the study period in the light of the ecosystem scenarios evidenced and we finally discuss the potential use of fishermen spatial behavior as ecosystem indicator.

  13. Patterns of co-variability among California Current chinook salmon, coho salmon, Dungeness crab, and physical oceanographic conditions

    NASA Astrophysics Data System (ADS)

    Botsford, L. W.; Lawrence, C. A.

    One of the primary motivations for the GLOBEC NEP program was the apparent inverse relationship between the increase in salmon populations in the Gulf of Alaska since the mid-1970s and concurrent declines in salmon populations in the California Current. The increase in abundance of some salmon species in the Gulf of Alaska can be plausibly explained based on mechanisms involving changes in physical structure, biological productivity, and salmon survival. To assess concurrent changes in salmon populations in the California Current and their possible physical and biological bases we examined temporal and spatial patterns of co-variability between biological variables and physical descriptors along the coasts of Washington, Oregon and California, from 1950 to 1990. The biological variables were catch records of coho salmon, chinook salmon and an ecologically related species, Dungeness crab. The physical variables were sea surface temperature, sea surface height (SSH) and the upwelling index (UWI). We found that while California Current coho salmon declined uniformly in the mid-1970s, consistent with the proposed inverse relationship, chinook salmon did not. All three species appear to be driven by the dominant mode of co-variability in the three physical variables, an indicator of warm/cool water conditions, but in different ways. In general, warm conditions have a negative effect on salmon at the age of ocean entry and spawning return, and Dungeness crab during the larval stage, while cool conditions have a positive effect. Differences in spatio-temporal variability between the two salmon species suggest they may respond to ocean conditions differently: coho salmon vary synchronously along the coast on annual time scales, while chinook salmon vary on slightly longer time scales in a specific spatial pattern. Dungeness crab vary on 10-year time scales, synchronously along the coast, except for the most southern areas (central California) where populations collapsed in

  14. Comparison of the seasonal and interannual variability of phytoplankton pigment concentrations in the Peru and California Current systems

    NASA Technical Reports Server (NTRS)

    Thomas, A. C.; Huang, F.; Strub, P. T.; James, C.

    1994-01-01

    Monthly composite images from the global coastal zone color scanner (CZCS) data set are used to provide an initial illustration and comparison of seasonal and interannual variability of phytoplankton pigment concentration along the western coasts of South and North America in the Peru Current system (PCS) and California Current system (CCS). The analysis utilizes the entire time series of available data (November 1978 to June 1986) to form a mean annual cycle and an index of interannual variability for a series of both latitudinal and cross-shelf regions within each current system. Within 100 km of the coast, the strongest seasonal cycles in the CCS are in two regions, one between 34 deg and 45 deg N and the second between 24 deg and 29 deg N, each with maximum concentrations (greater than 3.0 mg m(exp-3)) in May-June. Weaker seasonal variability is present north of 45 deg N and in the Southern California Bight region (32 deg N). Within the PCS, in the same 100-km-wide coastal region, highest (greater than 45 deg S) and lowest (less than 20 deg S) latitude regions have a similar seasonal cycle with maximum concentrations (greater than 1.5 mg m(exp -3)) during the austral spring, summer, and fall, matching that evident throughout the CCS. Between these regions, off northern and central Chile, the seasonal maximum occurs during July-August (austral winter), contrary to the influence of upwelling favorable winds. Within the CCS, the dominant feature of interannual variability in the 8-year time series is a strong negative concentration anomaly in 1983, an El Nino year. The relative value of this negative anomaly is strongest off central California and is followed by an even stronger negative anomaly is strongest off central California and is followed by an even stronger negative anomaly in 1984 off Baja, California. In the PCS, strong negative anomalies during the 1982-1983 El Nino period are evident only off the Peruvian coast and are evident there only in the

  15. Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California.

    PubMed

    Cisneros, Ricardo; Bytnerowicz, Andrzej; Schweizer, Donald; Zhong, Sharon; Traina, Samuel; Bennett, Deborah H

    2010-10-01

    Two-week average concentrations of ozone (O3), nitric acid vapor (HNO3) and ammonia (NH3) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were determined with seasonal means for individual sites ranging between 62 and 88 ppb for O3, 1.0-3.8 microg m(-3) for HNO3, and 2.6-5.2 microg m(-3) for NH3. Calculated O3 exposure indices were very high, reaching SUM00-191 ppm h, SUM60-151 ppm h, and W126-124 ppm h. Calculated nitrogen (N) dry deposition ranged from 1.4 to 15 kg N ha(-1) for maximum values, and 0.4-8 kg N ha(-1) for minimum values; potentially exceeding Critical Loads (CL) for nutritional N. The U.S., California, and European 8 h O3 human health standards were exceeded during 104, 108, and 114 days respectively, indicating high risk to humans from ambient O3. PMID:20708832

  16. Measuring and Modeling Ecosystem Photosynthetic Productivity and Respiration in Responses to Climatic Fluctuations in the Past 60 Years at an Oak-Grass Savanna in California

    NASA Astrophysics Data System (ADS)

    Ma, S.; Baldocchi, D. D.

    2008-12-01

    To predict ecosystem sustainability in future climate scenarios, one of essential questions are how and why current plant species are adaptable to the climate that they have experienced. Based on multi-year measurements of ecosystem CO2 exchange with the eddy-covariance technique at an oak-grass savanna, we were interested in comparing seasonal and inter-annual patterns between oak tree canopy and annual grassland and understanding biogeophysical reasons underlying differences in patterns. With these understanding, we further inferred to the two dominant vegetation layers in response to historical climate fluctuations and teleconnection events. We also examine the Century Model to understand uncertainty in predicting ecosystem photosynthetic productivity and respiration in response to climate fluctuations with considerations of soil carbon and nitrogen dynamics. Modeling results were also compared with empirical analyses. This study provided a practicable approach to examine the potential effects of climate fluctuations and extreme events on ecosystem CO2 exchange, implying assessment of longer-term ecological and biometeorological measurements.

  17. Measurements of slope currents and internal tides on the Continental Shelf and slope off Newport Beach, California

    USGS Publications Warehouse

    Rosenberger, Kurt J.; Noble, Marlene A.; Norris, Benjamin

    2014-01-01

    An array of seven moorings housing current meters and oceanographic sensors was deployed for 6 months at 5 sites on the Continental Shelf and slope off Newport Beach, California, from July 2011 to January 2012. Full water-column profiles of currents were acquired at all five sites, and a profile of water-column temperature was also acquired at two of the five sites for the duration of the deployment. In conjunction with this deployment, the Orange County Sanitation District deployed four bottom platforms with current meters on the San Pedro Shelf, and these meters provided water-column profiles of currents. The data from this program will provide the basis for an investigation of the interaction between the deep water flow over the slope and the internal tide on the Continental Shelf.

  18. Is tourism damaging ecosystems in the Andes? Current knowledge and an agenda for future research.

    PubMed

    Barros, Agustina; Monz, Christopher; Pickering, Catherine

    2015-03-01

    Despite the popularity of tourism and recreation in the Andes in South America and the regions conservation value, there is limited research on the ecological impacts of these types of anthropogenic use. Using a systematic quantitative literature review method, we found 47 recreation ecology studies from the Andes, 25 of which used an experimental design. Most of these were from the Southern Andes in Argentina (13 studies) or Chile (eight studies) with only four studies from the Northern Andes. These studies documented a range of impacts on vegetation, birds and mammals; including changes in plant species richness, composition and vegetation cover and the tolerance of wildlife of visitor use. There was little research on the impacts of visitors on soils and aquatic systems and for some ecoregions in the Andes. We identify research priorities across the region that will enhance management strategies to minimise visitor impacts in Andean ecosystems. PMID:25201299

  19. Synthesis of Decades of Change in Northern Eurasian Ecosystems: Current Assessment and Future Projections

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Henebry, G. M.; Cahoon, D., Jr.; Stocks, B. J.; de Groot, W.; Tchebakova, N. M.; Parfenova, E. I.; Kukavskaya, E.; Loboda, T. V.; McCarty, J. L.; Shuman, J. K.; Shugart, H. H., Jr.; Chen, J.; Bergen, K.; Conard, S. G.; Rogers, B. M.; de Beurs, K.; Prishchepov, A. V.; Zhuang, Q.

    2015-12-01

    Northern Eurasia (NE) is a distinct and crucial region because it has the physical size necessary to effect regional and global climate, and interacting socioeconomic and political drivers have provided the impetus to quell or exacerbate change. The circumboreal zone contains the largest stocks of terrestrial carbon on Earth, and NE holds 2/3 of that carbon pool. Recent climate change data and models agree that temperature increases in NE have been and will be among the greatest on the planet, leading to longer growing seasons, increased evapotranspiration, extreme fire weather, increased permafrost, ice, and snow melting, all of which are altering NE ecosystems. Moreover, socioeconomic and political forces have often driven land cover and ecosystem changes in NE. Satellite data, paired with cooperative partnerships that have evolved over the decades, have enabled researchers to improve our understanding of these complex interacting systems. Analyses of long-term data reveal increasing abandonment of marginal croplands, shifts in crop types and agricultural practices, and increasing logging. Despite regional differences, these changes influence carbon storage, changes in surface albedo, wildlife distribution and habitat, and the availability of food and fodder. Detailed individual-species and bioclimatic models project the northward migration of keystone species and pests. These changes across NE feedback to regional and global climate systems with global consequences. This talk will synthesize past decades of key international NE research and introduce new highlights. Using long-term satellite data, we have developed detailed maps that have not been previously available, which increase our understanding of these complex interacting systems. Over the decades, as strides have made in understanding the complexity of NE, our ability to continue collaborative interactive research is being limited by political pressures outside of the purview of science.

  20. ObsPy: A Python toolbox for seismology - Current state, applications, and ecosystem around it

    NASA Astrophysics Data System (ADS)

    Krischer, L.; Megies, T.; Sales de Andrade, E.; Barsch, R.; Beyreuther, M.

    2015-12-01

    ObsPy (http://www.obspy.org) is a community-driven, open-source project offering a bridge for seismology into the scientific Python ecosystem. It provides read and write support for essentially all commonly used waveform, station, and event metadata formats with a unified interface, a comprehensive signal processing toolbox tuned to the needs of seismologists, integrated access to all large data centers, web services and databases, and convenient wrappers to third party codes like libmseed and evalresp. Python, in contrast to many other languages and tools, is simple enough to enable an exploratory and interactive coding style desired by many scientists. At the same time it is a full-fledged programming language usable by software engineers to build complex and large programs. This combination makes it very suitable for use in seismology where research code often has to be translated to stable and production ready environments. It furthermore offers many freely available high quality scientific modules covering most needs in developing scientific software.ObsPy has been in constant development for more than 5 years and nowadays enjoys a large rate of adoption in the community with thousands of users. Successful applications include time-dependent and rotational seismology, big data processing, event relocations, and synthetic studies about attenuation kernels and full-waveform inversions to name a few examples. Additionally it sparked the development of several more specialized packages slowly building a modern seismological ecosystem around it.This contribution will give a short introduction and overview of ObsPy and highlight a number of us cases and software built around it. We will furthermore discuss the issue of sustainability of scientific software.

  1. ObsPy: A Python toolbox for seismology - Current state, applications, and ecosystem around it

    NASA Astrophysics Data System (ADS)

    Lecocq, Thomas; Megies, Tobias; Krischer, Lion; Sales de Andrade, Elliott; Barsch, Robert; Beyreuther, Moritz

    2016-04-01

    ObsPy (http://www.obspy.org) is a community-driven, open-source project offering a bridge for seismology into the scientific Python ecosystem. It provides * read and write support for essentially all commonly used waveform, station, and event metadata formats with a unified interface, * a comprehensive signal processing toolbox tuned to the needs of seismologists, * integrated access to all large data centers, web services and databases, and * convenient wrappers to third party codes like libmseed and evalresp. Python, in contrast to many other languages and tools, is simple enough to enable an exploratory and interactive coding style desired by many scientists. At the same time it is a full-fledged programming language usable by software engineers to build complex and large programs. This combination makes it very suitable for use in seismology where research code often has to be translated to stable and production ready environments. It furthermore offers many freely available high quality scientific modules covering most needs in developing scientific software. ObsPy has been in constant development for more than 5 years and nowadays enjoys a large rate of adoption in the community with thousands of users. Successful applications include time-dependent and rotational seismology, big data processing, event relocations, and synthetic studies about attenuation kernels and full-waveform inversions to name a few examples. Additionally it sparked the development of several more specialized packages slowly building a modern seismological ecosystem around it. This contribution will give a short introduction and overview of ObsPy and highlight a number of use cases and software built around it. We will furthermore discuss the issue of sustainability of scientific software.

  2. Preliminary evaluation of the performance, water use, and current application trends of evaporative coolers in California climates

    SciTech Connect

    Huang, Y.J.; Hanford, J.W.; Wu, H.F.

    1992-09-01

    This paper describes the latest results of an ongoing analysis investigating the potential for evaporative cooling as an energy-efficient alternative to standard air-conditioning in California residences. In particular, the study uses detailed numerical models of evaporative coolers linked with the DOE-2 building energy simulation program to study the issues of indoor comfort, energy and peak demand savings with and without supplemental air-conditioning and consumptive water use. In addition, limited surveys are used to assess the current market availability of evaporative cooling in California, typical contractor practices and costs, and general acceptance of the technology among engineers, contractors, and manufacturers. The results show that evaporative coolers can provide significant energy and peak demand savings in California residences, but the impact of the increased indoor humidity on human comfort remains an unanswered question that requires further research and clarification. Evaluated against ASHRAE comfort standards developed primarily for air-conditioning both direct and two-stage evaporative coolers would not maintain comfort at peak cooling conditions due to excessive humidity. However, using bioclimatic charts that place human comfort at the 80% relative humidity line, the study suggests that direct evaporative coolers will work in mild coastal climates, while two-stage models should provide adequate comfort in Title 24 houses throughout California, except in the Imperial Valley. The study also shows that evaporative coolers will increase household water consumption by less than 6% on an annual basis, and as much as 23% during peak cooling months, and that the increases in water cost are minimal compared to the electricity savings. Lastly, a survey of engineers and contractors revealed generally positive experiences with evaporative coolers, with operational cost savings, improved comfort, unproved air quality as the primary benefits in their use.

  3. Calculation of theoretical and empirical nutrient N critical loads in the mixed conifer ecosystems of southern California.

    PubMed

    Breiner, Joan; Gimeno, Benjamin S; Fenn, Mark

    2007-01-01

    Edaphic, foliar, and hydrologic forest nutrient status indicators from 15 mixed conifer forest stands in the Sierra Nevada, San Gabriel Mountains, and San Bernardino National Forest were used to estimate empirical or theoretical critical loads (CL) for nitrogen (N) as a nutrient. Soil acidification response to N deposition was also evaluated. Robust empirical relationships were found relating N deposition to plant N uptake (N in foliage), N fertility (litter C/N ratio), and soil acidification. However, no consistent empirical CL were obtained when the thresholds for parameters indicative of N excess from other types of ecosystems were used. Similarly, the highest theoretical CL for nutrient N calculated using the simple mass balance steady state model (estimates ranging from 1.4-8.8 kg N/ha/year) was approximately two times lower than the empirical observations. Further research is needed to derive the thresholds for indicators associated with the impairment of these mixed conifer forests exposed to chronic N deposition within a Mediterranean climate. Further development or parameterization of models for the calculation of theoretical critical loads suitable for these ecosystems will also be an important aspect of future critical loads research. PMID:17450298

  4. Interannual variability in bottom-up processes in the upstream range of the California Current system: An isotopic approach

    NASA Astrophysics Data System (ADS)

    El-Sabaawi, Rana W.; Trudel, Marc; Mackas, David L.; Dower, John F.; Mazumder, Asit

    2012-11-01

    The abundance and composition of zooplankton, fish and seabirds show dramatic interannual variability in temperate coastal regions. Understanding links between this variability and bottom-up processes is an important goal for biological oceanographers. Because zooplankton stable isotopes (δ15N and δ13C) are potentially influenced by variability in phytoplankton nutrient utilization, primary production, and zooplankton trophic structure, they have the potential to elucidate links between bottom-up processes, food web structure, and abundance or species composition of higher trophic levels. Here we measure correlations between zooplankton stable isotopes and oceanographic variables in two time series from the west coast of Vancouver Island, upstream of the California Current upwelling system. We then relate interannual variability in zooplankton stable isotopes to interannual variability in zooplankton species composition. Zooplankton stable isotopes show striking patterns of seasonal, regional and interannual variability. A strong positive correlation between annual averages of zooplankton δ15N and sea-surface temperature is evident in both time series. Zooplankton δ15N is also negatively correlated with interannual anomalies of subarctic copepod biomass in both time series. We propose two different mechanisms to explain these correlations: variability in the strength and direction of horizontal advection, or local fluctuations nutrient availability. We conclude that they are most likely caused by local, temperature-driven fluctuations in nitrate concentrations and primary production. We show that the positive correlation between zooplankton δ15N and temperature is widespread, extending to regions outside of the California Current system. Our findings suggest that interannual variability in zooplankton composition is linked with bottom-up variability in nitrate availability and primary production in the upstream portion of the California Current system. Our

  5. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile.

    PubMed

    Gutiérrez, Marcelo H; Jara, Ana M; Pantoja, Silvio

    2016-05-01

    This is the first report of fungal parasitism of diatoms in a highly productive coastal upwelling ecosystem, based on a year-round time series of diatom and parasitic Chytridiomycota abundance in the Humboldt Current System off Chile (36°30.80'S-73°07.70'W). Our results show co-variation in the presence of Skeletonema, Thalassiosira and Chaetoceros diatoms with attached and detached chytrid sporangia. High abundance of attached sporangia was observed during the austral spring, coinciding with a predominance of Thalassiosira and Skeletonema under active upwelling conditions. Towards the end of austral spring, a decreasing proportion of attached sporangia was accompanied by a decline in abundance of Skeletonema and Thalassiosira and the predominance of Chaetoceros, suggesting specificity and host density dependence of chytrid infection. The new findings on fungal parasitism of diatoms provide further support for the inclusion of Fungi in the current model of the role played by the marine microbial community in the coastal ocean. We propose a conceptual model where Fungi contribute to controlling the dynamics of phytoplankton populations, as well as the release of organic matter and the transfer of organic carbon through the pelagic trophic web in coastal upwelling ecosystems. PMID:26914416

  6. The Current Ecosystem of Learning Management Systems in Higher Education: Student, Faculty, and IT Perspectives

    ERIC Educational Resources Information Center

    Dahlstrom, Eden; Brooks, D. Christopher; Bichsel, Jacqueline

    2014-01-01

    This study explores faculty and student perspectives on learning management systems (LMSs) in the context of current institutional investments. In 2013, nearly 800 institutions participated in the EDUCAUSE Core Data Service (CDS) survey, sharing their current information technology practices and metrics across all IT service domains. In 2014, more…

  7. Geomorphology of mesophotic coral ecosystems: current perspectives on morphology, distribution, and mapping strategies

    NASA Astrophysics Data System (ADS)

    Locker, S. D.; Armstrong, R. A.; Battista, T. A.; Rooney, J. J.; Sherman, C.; Zawada, D. G.

    2010-06-01

    This paper presents a general review of the distribution of mesophotic coral ecosystems (MCEs) in relationship to geomorphology in US waters. It was specifically concerned with the depth range of 30-100 m, where more than 186,000 km2 of potential seafloor area was identified within the US Gulf of Mexico/Florida, Caribbean, and main Hawaiian Islands. The geomorphology of MCEs was largely inherited from a variety of pre-existing structures of highly diverse origins, which, in combination with environmental stress and physical controls, restrict the distribution of MCEs. Sea-level history, along with depositional and erosional processes, played an integral role in formation of MCE settings. However, mapping the distribution of both potential MCE topography/substrate and existing MCE habitat is only beginning. Mapping techniques pertinent to understanding morphology and MCE distributions are discussed throughout this paper. Future investigations need to consider more cost-effective and remote methods (such as autonomous underwater vehicles (AUVs) and acoustics) in order to assess the distribution and extent of MCE habitat. Some understanding of the history of known MCEs through coring studies would help understand their initiation and response to environmental change over time, essential for assessing how they may be impacted by future environmental change.

  8. Does the current fungicide risk assessment provide sufficient protection for key drivers in aquatic ecosystem functioning?

    PubMed

    Zubrod, Jochen P; Englert, Dominic; Feckler, Alexander; Koksharova, Natalia; Konschak, Marco; Bundschuh, Rebecca; Schnetzer, Nadja; Englert, Katja; Schulz, Ralf; Bundschuh, Mirco

    2015-01-20

    The level of protection provided by the present environmental risk assessment (ERA) of fungicides in the European Union for fungi is unknown. Therefore, we assessed the structural and functional implications of five fungicides with different modes of action (azoxystrobin, carbendazim, cyprodinil, quinoxyfen, and tebuconazole) individually and in mixture on communities of aquatic hyphomycetes. This is a polyphyletic group of fungi containing key drivers in the breakdown of leaf litter, governing both microbial leaf decomposition and the palatability of leaves for leaf-shredding macroinvertebrates. All fungicides impaired leaf palatability to the leaf-shredder Gammarus fossarum and caused structural changes in fungal communities. In addition, all compounds except for quinoxyfen altered microbial leaf decomposition. Our results suggest that the European Union’s first-tier ERA provides sufficient protection for the tested fungicides, with the exception of tebuconazole and the mixture, while higher-tier ERA does not provide an adequate level of protection for fungicides in general. Therefore, our results show the need to incorporate aquatic fungi as well as their functions into ERA testing schemes to safeguard the integrity of aquatic ecosystems. PMID:25517729

  9. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California

    SciTech Connect

    Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.; Malfatti, Stephanie; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; del Rio, Tijana G.; Foster, Brian; Copeland, A.; Jansson, Janet K.; Pati, Amrita; Gilbert, Jack A.; Tringe, Susannah G.; Lorenson, Thomas D.; Hess, Matthias

    2014-01-02

    Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of the main constituents of crude oil. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders and their metabolic capabilities may be fundamental to the ecology of the SBC oil seep.

  10. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California

    PubMed Central

    Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.; Malfatti, Stephanie; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Glavina del Rio, Tijana; Foster, Brian; Copeland, Alex; Jansson, Janet; Pati, Amrita; Tringe, Susannah; Gilbert, Jack A.; Lorenson, Thomas D.; Hess, Matthias

    2014-01-01

    Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of its main constituents. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders – and their metabolic capabilities – may be fundamental to the ecology of the SBC oil seep. PMID:25197496