Science.gov

Sample records for calorimetry dsc experiments

  1. Differential Scanning Calorimetry (DSC) for planetary surface exploration

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Ming, Douglas W.

    1993-01-01

    Differential Scanning Calorimetry (DSC) is the quantitative measurement of the enthalpic response of a material to a systematic change in temperature. In practice, the heat flow into or outward from a sample is measured as the sample is heated or cooled at a carefully controlled rate. DSC superficially resembles, but is not the same as differential thermal analysis (DTA), which is the measurement of temperature differences between a sample and reference material as the pair is heated or cooled. The fundamental properties measured by DSC are enthalpies and temperatures of phase transitions and constant-pressure heat capacities. Depending on instrument design and the nature of the sample, high-quality DSC analyses can be obtained on only a few milligrams of solid materials. DSC requires direct contact with the sample and generally degrades, if not destroys, the sample as a consequence of heating. In laboratory applications, it is common to subject the gaseous effluent from the DSC to analysis by a separate evolved-gas analyzer (EGA).

  2. Determination of Purity by Differential Scanning Calorimetry (DSC).

    ERIC Educational Resources Information Center

    Brown, M. E.

    1979-01-01

    An exercise is presented which demonstrates the determination of sample purity by differential scanning calorimetry. Data and references are provided to enable the exercise to be carried out as a dry-lab experiment. (BB)

  3. Thermodynamic properties of diosgenin determined by oxygen-bomb calorimetry and DSC

    NASA Astrophysics Data System (ADS)

    Zhao, Ming-Rui; Wang, Hong-Jie; Wang, Shu-Yu; Yue, Xiao-Xin

    2014-12-01

    The combustion enthalpy of diosgenin was determined by oxygen-bomb calorimetry. The standard mole combustion enthalpy and the standard mole formation enthalpy have been calculated to be -16098.68 and -528.52 kJ mol-1, respectively. Fusion enthalpy and melting temperature for diosgenin were also measured to be -34.43 kJ mol-1 and 212.33°C, respectively, according to differential scanning calorimetry (DSC) data. These studies can provide useful thermodynamic data for this compound.

  4. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development.

    PubMed

    Knopp, Matthias Manne; Löbmann, Korbinian; Elder, David P; Rades, Thomas; Holm, René

    2016-05-25

    Differential scanning calorimetry (DSC) is frequently the thermal analysis technique of choice within preformulation and formulation sciences because of its ability to provide detailed information about both the physical and energetic properties of a substance and/or formulation. However, conventional DSC has shortcomings with respect to weak transitions and overlapping events, which could be solved by the use of the more sophisticated modulated DSC (mDSC). mDSC has multiple potential applications within the pharmaceutical field and the present review provides an up-to-date overview of these applications. It is aimed to serve as a broad introduction to newcomers, and also as a valuable reference for those already practising in the field. Complex mDSC was introduced more than two decades ago and has been an important tool for the quantification of amorphous materials and development of freeze-dried formulations. However, as discussed in the present review, a number of other potential applications could also be relevant for the pharmaceutical scientist. PMID:26721421

  5. Relaxation behaviour of D(-)-salicin as studied by Thermally Stimulated Depolarisation Currents (TSDC) and Differential Scanning Calorimetry (DSC).

    PubMed

    Diogo, Hermínio P; Pinto, Susana S; Moura Ramos, Joaquim J

    2008-06-24

    Thermally Stimulated Depolarisation Currents (TSDC) measurements on D(-)-salicin have been carried out in the temperature region from -165 degrees C up to 150 degrees C. The slow molecular mobility was characterised in the crystal and in the glassy state. The value of the steepness index or fragility (T(g)-normalized temperature dependence of the relaxation time) was obtained by Differential Scanning Calorimetry (DSC) from the analysis of the scanning rate dependency of T(g). The existence of an unknown polymorph of salicin is also reported. PMID:18417303

  6. Characterization of a Friction Stir Weld in Aluminum Alloy 7055 Using Microhardness, Electrical Conductivity, and Differential Scanning Calorimetry (DSC)

    NASA Astrophysics Data System (ADS)

    Bush, Ralph; Kiyota, Michelle; Kiyota, Catherine

    2016-04-01

    Optical microscopy, microhardness, electrical conductivity, and differential scanning calorimetry (DSC) were used to characterize the microstructure, hardness, and precipitate structure as a function of position in a friction stir weld, naturally aged for 10 years, in aluminum alloy 7055. Results are shown for the as-welded/naturally aged condition and for a weld that was post-aged using a -T76 regimen. The grain structure and microhardness results reveal the expected central recrystallized region, a thermo-mechanical affected zone (TMAZ), and heat-affected zone (HAZ) with typical changes in microhardness. DSC scans for the as-welded/naturally aged condition indicate a precipitate structure similar to that of a naturally aged condition in the central recrystallized region. Maximum precipitate coarsening and overaging occurs near the TMAZ/HAZ boundary with reduced precipitate dissolution and coarsening as the distance from the weld increases. The post-weld aging resulted in the transformation of GP zones to more stable precipitates plus coarsening of the more stable η' and η precipitates. A combination of DSC testing and CALPHAD calculations allowed calculation of precipitate volume fraction in the HAZ. The precipitate volume fraction decreased monotonically from 0.052 in the baseline material to 0.044 at the TMAZ/HAZ interface.

  7. Characterization of a Friction Stir Weld in Aluminum Alloy 7055 Using Microhardness, Electrical Conductivity, and Differential Scanning Calorimetry (DSC)

    NASA Astrophysics Data System (ADS)

    Bush, Ralph; Kiyota, Michelle; Kiyota, Catherine

    2016-07-01

    Optical microscopy, microhardness, electrical conductivity, and differential scanning calorimetry (DSC) were used to characterize the microstructure, hardness, and precipitate structure as a function of position in a friction stir weld, naturally aged for 10 years, in aluminum alloy 7055. Results are shown for the as-welded/naturally aged condition and for a weld that was post-aged using a -T76 regimen. The grain structure and microhardness results reveal the expected central recrystallized region, a thermo-mechanical affected zone (TMAZ), and heat-affected zone (HAZ) with typical changes in microhardness. DSC scans for the as-welded/naturally aged condition indicate a precipitate structure similar to that of a naturally aged condition in the central recrystallized region. Maximum precipitate coarsening and overaging occurs near the TMAZ/HAZ boundary with reduced precipitate dissolution and coarsening as the distance from the weld increases. The post-weld aging resulted in the transformation of GP zones to more stable precipitates plus coarsening of the more stable η' and η precipitates. A combination of DSC testing and CALPHAD calculations allowed calculation of precipitate volume fraction in the HAZ. The precipitate volume fraction decreased monotonically from 0.052 in the baseline material to 0.044 at the TMAZ/HAZ interface.

  8. Use of Differential Scanning Calorimetry (DSC) in the Characterization of EPDM/PP Blends

    NASA Astrophysics Data System (ADS)

    Stelescu, Maria Daniela; Airinei, Anton; Grigoras, Cristian; Niculescu-Aron, Ileana-Gabriela

    2010-12-01

    New polyolefinic thermoplastic elastomers based on the ethylene-propylene-diene monomer (EPDM) and polypropylene (PP) containing an EPDM elastomer of the last generation (Nordel NDR 47130), obtained by polymerization in the gaseous phase with metallocene catalysis, were prepared and characterized. The melting and crystallization behavior of these blends was investigated by differential scanning calorimetry. It is observed that the melting temperature, crystallization temperature, and crystallinity degree increase with an increase of PP loading. The influence of the blend composition on the physico-mechanical characteristics was discussed using statistical processing of the experimental data. Two compatibilizing procedures were utilized to improve the physico-mechanical characteristics of the samples: an addition method using different compatibilizing agents and dynamical vulcanization with three types of crosslinking systems. Significant improvements of the tensile strength and tear strength were noted by dynamic crosslinking, and the best results were obtained using a crosslinking system based on phenolic resin and tin chloride.

  9. Investigation of Phase Mixing in Amorphous Solid Dispersions of AMG 517 in HPMC-AS Using DSC, Solid-State NMR, and Solution Calorimetry.

    PubMed

    Calahan, Julie L; Azali, Stephanie C; Munson, Eric J; Nagapudi, Karthik

    2015-11-01

    Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1ρ), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD. PMID:26457879

  10. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    SciTech Connect

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  11. Characterization of Two Different Clay Materials by Thermogravimetry (TG), Differential Scanning Calorimetry (DSC), Dilatometry (DIL) and Mass Spectrometry (MS) - 12215

    SciTech Connect

    Post, Ekkehard; Henderson, Jack B.

    2012-07-01

    An illitic clay containing higher amounts of organic materials was investigated by dilatometry, thermogravimetry and differential scanning calorimetric. The evolved gases were studied during simultaneous TG-DSC (STA) and dilatometer measurements with simultaneous mass spectrometry in inert gas and oxidizing atmosphere. The dilatometer results were compared with the STA-MS results which confirmed and explained the reactions found during heating of the clay, like dehydration, dehydroxylation, shrinkage, sintering, quartz phase transition, combustion or pyrolysis of organics and the solid state reactions forming meta-kaolinite and mullite. The high amount of organic material effects in inert gas atmosphere most probably a reduction of the oxides which leads to a higher mass loss than in oxidizing atmosphere. Due to this reduction an additional CO{sub 2} emission at around 1000 deg. C was detected which did not occur in oxidizing atmosphere. Furthermore TG-MS results of a clay containing alkali nitrates show that during heating, in addition to water and CO{sub 2}, NO and NO{sub 2} are also evolved, leading to additional mass loss steps. These types of clays showed water loss starting around 100 deg. C or even earlier. This relative small mass loss affects only less shrinkage during the expansion of the sample. The dehydroxylation and the high crystalline quartz content result in considerable shrinkage and expansion of the clay. During the usual solid state reaction where the clay structure collapses, the remaining material finally shrinks down to a so-called clinker. With the help of MS the TG steps can be better interpreted as the evolved gases are identified. With the help of the MS it is possible to distinguish between CO{sub 2} and water (carbonate decomposition, oxidation of organics or dehydration/dehydroxylation). The MS also clearly shows that mass number 44 is found during the TG step of the illitic clay at about 900 deg. C in inert gas, which was interpreted

  12. Solution Calorimetry Experiments for Physical Chemistry.

    ERIC Educational Resources Information Center

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  13. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience

    PubMed Central

    Gill, Pooria; Moghadam, Tahereh Tohidi; Ranjbar, Bijan

    2010-01-01

    This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience. PMID:21119929

  14. Simultaneous TG/DSC (thermogravimetry/differential scanning calorimetry) and TG/MS (thermogravimetry/mass spectrometry) analyses of polymeric and energetic materials

    SciTech Connect

    Whitaker, R B; Brown, C R; Chang, C; McDaniel, J A; Shell, T L

    1987-01-01

    The utility of simultaneous thermal analysis techniques, such as TG/DSC and TG/MS, has been demonstrated for both energetic and polymeric materials. TG/DSC can assist in elucidating reaction mechanisms and determining weight losses for endothermic transitions which precede decomposition of energetic materials. The endothermic and exothermic nature of decomposition processes can be defined by TG/DSC and the decomposition products identified by TG/MS.

  15. Monitoring of Pentoxifylline Thermal Behavior by Novel Simultaneous Laboratory Small and Wide X-Ray Scattering (SWAXS) and Differential Scanning Calorimetry (DSC).

    PubMed

    Hodzic, Aden; Kriechbaum, Manfred; Schrank, Simone; Reiter, Franz

    2016-01-01

    The thermal and structural evolutions associated to active pharmaceutical ingredient (API) purity are monitored using a laboratory instrument (S3-MicroCaliX) allowing simultaneous time-resolved X-ray scattering at both wide and small angles (SWAXS) as a function of temperature. This is performed simultaneously with differential scanning calorimetric (DSC) that is carried out in the same apparatus at scanning rate of 2 K/min on the same sample in the range from 20° to 200°C. We have studied simultaneous thermal and structural properties of pentoxifylline, as an active pharmaceutical ingredient (API), for its purity quality control. We have found a satisfying API purity, due to obtained melting temperature and enthalpy values, which are in a well agreement with literature. We have also found that the combination of these techniques allows the thermal monitoring of scanning rates of 2 K/min, continuously without the need for static thermal equilibration, particularly for X-ray spectra. Hence, DSC and SWAXS allowing better identification of the structural thermal events recorded by following of the phase transitions simultaneously. This interpretation is much better possible when X-ray scattering at small and wide angles is coupled with DSC from the same sample. Hence, as a laboratory tool, the method presents a reproducible thermal and crystallographic API purity quality control of non-complex samples, as crucial information for pharmaceutical technology. PMID:27467972

  16. Monitoring of Pentoxifylline Thermal Behavior by Novel Simultaneous Laboratory Small and Wide X-Ray Scattering (SWAXS) and Differential Scanning Calorimetry (DSC)

    PubMed Central

    Hodzic, Aden; Kriechbaum, Manfred; Schrank, Simone; Reiter, Franz

    2016-01-01

    The thermal and structural evolutions associated to active pharmaceutical ingredient (API) purity are monitored using a laboratory instrument (S3-MicroCaliX) allowing simultaneous time-resolved X-ray scattering at both wide and small angles (SWAXS) as a function of temperature. This is performed simultaneously with differential scanning calorimetric (DSC) that is carried out in the same apparatus at scanning rate of 2 K/min on the same sample in the range from 20° to 200°C. We have studied simultaneous thermal and structural properties of pentoxifylline, as an active pharmaceutical ingredient (API), for its purity quality control. We have found a satisfying API purity, due to obtained melting temperature and enthalpy values, which are in a well agreement with literature. We have also found that the combination of these techniques allows the thermal monitoring of scanning rates of 2 K/min, continuously without the need for static thermal equilibration, particularly for X-ray spectra. Hence, DSC and SWAXS allowing better identification of the structural thermal events recorded by following of the phase transitions simultaneously. This interpretation is much better possible when X-ray scattering at small and wide angles is coupled with DSC from the same sample. Hence, as a laboratory tool, the method presents a reproducible thermal and crystallographic API purity quality control of non-complex samples, as crucial information for pharmaceutical technology. PMID:27467972

  17. Identifying Hydrated Salts Using Simultaneous Thermogravimetric Analysis and Differential Scanning Calorimetry

    ERIC Educational Resources Information Center

    Harris, Jerry D.; Rusch, Aaron W.

    2013-01-01

    simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to characterize colorless, hydrated salts with anhydrous melting points less than 1100 degrees C. The experiment could be used to supplement the lecture discussing gravimetric techniques. It is…

  18. Preparation To Minimize Buffer Mismatch in Isothermal Titration Calorimetry Experiments.

    PubMed

    Bian, Xuelin; Lockless, Steve W

    2016-05-17

    There is a growing need to study ligand binding to proteins in native or complex solution using isothermal titration calorimetry (ITC). For example, it is desirable to measure ligand binding to membrane proteins in more native lipid-like environments such as bicelles, where ligands can access both sides of the membrane in a homogeneous environment. A critical step to obtain high signal-to-noise is matching the reaction chamber solution to the ligand solution, typically through a final dialysis or gel filtration step. However, to obtain reproducible bicelles, the lipid concentrations must be carefully controlled which eliminates the use of dialysis that can disrupt these parameters. Here, we report and validate a rapid preparation ITC (RP-ITC) approach to measure ligand binding without the need for a dialysis step. This general approach is used to quantify ion binding to a K(+) channel embedded in bicelles and can be applied to complex, less defined systems. PMID:27092566

  19. Laboratory Annealing Experiments Of Refractory Silicate Grain Analogs Using Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III; Tsukamota, Katsuo; Kaito, Chihiro

    2010-01-01

    Exothermic reactions during the annealing of laboratory synthesized amorphous magnesium-bearing silicate particles used as grain analogs of cosmic dust were detected by differential scanning calorimetry (DSC) in air. With infrared spectroscopy and transmission electron microscopy, we show that cosmic dust could possibly undergo fusion to larger particles, with oxidation of magnesium silicide and crystallization of forsterite as exothermic reactions in the early solar system. The reactions begin at approximately 425, approximately 625, and approximately 1000 K, respectively, and the reaction energies (enthalpies) are at least 727, 4151, and 160.22 J per gram, respectively. During the crystallization of forsterite particles, the spectral evolution of the 10 micrometer feature from amorphous to crystalline was observed to begin at lower temperature than the crystallization temperature of 1003 K. During spectral evolution at lower temperature, nucleation and/or the formation of nanocrystallites of forsterite at the surface of the grain analogs was observed.

  20. Review of calorimetry in Fermilab fixed-target experiments

    SciTech Connect

    Crisler, M.B.

    1995-04-01

    The fixed-target program at Fermilab comprises as many as thirteen simultaneous experiments in ten separate beamlines using beams of primary protons, pions, kaons, electrons, neutrinos, and muons. The fixed target beamlines were last in operation in the latter half of 1991, shutting down in 1992. The next fixed target run is scheduled for early 1996. This article describes some of the wide variety of calorimetric devices that were in use in the past run or to be used in the coming run. Special attention is devoted to the new devices currently under construction.

  1. The Enthalpy of Decomposition of Hydrogen Peroxide: A General Chemistry Calorimetry Experiment

    NASA Astrophysics Data System (ADS)

    Marzzacco, Charles J.

    1999-11-01

    A calorimetry experiment involving the catalytic decomposition of aqueous hydrogen peroxide is presented. The experiment is simple, inexpensive, and colorful. In its simplest form, it can be performed in less than one hour; therefore, it is quite suitable for high school labs, which often have time restrictions. The chemicals required are household or commercial 3% H2O2(aq) and 0.50 M Fe(NO3)3(aq). Styrofoam cup calorimeters and thermometers with a range from 20 to 50 oC are also required. Ideally, the thermometers should be precise to 0.01 oC. The temperature of the H2O2 solution is monitored before and after the Fe(NO3)3 catalyst is added. The addition of the catalyst results in a color change and the evolution of heat and bubbles of oxygen. At the conclusion of the reaction, the color of the reaction mixture returns to that of the original Fe(NO3)3 solution. The heat change for the reaction is determined from the temperature change, the specific heat of the solution, and the calorimeter constant. The experimental enthalpy change for the reaction is in excellent agreement with the literature value.

  2. Dynamic Calorimetry for Students

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    A student experiment on dynamic calorimetry is described. Dynamic calorimetry is a powerful technique for calorimetric studies, especially at high temperatures and pressures. A low-power incandescent lamp serves as the sample. The ScienceWorkshop data-acquisition system with DataStudio software from PASCO Scientific displays the results of the…

  3. Neutron monitoring and electrode calorimetry experiments in the HIP-1 Hot Ion Plasma

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Layman, R. W.

    1977-01-01

    Results are presented for two diagnostic procedures on HIP-1: neutron diagnostics to determine where neutrons originated within the plasma discharge chamber and electrode calorimetry to measure the steady-state power absorbed by the two anodes and cathodes. Results are also reported for a hot-ion plasma formed with a continuous-cathode rod, one that spans the full length of the test section, in place of the two hollow cathodes. The outboard neutron source strength increased relative to that at the midplane when (1) the cathode tips were moved farther outboard, (2) the anode diameters were increased, and (3) one of the anodes was removed. The distribution of neutron sources within the plasma discharge chamber was insensitive to the division of current between the two cathodes. For the continuous cathode, increasing the discharge current increased the midplane neutron source strength relative to the outboard source strength. Each cathode absorbed from 12 to 15 percent of the input power regardless of the division of current between the cathodes. The anodes absorbed from 20 to 40 percent of the input power. The division of power absorption between the anodes varied with plasma operating conditions and electrode placement.

  4. Quantum Calorimetry

    NASA Technical Reports Server (NTRS)

    Stahle, Caroline Kilbourne; McCammon, Dan; Irwin, Kent D.

    1999-01-01

    Your opponent's serve was almost perfect, but you vigorously returned it beyond his outstretched racquet to win the point. Now the tennis ball sits wedged in the chain-link fence around the court. What happened to the ball's kinetic energy? It has gone to heat the fence, of course, and you realize that if the fence were quite colder, you might be able to measure that heat and determine just how energetic your swing really was. Calorimetry has been a standard measurement technique since James Joule and Julius von Mayer independently concluded, about 150 years ago, that heat is a form of energy. But only in the past 15 years or so has calorimetry been applied, at millikelvin temperatures, to the measurement of the energy of individual photons and particles with exquisite sensitivity. In this article, we have tried to show that continuing research in low-temperature physics leads to a greater understanding of high-temperature astrophysics. Adaptations of the resulting spectrometers will be useful tool for fields of research beyond astrophysics.

  5. Gelatinisation kinetics of corn and chickpea starches using DSC, RVA, and dynamic rheometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gelatinisation kinetics (non-isothermal) of corn and chickpea starches at different heating rates were calculated using differential scanning calorimetry (DSC), rapid visco analyser (RVA), and oscillatory dynamic rheometry. The data obtained from the DSC thermogram and the RVA profiles were fitt...

  6. Glass transition in polymers: Comparison of results from DSC, TMA, and TOA measurements

    SciTech Connect

    Wiedemann, H.G.; Widmann, G.; Bayer, G.

    1994-09-01

    The determination of the glass transition temperature, T{sub g}, of polymers by differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) is sometimes problematic and rather subjective. This was shown previously in the ICTA certificate (distributed by NBS as GM-754) for the certified reference material polystyrene (PS). The not very good reproducibility of the measured value of the onset is due to a variety of instrumental and experimental parameters. This is true also for the determination of the glass transition by TMA measurements. The main reasons are temperature gradients caused by the relatively high sample mass required for DSC and by the limited heat transfer in TMA, respectively. Their own experiments which were carried out with polystyrene and with [poly(ethyleneterephthalate)] (PET) proved that a combination of DSC with TOA (thermo-optical analysis or hot stage microscopy under polarized light) can solve some of these problems. TOA is a nonsubjective method since the changes in birefringence and light transmittance during the glass transition which are visible under the microscope are measured with a photocell. TOA allows T{sub g} measurements of small samples (fraction of milligrams).

  7. A Guide to Differential Scanning Calorimetry of Membrane and Soluble Proteins in Detergents.

    PubMed

    Yang, Zhengrong; Brouillette, Christie G

    2016-01-01

    Differential scanning calorimetry (DSC) detects protein thermal unfolding by directly measuring the heat absorbed. Simple DSC experiments that require relatively small amounts of pure material can provide a wealth of information related to structure, especially with respect to domain architecture, without the need for a complete thermodynamic analysis. Thus, DSC is an ideal additional tool for membrane protein characterization and also offers several advantages over indirect thermal unfolding methods. Integral membrane proteins (IMPs) that comprise both large multitopic transmembrane domains (TMDs) and extramembranous domains (EMDs) are differentially affected by detergent interactions with both domains. In fact, in some cases, destabilization of the EMD by detergent may dominate overall IMP stability. This chapter will (1) provide a perspective on the advantages of DSC for membrane protein characterization and stability measurements, including numerous examples spanning decades of research; (2) introduce models for the interaction and destabilization of IMPs by detergents; (3) discuss two case studies from the authors' lab; and (4) offer practical advice for performing DSC in the presence of detergents. PMID:26794360

  8. PURITY AND HEAT OF FUSION DATA FOR ENVIRONMENTAL STANDARDS AS DETERMINED BY DIFFERENTIAL SCANNING CALORIMETRY

    EPA Science Inventory

    Differential scanning calorimetry (DSC) has been applied to 273 environmental standards, including pesticides, herbicides and related compounds. embers of the following chemical classes were analyzed: rganophosphorus, organochlorine, phenol, triazine, uracil, phenoxy acid, urea, ...

  9. Determination of the solubility of crystalline low molar mass compounds in polymers by differential scanning calorimetry.

    PubMed

    Rager, Timo

    2014-06-01

    A mathematical equation has been derived to calculate the liquidus for a binary system consisting of an amorphous polymer and a crystalline low molar mass compound. The experimental input to this equation is an interaction enthalpy, which is derived from the variation of the melting enthalpy with composition in differential scanning calorimetry (DSC) experiments. The predictive power of the equation has been tested with mixtures of acetylsalicylic acid, carbamazepine, or intraconazole with poly(ethylene glycol) as well as mixtures of carbamazepine with poly(acrylic acid), poly(hydroxystyrene), or poly(vinylpyrrolidone). It has been confirmed that the evaluation of the melting enthalpy in DSC is a suitable method to identify the preferred solute-polymer combinations for thermodynamically stable molecular dispersions. PMID:24723307

  10. Deconvolution of complex differential scanning calorimetry profiles for protein transitions under kinetic control.

    PubMed

    Toledo-Núñez, Citlali; Vera-Robles, L Iraís; Arroyo-Maya, Izlia J; Hernández-Arana, Andrés

    2016-09-15

    A frequent outcome in differential scanning calorimetry (DSC) experiments carried out with large proteins is the irreversibility of the observed endothermic effects. In these cases, DSC profiles are analyzed according to methods developed for temperature-induced denaturation transitions occurring under kinetic control. In the one-step irreversible model (native → denatured) the characteristics of the observed single-peaked endotherm depend on the denaturation enthalpy and the temperature dependence of the reaction rate constant, k. Several procedures have been devised to obtain the parameters that determine the variation of k with temperature. Here, we have elaborated on one of these procedures in order to analyze more complex DSC profiles. Synthetic data for a heat capacity curve were generated according to a model with two sequential reactions; the temperature dependence of each of the two rate constants involved was determined, according to the Eyring's equation, by two fixed parameters. It was then shown that our deconvolution procedure, by making use of heat capacity data alone, permits to extract the parameter values that were initially used. Finally, experimental DSC traces showing two and three maxima were analyzed and reproduced with relative success according to two- and four-step sequential models. PMID:27402175

  11. On the Development of Thermally Stable Semi-IPNs of PVA and PAN using IR, DSC and XRD Studies

    NASA Astrophysics Data System (ADS)

    Deshpande, Deepti S.; Bajpai, R.; Bajpai, A. K.

    2011-07-01

    A novel biopolymer based Semi-IPN of polyvinyl alcohol (PVA) and polycrylonitrile (PAN) were synthesized in various proportions by redox polymerization and analyzed thermally by differential scanning calorimetry (DSC). DSC thermograms shows good thermal stability, as a result of incorporation of acrylonitrile as the second network. The structural and morphological study of these semi-IPNs by FTIR and XRD technique, respectively, were correlated. The approach seems to be beneficial for various biomedical applications.

  12. Scintillator plate calorimetry

    SciTech Connect

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin.

  13. Calorimetry for the SSC

    SciTech Connect

    Gordon, H.A.; Grannis, P.D.

    1984-01-01

    The activities related to calorimetry at Snowmass took place in three main areas. These were: (1) The performance criteria for SSC calorimetry, including the requirements on hermeticity, shower containment, segmentation and time resolution. The use of calorimetric means of particle identification was studied. (2) The study of triggering methods using calorimeter energy, angle and timing information. (3) A review of a wide variety of calorimeter materials for absorber and sampling, as well as several means of obtaining the readout of the energy deposits. 48 references, 10 figures, 1 table.

  14. PALS and DSC study of nanopores partially filled by hexadecane

    NASA Astrophysics Data System (ADS)

    Šauša, O.; Illeková, E.; Krištiak, J.; Berek, D.; Macová, E.

    2013-06-01

    The controlled porosity glasses (CPG) filled with various amount of hexadecane (HXD) in nanopores were studied both by the positron annihilation lifetime spectroscopy (PALS) and the differential scanning calorimetry (DSC) methods. Two types of CPG matrices were used with average pore sizes 12.6 and 22.2 nm. The PALS measurements showed, that when the process of large pores filling by HXD has started, the long o-Ps lifetime went down to HXD o-Ps lifetime about 3ns [1]. DSC measurements at partially filled nanopores showed always two crystallization peaks [2]. Their positions depended on average pore size of matrix. Third crystallization peak was identified in overfilled samples (only short o-Ps lifetimes were present) and their position in temperature scale was the same as for the bulk HXD peak. The latter peak was independent of the average pore size of matrices. This fact confirms the assumption that processes studied by PALS with the samples that contained smaller amount of HXD in CPG occured inside of nanopores of the matrix.

  15. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization

    NASA Astrophysics Data System (ADS)

    Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les

    2016-06-01

    A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites.

  16. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization

    PubMed Central

    Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les

    2016-01-01

    A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites. PMID:27319782

  17. Scintillator materials for calorimetry

    SciTech Connect

    Weber, M.J.

    1994-09-01

    Requirements for fast, dense scintillator materials for calorimetry in high energy physics and approaches to satisfying these requirements are reviewed with respect to possible hosts and luminescent species. Special attention is given to cerium-activated crystals, core-valence luminescence, and glass scintillators. The present state of the art, limitations, and suggestions for possible new scintillator materials are presented.

  18. Kinetics Characteristics of Nitrogen Hydrates Respond to Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Liu, C.; Ye, Y.; Gong, J.

    2012-12-01

    In this study, a high pressure differential scanning calorimetry (HP DSC) based on thermo-analytical technique was applied to investigate the kinetics and thermodynamics characteristics of nitrogen hydrates. Nitrogen hydrates was synthesized in the sample vessel under different pressures as temperature decreased from 293 to 233 K with a constant cooling rate of 0.2 K/min controlled by the DSC. To measure the hydrates dissociation enthalpies , the temperature was slowly raised up from 233 to 293 K at a constant rate ranging of 0.05 K/min. 1. Peak area on the heat flow curves represents the amount of heat during phase transition. In these experiments, the total water added to the sample vessel (mt) is already known. By integrating the peak areas of ice and hydrate, we know the total heats of ice (Qi) and hydrate (Qh), respectively. As the heat of ice per gram can be measured easily (336.366 J/g), the mass of ice (mi) can be obtain. Then, the dissociation heat of nitrogen hydrate per gram (Hh ) can be calculated by the equation: H(J/g)=Qh/(mt-mi) It is shown that the dissociation heats of nitrogen hydrates are a little larger than ice, but do not change a lot with different pressures. The average value of dissociation heat is 369.158 J/g. 2. During the DSC cooling stage, hydrate formed at temperature much lower than equilibrium. The biggest sub-cooling is about 291 K, while the smallest one is about 279 K. However, during these experiments, the pressure did not show obvious relationship with sub-cooling. It confirmed that even the proper conditions were achieved, formation was still a stochastic process. For one thing, due to the random distribution of dissolved gas in water, the interfacial tension and the water activity were not equal in the whole system. And if there was a free gas phase, which leads to different fugacity on water-gas interface, the stochastic behavior would be more significant in the sample vessel. 3. The energy released from hydrates formation as

  19. Cryomilled Aluminum with Diamantane: Thermal Characterization by DSC and Effects of Magnesium

    NASA Astrophysics Data System (ADS)

    Arnold, Michael Colin

    Many structural applications require a material that is both lightweight and corrosion resistant, for which aluminum and its alloys may be considered for use if not for their relatively low strength. By improving strength of aluminum through the Hall-Petch mechanism, it could become a more suitable choice for many structural applications. Cryomilling is used as a production technique to strengthen aluminum by reduction of grain size to the 20-50 nm range. Although the powders produced by cryomilling are well within the nanocrystalline regime, the powders experience significant grain growth during consolidation to a solid body. Cryomilled powders have been shown to remain nanocrystalline by introducing a nano-diamond, diamantane to the grain boundaries. To better characterize the thermal stability of the cryomilled powder with diamantane, Differential Scanning Calorimetry (DSC) was used to measure the isothermal heat flow in the 0.6Tm to 0.9Tm range. A model was developed to correlate the isothermal DSC signal to a grain growth curve and grain growth parameters were elucidated by assuming variable boundary mobility with a sigmoidal form. The model revealed a tendency for boundary mobility to transition from an athermal grain growth mechanism to standard thermally activated grain growth. Grain growth parameters were compared to shed light on possible mechanisms of aluminum-diamantane involvement during grain growth. Powders and consolidated samples with very low concentrations of diamantane and with magnesium were observed by TEM, SEM and XRD, and compared both separately and together to characterize the how thermal stability is affected by diamantane concentration and the presence of magnesium.

  20. Thermal characterization and model free kinetics of aged epoxies and foams using TGA and DSC methods.

    SciTech Connect

    Cordaro, Joseph Gabriel; Kruizenga, Alan Michael; Nissen, April

    2013-10-01

    Two classes of materials, poly(methylene diphenyl diisocyanate) or PMDI foam, and cross-linked epoxy resins, were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), to help understand the effects of aging and %E2%80%9Cbake-out%E2%80%9D. The materials were evaluated for mass loss and the onset of decomposition. In some experiments, volatile materials released during heating were analyzed via mass spectroscopy. In all, over twenty materials were evaluated to compare the mass loss and onset temperature for decomposition. Model free kinetic (MFK) measurements, acquired using variable heating rate TGA experiments, were used to calculate the apparent activation energy of thermal decomposition. From these compiled data the effects of aging, bake-out, and sample history on the thermal stability of materials were compared. No significant differences between aged and unaged materials were detected. Bake-out did slightly affect the onset temperature of decomposition but only at the highest bake-out temperatures. Finally, some recommendations for future handling are made.

  1. The effects of minor constituents on biodiesel cold flow properties: Differential scanning calorimetry (DSC) analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel made from vegetable oils, animal fats and other lipid feedstocks. Fuel properties and performance of biodiesel during cold weather are influenced by factors related to lipid feedstock as well as small concentrations of monoacylglycerols and other minor constit...

  2. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  3. Isothermal titration calorimetry of RNA.

    PubMed

    Salim, Nilshad N; Feig, Andrew L

    2009-03-01

    Isothermal titration calorimetry (ITC) is a fast and robust method to study the physical basis of molecular interactions. A single well-designed experiment can provide complete thermodynamic characterization of a binding reaction, including K(a), DeltaG, DeltaH, DeltaS and reaction stoichiometry (n). Repeating the experiment at different temperatures allows determination of the heat capacity change (DeltaC(P)) of the interaction. Modern calorimeters are sensitive enough to probe even weak biological interactions making ITC a very popular method among biochemists. Although ITC has been applied to protein studies for many years, it is becoming widely applicable in RNA biochemistry as well, especially in studies which involve RNA folding and RNA interactions with small molecules, proteins and with other RNAs. This review focuses on best practices for planning, designing and executing effective ITC experiments when one or more of the reactants is an RNA. PMID:18835447

  4. Probing perturbation of bovine lung surfactant extracts by albumin using DSC and 2H-NMR.

    PubMed

    Nag, Kaushik; Keough, Kevin M W; Morrow, Michael R

    2006-05-15

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d(62)) had been added, were studied using deuterium-NMR spectroscopy ((2)H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10-35 degrees C, with a temperature of maximum heat flow (T(max)) around 27 degrees C. Incorporation of the DPPC-d(62) into BLES-reconstituted vesicles did not alter the T(max) or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and (2)H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. (2)H-NMR spectra of the DPPC-d(62) probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d(62) environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the (2)H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of (2)H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5-35 degrees C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in

  5. Extruded scintillator for the calorimetry applications

    SciTech Connect

    Dyshkant, A.; Rykalin, V.; Pla-Dalmau, A.; Beznosko, D.; /SUNY, Stony Brook

    2006-08-01

    An extrusion line has been installed and successfully operated at FNAL (Fermi National Accelerator Laboratory) in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new Facility will serve to further develop and improve extruded plastic scintillator. Recently progress has been made in producing co-extruded plastic scintillator, thus increasing the potential HEP applications of this Facility. The current R&D work with extruded and co-extruded plastic scintillator for a potential ALICE upgrade, the ILC calorimetry program and the MINERvA experiment show the attractiveness of the chosen strategy for future experiments and calorimetry. We extensively discuss extruded and co-extruded plastic scintillator in calorimetry in synergy with new Solid State Photomultipliers. The characteristics of extruded and co-extruded plastic scintillator will be presented here as well as results with non-traditional photo read-out.

  6. Extruded scintillator for the Calorimetry applications

    SciTech Connect

    Dyshkant, A.; Rykalin, V.; Pla-Dalmau, A.; Beznosko, D.

    2006-10-27

    An extrusion line has been installed and successfully operated at FNAL (Fermi National Accelerator Laboratory) in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new Facility will serve to further develop and improve extruded plastic scintillator. Recently progress has been made in producing co-extruded plastic scintillator, thus increasing the potential HEP applications of this Facility. The current R and D work with extruded and co-extruded plastic scintillator for a potential ALICE upgrade, the ILC calorimetry program and the MINERvA experiment show the attractiveness of the chosen strategy for future experiments and calorimetry. We extensively discuss extruded and co-extruded plastic scintillator in calorimetry in synergy with new Solid State Photomultipliers. The characteristics of extruded and co-extruded plastic scintillator will be presented here as well as results with non-traditional photo read-out.

  7. Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions

    PubMed Central

    Chiu, Michael H.; Prenner, Elmar J.

    2011-01-01

    Differential Scanning Calorimetry (DSC) is a highly sensitive technique to study the thermotropic properties of many different biological macromolecules and extracts. Since its early development, DSC has been applied to the pharmaceutical field with excipient studies and DNA drugs. In recent times, more attention has been applied to lipid-based drug delivery systems and drug interactions with biomimetic membranes. Highly reproducible phase transitions have been used to determine values, such as, the type of binding interaction, purity, stability, and release from a drug delivery mechanism. This review focuses on the use of DSC for biochemical and pharmaceutical applications. PMID:21430954

  8. Applications of high pressure differential scanning calorimetry to aviation fuel thermal stability research

    NASA Technical Reports Server (NTRS)

    Neveu, M. C.; Stocker, D. P.

    1985-01-01

    High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.

  9. Evidence of [eta]' or ordered zone formation in aluminum alloy 7075 from differential scanning calorimetry. [Aluminium alloy 7075

    SciTech Connect

    Bartges, C.W. )

    1993-05-01

    The development of high strength levels in Al-Mg-Zn-(Cu) alloys is dependent on the decomposition of the supersaturated solid solution ([alpha][sub ss]). The equilibrium phase, [eta], and the transition phase, [eta][prime], have compositions Mg(Zn, Al, Cu)[sub 2] and the GP Zones are solute rich clusters. Several authors have presented evidence that there is another precipitate which forms between the GP Zones and [eta][prime], though there is some controversy whether it is crystallographically distinct from the matrix, [eta][prime], or an ordered GP Zone. Regardless of their structure, these particles are seldom observed and are not usually considered in the decomposition of these alloys. Most of the previous observations of these particles have been the result of involved transmission electron microscopic and X-ray scattering experiments. This report shows they may also be detected using differential scanning calorimetry (DSC). Also significant is the fact that the particles were observed in AA 7075, an important commercial alloy. Lloyd and Chaturvedi also saw indications of [eta][prime] or ordered zones using DSC, but the results reported herein are different in several important respects. DSC traces of alloys aged for various times at room temperature and 121 C have shown there is at least one phase which can form during the decomposition of aluminum alloy 7075 that is not usually stated in the decomposition reaction. The results of previous studies suggest they may be ordered GP Zones or [eta][prime].

  10. Thermal Properties of Trogamid by Conventional and Fast Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Merfeld, John; Mao, Bin; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    We use conventional slow scan rate differential scanning calorimetry, and fast scanning chip-based calorimetry (FSC), to investigate the crystallization and melting behavior of Trogamid, a chemical relative of nylon. Fundamental thermal properties of Trogamid were studied, including the melt crystallization kinetics, heat of fusion, and the solid and liquid state heat capacities. Using slow scan DSC (at 5 K/min), Trogamid displays a glass transition relaxation process at ~133 C, melting endotherm peak at 250 C, and is stable upon repeated heating to 310 C. When using slow scan DSC, the isothermal melt crystallization temperatures were restricted to 225 C or above. Trogamid crystallizes rapidly from the melt and conventional calorimetry is unable to cool sufficiently fast to prevent nucleation and crystal growth prior to stabilization at lower crystallization temperatures. Using FSC we were able to cool nano-gram sizes samples at 2000 K/s to investigate a much lower range of melt crystallization temperatures, from 205-225 C. The experimental protocol for performing FSC on semicrystalline polymers to obtain liquid state heat capacity data will be presented. National Science Foundation, Polymers Program DMR-1206010; DAAD; Tufts Faculty Supported Leave.

  11. [DSC and FTIR study of adsorbed lysozyme on hydrophobic surface].

    PubMed

    Lei, Zu-meng; Geng, Xin-peng; Dai, Li; Geng, Xin-du

    2008-09-01

    During a process of hen egg white lysozyme adsorption and folding on a moderately hydrophobic surface (PEG-600), the effects of salt((NH4)2SO4) concentrations, surface coverage and denaturant (guanidine hydrochloride, GuHCl) concentrations on thermal stability and the changes in the molecular conformation of adsorbed native and denatured lysozyme without aqueous solution were studied with a combination of differential scanning calorimetry (DSC) with FTIR spectroscopy. The results showed that temperature due to endothermic peaks was reduced and the disturbance increased at higher temperature with the increase in salt concentration and surface coverage of adsorbed protein. beta-Sheet and beta-Turn stucture increased while alpha-Helix structure decreased after the adsorption. The peaks corresponding to both C-C stretching frequency in 1400-1425 cm(-1) and amide I band frequency in 1650-1670 cm(-1) of adsorbed denatured lysozyme can be detected in FTIR spectra while that due to amide I band frequency of adsorbed native lysozyme almost can't be observed. Adsorption resulted in structural loss of adsorbed native lysozyme, whose performance was less stable. PMID:19093560

  12. One-step Real-time Food Quality Analysis by Simultaneous DSC-FTIR Microspectroscopy.

    PubMed

    Lin, Shan-Yang; Lin, Chih-Cheng

    2016-01-01

    This review discusses an analytical technique that combines differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy, which simulates the accelerated stability test and detects decomposition products simultaneously in real time. We show that the DSC-FTIR technique is a fast, simple and powerful analytical tool with applications in food sciences. This technique has been applied successfully to the simultaneous investigation of: encapsulated squid oil stability; the dehydration and intramolecular condensation of sweetener (aspartame); the dehydration, rehydration and solidification of trehalose; and online monitoring of the Maillard reaction for glucose (Glc)/asparagine (Asn) in the solid state. This technique delivers rapid and appropriate interpretations with food science applications. PMID:24762327

  13. Measuring the glass transition temperature of EPDM roofing materials: Comparison of DMA, TMA, and DSC techniques

    SciTech Connect

    Paroli, R.M.; Penn, J.

    1994-09-01

    Two ethylene-propylene-diene monomer (EPDM) roofing membranes were aged at 100 C for 7 and 28 days. The T{sub g} of these membranes was then determined by dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and differential scanning calorimetry (DSC) and the results compared. It was found that: (1) T{sub g} data can be obtained easily using the DMA and TMA techniques. The DSC method requires greater care due to the broad step change in the baseline which is associated with heavily plasticized materials. (2) The closest correspondence between techniques was for TMA and DSC (half-height). The latter, within experimental error, yielded the same glass transition temperature before and after heat-aging. (3) The peak maxima associated with tan{delta} and E{double_prime} measurements should be cited with T{sub g} values as significant differences can exist. (4) The T{sub g}(E{double_prime}) values were closer to the T{sub g}(TMA) and T{sub g}(DSC) data than were the T{sub g}(tan{delta}) values. Data obtained at 1 Hz (or possibly less) should be used when making comparisons based on various techniques. An assessment of T{sub g} values indicated that EPDM 112 roofing membrane is more stable than the EPDM 111 membrane. The T{sub g} for EPDM 112 did not change significantly with heat-aging for 28 days at 130 C.

  14. Cure kinetics of epoxy matrix resin by differential scanning calorimetry

    NASA Technical Reports Server (NTRS)

    Cizmecioglu, M.; Gupta, A.

    1982-01-01

    A study was made on the cure kinetics of an epoxy neat-resin (Narmco 5208) using Differential Scanning Calorimetry (DSC). Two interrelated analytical methods were applied to dynamic DSC data for evaluating the kinetic parameters, such as activation energy, E, the order of reaction, n, and the total heat of polymerization (or crosslinking), delta H sub t. The first method was proposed by Ellerstein (1968), and uses a thorough differential-integral analysis of a single DSC curve to evaluate the kinetic parameters. The second method was proposed by Kissinger (1957), and uses multiple DSC curves obtained at various heating rates to evaluate E regardless of n. Kinetic analysis of Narmco 5208 epoxy resin showed that the reaction order, n, is substantially affected by the rate of heating; i.e., n is approximately 2 at slow scan rates but is reduced to 1.5 at higher scan rates. The activation energy, E, is not affected by the scan rate, and the average value of E is 25.6 + or - 1.8 kcal/mole.

  15. DSC And Raman Studies Of Diglycine-perchlorate (DGPCl) Doped TGS

    NASA Astrophysics Data System (ADS)

    Panicker, Lata; Sakuntala, T.

    2010-12-01

    Single crystals of diglycine perchlorate (DGPCl) doped triglycine sulphate(TGS) has been obtained and studied using differential scanning calorimetry and Raman. DSC and Raman analysis shows that the thermal and vibrational property of TGS is affected by DGPCl. However, the basic crystal structure of TGS is not perturbed significantly by the dopent. A small fraction of SO42- anions seems to be replaced by ClO4- in the TGS crystal structure. The presence of ClO4- anions in TGS crystals can affect the ferroelectric properties of TGS.

  16. [Study on the Effects of Ginsenoside Rb1 on DPPC Bilayers by Using Thermo-Raman Spectrum and DSC].

    PubMed

    Hui, Ge; Liu, Wei; Zhang, Jing-zhou; Zhou, Tie-li; Wang, Si-ming; Zhao, Yu; Zhao, Bing

    2015-08-01

    The research on the interactions between Ginsenosides and biomembranes plays a crucial role in thorough understanding the pharmacological activity and biologyical effect of Chinese medicine Panax ginseng. With the bilayer structure, DPPC often serves as an simulation model of the cell membrane to study the role of drug molecules and cell membranes. Ginsenoside Rb1, one of the most important components of Panaxginseng, playing the significant roles of pharmacological effects and biological properties. Raman and differential scanning calorimetry (DSC) are respectively a powerful tool for discussing the molecular interaction, and a kind of general technology by which researching the bilayer monomer structures and its interactions with drug molecules. However, rarely research reports on the interactions between drug molecules and biomembranes by means of both technologies above. In this paper, the influence of ginsenoside monomer Rb1 on DPPC membrane bilayers was investigated by thermo-Raman and DSC. In Raman spectra, the changes of DPPC molecule have been observed before and after interacted with ginsenoside Rb1, the data analysis indicates three aspects: the O-C-C-N+ polar head group skeleton, C-C stretching vibration area, and the C-H bond stretching vibrarion in terminated methyl group of alkyl chains. The results showed that ginsenoside Rb1 molecule with certain concentration has not changed the gauche conformation of the polar head backbone group in DPPC bilayers, the order of the internal molecular chain and the lateral chain-chain packing have been decreased as the temperature increased, the lateral disposed disorder has been increased. The changes of some thermodynamic constants obtained by DSC experiment such as phase transition temperature (Tm), the temperature at which the transition is half completed (ΔT1/2), and the transition enthalpy normalized per mol of DPPC (AH) have been showed further results of the thermo Raman experiments, with increasing the

  17. Differential scanning calorimetry in determining kinetics parameter of Si oxidation

    NASA Astrophysics Data System (ADS)

    Faruque, Sk. Abdul Kader Md.; Chakraborty, Supratic

    2016-05-01

    Differential scanning calorimetry (DSC) technique is employed here to study the oxidation of silicon by solid-gas reaction at a constant heating rate. The diffusion coefficient of oxygen into silicon at 900 °C is estimated from the kinetic equation of 1-dimensional diffusion controlled growth. The diffusion coefficient, D estimated as 4.5 × 10-5 exp (1.01ev/κBT) m2/s, as is in well agreement with the standard value available in literature.

  18. Oxidation behaviour of mechanically activated Mn{sub 3}O{sub 4} by TGA/DSC/XRPD

    SciTech Connect

    Berbenni, V.; Marini, A

    2003-11-26

    The effect of high energy milling on the solid-state reactions taking place in Mn{sub 3}O{sub 4} has been studied. Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) have been employed to study the solid-state reaction occurring under air in the temperature range between room temperature (rt) and 1100 deg. C. X-ray Powder Diffractometry (XRPD) has been used to ascertain the chemical nature of the transformations brought into evidence by thermo-analysis.

  19. Estimation of the fragility index of indomethacin by DSC using the heating and cooling rate dependency of the glass transition.

    PubMed

    Ramos, Joaquim J Moura; Taveira-Marques, Raquel; Diogo, Hermínio P

    2004-06-01

    In this study we have investigated the features of the glass transition relaxation of indomethacin using Differential Scanning Calorimetry (DSC). The purpose of this work is to provide an estimation of the activation energy at the glass transition temperature, as well as of the fragility index, of amorphous indomethacin from DSC data. To do so, the glass transition temperature region of amorphous indomethacin was characterized in both cooling and heating regimes. The activation energy for structural relaxation (directly related to glass fragility) was estimated from the heating and cooling rate dependence of the location of the DSC profile of the glass transition. The obtained results were similar in the heating and in the cooling modes. The results on the fragility index of indomethacin obtained in the present study, m = 60 in the cooling mode and m = 56 in the heating mode, are compared with other values previously published in the literature. PMID:15124208

  20. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS.

    PubMed

    You, Mei-Li

    2016-01-01

    Cumene hydroperoxide (CHP) is widely used in chemical processes, mainly as an initiator for the polymerization of acrylonitrile-butadiene-styrene. It is a typical organic peroxide and an explosive substance. It is susceptible to thermal decomposition and is readily affected by contamination; moreover, it has high thermal sensitivity. The reactor tank, transit storage vessel, and pipeline used for manufacturing and transporting this substance are made of metal. Metal containers used in chemical processes can be damaged through aging, wear, erosion, and corrosion; furthermore, the containers might release metal ions. In a metal pipeline, CHP may cause incompatibility reactions because of catalyzed exothermic reactions. This paper discusses and elucidates the potential thermal hazard of a mixture of CHP and an incompatible material's metal ions. Differential scanning calorimetry (DSC) and thermal activity monitor III (TAM III) were employed to preliminarily explore and narrate the thermal hazard at the constant temperature environment. The substance was diluted and analyzed by using a gas chromatography spectrometer (GC) and gas chromatography/mass spectrometer (GC/MS) to determine the effect of thermal cracking and metal ions of CHP. The thermokinetic parameter values obtained from the experiments are discussed; the results can be used for designing an inherently safer process. As a result, the paper finds that the most hazards are in the reaction of CHP with Fe(2+). When the metal release is exothermic in advance, the system temperature increases, even leading to uncontrollable levels, and the process may slip out of control. PMID:27136518

  1. A comparison of the DSC measurements of shape memory alloys and the material's thermal characteristics in a large scale actuator

    NASA Astrophysics Data System (ADS)

    Mabe, James H.; Yu, Chin-Jye; Rosenzweig, Ed

    2006-03-01

    An accurate measure of a Shape Memory Alloy's (SMA) transition temperatures is necessary for the development of successful SMA actuator designs. Differential Scanning Calorimetry (DSC) is used to obtain SMA transition temperatures associated with changes in alloy formulations, fabrication processes, and forming methods, and to predict an SMA's thermal characteristics when designed into an actuator. However there is little data directly correlating a material's DSC results with its performance in an actuator configuration, particularly for large-scale actuators producing high force and large displacements. In this paper the authors compare the DSC results of several NiTinol samples with the thermal performance of the same material in a rotary actuator. Data are presented for NiTinol torque tubes 14cm (5.5 in) long by 1 cm (0.4 in) in diameter. The tubes were tested over a range of loads exceeding 17 N*m (150 in-lbs) of torque, with angular displacements of more than 60 degrees, and for durations exceeding 3,500 thermal cycles. Data from various NiTinol suppliers, levels of cold work, and a range of aging temperatures is presented. The DSC data is directly compared to the strain vs. temperature hysteresis curves of the same material under various loads; both before and after extended cycling. The value of the DSC measurements as a predictor of a material's thermal characteristics in an actuator configuration is assessed.

  2. CALORIMETRY OF TRU WASTE MATERIALS

    SciTech Connect

    C. RUDY; ET AL

    2000-08-01

    Calorimetry has been used for accountability measurements of nuclear material in the US. Its high accuracy, insensitivity to matrix effects, and measurement traceability to National Institute of Standards and Technology have made it the primary accountability assay technique for plutonium (Pu) and tritium in the Department of Energy complex. A measurement of Pu isotopic composition by gamma-ray spectroscopy is required to transform the calorimeter measurement into grams Pu. The favorable calorimetry attributes allow it to be used for verification measurements, for production of secondary standards, for bias correction of other faster nondestructive (NDA) methods, or to resolve anomalous measurement results. Presented in this paper are (1) a brief overview of calorimeter advantages and disadvantages, (2) a description of projected large volume calorimeters suitable for waste measurements, and (3) a new technique, direct measurement of transuranic TRU waste alpha-decay activity through calorimetry alone.

  3. Contactless Calorimetry for Levitated Samples

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Dokko, W.

    1986-01-01

    Temperature and specific heat of hot sample measured with pyrometer in proposed experimental technique. Technique intended expecially for contactless calorimetry of such materials as undercooled molten alloys, samples of which must be levitated to prevent contamination and premature crystallization. Contactless calorimetry technique enables data to be taken over entire undercooling temperature range with only one sample. Technique proves valuable in study of undercooling because difference in specific heat between undercooled-liquid and crystalline phases at same temperature provides driving force to convert metastable undercooled phase to stable crystalline phase.

  4. LC-circuit calorimetry

    SciTech Connect

    Bossen, O.; Schilling, A.

    2011-09-15

    We present a new type of calorimeter in which we couple an unknown heat capacity with the aid of Peltier elements to an electrical circuit. The use of an electrical inductance and an amplifier in the circuit allows us to achieve autonomous oscillations, and the measurement of the corresponding resonance frequency makes it possible to accurately measure the heat capacity with an intrinsic statistical uncertainty that decreases as {approx}t{sub m}{sup -3/2} with measuring time t{sub m}, as opposed to a corresponding uncertainty {approx}t{sub m}{sup -1/2} in the conventional alternating current method to measure heat capacities. We have built a demonstration experiment to show the feasibility of the new technique, and we have tested it on a gadolinium sample at its transition to the ferromagnetic state.

  5. Calorimetry Triggering in ATLAS

    SciTech Connect

    Igonkina, O.; Achenbach, R.; Adragna, P.; Aharrouche, M.; Alexandre, G.; Andrei, V.; Anduaga, X.; Aracena, I.; Backlund, S.; Baines, J.; Barnett, B.M.; Bauss, B.; Bee, C.; Behera, P.; Bell, P.; Bendel, M.; Benslama, K.; Berry, T.; Bogaerts, A.; Bohm, C.; Bold, T.; /UC, Irvine /AGH-UST, Cracow /Birmingham U. /Barcelona, IFAE /CERN /Birmingham U. /Rutherford /Montreal U. /Santa Maria U., Valparaiso /DESY /DESY, Zeuthen /Geneva U. /City Coll., N.Y. /Barcelona, IFAE /CERN /Birmingham U. /Kirchhoff Inst. Phys. /Birmingham U. /Lisbon, LIFEP /Rio de Janeiro Federal U. /City Coll., N.Y. /Birmingham U. /Copenhagen U. /Copenhagen U. /Brookhaven /Rutherford /Royal Holloway, U. of London /Pennsylvania U. /Montreal U. /SLAC /CERN /Michigan State U. /Chile U., Catolica /City Coll., N.Y. /Oxford U. /La Plata U. /McGill U. /Mainz U., Inst. Phys. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Queen Mary, U. of London /CERN /Rutherford /Rio de Janeiro Federal U. /Birmingham U. /Montreal U. /CERN /Kirchhoff Inst. Phys. /Liverpool U. /Royal Holloway, U. of London /Pennsylvania U. /Kirchhoff Inst. Phys. /Geneva U. /Birmingham U. /NIKHEF, Amsterdam /Rutherford /Royal Holloway, U. of London /Rutherford /Royal Holloway, U. of London /AGH-UST, Cracow /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Birmingham U. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Kirchhoff Inst. Phys. /Michigan State U. /Stockholm U. /Stockholm U. /Birmingham U. /CERN /Montreal U. /Stockholm U. /Arizona U. /Regina U. /Regina U. /Rutherford /NIKHEF, Amsterdam /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /City Coll., N.Y. /University Coll. London /Humboldt U., Berlin /Queen Mary, U. of London /Argonne /LPSC, Grenoble /Arizona U. /Kirchhoff Inst. Phys. /Birmingham U. /Antonio Narino U. /Hamburg U. /DESY /DESY, Zeuthen /Kirchhoff Inst. Phys. /Birmingham U. /Chile U., Catolica /Indiana U. /Manchester U. /Kirchhoff Inst. Phys. /Rutherford /City Coll., N.Y. /Stockholm U. /La Plata U. /Antonio Narino U. /Queen Mary, U. of London /Kirchhoff Inst. Phys. /Antonio Narino U. /Pavia U. /City Coll., N.Y. /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Pennsylvania U. /Barcelona, IFAE /Barcelona, IFAE /Chile U., Catolica /Genoa U. /INFN, Genoa /Rutherford /Barcelona, IFAE /Nevis Labs, Columbia U. /CERN /Antonio Narino U. /McGill U. /Rutherford /Santa Maria U., Valparaiso /Rutherford /Chile U., Catolica /Brookhaven /Oregon U. /Mainz U., Inst. Phys. /Barcelona, IFAE /McGill U. /Antonio Narino U. /Antonio Narino U. /Kirchhoff Inst. Phys. /Sydney U. /Rutherford /McGill U. /McGill U. /Pavia U. /Genoa U. /INFN, Genoa /Kirchhoff Inst. Phys. /Kirchhoff Inst. Phys. /Mainz U., Inst. Phys. /Barcelona, IFAE /SLAC /Stockholm U. /Moscow State U. /Stockholm U. /Birmingham U. /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /Birmingham U. /Geneva U. /Oregon U. /Barcelona, IFAE /University Coll. London /Royal Holloway, U. of London /Birmingham U. /Mainz U., Inst. Phys. /Birmingham U. /Birmingham U. /Oregon U. /La Plata U. /Geneva U. /Chile U., Catolica /McGill U. /Pavia U. /Barcelona, IFAE /Regina U. /Birmingham U. /Birmingham U. /Kirchhoff Inst. Phys. /Oxford U. /CERN /Kirchhoff Inst. Phys. /UC, Irvine /UC, Irvine /Wisconsin U., Madison /Rutherford /Mainz U., Inst. Phys. /CERN /Geneva U. /Copenhagen U. /City Coll., N.Y. /Wisconsin U., Madison /Rio de Janeiro Federal U. /Wisconsin U., Madison /Stockholm U. /University Coll. London

    2011-12-08

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2/10{sup 5} to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  6. Mound calorimetry for explosive surveillance

    SciTech Connect

    Shockey, G.C.; Rodenburg, W.W.

    1985-01-01

    Heat of reaction determinations of pyrotechnics and explosives is made at MRC-Mound by bomb calorimetry. Energy releases from ten calories to 94 kilocalories have been measured accurately using four different calorimeter systems. Each system is described and some heat of reaction results are given. 3 figs., 4 tabs.

  7. In-situ and simultaneous synchrotron-radiation small-angle and 100 scattering experiments on the low-temperature structure in as-quenched Al-Li alloy during heating

    SciTech Connect

    Okuda, Hiroshi; Tanaka, Ichiro; Matoba, Taro; Osamura, Kozo; Amemiya, Yoshiyuki

    1997-12-01

    The kinetics of phase decomposition in Al-Li alloys has been intensively investigated in the last decade. Experimentally, one or two precursory structures were first found by Nozato et al. in the late seventies by using differential scanning calorimetry (DSC). In order to clarify the nature of the dissolution peak appearing in DSC curves, the authors have conducted in-situ synchrotron-radiation (SR) small-angle and 100 scattering (SAS/100) experiments. During heating an as-quenched sample at the heating rate used in the present DSC experiments, the change of the small-angle scattering, representing the spatial distribution of solute concentration, as well as that of 100 profile, representing the spatial distribution of the local degree of order, has been measured. The structure change obtained from in-situ SAS/100 has been compared with the DSC results.

  8. Thermal stability and molecular microstructure of heat-induced cereal grains, revealed with Raman molecular microspectroscopy and differential scanning calorimetry.

    PubMed

    Khan, Md Majibur Rahman; Yu, Peiqiang

    2013-07-01

    The objectives of the present study were to use Raman molecular microspectroscopy and differential scanning calorimetry (DSC) to reveal molecular thermal stability and thermal degradation behavior of heat-induced cereal grains and reveal the molecular chemistry of the protein structures of cereal grain tissues affected by heat processing and to quantify the protein secondary structures using multicomponent peak modeling Gaussian and Lorentzian methods. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were also conducted to identify molecular differences in the Raman spectra. Three cereal grain seeds, wheat, triticale, and corn, were used as the model for feed protein in the experiment. The specimens were autoclaved (moist heating) and dry-heated (roasted) at 121 °C for 80 min, respectively. Raman spectroscopy results revealed that there are marked differences in the secondary structures of the proteins subjected to various heating treatments of different cereals. The sensitivity of cereals to moist heating was much higher than the sensitivity to dry heating. The multivariate analyses (CLA and PCA) showed that heat treatment was significantly isolated between the different Raman raw spectra. The DSC study revealed that the thermal degradation behavior of cereals was significantly changed after moist- and dry-heat treatments. The position of the major endothermic peak of dry-heated cereals shifted toward a higher temperature, from 131.7 to 134.0 °C, suggesting the high thermal stability of dry-heated cereals. In contrast, the endothermic peak position was slightly decreased to 132.1 °C in the case of moist autoclaved heating. The digestive behavior and nutritive value of rumen-undegradable protein in animals may be related to the changes of the protein secondary molecular structure and thermal stability of the cereal grain materials, which is attributed by Raman microspectroscopy and DSC endotherm profiles. PMID:23724957

  9. INSTRUMENTS AND METHODS OF INVESTIGATION: Electron-proton separation in calorimetry experiments directly measuring the composition and energy spectrum of cosmic rays

    NASA Astrophysics Data System (ADS)

    Voronov, Sergei A.; Borisov, Stanislav V.; Karelin, Aleksandr V.

    2009-09-01

    Calorimetric particle detectors that play an important role in high-energy cosmic-ray balloon and satellite experiments not only have the major task of measuring energy but also face the problem of identifying electrons and protons. This problem is usually solved by measuring the longitudinal and traverse shower profiles and the total energy release in the calorimeter, using the fact that electromagnetic and hadronic showers differ in their spatial and energy distributions. In this paper, electron and proton identification methods for different types of calorimeters used in cosmic-ray balloon- and satellite-borne experiments are discussed.

  10. Molecular characterization of DSC1 orthologs in invertebrate species.

    PubMed

    Cui, Ying-Jun; Yu, Lin-Lin; Xu, Hai-Jun; Dong, Ke; Zhang, Chuan-Xi

    2012-05-01

    DSC1 and BSC1 are two founding members of a novel family of invertebrate voltage-gated cation channels with close structural and evolutionary relationships to voltage-gated sodium and calcium channels. In this study, we searched the published genome sequences for DSC1 orthologs. DSC1 orthologs were found in all 48 insect species, and in other invertebrate species belonging to phyla Mollusca, Cnidaria, Hemichordata and Echinodermata. However, DSC1 orthologs were not found in four arachnid species, Ixodes scapularis, Rhipicephalus microplus, Tetranychus urticae and Varroa destructor, two species in Annelida or any vertebrate species. We then cloned and sequenced NlSC1 and BmSC1 full-length cDNAs from the brown planthopper (Nilaparvata lugens) and the silkworm (Bombyx mori), respectively. NlSC1 and BmSC1 share about 50% identity with DSC1, and the expression of NlSC1 and BmSC1 transcripts was most abundant in the head and antenna in adults. All DSC1 orthologs contain a unique and conserved DEEA motif, instead of the EEEE or EEDD motif in classical calcium channels or the DEKA motif in sodium channels. Phylogenetic analyses revealed that DSC1 and its orthologs form a separate group distinct from the classical voltage-gated sodium and calcium channels and constitute a unique family of cation channels. The DSC1/BSC1-family channels could be potential targets of new and safe insecticides for pest control. PMID:22321571

  11. Differential scanning calorimetry of coal

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1978-01-01

    Differential scanning calorimetry studies performed during the first year of this project demonstrated the occurrence of exothermic reactions associated with the production of volatile matter in or near the plastic region. The temperature and magnitude of the exothermic peak were observed to be strongly affected by the heating rate, sample mass and, to a lesser extent, by sample particle size. Thermal properties also were found to be influenced by oxidation of the coal sample due to weathering effects.

  12. DSC and curing kinetics study of epoxy grouting diluted with furfural -acetone slurry

    NASA Astrophysics Data System (ADS)

    Yin, H.; Sun, D. W.; Li, B.; Liu, Y. T.; Ran, Q. P.; Liu, J. P.

    2016-07-01

    The use of furfural-acetone slurry as active diluents of Bisphenol-A epoxy resin (DGEBA) groutings has been studied by dynamic and non-isothermal DSC for the first time. Curing kinetics study was investigated by non-isothermal differential scanning calorimetries at different heating rates. Activation enery (Ea) was calculated based on Kissinger and Ozawa Methods, and the results showed that Ea increased from 58.87 to 71.13KJ/mol after the diluents were added. The furfural-acetone epoxy matrix could cure completely at the theoretical curing temperature of 365.8K and the curing time of 139mins, which were determined by the kinetic model parameters.

  13. Thermal stability of porcine pepsin influenced by Al(III) ion: DSC study

    NASA Astrophysics Data System (ADS)

    Pavelkić, V. M.; Beljanski, M. V.; Antić, K. M.; Babić, M. M.; Brdarić, T. P.; Gopčević, K. R.

    2011-12-01

    Differential scanning calorimetry (DCS) has been used to determine thermodynamic profile of pepsin and the in vitro effect of Al(III) ions. Thermograms of pepsin unfolding in the presence and absence of aluminum were used to determine the binding constant, K L, in the pepsin-aluminium model system. The thermodynamic parameters were derived from DSC profiles at different ligand concentrations (1, 5 and 10 mM). The temperatures of thermal transitions ( T m), calorimetric (Δ H cal) and van't Hoff enthalpy (Δ H VH), Gibbs free energy, Δ(Δ G), of Al(III) binding to pepsin, as well as an average number of ligands bound to the native protein, were obtained from DSC profiles too. Temperature-dependent changes in the protein structure were also monitored by native PAGE electrophoresis. Increasing the temperature causes the decrease in electrophoretic mobility. Increase in concentration of Al(III) decelerate the migration of pepsin samples on concentration dependent manner. Analysis showed that ligand binding increases thermal stability of protein.

  14. Interactions of tamoxifen with distearoyl phosphatidylcholine multilamellar vesicles: FTIR and DSC studies

    NASA Astrophysics Data System (ADS)

    Bilge, Duygu; Sahin, Ipek; Kazanci, Nadide; Severcan, Feride

    2014-09-01

    Interactions of a non-steroidal antiestrogen drug, tamoxifen (TAM), with distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) multilamellar liposomes (MLVs) were investigated as a function of drug concentration (1-15 mol%) by using two noninvasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopy results show that increasing TAM concentrations (except 1 mol%) increased the wavenumbers of the CH2 stretching modes, implying an disordering effect for DSPC MLVs both in the gel and liquid crystalline phases. The bandwidth values of the CH2 stretchings except for 1 mol% increased when TAM concentrations increased for DSPC liposomes, indicating an increase in the dynamics of liposomes. The Cdbnd O stretching and PO2- antisymmetric double bond stretching bands were analyzed to study interactions of TAM with head groups of lipids. As the concentrations of TAM increased, dehydration occurred around these functional groups in the polar part of the lipids. The DSC studies on thermal properties of DSPC lipids indicate that TAM eliminated the pre transition, shifted the main phase transition to lower temperatures and broadened the phase transition curve of the liposomes.

  15. Application of chemometric methods to differential scanning calorimeter (DSC) to estimate nimodipine polymorphs from cosolvent system.

    PubMed

    Siddiqui, Akhtar; Rahman, Ziyaur; Khan, Mansoor A

    2015-06-01

    The focus of this study was to evaluate the applicability of chemometrics to differential scanning calorimetry data (DSC) to evaluate nimodipine polymorphs. Multivariate calibration models were built using DSC data from known mixtures of the nimodipine modification. The linear baseline correction treatment of data was used to reduce dispersion in thermograms. Principal component analysis of the treated and untreated data explained 96% and 89% of the data variability, respectively. Score and loading plots correlated variability between samples with change in proportion of nimodipine modifications. The R(2) for principal component regression (PCR) and partial lease square regression (PLS) were found to be 0.91 and 0.92. The root mean square of standard error of the treated samples for calibration and validation in PCR and PLS was found to be lower than the untreated sample. These models were applied to samples recrystallized from a cosolvent system, which indicated different proportion of modifications in the mixtures than those obtained by placing samples under different storage conditions. The model was able to predict the nimodipine modifications with known margin of error. Therefore, these models can be used as a quality control tool to expediently determine the nimodipine modification in an unknown mixture. PMID:24856323

  16. Multivariate statistical analysis treatment of DSC thermal properties for animal fat adulteration.

    PubMed

    Dahimi, Omar; Rahim, Alina Abdul; Abdulkarim, S M; Hassan, Mohd Sukri; Hashari, Shazamawati B T Zam; Mashitoh, A Siti; Saadi, Sami

    2014-09-01

    The adulteration of edible fats is a kind of fraud that impairs the physical and chemical features of the original lipid materials. It has been detected in various food, pharmaceutical and cosmeceutical products. Differential scanning calorimetry (DSC) is the robust thermo-analytical machine that permits to fingerprint the primary crystallisation of triacylglycerols (TAGs) molecules and their transition behaviours. The aims of this study was to assess the cross-contamination caused by lard concentration of 0.5-5% in the mixture systems containing beef tallow (BT) and chicken fat (CF) separately. TAGs species of pure and adulterated lipids in relation to their crystallisation and melting parameters were studied using principal components analysis (PCA). The results showed that by using the heating profiles the discrimination of LD from BT and CF was very clear even at low dose of less than 1%. Same observation was depicted from the crystallisation profiles of BT adulterated by LD doses ranging from 0.1% to 1% and from 2% to 5%, respectively. Furthermore, CF adulterated with LD did not exhibit clear changes on its crystallisation profiles. Consequently, DSC coupled with PCA is one of the techniques that might use to monitor and differentiate the minimum adulteration levels caused by LD in different animal fats. PMID:24731324

  17. Drug–polymer interaction between glucosamine sulfate and alginate nanoparticles: FTIR, DSC and dielectric spectroscopy studies

    NASA Astrophysics Data System (ADS)

    El-Houssiny, A. S.; Ward, A. A.; Mostafa, D. M.; Abd-El-Messieh, S. L.; Abdel-Nour, K. N.; Darwish, M. M.; Khalil, W. A.

    2016-06-01

    This work involves the preparation and characterization of alginate nanoparticles (Alg NPs) as a new transdermal carrier for site particular transport of glucosamine sulfate (GS). The GS–Alg NPs were examined through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dielectric spectroscopy. GS–Alg NPs was efficiently prepared via ionic gelation method which generates favorable conditions for the entrapment of hydrophilic drugs. The TEM studies revealed that GS–Alg NPs are discrete and have spherical shapes. FTIR studies showed a spectral change of the characteristic absorptions bands of Alg NPs after encapsulation with GS because of the amine groups of GS and the carboxylic acid groups of Alg. The DSC data showed changes in the thermal behavior of GS–Alg NPs after the addition of GS indicating signs of main chemical interaction among the drug (GS) and the polymer (Alg). The absence of the drug melting endothermic peak within the DSC thermogram of GS–Alg NPs indicating that GS is molecularly dispersed in the NPs and not crystallize. From the dielectric study, it was found modifications within the dielectric loss (ε″) and conductivity (σ) values after the addition of GS. The ε″ and σ values of Alg NPs decreased after the addition of GS which indicated the successful encapsulation of GS within Alg NPs. Furthermore, the dielectric study indicated an increase of the activation energy and the relaxation time for the first process in the GS–Alg NPs as compared to Alg NPs. Consequently, the existing observations indicated an initiation of electrostatic interaction among the amine group of GS and carboxyl group of Alg indicating the successful encapsulation of GS inside Alg NPs which could provide favorable circumstance for the encapsulation of GS for topical management.

  18. Theoretical Aspects of Differential Scanning Calorimetry as a Tool for the Studies of Equilibrium Thermodynamics in Pharmaceutical Solid Phase Transitions.

    PubMed

    Faroongsarng, Damrongsak

    2016-06-01

    Although differential scanning calorimetry (DSC) is a non-equilibrium technique, it has been used to gain energetic information that involves phase equilibria. DSC has been widely used to characterize the equilibrium melting parameters of small organic pharmaceutical compounds. An understanding of how DSC measures an equilibrium event could make for a better interpretation of the results. The aim of this mini-review was to provide a theoretical insight into the DSC measurement to obtain the equilibrium thermodynamics of a phase transition especially the melting process. It was demonstrated that the heat quantity obtained from the DSC thermogram (ΔH) was related to the thermodynamic enthalpy of the phase transition (ΔH (P) ) via: ΔH = ΔH (P) /(1 + K (- 1)) where K was the equilibrium constant. In melting, the solid and liquefied phases presumably coexist resulting in a null Gibbs free energy that produces an infinitely larger K. Thus, ΔH could be interpreted as ΔH (P). Issues of DSC investigations on melting behavior of crystalline solids including polymorphism, degradation impurity due to heating in situ, and eutectic melting were discussed. In addition, DSC has been a tool for determination of the impurity based on an ideal solution of the melt that is one of the official methods used to establish the reference standard. PMID:27091667

  19. Calorimetry applied to nucleus-nucleus collisions at ultrarelativistic energies

    SciTech Connect

    Plasil, F.

    1988-01-01

    A general introduction to high-energy calorimetry is presented, together with brief descriptions of the two types of cascades relevant to calorimetric measurements. This is followed by a discussion of ''compensation'' and of the ''e/h'' ratio. A detailed description of two calorimeters designed and constructed for the CERN WA80 experiment are also given. 16 refs., 17 figs., 5 tabs.

  20. Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies.

    PubMed

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph

    2012-04-12

    Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids. PMID:22435356

  1. Deconvolution Analysis for Classifying Gastric Adenocarcinoma Patients Based on Differential Scanning Calorimetry Serum Thermograms

    PubMed Central

    Vega, Sonia; Garcia-Gonzalez, María Asuncion; Lanas, Angel; Velazquez-Campoy, Adrian; Abian, Olga

    2015-01-01

    Recently, differential scanning calorimetry (DSC) has been acknowledged as a novel tool for diagnosing and monitoring several diseases. This highly sensitive technique has been traditionally used to study thermally induced protein folding/unfolding transitions. In previous research papers, DSC profiles from blood samples of patients were analyzed and they exhibited marked differences in the thermal denaturation profile. Thus, we investigated the use of this novel technology in blood serum samples from 25 healthy subjects and 30 patients with gastric adenocarcinoma (GAC) at different stages of tumor development with a new multiparametric approach. The analysis of the calorimetric profiles of blood serum from GAC patients allowed us to discriminate three stages of cancer development (I to III) from those of healthy individuals. After a multiparametric analysis, a classification of blood serum DSC parameters from patients with GAC is proposed. Certain parameters exhibited significant differences (P < 0.05) and allowed the discrimination of healthy subjects/patients from patients at different tumor stages. The results of this work validate DSC as a novel technique for GAC patient classification and staging, and offer new graphical tools and value ranges for the acquired parameters in order to discriminate healthy from diseased subjects with increased disease burden. PMID:25614381

  2. Pore size distribution in porous glass: fractal dimension obtained by calorimetry

    NASA Astrophysics Data System (ADS)

    Neffati, R.; Rault, J.

    2001-05-01

    By differential Scanning Calorimetry (DSC), at low heating rate and using a technique of fractionation, we have measured the equilibrium DSC signal (heat flow) J q 0 of two families of porous glass saturated with water. The shape of the DSC peak obtained by these techniques is dependent on the sizes distribution of the pores. For porous glass with large pore size distribution, obtained by sol-gel technology, we show that in the domain of ice melting, the heat flow Jq is related to the melting temperature depression of the solvent, Δ T m , by the scaling law: J q 0˜Δ T m - (1 + D). We suggest that the exponent D is of the order of the fractal dimension of the backbone of the pore network and we discuss the influence of the variation of the melting enthalpy with the temperature on the value of this exponent. Similar D values were obtained from small angle neutron scattering and electronic energy transfer measurements on similar porous glass. The proposed scaling law is explained if one assumes that the pore size distribution is self similar. In porous glass obtained from mesomorphic copolymers, the pore size distribution is very sharp and therefore this law is not observed. One concludes that DSC, at low heating rate ( q? 2°C/min) is the most rapid and less expensive method for determining the pore distribution and the fractal exponent of a porous material.

  3. Calorimetry with meta-crystals

    NASA Astrophysics Data System (ADS)

    Auffray, Etiennette; Lecoq, Paul; Mavromanolakis, Georgios

    2011-04-01

    We present the meta-crystals concept, an approach that consists of using both undoped and properly doped heavy crystal fibers of identical material as the active medium of a calorimeter. The undoped fibers behave as Cherenkov radiators while the doped ones behave as scintillators. A dual readout calorimeter can be built with its sensitive volume composed of a mixture of both types of crystals. In addition if the calorimeter is adequately finely segmented it can also function as a particle flow calorimeter at the same time. In this way one could possibly combine the advantages of both the particle flow concept and the dual-readout scheme. We discuss the approach of dual readout calorimetry with meta-crystals made of Lutetium Aluminium Garnet (LuAG) and present studies on the material development, first testbeam activities and results based on simulation for understanding the performance trends. We close with a brief outlook on open issues and further R&D needed to proceed from an ideal conceptual case to the design of a realistic detector.

  4. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.

  5. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.

  6. Applying differential scanning calorimetry to characterize chemical-protective-clothing materials. Final report

    SciTech Connect

    Weidenbaum, S.S.

    1991-01-01

    The use of differential scanning calorimetry as a means of evaluating changes in polymers used to manufacture protective clothing was investigated. Separate enclosed Appendices give details of studies dealing with Vitron (R)/chlorobutyl laminate. These are preceded by a Summary which gives information dealing with Teflon-coated Nomex (Challenge (TM) 5100). The manner in which DSC graphs were affected by exposing the polymers to a variety of chemicals is the main subject of the report. However, some information dealing with thermogravimetric analysis (TGA), viscoelastic measurements and solubility parameters is also in the various appendices.

  7. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  8. Automatic calorimetry system monitors RF power

    NASA Technical Reports Server (NTRS)

    Harness, B. W.; Heiberger, E. C.

    1969-01-01

    Calorimetry system monitors the average power dissipated in a high power RF transmitter. Sensors measure the change in temperature and the flow rate of the coolant, while a multiplier computes the power dissipated in the RF load.

  9. Melting by temperature-modulated calorimetry

    SciTech Connect

    Wunderlich, B.; Okazaki, Iwao; Ishikiriyama, Kazuhiko; Boller, A. |

    1997-09-01

    Well-crystallized macromolecules melt irreversibly due to the need of molecular nucleation, while small molecules melt reversibly as long as crystal nuclei are present to assist crystallization. Furthermore, imperfect crystals of low-molar-mass polymers may have a sufficiently small region of metastability between crystallization and melting to show a reversing heat-flow component due to melting of poor crystals followed by crystallization of imperfect crystals which have insufficient time to perfect before the modulation switches to heating and melts the imperfect crystals. Many metals, in turn. melt sharply and reversibly as long as nuclei remain after melting for subsequent crystallization during the cooling cycle. Their analysis is complicated, however, due to thermal conductivity limitations of the calorimeters. Polymers of sufficiently high molar mass, finally, show a small amount of reversible. local melting that may be linked to partial melting of individual molecules. Experiments by temperature-modulated calorimetry and model calculations are presented. The samples measured included poly(ethylene terephthalate)s, poly(ethylene oxide)s, and indium. Two unsolved problems that arose from this research involve the origin of a high, seemingly stable, reversible heat capacity of polymers in the melting region, and a smoothing of melting and crystallization into a close-to-elliptical Lissajous figure in a heat-flow versus sample-temperature plot.

  10. Current status of tritium calorimetry at TLK

    SciTech Connect

    Buekki-Deme, A.; Alecu, C.G.; Kloppe, B.; Bornschein, B.

    2015-03-15

    Inside a tritium facility, calorimetry is an important analytical method as it is the only reference method for accountancy (it is based on the measurement of the heat generated by the radioactive decay). Presently, at Tritium Laboratory Karlsruhe (TLK), 4 calorimeters are in operation, one of isothermal type and three of inertial guidance control type (IGC). The volume of the calorimeters varies between 0.5 and 20.6 liters. About two years ago we started an extensive work to improve our calorimeters with regard to reliability and precision. We were forced to upgrade 3 of our 4 calorimeters due to the outdated interfaces and software. This work involved creating new LabView programs driving the devices, re-tuning control loops and replacing obsolete hardware components. In this paper we give a review on the current performance of our calorimeters, comparing it to recently available devices from the market and in the literature. We also show some ideas for a next generation calorimeter based on experiences with our IGC calorimeters and other devices reported in the literature. (authors)

  11. Immersion Calorimetry: Molecular Packing Effects in Micropores.

    PubMed

    Madani, S Hadi; Silvestre-Albero, Ana; Biggs, Mark J; Rodríguez-Reinoso, Francisco; Pendleton, Phillip

    2015-12-21

    Repeated and controlled immersion calorimetry experiments were performed to determine the specific surface area and pore-size distribution (PSD) of a well-characterized, microporous poly(furfuryl alcohol)-based activated carbon. The PSD derived from nitrogen gas adsorption indicated a narrow distribution centered at 0.57±0.05 nm. Immersion into liquids of increasing molecular sizes ranging from 0.33 nm (dichloromethane) to 0.70 nm (α-pinene) showed a decreasing enthalpy of immersion at a critical probe size (0.43-0.48 nm), followed by an increase at 0.48-0.56 nm, and a second decrease at 0.56-0.60 nm. This maximum has not been reported previously. After consideration of possible reasons for this new observation, it is concluded that the effect arises from molecular packing inside the micropores, interpreted in terms of 2D packing. The immersion enthalpy PSD was consistent with that from quenched solid density functional theory (QSDFT) analysis of the nitrogen adsorption isotherm. PMID:26394883

  12. Thermal Properties of Silk Fibroin Using Fast Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Partlow, Benjamin; Kaplan, David; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    We performed fast scanning chip-based calorimetry of silk protein using the Mettler Flash DSC1. We suggest the methodology by which to obtain quantitative information on the very first scan to high temperature, including the melting endotherm of the beta pleated sheets. For proteins, this first scan is the most important one, because the crystalline secondary structural features, the beta pleated sheets, melt after the first heating and cannot be thermally reintroduced. To obtain high quality data, the samples must be treated to drying and enthalpy relaxation sequences. The heat flow rates in heating and cooling must be corrected for asymmetric heat loses. We evaluate methods to obtain an estimate of the sample mass, finally choosing internal calibration using the known heat capacity increment at the glass transition. We report that even heating at rates of 2000 K/s, thermal degradation of silk cannot be totally avoided, though it can be minimized. Using a set of nineteen samples, we successfully determine the liquid state heat capacity of silk as: Cpliquid (T) = (1.98 +0.06) J/gK + T (6.82 +1.4) x10-4 J/gK2. Methods for estimation of the sample mass will be presented and compared. National Science Foundation, Polymers Program DMR-1206010; DAAD; Tufts Faculty Supported Leave.

  13. PALS and DSC measurements in 8 MeV electron irradiated natural rubber filled with different fillers

    NASA Astrophysics Data System (ADS)

    Mandal, Arunava; Pan, Sandip; Roychowdhury, Anirban; Sengupta, Asmita

    2015-10-01

    The effect of high energy electron irradiation on the microstructure and thermal properties of natural rubber (NR) filled with different fillers at different concentrations are studied. The samples are irradiated with 8 MeV electron beam to a total dose of 100 KGy. The change in free volume size and specific heat due to addition of fillers and irradiation are studied using positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC) respectively. The Positron lifetime spectra are de-convoluted into two components. The longer lived component (τo-Ps) signifies the pick-off annihilation of ortho-positronium (o-Ps) at free volume site which may be related to the radius of the free volume holes. It is observed that the specific heat (Cp) and free volume size are all affected by both irradiation and addition of fillers.

  14. DSC -- Disruption Simulation Code for Tokamaks and ITER applications

    NASA Astrophysics Data System (ADS)

    Galkin, S. A.; Grubert, J. E.; Zakharov, L. E.

    2010-11-01

    Arguably the most important issue facing the further development of magnetic fusion via advanced tokamaks is to predict, avoid, or mitigate disruptions. This recently became the hottest challenging topic in fusion research because of several potentially damaging effects, which could impact the ITER device. To address this issue, two versions of a new 3D adaptive Disruption Simulation Code (DSC) will be developed. The first version will solve the ideal reduced 3D MHD model in the real geometry with a thin conducting wall structure, utilizing the adaptive meshless technique. The second version will solve the resistive reduced 3D MHD model in the real geometry of the conducting structure of the tokamak vessel and will finally be parallelized. The DSC will be calibrated against the JET disruption data and will be capable of predicting the disruption effects in ITER, as well as contributing to the development of the disruption mitigation scheme and suppression of the RE generation. The progress on the first version of the 3D DSC development will be presented.

  15. Characterization of moisture-protective polymer coatings using differential scanning calorimetry and dynamic vapor sorption.

    PubMed

    Bley, O; Siepmann, J; Bodmeier, R

    2009-02-01

    The aim of this study was to evaluate the moisture-protective ability of different polymeric coatings. Free films and film-coated tablets (with cores containing freeze-dried garlic powder) were prepared using aqueous solutions/dispersions of hydroxypropyl methylcellulose (HPMC), Opadry AMB [a poly(vinylalcohol)-based formulation] and Eudragit E PO [a poly(methacrylate-methylmethacrylate)]. The water content of the systems upon open storage at 75% relative humidity (RH) and 22 degrees C (room temperature) was followed gravimetrically. Furthermore, polymer powders, free films and coated tablets were analyzed by differential scanning calorimetry (DSC) and dynamic vapor sorption (DVS). The type of polymer strongly affected the resulting water uptake kinetics of the free films and coated tablets. DSC analysis revealed whether or not significant physical changes occurred in the coatings during storage, and whether the water vapor permeability was water concentration dependent. Using DVS analysis the critical glass transition RH of Opadry AMB powder and Opadry AMB-coated tablets at 25 degrees C could be determined: 44.0% and 72.9% RH. Storage below these threshold values significantly reduces water penetration. Thus, DVS and DSC measurements can provide valuable information on the nature of polymers used for moisture protection. PMID:18481311

  16. Particle Flow Calorimetry at the ILC

    SciTech Connect

    Thomson, M. A.

    2007-03-19

    One of the most important requirements for a detector at the ILC is good jet energy resolution. It is widely believed that the particle flow approach to calorimetry is the key to achieving the goal of 0.3/{radical}(E(GeV)). In contrast to the traditional approach to calorimetry, potentially the performance of particle flow calorimetry is sensitive to the detailed structure of hadronic showers. This paper describes the current performance of the PANDORAPFA particle flow algorithm. For 45 GeV jets in the Tesla TDR detector concept, the ILC jet energy resolution goal is reached. First detector optimisation studies are presented and the aspects of hadronic showers which are most likely to impact particle flow performance are discussed.

  17. Dsc orthologs are required for hypoxia adaptation, triazole drug responses, and fungal virulence in Aspergillus fumigatus.

    PubMed

    Willger, Sven D; Cornish, E Jean; Chung, Dawoon; Fleming, Brittany A; Lehmann, Margaret M; Puttikamonkul, Srisombat; Cramer, Robert A

    2012-12-01

    Hypoxia is an environmental stress encountered by Aspergillus fumigatus during invasive pulmonary aspergillosis (IPA). The ability of this mold to adapt to hypoxia is important for fungal virulence and genetically regulated in part by the sterol regulatory element binding protein (SREBP) SrbA. SrbA is required for fungal growth in the murine lung and to ultimately cause lethal disease in murine models of IPA. Here we identified and partially characterized four genes (dscA, dscB, dscC, and dscD, here referred to as dscA-D) with previously unknown functions in A. fumigatus that are orthologs of the Schizosaccharomyces pombe genes dsc1, dsc2, dsc3, and dsc4 (dsc1-4), which encode a Golgi E3 ligase complex critical for SREBP activation by proteolytic cleavage. A. fumigatus null dscA-D mutants displayed remarkable defects in hypoxic growth and increased susceptibility to triazole antifungal drugs. Consistent with the confirmed role of these genes in S. pombe, both ΔdscA and ΔdscC resulted in reduced cleavage of the SrbA precursor protein in A. fumigatus. Inoculation of corticosteroid immunosuppressed mice with ΔdscA and ΔdscC strains revealed that these genes are critical for A. fumigatus virulence. Reintroduction of SrbA amino acids 1 to 425, encompassing the N terminus DNA binding domain, into the ΔdscA strain was able to partially restore virulence, further supporting a mechanistic link between DscA and SrbA function. Thus, we have shown for the first time the importance of a previously uncharacterized group of genes in A. fumigatus that mediate hypoxia adaptation, fungal virulence, and triazole drug susceptibility and that are likely linked to regulation of SrbA function. PMID:23104569

  18. Calibration of Chemical Kinetic Models Using Simulations of Small-Scale Cookoff Experiments

    SciTech Connect

    Wemhoff, A P; Becker, R C; Burnham, A K

    2008-02-26

    Establishing safe handling limits for explosives in elevated temperature environments is a difficult problem that often requires extensive simulation. The largest influence on predicting thermal cookoff safety lies in the chemical kinetic model used in these simulations, and these kinetic model reaction sequences often contain multiple steps. Several small-scale cookoff experiments, notably Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), One-Dimensional Time-to-Explosion (ODTX), and the Scaled Thermal Explosion (STEX) have been performed on various explosives to aid in cookoff behavior determination. Past work has used a single test from this group to create a cookoff model, which does not guarantee agreement with the other experiments. In this study, we update the kinetic parameters of an existing model for the common explosive 2,4,6-Trinitrotoluene (TNT) using DSC and ODTX experimental data at the same time by minimizing a global Figure of Merit based on hydrodynamic simulated data. We then show that the new kinetic model maintains STEX agreement, reduces DSC agreement, and improves ODTX and TGA agreement when compared to the original model. In addition, we describe a means to use implicit hydrodynamic simulations of DSC experiments to develop a reaction model for TNT melting.

  19. Liquid Argon Calorimetry for ATLAS

    NASA Astrophysics Data System (ADS)

    Robinson, Alan

    2008-05-01

    This summer, the largest collaborative physics project since the Manhattan project will go online. One of four experiments for the Large Hadron Collider at CERN in Geneva, ATLAS, employs over 2000 people. Canadians have helped design, construct, and calibrate the liquid argon calorimeters for ATLAS to capture the products of the high energy collisions produced by the LHC. From an undergraduate's perspective, explore how these calorimeters are made to handle their harsh requirement. From nearly a billion proton-proton collisions a second, physicists hope to discover the Higgs boson and other new fundamental particles.

  20. A Study of Concept Mapping as an Instructional Intervention in an Undergraduate General Chemistry Calorimetry Laboratory

    NASA Astrophysics Data System (ADS)

    Stroud, Mary W.

    This investigation, rooted in both chemistry and education, considers outcomes occurring in a small-scale study in which concept mapping was used as an instructional intervention in an undergraduate calorimetry laboratory. A quasi-experimental, multiple-methods approach was employed since the research questions posed in this study warranted the use of both qualitative and quantitative perspectives and evaluations. For the intervention group of students, a convenience sample, post-lab concept maps, written discussions, quiz responses and learning surveys were characterized and evaluated. Archived quiz responses for non-intervention students were also analyzed for comparison. Students uniquely constructed individual concept maps containing incorrect, conceptually correct and "scientifically thin" calorimetry characterizations. Students more greatly emphasized mathematical relationships and equations utilized during the calorimetry experiment; the meaning of calorimetry concepts was demonstrated to a lesser extent.

  1. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G. A.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    We are conducting DSC/EGA experiments at Mars ambient temperature and pressure using the TEGA engineering model. These tests illustrate the outstanding capabilities of a TEGA-like instrument on the surface of Mars.

  2. Profiles in Leadership: Clifton J. Latiolais, MSc, DSc

    PubMed Central

    White, Sara; Godwin, Harold N.; Weber, Robert J.

    2013-01-01

    The Director’s Forum series is designed to guide pharmacy leaders in establishing patient-centered services in hospitals and health systems. August 2013 marks the 50th anniversary of the publication of the Mirror to Hospital Pharmacy, which was a comprehensive study of pharmacy services in the United States. The late Clifton J. Latiolais, MS, DSc, served as the assistant program director for the study and was a co-author of the Mirror. The late Don E. Francke, MS, DSc, was the lead author of the Mirror and the principal investigator of the federally funded study that reviewed hospital pharmacy services across the United States. The next 2 articles in Director’s Forum profile the leadership of Drs. Latiolais and Francke. This article highlights Dr. Latiolais (“Clif”) by briefly reviewing his biography and key career accomplishments, describing his leadership philosophy, and translating that philosophy to today’s health care challenges. Clif’s influence on health system pharmacy serves as an example of effective leadership. This historical perspective on Clif’s leadership, as seen through the eyes of those who knew him, provides directors of pharmacy a valuable leadership viewpoint as they develop strategies to enhance patient-centered pharmacy services. PMID:24421540

  3. Calculation of Temperature Rise in Calorimetry.

    ERIC Educational Resources Information Center

    Canagaratna, Sebastian G.; Witt, Jerry

    1988-01-01

    Gives a simple but fuller account of the basis for accurately calculating temperature rise in calorimetry. Points out some misconceptions regarding these calculations. Describes two basic methods, the extrapolation to zero time and the equal area method. Discusses the theoretical basis of each and their underlying assumptions. (CW)

  4. Isothermal Titration Calorimetry in the Student Laboratory

    ERIC Educational Resources Information Center

    Wadso, Lars; Li, Yujing; Li, Xi

    2011-01-01

    Isothermal titration calorimetry (ITC) is the measurement of the heat produced by the stepwise addition of one substance to another. It is a common experimental technique, for example, in pharmaceutical science, to measure equilibrium constants and reaction enthalpies. We describe a stirring device and an injection pump that can be used with a…

  5. Final Technical Report CMS fast optical calorimetry

    SciTech Connect

    Winn, David R.

    2012-07-12

    This is the final report of CMS FAST OPTICAL CALORIMETRY, a grant to Fairfield University for development, construction, installation and operation of the forward calorimeter on CMS, and for upgrades of the forward and endcap calorimeters for higher luminosity and radiation damage amelioration.

  6. Liquid argon calorimetry for the SSC

    SciTech Connect

    Gordon, H.A.

    1990-01-01

    Liquid argon calorimetry is a mature technique. However, adapting it to the challenging environment of the SSC requires a large amount of R D. The advantages of the liquid argon approach are summarized and the issues being addressed by the R D program are described. 18 refs.

  7. A sample-saving method for heat capacity measurements on powders using relaxation calorimetry.

    PubMed

    Dachs, Edgar; Benisek, Artur

    2011-08-01

    An experimental method is described for determining the low-temperature heat capacity (C(p)) of mg-sized powder samples using the Quantum Design "Physical Properties Measurement System" (PPMS). The powder is contained in an Al pan as an ∼1 mm thick compressed layer. The sample is not mixed with Apiezon N grease, as compared to other methods. Thus, it is not contaminated and can be used for further study. This is necessary for samples that are only available in tiny amounts. To demonstrate the method various samples, all insulating in nature, were studied including benzoic acid, sapphire and different silicate minerals. The measurements show that the method has an accuracy in C(p) to better than 1% at T above 30-50 K and ±3-5% up to ±10% below. The experimental procedure is based on three independent PPMS and three independent differential scanning calorimetry (DSC) measurements. The DSC C(p) data are used to slightly adjust the PPMS C(p) data by a factor CpDSC/CpPPMSat298K. This is done because heat capacities measured with a DSC device are more accurate around ambient T (⩽0.6%) than PPMS values and is possible because the deviation of PPMS heat capacities from reference values is nearly constant between about 50 K and 300 K. The resulting standard entropies agree with published reference values within 0.21% for the silicates, by 0.34% for corundum, and by 0.9% for powdered benzoic acid. The method thus allows entropy determinations on powders with an accuracy of better than 1%. The advantage of our method compared to other experimental techniques is that the sample powder is not contaminated with grease and that heat capacity values show less scatter at high temperatures. PMID:21886915

  8. Investigation of MSWI fly ash melting characteristic by DSC-DTA

    SciTech Connect

    Li, Rundong Wang, Lei; Yang, Tianhua; Raninger, Bernhard

    2007-07-01

    The melting process of MSWI (Municipal Solid Waste Incineration) fly ash has been studied by high-temperature DSC-DTA experiments. The experiments were performed at a temperature range of 20-1450 deg. C, and the considerable variables included atmosphere (O{sub 2} and N{sub 2}), heating rates (5 deg. C/min, 10 deg. C/min, 20 deg. C/min) and CaO addition. Three main transitions were observed during the melting process of fly ash: dehydration, polymorphic transition and fusion, occurring in the temperature range of 100-200 deg. C, 480-670 deg. C and 1101-1244 deg. C, respectively. The apparent heat capacity and heat requirement for melting of MSWI fly ash were obtained by DSC (Differential Scanning Calorimeter). A thermodynamic modeling to predict the heat requirements for melting process has been presented, and it agrees well with the experimental data. Finally, a zero-order kinetic model of fly ash melting transition was established. The apparent activation energy of MSWI fly ash melting transition was obtained.

  9. Raman scattering boson peak and differential scanning calorimetry studies of the glass transition in tellurium-zinc oxide glasses

    NASA Astrophysics Data System (ADS)

    Stavrou, E.; Tsiantos, C.; Tsopouridou, R. D.; Kripotou, S.; Kontos, A. G.; Raptis, C.; Capoen, B.; Bouazaoui, M.; Turrell, S.; Khatir, S.

    2010-05-01

    Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out on four mixed tellurium-zinc oxide (TeO2)1 - x(ZnO)x (x = 0.1, 0.2, 0.3, 0.4) glasses under variable temperature, with particular attention being given to the respective glass transition region. From the DSC measurements, the glass transition temperature Tg has been determined for each glass, showing a monotonous decrease of Tg with increasing ZnO content. The Raman study is focused on the low-frequency band of the glasses, the so-called boson peak (BP), whose frequency undergoes an abrupt decrease at a temperature Td very close to the respective Tg values obtained by DSC. These results show that the BP is highly sensitive to dynamical effects over the glass transition and provides a means for an equally reliable (to DSC) determination of Tg in tellurite glasses and other network glasses. The discontinuous temperature dependence of the BP frequency at the glass transition, along with the absence of such a behaviour by the high-frequency Raman bands (due to local atomic vibrations), indicates that marked changes of the medium range order (MRO) occur at Tg and confirms the correlation between the BP and the MRO of glasses.

  10. Overriding "doing wrong" and "not doing right": validation of the Dispositional Self-Control Scale (DSC).

    PubMed

    Ein-Gar, Danit; Sagiv, Lilach

    2014-01-01

    We present the Dispositional Self-Control (DSC) Scale, which reflects individuals' tendency to override 2 types of temptations, termed doing wrong and not doing right. We report a series of 5 studies designed to test the reliability and validity of the scale. As hypothesized, high DSC predicts distant future orientation and low DSC predicts deviant behaviors such as aggression, alcohol misuse, and aberrant driving. DSC also predicts task performance among resource-depleted participants. Taken together, these findings suggest that the DSC Scale could be a useful tool toward further understanding the role of personality in overcoming self-control challenges. PMID:24611844

  11. DSC melting behavior of irradiated low density polyethylenes containing antioxidants

    NASA Astrophysics Data System (ADS)

    Gal, O.; Kostoski, D.; Babić, D.; Stannett, V. T.

    The effect of antioxidants (0.5 wt% content) on the melting behaviour of low density polyethylenes, one branched and one linear, was examined with data obtained by DSC. The two polyethylenes exhibit noticeable differences in pure form; LLDPE has a higher melting point, lower heat of fusion and a more complex fusion endotherm than LDPE. The addition of antioxidants has a scarcely noticeable influence on the melting behaviour of LDPE whether irradiated or not, while in the case of LLDPE the effect is more visible. However, a careful analysis of the observed characteristics, peak temperatures and lamellae thickness distribution as well as heat of fusion, show that the observed effects are appearing as the consequence of chemical processes, scission and crosslinking, which occur in PE under either thermomechanical action (mixing in the course of the sample preparation), or radiation.

  12. Study of the thermal behavior of choline ibuprofenate using differential scanning calorimetry and hot-stage microscopy

    NASA Astrophysics Data System (ADS)

    Diogo, Hermínio P.; Moura Ramos, Joaquim J.

    2014-12-01

    The phase transformations in choline ibuprofenate, [chol][ibu], have been studied by differential scanning calorimetry (DSC) and hot-stage microscopy (HSM). Two crystalline forms, α and β, were identified that are very different in their thermal behavior, and thus probably very different in their crystal structures. The melting temperatures of the two crystal polymorphs differ as much as 50°. The higher temperature polymorph, α, presents a sharp and fast crystallization process, while the melting transformation displays a very slow dynamics. The β polymorph forms on cooling through a broad crystal-to-crystal transformation, and displays a melting process that is sharp compared with that of α polymorph.

  13. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    SciTech Connect

    Dan, Kaustabh Roy, Madhusudan Datta, Alokmay

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  14. DSC and Raman studies of silver borotellurite glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Khanna, Atul; Gonzàlez, Fernando

    2016-05-01

    Silver borotellurite glasses of composition: xAg2O-yB2O3-(100-x-y)TeO2 (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B2O3 content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B2O3 due to the transformation of TeO4 into TeO3 units.

  15. Inhibitors of thermally induced burn incidents – characterization by microbiological procedure, electrophoresis, SEM, DSC and IR spectroscopy.

    PubMed

    Pielesz, Anna; Machnicka, Alicja; Gawłowski, Andrzej; Fabia, Janusz; Sarna, Ewa; Biniaś, Włodzimierz

    2015-07-01

    Differential scanning calorimetry (DSC) and thermogravimetric (TGA) investigations, acetate electrophoresis (CAE), Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM) analysis and microbiological procedures were all carried out after heating the samples to a temperature sufficient for simulating a burn incident. In particular, the purpose of the present study was to analyze the effect of antioxidants, such as fucoidan from brown seaweed and flame-retardant cyclic organophosphates and phosphonates, on an organic chicken skin that gets changed by a burn incident. DSC was considered to be a useful tool in assessing in vitro temperature-mediated cross-linking; an innovative analytical conclusion was obtained from the experimentation described in the paper. FTIR tests revealed that heating a dry organic chicken skin to the boiling point leads to the disappearance of a wide band in the 1650-1550 cm(-1) area or the conversion of a band, which may be attributed to the intermolecular β-sheet aggregates. Fucoidan from brown seaweed and flame-retardant cyclic organophosphates and phosphonates probably bind with the collagen that is changed by the burn (in addition to the influence of antioxidant solutions on samples of a blank or not boiled organic chicken skin) incident forming a polymer film with the collagen of the chicken skin surface (SEM analysis), decreasing the aggregation process and native collagen recovery. Good bacteriostatic properties were determined for fucoidan samples from brown seaweed and flame-retardant cyclic organophosphates and phosphonates against the pathogenic bacteria Escherichia coli and Staphylococcus aureus. Thus, it was observed that the fucoidan incorporated into collagen films can be used as a therapeutically active biomaterial that speeds up the wound-healing process. PMID:26029873

  16. A study of the aging of silicone breast implants using 29Si, 1H relaxation and DSC measurements.

    PubMed

    Birkefeld, Anja Britta; Eckert, Hellmut; Pfleiderer, Bettina

    2004-08-01

    In this study 26 previously implanted silicone breast implants from the same manufacturer (Dow Corning) were investigated with two different analytical methods to characterize potential aging processes such as migration of monomer material from the gel and shell to local and distant sites, chemical alterations of the polymer, and infiltration of body compounds such as lipids. (1)H and (29)Si NMR relaxation measurements (spin-lattice, T1, and spin-spin, T2, relaxation times) were used to study the molecular dynamics of polysiloxane chains, both in gels and in shells. In addition, changes in physical properties were monitored by differential scanning calorimetry (DSC). The results of these measurements indicate that NMR relaxation times are influenced by implant generation, implantation time, shell texture and implant status. (1)H T2 values of shells and gels show a tendency to increase with increasing implantation time, indicating higher mobility and possible disintegration of the polymer network of older implants. Furthermore, the data suggest that aging also involves the migration of low cyclic molecular weight (LMW) silicone and linear chain polymer material from the gels into the shells. The high "bleeding" rate of second-generation (G2) implants (implantation period around 1973-1985), exhibiting thin shells is reflected in reduced relaxation times of these devices, most likely due to a loss of low molecular weight fractions from the gels. Moreover, "gel bleeding" also influences the melting behavior observed in DSC studies. Increased shell rigidity (high Tm and Tg) tends to be correlated with longer (29)Si relaxation times of the corresponding gels, suggesting a reduced transfer of LMW silicones and linear chain polymer from the gel to the shell and to the outside. Remarkably, textured implants seem to be less susceptible to degradation processes than implants with thin shells. PMID:15046931

  17. Profiles in Leadership: Donald E. Francke, MSc, DSc (Hon).

    PubMed

    Stevenson, James G; Beham, Rachel E; Weber, Robert J

    2013-10-01

    The Director's Forum series is designed to guide pharmacy leaders in establishing patient-centered services in hospitals and health systems. August 2013 marked the 50th anniversary of the publication of the Mirror to Hospital Pharmacy, the results of a federally funded comprehensive study of pharmacy services in the United States. The late Don E. Francke, MS, DSc, was the lead author of the Mirror and the principal investigator for the US Public Health Service grant W-45. To celebrate the anniversary of the Mirror, the Director's Forum is profiling the leadership styles of Drs. Latiolais and Francke. September's article highlighted Dr. Clifton J. Latiolais; this month's Director's Forum reviews Dr. Francke's biography and key career accomplishments, describes his leadership philosophy, and translates that philosophy to today's health care challenges. Don's influence on health system pharmacy serves as an example of effective leadership. This historical perspective provides directors of pharmacy a valuable leadership view as they develop strategies to enhance patient-centered pharmacy services. PMID:24421553

  18. Black carbon quantification in charcoal-enriched soils by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Hardy, Brieuc; Cornelis, Jean-Thomas; Leifeld, Jens

    2015-04-01

    Black carbon (BC), the solid residue of the incomplete combustion of biomass and fossil fuels, is ubiquitous in soil and sediments, fulfilling several environmental services such as long-term carbon storage. BC is a particularly important terrestrial carbon pool due to its large residence time compared to thermally unaltered organic matter, which is largely attributed to its aromatic structure. However, BC refers to a wide range of pyrogenic products from partly charred biomass to highly condensed soot, with a degree of aromaticity and aromatic condensation varying to a large extend across the BC continuum. As a result, BC quantification largely depends on operational definitions, with the extraction efficiency of each method varying across the entire BC range. In our study, we investigated the adequacy of differential scanning calorimetry (DSC) for the quantification of BC in charcoal-enriched soils collected in the topsoil of pre-industrial charcoal kilns in forest and cropland of Wallonia, Belgium, where charcoal residues are mixed to uncharred soil organic matter (SOM). We compared the results to the fraction of the total organic carbon (TOC) resisting to K2Cr2O7 oxidation, another simple method often used for BC measurement. In our soils, DSC clearly discriminates SOM from chars. SOM is less thermally stable than charcoal and shows a peak maximum around 295°C. In forest and agricultural charcoal-enriched soils, three peaks were attributed to the thermal degradation of BC at 395, 458 and 523°C and 367, 420 and 502 °C, respectively. In cropland, the amount of BC calculated from the DSC peaks is closely related (slope of the linear regression = 0.985, R²=0.914) to the extra organic carbon content measured at charcoal kiln sites relative to the charcoal-unaffected adjacent soils, which is a positive indicator of the suitability of DSC for charcoal quantification in soil. The first BC peak, which may correspond to highly degraded charcoal, contributes to a

  19. Design and long-term monitoring of DSC/CIGS tandem solar module

    NASA Astrophysics Data System (ADS)

    Vildanova, M. F.; Nikolskaia, A. B.; Kozlov, S. S.; Shevaleevskiy, O. I.

    2015-11-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions.

  20. Improving the dispersity of detonation nanodiamond: differential scanning calorimetry as a new method of controlling the aggregation state of nanodiamond powders

    NASA Astrophysics Data System (ADS)

    Korobov, Mikhail V.; Volkov, Dmitry S.; Avramenko, Natalya V.; Belyaeva, Lubov'a.; Semenyuk, Pavel I.; Proskurnin, Mikhail A.

    2013-01-01

    Detonation nanodiamond (ND) is a suitable source material to produce unique samples consisting of almost uniform diamond nanocrystals (d = 3-5 nm). Such samples exist in the form of long stable aqueous dispersions with narrow size distribution of diamond particles. The material is finding ever increasing application in biomedicine. The major problem in producing monodispersed diamond colloids lies in the necessity of deagglomeration of detonation soot and/or removing of clusters formed by already isolated core particles in dry powders. To do this one must have an effective method to monitor the aggregation state or dispersity of powders and gels prior to the preparation of aqueous dispersions. In the absence of dispersity control at various stages of preparation the reproducibility of properties of existing ND materials is poor. In this paper we introduce differential scanning calorimetry (DSC) as a new tool capable to distinguish the state of aggregation in dry and wetted ND materials and to follow changes in this state under different types of treatment. Samples with identical X-ray diffraction patterns (XRD) and high resolution transmission electron microscopy (HRTEM) images gave visibly different DSC traces. Strong correlation was found between dynamic light scattering (DLS) data for colloids and DSC parameters for gels and powders of the same material. Based on DSC data we improved dispersity of existing ND materials and isolated samples with the best possible DSC parameters. These were true monodispersed easily dispersible fractions of ND particles with diameters of ca. 3 nm.

  1. Improving the dispersity of detonation nanodiamond: differential scanning calorimetry as a new method of controlling the aggregation state of nanodiamond powders.

    PubMed

    Korobov, Mikhail V; Volkov, Dmitry S; Avramenko, Natalya V; Belyaeva, Lubov' A; Semenyuk, Pavel I; Proskurnin, Mikhail A

    2013-02-21

    Detonation nanodiamond (ND) is a suitable source material to produce unique samples consisting of almost uniform diamond nanocrystals (d = 3-5 nm). Such samples exist in the form of long stable aqueous dispersions with narrow size distribution of diamond particles. The material is finding ever increasing application in biomedicine. The major problem in producing monodispersed diamond colloids lies in the necessity of deagglomeration of detonation soot and/or removing of clusters formed by already isolated core particles in dry powders. To do this one must have an effective method to monitor the aggregation state or dispersity of powders and gels prior to the preparation of aqueous dispersions. In the absence of dispersity control at various stages of preparation the reproducibility of properties of existing ND materials is poor. In this paper we introduce differential scanning calorimetry (DSC) as a new tool capable to distinguish the state of aggregation in dry and wetted ND materials and to follow changes in this state under different types of treatment. Samples with identical X-ray diffraction patterns (XRD) and high resolution transmission electron microscopy (HRTEM) images gave visibly different DSC traces. Strong correlation was found between dynamic light scattering (DLS) data for colloids and DSC parameters for gels and powders of the same material. Based on DSC data we improved dispersity of existing ND materials and isolated samples with the best possible DSC parameters. These were true monodispersed easily dispersible fractions of ND particles with diameters of ca. 3 nm. PMID:23314800

  2. Differential scanning calorimetry of whole Escherichia coli treated with the antimicrobial peptide MSI-78 indicate a multi-hit mechanism with ribosomes as a novel target

    PubMed Central

    Brannan, Alexander M.; Whelan, William A.; Cole, Emma

    2015-01-01

    Differential Scanning Calorimetry (DSC) of intact Escherichia coli (E. coli) was used to identify non-lipidic targets of the antimicrobial peptide (AMP) MSI-78. The DSC thermograms revealed that, in addition to its known lytic properties, MSI-78 also has a striking effect on ribosomes. MSI-78’s effect on DSC scans of bacteria was similar to that of kanamycin, an antibiotic drug known to target the 30S small ribosomal subunit. An in vitro transcription/translation assay helped confirm MSI-78’s targeting of ribosomes. The scrambled version of MSI-78 also affected the ribosome peak of the DSC scans, but required greater amounts of peptide to cause a similar effect to the unscrambled peptide. Furthermore, the effect of the scrambled peptide was not specific to the ribosomes; other regions of the DSC thermogram were also affected. These results suggest that MSI-78’s effects on E. coli are at least somewhat dependent on its particular structural features, rather than a sole function of its overall charge and hydrophobicity. When considered along with earlier work detailing MSI-78’s membrane lytic properties, it appears that MSI-78 operates via a multi-hit mechanism with multiple targets. PMID:26713257

  3. Calorimetry of the CMD-3 detector

    NASA Astrophysics Data System (ADS)

    Shebalin, V. E.; Akhmetshin, R. R.; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Grebenuk, A. A.; Grigoriev, D. N.; Ignatov, F. V.; Kazanin, V. F.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Okhapkin, V. S.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Titov, V. M.; Talyshev, A. A.; Yudin, Yu. V.

    2016-07-01

    CMD-3 is a general purpose detector designed to study e+e- annihilation into hadrons. It is mounted at VEPP-2000 collider which operates in the wide energy range, E c . m . s = 0.32 - 2 GeV. The calorimetry at the detector is based on three subsystems: closest to the beam pipe barrel Liquid Xenon calorimeter, outer barrel calorimeter based on CsI scintillation crystals and the endcap calorimeter made of BGO scintillation crystals. We describe the structure of the calorimeters, their electronics and the energy calibration procedures.

  4. A sample-saving method for heat capacity measurements on powders using relaxation calorimetry

    NASA Astrophysics Data System (ADS)

    Dachs, Edgar; Benisek, Artur

    2011-08-01

    An experimental method is described for determining the low-temperature heat capacity (Cp) of mg-sized powder samples using the Quantum Design “Physical Properties Measurement System” (PPMS). The powder is contained in an Al pan as an ∼1 mm thick compressed layer. The sample is not mixed with Apiezon N grease, as compared to other methods. Thus, it is not contaminated and can be used for further study. This is necessary for samples that are only available in tiny amounts. To demonstrate the method various samples, all insulating in nature, were studied including benzoic acid, sapphire and different silicate minerals. The measurements show that the method has an accuracy in Cp to better than 1% at T above 30-50 K and ±3-5% up to ±10% below. The experimental procedure is based on three independent PPMS and three independent differential scanning calorimetry (DSC) measurements. The DSC Cp data are used to slightly adjust the PPMS Cp data by a factor C. This is done because heat capacities measured with a DSC device are more accurate around ambient T (⩽0.6%) than PPMS values and is possible because the deviation of PPMS heat capacities from reference values is nearly constant between about 50 K and 300 K. The resulting standard entropies agree with published reference values within 0.21% for the silicates, by 0.34% for corundum, and by 0.9% for powdered benzoic acid. The method thus allows entropy determinations on powders with an accuracy of better than 1%. The advantage of our method compared to other experimental techniques is that the sample powder is not contaminated with grease and that heat capacity values show less scatter at high temperatures.

  5. Calorimetry exchange program. Annual report, 1988

    SciTech Connect

    Lyons, J.E.

    1988-12-31

    The goals of the Calorimetry Sample Program are: 1. Discuss measurement differences, 2. Review and improve analytical measurements and methods, 3. Discuss new measurement capabilities, 4. Provide data to DOE on measurement capabilities to evaluate shipper- receiver differences, 5. Provide characterized or standard materials as necessary for exchange participants, 6. Provide a measurement control program for plutonium analysis. A sample of PuO{sub 2} powder is available at each participating site for NDA measurement, including either or both calorimetry and high-resolution gamma-ray spectroscopy, the elements which are typically combined to provide a calorimetric assay of plutonium. The facilities measure the sample as frequently and to the level of precision which they desire, and then submit the data to the Exchange for analysis. Statistical tests are used to evaluate the data and to determine if there are significant differences from accepted values for the exchange or from data previously reported by that facility. Data included in this report is a compilation of all exchange data received in 1988. Since a large number of data points were recorded, a change was made to the analysis method to account for the uncertainty in the accepted values.

  6. Electronics for calorimetry: An overview of requirements

    SciTech Connect

    Radeka, V.

    1995-10-01

    Calorimetry in large detectors at LHC poses some requirements on readout electronics which are quite different than for central tracking and muon tracking. The main distinction is, (a) in the large dynamic range of the energies to be measured; and (b) uniformity of response and accuracy of calibration over the whole detector. As in all other functions of the detector, low noise is essential. High luminosity results in pileup effects, which are present in every measurement, and in high radiation for front and forward parts of the calorimeter. Power dissipation and cooling is a concern as in any other detector component, in some respects only more so, since all the elements of the signal processing chain require more power due to the large dynamic range, speed of response, high precision and low noise required. The key requirements on the calorimetry readout electronics are briefly discussed here, with an emphasis on the dynamic range. While there are quite significant differences in the principles and technology among the crystals, tiles with fibers and liquid ionization, the signal is finally reduced to a charge measurement from a capacitive source in all three cases, and the signal processing chain becomes remarkably identical.

  7. Isothermal Titration Calorimetry and Macromolecular Visualization for the Interaction of Lysozyme and Its Inhibitors

    ERIC Educational Resources Information Center

    Wei, Chin-Chuan; Jensen, Drake; Boyle, Tiffany; O'Brien, Leah C.; De Meo, Cristina; Shabestary, Nahid; Eder, Douglas J.

    2015-01-01

    To provide a research-like experience to upper-division undergraduate students in a biochemistry teaching laboratory, isothermal titration calorimetry (ITC) is employed to determine the binding constants of lysozyme and its inhibitors, N-acetyl glucosamine trimer (NAG[subscript 3]) and monomer (NAG). The extremely weak binding of lysozyme/NAG is…

  8. Surfactant softening of plant leaf cuticle model wax--a Differential Scanning Calorimetry (DSC) and Quartz Crystal Microbalance with Dissipation (QCM-D) study.

    PubMed

    Fagerström, Anton; Kocherbitov, Vitaly; Westbye, Peter; Bergström, Karin; Arnebrant, Thomas; Engblom, Johan

    2014-07-15

    The aim was to quantify the softening effect that two surfactants (C10EO7 and C8G1.6) have on a plant leaf cuticle model wax. Effects on the thermotropic phase behavior and fluidity of the wax (C22H45OH/C32H66/H2O) were determined. The model wax is crystalline at ambient conditions, yet it is clearly softened by the surfactants. Both surfactants decreased the transition temperatures in the wax and the G″/G' ratio of the wax film increased in irreversible steps following surfactant exposure. C10EO7 has a stronger fluidizing effect than C8G1.6 due to stronger interaction with the hydrophobic waxes. Intracuticular waxes (IW) comprise both crystalline and amorphous domains and it has previously been proposed that the fluidizing effects of surfactants are due to interactions with the amorphous parts. New data suggests that this may be a simplification. Surfactants may also absorb in crevices between crystalline domains. This causes an irreversible effect and a softer cuticle wax. PMID:24863760

  9. 47 CFR 80.359 - Frequencies for digital selective calling (DSC).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Frequencies for digital selective calling (DSC). 80.359 Section 80.359 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Frequencies Radiotelegraphy § 80.359 Frequencies for digital selective calling (DSC)....

  10. 47 CFR 80.103 - Digital selective calling (DSC) operating procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of this standard can be inspected at the Federal... 47 Telecommunication 5 2011-10-01 2011-10-01 false Digital selective calling (DSC) operating... Procedures-General § 80.103 Digital selective calling (DSC) operating procedures. (a) Operating...

  11. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry.

    PubMed

    Orava, J; Greer, A L; Gholipour, B; Hewak, D W; Smith, C E

    2012-04-01

    Differential scanning calorimetry (DSC) is widely used to study the stability of amorphous solids, characterizing the kinetics of crystallization close to the glass-transition temperature T(g). We apply ultrafast DSC to the phase-change material Ge(2)Sb(2)Te(5) (GST) and show that if the range of heating rates is extended to more than 10(4) K s(-1), the analysis can cover a wider temperature range, up to the point where the crystal growth rate approaches its maximum. The growth rates that can be characterized are some four orders of magnitude higher than in conventional DSC, reaching values relevant for the application of GST as a data-storage medium. The kinetic coefficient for crystal growth has a strongly non-Arrhenius temperature dependence, revealing that supercooled liquid GST has a high fragility. Near T(g) there is evidence for decoupling of the crystal-growth kinetics from viscous flow, matching the behaviour for a fragile liquid suggested by studies on oxide and organic systems. PMID:22426461

  12. Study of the Crystalline Morphology Evolution of PET and PET/PC Blends by Time-resolved Synchrotron Small Angle X-ray Scattering (SAXS) and DSC

    SciTech Connect

    Barbosa, Irineu; Larocca, Nelson M.; Hage, Elias; Plivelic, Tomas S.; Torriani, Iris L.; Mantovani, Gerson L.

    2009-01-29

    Isothermal melt crystallization of poly(ethylene terephthalate)(PET) and PET/PC (polycarbonate) blend, with and without a transesterification catalyst, was studied by time-resolved small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) in order to achieve the variation of the morphological parameters throughout the whole crystallization time. For neat PET, the catalyst promotes a decrease of the crystal lamellar thickness but for the blend no variations were observed. The effect of incorporation of catalyst in crystallization kinetics was very distinct in PET pure and the blend: in the former the catalyst leads to an increase of this kinetics while for the latter it was observed a decreasing.

  13. Calorimetry for Fast Authentication of Edible Oils

    NASA Astrophysics Data System (ADS)

    Angiuli, Marco; Bussolino, Gian Carlo; Ferrari, Carlo; Matteoli, Enrico; Righetti, Maria Cristina; Salvetti, Giuseppe; Tombari, Elpidio

    2009-06-01

    There are little data in the literature on how to authenticate edible oils through calorimetry techniques. However, oil melting curves can be used to represent correlations between calorimetric results and oil quality. A calorimetric method has been developed for studying the solid-liquid phase transitions of olive oil and seed oils, in which melting peak behavior is correlated to the type, quality, and composition of the oil. Good reproducible thermograms were obtained by defining precise protocols for use in testing, which take into account the specific characteristics of a particular oil. This approach does not replace classical analytical methods; nevertheless, it is believed that calorimetric tests could be a useful preliminary stage for quality testing. The calorimetric technique allows the detection of the adulterant (seed oils or refined olive oil), oil origin, and possible photo-oxidation degradation processes, before more complex and expensive procedures and analyses are applied.

  14. Synergies between electromagnetic calorimetry and PET

    SciTech Connect

    Moses, William W.

    2002-07-30

    The instrumentation used for the nuclear medical imaging technique of Positron Emission Tomography (PET) shares many features with the instrumentation used for electromagnetic calorimetry. Both fields can certainly benefit from technical advances in many common areas, and this paper discusses both the commonalties and the differences between the instrumentation needs for the two fields. The overall aim is to identify where synergistic development opportunities exist. While such opportunities exist in inorganic scintillators, photodetectors, amplification and readout electronics, and high-speed computing, it is important to recognize that while the requirements of the two fields are similar, they are not identical, and so it is unlikely that advances specific to one field can be transferred without modification to the other.

  15. Calorimetry At Very High Energy Colliders

    SciTech Connect

    Chiu, Mickey

    2011-06-01

    The capability of hadron colliders has increased to where it will soon be possible to collide protons at center of mass energies of 14 TeV with the advent of the LHC. With increasing collision energy, calorimeters become ever more essential components of a detector, and collaborations often choose very different technologies to meet their goals. From the perspective of a high energy particle and nuclear physicist, a survey is presented of the differences in design considerations and actual performance of the wide variety of calorimeters used in modern hadron colliders such as the Tevatron, RHIC, and LHC. The lessons learned and some ideas for future development of calorimetry will also be discussed.

  16. Advanced ion beam calorimetry for the test facility ELISE

    SciTech Connect

    Nocentini, R. Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Ruf, B.; Wünderlich, D.; Bonomo, F.; Pimazzoni, A.; Pasqualotto, R.

    2015-04-08

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m{sup 2} in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m{sup 2}, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and

  17. Advanced ion beam calorimetry for the test facility ELISE

    NASA Astrophysics Data System (ADS)

    Nocentini, R.; Bonomo, F.; Pimazzoni, A.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Pasqualotto, R.; Riedl, R.; Ruf, B.; Wünderlich, D.

    2015-04-01

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m2 in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m2, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and correlates

  18. An experimental study of the (Ti-6Al-4V)-xH phase diagram using in situ synchrotron XRD and TGA/DSC techniques.

    SciTech Connect

    Sun, Pei; Fang, Z. Zak; Koopman, Mark; Paramore, James D.; Chandran, K. S. Ravi; Ren, Yang; Lu, Jun

    2015-02-01

    Hydrogen has been investigated for decades as a temporary alloying element to refine the microstructure of Ti-6Al-4V, and is now being used in a novel powder metallurgy method known as "hydrogen sintering and phase transformation". Pseudo-binary phase diagrams of (Ti-6Al-4V)-xH have been studied and developed, but are not well established due to methodological limitations. In this paper, in situ studies of phase transformations during hydrogenation and dehydrogenation of (Ti-6Al-4V)-xH alloys were conducted using high-energy synchrotron X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The eutectoid phase transformation of β ↔ α + δ was observed in the (Ti-6Al-4V)-xH alloy via in situ synchrotron XRD at 211 °C with a hydrogen concentration of 37.5 at.% (measured using TGA-DSC). The relationships of hydrogen composition to partial pressure and temperature were investigated in the temperature range 450-900°C. Based on these results, a partial pseudo-binary phase diagram of (Ti-6Al-4V)-xH is proposed for hydrogen compositions up to 60 at.% in the temperature range 100-900°C. Using the data collected in real time under controlled parameters of temperature, composition and hydrogen partial pressure, this work characterizes relevant phase transformations and microstructural evolution for practical titanium-hydrogen technologies of Ti-6Al-4V.

  19. IATC, DSC, and PPC Analysis of Reversible and Multistate Structural Transition of Cytochrome c.

    PubMed

    Kidokoro, Shun-ichi; Nakamura, Shigeyoshi

    2016-01-01

    Development of precise calorimeters has enabled us to monitor the structural transition of biomolecules by calorimetry to characterize the thermodynamic property changes accompanying three-dimensional structure change. We developed isothermal acid-titration calorimetry to evaluate the pH dependence of protein enthalpy, and demonstrated the thermodynamic transition between the native and molten globule (MG) states of cytochrome c with very small enthalpy change (~20 kJ/mol) by this method. The double deconvolution method with precise differential scanning calorimetry has revealed the MG state as an equilibrium intermediate state of the reversible thermal transition of the protein, and pressure perturbation calorimetry has succeeded in determining its volumetric properties. These examples strongly indicate the importance of a precise calorimetry and analysis model in the field of protein research. PMID:26794362

  20. Differential scanning calorimetry of plant cell walls

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. ); Yuen, H.K. )

    1991-03-15

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9C. Addition of 1 mM CaCl{sub 2} to the cell wall preparation increased the transition temperature to 60.8C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, the authors propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium.

  1. Calorimetry using organic scintillators, 'a sideways perspective'.

    SciTech Connect

    Proudfoot, J.

    1999-09-10

    Over the last two decades, calorimetry baaed on organic scintillators has developed into an excellent technology for many experimental situations in high energy physics. The primary difficulty, that of extracting the light signals, has benefited from two milestone innovations. The first was the use of wavelength-shifting bars to allow light to be efficiently collected from large areas of scintillator and then readily piped to a readout device. The second of these was the extension of this approach to plastic wavelength-shifting optical fibers whose great flexibility and small diameter allowed a minimum of detector volume to be compromised by the read-out. These two innovations coupled with inventiveness have produced many varied and successful calorimeters. Equal response to both hadronic and electromagnetic showers can be realized in scintillator-based calorimeters. However, in general this is not the case and it is likely that in the search for greater performance, in the future, combined tracking and calorimeter systems will be required.

  2. Microphase separation in copolymers of hydrophilic PEG blocks and hydrophobic tyrosine-derived segments using simultaneous SAXS/WAXS/DSC.

    PubMed

    Murthy, N S; Wang, W; Kohn, J

    2010-08-01

    Hydration- and temperature-induced microphase separations were investigated by simultaneous small- and wide-angle X-ray scattering (SAXS and WAXS) and differential scanning calorimetry (DSC) in a family of copolymers in which hydrophilic poly(ethylene glycol) (PEG) blocks are inserted randomly into a hydrophobic polymer made of either desaminotyrosyl-tyrosine ethyl ester (DTE) or iodinated I(2)DTE segments. Iodination of the tyrosine rings in I(2)DTE increased the X-ray contrast between the hydrophobic and hydrophilic segments in addition to facilitating the study of the effect of iodination on microphase separation. The formation of phase-separated, hydrated PEG domains is of considerable significance as it profoundly affects the polymer properties. The copolymers of DTE (or I(2)DTE) and PEG are a useful model system and the findings presented here may be applicable to other PEG-containing random copolymers as well. In copolymers of PEG and DTE and I(2)DTE, the presence of PEG depressed the glass transition temperature (T(g)) of the copolymer relative to the homopolymer, poly(DTE carbonate), and the DTE/ I(2)DTE segments hindered the crystallization of the PEG segments. In the dry state, at large PEG fractions (> 70 vol%), the PEG domains self-assembled into an ordered structure with 14-18 nm distance between the domains. These domains gave rise to a SAXS peak at all temperatures in the iodinated polymers, but only above the T(g) in non-iodinated polymers, due to the unexpected contrast- match between the crystalline PEG domains and the glassy DTE segments. Irrespective of whether PEG was crystalline or not, immersion of these copolymers in water resulted in the formation of hydrated PEG domains that were 10-20 nm apart. Since both water and the polymer chains must be mobile for the phase separation to occur, the PEG domains disappeared when the water froze, and reappeared as the ice began to melt. This transformation was reversible, and showed hysteresis as did

  3. Microphase separation in copolymers of hydrophilic PEG blocks and hydrophobic tyrosine-derived segments using simultaneous SAXS/WAXS/DSC

    SciTech Connect

    Murthy, N.S.; Wang, W.; Kohn, J.

    2010-10-22

    Hydration- and temperature-induced microphase separations were investigated by simultaneous small- and wide-angle X-ray scattering (SAXS and WAXS) and differential scanning calorimetry (DSC) in a family of copolymers in which hydrophilic poly(ethylene glycol) (PEG) blocks are inserted randomly into a hydrophobic polymer made of either desaminotyrosyl-tyrosine ethyl ester (DTE) or iodinated I{sub 2}DTE segments. Iodination of the tyrosine rings in I{sub 2}DTE increased the X-ray contrast between the hydrophobic and hydrophilic segments in addition to facilitating the study of the effect of iodination on microphase separation. The formation of phase-separated, hydrated PEG domains is of considerable significance as it profoundly affects the polymer properties. The copolymers of DTE (or I{sub 2}DTE) and PEG are a useful model system, and the findings presented here may be applicable to other PEG-containing random copolymers. In copolymers of PEG and DTE and I{sub 2}DTE, the presence of PEG depressed the glass transition temperature (T{sub g}) of the copolymer relative to the homopolymer, poly(DTE carbonate), and the DTE/I{sub 2}DTE segments hindered the crystallization of the PEG segments. In the dry state, at large PEG fractions (>70 vol%), the PEG domains self-assembled into an ordered structure with 14-18 nm distance between the domains. These domains gave rise to a SAXS peak at all temperatures in the iodinated polymers, but only above the T{sub g} in non-iodinated polymers, due to the unexpected contrast-match between the crystalline PEG domains and the glassy DTE segments. Irrespective of whether PEG was crystalline or not, immersion of these copolymers in water resulted in the formation of hydrated PEG domains that were 10-20 nm apart. Since both water and the polymer chains must be mobile for the phase separation to occur, the PEG domains disappeared when the water froze, and reappeared as the ice began to melt. This transformation was reversible, and showed

  4. Quantifying Natural Organic Matter with Calorimetry - assessing system complexity to build a central view C stability

    NASA Astrophysics Data System (ADS)

    Liles, G. C.; Bower, J.; Henneberry, Y.; Horwath, W. R.

    2010-12-01

    Characterizing the status and stability of natural organic matter (NOM) is central to understanding the flux, attenuation and function of C in the biosphere. A diversity of stabilizing factors (climate, mineralogy, chemical recalcitrance) have required a range of analytical approaches and methods that are site or discipline specific making unified assessments difficult. Aggregated, these efforts support our working models of NOM as a dynamic body but, overall, lack analytical simplicity and reproducibility. In particular, the robustness and resolution to assess NOM across systems of increasing complexity is lacking. Calorimetry has been central to chemistry and material science characterizing a broad range of organic and inorganic materials and their mixtures illustrating composition, purity and stability. Differential scanning calorimetry - thermogravimetry (DSC-TG) provides the flexibility and resolution to quantify the complexity found within NOM with precise quantification of material mass loss (TG) and energetic (DSC) under controlled atmospheric and heating conditions. DSC-TG is data rich providing a range of qualitative and quantitative metrics: peak shape, exothermic energy yield, mass loss, and determination of enthalpy, to characterize NOM stability from low (dissolved organic carbon - DOC) through high (compost and soils) molecular weights (MW) at increasing levels of organo-metallic complexity. Our research investigates the influence of biochemical recalcitrance and its alteration by oxides employing three natural systems of varying complexity as experimental models: aquatic - DOC and DOC with metal flocculants (low MW - low complexity), compost - processed with and without metal oxides (mixed MW - increasing complexity) and forest soils - under varying management and litter inputs (mixed MW - most complexity). Samples were analyzed by DSC-TG (zero-air - 20 C/min - ambient to > 800C) and assessed for three temperature/exothermic reaction regions (200

  5. Interaction between vitamin D 2 and magnesium in liposomes: Differential scanning calorimetry and FTIR spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Toyran, Neslihan; Severcan, Feride

    2007-08-01

    Magnesium (Mg 2+) ion is of great importance in physiology by its intervention in 300 enzymatic systems, its role in membrane structure, its function in neuromuscular excitability and vitamin D metabolism and/or action. In the present study, the interaction of Mg 2+, at low (1 mole %) and high (7 mole %) concentrations with dipalmitoyl phosphatidylcholine (DPPC) liposomes has been studied in the presence and absence of vitamin D 2 (1 mole %) by using two noninvasive techniques, namely differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. DSC studies reveal that the presence of vitamin D 2 in the pure or Mg 2+ (at both low and high concentrations) containing liposomes diminishes the pretransition. The calorimetric results also reveal that, inclusion of Mg 2+ (more significantly at high concentration) into pure or vitamin D 2 containing DPPC liposomes increases the main phase transition temperature. The investigation of the CH 2 symmetric, the CH 3 asymmetric, the C dbnd O stretching, and the PO2- antisymmetric double bond stretching bands in FTIR spectra with respect to changes occurring in the wavenumber and/or the bandwidth values as a function of temperature reveal that, inclusion of vitamin D 2 or Mg 2+ into pure DPPC liposomes orders and decreases the dynamics of the acyl chains in both gel and liquid-crystalline phases and does not induce hydrogen bond formation in the interfacial region. Furthermore, the dynamics of the head groups of the liposomes decreases in both phases. Our findings reveal that, simultaneous presence of vitamin D 2 and Mg 2+ alters the effect of each other, which is reflected as a decrease in the interactions between these two additives within the model membrane.

  6. TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge.

    PubMed

    Chen, Jianbiao; Mu, Lin; Jiang, Bo; Yin, Hongchao; Song, Xigeng; Li, Aimin

    2015-09-01

    The pyrolysis characteristics of petrochemical wastewater sludge (PS) were evaluated using TG/DSC-FTIR and fixed-bed reactor with GC. TGA experiments indicated that the pyrolysis of PS proceeded in three phases, and the thermographs shifted to higher temperatures with increasing heating rate. Chars FTIR showed that the absorption of O-H, C-H, C=O and C-C decreased with pyrolysis temperatures increasing. Gases FTIR correspondingly showed that H2O, CO, and CH4 generated at higher temperatures. For the fixed-bed reactor tests, H2 and CO were relatively higher in the pyrolysis gases, and CH4 was negligible at 436K. The kinetic triplets of PS pyrolysis were estimated by Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, and integral master-plots method. The results suggested that the most potential kinetic models for the first and second phase were the order reaction model, while the random nucleation and nuclei growth model for the third phase. PMID:26004556

  7. Comparative study of DSC-PWI and 3D-ASL in ischemic stroke patients.

    PubMed

    Zhang, Shui-xia; Yao, Yi-hao; Zhang, Shun; Zhu, Wen-jie; Tang, Xiang-yu; Qin, Yuan-yuan; Zhao, Ling-yun; Liu, Cheng-xia; Zhu, Wen-zhen

    2015-12-01

    The purpose of this study was to quantitatively analyze the relationship between three dimensional arterial spin labeling (3D-ASL) and dynamic susceptibility contrast-enhanced perfusion weighted imaging (DSC-PWI) in ischemic stroke patients. Thirty patients with ischemic stroke were included in this study. All subjects underwent routine magnetic resonance imaging scanning, diffusion weighted imaging (DWI), magnetic resonance angiography (MRA), 3D-ASL and DSC-PWI on a 3.0T MR scanner. Regions of interest (ROIs) were drawn on the cerebral blood flow (CBF) maps (derived from ASL) and multi-parametric DSC perfusion maps, and then, the absolute and relative values of ASL-CBF, DSC-derived CBF, and DSC-derived mean transit time (MTT) were calculated. The relationships between ASL and DSC parameters were analyzed using Pearson's correlation analysis. Receiver operative characteristic (ROC) curves were performed to define the thresholds of relative value of ASL-CBF (rASL) that could best predict DSC-CBF reduction and MTT prolongation. Relative ASL better correlated with CBF and MTT in the anterior circulation with the Pearson correlation coefficients (R) values being 0.611 (P<0.001) and-0.610 (P<0.001) respectively. ROC curves demonstrated that when rASL ≤0.585, the sensitivity, specificity and accuracy for predicting ROIs with rCBF<0.9 were 92.3%, 63.6% and 76.6% respectively. When rASL ≤0.952, the sensitivity, specificity and accuracy for predicting ROIs rMTT>1.0 were 75.7%, 89.2% and 87.8% respectively. ASL-CBF map has better linear correlations with DSC-derived parameters (DSC-CBF and MTT) in anterior circulation in ischemic stroke patients. Additionally, when rASL is lower than 0.585, it could predict DSC-CBF decrease with moderate accuracy. If rASL values range from 0.585 to 0.952, we just speculate the prolonged MTT. PMID:26670447

  8. Confined water in controlled pore glass CPG-10-120 studied by positron annihilation lifetime spectroscopy and differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Šauša, O.; Mat'ko, I.; Illeková, E.; Macová, E.; Berek, D.

    2015-06-01

    The solidification and melting of water confined in the controlled pore glass (CPG) with average pore size 12.6 nm has been studied by differential scanning calorimetry (DSC) and positron annihilation lifetime spectroscopy (PALS). The fully-filled sample of CPG by water as well as the samples of CPG with different content of water were used. The measurements show the presence of amorphous and crystalline phases of water in this type and size of pores, freezing point depression of a confined liquid and presence of certain transitions at lower temperatures, which could be detected only for cooling regime. The localization of confined water in the partially filled pores of CPG at room temperature was studied.

  9. Molecular mobility studies on the amorphous state of disaccharides. I-thermally stimulated currents and differential scanning calorimetry.

    PubMed

    Pinto, Susana S; Diogo, Hermínio P; Nunes, Teresa G; Moura Ramos, Joaquim J

    2010-08-16

    The relaxational processes in amorphous solid gentiobiose and cellobiose are studied by thermally stimulated depolarization currents (TSDC) in the temperature region from 108K up to 423K. The slow molecular mobility was characterized in the crystal and in the glassy state. The features of different motional components of the secondary relaxation have been monitored as a function of time as the glass structurally relaxes on aging. It is concluded that some modes of motion of this mobility are aging independent, while others are affected by aging. The value of the steepness index or fragility (T(g)-normalized temperature dependence of the relaxation time) was obtained by differential scanning calorimetry (DSC) from the analysis of the scanning rate dependency of T(g). PMID:20591418

  10. PREFACE: XIV International Conference on Calorimetry in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Wang, Yifang

    2011-03-01

    The International Conferences on Calorimetry in High Energy Physics (also known as the Calor Conference series, started in October 1990 at Fermilab) address all aspects of calorimetric particle detection and measurement, with an emphasis on high energy physics experiments. The XIV International Conference on Calorimetry in High Energy Physics (Calor 2010) was held at the campus of the Institute of High Energy Physics, Beijing, China, from May 10-14, 2010. This conference brought together more than 110 participants from 20 countries, including senior scientists and young physicists. During the five days of the conference, 98 presentations were given in seven plenary sessions. The attendees had in-depth discussions on the latest developments and innovations in calorimetry, including the exciting new LHC results. From the presentations, 83 papers were published in this proceedings. The success of the conference was due to the participants' enthusiasm and the excellent talks given by the speakers, and to the conveners for organizing the individual sessions. We would like to thank the International Advisory Committee for giving us the opportunity to host this Conference in Beijing. Finally we would like to thank all the people involved in the organization of the Conference, who have provided valuable local support. Yifang WangChair of Local Organizing Committee International Advisory Committee M DanilovITEP Moscow M DiemozINFN Roma I A EreditatoBern F L FabbriINFN Frascati T KobayashiICEPP Tokyo M LivanPavia University & INFN P LubranoINFN Perugia S MagillANL Argonne A MaioLIPP Lisbon H OberlackMPI Munich A ParaFermilab R WigmansTTU Lubbock R YoshidaANL Argonne R ZhuCaltech Local Organizing Committee Y WangIHEP (Chair) Y GaoTshinghua University T HuIHEP (Scientific secretary) C LiUSTC W LiIHEP J LuIHEP P WangIHEP T XuIHEP L ZhouIHEP Session Conveners 1) Materials and detectors - Junguang Lu (IHEP), Francesca Nessi (CERN) 2) Algorithm and simulation - Nural Akchurin

  11. Energetics of anhydrite, barite, celestine, and anglesite: a high-temperature and differential scanning calorimetry study

    NASA Astrophysics Data System (ADS)

    Majzlan, J.; Navrotsky, A.; Neil, J. M.

    2002-05-01

    The thermochemistry of anhydrous sulfates (anglesite, anhydrite, arcanite, barite, celestine) was investigated by high-temperature oxide melt calorimetry and differential scanning calorimetry. Complete retention and uniform speciation of sulfur in the solvent was documented by (a) chemical analyses of the solvent (3Na 2O · 4MoO 3) with dissolved sulfates, (b) Fourier transform infrared spectroscopy confirming the absence of sulfur species in the gases above the solvent, and (c) consistency of experimental determination of the enthalpy of drop solution of SO 3 in the solvent. Thus, the principal conclusion of this study is that high-temperature oxide melt calorimetry with 3Na 2O · 4MoO 3 solvent is a valid technique for measurement of enthalpies of formation of anhydrous sulfates. Enthalpies of formation (in kJ/mol) from the elements (ΔH fo) were determined for synthetic anhydrite (CaSO 4) (-1433.8 ± 3.2), celestine (SrSO 4) (-1452.1 ± 3.3), anglesite (PbSO 4) (-909.9 ± 3.4), and two natural barite (BaSO 4) samples (-1464.2 ± 3.7, -1464.9 ± 3.7). The heat capacity of anhydrite, barite, and celestine was measured between 245 and 1100 K, with low- and high-temperature Netzsch (DSC-404) differential scanning calorimeters. The results for each sample were fitted to a Haas-Fisher polynomial of the form C p(245 K < T < 1100 K) = a + bT + cT -2 + dT -0.5 + eT 2. The coefficients of the equation are as follows: for anhydrite a = 409.7, b = -1.764 × 10 -1, c = 2.672 × 10 6, d = -5.130 × 10 3, e = 8.460 × 10 -5; for barite, a = 230.5, b = -0.7395 × 10 -1, c = -1.170 × 10 6, d = -1.587 × 10 3, e = 4.784 × 10 -5; and for celestine, a = 82.1, b = 0.8831 × 10 -1, c = -1.213 × 10 6, d = 0.1890 × 10 3, e = -1.449 × 10 -5. The 95% confidence interval of the measured C p varies from 1 to 2% of the measured value at low temperature up to 2 to 5% at high temperature. The measured thermochemical data improve or augment the thermodynamic database for anhydrous

  12. DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.

    PubMed

    Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2011-01-01

    This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP. PMID:21330730

  13. Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex

    PubMed Central

    Stewart, Emerson V.; Nwosu, Christine C.; Tong, Zongtian; Roguev, Assen; Cummins, Timothy D.; Kim, Dong-Uk; Hayles, Jacqueline; Park, Han-Oh; Hoe, Kwang-Lae; Powell, David W.; Krogan, Nevan J.; Espenshade, Peter J.

    2011-01-01

    SUMMARY Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here, we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1–4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2 conjugating enzyme Ubc4, the Dsc1 RING E3 ligase and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation. PMID:21504829

  14. New approach to study starch gelatinization applying a combination of hot-stage light microscopy and differential scanning calorimetry.

    PubMed

    Li, Qian; Xie, Qin; Yu, Shujuan; Gao, Qunyu

    2013-02-13

    To overcome the difficulty of the original polarizing microscope-based method in monitoring the gelatinization of starch, a new method for dynamically monitoring the gelatinization process, integral optical density (IOD), which was based on the digital image analysis technique, was proposed. Hot-stage light microscopy and differential scanning calorimetry (DSC) techniques were coupled to study the dynamic changes of three types of starches: type A (corn starch), type B (potato starch), and type C (pea starch), during the gelatinization process in an excess water system. A model of response difference change of crystallite could represent the responding intensity of crystallization changes in the process of starch gelatinization. Results demonstrated that three crystalline types of starch underwent a process of swelling, accompanied with gradual disappearing of the crystallite. This difference was mainly associated with the diversity and composition of the starch structure. The IOD method was of advantage compared to the previous traditional methods that are based on a polarization microscope, such as counting the particle number and calculating polarization area methods, because it was the product of two parameters: optical density and area, which would be a response of both light intensity and area of birefringence light. The single peak in DSC corresponded to the combination of crystalline helix-helix dissociation and the reduction of the molecule helix-coil transition, while the gelatinization degree measured by the IOD method mainly corresponded to the helix-helix dissociation. The gelatinization mechanism could be revealed clearer in this study. PMID:23339369

  15. Assessing Mixing Quality of a Copovidone-TPGS Hot Melt Extrusion Process with Atomic Force Microscopy and Differential Scanning Calorimetry.

    PubMed

    Lamm, Matthew S; DiNunzio, James; Khawaja, Nazia N; Crocker, Louis S; Pecora, Anthony

    2016-02-01

    Atomic force microscopy (AFM) and modulated differential scanning calorimetry (mDSC) were used to evaluate the extent of mixing of a hot melt extrusion process for producing solid dispersions of copovidone and D-α-tocopherol polyethylene glycol 1000 succinate (TPGS 1000). In addition to composition, extrusion process parameters of screw speed and thermal quench rate were varied. The data indicated that for 10% TPGS and 300 rpm screw speed, the mixing was insufficient to yield a single-phase amorphous material. AFM images of the extrudate cross section for air-cooled material indicate round domains 200 to 700 nm in diameter without any observed alignment resulting from the extrusion whereas domains in extrudate subjected to chilled rolls were elliptical in shape with uniform orientation. Thermal analysis indicated that the domains were predominantly semi-crystalline TPGS. For 10% TPGS and 600 rpm screw speed, AFM and mDSC data were consistent with that of a single-phase amorphous material for both thermal quench rates examined. When the TPGS concentration was reduced to 5%, a single-phase amorphous material was achieved for all conditions even the slowest screw speed studied (150 rpm). PMID:26283196

  16. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

    SciTech Connect

    Coker, Eric Nicholas

    2013-10-01

    The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 %C2%B0C very little oxidation took place; at 850 %C2%B0C oxidation occurred after an induction period, while at 950 %C2%B0C oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 %C2%B0C rapid passivation of the surface of the aluminum foil occurred, while at 1250 %C2%B0C and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

  17. Differential scanning calorimetry study--assessing the influence of composition of vegetable oils on oxidation.

    PubMed

    Qi, Baokun; Zhang, Qiaozhi; Sui, Xiaonan; Wang, Zhongjiang; Li, Yang; Jiang, Lianzhou

    2016-03-01

    The thermal oxidation of eight different vegetable oils was studied using differential scanning calorimetry (DSC) under non-isothermal conditions at five different heating rates (5, 7.5, 10, 12.5, and 15°C/min), in a temperature range of 100-400°C. For all oils, the activation energy (Ea) values at Tp were smaller than that at Ts and Ton. Among all the oils, refined palm oil (RPO) exhibited the highest Ea values, 126.06kJ/mol at Ts, 134.7kJ/mol at Ton, and 91.88kJ/mol at Tp. The Ea and reaction rate constant (k) values at Ts, Ton, and Tp were further correlated with oil compositions (fatty acids and triacylglycerols) using Pearson correlation analysis. The rate constant (k) and Ea of all oils exhibited varying correlations with FAs and TAGs, indicating that the thermal oxidation behaviors were affected by oil compositions. PMID:26471598

  18. Study of temperature dependent zirconium silicide phases in Zr/Si structure by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Faruque, Sk Abdul Kader Md; Ranjan Bhattachryya, Satya; Sinha, Anil Kumar; Chakraborty, Supratic

    2016-02-01

    The differential scanning calorimetry (DSC) technique is employed to study the formation of different silicide compounds of Zr thin-film deposited on a 100 μm-thick Si (1 0 0) substrate by dc sputtering. A detailed analysis shows that silicide layers start growing at  ∼246 °C that changes to stable ZrSi2 at 627 °C via some compounds with different stoichiometric ratios of Zr and Si. It is further observed that oxygen starts reacting with Zr at  ∼540 °C but a stoichiometric ZrO2 film is formed after complete consumption of Zr metal at 857 °C. A further rise in temperature changes a part of ZrSi2 to Zr-Silicate. The synchrotron radiation-based grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy studies also corroborate the above findings. Atomic force microscopy is also carried out on the samples. It is evident from the observations that an intermixing and nucleation of Zr and Si occur at lower temperature prior to the formation of the interfacial silicate layer. Zr-Silicate formation takes place only at a higher temperature.

  19. Insights into composition/structure/function relationships of Doxil® gained from "high-sensitivity" differential scanning calorimetry.

    PubMed

    Wei, Xiaohui; Cohen, Rivka; Barenholz, Yechezkel

    2016-07-01

    Thermotropic behavior of Doxil® and its generic, Lipodox®, was characterized using "high-sensitivity" differential scanning calorimetry (DSC). This is the first report that two distinct endotherms were observed in Doxil and Lipodox upon heating. The first (Tm at 51±2°C) is broad and of low enthalpy, representing the membrane lipid phase transition, which occurs despite having high (38mole%) cholesterol. The second (Tm at ∼70°C) is narrow, representing melting of the intraliposomal doxorubicin-sulfate nanocrystals. The thermograms of Doxil and Lipodox are practically identical. The membrane phase transition is similar to that of drug-free nanoliposomes of the same size and lipid composition as Doxil, suggesting lack of significant drug-membrane interaction. The melting endotherm of the intraliposomal nanocrystals is 2.0-2.5-fold narrower than that of the crystals formed in a solution of 250mM ammonium sulfate and >60mg/ml doxorubicin. This suggests that nanovolume of liposomes improves doxorubicin-sulfate crystallinity. Moreover, both phase transitions are reversible in cycled DSC scanning (15-90-15°C). This indicates an unexpected "non-leaky" phospholipid phase transition and excellent physical and chemical stabilities of Doxil after short exposure to high temperature. Reducing mole% of cholesterol results in a "leaky" membrane phase transition of higher enthalpy. Namely, high mole% cholesterol is essential for the resistance to drug leakage during phase transition. Pegylated liposomal doxorubicin in which HSPC was replaced by DPPC shows the same non-leaky phase transition but at a lower temperature, indicating this type of phase transition is not unique to Doxil. The presence of DSPE-PEG2k increases the cooperativity of the phase transition. High-sensitivity DSC helps illuminate composition/structure/function relationships of Doxil, and is useful for the equivalence/similarity studies. PMID:27106607

  20. CALOR2012 XVth International Conference on Calorimetry in High Energy Physics

    SciTech Connect

    Akchurin, Nural .

    2015-05-04

    The International Conferences on Calorimetry in High Energy Physics, or the CALOR series, have always been where the calorimeter experts come together to review the state of calorimetry and bring forth new ideas every two years. The fteenth conference, CALOR2012, in Santa Fe was no exception. Although they were built roughly a decade ago, we are now witnessing the exceptional power of the LHC calorimeters and the crucial role they have been playing in the discovery of the 125 GeV Higgs-like boson. As we ruminate on the coming generation of experiments at the next (linear) collider and on the upgrades at the LHC, we are heartened by the substantial advances we made in calorimetry in the last decade. These advances will certainly help uncover new physics in the years to come, not only at colliders but also in astroparticle experiments that take advantage of natural elements such as air, water, and ice. The proceedings were published by the IOP in Journal of Physics, Vol 404 2011. The conference web site is calor2012.ttu.edu.

  1. The Drosophila Sodium Channel 1 (DSC1): The founding member of a new family of voltage-gated cation channels.

    PubMed

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Wang, Lingxin; Xu, Peng

    2015-05-01

    It has been nearly three decades since the identification of the Drosophila Sodium Channel 1 (DSC1) gene from Drosophila melanogaster. The orthologs of the DSC1 gene have now been identified in other insect species including BSC1 from Blattella germanica. Functional analyses of DSC1/BSC1 channels in Xenopus oocytes reveal that DSC1 and BSC1 encode voltage-gated cation channels that are more permeable to Ca(2+) than to Na(+). Genetic and electrophysiological analyses show that knockout of the DSC1 gene in D. melanogaster causes behavioral and neurological modifications. In this review, we summarize major findings from recent studies and highlight a unique role of the DSC1 channel, distinct from that of the sodium channel, in regulating membrane excitability and modulating toxicity of pyrethroid insecticides. PMID:25987218

  2. Determining the main thermodynamic parameters of caffeine melting by means of DSC

    NASA Astrophysics Data System (ADS)

    Agafonova, E. V.; Moshchenskii, Yu. V.; Tkachenko, M. L.

    2012-06-01

    The temperature and enthalpy of the melting of caffeine, which are 235.5 ± 0.1°C and 19.6 ± 0.2 kJ/mol, respectively, are determined by DSC. The melting entropy and the cryoscopic constant of caffeine are calculated.

  3. ESTIMATION OF HRW WHEAT HEAT DAMAGE BY DSC, CAPILLARY ZONE ELECTROPHORESIS, PHOTOACOUSTIC SPECTROSCOPY AND RHEOMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of heat damage was estimated using Hard Red Winter (HRW) wheat varieties grown in Oklahoma. The testing was done on wheat kernels, flour, and isolated starch. Whole-wheat kernels were analyzed by Photoacoustic Spectroscopy (PAS). Flour was analyzed by DSC, Capillary Electrophoresis (CE...

  4. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    PubMed Central

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741

  5. Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.

    PubMed

    Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke

    2015-03-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. PMID:25687544

  6. Calorimetry measurements in less than 20 minutes

    NASA Astrophysics Data System (ADS)

    Perry, R. B.; Cremers, T.

    Argonne National Laboratory has developed a new series of 10 watt Bulk Plutonium Assay Calorimeters (BPAC10). The calorimeter measures bulk samples of plutonium bearing material in containers up to 5 in. in diameter and 7 in. high. The average measurement time is 19.7 minutes compared to 2-9 hours for the same sample measured in a water bath calorimeter. Measurement precision in the range of 1-10 watts is 1 to 0.1 percent and it is 0.010 watt for sample power less than 1 watt. The BPAC10 series calorimeters are in use in two plutonium facilities at the EG&G Rocky Flats Plant and at the Los Alamos National Laboratory TA55 Plutonium Facility. The paper presents a description of the calorimeter, discusses operating experience at Los Alamos, and presents a comparison of data on typical samples measured with both types of calorimeters.

  7. Isothermal Titration Calorimetry Can Provide Critical Thinking Opportunities

    ERIC Educational Resources Information Center

    Moore, Dale E.; Goode, David R.; Seney, Caryn S.; Boatwright, Jennifer M.

    2016-01-01

    College chemistry faculties might not have considered including isothermal titration calorimetry (ITC) in their majors' curriculum because experimental data from this instrumental method are often analyzed via automation (software). However, the software-based data analysis can be replaced with a spreadsheet-based analysis that is readily…

  8. Preparation of Solid Derivatives by Differential Scanning Calorimetry.

    ERIC Educational Resources Information Center

    Crandall, E. W.; Pennington, Maxine

    1980-01-01

    Describes the preparation of selected aldehydes and ketones, alcohols, amines, phenols, haloalkanes, and tertiaryamines by differential scanning calorimetry. Technique is advantageous because formation of the reaction product occurs and the melting point of the product is obtained on the same sample in a short time with no additional purification…

  9. Warm-up calorimetry of Dewar-Detector Assemblies

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Shlomovich, B.; Tuito, A.

    2015-12-01

    Boil-off isothermal calorimetry of Dewar-Detector Assemblies (DDA) is a routine part of their Acceptance Testing Procedure. In this approach, the cryogenic liquid coolant (typically LN2) is allowed to naturally boil-off from the Dewar well to the atmosphere through a mass flow meter; the parasitic heat load is then evaluated as the product of the latent heat of vaporization and the "last drop" boil-off rate. An inherent major limitation of this technique is that it may be performed only at the fixed boiling temperature of the chosen liquid coolant. A further drawback is related to the explosive nature of "last drop" boiling, manifesting itself as an uneven flow rate. This especially holds true for advanced High Operational Temperature Dewar-Detector Assemblies, typically featuring short cold fingers and working at 150 K and above. In this work, we adapt the well-known technique of dual-slope calorimetry and show how accurate heat load evaluation may be performed by comparing the slopes of the warm-up thermal transients under different trial added heat loads. Because of the simplicity, accuracy and ability to perform calorimetry literally at any temperature of interest, this technique shows good potential for replacing traditional boil-off calorimetry.

  10. DSC and optical studies on BaO-Li2O-B2O3-CuO glass system

    NASA Astrophysics Data System (ADS)

    Bhogi, Ashok; Kumar, R. Vijaya; Ahmmad, Shaik Kareem; Kistaiah, P.

    2016-05-01

    Glasses with composition 15BaO-25Li2O-(60-x)B2O3 -xCuO (x= 0, 0.2, 0.4, 0.6, 0.8 and 1 mol%) were prepared by the conventional melt quenching technique. These glasses were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and density measurements. Optical absorption studies were carried out as a function of copper ion concentration. The optical absorption spectra of studied glasses containing copper oxide exhibit a single broad band around 761nm which has been assigned to the 2B1g→2B2g transition. From these studies, the variations in the values of glass transition temperature (Tg) have been observed. The fundamental absorption edge has been determined from the optical absorption spectra. The values of optical band gap and Urbach energy were determined with increase in concentration of CuO. The variations in density, glass transition temperature, optical band gap and Urbach energy with CuO content have been discussed in terms of changes in the glass structure. The analysis of these results indicated that copper ions mostly exist in Cu2+ state in these glasses when the concentration of CuO ≤ 0.8 mol% and above this concentration copper ions seem to subsist in Cu1+ state.

  11. New detecting techniques for a future calorimetry

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Buganov, O.; Fedorov, A.; Korjik, M.; Lecoq, P.; Tamulaitis, G.; Tikhomirov, S.; Vasil'ev, A.

    2015-02-01

    In the last forty years, application of crystalline materials in homogeneous Electromagnetic Calorimeters has played a crucial role in the discovery of matter properties and promoted a continuous progress in the detecting technique. The detection systems progressed from small detectors based on NaI(Tl), CsI(Na), BaF2, PbF2, and Bi4Ge3O12 to giant Electromagnetic Calorimeters of CMS, ALICE Collaborations at LHC and PANDA Collaboration at FAIR, where the systems consisted of thousands lead tungstate PbWO4 scintillation crystals. Lead tungstate (PWO) became the most extensively used scintillation material in high energy physics experiments. PWO possesses a unique combination of scintillation properties including high energy and time resolutions in the detection of high energy particles. Here, we report on the results of the two photon absorption in PWO crystals obtained by pump-probe technique using ultra short laser pulses. The results demonstrate that the relaxation processes in PWO offer capability of this material to be used in detection systems to make a time stamp with precision close to 10-12 s or even better.

  12. What does calorimetry and thermodynamics of living cells tell us?

    PubMed

    Maskow, Thomas; Paufler, Sven

    2015-04-01

    This article presents and compares several thermodynamic methods for the quantitative interpretation of data from calorimetric measurements. Heat generation and absorption are universal features of microbial growth and product formation as well as of cell cultures from animals, plants and insects. The heat production rate reflects metabolic changes in real time and is measurable on-line. The detection limit of commercially available calorimetric instruments can be low enough to measure the heat of 100,000 aerobically growing bacteria or of 100 myocardial cells. Heat can be monitored in reaction vessels ranging from a few nanoliters up to many cubic meters. Most important the heat flux measurement does not interfere with the biological process under investigation. The practical advantages of calorimetry include the waiver of labeling and reactants. It is further possible to assemble the thermal transducer in a protected way that reduces aging and thereby signal drifts. Calorimetry works with optically opaque solutions. All of these advantages make calorimetry an interesting method for many applications in medicine, environmental sciences, ecology, biochemistry and biotechnology, just to mention a few. However, in many cases the heat signal is merely used to monitor biological processes but only rarely to quantitatively interpret the data. Therefore, a significant proportion of the information potential of calorimetry remains unutilized. To fill this information gap and to motivate the reader using the full information potential of calorimetry, various methods for quantitative data interpretations are presented, evaluated and compared with each other. Possible errors of interpretation and limitations of quantitative data analysis are also discussed. PMID:25461814

  13. Using Isothermal Titration Calorimetry to Determine Thermodynamic Parameters of Protein–Glycosaminoglycan Interactions

    PubMed Central

    Dutta, Amit K.; Rösgen, Jörg; Rajarathnam, Krishna

    2015-01-01

    It has now become increasingly clear that a complete atomic description of how biomacromolecules recognize each other requires knowledge not only of the structures of the complexes but also of how kinetics and thermodynamics drive the binding process. In particular, such knowledge is lacking for protein–glycosaminoglycan (GAG) complexes. Isothermal titration calorimetry (ITC) is the only technique that can provide various thermodynamic parameters—enthalpy, entropy, free energy (binding constant), and stoichiometry—from a single experiment. Here we describe different factors that must be taken into consideration in carrying out ITC titrations to obtain meaningful thermodynamic data of protein–GAG interactions. PMID:25325962

  14. Estimation of Temperature Range for Cryo Cutting of Frozen Mackerel using DSC

    NASA Astrophysics Data System (ADS)

    Okamoto, Kiyoshi; Hagura, Yoshio; Suzuki, Kanichi

    Frozen mackerel flesh was subjected to measurement of its fracture stress (bending energy) in a low temperature range. The optimum conditions for low temperature cutting, "cryo cutting," were estimated from the results of enthalpy changes measured by a differential scanning calorimeter (DSC). There were two enthalpy changes for gross transition on the DSC chart for mackerel, one was at -63°C to -77°C and the other at -96°C to -112°C. Thus we estimated that mackerel was able to cut by bending below -63°C and that there would be a great decrease in bending energy occurring at around -77°C and -112°C. In testing, there were indeed two great decreases of bending energy for the test pieces of mackerel that had been frozen at -40°C, one was at -70°C to -90°C and the other was at -100°C to -120°C. Therefore, the test pieces of mackerel could be cut by bending at -70°C. The results showed that the DSC measurement of mackerel flesh gave a good estimation of the appropriate cutting temperature of mackerel.

  15. Apolipophorin III interaction with model membranes composed of phosphatidylcholine and sphingomyelin using differential scanning calorimetry.

    PubMed

    Chiu, Michael H; Wan, Chung-Ping Leon; Weers, Paul M M; Prenner, Elmar J

    2009-10-01

    Apolipophorin III (apoLp-III) from Locusta migratoria was employed as a model apolipoprotein to gain insight into binding interactions with lipid vesicles. Differential scanning calorimetry (DSC) was used to measure the binding interaction of apoLp-III with liposomes composed of mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and sphingomyelin (SM). Association of apoLp-III with multilamellar liposomes occurred over a temperature range around the liquid crystalline phase transition (L(alpha)). Qualitative and quantitative data were obtained from changes in the lipid phase transition upon addition of apoLp-III. Eleven ratios of DMPC and SM were tested from pure DMPC to pure SM. Broadness of the phase transition (T(1/2)), melting temperature of the phase transition (T(m)) and enthalpy were used to determine the relative binding affinity to the liposomes. Multilamellar vesicles composed of 40% DMPC and 60% SM showed the greatest interaction with apoLp-III, indicated by large T(1/2) values. Pure DMPC showed the weakest interaction and liposomes with lower percentage of DMPC retained domains of pure DMPC, even upon apoLp-III binding indicating demixing of liposome lipids. Addition of apoLp-III to rehydrated liposomes was compared to codissolved trials, in which lipids were rehydrated in the presence of protein, forcing the protein to interact with the lipid system. Similar trends between the codissolved and non-codissolved trials were observed, indicating a similar binding affinity except for pure DMPC. These results suggested that surface defects due to non-ideal packing that occur at the phase transition temperature of the lipid mixtures are responsible for apolipoprotein-lipid interaction in DMPC/SM liposomes. PMID:19647717

  16. Differential Scanning Calorimetry and Evolved Gas Analysis of Hydromagnesite

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Golden, D. C.; Ming, Douglas W.; Boynton, W. V.

    1999-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates and sulfates) may be important phases on the surface of Mars. In order to characterize these phases the Thermal and Evolved Gas Analyzer (TEGA) flying on the Mars'98 lander will perform analyses on surface samples from Mars. Hydromagnesite [Mg5(CO3)4(OH)2.4H2O] is considered a good standard mineral to examine as a Mars soil analog component because it evolves both H2O and CO2 at temperatures between 0 and 600 C. Our aim here is to interpret the DSC signature of hydromagnesite under ambient pressure and 20 sccm N2 flow in the range 25 to 600 C. The DSC curve for hydromagnesite under the above conditions consists of three endothermic peaks at temperatures 296, 426, and 548 and one sharp exotherm at 511 C. X-ray analysis of the sample at different stop temperatures suggested that the exotherm corresponded with the formation of crystalline magnesite. The first endotherm was due to dehydration of hydromagnesite, and then the second one was due to the decomposition of carbonate, immediately followed by the formation of magnesite (exotherm) and its decomposition to periclase (last endotherm). Evolution of water and CO2 were consistent with the observed enthalpy changes. A library of such DSC-evolved gas curves for putative Martian minerals are currently being acquired in order to facilitate the interpretation of results obtained by a robotic lander.

  17. Inherent limitations of fixed time servo-controlled radiometric calorimetry

    SciTech Connect

    Wetzel, J.R.; Duff, M.F.; Lemming, J.F.

    1987-01-01

    There has been some interest in low precision, short run time calorimetry measurements. This type of calorimetry measurement has been proposed for use when high precision measurements are not required, for example, to screen scrap containers to determine if there is enough material to be measured more accurately of for confirmatory measurements that only require low precision results. The equipment needed to make these measurements is a servo-controlled calorimeter with a sample preequilibration bath. The preequilibration bath temperature is set to the internal temperature of the calorimeter running at a fixed servo-controlled wattage level. The sample power value is determined at a fixed time form the sample loading into the calorimeter. There are some limitations and areas of uncertainties in the use of data obtained by this method. Data collected under controlled conditions demonstrate the limitations. Sample packaging, preequilibration time, and item wattage were chosen as the variables most likely to be encountered in a plant environment.

  18. Assessment of the Dissociation Energetics of Some Selected Ligand Drugs Bound on Human Serum Albumin by Differential Scanning Calorimetry.

    PubMed

    Faroongsarng, Damrongsak

    2016-04-01

    Drug-protein binding may play a role in the thermal energetics of protein denaturation and could lead to the determination of its equilibrium dissociation parameter. The aim of this study was to assess the energetics of a drug that was bound to human serum albumin (HSA) during thermal denaturation. Drugs that were bound at a single high-affinity primary binding site on HSA, including diazepam and ibuprofen, were employed. Commercial HSA was treated with charcoal to remove stabilizers and adjusted to 20% w/v in a pH 7.4 buffered solution. Serial concentrations of individual drugs up to 0.16 mmole/g-protein were added to the cleaned HSA solutions whereas diazepam was added to a commercial HSA solution. Samples were subjected to differential scanning calorimetry (DSC) set to run from 37 to 90°C at 3.0°C/min. Binding of the drug slightly increased the denaturing temperature of the cleaned HSA due to a shift in the equilibrium toward the native protein bound with the drug. Diazepam depressed the denaturing temperature of the commercial HSA by competing with the stabilizers already bound to the primary site of the HSA. This yielded not only the HSA-stabilizer but also the HSA-diazepam type complexes that exhibited a different denaturation process. A rational approximation of the Lumry-Eyring protein denaturation model was used to treat the DSC endotherms. The approximated scheme: [Formula: see text] was successfully fitted to the data. It was used to determine the dissociation parameters for diazepam and ibuprofen bound to the HSA. These results were comparable to those obtained from other methods. PMID:26246411

  19. Applications of differential scanning calorimetry in developing cryopreservation strategies for Parkia speciosa, a tropical tree producing recalcitrant seeds.

    PubMed

    Nadarajan, Jayanthi; Mansor, Marzalina; Krishnapillay, Baskaran; Staines, Harry J; Benson, Erica E; Harding, Keith

    2008-01-01

    Shoot-tips of Parkia speciosa, a recalcitrant seed producing tropical leguminous tree withstood cryopreservation using encapsulation-vitrification in combination with trehalose preculture. Differential scanning calorimetry (DSC) revealed that trehalose moderated the thermal characteristics of the shoot-tips. A 30 min PVS2 treatment had the lowest glass transition temperature (Tg) (-50.2 +/- 1.1 degree C) when applied in combination with 5% (w/v) trehalose. The Tg increased to -40.2 +/- 1.0 degree C as the sugar concentration was decreased to 2.5 percent (w/v). Tg heat capacity for shoot-tips treated with 2.5 percent and 5 percent (w/v) trehalose and exposed to PVS2 for 30 min increased from 0.17 +/ 0.05 to 0.23 +/- 0.01 J per gram, respectively. Enthalpies of the melt-endotherm varied in proportion to trehalose concentration, for the 30 min PVS2 treatment, whereas the melt enthalpy for control shoots was greater than 150 J per gram and decreased to ca. 60 J per gram with 2.5 percent (w/v) trehalose. For 5 percent and 10 percent (w/v) trehalose treatments, enthalpy declined to ca. 24 and 12 J per gram respectively and freezing points were depressed to -75 degree C and -85 degree C with 2.5 percent and 5 percent trehalose (w/v), respectively. DSC elucidated the critical points at which vitrification occurred in germplasm exposed to trehalose and PVS2. A 60 min PVS2 treatment supporting ca. 70 percent survival was found optimal for stable glass formation during cooling and on rewarming. PMID:18516340

  20. Application of kinetic inductance thermometers to x-ray calorimetry

    SciTech Connect

    Wai, Y.C.; Labov, S.E.; Silver, E.H.

    1990-08-13

    A kinetic inductance thermometer is applied to x-ray calorimetry, and its operation over a wide range of frequencies and geometries is discussed. Three amplifier configurations are described, one using a superconducting quantum interference device (SQUID) amplifier, another incorporating an FET amplifier in an amplitude modulated system, and the third, using a tunnel diode frequency modulated oscillator circuit. The predicted performance of each configuration is presented. 13 refs., 6 figs., 1 tab.

  1. The Philosophy and Feasibility of Dual Readout Calorimetry

    SciTech Connect

    Hauptman, John

    2006-10-27

    I will discuss the general physical ideas behind dual-readout calorimetry, their implementation in DREAM (Dual REAdout Module) with exact separation of scintillation and Cerenkov light, implementation with mixed light in DREAM fibers, anticipated implementation in PbWO4 crystals with applications to the 4th Concept detector and to CMS, use in high energy gamma-ray and cosmic ray astrophysics with Cerenkov and N2 fluorescent light, and implementation in the 4th Concept detector for muon identification.

  2. A High-Throughput Biological Calorimetry Core: Steps to Startup, Run, and Maintain a Multiuser Facility.

    PubMed

    Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C

    2016-01-01

    Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. PMID:26794364

  3. The states of water within poly(vinyl alcohol) thin films part 2: Investigation by differential scanning calorimetry and thermogravimetric analysis

    SciTech Connect

    Hodge, R.M.; Edward, G.H.; Simon, G.P.

    1993-12-31

    In order to utilize thermoplastic processing techniques with poly(vinyl alcohol) (PVA), the polymer must be plasticized with water. Water exists in different states within the PVA network and behaves in a manner specific to each state. This work uses Differential Scanning Calorimetry (DSC) and Thermo-Gravimetric Analysis to investigate the nature of water within PVA thin films. A model is proposed whereby the ingression of each state of water to exist in 3 distinct states: (1) free of bulk water, (2) freezable bound (loosely bound) water, and (3) nonfreezable bound (strongly bound) water. Generally speaking, the data suggest that the various states of water are filled sequentially. The model is consistent with the results of Positron Annihilation Lifetime Spectroscopy (PALS), also to be presented at this conference.

  4. Characteristics of rose hip (Rosa canina L.) cold-pressed oil and its oxidative stability studied by the differential scanning calorimetry method.

    PubMed

    Grajzer, Magdalena; Prescha, Anna; Korzonek, Katarzyna; Wojakowska, Anna; Dziadas, Mariusz; Kulma, Anna; Grajeta, Halina

    2015-12-01

    Two new commercially available high linolenic oils, pressed at low temperature from rose hip seeds, were characterised for their composition, quality and DPPH radical scavenging activity. The oxidative stability of oils was assessed using differential scanning calorimetry (DSC). Phytosterols, tocopherols and carotenoids contents were up to 6485.4; 1124.7; and 107.7 mg/kg, respectively. Phenolic compounds determined for the first time in rose hip oil totalled up to 783.55 μg/kg, with a predominant presence of p-coumaric acid methyl ester. Antiradical activity of the oils reached up to 3.00 mM/kg TEAC. The acid, peroxide and p-anisidine values as well as iron and copper contents indicated good quality of the oils. Relatively high protection against oxidative stress in the oils seemed to be a result of their high antioxidant capacity and the level of unsaturation of fatty acids. PMID:26041218

  5. DSC method: Determination of amorphous fraction in solid dosage and fragility

    NASA Astrophysics Data System (ADS)

    Saini, Manoj K.

    2015-06-01

    We have used Differential Scanning Calorimeter (DSC) method to quantifying the amorphous content in solid dosage of a commonly used drugs namely mephenesin. The glass transition temperature (Tg) of supercooled liquid sample and melting temperature (Tm) of as received sample are found to be 232.2 K and 343.1 K respectively. The "fragility index" of mephenesin has been discussed in detail using the coupling model (m = 250(± 30) - 320βKWW) and compared with acetaminophen and methocarbamol. The sample studied here is found to be kinetically strong in comparison.

  6. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    SciTech Connect

    Fernandez, Jose M.; Plaza, Cesar; Polo, Alfredo; Plante, Alain F.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC

  7. Estimation of the nucleation rate by differential scanning calorimetry

    NASA Technical Reports Server (NTRS)

    Kelton, Kenneth F.

    1992-01-01

    A realistic computer model is presented for calculating the time-dependent volume fraction transformed during the devitrification of glasses, assuming the classical theory of nucleation and continuous growth. Time- and cluster-dependent nucleation rates are calculated by modeling directly the evolving cluster distribution. Statistical overlap in the volume fraction transformed is taken into account using the standard Johnson-Mehl-Avrami formalism. Devitrification behavior under isothermal and nonisothermal conditions is described. The model is used to demonstrate that the recent suggestion by Ray and Day (1990) that nonisothermal DSC studies can be used to determine the temperature for the peak nucleation rate, is qualitatively correct for lithium disilicate, the glass investigated.

  8. Increased efficiency of DSC coupled to one-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Colodrero, Silvia; Míguez, Hernán

    2010-05-01

    The optimization of the conversion efficiency of dye sensitized solar cells (DSC) has become a key issue nowadays due to the search for alternative energy resources. Different approaches based on the optical absorption enhancement can be realized in this type of solar devices by modifying the optical design of the cell. In this respect, novel porous and highly reflecting one-dimensional photonic crystals (1DPC) have been recently implemented in DSC due to their great potential for the manipulation of light propagation. The periodic structure is built by alternating layers made of different types of nanoparticles that allow us to obtain a wide and intense Bragg reflection peak. The photonic crystal, with a thickness of just half-micron, is able to efficiently localize incident light within the nc-dyed TiO2 electrode in a targeted wavelength range. So, significant optical absorption amplification in a wide spectral range occurs in these structures that combine the presence of a highly reflecting photonic crystal and a layer of absorbing material, being therefore enhanced the photogenerated current. Average power conversion efficiencies are improved between 15% and 30% with respect to the reference value attained for standard electrodes with no photonic crystal coupled.

  9. Remote Evaluation of Rotational Velocity Using a Quadrant Photo-Detector and a DSC Algorithm

    PubMed Central

    Zeng, Xiangkai; Zhu, Zhixiong; Chen, Yang

    2016-01-01

    This paper presents an approach to remotely evaluate the rotational velocity of a measured object by using a quadrant photo-detector and a differential subtraction correlation (DSC) algorithm. The rotational velocity of a rotating object is determined by two temporal-delay numbers at the minima of two DSCs that are derived from the four output signals of the quadrant photo-detector, and the sign of the calculated rotational velocity directly represents the rotational direction. The DSC algorithm does not require any multiplication operations. Experimental calculations were performed to confirm the proposed evaluation method. The calculated rotational velocity, including its amplitude and direction, showed good agreement with the given one, which had an amplitude error of ~0.3%, and had over 1100 times the efficiency of the traditional cross-correlation method in the case of data number N > 4800. The confirmations have shown that the remote evaluation of rotational velocity can be done without any circular division disk, and that it has much fewer error sources, making it simple, accurate and effective for remotely evaluating rotational velocity. PMID:27120607

  10. PREFACE: 16th International Conference on Calorimetry in High Energy Physics (CALOR 2014)

    NASA Astrophysics Data System (ADS)

    Novotny, Rainer W.

    2015-02-01

    The XVIth International Conference on Calorimetry in High Energy Physics - CALOR 2014 - was held in Giessen, Germany from 6-11 April 2014 at the Science Campus of the University. It was hosted by the Justus-Liebig-University and the HIC for FAIR Helmholtz International Center. The series of conferences on calorimetry were started in 1990 at Fermilab and are focusing primarily on operating and future calorimeter systems within the Hadron and High-Energy Physics community without neglecting the impact on other fields such as Astrophysics or Medical Imaging. Confirmed by the impressive list of over 70 oral presentations, 5 posters and over 100 attendees, the field of calorimetry appears alive and attractive. The present volume contains the written contributions of almost all presentations which can be found at http://calor2014.de. Time slots of 15 or 30 minutes including discussion were allocated. The conference was accompanied by a small exhibition of several industrial companies related to the field. The day before the opening of the scientific program, Richard Wigmans gave an excellent and vivid tutorial on basic aspects on calorimetry meant as an introduction for students and conference attendees new in the field. The opening ceremony was used to give an impression of the present and future status and the scientific program of the new FAIR facility nearby at Darmstadt presented by Klaus Peters from GSI. The conference program of the first day was dedicated to the performance and required future upgrade of the LHC experiments, dominated by ATLAS, CMS and LHCb. The program of the next day contained specific aspects on electronics and readout as well as calorimetry in outer space. Several contributions discussed in detail new concepts for hadron calorimeters within the CALICE collaboration completed by a session on sampling calorimeters. The next sections were dedicated to operating and future calorimeters at various laboratories and covering a wide range of

  11. Water Calorimetry: A Correction to the Heat Defect Calculations

    PubMed Central

    Klassen, Norman V.; Ross, Carl K.

    2002-01-01

    In a recent publication, we used a reaction model (model III) to calculate the heat defect for the irradiation of aqueous solutions with ionizing radiation at 21 °C. Subsequent work has revealed that the literature value used for one of the rate constants in the model was incorrect. A revised model (model IIIR) incorporates the correct rate constant for 21 °C. Versions of models III and IIIR were created for irradiations at 4 °C. For our current water calorimetry protocol, the values of the heat defect for H2/O2-water (water saturated with a flow of 43 % H2 and 57 % O2, by volume) at 21 °C predicted by model III and model IIIR are similar but the value for 4 °C predicted by III is 30 % smaller than the value predicted by IIIR. Model IIIR predicts that the values of the heat defect at 21 °C and 4 °C lie within the range −0.023±0.002, in agreement with the values obtained from our water calorimetry measurements done using pure water and H2-saturated water at 21 °C and 4 °C. The yields of hydrogen peroxide in H2/O2-water at 21 °C and 4 °C were measured and agree with the predictions of model IIIR. Our water calorimetry measurements made with pure water and H2-saturated water are now of sufficient quality that they can be used to determine the heat defect for H2/O2-water better than can be done by simulations. However, consistency between the three systems continues to be an excellent check on water purity which is crucial, especially for the pure water system.

  12. Thermal expansivities of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry.

    PubMed

    Pandharipande, Pranav P; Makhatadze, George I

    2015-04-01

    The main goal of this work was to provide direct experimental evidence that the expansivity of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry (PPC), can serve as a proxy to characterize relative compactness of proteins, especially the denatured state ensemble. This is very important as currently only small angle X-ray scattering (SAXS), intrinsic viscosity and, to a lesser degree, fluorescence resonance transfer (FRET) experiments are capable of reporting on the compactness of denatured state ensembles. We combined the expansivity measurements with other biophysical methods (far-UV circular dichroism spectroscopy, differential scanning calorimetry, and small angle X-ray scattering). Three case studies of the effects of conformational changes on the expansivity of polypeptides in solution are presented. We have shown that expansivity appears to be insensitive to the helix-coil transition, and appears to reflect the changes in hydration of the side-chains. We also observed that the expansivity is sensitive to the global conformation of the polypeptide chain and thus can be potentially used to probe hydration of different collapsed states of denatured or even intrinsically disordered proteins. PMID:25602591

  13. Bridging Calorimetry and Simulation through Precise Calculations of Cucurbituril–Guest Binding Enthalpies

    PubMed Central

    2015-01-01

    We used microsecond time scale molecular dynamics simulations to compute, at high precision, binding enthalpies for cucurbit[7]uril (CB7) with eight guests in aqueous solution. The results correlate well with experimental data from previously published isothermal titration calorimetry studies, and decomposition of the computed binding enthalpies by interaction type provides plausible mechanistic insights. Thus, dispersion interactions appear to play a key role in stabilizing these complexes, due at least in part to the fact that their packing density is greater than that of water. On the other hand, strongly favorable Coulombic interactions between the host and guests are compensated by unfavorable solvent contributions, leaving relatively modest electrostatic contributions to the binding enthalpies. The better steric fit of the aliphatic guests into the circular host appears to explain why their binding enthalpies tend to be more favorable than those of the more planar aromatic guests. The present calculations also bear on the validity of the simulation force field. Somewhat unexpectedly, the TIP3P water yields better agreement with experiment than the TIP4P-Ew water model, although the latter is known to replicate the properties of pure water more accurately. More broadly, the present results demonstrate the potential for computational calorimetry to provide atomistic explanations for thermodynamic observations. PMID:25221445

  14. A new approach for non-contact calorimetry: system identification using pseudo-white noise perturbation

    NASA Astrophysics Data System (ADS)

    Schetelat, Pascal; Etay, Jacqueline

    2011-07-01

    This paper presents a new technique for non-contact calorimetry measurement of specific heat capacity and thermal conductivity. Based on pseudo-white noise modulation and system identification, commonly used in electronics and communication engineering, this procedure can be used to measure the transfer function of the sample temperature variation due to heating power variation. The heat capacity and internal heat transfer coefficient are then determined using the equivalence between the identified transfer functions of the temperatures measured at two locations and the analytical model proposed by Fecht and Johnson (Rev Sci Instrum 62:1299-1303, 1991) and Wunderlich and Fecht (Measur Sci Technol 16:402-416, 2005). This inverse problem is solved numerically using a Gauss-Seidel algorithm. A numerical simulation of a non-contact modulated calorimetry experiment is used to demonstrate the relevance of this new technique for indirect measurement of the heat capacity and heat transfer coefficients of solid samples presenting large Biot numbers ( Bi > 0.4).

  15. A Serious Game for Massive Training and Assessment of French Soldiers Involved in Forward Combat Casualty Care (3D-SC1): Development and Deployment

    PubMed Central

    Mérat, Stéphane; Malgras, Brice; Petit, Ludovic; Queran, Xavier; Bay, Christian; Boutonnet, Mathieu; Jault, Patrick; Ausset, Sylvain; Auroy, Yves; Perez, Jean Paul; Tesnière, Antoine; Pons, François; Mignon, Alexandre

    2016-01-01

    Background The French Military Health Service has standardized its military prehospital care policy in a ‘‘Sauvetage au Combat’’ (SC) program (Forward Combat Casualty Care). A major part of the SC training program relies on simulations, which are challenging and costly when dealing with more than 80,000 soldiers. In 2014, the French Military Health Service decided to develop and deploy 3D-SC1, a serious game (SG) intended to train and assess soldiers managing the early steps of SC. Objectives The purpose of this paper is to describe the creation and production of 3D-SC1 and to present its deployment. Methods A group of 10 experts and the Paris Descartes University Medical Simulation Department spin-off, Medusims, coproduced 3D-SC1. Medusims are virtual medical experiences using 3D real-time videogame technology (creation of an environment and avatars in different scenarios) designed for educational purposes (training and assessment) to simulate medical situations. These virtual situations have been created based on real cases and tested on mannequins by experts. Trainees are asked to manage specific situations according to best practices recommended by SC, and receive a score and a personalized feedback regarding their performance. Results The scenario simulated in the SG is an attack on a patrol of 3 soldiers with an improvised explosive device explosion as a result of which one soldier dies, one soldier is slightly stunned, and the third soldier experiences a leg amputation and other injuries. This scenario was first tested with mannequins in military simulation centers, before being transformed into a virtual 3D real-time scenario using a multi-support, multi–operating system platform, Unity. Processes of gamification and scoring were applied, with 2 levels of difficulty. A personalized debriefing was integrated at the end of the simulations. The design and production of the SG took 9 months. The deployment, performed in 3 months, has reached 84 of 96

  16. Effect of polyglycerol esters additive on palm oil crystallization using focused beam reflectance measurement and differential scanning calorimetry.

    PubMed

    Saw, M H; Hishamuddin, E; Chong, C L; Yeoh, C B; Lim, W H

    2017-01-01

    The effect of 0.1-0.7% (w/w) of polyglycerol esters (PGEmix-8) on palm oil crystallization was studied using focused beam reflectance measurement (FBRM) to analyze the in-line changes of crystal size distribution during the crystallization. FBRM results show that 0.1-0.5% (w/w) of PGEmix-8 did not significantly affect nucleation but slightly retarded crystal growth. The use of 0.7% (w/w) additive showed greater heterogeneous nucleation compared to those with lower dosages of additive. Crystal growth was also greatly reduced when using 0.7% (w/w) dosage. The morphological study indicated that the palm oil crystals were smaller and more even in size than when more additive was added. Isothermal crystallization studies using differential scanning calorimetry (DSC) showed increased inhibitory effects on palm oil crystal growth with increasing concentration of PGEmix-8. These results imply that PGEmix-8 is a nucleation enhancing and crystal growth retarding additive in palm oil crystallization at 0.7% (w/w) dosage. PMID:27507476

  17. The use of calorimetry in nuclear materials management

    SciTech Connect

    Nutter, J.D.; O`Hara, F.A.; Rodenburg, W.W.

    1996-07-01

    A calorimeter is a device to measure evolved or adsorbed heat. For our purposes, the heat measured is that associated with radioactive decay and the unit of measurement is the watt. Each time an atom decays, energy is released and absorbed by the surroundings and heat generated. For each isotope, this heat is a constant related to the energy of the decay particles and the half-life of the isotope. A point which is often overlooked is that calorimetry is one of the oldest techniques known for measuring radioactivity. In 1903, Pierre Curie and A. Laborde used a twin microcalorimeter to determine that one gram of radium generates about 100 calories per hour. Several months later, Curie and Dewar used liquid oxygen and hydrogen to show that the amount of energy developed by radium and other radioactive elements did not depend on temperature. At that time, this observation was extremely important. It indicated that the nature of radioactivity is entirely different and cannot be compared with any known phenomena. In all other thermal processes known in physics and chemistry, the rate at which heat is developed changes with temperature. In 1942, Monsanto was asked by General Leslie Groves, Head of the Manhattan Project, to accept the responsibility for the chemistry and metallurgy of radioactive polonium. Late in 1943, two Monsanto scientists began a study of the half-life of polonium-210 using calorimetry.

  18. The Pandora Software Development Kit for Particle Flow Calorimetry

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Thomson, M. A.

    2012-12-01

    Pandora is a robust and efficient framework for developing and running pattern-recognition algorithms. It was designed to perform particle flow calorimetry, which requires many complex pattern-recognition techniques to reconstruct the paths of individual particles through fine granularity detectors. The Pandora C++ software development kit (SDK) consists of a single library and a number of carefully designed application programming interfaces (APIs). A client application can use the Pandora APIs to pass details of tracks and hits/cells to the Pandora framework, which then creates and manages named lists of self-describing objects. These objects can be accessed by Pandora algorithms, which perform the pattern-recognition reconstruction. Development with the Pandora SDK promotes the creation of small, re-usable algorithms containing just the kernel of a specific operation. The algorithms are configured via XML and can be nested to perform complex reconstruction tasks. As the algorithms only access the Pandora objects in a controlled manner, via the APIs, the framework can perform most book-keeping and memory-management operations. The Pandora SDK has been fully exploited in the implementation of PandoraPFA, which uses over 60 algorithms to provide the state of the art in particle flow calorimetry for ILC and CLIC.

  19. Heat capacity of alkanolamines by differential scanning calorimetry

    SciTech Connect

    Chiu, L.F.; Liu, H.F.; Li, M.H.

    1999-05-01

    Measurements of the heat capacities of the alkanolamines monoethanolamine, diethanolamine, diglycolamine, di-2-propanolamine, triethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-l-propanol, and 2-piperidineethanol were performed from 30 to 80 C with a differential scanning calorimeter (DSC). The heat capacity of liquid water has been measured to verify the validity of the C{sub p} measurements. The measured C{sub p} of each alkanolamine has been expressed as a function of temperature. The estimated uncertainty of the measured heat capacities including the effect of impurities in a substance with a purity of 95% is {+-}3%. The measured heat capacities are, in general, of sufficient accuracy for most engineering-design calculations.

  20. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    SciTech Connect

    2010-02-17

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  1. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema

    None

    2011-10-06

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  2. Electrical conductivity, differential scanning calorimetry, X-ray diffraction, and 7Li nuclear magnetic resonance studies of n-C x H(2 x+1)OSO3Li ( x = 12, 14, 16, 18, and 20)

    NASA Astrophysics Data System (ADS)

    Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi

    2015-04-01

    Electrical conductivity ( σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2 x+1) OSO 3Li ( x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2 x+1) OSO 3Na and n-C x H (2 x+1) OSO 3K ( x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (Δ S). For n-C 18 H 37 OSO 3Li and n-C 20 H 41 OSO 3Li salts, each melting point produced a small Δ S mp value compared with the total entropy change in the solid phases (Δ S tr1+Δ S tr2). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7Li NMR spectra of n-C 18 H 37 OSO 3Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals.

  3. Online particle detection with Neural Networks based on topological calorimetry information

    NASA Astrophysics Data System (ADS)

    Ciodaro, T.; Deva, D.; de Seixas, J. M.; Damazio, D.

    2012-06-01

    This paper presents the latest results from the Ringer algorithm, which is based on artificial neural networks for the electron identification at the online filtering system of the ATLAS particle detector, in the context of the LHC experiment at CERN. The algorithm performs topological feature extraction using the ATLAS calorimetry information (energy measurements). The extracted information is presented to a neural network classifier. Studies showed that the Ringer algorithm achieves high detection efficiency, while keeping the false alarm rate low. Optimizations, guided by detailed analysis, reduced the algorithm execution time by 59%. Also, the total memory necessary to store the Ringer algorithm information represents less than 6.2 percent of the total filtering system amount.

  4. Isothermal titration calorimetry of ion-coupled membrane transporters

    PubMed Central

    SeCheol, Oh

    2015-01-01

    Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding - enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors. PMID:25676707

  5. Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry.

    PubMed

    Liu, Lijun; Wei, Chunyang; Guo, Yuyan; Rogers, William J; Sam Mannan, M

    2009-03-15

    Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified. PMID:18639378

  6. NEUTRON-ENHANCED CALORIMETRY FOR HADRONS (NECH): FINAL REPORT

    SciTech Connect

    Andrew Stroud, Lee Sawyer

    2012-08-31

    We present the results of a project to apply scintillator technology recently developed at Louisiana Tech University to hadronic calorimetry. In particular, we developed a prototype calorimeter module incorporating scintillator embedded with metal oxide nanoparticles as the active layers. These metal oxide nanoparticles of gadolinium oxide, have high cross-sections for interactions with slow neutrons. As a part fo this research project, we have developed a novel method for producing plastic scintillators with metal oxide nanoparticles evenly distributed through the plastic without aggregation.We will test the performance of the calorimeter module in test beam and with a neutron source, in order to measure the response to the neutron component of hadronic showers. We will supplement our detector prototyping activities with detailed studies of the effect of neutron component on the resolution of hadronic energy measurements, particular in the next generation of particle flow calorimeters.

  7. Fast Scanning Calorimetry Studies of Supercooled Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Deepanjan

    This dissertation is a compilation of research results of extensive Fast Scanning Calorimetry studies of two non-crystalline materials: Toluene and Water. Motivation for fundamental studies of non-crystalline phases, a brief overview of glassy materials and concepts and definitions related to them is provided in Chapter 1. Chapter 2 provides fundamentals and details of experimental apparata, experimental protocol and calibration procedure. Chapter 3 & 4 provides extensive studies of stable non-crystalline toluene films of micrometer and nanometer thicknesses grown by vapor deposition at distinct deposition rates and temperatures and probed by Fast Scanning Calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor -deposited samples of toluene during heating with rates in excess 100,000 K/s follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysis of the transformation kinetics of vapor deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics correlates with the surface roughness scale of the substrate, which is interpreted as evidence for kinetic anisotropy of the samples. We also show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited (VD) films of toluene are distinct from those of ordinary supercooled (OS) phase even when the deposition takes place at temperatures above the glass softening (Tg). The implications of these findings for the formation mechanism and structure of vapor deposited stable glasses are discussed. Chapter 5 and 6 provide detailed Fast Scanning Calorimetry studies

  8. Measuring the Imaginary Part of the Permittivity Using Calorimetry

    NASA Astrophysics Data System (ADS)

    Kashuri, Hektor; Sigdel, Krishna; Kashuri, Klaida; Iannacchione, Germano S.

    2011-03-01

    Modulated or AC calorimetry is a well established technique for measuring the temperature dependence of the heat capacity of many complex fluids. Employing a dielectric or RF heating method, the heat capacity, thermal conductivity, and the dielectric properties of the sample are all probed simultaneously. Combining the results obtained by this technique for the liquid crystal 4-n-pentyl-4-cyanophenyl (5CB) with those obtained by our novel AC calorimetric technique employing RF (dielectric) heating, we have been able to directly measure the temperature dependence of the imaginary part of the permittivity of this liquid crystal. Measurements were performed over a temperature range from 303 to 313 K, spanning the nematic to isotropic phase transition, as well as radio frequencies from 10 to 30 MHz Worcester Polytechnic Institute (WPI).

  9. Direct Animal Calorimetry, the Underused Gold Standard for Quantifying the Fire of Life*

    PubMed Central

    Kaiyala, Karl J.; Ramsay, Douglas S.

    2012-01-01

    Direct animal calorimetry, the gold standard method for quantifying animal heat production (HP), has been largely supplanted by respirometric indirect calorimetry owing to the relative ease and ready commercial availability of the latter technique. Direct calorimetry, however, can accurately quantify HP and thus metabolic rate (MR) in both metabolically normal and abnormal states, whereas respirometric indirect calorimetry relies on important assumptions that apparently have never been tested in animals with genetic or pharmacologically-induced alterations that dysregulate metabolic fuel partitioning and storage so as to promote obesity and/or diabetes. Contemporary obesity and diabetes research relies heavily on metabolically abnormal animals. Recent data implicating individual and group variation in the gut microbiome in obesity and diabetes raise important questions about transforming aerobic gas exchange into HP because 99% of gut bacteria are anaerobic and they outnumber eukaryotic cells in the body by ~10-fold. Recent credible work in non-standard laboratory animals documents substantial errors in respirometry-based estimates of HP. Accordingly, it seems obvious that new research employing simultaneous direct and indirect calorimetry (total calorimetry) will be essential to validate respirometric MR phenotyping in existing and future pharmacological and genetic models of obesity and diabetes. We also detail the use of total calorimetry with simultaneous core temperature assessment as a model for studying homeostatic control in a variety of experimental situations, including acute and chronic drug administration. Finally, we offer some tips on performing direct calorimetry, both singly and in combination with indirect calorimetry and core temperature assessment. PMID:20427023

  10. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    SciTech Connect

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  11. An Investigation of Thermal Characteristic of Mechanical Crimp Textured Polyester Yarn by Differential Scanning Calorimeter (DSC)

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Someshwar S.; Shaikh, Tasnim N.; Pratap, Arun

    2010-06-01

    Deficiencies related to the lack of bulk in flat continuous filament yarns make them unsuitable for apparel, home textiles as well as other applications such as car seat covering. Hence, texturising is employed to impart lofty and bulky characteristics to them. The two major texturising techniques employed for polyester yarn are false-twist and air-jet texturising. Out of these earlier technique depends on the thermoplasticity of the yarn being textured whereas the later one demands subsequent amount of compressed air to carry out cold fluid texturising. A new concept of mechanical crimp texturising has been designed to overcome these limitations of commercially successful techniques. In this new technique, pre-twisted FDY (Fully Drawn Yarn) flat multifilament yarn has been subjected to the higher false-twisting (depending on yarn fineness) action under the condition of underfeed (depending on ductility of parent yarn). The torque caused due to high level of false-twisting, forces the filaments to follow helical path at a certain angle (depends on magnitude of twist and denier per filament) to the filament yarn longitudinal axis. Internal stresses arising in single filaments tend to bend the filament and take the shape of spatial helical spring. After the yarn has passed through the false twisting unit, the initial twist would reassert itself and lock the already formed crimpy convolutions in position. Mechanical crimp textured polyester yarns with different pre-twist and false-twist levels have been subjected to thermal stress analysis using differential Scanning Calorimeter (DSC) in heat-cool-heat mode. The samples were heated at a rate of 10°C/minute. Almost all samples appear to be crystalline in nature. However, the melting endotherm does not show sharp peak. Instead, the diffuse nature of the peak is a signature of a partial crystalline nature (48%) of the samples. After melting the specimens, cooling of the same leads to crystallization of the material

  12. Irreversible Thermal Denaturation of β-Hemocyanin of Helix pomatia and its Substructures Studied by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Idakieva, Krassimira; Gielens, Constant; Siddiqui, Nurul I.; Doumanova, Lyubka; Vasseva, Boyka; Kostov, Georgi; Shnyrov, Valery L.

    2007-09-01

    The thermal denaturation of β -hemocyanin from the gastropod Helix pomatia (β -HpH) at neutral pH was studied by means of differential scanning calorimetry (DSC). The denaturation was completely irreversible as judged by the absence of any endotherm on rescanning previously scanned samples. Two transitions, with apparent transition temperatures (Tm) of ca. 84 °C (main transition) and ca. 88 °C (minor transition), were detected by DSC in 20 mM MOPS buffer, containing 0.1 M NaCl, 5mM CaCl2 and 5 mM MgCl2 at pH 7.2 (buffer A), using a heating rate of 1.0 Kmin-1. Both Tm values were dependent on the scanning rate, suggesting that the thermal denaturation of β -HpH is a kinetically controlled process. The Tm and specific enthalpy values (ΔHcal) for the thermal denaturation of β -HpH were found to be independent of the protein concentration, indicating that the dissociation of the protein into monomers does not take place before the rate-determining step of the process of thermal unfolding started. A successive annealing procedure was applied to obtain the experimental deconvolution of the irreversible thermal transitions. These transitions are tentatively attributed to the denaturation of, respectively, the wall (main transition) and the collar of the β -HpH molecule. The activation energies (EA) of both transitions were found to be similar (about 500 kJ mol-1). In 130 mM glycine/NaOH buffer, pH 9.6 (buffer B), with β -HpH dissociated into subunits, the calorimetric profile had a more complex character. This could be ascribed to a different stability of the functional units (FUs) constituting the β -HpH subunit. FU d, which in the cylindrical didecameric β -HpH molecule is located in the wall, was markedly less stable than FU g, which belongs to the collar. The thermal denaturation of FUs d and g was described by the two-state irreversible model. On the basis of this model, the parameters of the Arrhenius equation were calculated.

  13. Mobility and age of black carbon in two temperate grassland soils revealed by differential scanning calorimetry and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Leifeld, Jens; Feng, Xiaojuan; Eglinton, Timothy; Wacker, Lukas

    2015-04-01

    Black carbon (BC) is a natural component of soil organic matter (SOM) and abundant in many ecosystems. Its stability, due to its relative resistance to microbial decomposition, means it plays an important role in soil C sequestration. A recent review suggests that BC may be mobile in soil; hence, its contribution to a stable SOM pool may change over time due to its lateral or vertical reallocation (Rumpel et al. 2014). However, direct evidence of the mobility of BC, particularly with reference to its vertical mobility, is scarce. We studied the amount of BC in two temperate grassland fields (eutric clayey Camibsol,) that were established in 2001 on former cropland. Volumetric soil samples (0-50 cm, 5 cm increments) were taken at 10 spots in each field in 2001, 2006 and 2011. One of the fields was ploughed in 2007 and the sward was re-sown. BC content was measured by differential scanning calorimetry for a total number of c. 500 samples. The mean BC/OC ratio was 0.10 (±0.05) and reached 0.25 in some samples. Radiocarbon measurements from 24 bulk soil samples revealed relatively small 14C contents in 2001 (92±2.7 pMC) which increased over time (2006: 99.0±1.1 pMC; 2011: 99.1±1.1 pMC). Thermal fractionation of BC by DSC revealed calibrated BC ages of 400 to 1000 years (pMC 87-94), suggesting that BC originates from medieval and post-medieval fire clearings. The change in soil signature may have been caused by a preferential transport of old BC down the soil profile, leading to a selective enrichment of younger soil C over time. In line with this interpretation the DSC measurements suggest that in both fields, BC concentrations significantly decreased for most layers between 2001 and 2006. However, between 2006 and 2011, no further vertical reallocation was observed in the continuous grassland, whereas BC contents of the field ploughed in 2007 significantly increased in the top layers. Together, these data suggest that ploughing in 2001 triggered subsequent

  14. Temperature Modulated DSC and Stiffness Threshold in Ge_xSe_1-x Glasses

    NASA Astrophysics Data System (ADS)

    Bresser, W. J.; Feng, Xingwei; Boolchand, P.; Schilthuis, J.

    1997-03-01

    We have examined binary Ge_xSe_1-x glasses over a wide composition range 0 < x <0.34, using a TA Instruments Model 2920 MDSC. The glass transitions deduced from the heat flow increase monotonically with x or = 2(1+x), the average coordination number. The heat flow near Tg shows a rather striking threshold behavior (minimum) near x = 0.23, corresponding to the composition at which the glass network begins to abruptly stiffen as noted by an upshift in Raman mode frequencies(Xingwei Feng, et al., to be published.). The present observations suggest that the minimum in Cp change at Tg near the stiffness threshold, deduced from ordinary DSC(M. Tatsumisago, B.L. Halfpap, J.L. Green, S.M. Lindsay, and C.A. Angell, Phys. Rev. Lett. 64, 1549 (1990).), i.e., total heat flow, largely derives from the non-reversing component (relaxation related) heat flow near T_g.

  15. Study of thermal decomposition of methyl ethyl ketone peroxide using DSC and simulation.

    PubMed

    Tseng, Jo-Ming; Chang, Ying-Yu; Su, Teh-Sheng; Shu, Chi-Min

    2007-04-11

    Methyl ethyl ketone peroxide (MEKPO) is a typical organic peroxide with thermally unstable nature that has been broadly employed in the manufacturing process of acrylic resins, as a hardening agent for fiberglass-reinforced plastics, and as a curing agent for unsaturated polyester resins. The aim of this study was to identify the characteristics of MEKPO 31 wt.% while mixing with contaminants, such as H(2)SO(4), HCl, and NaCl under runaway conditions. To acquire the thermal runaway data, DSC and a simulation were used for thermal analysis. The results showed that the thermal decomposition of MEKPO and MEKPO+H(2)SO(4) follows two stages. The first one can be modeled by using an empirical nth order rate equation. The second stage can be modeled as autocatalytic. MEKPO+HCl and MEKPO+NaCl included two independent autocatalytic reactions. The decomposition of MEKPO in the presence of Cl- ions (added in MEKPO either in the form of HCl or NaCl) follows a significantly different path, an earlier decomposition "onset" temperature, higher amount of generated thermal power and smaller temperature of no return (T(NR)) and time to maximum rate (TMR) values. Simulations based on experimental data indicated that the effect of H(2)SO(4) was the most dangerous contaminant on MEKPO 31 wt.%. However, the impact of Cl ions was also important. It is therefore recommended that the means of fire fighting employed for this substance to be free of Cl-. PMID:16905247

  16. Thermodynamic optimization of individual steel database by means of systematic DSC measurements according the CALPHAD approach

    NASA Astrophysics Data System (ADS)

    Presoly, P.; Six, J.; Bernhard, C.

    2016-03-01

    Reliable thermodynamic data are essential information required for the design of new steel types and are a prerequisite to effective process optimization and simulation. Moreover, it is important to know the exact temperatures at which the high-temperature phase transformations (TLiquid, TSolid, TPerit, Tγ→δ) occur in order to describe the solidification sequence and to describe further processing parameters. By utilizing DTA/DSC measurements, our earlier experimental studies of selected commercial DP, TRIP and high-Mn TWIP steels, have indicated that currently commercially available databases can often not be utilised to reliably describe the behaviour and microstructural development in such complex alloy systems. Because of these ostensible deficiencies, an experimental study was undertaken in an attempt to determine the pertaining thermodynamic data to analyse the behaviour of the important five- component Fe-C-Si-Mn-Al alloy system. High purity model alloys with systematic alloy variations were prepared and utilized in order to determine the influence of individual alloying elements in this complex, but industrially important alloy system. The present study provides new validated experimental thermodynamic data and analysis of the five-component Fe-C-Si- Mn-Al system, which will allow the construction of new phase diagrams, prediction of solidification sequences and the assessment of micro-segregation.

  17. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    SciTech Connect

    Matsuda, Yu; Ike, Yuji; Matsui, Chihiro; Kodama, Masao; Kojima, Seiji

    2006-05-05

    Complex heat capacity, C{sub p}* = C{sub p}' - iC{sub p}'', of lithium borate glasses Li2O{center_dot}(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent C{sub p}* by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena.

  18. Reliable estimation of capillary transit time distributions using DSC-MRI

    PubMed Central

    Mouridsen, Kim; Hansen, Mikkel Bo; Østergaard, Leif; Jespersen, Sune Nørhøj

    2014-01-01

    The regional availability of oxygen in brain tissue is traditionally inferred from the magnitude of cerebral blood flow (CBF) and the concentration of oxygen in arterial blood. Measurements of CBF are therefore widely used in the localization of neuronal response to stimulation and in the evaluation of patients suspected of acute ischemic stroke or flow-limiting carotid stenosis. It was recently demonstrated that capillary transit time heterogeneity (CTH) limits maximum oxygen extraction fraction (OEFmax) that can be achieved for a given CBF. Here we present a statistical approach for determining CTH, mean transit time (MTT), and CBF using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). Using numerical simulations, we demonstrate that CTH, MTT, and OEFmax can be estimated with low bias and variance across a wide range of microvascular flow patterns, even at modest signal-to-noise ratios. Mean transit time estimated by singular value decomposition (SVD) deconvolution, however, is confounded by CTH. The proposed technique readily identifies malperfused tissue in acute stroke patients and appears to highlight information not detected by the standard SVD technique. We speculate that this technique permits the non-invasive detection of tissue with impaired oxygen delivery in neurologic disorders such as acute ischemic stroke and Alzheimer's disease during routine diagnostic imaging. PMID:24938401

  19. DSC study of the isothermal crystallization of iPP-CNF nanocomposites

    NASA Astrophysics Data System (ADS)

    Chipara, Dorina M.; Chipara, Mircea

    2013-03-01

    Nanocomposite materials have been obtained by dispersing vapor grown carbon nanofibers (VGCNFs) with diameters ranging between 60 and 100 nm and lengths between 30,000 and 100,000 nm supplied by Pyrograf Products, Inc (PR-24AG) within a polymer matrix - isotactic polypropylene (iPP) - type Marlex HLN-120-01 with density 0.906 g/cm3 and melt flow rate at 230 oC of 12 g/10 min, supplied by Philips Sumika Polypropylene Company. VGCNFs have been purified and disentangled by reflux in dichloromethane and deionized water followed by vacuum filtering (for 24 h) and drying at 110 oC for 24h. The nanocomposites were obtained by melt mixing at 180 oC for 9 minutes with a speed of 65 rpm followed by an additional mixing at 90 rpm for 5 minutes, using a HAAKE Rheomix, Nanocomposites loaded with various amounts of VGCNFs (0%, 1%, 2.5%, 5%, 7.5%, 10%, 15%, and 20% wt.) have been prepared and investigated by TA DSC Q-500. Isothermal crystallization was investigated in detail and analyzed by using an expression derived from the Avrami equation. The effect of the filler on the isothermal crystallization of iPP is discussed in detail. The research is focused on the effect of VGCNF on the degree of crystallization of iPP, crystallization rate, and dimensionality of the crystallization process. This research has been supported by National Science Foundation under DMR. Contract grant number 0934157.

  20. Change in physical structure of a phenol-spiked sapric histosol observed by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Ondruch, Pavel; Kucerik, Jiri; Schaumann, Gabriele E.

    2014-05-01

    Interactions of pollutants with soil organic matter (SOM), their fate and transformation are crucial for understanding of soil functions and properties. In past, many papers dealing with sorption of organic and inorganic compounds have been published. However, their aim was almost exceptionally fo-cused on the pollutants themselves, determination of sorption isotherms and influence of external factors, while the change in SOM supramolecular structure was usually ignored. The SOM structure is, however, very important, since the adsorbed pollutant might have a significant influence on soil stability and functions. Differential scanning calorimetry (DSC) represents a technique, which has been successfully used to analyze the physical structure and physico-chemical aging of SOM. It has been found out that water molecules progressively stabilize SOM (water molecule bridge (WaMB)) (Schaumann & Bertmer 2008). Those bridges connect and stabilize SOM and can be disrupted at higher temperature (WaMB transition; (Kunhi Mouvenchery et al. 2013; Schaumann et al. 2013). In the same temperature region melting of aliphatic moieties can be observed (Hu et al. 2000; Chilom & Rice 2005; Kucerik et al. submitted 2013). In this work, we studied the effect of phenol on the physical structure of sapric histosol. Phenol was dissolved in various solvents (water, acetone, hexane, methanol) and added to soils. After the evaporation of solvents by air drying, the sample was equilibrated at 76% relative humidity for 3 weeks. Using DSC, we investigated the influence of phenol on histosol structure and time dependence of melting temperature of aliphatic moieties and WaMB transition. While addition of pure organic solvent only resulted in slightly increased transition temperatures, both melting temperature and WaMB transition temperature were significantly reduced in most cases if phenol was dissolved in these solvents. Water treatment caused a decrease in WaMB transition temperature but

  1. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. PMID:23623332

  2. Preliminary Analysis of the Social and Scientific Impact of the UAEM-ININ M.Sc. and D.Sc. Graduate Programme in Medical Physics

    NASA Astrophysics Data System (ADS)

    Mitsoura, Eleni; Isaac-Olive, Keila; Torres-Garcia, Eugenio; Camacho-Lopez, Miguel Angel; Hardy-Perez, Alberto

    2010-12-01

    Sponsored by the International Atomic Energy Agency (IAEA) in 1994, the Instituto Nacional de Investigaciones Nucleares (ININ) started in Mexico a teaching and training programme (Diplomado) in Radiotherapy Medical Physics. Based on this experience, the Universidad Autónoma del Estado de México (UAEM) and the Instituto Nacional de Investigaciones Nucleares (ININ) launched two years later, the first Graduate Programme in Science (M.Sc. and D.Sc.), specialised in Medical Physics in Mexico. A preliminary analysis of the social and scientific impact of the UAEM-ININ Programme is presented in this work based on the achievements attained, regarding the number of graduated Medical Physicists, their geographic and academic origin, their current professional activities and the number of scientific publications produced as a result of the thesis, as well as their citations.

  3. DSC and TG Analysis of a Blended Binder Based on Waste Ceramic Powder and Portland Cement

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Trník, Anton; Kulovaná, Tereza; Scheinherrová, Lenka; Rahhal, Viviana; Irassar, Edgardo; Černý, Robert

    2016-03-01

    Cement industry belongs to the business sectors characteristic by high energy consumption and high {CO}2 generation. Therefore, any replacement of cement in concrete by waste materials can lead to immediate environmental benefits. In this paper, a possible use of waste ceramic powder in blended binders is studied. At first, the chemical composition of Portland cement and ceramic powder is analyzed using the X-ray fluorescence method. Then, thermal and mechanical characterization of hydrated blended binders containing up to 24 % ceramic is carried out within the time period of 2 days to 28 days. The differential scanning calorimetry and thermogravimetry measurements are performed in the temperature range of 25°C to 1000°C in an argon atmosphere. The measurement of compressive strength is done according to the European standards for cement mortars. The thermal analysis results in the identification of temperature and quantification of enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates dehydration and portlandite, vaterite and calcite decomposition. The portlandite content is found to decrease with time for all blends which provides the evidence of the pozzolanic activity of ceramic powder even within the limited monitoring time of 28 days. Taking into account the favorable results obtained in the measurement of compressive strength, it can be concluded that the applied waste ceramic powder can be successfully used as a supplementary cementing material to Portland cement in an amount of up to 24 mass%.

  4. Transfer kinetics from colloidal drug carriers and liposomes to biomembrane models: DSC studies

    PubMed Central

    Sarpietro, Maria Grazia; Castelli, Francesco

    2011-01-01

    The release of bioactive molecules by different delivery systems has been studied. We have proposed a protocol that takes into account a system that is able to carry out the uptake of a bioactive molecule released during the time, resembling an in vivo-like system, and for this reason we have used biomembrane models represented by multi-lamellar and unilamellar vesicles. The bioactive molecule loaded delivery system has been put in contact with the biomembrane model and the release has been evaluated, to consider the effect of the bioactive molecule on the biomembrane model thermotropic behavior, and to compare the results with those obtained when a pure drug interacts with the biomembrane model. The differential scanning calorimetry technique has been employed. Depending on the delivery system used, our research permits to evaluate the effect of different parameters on the bioactive molecule release, such as pH, drug loading degree, delivery system swelling, crosslinking agent, degree of cross-linking, and delivery system side chains. PMID:21430957

  5. Calorimetry by immersion into liquid nitrogen and liquid argon: a better way to determine the internal surface area of micropores.

    PubMed

    Navarrete, Ricardo; Llewellyn, Philip; Rouquerol, Françoise; Denoyel, Renaud; Rouquerol, Jean

    2004-09-15

    The aim of this work is to assess the internal surface area of a set of samples (either carbons or oxides, either porous or nonporous, either microporous or mesoporous) by microcalorimetry via immersion into liquid nitrogen or argon. We have made use of an isothermal, heat-flux microcalorimeter, initially designed and built in our laboratory for the sake of gas adsorption experiments at 77 or 87 K. It seems that immersion calorimetry into liquid nitrogen and argon makes it possible to go one step further in the determination of the internal surface area of micropores. PMID:15341849

  6. A microfabrication-based approach to quantitative isothermal titration calorimetry.

    PubMed

    Wang, Bin; Jia, Yuan; Lin, Qiao

    2016-04-15

    Isothermal titration calorimetry (ITC) directly measures heat evolved in a chemical reaction to determine equilibrium binding properties of biomolecular systems. Conventional ITC instruments are expensive, use complicated design and construction, and require long analysis times. Microfabricated calorimetric devices are promising, although they have yet to allow accurate, quantitative ITC measurements of biochemical reactions. This paper presents a microfabrication-based approach to integrated, quantitative ITC characterization of biomolecular interactions. The approach integrates microfabricated differential calorimetric sensors with microfluidic titration. Biomolecules and reagents are introduced at each of a series of molar ratios, mixed, and allowed to react. The reaction thermal power is differentially measured, and used to determine the thermodynamic profile of the biomolecular interactions. Implemented in a microdevice featuring thermally isolated, well-defined reaction volumes with minimized fluid evaporation as well as highly sensitive thermoelectric sensing, the approach enables accurate and quantitative ITC measurements of protein-ligand interactions under different isothermal conditions. Using the approach, we demonstrate ITC characterization of the binding of 18-Crown-6 with barium chloride, and the binding of ribonuclease A with cytidine 2'-monophosphate within reaction volumes of approximately 0.7 µL and at concentrations down to 2mM. For each binding system, the ITC measurements were completed with considerably reduced analysis times and material consumption, and yielded a complete thermodynamic profile of the molecular interaction in agreement with published data. This demonstrates the potential usefulness of our approach for biomolecular characterization in biomedical applications. PMID:26655185

  7. Calorimetry study of microwave absorption of some solid materials.

    PubMed

    He, Chun Lin; Ma, Shao Jian; Su, Xiu Juan; Chen, Yan Qing; Liang, Yu Shi

    2013-01-01

    In practice, the dielectric constant of a material varies the applied frequency the material composition, particle size, purity, temperature, physical state (solid or liquid), and moisture content. All of these parameters might change during processing, therefore, it is difficult to predict how well a material will absorb microwave energy in a given process. When the temperature is measured by a digital thermometer, it could not accurately reflect the true temperature of the bulk materials, especially for mixed materials. Thus, in this paper we measured the microwave absorption characteristics of different materials by calorimetry. The microwave power levels, irradiation times, and masses of the materials were varied. It was difficult to predict the microwave energy absorption characteristics of reagent-grade inorganic compounds based on their color, metallic cation, or water stoichiometry. CuO, MnO2, Fe3O4, and MnSO4 x H2O (Taishan) strongly absorbed microwave energy. Most of the remaining inorganic compounds were poor absorbers, with silica hardly absorbing any microwave energy. Carbon-based materials had significantly different microwave absorption characteristics. Activated carbon and coke were especially sensitive to microwaves, but different types of coal were poor absorbers. The jamesonite concentrate absorbed microwave energy strongly, while the zinc concentrate was a poor absorber. PMID:24779227

  8. Liposome/Graphene Oxide Interaction Studied by Isothermal Titration Calorimetry.

    PubMed

    Huang, Po-Jung Jimmy; Wang, Feng; Liu, Juewen

    2016-03-15

    The interaction between graphene oxide (GO) and lipid bilayers is important for fundamental surface science and many applications. In this work, isothermal titration calorimetry (ITC), cryo-TEM, and fluorescence spectroscopy were used to study the adsorption of three types of liposomes. Heat release was observed when GO was mixed with zwitterionic DOPC liposomes, while heat absorption occurred with cationic DOTAP liposomes. For comparison, anionic DOPG liposomes released heat when mixed with DOTAP. DOPC was adsorbed as intact liposomes, but DOTAP ruptured and induced stacking and folding of GO sheets. This study suggests the release of more water molecules from the GO surface when mixed with DOTAP liposomes. This can be rationalized by the full rupture of the DOTAP liposomes interacting with the whole GO surface, including hydrophobic regions, while DOPC liposomes only interact with a small area on GO near the edge, which is likely to be more hydrophilic. This interesting biointerfacial observation has enhanced our fundamental understanding of lipid/GO interactions. PMID:26908113

  9. Applying fast calorimetry on a spent nuclear fuel calorimeter

    SciTech Connect

    Liljenfeldt, Henrik

    2015-04-15

    Recently at Los Alamos National Laboratory, sophisticated prediction algorithms have been considered for the use of calorimetry for treaty verification. These algorithms aim to predict the equilibrium temperature based on early data and therefore be able to shorten the measurement time while maintaining good accuracy. The algorithms have been implemented in MATLAB and applied on existing equilibrium measurements from a spent nuclear fuel calorimeter located at the Swedish nuclear fuel interim storage facility. The results show significant improvements in measurement time in the order of 15 to 50 compared to equilibrium measurements, but cannot predict the heat accurately in less time than the currently used temperature increase method can. This Is both due to uncertainties in the calibration of the method as well as identified design features of the calorimeter that limits the usefulness of equilibrium type measurements. The conclusions of these findings are discussed, and suggestions of both improvements of the current calorimeter as well as what to keep in mind in a new design are given.

  10. Calorimetry of deformed aluminum reinforced with alumina particles

    SciTech Connect

    Srichai, M.B.; Dunand, D.C.; Mortensen, A. . Dept. of Materials Science and Engineering)

    1994-06-15

    It is known that stiff, elastic ceramic reinforcements used in metal matrix composites can strongly influence dislocation creation, annihilation and motion within the matrix. In particular, mechanical interaction between reinforcement and matrix may result in dislocation densities in reinforced metals that exceed greatly those found in the unreinforced matrix metal, processed and strained analogously to the composite. Dislocation densities in metals are generally measured using transmission electron microscopy; however several precautions are required with this technique, which are exacerbated in the case of metal matrix composites because of thermal strain mismatch between matrix and reinforcement. Differential scanning calorimetry offers an alternative method of measuring dislocation densities in deformed metals, which has its limitations (dislocation densities must be relatively high, and the matrix must be highly pure and must recrystallize), but is well established for unreinforced metals, and is particularly suited for the measurement of high dislocation densities. In what follows the authors present an exploration of the use of this technique for deformed particle reinforced metals.

  11. Adiabatic calorimetry (RSST and VSP) tests with sodium acetate

    SciTech Connect

    Kirch, N.W.

    1993-09-01

    As requested in the subject reference, adiabatic calorimetry (RSST and VSP) tests have been performed with sodium acetate covering TOC concentrations from 3 to 7% with the following results: Exothermic activity noted around 200{degrees}C. Propagating reaction initiated at about 300{degrees}C. Required TOC concentration for propagation estimated at about 6 w% (dry mixture) or about 20 w% sodium acetate. Heat of reaction estimated to be 3.7 MJ per kg of sodium acetate (based on VSP test with 3 w% TOC and using a dry mixture specific heat of 1000 J kg{sup {minus}1} K{sup {minus}1}). Based upon the above results we estimate that a moisture content in excess of 14 w% would prevent a propagating reaction of a stoichiometric mixture of fuel and oxidizer ({approximately} 38 w% sodium acetate and {approximately}62 w% sodium nitrate). Assuming that the fuel can be treated as sodium acetate equivalent, and considering that the moisture content in the organic containing waste generally is believed to be in excess of 14 w%, it follows that the possibility of propagating reactions in the Hanford waste tanks can be ruled out.

  12. Combined Forward Calorimetry Option for Phase II CMS Endcap Upgrade

    NASA Astrophysics Data System (ADS)

    Akchurin, Nural

    2015-02-01

    Traditionally, EM and HAD compartments are thought to be separate and are often optimized individually. However, it is possible to optimize a robust and economical combined calorimeter system for myriad physics objectives. By employing event-by-event compensation afforded by the dual-readout technique, we have shown that excellent jet performance can be attained with a longitudinally un-segmented calorimeter that is calibrated only with electrons. In addition, the linear hadronic energy scale renders complex off-line correction schemes unnecessary. The proposed replacement of the CMS EE and HE calorimeters with a single Combined Forward Calorimeter (CFC) shows excellent jet performance complemented by good EM object detection. In this paper, we give brief snapshots on basic design criteria, timing characteristics of Cherenkov and scintillation pulses, trigger generation criteria and performance under high radiation fields. Although CMS has recently chosen different technologies for its endcap calorimetry in Phase II, the concepts developed here are likely to remain valuable for some time to come.

  13. Energetics of adsorbed CH3 on Pt(111) by calorimetry.

    PubMed

    Karp, Eric M; Silbaugh, Trent L; Campbell, Charles T

    2013-04-01

    The enthalpy and sticking probability for the dissociative adsorption of methyl iodide were measured on Pt(111) at 320 K and at low coverages (up to 0.04 ML, where 1 ML is equal to one adsorbate molecule for every surface Pt atom) using single crystal adsorption calorimetry (SCAC). At this temperature and in this coverage range, methyl iodide produces adsorbed methyl (CH(3,ad)) plus an iodine adatom (I(ad)). Combining the heat of this reaction with reported energetics for Iad gives the standard heat of formation of adsorbed methyl, ΔH(f)(0)(CH3,ad), to be −53 kJ/mol and a Pt(111)–CH3 bond energy of 197 kJ/mol. (The error bar of ±20 kJ/mol for both values is limited by the reported heat of formation of I(ad).) This is the first direct measurement of these values for any alkyl fragment on any surface. PMID:23461481

  14. Academic genealogy and direct calorimetry: a personal account.

    PubMed

    Jackson, Donald C

    2011-06-01

    Each of us as a scientist has an academic legacy that consists of our mentors and their mentors continuing back for many generations. Here, I describe two genealogies of my own: one through my PhD advisor, H. T. (Ted) Hammel, and the other through my postdoctoral mentor, Knut Schmidt-Nielsen. Each of these pathways includes distingished scientists who were all major figures in their day. The striking aspect, however, is that of the 14 individuals discussed, including myself, 10 individuals used the technique of direct calorimetry to study metabolic heat production in humans or other animals. Indeed, the patriarchs of my PhD genealogy, Antoine Lavoisier and Pierre Simon Laplace, were the inventors of this technique and the first to use it in animal studies. Brief summaries of the major accomplishments of each my scientific ancestors are given followed by a discussion of the variety of calorimeters and the scientific studies in which they were used. Finally, readers are encouraged to explore their own academic legacies as a way of honoring those who prepared the way for us. PMID:21652494

  15. Explicit formulation of titration models for isothermal titration calorimetry.

    PubMed

    Poon, Gregory M K

    2010-05-15

    Isothermal titration calorimetry (ITC) produces a differential heat signal with respect to the total titrant concentration. This feature gives ITC excellent sensitivity for studying the thermodynamics of complex biomolecular interactions in solution. Currently, numerical methods for data fitting are based primarily on indirect approaches rooted in the usual practice of formulating biochemical models in terms of integrated variables. Here, a direct approach is presented wherein ITC models are formulated and solved as numerical initial value problems for data fitting and simulation purposes. To do so, the ITC signal is cast explicitly as a first-order ordinary differential equation (ODE) with total titrant concentration as independent variable and the concentration of a bound or free ligand species as dependent variable. This approach was applied to four ligand-receptor binding and homotropic dissociation models. Qualitative analysis of the explicit ODEs offers insights into the behavior of the models that would be inaccessible to indirect methods of analysis. Numerical ODEs are also highly compatible with regression analysis. Since solutions to numerical initial value problems are straightforward to implement on common computing platforms in the biochemical laboratory, this method is expected to facilitate the development of ITC models tailored to any experimental system of interest. PMID:20100451

  16. High resolution optical calorimetry for synchrotron microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Ackerly, T.; Crosbie, J. C.; Fouras, A.; Sheard, G. J.; Higgins, S.; Lewis, R. A.

    2011-03-01

    We propose the application of optical calorimetry to measure the peak to valley ratio for synchrotron microbeam radiation therapy (MRT). We use a modified Schlieren approach known as reference image topography (RIT) which enables one to obtain a map of the rate of change of the refractive index in a water bath from which the absorbed dose can be determined with sufficient spatial accuracy to determine the peak to valley ratio. We modelled the calorimetric properties of X-rays using a heated wire in a water bath. Our RIT system comprised a light source, a textured reference object and a camera and lens combination. We measured temperature contours and showed a plume rising from the heated wire. The total temperature change in water was 12 degrees C, 500 times greater than the calculated change from a 1 ms exposure on a synchrotron. At 1.0 ms, thermal diffusion will be the major cause of uncertainty in determining the peak to valley ratio, and we calculate thermal diffusion will reduce the measured peak to valley ratio to 76% of its initial value, but the individual microbeams will still resolve. We demonstrate proof of concept for measuring X-ray dose using a modified RIT method.

  17. On the interpretation of differential scanning calorimetry results for thermoelastic martensitic transformations: Athermal versus thermally activated kinetics

    SciTech Connect

    Van Humbeeck, J.; Planes, A.

    1996-05-01

    Experimentally, two distinct classes of martensitic transformations are considered: athermal and isothermal. In the former class, on cooling, at some well-defined start temperature (M{sub s}), isolated small regions of the martensitic product begin to appear in the parent phase. The transformation at any temperature appears to be instantaneous in practical time scales, and the amount of transformed material (x) does not depend on time, i.e., it increases at each step of lowering temperature. The transition is not completed until the temperature is lowered below M{sub f} (martensite finish temperature). The transformation temperatures are only determined by chemical (composition and degree of order) and microstructural factors. The external controlling parameter (T or applied stress) determines the free energy difference between the high and the low temperature phases, which provides the driving force for the transition. In the development of athermal martensite activation kinetics is secondary. Athermal martensite, as observed in the well known shape memory alloys Cu-Zn-Al, Cu-Al-Ni and Ni-Ti, cannot be attributed to a thermally activated mechanism for which kinetics are generally described by the Arrhenius rate equation. However, the latter has been applied by Lipe and Morris to results for the Martensitic Transformation of Cu-Al-Ni-B-Mn obtained by conventional Differential Scanning Calorimetry (DSC). It is the concern of the authors of this letter to point out the incongruences arising from the analysis of calorimetric results, corresponding to forward and reverse thermoelastic martensitic transformations, in terms of standard kinetic analysis based on the Arrhenius rate equation.

  18. The Thermal Conductivity Measurements of Solid Samples by Heat Flux Differantial Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Kök, M.; Aydoǧdu, Y.

    2007-04-01

    The thermal conductivity of polyvinylchloride (PVC), polysytrene (PS) and polypropylene (PP) were measured by heat flux DSC. Our results are in good agreement with the results observed by different methods.

  19. Correlation of the penetration enhancement with the influence of an alcohol/tocopheryl polyethylene glycol succinate (TPGS) cosolvent system on the molecular structure of the stratum corneum of nude mouse skin as examined by microscopic FTIR/DSC

    NASA Astrophysics Data System (ADS)

    Liou, Yi-Bo; Ho, Hsiu-O.; Chen, Shin-Yi; Sheu, Ming-Thau

    2009-10-01

    Tocopheryl polyethylene glycol succinate (TPGS) is a water-soluble derivative of natural source of vitamin E, which possesses a dual nature of lipophilicity and hydrophilicity, similar to a surface-active agent. The penetration enhancement of estradiol by an ethanol and TPGS cosolvent system (EtOH/TPGS) has been confirmed. In this study, the correlation of the penetration enhancement with the influence of the EtOH/TPGS cosolvent system on biophysical changes of the stratum corneum (SC) as examined by Fourier transformation infrared spectrometry differential scanning calorimetry (FTIR/DSC) was investigated. Thermotropic changes in the asymmetrical and symmetrical C-H stretching of hydrocarbon chains of lipids, and amide I and II bands that characterize the protein structure of the SC treated with different concentrations of the EtOH/TPGS cosolvent were examined in this investigation. Results demonstrated that a strong correlation of the influence on biophysical changes of the SC treated with the EtOH/TPGS cosolvent system with the penetration enhancement of estradiol by the corresponding cosolvent system was not evident. It was concluded that the incorporation of TPGS in the cosolvent system seemed only to have insignificantly modified the structural features of the SC. It was not obvious that the penetrant had encountered these modifications resulting in an improvement in the penetration of estradiol by TPGS.

  20. The Phase Structures of Nylon 6.6 as Studied by Temperature-modulated Calorimetry and Their Link to X-ray Structure and Molecular Motion.

    SciTech Connect

    Qui, Wulin; Habenschuss, Anton {Tony}; Wunderlich, Bernhard {nmn}

    2007-01-01

    The phase behavior of semicrystalline, dry nylon 6.6 is analyzed on the basis of differential scanning calorimetry, DSC, and quasi-isothermal, temperature-modulated DSC, TMDSC. The data were collected over the temperature range from below the glass transitions to above the isotropization. Based on the contributions of the vibrational motion to the heat capacity, as is available from the ATHAS Data Bank, and the multifaceted new calorimetry, as well as on information on X-ray diffraction, molecular dynamics simulation of paraffin crystals, and quasielastic neutron scattering, the following observations are made: (a) beginning at the glass transition temperature of the mobile-amorphous phase (Tg= 323 K), a broadened transition of the semicrystalline sample is observed which reaches to 342 K (Tg = 332.7 K). An additional rigid-amorphous phase, RAF, undergoes its separate, broad glass transition immediately thereafter (340-400 K, Tg {approx} 370 K). (b) The transition of the RAF, in turn, overlaps with increasing large-amplitude motion of the CH2 groups within the crystals and latent heat effects due to melting, recrystallization, and crystal annealing. (c) From 390 to 480 K the heat capacity of the crystals increasingly exceeds that of the melt due to additional entropy (disordering) contributions. Above 440 K, close to the Brill temperature, the heat capacity seems to drop to the level of the melt. (d) If observation (c) is confirmed, some locally reversible melting is present on the crystal surfaces. (e) The increasing large-amplitude motion is described as a glass transition of the crystals, occurring below the melting point, at 409 K. The assumption of a separate glass transition in the ordered phase was previously successful in analyzing aliphatic poly(oxide)s and mesophases. The full description of the globally metastable, semicrystalline phase structure of nylons, thus, needs information on the glass transitions of the two amorphous phases and the ordered phase

  1. Annual meeting of the Calorimetry Exchange Program: minutes--April 24-25, 1991

    SciTech Connect

    1991-12-31

    On April 24-25, 1991, people from seven DOE organizations participated in the annual meeting of the Calorimetry Exchange Program. The meeting featured a review of the statistical analysis of the calorimetry and gamma-ray data submitted to the exchange program during 1990. The meeting also enabled the group to review progress of five projects concerning a tritium exchange program, reprogramming of the database, a catalogue of measurement techniques, additional samples, and recharacterization of the current sample. There were presentations on recent advances in calorimetry and gamma-ray measurements.

  2. Bridging Experiments and Native-Centric Simulations of a Downhill Folding Protein.

    PubMed

    Naganathan, Athi N; De Sancho, David

    2015-11-25

    Experiments and atomistic simulations have independently contributed to the mechanistic understanding of protein folding. However, a coherent detailed picture explicitly combining both is currently lacking, a problem that seriously limits the amount of information that can be extracted. An alternative to atomistic models with physics-based potentials is the native-centric (i.e., Go̅ type) coarse-grained models, which for many years have been successfully employed to qualitatively understand features of protein folding energy landscapes. Again, quantitative validation of Go̅ models against experimental equilibrium unfolding curves is often not attempted. Here we use an atomistic topology-based model to study the folding mechanism of PDD, a protein that folds over a marginal thermodynamic barrier of ∼0.5 kBT at midpoint conditions. We find that the simulations are in exquisite agreement with several equilibrium experimental measurements including differential scanning calorimetry (DSC), an observable that is possibly the most challenging to reproduce from explicit-chain models. The dynamics, inferred using a detailed Markov state model, display a classical Chevron-like trend with a continuum of relaxation times under both folding and unfolding conditions, a signature feature of downhill folding. The number of populated microstates and the connectivity between them are shown to be temperature dependent with a maximum near the thermal denaturation midpoint, thus linking the macroscopic observation of a peak in the DSC profile of downhill folding proteins and the underlying microstate dynamics. The mechanistic picture derived from our analysis thus sheds light on the intricate and tunable nature of the downhill protein folding ensembles. In parallel, our work highlights the power of coarse-grained models to reproduce experiments at a quantitative level while also pointing at specific directions for their improvement. PMID:26524123

  3. Calorimetry exchange program amendment to 3rd quarter CY92 report LLNL isotopic data

    SciTech Connect

    Barnett, T.M.

    1996-08-01

    This report is a series of ammendments to the Calorimetry Exchange Quarterly Data Report for third quarter CY1992. The ammendment is needed due to reporting errors encountered in the Lawrence Livermore National Laboratory isotopic data.

  4. Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Courses.

    ERIC Educational Resources Information Center

    Temme, Susan M.

    1995-01-01

    Describes an exercise designed to be used in an Advanced Placement (AP) chemistry course to accompany the study of thermodynamics. Uses Differential Scanning Calorimetry in teaching the concepts of thermochemistry and thermodynamics. (JRH)

  5. Calorimetry in Medical Applications: Single-Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Chen, C.-T.

    2006-10-27

    Positron emission tomography (PET) and single-photon emission computed tomography (SPECT), two nuclear medicine imaging modalities broadly used in clinics and research, share many common instrumentation, detector, and electronics technology platforms with calorimetry in high-energy physics, astronomy, and other physics sciences. Historically, advances made in calorimetry had played major roles in the development of novel approaches and critical technologies essential to the evolution of PET and SPECT. There have also been examples in which PET/SPECT developments had led to new techniques in calorimetry for other application areas. In recent years, several innovations have propelled advances in both calorimetry in general and PET/SPECT in particular. Examples include time-of-flight (TOF) measurements, silicon photomultipliers (SiPMs), etc.

  6. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.

    ERIC Educational Resources Information Center

    Muyskens, Mark A.

    1997-01-01

    Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)

  7. Development of GEM-Based Digital Hadron Calorimetry Using the SLAC KPiX Chip

    SciTech Connect

    White, A.; /Texas U., Arlington /Washington U., Seattle /Unlisted /SLAC

    2012-04-12

    The development of Digital Hadron Calorimetry for the SiD detector Concept for the International Linear Collider is described. The jet energy requirements of the ILC physics program are discussed. The concept of GEM-based digital hadron calorimetry is presented, followed by a description of, and results from, prototype detectors. Plans are described for the construction of 1m{sup 2} GEM-DHCAL planes to be tested as part of a future calorimeter stack.

  8. Relaxation process of Fe(CuNb)SiB amorphous alloys investigated by dynamical calorimetry

    SciTech Connect

    Zhu, J.; Clavaguera-Mora, M.T.; Clavaguera, N.

    1997-03-01

    Differential scanning calorimetry and dynamic differential scanning calorimetry were used to analyze the relaxation process of Fe(CuNb)SiB amorphous alloys. The Curie temperature (T{sub C}) evolution of the amorphous phase during relaxation as a function of heating rate, time and pre-annealing temperature were measured. Two distinct relaxation processes are observed, consequent with topological and chemical short range order changes. {copyright} {ital 1997 American Institute of Physics.}

  9. Simultaneous Calorimetric, Dielectric, and SAXS/WAXS Experiments During Polymer Crystallization

    NASA Astrophysics Data System (ADS)

    Wurm, A.; Minakov, A. A.; Schick, C.

    As extensively described in Chaps. 5 and 7, high-intensity synchrotron radiation offers the possibility to perform simultaneously and in real time small, medium, and wide angle X-ray scattering (SAXS, MAXS, and WAXS, nobreak respectively). In order to understand a broad range of physical phenomena like, for example nucleation, crystallization, and other phase transitions in polymers, polymer-based nobreak composites, or in liquid crystals simultaneous experiments with a nobreak combination of different methods are useful. Due to different sample geometry and thermal nobreak conditions, it is usually difficult to compare the results of different individual experiments. As an important supplement to the classical techniques for studying crystallization like SAXS, WAXS, or differential scanning calorimetry, measurements which test molecular mobility like dielectric or mechanical spectroscopy are of interest during isothermal and non-isothermal crystallization. From such simultaneous experiments, we can learn about the existence of pre-ordered structures before formation of crystals, as detected by DSC or X-ray scattering. In this chapter, we present the development of a device for simultaneous measurements of electrical properties and SAXS/WAXS intensities, which was extended to a microcalorimeter and allows measuring thermal properties like heat capacity and thermal conductivity additionally at the same time and at the same sample volume.

  10. Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion.

    PubMed

    Hao, Fang; Jing, Mingyang; Zhao, Xingchen; Liu, Rutao

    2015-02-01

    In this research, the binding mechanism of Cu(2+) to bovine liver catalase (BLC) was studied by fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC) and molecular docking methods. The cellar experiment was firstly carried out to investigate the inhibition effect of catalase. During the fluorescence quenching study, after correcting the inner filter effect (IFE), the fluorescence of BLC was found to be quenched by Cu(2+). The quenching mechanism was determined by fluorescence lifetime measurement, and was confirmed to be the dynamic mode. The secondary structure content of BLC was changed by the addition of Cu(2+), as revealed by UV-vis absorption and CD spectra, which further induces the decrease in BLC activity. Molecular simulation study indicates that Cu(2+) is located between two β-sheets and two random coils of BLC near to the heme group, and interacts with His 74 and Ser 113 residues near a hydrophilic area. The decrease of α-helix and the binding of His 74 are considered to be the major reason for the inhibition of BLC activity caused by Cu(2+). The ITC results indicate that the binding stoichiometry of Cu(2+) to catalase is 11.4. Moreover, the binding of Cu(2+) to BLC destroyed H-bonds, which was confirmed by the CD result. PMID:25618814

  11. Application of isothermal titration calorimetry as a tool to study natural product interactions.

    PubMed

    Callies, O; Hernández Daranas, A

    2016-07-28

    Covering: up to February 2015Over the past twenty-five years, isothermal titration calorimetry (ITC) has become a potent tool for the study a great variety of molecular interactions. This technique is able to provide a complete thermodynamic profile of an interaction process in a single experiment, with a series of advantages in comparison to other comparable techniques, such as less amount of sample or no need of chemical modification or labelling. It is thus not surprising that ITC has been applied to study the manifold types of interactions of natural products to get new insights into the molecular key factors implied in the complexation process of this type of compounds. This review provides an overview over the applications of ITC as a potent tool to investigate interactions of natural products with proteins, nucleic acids, oligosaccharides, and other types of receptors. The examples have been selected depending on the impact that this technique had during the investigation and revision of the interactions involved in the bioactivity of a compound, lead optimization or technical applications. PMID:27186603

  12. CALOCUBE: an approach to high-granularity and homogenous calorimetry for space based detectors

    NASA Astrophysics Data System (ADS)

    Bongi, M.; Adriani, O.; Albergo, S.; Auditore, L.; Bagliesi, M. G.; Berti, E.; Bigongiari, G.; Boezio, M.; Bonechi, L.; Bonechi, S.; Bonvicini, V.; Bottai, S.; Brogi, P.; Carotenuto, G.; Cassese, A.; Castellini, G.; Cattaneo, P. W.; Cauz, D.; Cumani, P.; D'Alessandro, R.; Detti, S.; Fasoli, M.; Gregorio, A.; Lamberto, A.; Lenzi, P.; Maestro, P.; Marrocchesi, P. S.; Mezzasalma, A.; Miritello, M.; Mori, N.; Papini, P.; Pauletta, G.; Rappazzo, G. F.; Rappoldi, A.; Ricciarini, S.; Spillantini, P.; Starodubtsev, O.; Sulaj, A.; Tiberio, A.; Trifirò, A.; Trimarchi, M.; Vannuccini, E.; Vedda, A.; Zampa, G.; Zampa, N.; Zerbo, B.

    2015-02-01

    Future space experiments dedicated to the observation of high-energy gamma and cosmic rays will increasingly rely on a highly performing calorimetry apparatus, and their physics performance will be primarily determined by the geometrical dimensions and the energy resolution of the calorimeter deployed. Thus it is extremely important to optimize its geometrical acceptance, the granularity, and its absorption depth for the measurement of the particle energy with respect to the total mass of the apparatus which is the most important constraint for a space launch. The proposed design tries to satisfy these criteria while staying within a total mass budget of about 1.6 tons. Calocube is a homogeneous calorimeter instrumented with Cesium iodide (CsI) crystals, whose geometry is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance; granularity is obtained by filling the cubic volume with small cubic CsI crystals. The total radiation length in any direction is more than adequate for optimal electromagnetic particle identification and energy measurement, whilst the interaction length is at least suficient to allow a precise reconstruction of hadronic showers. Optimal values for the size of the crystals and spacing among them have been studied. The design forms the basis of a three-year R&D activity which has been approved and financed by INFN. An overall description of the system, as well as results from preliminary tests on particle beams will be described.

  13. Advanced monolithic active pixel sensors for tracking, vertexing and calorimetry with full CMOS capability

    NASA Astrophysics Data System (ADS)

    Stanitzki, M.; SPiDeR Collaboration, www. spider. ac. uk

    2011-09-01

    We present test results from the "TPAC" and "F ORTIS" sensors produced using the 180 nm CMOS INMAPS process. The TPAC sensor has a 50 μm pixel size with advanced in-pixel electronics. Although TPAC was developed for digital electromagnetic calorimetry, the technology can be readily extended to tracking and vertexing applications where highly granular pixels with in-pixel intelligence are required. By way of example, a variant of the TPAC sensor has been proposed for the Super B vertex detector. The F ORTIS sensor is a prototype with several pixel variants to study the performance of a four transistors (4T) architecture and is the first sensor of this type tested for particle physics applications. TPAC and F ORTIS sensors have been fabricated with some of the processing innovations available in INMAPS such as deep p-wells and high-resistivity epitaxial layers. The performance of these sensor variants has been measured both in the laboratory and at test beams and results showing significant improvements due to these innovations are presented. We have recently manufactured the "C HERWELL" sensor, building on the experience with both TPAC and F ORTIS and making use of the 4T approach. C HERWELL is designed for tracking and vertexing and has an integrated ADC and targets very low-noise performance. The principal features of C HERWELL are described.

  14. Isothermal calorimetry investigation of Li{sub 1+x}Mn{sub 2-y}Al{sub z}O{sub 4} spinel.

    SciTech Connect

    Lu, W.; Belharouak, I.; Park, S. H.; Sun, Y. K; Amine, K.; Chemical Engineering; Hanyang Univ.

    2007-05-25

    The heat generation of LiMn{sub 2}O{sub 4}, Li{sub 1.156}Mn{sub 1.844}O{sub 4}, and Li{sub 1.06}Mn{sub 1.89}Al{sub 0.05}O{sub 4} spinel cathode materials in a half-cell system was investigated by isothermal micro-calorimetry (IMC). The heat variations of the Li/LiMn{sub 2}O{sub 4} cell during charging were attributed to the LiMn{sub 2}O{sub 4} phase transition and order/disorder changes. This heat variation was largely suppressed when the stoichiometric spinel was doped with excess lithium or lithium and aluminum. The calculated entropy change (dE/dT) from the IMC confirmed that the order/disorder change of LiMn{sub 2}O{sub 4}, which occurs in the middle of the charge, was largely suppressed with lithium or lithium and aluminum doping. The dE/dT values obtained did not agree between the charge and the discharge at room temperature (25 C), which was attributed to cell self-discharge. This discrepancy was not observed at low temperature (10 C). Differential scanning calorimeter (DSC) results showed that the fully charged spinel with lithium doping has better thermal stability.

  15. Dysspondyloenchondromatosis (DSC) associated with COL2A1 mutation: Clinical and radiological overlap with spondyloepimetaphyseal dysplasia-Strudwick type (SEMD-S).

    PubMed

    Merrick, Blair; Calder, Alistair; Wakeling, Emma

    2015-12-01

    Dysspondyloenchondromatosis (DSC) is a rare skeletal dysplasia characterized by enchondroma-like lesions and anisospondyly. The former leads to discrepancies in limb length, and the latter, to progressive kyphoscoliosis. Two recent cases have highlighted the genetic heterogeneity of DSC, one demonstrating the presence and, the other, the absence of a COL2A1 mutation. This may have important clinical implications, for example, screening for complications including atlanto-axial instability associated with type II collagenopathies, as well as long-term patient management. We report on a case with radiographic features of DSC with overlap into the type II collagenopathy spondyloepimetaphyseal dysplasia, Strudwick type, who was found to carry a novel heterozygous mutation in the COL2A1 gene. Testing for COL2A1 mutations should be performed in all patients with radiological features of DSC. Further research is needed to identify the underlying molecular cause in cases where no COL2A1 mutation is identified. PMID:26250472

  16. Evaluation of the amorphous content of lactose by solution calorimetry and Raman spectroscopy.

    PubMed

    Katainen, Erja; Niemelä, Pentti; Harjunen, Päivi; Suhonen, Janne; Järvinen, Kristiina

    2005-11-15

    Solution calorimetry can be used to determine the amorphous content of a compound when the solubility and dissolution rate of the compound in the chosen solvent are reasonably high. Sometimes, it can be difficult find a solvent in which a sample is freely soluble. The present study evaluated the use of solution calorimetry for the assessment of the amorphous content of a sample that is poorly soluble in a solvent. Physical mixtures of lactose and spray-dried lactose samples (the amorphous content varied from 0 to 100%) were analyzed by a solution calorimeter and the results were compared with Raman spectroscopy determinations. The heat of solvation of the samples was determined by solution calorimetry in organic solvents MeOH, EtOH, ACN, THF, acetone (400mg sample/100ml solvent). Lactose is virtually insoluble in ACN, THF and acetone and very slightly soluble in EtOH and MeOH. The amorphous content of the samples could not be determined by solution calorimetry in EtOH, ACN, THF or acetone. However, an excellent correlation was observed between the heat of solvation and the amorphous content of the samples in MeOH. Furthermore, the heat of solvation values of the samples in MeOH showed a linear correlation with the Raman quantifications. Therefore, our results demonstrate that solution calorimetry may represent a rapid and simple method for determining the amorphous content also in samples that are not freely soluble in the solvent. PMID:18970276

  17. Indirect calorimetry in critically ill patients: role of the clinical dietitian in interpreting results.

    PubMed

    Porter, C; Cohen, N H

    1996-01-01

    Evaluation and interpretation of energy needs of critically ill patients require the expertise of clinical dietitians: Dietitians must be knowledgeable about the methods available to quantify energy needs and able to communicate effectively with physicians and nurses regarding nutritional requirements. Several prediction equations are available for calculating energy needs of critically ill patients. Indirect calorimetry is also used frequently to measure energy requirements in this patient population. This article defines when energy expenditure measured by indirect calorimetry may provide clinically useful information. Data obtained by indirect calorimetry must be interpreted carefully. Indirect calorimetry is based on the equations for oxidation of carbohydrate, protein, and fat. Errors in interpretation can be made when metabolic pathways other than oxidation dominate or when clinical conditions exist that affect carbon dioxide excretion from the lungs. Before incorporating data obtained from indirect calorimetry into a nutrition care plan, the clinical dietitian should carefully evaluate the following factors for a patient: clinical conditions when the measurement was made, desired weight loss or gain, tolerance to food or nutrition support, relationship between protein intake and energy need, and need for anabolism or growth. This article provides clinical examples illustrating how measured values compare with calculated values and recommendations for how to incorporate measured values into nutrition care plans. PMID:8537570

  18. PREFACE: XVth International Conference on Calorimetry in High Energy Physics (CALOR2012)

    NASA Astrophysics Data System (ADS)

    Akchurin, Nural

    2012-12-01

    reconstruction and trigger of jets, missing transverse energy, electrons, photons, and taus. Pile-up, anomalous signals, and noise mitigation techniques were also discussed in the conference. On the last day, several future R&D initiatives were presented: highly granular CALICE with different technology options and plans for the dual-readout DREAM projects were the main topics. Although these approaches are quite different conceptually, future experiments will certainly benefit from their innovations. Concluding remarks by the chair of the organizing committee, Nural Akchurin (TTU), summarized the highlights of the conference and invited proposals to host the CALOR2014 conference in Europe, as the conference venue rotates between the Americas, Europe, and Asia every two years. We strived hard to keep the cost of this conference as low as possible without sacrificing the scientific mission. I am delighted to report that we were able to provide support for six junior colleagues to participate in this conference. I am also grateful to the institutions, industrial partners, and agencies that provided the support that made a lot possible: Texas Tech University, the University of New Mexico, Los Alamos National Laboratory, the US Department of Energy, CAEN, and the Wiener Plein & Baus, Corp. I also would like to thank the session conveners who organized sessions and reviewed the papers. The members of the local organizing committee were instrumental to the success of this conference: their experience and attention to detail were invaluable. Most of all, I extend my appreciation to the conference participants and to all my other colleagues who continue to enrich the field of calorimetry through their hard work and creativity. The future is bright. Nural Akchurin Chair of the Organizing Committee International Advisory Committee: Mikhail Danilov, ITEP Moscow Marcella Diemoz, INFN Roma I Antonio Ereditato, Univ. of Bern Franco L. Fabbri, INFN Frascati Tomio Kobayashi, ICEPP Tokyo Michele

  19. High-Pressure Raman and Calorimetry Studies of Vanadium(III) Alkyl Hydrides for Kubas-Type Hydrogen Storage.

    PubMed

    Morris, Leah; Trudeau, Michel L; Reed, Daniel; Book, David; Antonelli, David M

    2016-03-16

    Reversible hydrogen storage under ambient conditions has been identified as a major bottleneck in enabling a future hydrogen economy. Herein, we report an amorphous vanadium(III) alkyl hydride gel that binds hydrogen through the Kubas interaction. The material possesses a gravimetric adsorption capacity of 5.42 wt % H2 at 120 bar and 298 K reversibly at saturation with no loss of capacity after ten cycles. This corresponds to a volumetric capacity of 75.4 kgH2  m(-3) . Raman experiments at 100 bar confirm that Kubas binding is involved in the adsorption mechanism. The material possesses an enthalpy of H2 adsorption of +0.52 kJ mol(-1) H2 , as measured directly by calorimetry, and this is practical for use in a vehicles without a complex heat management system. PMID:26762590

  20. Heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-Si alloys investigated by entrained droplet technique and DSC

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Albu, M.; Ludwig, T. H.; Hofer, F.; Arnberg, L.; Schumacher, P.

    2016-03-01

    Entrained droplet technique and DSC analyses were employed to investigate the influence of trace elements of Sr, Eu and P on the heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-5wt.% Si alloys. Sr and Eu addition was found to exert negative effects on the nucleation process, while an increased undercooling was observed. This can be attributed to the formation of phosphide compounds having a lower free energy and hence may preferentially form compared to AlP. Only a trace P addition was found to have a profound effect on the nucleation process. The nucleation kinetics is discussed on the basis of the classical nucleation theory and the free growth model, respectively. The estimated AlP patch size was found to be sufficient for the free growth of Si to occur within the droplets, which strongly indicates that the nucleation of Si on an AlP patch or AlP particle is a limiting step for free growth. The maximum nucleation site density within one droplet is directly related to the size distribution of AlP particles or AlP patches for Si nucleation, but is independent of the cooling rates. Although the nucleation conditions were optimized in entrained droplet experiments, the observed mechanisms are also valid at moderate cooling conditions, such as in shape casting.

  1. Multi-slope warm-up calorimetry of Integrated Dewar-Detector Assemblies

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Shlomovich, Baruch; Tuito, Avi

    2015-05-01

    Boil-off isothermal calorimetry of Integrated Dewar-Detector Assemblies (IDDA) is a routine part of acceptance testing. In this traditional approach, the cryogenic liquid coolant (typically LN2) is allowed to naturally boil off from the Dewar well to the atmosphere. The parasitic heat load is then evaluated as the product of the latent heat of vaporization and the "last drop" boil-off rate monitored usually by a mass flow meter. An inherent limitation of this technique is that it is applicable only at the fixed boiling temperature of the chosen liquid coolant, for example, 77K for LN2. There is a need, therefore, to use other (often exotic) cryogenic liquids when calorimetry is needed at temperatures other than 77K. A further drawback is related to the transitional nature of last drop boiling, which manifests itself in development of enlarged bubbles, explosions and geysering. This results in an uneven flow rate and also affects the natural temperature gradient along the cold finger. Additionally, mass flow meters are known to have limited measurement accuracy. The above considerations especially hold true for advanced High Operational Temperature IDDAs, typically featuring short cold fingers and working at 150K and above. In this work, we adapt the well-known technique of dual-slope calorimetry and show how accurate calorimetry may be performed by precooling the IDDA and comparing the warm-up slopes of the thermal transient processes under different trial added heat loads. Because of the simplicity, accuracy and ability to perform calorimetry literally at any temperature of interest, this technique shows good potential for replacing traditional boil-off calorimetry.

  2. The DREAM project—Towards the ultimate in calorimetry

    NASA Astrophysics Data System (ADS)

    Wigmans, Richard

    2010-05-01

    High-precision jet spectroscopy will be increasingly important in future high-energy accelerator experiments, particularly at a linear e+e- collider. The dual-readout technique makes it possible to meet and exceed the requirements on calorimeter performance in experiments at such a collider. The DREAM Collaboration is exploring the limits of the possibilities offered by this technique, by systematically eliminating the limiting factors, one after the other. Powerful tools in this context are the simultaneous measurement of scintillation light and Cherenkov light generated in the shower development process, and a detailed measurement of the time structure of the signals. In this talk, the latest results of this generic detector R&D project are presented. In particular, I report on the first tests of a hybrid dual-readout calorimeter system, in which a BGO crystal matrix served as the electromagnetic section.

  3. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. PMID:26363471

  4. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-01

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.

  5. Determination of the Heat of Combustion of Biodiesel Using Bomb Calorimetry: A Multidisciplinary Undergraduate Chemistry Experiment

    ERIC Educational Resources Information Center

    Akers, Stephen M.; Conkle, Jeremy L.; Thomas, Stephanie N.; Rider, Keith B.

    2006-01-01

    Biodiesel was synthesized by transesterification of waste vegetable oil using common glassware and reagents, and characterized by measuring heat of combustion, cloud point, density and measuring the heat of combustion and density together allows the student the energy density of the fuel. Analyzing the biodiesel can serve as a challenging and…

  6. Thermodynamics of Surfactants, Block Copolymers and Their Mixtures in Water: The Role of the Isothermal Calorimetry

    PubMed Central

    De Lisi, Rosario; Milioto, Stefania; Muratore, Nicola

    2009-01-01

    The thermodynamics of conventional surfactants, block copolymers and their mixtures in water was described to the light of the enthalpy function. The two methodologies, i.e. the van’t Hoff approach and the isothermal calorimetry, used to determine the enthalpy of micellization of pure surfactants and block copolymers were described. The van’t Hoff method was critically discussed. The aqueous copolymer+surfactant mixtures were analyzed by means of the isothermal titration calorimetry and the enthalpy of transfer of the copolymer from the water to the aqueous surfactant solutions. Thermodynamic models were presented to show the procedure to extract straightforward molecular insights from the bulk properties. PMID:19742173

  7. DSC evaluation of extra virgin olive oil stability under accelerated oxidative test: effect of fatty acid composition and phenol contents.

    PubMed

    Cerretani, Lorenzo; Bendini, Alessandra; Rinaldi, Massimiliano; Paciulli, Maria; Vecchio, Stefano; Chiavaro, Emma

    2012-01-01

    Three extra virgin olive oils having different fatty acid compositions and total phenol contents were submitted to an accelerated storage test at 60°C for up to 21 weeks. Their oxidative status, evaluated by peroxide values and total phenolic content, was related to differential scanning calorimetry cooling profiles and thermal properties. Changes in crystallization profiles were consistent starting from 12 weeks for the two oil samples (B and C) that had a higher content of linoleic acid and medium/low amounts of phenols, respectively, whereas they became detectable at the end of the test for the remaining oil (sample A). Decrease of crystallization enthalpy and shift of transition towards lower temperature were also evident at 4 weeks of storage for samples B and C, whereas the same changes in the transition profile were noticeable at 12 weeks for sample A. Differential scanning calorimetry appears to be suitable for the discrimination of oxidative status of extra virgin olive oils with widely different fatty acid composition. PMID:22687775

  8. Binding of cationic peptides (KX)4K to DPPG bilayers. Increasing the hydrophobicity of the uncharged amino acid X drives formation of membrane bound β-sheets: A DSC and FT-IR study.

    PubMed

    Hädicke, André; Blume, Alfred

    2016-06-01

    The binding of cationic peptides of the sequence (KX)4K to lipid vesicles of negatively charged dipalmitoyl-phosphatidylglycerol (DPPG) was investigated by differential scanning calorimetry (DSC) and temperature dependent Fourier-transformed infrared (FT-IR) spectroscopy. The hydrophobicity of the uncharged amino acid X was changed from G (glycine) over A (alanine), Abu (α-aminobutyric acid), V (valine) to L (leucine). The binding of the peptides caused an increase of the phase transition temperature (Tm) of DPPG by up to 20°C. The shift depended on the charge ratio and on the hydrophobicity of the amino acid X. Unexpectedly, the upward shift of Tm increased with increasing hydrophobicity of X. FT-IR spectroscopy showed a shift of the CH2 stretching vibrations of DPPG to lower frequency, particularly for bilayers in the liquid-crystalline phase, indicating an ordering of the hydrocarbon chains when the peptides were bound. Changes in the lipid C=O vibrational band indicated a dehydration of the lipid headgroup region after peptide binding. (KG)4K was bound in an unordered structure at all temperatures. All other peptides formed intermolecular antiparallel β-sheets, when bound to gel phase DPPG. However, for (KA)4K and (KAbu)4K, the β-sheets converted into an unordered structure above Tm. In contrast, the β-sheet structures of (KV)4K and (KL)4K remained stable even at 80°C when bound to the liquid-crystalline phase of DPPG. Strong aggregation of DPPG vesicles occurred after peptide binding. For the aggregates, we suggest a structure, where aggregated single β-sheets are sandwiched between opposing DPPG bilayers with a dehydrated interfacial region. PMID:26903220

  9. Use of DSC and DMA Techniques to Help Investigate a Material Anomaly for PTFE Used in Processing a Piston Cup for the Urine Processor Assembly (UPA) on International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2010-01-01

    Human urine and flush water are eventually converted into drinking water with the Urine Processor Assembly (UPA) aboard the International Space Station (ISS). This conversion is made possible through the Distillation Assembly (DA) of the UPA. One component of the DA is a molded circular piston cup made of virgin polytetrafluoroethylene (PTFE). The piston cup is assembled to a titanium component using eight fasteners and washers. Molded PTFE produced for spare piston cups in the first quarter of 2010 was different in appearance and texture, and softer than material molded for previous cups. For the suspect newer PTFE material, cup fasteners were tightened to only one-half the required torque value, yet the washers embedded almost halfway into the material. The molded PTFE used in the DA piston cup should be Type II, based on AMS 3667D and ASTM D4894 specifications. The properties of molded PTFE are considerably different between Type I and II materials. Engineers working with the DA thought that if Type I PTFE was molded by mistake instead of Type II material, that could have resulted in the anomalous material properties. Typically, the vendor molds flat sheet PTFE from the same material lot used to mold the piston cups, and tensile testing as part of quality control should verify that the PTFE is Type II material. However, for this discrepant lot of material, such tensile data was not available. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were two of the testing techniques used at the NASA/Marshall Space Flight Center (MSFC) to investigate the anomaly for the PTFE material. Other techniques used on PTFE specimens were: Shore D hardness testing, tensile testing on dog bone specimens and a qualitative estimation of porosity by optical and scanning electron microscopy.

  10. Proceedings of the Eleventh International Conference on Calorimetry in Particle Physics

    NASA Astrophysics Data System (ADS)

    Cecchi, Claudia

    The Pamela silicon tungsten calorimeter / G. Zampa -- Design and development of a dense, fine grained silicon tungsten calorimeter with integrated electronics / D. Strom -- High resolution silicon detector for 1.2-3.1 eV (400-1000 nm) photons / D. Groom -- The KLEM high energy cosmic rays collector for the NUCLEON satellite mission / M. Merkin (contribution not received) -- The electromagnetic calorimeter of the Hera-b experiment / I. Matchikhilian -- The status of the ATLAS tile calorimeter / J. Mendes Saraiva -- Design and mass production of Scintillator Pad Detector (SPD) / Preshower (PS) detector for LHC-b experiment / E. Gushchin -- Study of new FNAL-NICADD extruded scintillator as active media of large EMCal of ALICE at LHC / O. Grachov -- The CMS hadron calorimeter / D. Karmgard (contribution not received) -- Test beam study of the KOPIO Shashlyk calorimeter prototype / A. Poblaguev -- The Shashlik electro-magnetic calorimeter for the LHCb experiment / S. Barsuk -- Quality of mass produced lead-tungstate crystals / R. Zhu -- Status of the CMS electromagnetic calorimeter / J. Fay -- Scintillation detectors for radiation-hard electromagnetic calorimeters / H. Loehner -- Energy, timing and two-photon invariant mass resolution of a 256-channel PBWO[symbol] calorimeter / M. Ippolitov -- A high performance hybrid electromagnetic calorimeter at Jefferson Lab / A. Gasparian -- CsI(Tl) calorimetry on BESHI / T. Hu (contribution not received) -- The crystal ball and TAPS detectors at the MAMI electron beam facility / D. Watts -- Front-end electronics of the ATLAS tile calorimeter / R. Teuscher -- The ATLAS tilecal detector control system / A. Gomes -- Performance of the liquid argon final calibration board / C. de la Taille -- Overview of the LHCb calorimeter electronics / F. Machefert -- LHCb preshower photodetector and electronics / S. Monteil -- The CMS ECAL readout architecture and the clock and control system / K. Kloukinas -- Test of the CMS-ECAL trigger

  11. Kinetics of thermolysis of lanthanum nitrate with hexamethylenetetramine: Crystal structure, TG-DSC, impact and friction sensitivity studies, Part-96

    NASA Astrophysics Data System (ADS)

    Nibha; Baranwal, B. P.; Singh, Gurdip; Singh, C. P.; Daniliuc, Constantin G.; Soni, P. K.; Nath, Yogeshwar

    2014-11-01

    The development of high energetic materials includes process ability and the ability to attain insensitive munitions (IM). This paper investigates the preparation of lanthanum metal nitrate complex of hexamethylenetetramine in water at room temperature. This complex of molecular formulae [La (NO3)2(H2O)6] (2HMTA) (NO3-) (H2O) was characterized by X-ray crystallography. Thermal decomposition was investigated using TG, TG-DSC and ignition delay measurements. Kinetic analysis of isothermal TG data has been investigated using model fitting methods as well as model free isoconversional methods. The sensitivity measurements towards mechanical destructive stimuli such as impact and friction were carried out and the complex was found to be insensitive. In order to identify the end product of thermolysis, X-ray diffraction patterns of end product was carried out which proves the formation of La2O3.

  12. Azide derivatized anticancer agents of Vitamin K 3: X-ray structural, DSC, resonance spectral and API studies

    NASA Astrophysics Data System (ADS)

    Badave, Kirti; Patil, Yogesh; Gonnade, Rajesh; Srinivas, Darbha; Dasgupta, Rajan; Khan, Ayesha; Rane, Sandhya

    2011-12-01

    Compound 1 [1-imino (acetyl hydrazino)-Vitamin K 3], displays valence tautomerically related electronic isomers as Form I and Form II. Form I exhibits 2D packing fragment with 1D ribbon chains of N-H⋯O hydrogen bonds and shows EPR silent features. While Form II is EPR active and exhibits biradical nature with double quantum transitions at g = 2.0040. 1H NMR of compound 2, [1-imino (hydrazino carboxylate)-Vitamin K 3] and Form II exhibit π delocalization via resonance assisted H-bonding [RAHB] effect compared to Form I. Molecular interactions in Form I and II are visualized by DSC. The electronic structures of compounds 1 and 2 have been correlated to their API values by measuring anticancer activities, mitochondrial potentials and DNA shearing patterns. Form II and compound 2 indicate mitochondria mediated apoptosis (˜75% cell death) while Form I causes 35% cell death.

  13. Differential Scanning Calorimetric (DSC) Analysis of Rotary Nickel-Titanium (NiTi) Endodontic File (RNEF)

    NASA Astrophysics Data System (ADS)

    Wu, Ray Chun Tung; Chung, C. Y.

    2012-12-01

    To determine the variation of A f along the axial length of rotary nickel-titanium endodontic files (RNEF). Three commercial brands of 4% taper RNEF: GTX (#20, 25 mm, Dentsply Tulsa Dental Specialties, Tulsa, OK, USA), K3 (#25, 25 mm) and TF (Twisted File #25, 27 mm) (Sybron Kerr, Orange, CA, USA) were cut into segments at 4 mm increment from the working tip. Regional specimens were measured for differential heat-flow over thermal cycling, generally with continuous heating or cooling (5 °C/min) and 5 min hold at set temperatures (start, finish temperatures): GTX: -55, 90 °C; K3: -55, 45 °C; TF: -55, 60 °C; using differential scanning calorimeter. This experiment demonstrated regional differences in A f along the axial length of GTX and K3 files. Similar variation was not obvious in the TF samples. A contributory effect of regional difference in strain-hardening due to grinding and machining during manufacturing is proposed.

  14. Mathematical analysis for radiometric calorimetry of a radiating sphere

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1982-01-01

    Equations are derived from which the temperature dependence of both the specific heat and the thermal diffusivity of a spherical sample of material can be calculated from observations of the time dependence of the surface temperature and the time-rate of energy loss from the sample as it cools. The derivation takes into account the nonuniformity of the interior temperature field of the sample, and the resulting equations can be applied not only to radiative cooling, but also to any other cooling mechanism that does not violate the assumed spherical symmetry. The analysis excludes change of phase, but it does take thermal expansion into account. To permit the making of estimates necessary for the design of radiative cooling experiments, a universal temperature-time cooling curve is derived for the post-transient cooling regime of a radiating sphere of any size with arbitrary, but constant, thermal parameters.

  15. Scintillating crystals for precision crystal calorimetry in high energy physics

    SciTech Connect

    Zhu, R.

    1998-11-01

    Scintillating crystals in future high energy physics experiments face a new challenge to maintain its performance in a hostile radiation environment. This paper discusses the effects of radiation damage in scintillating crystals. The importance of maintaining crystal{close_quote}s light response uniformity and the feasibility to build a precision crystal calorimeter under radiation are elaborated. The mechanism of radiation damage in scintillating crystals is also discussed. While the damage in alkali halides is found to be caused by the oxygen/hydroxyl contamination, it is the structure defects, such as oxygen vacancies, cause damage in oxides. Material analysis used to reach these conclusions are presented in details. {copyright} {ital 1998 American Institute of Physics.}

  16. LuAG:Ce fibers for high energy calorimetry

    SciTech Connect

    Dujardin, C.; Mancini, C.; Amans, D.; Ledoux, G.; Abler, D.; Auffray, E.; Lecoq, P.; Perrodin, D.; Petrosyan, A.; Ovanesyan, K. L.

    2010-07-15

    The main objective of this contribution is to point out the potentialities of cerium doped LuAG single crystal as pixels and fibers. We first show that after optimization of growth conditions using Bridgman technology, this composition exhibits very good performances for scintillating applications (up to 26 000 photons/MeV). When grown with the micropulling down technology, fiber shapes can be obtained while the intrinsic performances are preserved. For the future high energy experiments requiring new detector concepts capable of delivering much richer informations about x- or gamma-ray energy deposition, unusual fiber shaped dense materials need to be developed. We demonstrate in this frame that cerium doped LuAG is a serious candidate for the next generation of ionizing radiation calorimeters.

  17. Inclusion complexes of cypermethrin and permethrin with monochlorotriazinyl-beta-cyclodextrin: A combined spectroscopy, TG/DSC and DFT study

    NASA Astrophysics Data System (ADS)

    Yao, Qi; You, Bin; Zhou, Shuli; Chen, Meng; Wang, Yujiao; Li, Wei

    2014-01-01

    The suitable size hydrophobic cavity and monochlorotriazinyl group as a reactive anchor make MCT-β-CD to be widely used in fabric finishing. In this paper, the inclusion complexes of monochlorotriazinyl-beta-cyclodextrin (MCT-β-CD) with cypermethrin (CYPERM) and permethrin (PERM) are synthesized and analyzed by TG/DSC, FT-IR and Raman spectroscopy. TG/DSC reveals that the decomposed temperatures of inclusion complexes are lower by 25-30 °C than that of physical mixtures. DFT calculations in conjunction with FT-IR and Raman spectral analyses are used to study the structures of MCT-β-CD and their inclusion complexes. Four isomers of trisubstituted MCT-β-CD are designed and DFT calculations reveal that 1,3,5-trisubstituted MCT-β-CD has the lowest energy and can be considered as main component of MCT-β-CD. The ground-state geometries, vibrational wavenumbers, IR and Raman intensities of MCT-β-CD and their inclusion complexes were calculated at B3LYP/6-31G (d) level of theory. Upon examining the optimized geometry of inclusion complex, we find that the CYPERM and PERM are inserted into the toroid of MCT-β-CD from the larger opening. The band at 1646 cm-1 in IR and at 1668 cm-1 in Raman spectrum reveals that monochloroazinyl group of MCT-β-CD exists in ketone form but not in anion form. The noticeable IR and Raman shift of phenyl reveals that these two benzene rings of CYPERM and PERM stays inside the cavity of MCT-β-CD and has weak interaction with MCT-β-CD. This spectroscopy conclusion is consistent with theoretical predicted structure.

  18. Accelerating rate calorimetry: A new technique for safety studies in lithium systems

    NASA Technical Reports Server (NTRS)

    Ebner, W. B.

    1982-01-01

    The role of exothermic reactions in battery test modes is discussed. The exothermic reactions are characterized with respect to their time-temperature and time-pressure behavior. Reactions occuring for any major exotherm were examined. The accelerating rate calorimetry methods was developed to study lithium cells susceptibility to thermal runaway reactions following certain abuse modes such as forced discharge into reversal and charging.

  19. Levitation calorimetry. IV - The thermodynamic properties of liquid cobalt and palladium.

    NASA Technical Reports Server (NTRS)

    Treverton, J. A.; Margrave, J. L.

    1971-01-01

    Some of the thermodynamic properties of liquid cobalt and palladium investigated by means of levitation calorimetry are reported and discussed. The presented data include the specific heats and heats of fusion of the liquid metals, and the emissivities of the liquid metal surfaces.

  20. Protein Unfolding Coupled to Ligand Binding: Differential Scanning Calorimetry Simulation Approach

    ERIC Educational Resources Information Center

    Celej, Maria Soledad; Fidelio, Gerardo Daniel; Dassie, Sergio Alberto

    2005-01-01

    A comprehensive theoretical description of thermal protein unfolding coupled to ligand binding is presented. The thermodynamic concepts are independent of the method used to monitor protein unfolding but a differential scanning calorimetry is being used as a tool for examining the unfolding process.

  1. Time profile analysis of photodetector signals in multi read-out calorimetry with GHz samplers

    NASA Astrophysics Data System (ADS)

    Bedeschi, F.; Bitossi, M.; Carosi, R.; Incagli, M.; Pegna, R.; Scuri, F.

    2009-04-01

    We present possible applications of DAQ systems based on Domino Ring Samplers (DRS) for time profile analysis of photodetector signals used for present and future multiple read-out calorimeters. The example of an 80-channel system in preparation for dual read-out calorimetry (DREAM) is described.

  2. Monolithic front-end preamplifiers for a broad range of calorimetry applications

    SciTech Connect

    Radeka, V.; Rescia, S.; Manfredi, P.F.; Speziali, V. |

    1993-12-31

    The present paper summarizes the salient results of a research and development activity in the area of low noise preamplifiers for different applications in calorimetry. Design target for all circuits considered here are low noise, ability to cope with broad energy ranges and radiation hardness.

  3. Direct absorbed dose to water determination based on water calorimetry in scanning proton beam delivery

    SciTech Connect

    Sarfehnia, A.; Clasie, B.; Chung, E.; Lu, H. M.; Flanz, J.; Cascio, E.; Engelsman, M.; Paganetti, H.; Seuntjens, J.

    2010-07-15

    Purpose: The aim of this manuscript is to describe the direct measurement of absolute absorbed dose to water in a scanned proton radiotherapy beam using a water calorimeter primary standard. Methods: The McGill water calorimeter, which has been validated in photon and electron beams as well as in HDR {sup 192}Ir brachytherapy, was used to measure the absorbed dose to water in double scattering and scanning proton irradiations. The measurements were made at the Massachusetts General Hospital proton radiotherapy facility. The correction factors in water calorimetry were numerically calculated and various parameters affecting their magnitude and uncertainty were studied. The absorbed dose to water was compared to that obtained using an Exradin T1 Chamber based on the IAEA TRS-398 protocol. Results: The overall 1-sigma uncertainty on absorbed dose to water amounts to 0.4% and 0.6% in scattered and scanned proton water calorimetry, respectively. This compares to an overall uncertainty of 1.9% for currently accepted IAEA TRS-398 reference absorbed dose measurement protocol. The absorbed dose from water calorimetry agrees with the results from TRS-398 well to within 1-sigma uncertainty. Conclusions: This work demonstrates that a primary absorbed dose standard based on water calorimetry is feasible in scattered and scanned proton beams.

  4. Calorimetry exchange program quarterly data report for, January 1989--March 1989

    SciTech Connect

    Lyons, J.E.; McClelland, T.M.

    1996-08-01

    The goals of the calorimetry sample exchange program are to: discuss measurement differences; improve analytical methods; discuss new measurement capabilities; provide data to DOE on measurement capabilities to evaluate shipper-receiver differences; provide standardized materials as necessary; and provide a measurement control program for plutonium analysis. A sample of plutonium dioxide powder is available at each participating site for NDA analysis.

  5. Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermodynamic parameters for binding of a series of galacturonic acid oligomers to an exo-polygalacturonase, RPG16 from Rhizopus oryzae, were determined by isothermal titration calorimetry. Binding of oligomers varying in chain length from two to five galacturonic acid residues is an exothermic proc...

  6. Determination of caloric values of agricultural crops and crop waste by Adiabatic Bomb Calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calorific values of agricultural crops and their waste were measured by adiabatic bomb calorimetry. Sustainable farming techniques require that all potential sources of revenue be utilized. A wide variety of biomass is beginning to be used as alternative fuels all over the world. The energy potentia...

  7. Student Learning of Thermochemical Concepts in the Context of Solution Calorimetry.

    ERIC Educational Resources Information Center

    Greenbowe, Thomas J.; Meltzer, David E.

    2003-01-01

    Analyzes student performance on solution calorimetry problems in an introductory university chemistry class. Includes data from written classroom exams for 207 students and an extensive longitudinal interview with a student. Indicates learning difficulties, most of which appear to originate from failure to understand, that net increases and…

  8. Water calorimetry-based radiation dosimetry in iridium-192 brachytherapy and proton therapy

    NASA Astrophysics Data System (ADS)

    Sarfehnia, Arman

    The aim of this work is to develop and evaluate a primary standard for HDR 192Ir brachytherapy sources as well as for active spot scanning proton radiotherapy beams based on stagnant 4 °C water calorimetry. The measurements were performed using an in-house built water calorimeter and a parallel-plate calorimeter vessel. The dose measurement results of the McGill calorimeter were validated in high energy photon beams against Canada's national established primary standard at the NRC. The measurements in brachytherapy were performed with a spring-loaded catheter holder which allowed for the 192Ir source to come directly inside the water calorimeter. The COMSOL MULTIPHYSICS(TM) software was used to solve the heat transport equation numerically for a detailed geometrical model of our experimental setup. In brachytherapy, reference dosimetry protocols were also developed and used to measure the dose to water directly using thimble type ionization chambers and Gafchromic films with traceable 60Co (or higher energy photons) calibration factor. Based on water calorimetry standard, we measured an absolute dose rate to water of 361+/-7 microGy/(h·U) at 55 mm source-to-detector separation. The 1.9 % uncertainty on water calorimetry results is in contrast with the current recommended AAPM TG-43 protocol that achieves at best an uncertainty (k=1) of 2.5 % based on an indirect dose to water measurement technique. All measurement results from water calorimetry, ion chamber, film, and TG-43 agreed to within 0.83 %. We achieved an overall dose uncertainty of 0.4 % and 0.6 % for scattered and scanned proton radiation water calorimetry, respectively. The water calorimetry absorbed dose to water results agreed with those obtained through the currently recommended IAEA TRS-398 protocol (measurements made using an ionization chamber with a 60Co calibration factor) to better than 0.14 % and 0.32 % in scattered and scanned proton beams, respectively. In conclusion, this work forms the

  9. Test beam studies of silicon timing for use in calorimetry

    NASA Astrophysics Data System (ADS)

    Apresyan, A.; Bolla, G.; Bornheim, A.; Kim, H.; Los, S.; Pena, C.; Ramberg, E.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-07-01

    The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 ×1034cm-2s-1 . The high luminosities expected at the HL-LHC will be accompanied by a factor of 5-10 more pileup compared with LHC conditions in 2015, further increasing the challenge for particle identification and event reconstruction. Precision timing allows us to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a viable choice for the HL-LHC and future collider experiments which face very high radiation environments. In this paper, we present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. We show that for the bulk of electromagnetic showers induced by electrons in the range of 20-30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor.

  10. Test beam studies of silicon timing for use in calorimetry

    DOE PAGESBeta

    Apresyan, A.; Bolla, G.; Bornheim, A.; Kim, H.; Los, S.; Pena, C.; Ramberg, E.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-04-12

    The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 X 1034 cm–2 s–1. The high luminosities expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared with LHC conditions in 2015, causing general confusion for particle identification and event reconstruction. Precision timing allows to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a popular choice for the HL-LHC and future collider experiments whichmore » face very high radiation environments. In this article, we present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. Lastly, we show that for the bulk of electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor.« less

  11. Analysis of Siderite Thermal Decomposition by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Lin, I.-C.; McKay, D. S.

    2000-01-01

    Characterization of carbonate devolitilization has important implications for atmospheric interactions and climatic effects related to large meteorite impacts in platform sediments. On a smaller scale, meteorites contain carbonates which have witnessed shock metamorphic events and may record pressure/temperature histories of impact(s). ALH84001 meteorite contains zoned Ca-Mg-Fe-carbonates which formed on Mars. Magnetite crystals are found in the rims and cores of these carbonates and some are associated with void spaces leading to the suggestion by Brearley et al. that the crystals were produced by thermal decomposition of the carbonate at high temperature, possibly by incipient shock melting or devolitilization. Golden et al. recently synthesized spherical Mg-Fe-Ca-carbonates from solution under mild hydrothermal conditions that have similar carbonate compositional zoning to those of ALH84001. They have shown experimental evidence that the carbonate-sulfide-magnetite assemblage in ALH84001 can result from a multistep inorganic process involving heating possibly due to shock events. Experimental shock studies on calcium carbonate prove its stability to approx. 60 GPa, well in excess of the approx. 45 GPa peak pressures indicated by other shock features in ALH84001. In addition, Raman spectroscopy of carbonate globules in ALH84001 indicates no presence of CaO and MgO. Such oxide phases should be found associated with the magnetites in voids if these magnetites are high temperature shock products, the voids resulting from devolitilization of CO2 from calcium or magnesium carbonate. However, if the starting material was siderite (FeCO3), thermal breakdown of the ALH84001 carbonate at 470 C would produce iron oxide + CO2. As no documentation of shock effects in siderite exists, we have begun shock experiments to determine whether or not magnetite is produced by the decomposition of siderite within the < 45GPa pressure window and by the resultant thermal pulse to approx

  12. Experimental measurements of the heats of formation of Fe{sub 3}Pt, FePt, and FePt{sub 3} using differential scanning calorimetry

    SciTech Connect

    Wang, B.; Berry, D. C.; Chiari, Y.; Barmak, K.

    2011-07-01

    Using differential scanning calorimetry (DSC), the heats of formation of Fe{sub 3}Pt, FePt, and FePt{sub 3} were determined from the reaction of sputter deposited Fe/Pt multilayer thin-films with a periodicity of 200 nm but different overall compositions. Film compositions were measured by energy dispersive x-ray spectrometry. The phases present along the reaction path were identified by x-ray diffraction. For the most Fe-rich phase, namely, Fe{sub 3}Pt, the measured enthalpy of formation was -9.3 {+-} 1.3 kJ/mol in a film with a composition of 70.4:29.6 ({+-}0.2 at. %) Fe:Pt. For FePt, the measured enthalpy of formation was -27.2 {+-} 2.2 kJ/g-atom in a 49.0:51.0 ({+-}0.5 at. %) Fe:Pt film. For FePt{sub 3}, which is the most Pt rich intermetallic phase, the measured enthalpy of formation was -23.7 {+-} 2.2 in a film with a composition of 22.2:77.8 ({+-}0.6 at. %) Fe:Pt. The reaction enthalpies for films with Fe:Pt compositions of 44.5:55.5 ({+-}0.3 at. %) and 38.5:61.5 ({+-}0.4 at. %) were -26.9 {+-} 1.0 and -26.6 {+-} 0.6 kJ/g-atom, respectively, which taken together with the value for the 49.0:51.0 film demonstrate the relative insensitivity of the reaction enthalpy to film composition over a broad composition range in the vicinity of the equiatomic composition. The experimental heats of formation are compared with two sets of reported first-principles calculated values for each of the three phases at exact stoichiometry.

  13. Methodological evaluation of indirect calorimetry data in lean and obese rats.

    PubMed

    Rafecas, I; Esteve, M; Fernández-López, J A; Remesar, X; Alemany, M

    1993-11-01

    1. The applicability of current indirect calorimetry formulae to the study of energy and substrate balances on obese rats has been evaluated. The energy consumption of series of 60-day rats of Wistar, lean and obese Zucker stock were studied by means of direct and indirect calorimetry, and by establishing their energy balance through measurement of food intake and retention. Calorimetric studies encompassed a 24 h period, with gas and heat output measurements every 2 or 5 min, respectively, for direct and indirect calorimetry. 2. The analysis of fat composition (diet, whole rat, and synthesized and oxidized fat) showed only small variations that had only a limited effect on the overall energy equation parameters. 3. A gap in the nitrogen balance, which represents a urinary N excretion lower than the actual protein oxidized, resulted in significant deviations in the estimation of carbohydrate and lipid oxidized when using the equations currently available for indirect calorimetry. 4. Analysis of the amino acid composition of diet and rat protein as well as of the portion actually oxidized, and correcting for the nitrogen gap allowed the establishment of a set of equations that gave better coincidence of the calculated data with the measured substrate balance. 5. The measured heat output of all rats was lower than the estimated values calculated by means of either indirect calorimetry of direct energy balance measurement; the difference corresponded to the energy lost in water evaporation, and was in the range of one-fifth of total energy produced in the three rat stocks. 6. Wistar rats showed a biphasic circadian rhythm of substrate utilization, with alternate lipid synthesis/degradation that reversed that of carbohydrate, concordant with nocturnal feeding habits. Zucker rats did not show this rhythm; obese rats synthesized large amounts of fat during most of the light period, consuming fat at the end of the dark period, which suggests more diurnal feeding habits

  14. PREFACE: XIII International Conference on Calorimetry in High Energy Physics (CALOR 2008)

    NASA Astrophysics Data System (ADS)

    Livan, Michele

    2009-07-01

    The XIII International Conference on Calorimetry in High Energy Physics was held in Pavia, Italy, 26-30 May 2008, picking up the baton from the 2006 Conference in Chicago. The Conference took place in the unique environment of the Theresian Room of the University Library. The attendees were surrounded by over 40 000 books of general interest and culture, and had the opportunity to see precious volumes written by such people as Galileo, Volta and Faraday. The Workshop brought together more than 120 participants, including senior scientists as well as young physicists, confirming the central and ever-growing role of calorimeters in modern particle physics. The development of these detectors, as stressed by Professor Klaus Pretzl in his lectio magistralis, has made it possible to explore new frontiers in physics, and the present scenario is no exception to this rule. With the LHC experiments almost completely installed and ready to take data, the Conference was an ideal chance to review the status of the different projects, whose development has been followed and discussed throughout the entire Calor series, and to show that they are capable of meeting the design specifications. Other highlights were the performance and physics results of calorimeters installed in currently operating experiments. In the session on astrophysics and neutrinos, the contributions confirmed the key role of calorimeters in this sector and demonstrated their growing application even beyond the field of accelerator physics. Considerable time was devoted to the state-of-the-art techniques in the design and operation of the detectors, while the session on simulation addressed the importance of a thorough understanding of the shower development to meet the demanding requirements of present experiments. Finally, on the R&D side, the particle flow and dual read-out concepts confronted the challenges issued by the next generation of experiments. This complex material was reviewed in 83

  15. Thermal-Diffusivity and Heat-Capacity Measurements of Sandstone at High Temperatures Using Laser Flash and DSC Methods

    NASA Astrophysics Data System (ADS)

    Abdulagatov, I. M.; Abdulagatova, Z. Z.; Kallaev, S. N.; Bakmaev, A. G.; Ranjith, P. G.

    2015-04-01

    The well-known contact-free, laser-flash method was used for measurement of the thermal diffusivity of natural sandstone samples. The experimental procedure was conducted using the microflash apparatus (LFA 457). The measurements have been made over the temperature range from (302.9 to 774.3) K. The isobaric heat capacities of the same sample were measured over the temperature range from (308 to 763) K using DSC 204 F1. Uncertainties are 3 % and 1 % for and , respectively. Measured values of and together with density data were used to calculate the thermal conductivity of sandstone. Theoretically based correlations for the thermal diffusivity (damped harmonic oscillator, DHO) and heat capacity (Debye and Einstein theories) were adopted to accurately represent the measured data. Correlation equations for the thermal diffusivity and heat capacity have been developed using the well-known theoretical asymptotic behavior of and for various temperature ranges (low- and high-temperature limits). The microscopic nature of the effect of temperature on and behavior of sandstone is discussed. Detailed interpretation and testing of the measured property data for sandstone using various existing theoretical and empirical models, in order to check their accuracy, predictive capability, and applicability, are provided.

  16. Thermal characterization of starch-water system by photopyroelectric technique and adiabatic scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Cruz-Orea, A.; Bentefour, E. H.; Jamée, P.; Chirtoc, M.; Glorieux, C.; Pitsi, G.; Thoen, J.

    2003-01-01

    Starch is one of the most important carbohydrate sources in human nutrition. For the thermal analysis of starch, techniques such as differential scanning calorimetry have been extensively used. As an alternative, we have applied a photopyroelectric (PPE) configuration and adiabatic scanning calorimetry (ASC) to study the thermal properties of starch-water systems. For this study we used nixtamalized corn flour and potato starch with different quantities of distilled water, in order to obtain samples with different moisture content. By using PPE and ASC methods we have measured, for each technique separately, the heat capacity by unit volume (ρcp) at room temperature for a corn flour sample at 90% moisture. The obtained values agree within experimental uncertainty. By using these techniques we also studied the thermal behavior of potato starch, at 80% moisture, in the temperature range where phase transitions occur. In this case the PPE signal phase could be used as a sensitive and versatile monitor for phase transitions.

  17. Inherent limitations of fixed-time, servo-controlled radiometric calorimetry

    SciTech Connect

    Wetzel, J.R.; Lemming, J.F.; Duff, M.F.

    1987-01-01

    Interest has been shown in using fixed-time, servo-controlled calorimetry to shorten the measurement times for certain samples that require low precision values (3 to 5%). This type of calorimeter measurement could be particularly useful for screening scrap samples to determine whether there is a need for a more accurate measurement or for certain confirmatory measurements for which low precision numbers are sufficient. The equipment required for this type of measurement is a servo-controlled calorimeter and a preconditioning unit. Samples to be measured are placed in the preconditioning unit, which is maintained at the internal temperature of the calorimeter. The power value for the sample is determined at a fixed time after loading into the calorimeter, for example, 30 min. When a calorimeter is operated using a fixed cutoff time, there are additional sources of uncertainty that need to be considered. The major factors affecting the uncertainty of the calorimetry power values are discussed. 2 refs., 4 figs.

  18. Differential scanning calorimetry investigations on Eu-doped fluorozirconate-based glass ceramics

    PubMed Central

    Paßlick, C.; Ahrens, B.; Henke, B.; Johnson, J. A.; Schweizer, S.

    2010-01-01

    The properties of Eu-doped fluorochlorozirconate (FCZ) glass ceramics upon thermal processing and the influence of Eu-doping on the formation of BaCl2 nanocrystals therein have been investigated. Differential scanning calorimetry indicates that higher Eu-doping shifts the crystallization peak of the nanocrystals in the glass to lower temperatures, while the glass transition temperature remains constant. The activation energy and the thermal stability parameters for the BaCl2 crystallization are determined. PMID:21286235

  19. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3–5% higher than the calorimetry, within the stated uncertainties.

  20. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers.

    PubMed

    Lye, J E; Harty, P D; Butler, D J; Crosbie, J C; Livingstone, J; Poole, C M; Ramanathan, G; Wright, T; Stevenson, A W

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties. PMID:27192396

  1. Chemical analysis of metal impurity distribution of zone-refined mercuric iodide by ICP-AES and DSC

    NASA Astrophysics Data System (ADS)

    Chen, K.-T.; Salary, L.; Burger, A.; Soria, E.; Antolak, A.; James, R. B.

    A mercuric iodide single crystal is being developed for X-ray and gamma-ray detector applications where high-purity starting material is required. Zone-refining processing has been proven to be an effective step in the purification of large amounts of mercuric iodide for crystal growth. In this study we used the Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) to identify and determine the distribution of impurity concentrations along the ampoule after zone-refining mercuric iodide. The results show that for Ag, Cu, Fe, Mg, Ca, Zn, Cr and Al, the zone-refining process does sweep the impurities to the last-to-freeze zone, due to an effective distribution coefficient, keff < 1. For Na, Ni, Cd, Mn and Pb the concentration gradient seems to be fairly independent of the position along the ingot. Differential Scanning Calorimetry was also employed to investigate the deviation from stoichiometry caused by the zone-refining process, and the results indicated that the first-to-freeze section is Hg-rich, and the middle section tends to become slightly Hg-rich, while the last-to-freeze section becomes I-rich.

  2. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Gnanaraj, J. S.; Zinigrad, E.; Asraf, L.; Gottlieb, H. E.; Sprecher, M.; Aurbach, D.; Schmidt, M.

    The thermal stability of 1M LiPF 6, LiClO 4, LiN(SO 2CF 2CF 3) 2 (LiBETI) and LiPF 3(CF 2CF 3) 3 (LiFAP) solutions in mixtures of ethylene carbonate, diethyl carbonate and dimethyl carbonate in the temperature range 40-350 °C was studied by ARC and DSC. NMR was used to analyze the reaction products at different reaction stages. The least thermally stable are LiClO 4 solutions. LiPF 3(CF 2CF 3) 3 solutions showed higher thermal stability than LiPF 6 solutions. The highest thermal stability was found for LiN(SO 2CF 2CF 3) 2 solutions. Studies by DSC and pressure measurements during ARC experiments with LiPF 6 and LiFAP solutions detected an endothermic reaction, which occurs before a number of exothermic reactions as the temperature increases. Fluoride ions are formed and react with the alkyl carbonate molecules both as bases and as nucleophiles.

  3. Biophysical characterization of the honeybee DSC1 orthologue reveals a novel voltage-dependent Ca2+ channel subfamily: CaV4.

    PubMed

    Gosselin-Badaroudine, Pascal; Moreau, Adrien; Simard, Louis; Cens, Thierry; Rousset, Matthieu; Collet, Claude; Charnet, Pierre; Chahine, Mohamed

    2016-08-01

    Bilaterian voltage-gated Na(+) channels (NaV) evolved from voltage-gated Ca(2+) channels (CaV). The Drosophila melanogaster Na(+) channel 1 (DSC1), which features a D-E-E-A selectivity filter sequence that is intermediate between CaV and NaV channels, is evidence of this evolution. Phylogenetic analysis has classified DSC1 as a Ca(2+)-permeable Na(+) channel belonging to the NaV2 family because of its sequence similarity with NaV channels. This is despite insect NaV2 channels (DSC1 and its orthologue in Blatella germanica, BSC1) being more permeable to Ca(2+) than Na(+) In this study, we report the cloning and molecular characterization of the honeybee (Apis mellifera) DSC1 orthologue. We reveal several sequence variations caused by alternative splicing, RNA editing, and genomic variations. Using the Xenopus oocyte heterologous expression system and the two-microelectrode voltage-clamp technique, we find that the channel exhibits slow activation and inactivation kinetics, insensitivity to tetrodotoxin, and block by Cd(2+) and Zn(2+) These characteristics are reminiscent of CaV channels. We also show a strong selectivity for Ca(2+) and Ba(2+) ions, marginal permeability to Li(+), and impermeability to Mg(2+) and Na(+) ions. Based on current ion channel nomenclature, the D-E-E-A selectivity filter, and the properties we have uncovered, we propose that DSC1 homologues should be classified as CaV4 rather than NaV2. Indeed, channels that contain the D-E-E-A selectivity sequence are likely to feature the same properties as the honeybee's channel, namely slow activation and inactivation kinetics and strong selectivity for Ca(2+) ions. PMID:27432995

  4. Characterisation of 1,3-diammonium propylselenate monohydrate by XRD, FT-IR, FT-Raman, DSC and DFT studies

    NASA Astrophysics Data System (ADS)

    Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.; Atalay, Yusuf

    2016-03-01

    The crystals of 1,3-diammonium propylselenate monohydrate (DAPS) were prepared and characterised X-ray diffraction (XRD), FT-IR, FT-Raman spectroscopy, and DFT/B3LYP methods. It comprises protonated propyl ammonium moieties (diammonium propyl cations), selenate anions and water molecule which are held together by a number of hydrogen bonds and form infinite chains. The XRD data confirm the transfer of two protons from selenic acid to 1,3-diaminopropane molecule. The DAPS complex is stabilised by the presence of O-H···O and N-H···O hydrogen bonds and the electrostatic interactions as well. The N···O and O···O bond distances are 2.82-2.91 and 2.77 Å, respectively. The FT-IR and FT-Raman spectra of 1,3-diammonium propyl selenate monohydrate are recorded and the complete vibrational assignments have been discussed. The geometry is optimised by B3LYP method using 6-311G, 6-311+G and 6-311+G* basis sets and the energy, structural parameters, vibrational frequencies, IR and Raman intensities are determined. Differential scanning colorimetry (DSC) data were also presented to analyse the possibility of the phase transition. Complete natural bonding orbital (NBO) analysis is carried out to analyse the intramolecular electronic interactions and their stabilisation energies. The electrostatic potential of the complex lies in the range +1.902e × 10-2 to -1.902e × 10-2. The limits of total electron density of the complex is +8.43e × 10-2 to -8.43e × 10-2.

  5. HEAT OF HYDRATION OF SALTSTONE MIXES-MEASUREMENT BY ISOTHERMAL CALORIMETRY

    SciTech Connect

    Harbour, J; Vickie Williams, V; Tommy Edwards, T

    2007-07-02

    This report provides initial results on the measurement of heat of hydration of Saltstone mixes using isothermal calorimetry. The results were obtained using a recently purchased TAM Air Model 3116 Isothermal Conduction Calorimeter. Heat of hydration is an important property of Saltstone mixes. Greater amounts of heat will increase the temperature of the curing mix in the vaults and limit the processing rate. The heat of hydration also reflects the extent of the hydraulic reactions that turn the fluid mixture into a ''stone like'' solid and consequently impacts performance properties such as permeability. Determining which factors control these reactions, as monitored by the heat of hydration, is an important goal of the variability study. Experiments with mixes of portland cement in water demonstrated that the heats measured by this technique over a seven day period match very well with the literature values of (1) seven day heats of hydration using the standard test method for heat of hydration of hydraulic cement, ASTM C 186-05 and (2) heats of hydration measured using isothermal calorimetry. The heats of hydration of portland cement or blast furnace slag in a Modular Caustic Side Solvent Extraction Unit (MCU) simulant revealed that if the cure temperature is maintained at 25 C, the amount of heat released over a seven day period is roughly 62% less than the heat released by portland cement in water. Furthermore, both the blast furnace slag and the portland cement were found to be equivalent in heat production over the seven day period in MCU. This equivalency is due to the activation of the slag by the greater than 1 Molar free hydroxide ion concentration in the simulant. Results using premix (a blend of 10% cement, 45% blast furnace slag, and 45% fly ash) in MCU, Deliquification, Dissolution and Adjustment (DDA) and Salt Waste Processing Facility (SWPF) simulants reveal that the fly ash had not significantly reacted (undergone hydration reactions) after seven

  6. Phase transitions and molecular motions in [Cd(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} studied by DSC, {sup 1}H and {sup 19}F NMR and FT-MIR

    SciTech Connect

    Mikuli, E. . E-mail: mikuli@chemia.uj.edu.pl; Grad, B.; Medycki, W.; Holderna-Natkaniec, K.

    2004-10-01

    Two solid phase transitions of [Cd(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} occurring on heating at T{sub C2}=183.3K and T{sub C1}=325.3K, with 2K and 5K hysteresis, respectively, were detected by differential scanning calorimetry (DSC). High value of entropy changes indicated large orientational disorder of the high temperature and intermediate phase. Nuclear magnetic resonance ({sup 1}H NMR and {sup 19}F NMR) relaxation measurements revealed that the phase transitions at T{sub C1} and T{sub C2} were associated with a drastic and small change, respectively, of the both spin-lattice relaxation times: T{sub 1}({sup 1}H) and T{sub 1}({sup 19}F). These relaxation processes were connected with the 'tumbling' motions of the [Cd(H{sub 2}O){sub 6}]{sup 2+}, reorientational motions of the H{sub 2}O ligands, and with the iso- and anisotropic reorientation of the BF{sub 4}{sup -} anions. The cross-relaxation effect was observed in phase III. The line width and the second moment of the {sup 1}H and {sup 19}F NMR line measurements revealed that the H{sub 2}O reorientate in all three phases of the title compound. On heating the onset of the reorientation of 3 H{sub 2}O in the [Cd(H{sub 2}O){sub 6}]{sup +2}, around the three-fold symmetry axis of these octahedron, causes the isotropic reorientation of the whole cation. The BF{sub 4}{sup -} reorientate isotropically in the phases I and II, but in the phase III they perform slow reorientation only about three- or two-fold axes. A small distortion in the structure of BF{sub 4}{sup -} as well as of [Cd(H{sub 2}O){sub 6}]{sup 2+} is postulated. The temperature dependence of the bandwidth of the O-H stretching mode measured by Fourier transform middle infrared spectroscopy (FT-MIR) indicated that the activation energy for the reorientation of the H{sub 2}O did not change much at the T{sub C2} phase transition.

  7. Thermochromic transitions of some tetrachlorocuprates of protonated ammines determined by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Fernández, F.; Fernández, V.; Gutiérrez-Rios, M. a.T.; Sánchez, C.

    1990-11-01

    The enthalpies of the thermochromic phase transitions of the tetrachlorocuprates (II) of a group of protonated ammines (n-propyl (I), iso-propyl (II), n-butyl (III), iso-butyl (IV), octyl (V), lauryl-ammine (VI), pyridine (VII) and piperidine (VIII)) have been determined by DSC. The transition temperatures correlate with the colour change shown by the samples. It is concluded that these transitions are associated with a modification of the CuCl 42- structure to a more square-planar one in some of the compounds (I, II, III, IV, V, VI) and with a deformation to a more tetrahedral one in the other compounds (VII and VIII).

  8. [Identication of pearl powder and conch powder from different origins by differential scanning calorimetry].

    PubMed

    Chen, Jia; Li, Ming-hua; Yu, Kun-zi; Dong, Ya-juan; Zhang, Nan-ping; Hu, Xiao-ru; Wei, Feng; Ma, Shuang-cheng

    2015-04-01

    The paper is aimed to establish a methods for identication of pearl powder and conch powder from different origins. Hermetic aluminum pan was used to encapsulate samples. The optimal testing conditions were: heating rate 10 degrees C x min(-1), sample weight 3 mg and nitrogen gas flow rate 40 mL x min(-1). The enthalpy values of pearl powder and conch powder was obvious different. Identication of pearl powder and conch powder by DSC is a practical method for its accuracy, convenience and practificality. PMID:26281579

  9. SU-D-18C-02: Feasibility of Using a Short ASL Scan for Calibrating Cerebral Blood Flow Obtained From DSC-MRI

    SciTech Connect

    Wang, P; Chang, T; Huang, K; Yeh, C; Chien, C; Wai, Y; Lee, T; Liu, H

    2014-06-01

    Purpose: This study aimed to evaluate the feasibility of using a short arterial spin labeling (ASL) scan for calibrating the dynamic susceptibility contrast- (DSC-) MRI in a group of patients with internal carotid artery stenosis. Methods: Six patients with unilateral ICA stenosis enrolled in the study on a 3T clinical MRI scanner. The ASL-cerebral blood flow (-CBF) maps were calculated by averaging different number of dynamic points (N=1-45) acquired by using a Q2TIPS sequence. For DSC perfusion analysis, arterial input function was selected to derive the relative cerebral blood flow (rCBF) map and the delay (Tmax) map. Patient-specific CF was calculated from the mean ASL- and DSC-CBF obtained from three different masks: (1)Tmax< 3s, (2)combined gray matter mask with mask 1, (3)mask 2 with large vessels removed. One CF value was created for each number of averages by using each of the three masks for calibrating the DSC-CBF map. The CF value of the largest number of averages (NL=45) was used to determine the acceptable range(< 10%, <15%, and <20%) of CF values corresponding to the minimally acceptable number of average (NS) for each patient. Results: Comparing DSC CBF maps corrected by CF values of NL (CBFL) in ACA, MCA and PCA territories, all masks resulted in smaller CBF on the ipsilateral side than the contralateral side of the MCA territory(p<.05). The values obtained from mask 1 were significantly different than the mask 3(p<.05). Using mask 3, the medium values of Ns were 4(<10%), 2(<15%) and 2(<20%), with the worst case scenario (maximum Ns) of 25, 4, and 4, respectively. Conclusion: This study found that reliable calibration of DSC-CBF can be achieved from a short pulsed ASL scan. We suggested use a mask based on the Tmax threshold, the inclusion of gray matter only and the exclusion of large vessels for performing the calibration.

  10. Differential Scanning Calorimetry Investigations on Polyvinylidene Fluoride - Fe3O4 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Salinas, Samantha; Jones, Robert; Chipara, Dorina M.; Chipara, Mircea

    2015-03-01

    Nanocomposites of polyvinylidene fluoride (PVDF)-magnetite (Fe3O4) with various weight fractions of nanofiller (0%, 0.2 %, 0.6 %, 1.2%, 2.4 %, 5.8 %, 12 %, 23 %, and 30 %) have been obtained via melt mixing by loading PVDF with Fe3O4 particles (average size 75 nm from Nanostructured & Amorphous Materials, Inc). Thermal stability of PVDF-Fe3O4 has been investigated by TGA in nitrogen. The increase of the thermal stability of PVDF due to the loading with Fe3O4 was quantified by the shift of the temperature at which the (mass) degradation rate is maximum as a function of Fe3O4 content. The effect of the nanofiller on the crystallization of PVDF was investigated by isothermal DSC (TA Instruments, Q500). Non isothermal DSC tests, (at various heating rates ranging from 1 to 25 °C/min) have been used to locate the glass, crystallization, and melting temperatures. The dependence of the glass, crystallization, and melting temperatures on the concentration of nanoparticles is reported and analyzed in detail. The data are critically analyzed within the classical Avrami theory.

  11. Vitreous State Characterization of Pharmaceutical Compounds Degrading upon Melting by Using Fast Scanning Calorimetry.

    PubMed

    Corvis, Yohann; Wurm, Andreas; Schick, Christoph; Espeau, Philippe

    2015-06-01

    Fast scanning calorimetry, a technique mainly devoted to polymer characterization, is applied here for the first time to low molecular mass organic compounds that degrade upon melting, such as ascorbic acid and prednisolone. Due to the fast scan rates upon heating and cooling, the substances can be obtained in the molten state without degradation and then quenched into the glassy state. The hydrated form and the polymorphic Form 1 of prednisolone were investigated. It is shown that once the sesquihydrate dehydrates, a molten product is obtained. Depending on the heating rate, this molten phase may recrystallize or not into Form 1. PMID:25951890

  12. Resistive Micromegas for sampling calorimetry, a study of charge-up effects

    NASA Astrophysics Data System (ADS)

    Chefdeville, M.; Karyotakis, Y.; Geralis, T.; Titov, M.

    2016-07-01

    Micromegas, as a proportional and compact gaseous detector, is well suited for sampling calorimetry. The limitation of occasional sparking has now been lifted by means of resistive electrodes but at the cost of current-dependent charge-up effects. These effects are studied in this contribution, with an emphasis on gain variations during operation at high particle rate and under heavy ionisation. Results are reproduced by a simple model of charging-up which will be used for detector design optimisation in the future.

  13. Kinetic analysis of gluconate phosphorylation by human gluconokinase using isothermal titration calorimetry.

    PubMed

    Rohatgi, Neha; Guðmundsson, Steinn; Rolfsson, Óttar

    2015-11-30

    Gluconate is a commonly encountered nutrient, which is degraded by the enzyme gluconokinase to generate 6-phosphogluconate. Here we used isothermal titration calorimetry to study the properties of this reaction. ΔH, KM and kcat are reported along with substrate binding data. We propose that the reaction follows a ternary complex mechanism, with ATP binding first. The reaction is inhibited by gluconate, as it binds to an Enzyme-ADP complex forming a dead-end complex. The study exemplifies that ITC can be used to determine mechanisms of enzyme catalyzed reactions, for which it is currently not commonly applied. PMID:26505675

  14. Energy storage capacity of reversible liquid phase Diels-Alder reactions as determined by drop calorimetry

    SciTech Connect

    Chung, C.P.

    1983-01-01

    Several Diels-Alder reactions were evaluated as possible candidates for energy storage. The goal was to use simple drop calorimetry to screen reactions and to identify those with high energy storage capacities. The dienes used were furan and substituted furans. The dienophiles used were maleic anhydride and substituted maleic anhydrides. Sixteen reactions have been examined. Three had energy storage capacities that were increased due to reaction (maleic anhydride and 2-methyl furan, maleic anhydride and 2-ethyl furan, maleic anhydride and 2,5-dimethyl furan). The remaining thirteen showed no increase in apparent heat capacity due to reaction.

  15. PREFACE: XIII International Conference on Calorimetry in High Energy Physics (CALOR 2008)

    NASA Astrophysics Data System (ADS)

    Livan, Michele

    2009-07-01

    The XIII International Conference on Calorimetry in High Energy Physics was held in Pavia, Italy, 26-30 May 2008, picking up the baton from the 2006 Conference in Chicago. The Conference took place in the unique environment of the Theresian Room of the University Library. The attendees were surrounded by over 40 000 books of general interest and culture, and had the opportunity to see precious volumes written by such people as Galileo, Volta and Faraday. The Workshop brought together more than 120 participants, including senior scientists as well as young physicists, confirming the central and ever-growing role of calorimeters in modern particle physics. The development of these detectors, as stressed by Professor Klaus Pretzl in his lectio magistralis, has made it possible to explore new frontiers in physics, and the present scenario is no exception to this rule. With the LHC experiments almost completely installed and ready to take data, the Conference was an ideal chance to review the status of the different projects, whose development has been followed and discussed throughout the entire Calor series, and to show that they are capable of meeting the design specifications. Other highlights were the performance and physics results of calorimeters installed in currently operating experiments. In the session on astrophysics and neutrinos, the contributions confirmed the key role of calorimeters in this sector and demonstrated their growing application even beyond the field of accelerator physics. Considerable time was devoted to the state-of-the-art techniques in the design and operation of the detectors, while the session on simulation addressed the importance of a thorough understanding of the shower development to meet the demanding requirements of present experiments. Finally, on the R&D side, the particle flow and dual read-out concepts confronted the challenges issued by the next generation of experiments. This complex material was reviewed in 83

  16. Thermal Analysis of Plastics

    ERIC Educational Resources Information Center

    D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A.

    2008-01-01

    This lab experiment illustrates the use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) in the measurement of polymer properties. A total of seven exercises are described. These are dry exercises: students interpret previously recorded scans. They do not perform the experiments. DSC was used to determine the…

  17. Calorimetry, activity, and micro-FTIR analysis of CO chemisorption, titration, and oxidation on supported Pt

    NASA Technical Reports Server (NTRS)

    Sermon, Paul A.; Self, Valerie A.; Vong, Mariana S. W.; Wurie, Alpha T.

    1990-01-01

    The value of in situ analysis on CO chemisorption, titration and oxidation over supported Pt catalysts using calorimetry, catalytic and micro-FTIR methods is illustrated using silica- and titania-supported samples. Isothermal CO-O and O2-CO titrations have not been widely used on metal surfaces and may be complicated if some oxide supports are reduced by CO titrant. However, they can illuminate the kinetics of CO oxidation on metal/oxide catalysts since during such titrations all O and CO coverages are scanned as a function of time. There are clear advantages in following the rates of the catalyzed CO oxidation via calorimetry and gc-ms simultaneously. At lower temperatures the evidence they provide is complementary. CO oxidation and its catalysis of CO oxidation have been extensively studied with hysteresis and oscillations apparent, and the present results suggest the benefits of a combined approach. Silica support porosity may be important in defining activity-temperature hysteresis. FTIR microspectroscopy reveals the chemical heterogeneity of the catalytic surfaces used; it is interesting that the evidence with regard to the dominant CO surface species and their reactivities with regard to surface oxygen for present oxide-supported Pt are different from those seen on graphite-supported Pt.

  18. Technical memo on PbF/sub 2/ as a Cherenkov radiator for EM calorimetry

    SciTech Connect

    Anderson, D.F.

    1989-06-26

    It is apparent that the ever increasing rates and radiation levels found in high-energy physics are excluding more and more instrumental techniques. Those techniques that are remaining are often pushed to their theoretical limits. This situation reaches an extreme at the proposed luminosity of the SSC. Also, it is fair to say that at the SSC, after the accelerator itself, calorimetry will be the next most important physics tool. Therefore, we should be ever alert to new calorimetry techniques which may operate in this demanding environment. The material lead fluoride, PbF/sub 2/, has a real potential of yielding a very compact, high-resolution electromagnetic calorimeter that is both fast and radiation hard. PbF/sub 2/ is not a scintillator but a Cherenkov radiator like lead glass, but with a radiation length even harder shorter than of BGO. This memo discusses this property as well as comparison PbF/sub 2/ to other scintillating materials. 2 refs., 14 figs., 1 tab.

  19. Reference dosimetry for light-ion beams based on graphite calorimetry.

    PubMed

    Rossomme, S; Palmans, H; Thomas, R; Lee, N; Duane, S; Bailey, M; Shipley, D; Bertrand, D; Romano, F; Cirrone, P; Cuttone, G; Vynckier, S

    2014-10-01

    Developments in hadron therapy require efforts to improve the accuracy of the dose delivered to a target volume. Here, the determination of the absorbed dose under reference conditions was analysed. Based on the International Atomic Energy Agency TRS-398 code of practice, for hadron beams, the combined standard uncertainty on absorbed dose to water under reference conditions, derived from ionisation chambers, is too large. This uncertainty is dominated by the beam quality correction factors, [Formula: see text], mainly due to the mean energy to produce one ion pair in air, wair. A method to reduce this uncertainty is to carry out primary dosimetry, using calorimetry. A [Formula: see text]-value can be derived from a direct comparison between calorimetry and ionometry. Here, this comparison is performed using a graphite calorimeter in an 80-MeV A(-1) carbon ion beam. Assuming recommended TRS-398 values of water-to-graphite stopping power ratio and the perturbation factor for an ionisation chamber, preliminary results indicate a wair-value of 35.5 ± 0.9 J C(-1). PMID:24336190

  20. Direct calorimetry of free-moving eels with manipulated thyroid status

    NASA Astrophysics Data System (ADS)

    van Ginneken, Vincent; Ballieux, Bart; Antonissen, Erik; van der Linden, Rob; Gluvers, Ab; van den Thillart, Guido

    2007-02-01

    In birds and mammals, the thyroid gland secretes the iodothyronine hormones of which tetraiodothyronine (T4) is less active than triiodothyronine (T3). The action of T3 and T4 is calorigenic and is involved in the control of metabolic rate. Across all vertebrates, thyroid hormones also play a major role in differentiation, development and growth. Although the fish thyroidal system has been researched extensively, its role in thermogenesis is unclear. In this study, we measured overall heat production to an accuracy of 0.1 mW by direct calorimetry in a free-moving European eel ( Anguilla anguilla L.) with different thyroid status. Hyperthyroidism was induced by injection of T3 and T4, and hypothyroidism was induced with phenylthiourea. The results show for the first time at the organismal level, using direct calorimetry, that neither overall heat production nor overall oxygen consumption in eels is affected by hyperthyroidism. Therefore, we conclude that the thermogenic metabolism-stimulating effect of thyroid hormones (TH) is not present with a cold-blooded fish species like the European eel. This supports the concept that TH does not stimulate thermogenesis in poikilothermic species.

  1. Chip calorimetry for evaluation of biofilm treatment with biocides, antibiotics, and biological agents.

    PubMed

    Morais, Frida Mariana; Buchholz, Friederike; Maskow, Thomas

    2014-01-01

    Any growth or bioconversion in biofilms is accompanied by the release of heat. The heat (in J) is tightly related to the stoichiometry of the respective process via law of Hess, and the heat production rate (in W or J/s) is additionally related to the process kinetics. This heat and the heat production rate can nowadays be measured by modern calorimetry with extremely high sensitivity. Flow-through calorimetry allows the measurement of bioprocesses in biofilms in real time, without the need of invasive sample preparation and disturbing of biofilm processes. Furthermore, it can be applied for long-term measurements and is even applicable to turbid media. Chip or miniaturized calorimeters have the additional advantages of extremely short thermal equilibration times and the requirement of very small amounts of media and chemicals. The precision of flow-through chip calorimeters (about 3 mW/L) allows the detection of early stages of biofilm development (about 10(5) bacteria cm(-2)). PMID:24664840

  2. Hydrogen atom density in narrow-gap microwave hydrogen plasma determined by calorimetry

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Ohmi, Hiromasa; Kakiuchi, Hiroaki; Yasutake, Kiyoshi

    2016-02-01

    The density of hydrogen (H) atoms in the narrow-gap microwave hydrogen plasma generated under high-pressure conditions is expected to be very high because of the high input power density of the order of 104 W/cm3. For measuring the H atom density in such a high-pressure and high-density plasma, power-balance calorimetry is suited since a sufficient signal to noise ratio is expected. In this study, H atom density in the narrow-gap microwave hydrogen plasma has been determined by the power-balance calorimetry. The effective input power to the plasma is balanced with the sum of the powers related to the out-going energy per unit time from the plasma region via heat conduction, outflow of high-energy particles, and radiation. These powers can be estimated by simple temperature measurements using thermocouples and optical emission spectroscopy. From the power-balance data, the dissociation fraction of H2 molecules is determined, and the obtained maximum H atom density is (1.3 ± 0.2) × 1018 cm-3. It is found that the H atom density increases monotonically with increasing the energy invested per one H2 molecule within a constant plasma volume.

  3. Feasibility study on using fast calorimetry technique to measure a mass attribute as part of a treaty verification regime

    SciTech Connect

    Hauck, Danielle K; Bracken, David S; Mac Arthur, Duncan W; Santi, Peter A; Thron, Jonathan

    2010-01-01

    The attribute measurement technique provides a method for determining whether or not an item containing special nuclear material (SNM) possesses attributes that fall within an agreed upon range of values. One potential attribute is whether the mass of an SNM item is larger than some threshold value that has been negotiated as part of a nonproliferation treaty. While the historical focus on measuring mass attributes has been on using neutron measurements, calorimetry measurements may be a viable alternative for measuring mass attributes for plutonium-bearing items. Traditionally, calorimetry measurements have provided a highly precise and accurate determination of the thermal power that is being generated by an item. In order to achieve this high level of precision and accuracy, the item must reach thermal equilibrium inside the calorimeter prior to determining the thermal power of the item. Because the approach to thermal equilibrium is exponential in nature, a large portion of the time spent approaching equilibrium is spent with the measurement being within {approx}10% of its final equilibrium value inside the calorimeter. Since a mass attribute measurement only needs to positively determine if the mass of a given SNM item is greater than a threshold value, performing a short calorimetry measurement to determine how the system is approaching thermal equilibrium may provide sufficient information to determine if an item has a larger mass than the agreed upon threshold. In previous research into a fast calorimetry attribute technique, a two-dimensional heat flow model of a calorimeter was used to investigate the possibility of determining a mass attribute for plutonium-bearing items using this technique. While the results of this study looked favorable for developing a fast calorimetry attribute technique, additional work was needed to determine the accuracy of the model used to make the calculations. In this paper, the results from the current work investigating

  4. Electrostatic interactions in the binding pathway of a transient protein complex studied by NMR and isothermal titration calorimetry.

    PubMed

    Meneses, Erick; Mittermaier, Anthony

    2014-10-01

    Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr-Purcell-Meiboom-Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes. PMID:25122758

  5. Determination of the Membrane Permeability to Water of Human Vaginal Mucosal Immune Cells at Subzero Temperatures Using Differential Scanning Calorimetry.

    PubMed

    Shu, Zhiquan; Hughes, Sean M; Fang, Cifeng; Hou, Zhiyuan; Zhao, Gang; Fialkow, Michael; Lentz, Gretchen; Hladik, Florian; Gao, Dayong

    2016-08-01

    To study mucosal immunity and conduct HIV vaccine trials, it is important to be able to cryopreserve mucosal specimens and recover them in functional viable form. Obtaining a good recovery depends, in part, on cooling the cells at the appropriate rate, which is determined by the rate of water transport across the cell membrane during the cooling process. In this study, the cell membrane permeabilities to water at subzero temperatures of human vaginal mucosal T cells and macrophages were measured using the differential scanning calorimetry method proposed by Devireddy et al. in 1998. Thermal histograms were measured before and after cell lysis using a Slow-Fast-Fast-Slow cooling program. The difference between the thermal histograms of the live intact cells and the dead lysed cells was used to calculate the temperature-dependent cell membrane permeability at subzero temperatures, which was assumed to follow the Arrhenius relationship, [Formula: see text], where Lpg is the permeability to water at the reference temperature (273.15 K). The results showed that Lpg = 0.0209 ± 0.0108 μm/atm/min and Ea = 41.5 ± 11.4 kcal/mol for T cells and Lpg = 0.0198 ± 0.0102 μm/atm/min and Ea = 38.2 ± 10.4 kcal/mol for macrophages, respectively, in the range 0°C to -40°C (mean ± standard deviation). Theoretical simulations predicted that the optimal cooling rate for both T cells and macrophages was about -3°C/min, which was proven by preliminary immune cell cryopreservation experiments. PMID:26977578

  6. Electrostatic Interactions in the Binding Pathway of a Transient Protein Complex Studied by NMR and Isothermal Titration Calorimetry*

    PubMed Central

    Meneses, Erick; Mittermaier, Anthony

    2014-01-01

    Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr–Purcell–Meiboom–Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes. PMID:25122758

  7. Thermophysical analysis of II-VI semiconductors by PPE calorimetry and lock-in thermography

    SciTech Connect

    Streza, M.; Dadarlat, D.; Strzałkowski, K.

    2013-11-13

    An accurate determination of thermophysical properties such as thermal diffusivity, thermal effusivity and thermal conductivity is extremely important for characterization and quality assurance of semiconductors. Thermal diffusivity and effusivity of some binary semiconductors have been investigated. Two experimental techniques were used: a contact technique (PPE calorimetry) and a non contact technique (lock-in thermography). When working with PPE, in the back (BPPE) configuration and in the thermally thick regim of the pyroelectric sensor, we can get the thermal diffusivity of the sample by performing a scanning of the excitation frequency of radiation. Thermal effusivity is obtained in front configuration (sensor directly irradiated and sample in back position) by performing a thickness scan of a coupling fluid. By using the lock-in thermography technique, the thermal diffusivity of the sample is obtained from the phase image. The results obtained by the two techniques are in good agreement. Nevertheless, for the determination of thermal diffusivity, lock-in thermography is preferred.

  8. THE HYDROLYSIS AND OXIDATION BEHAVIOR OF LITHIUM BOROHYDRIDE AND MAGNESIUM HYDRIDE DETERMINED BY CALORIMETRY

    SciTech Connect

    Brinkman, K; Donald Anton, D; Joshua Gray, J; Bruce Hardy, B

    2008-03-13

    Lithium borohydride, magnesium hydride and the 2:1 'destabilized' ball milled mixtures (2LiBH{sub 4}:MgH{sub 2}) underwent liquid phase hydrolysis, gas phase hydrolysis and air oxidation reactions monitored by isothermal calorimetry. The experimentally determined heats of reaction and resulting products were compared with those theoretically predicted using thermodynamic databases. Results showed a discrepancy between the predicted and observed hydrolysis and oxidation products due to both kinetic limitations and to the significant amorphous character of observed reaction products. Gas phase and liquid phase hydrolysis were the dominant reactions in 2LiBH{sub 4}:MgH{sub 2} with approximately the same total energy release and reaction products; liquid phase hydrolysis displayed the maximum heat flow for likely environmental exposure with a peak energy release of 6 (mW/mg).

  9. Binding of chrysoidine to catalase: spectroscopy, isothermal titration calorimetry and molecular docking studies.

    PubMed

    Yang, Bingjun; Hao, Fang; Li, Jiarong; Chen, Dongliang; Liu, Rutao

    2013-11-01

    Chrysoidine is an industrial azo dye and the presence of chrysoidine in water and food has become an environmental concern due to its negative effects on human beings. In this work, the interactions between chrysoidine and bovine liver catalase (BLC) were explored. Obvious loss in catalytic activity was observed after incubation of BLC with chrysoidine, and the inhibition effect of BLC was found to be of the non-competitive type. No profound conformational change of BLC occurs in the presence of chrysoidine as revealed by UV-vis absorption, circular dichroism and fluorescence spectroscopy studies. Isothermal titration calorimetry results indicate that catalase has two sets of binding sites for chrysoidine. Further, molecular docking simulations show that chrysoidine is located within the bottleneck in the main channel of the substrate to the active site of BLC, which explain the activity inhibition of BLC by chrysoidine. PMID:24001681

  10. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    NASA Astrophysics Data System (ADS)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine; Hecksher, Tina; Pedersen, Ib H.; Rasmussen, Torben; Christensen, Tage; Olsen, Niels Boye; Dyre, Jeppe C.

    2016-05-01

    We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This "Thermalization Calorimetry" technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample's specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s), as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  11. Fast Scanning Calorimetry study of non-equilibrium relaxation in 2-Ethyl-1-Hexanol

    NASA Astrophysics Data System (ADS)

    Sadtchenko, Vlad; Bhattacharya, Deepanjan; Pane, Candace

    2012-02-01

    Fast scanning calorimetry (FSC), capable of heating rates in excess of 1000000 K/s, was combined with vapor deposition technique to investigate non-equilibrium relaxation in micrometer thick ultraviscous of 2-Ethyl-1-Hexanol (2E1H) films under high vacuum conditions. Rapid heating of 2E1H samples prepared at temperatures above approximately 145 K (standard glass transition temperature of 2E1H, Tgs), resulted in well manifested dynamic glass transitions at temperatures tens of degrees higher than Tgs. Furthermore, strong and complex dependence of dynamic glass transition temperature on the sample's initial state, i.e., the starting temperature of FSC scan was also observed. We discuss implications of these results for contemporary models of non-equilibrium relaxation in glasses and supercooled liquids.

  12. Fast Scanning Calorimetry study of non-equilibrium relaxation in fragile organic liquids

    NASA Astrophysics Data System (ADS)

    Sadtchenko, Vlad; Bhattacharya, Deepanjan; O'Reilly, Liam

    2013-03-01

    Fast scanning calorimetry (FSC), capable of heating rates in excess of 1000000 K/s, was combined with vapor deposition technique to investigate non-equilibrium relaxation in micrometer thick viscous liquid films of several organic compounds (e.g.2-ethyl-1-hexanol, Toluene, and 1-propanol) under high vacuum conditions. Rapid heating of samples, vapor deposited at temperatures above their standard glass softening transition (Tg), resulted in observable endotherms which onset temperatures were strongly dependent on heating rate and the deposition temperature. Furthermore, all of the studied compounds were characterized by distinct critical deposition temperatures at which observation of endotherm became impossible. Based on the results of these studies, we have developed a simple model which makes it possible to infer the equilibrium enthalpy relaxation times for liquids from FSC data. We will discuss implications of these studies for contemporary models of non-equilibrium relaxation in glasses and supercooled liquids. Supported by NSF Grant 1012692.

  13. Combined FPPE-PTR Calorimetry Involving TWRC Technique. Theory and Mathematical Simulations

    NASA Astrophysics Data System (ADS)

    Dadarlat, Dorin; Pop, Mircea Nicolae; Streza, Mihaela; Longuemart, Stephane; Depriester, Michael; Hadj Sahraoui, Abdelhak; Simon, Viorica

    2010-12-01

    Photopyroelectric calorimetry in the front detection configuration (FPPE) was combined with photothermal radiometry (PTR), in order to investigate dynamic thermal parameters of different layers of a detection cell. The layout of the detection cell consists of three layers: directly irradiated pyroelectric sensor, liquid layer, and solid backing material; and the scanning parameter is the thickness of the liquid layer (thermal-wave resonator cavity method). The theory developed for the two techniques indicates that both FPPE and PTR signals can lead, in the thermally thin regime for the sensor and liquid layer, to the direct measurement of the thermal diffusivity or effusivity of the sensor and/or liquid layer, or the thermal effusivity of the backing material. The two methods offer complementary results and/or reciprocally support each other.

  14. The design and PCB layout of the CDF Run 2 calorimetry readout module

    SciTech Connect

    Theresa Shaw et al.

    1999-11-05

    The CDF Calorimetry Readout module, called the ADMEM, has been designed to contain both the analog circuitry which digitizes the phototube charge pulses, and the digital logic which supports the readout of the results through the CDF Run 2 DAQ system. The ADMEM module is a 9Ux400mm VMEbus module, which is housed in a CDF VMEbus VIPA crate. The ADMEM must support near deadtimeless operation, with data being digitized and stored for possible readout every 132ns or 7.6 Mhz. This paper will discuss the implementation of the analog and digital portions of the ADMEM module, and how the board was laid out to avoid the coupling of digital noise into the analog circuitry.

  15. Dual-Readout Calorimetry for High-Quality Energy Measurements. Final Report

    SciTech Connect

    Wigmans, Richard; Nural, Akchurin

    2013-09-01

    This document constitutes the final report on the project Dual-Readout Calorimetry for High-Quality Energy Measurements. The project was carried out by a consortium of US and Italian physicists, led by Dr. Richard Wigmans (Texas tech University). This consortium built several particle detectors and tested these at the European Center for Nuclear Research (CERN) in Geneva, Switzerland. The idea arose to use scintillating crystals as dual-readout calorimeters. Such crystals were of course already known to provide excellent energy resolution for the detection of particles developing electromagnetic (em) showers. The efforts to separate the signals from scintillating crystals into scintillation and Cerenkov components led to four different methods by which this could be accomplished. These methods are based on a) the directionality, b) spectral differences, c) the time structure, and d) the polarization of the signals.

  16. Modulated calorimetry of poly(1,4-oxybenzoate), poly(2,6-oxynaphthoate), and their copolymers

    SciTech Connect

    Ma, J; Habenschuss, A; Wunderlich, B

    2008-01-01

    Poly(1,4-oxybenzoate) (POB) and poly(2,6-oxynaphthoate) (PON) and their copolymers which have a well-established phase diagram have been studied with temperature-modulated differential scanning calorimetry (TMDSC). All the analyzed polymers have more than one disordering transition between the glass transition (from 400 to 430 K) and decomposition (starting at 700 K). Above the glass transition, the reversible heat capacity, Cp, increases beyond that calculated from the crystallinity and the known Cp of the solid and melt. This is likely due to an increase of mobility within the crystals and/or a possible rigid-amorphous fraction (mainly for the copolymers). The disordering transitions are largely irreversible, supporting the observation that semicrystalline, linear macromolecules show decreasing amounts of locally reversible melting with increasing rigidity and crystal perfection.

  17. The complexity of condensed tannin binding to bovine serum albumin--An isothermal titration calorimetry study.

    PubMed

    Kilmister, Rachel L; Faulkner, Peta; Downey, Mark O; Darby, Samuel J; Falconer, Robert J

    2016-01-01

    Isothermal titration calorimetry was applied to study the binding of purified proanthocyanidin oligomers to bovine serum albumin (BSA). The molecular weight of the proanthocyanidin oligomer had a major impact on its binding to BSA. The calculated change in enthalpy (ΔH) and association constant (Ka) became greater as the oligomer size increased then plateaued at the heptameric oligomer. These results support a model for precipitation of proteins by proanthocyanidin where increased oligomer size enhanced the opportunity for cross linkages between proteins ultimately forming sediment-able complexes. The authors suggest tannin binding to proteins is opportunistic and involves multiple sites, each with a different Ka and ΔH of binding. The ΔH of binding comprises both an endothermic hydrophobic interaction and exothermic hydrogen bond component. This suggests the calculated entropy value (ΔS) for tannin-protein interactions is subject to a systematic error and should be interpreted with caution. PMID:26212957

  18. Dynamics of phase separation in polymer blends studied by ultrafast scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Zhou, Dongshan; Wei, Lai; Luo, Shaochuan; Jiang, Jing; Wang, Xiaoliang; Xue, Gi

    2015-03-01

    Phase separation in polymer blends has been widely studied in material science due to the special microstructures they may form during the processes. The recently developed ultrafast scanning calorimetry (UFSC) with heating and cooling rates up to 10E5 K/s provides better chance to follow the fast de-mixing of polymer blends occurring in sub-milliseconds. In this work, the dynamics of phase separation in several proportions of poly(styrene) and poly(vinyl methyl ether) (PS/PVME) blends with different molecular weights were studied using UFSC. It shows that the phase diagrams of the blend can be easily built and that the de-mixing level can be well controlled by the fast heating and quenching program the UFSC offers. The authors appreciate the financial support of National Basic Research Program of China (973 program, 2012CB821503) and the NSF of China (21274059 and 21027006).

  19. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.

    PubMed

    Cakir, Bilal; Tuncel, Aytug; Green, Abigail R; Koper, Kaan; Hwang, Seon-Kap; Okita, Thomas W; Kang, ChulHee

    2015-06-01

    Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism. PMID:25953126

  20. The Frontier of Modern Calorimetry: Hardware Advances and Application in Particle Physics Analysis

    NASA Astrophysics Data System (ADS)

    Medvedeva, Tatiana

    While the last missing components of the SM puzzle seem to be successfully found, particle physicists remain hungry for what might be there, beyond the cosy boundaries of the well studies elementary particle world. However, the sophisticated technique of data analysis and acute Monte Carlo simulations remain fruitless. It appears that the successful intrusion into the realm, in which we were not welcome so far, may require a very different implication of effort. All those results might suggest, though banal, that we need an improvement on the hardware side. Indeed, the hadronic calorimeter of CMS is no competitor to its other state-of-art components. This obstacle in many cases significantly complicates the flow of the physics analysis. Besides, the era of high luminosity LHC operation in the offing is calling for the same. After exploration of the analysis debri with 8TeV collision data, we investigate various approaches for better calorimetry for the CMS detector.

  1. Energetics of methanol and formic acid oxidation on Pt(111): Mechanistic insights from adsorption calorimetry

    NASA Astrophysics Data System (ADS)

    Silbaugh, Trent L.; Karp, Eric M.; Campbell, Charles T.

    2016-08-01

    The catalytic and electrocatalytic oxidation and reforming of methanol and formic acid have received intense interest due to potential use in direct fuel cells and as prototype models for understanding electrocatalysis. Consequently, the reaction energy diagram (energies of all the adsorbed intermediates and activation energies of all the elementary steps) have been estimated for these reactions on Pt(111) by density functional theory (DFT) in several studies. However, no experimental measurement of these energy diagrams have been reported, nor is there a consensus on the mechanisms. Here, we use energies of key intermediates on Pt(111) from single crystal adsorption calorimetry (SCAC) and temperature programmed desorption (TPD) to build a combined energy diagram for these reactions. It suggests a new pathway involving monodentate formate as a key intermediate, with bidentate formate only being a spectator species that slows the rate. This helps reconcile conflicting proposed mechanisms.

  2. Technique for determination of accurate heat capacities of volatile, powdered, or air-sensitive samples using relaxation calorimetry

    NASA Astrophysics Data System (ADS)

    Marriott, Robert A.; Stancescu, Maria; Kennedy, Catherine A.; White, Mary Anne

    2006-09-01

    We introduce a four-step technique for the accurate determination of the heat capacity of volatile or air-sensitive samples using relaxation calorimetry. The samples are encapsulated in a hermetically sealed differential scanning calorimetry pan, in which there is an internal layer of Apiezon N grease to assist thermal relaxation. Using the Quantum Design physical property measurement system to investigate benzoic acid and copper standards, we find that this method can lead to heat capacity determinations accurate to ±2% over the temperature range of 1-300K, even for very small samples (e.g., <10mg and contributing ca. 20% to the total heat capacity).

  3. An investigation of student thinking regarding calorimetry, entropy, and the second law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Christensen, Warren Michael

    This thesis constitutes an investigation into student understanding of concepts in thermal physics in an introductory calculus-based university physics course. Nearly 90% of students enrolled in the course had previous exposure to thermodynamics concepts in chemistry and/or high-school physics courses. The two major thrusts of this work are (1) an exploration of student approaches to solving calorimetry problems involving two substances with differing specific heats, and (2) a careful probing of student ideas regarding certain aspects of entropy and the second law of thermodynamics. We present extensive free-response, interview, and multiple-choice data regarding students' ideas, collected both before and after instruction from a diverse set of course semesters and instructors. For topics in calorimetry, we found via interviews that students frequently get confused by, or tend to overlook, the detailed proportional reasoning or algebraic procedures that could lead to correct solutions. Instead, students often proceed with semi-intuitive reasoning that at times may be productive, but more often leads to inconsistencies and non-uniform conceptual understanding. Our investigation of student thinking regarding entropy suggests that prior to instruction, students have consistent and distinct patterns of incorrect or incomplete responses that often persist despite deliberate and focused efforts by the instructor. With modified instruction based on research-based materials, significant learning gains were observed on certain key concepts, e.g., that the entropy of the universe increases for all non-ideal processes. The methodology for our work is described, the data are discussed and analyzed, and a description is given of goals for future work in this area.

  4. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.

    PubMed

    Kim, Do-Yeon; Robergs, Robert Andrew

    2012-02-01

    Limited validation research exists for applications of breath-by-breath systems of expired gas analysis indirect calorimetry (EGAIC) during exercise. We developed improved hardware and software for breath-by-breath indirect calorimetry (NEW) and validated this system as well as a commercial system (COM) against 2 methods: (i) mechanical ventilation with known calibration gas, and (ii) human subjects testing for 5 min each at rest and cycle ergometer exercise at 100 and 175 W. Mechanical calibration consisted of medical grade and certified calibration gas ((4.95% CO(2), 12.01% O(2), balance N(2)), room air (20.95% O(2), 0.03% CO(2), balance N(2)), and 100% nitrogen), and an air flow turbine calibrated with a 3-L calibration syringe. Ventilation was mimicked manually using complete 3-L calibration syringe manouvers at a rate of 10·min(-1) from a Douglas bag reservoir of calibration gas. The testing of human subjects was completed in a counterbalanced sequence based on 5 repeated tests of all conditions for a single subject. Rest periods of 5 and 10 min followed the 100 and 175 W conditions, respectively. COM and NEW had similar accuracy when tested with known ventilation and gas fractions. However, during human subjects testing COM significantly under-measured carbon dioxide gas fractions, over-measured oxygen gas fractions and minute ventilation, and resulted in errors to each of oxygen uptake, carbon dioxide output, and respiratory exchange ratio. These discrepant findings reveal that controlled ventilation and gas fractions are insufficient to validate breath-by-breath, and perhaps even time-averaged, systems of EGAIC. The errors of the COM system reveal the need for concern over the validity of commercial systems of EGAIC. PMID:22300357

  5. Comparison of Indirect Calorimetry and Predictive Equations in Estimating Resting Metabolic Rate in Underweight Females

    PubMed Central

    ALIASGHARZADEH, Soghra; MAHDAVI, Reza; ASGHARI JAFARABADI, Mohammad; NAMAZI, Nazli

    2015-01-01

    Background: Underweight as a public health problem in young women is associated with nutritional deficiencies, menstrual irregularity, eating disorders, reduced fertility, etc. Since resting metabolic rate (RMR) is a necessary component in the development of nutrition support therapy, therefore we determined the accuracy of commonly used predictive equations against RMR measured by indirect calorimetry among healthy young underweight females. Methods: This cross-sectional study was conducted on 104 underweight females aged 18–30 years old with body mass index (BMI) <18.5 kg/m2 in 2013. After collecting anthropometric data, body composition was measured by bioelectric impedance analysis (BIA). RMR was measured by using indirect calorimetry (FitMate™) and was estimated by 10 commonly used predictive equations. Comparisons were conducted using paired t-test. The accuracy of the RMR equations was evaluated on the basis of the percentage of subjects’ predicted RMR within 10% of measured RMR. Results: The mean BMI of subjects was 17.3±1.3 kg/m2. The measured RMR ranged 736–1490 kcal/day (mean 1084.7±175 kcal/day). Findings indicated that except Muller and Abbreviation, other equations significantly over estimated RMR, compared to measured value (P<0.05). As an individual prediction accuracy, these predictive equations showed poor performance with the highest accuracy rate of 54.8% for Muller equation (22.1% under and 23.1% over-prediction) and 43.3% for Abbreviation equation (31.7% under and 25% over-prediction), the percentage bias was 1.8% and 0.63% and RMSE was 162 and 173 kcal/d, respectively. Conclusion: Although Muller equation gave fairly acceptable prediction, more suitable new equations are needed to be developed to help better management of nutritional plans in young underweight people. PMID:26258095

  6. Irreversible Denaturation of Maltodextrin Glucosidase Studied by Differential Scanning Calorimetry, Circular Dichroism, and Turbidity Measurements

    PubMed Central

    Goyal, Megha; Chaudhuri, Tapan K.; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C). PMID

  7. Energy expenditure in children predicted from heart rate and activity calibrated against respiration calorimetry.

    PubMed

    Treuth, M S; Adolph, A L; Butte, N F

    1998-07-01

    The purpose of this study was to predict energy expenditure (EE) from heart rate (HR) and activity calibrated against 24-h respiration calorimetry in 20 children. HR, oxygen consumption (VO2), carbon dioxide production (VCO2), and EE were measured during rest, sleep, exercise, and over 24 h by room respiration calorimetry on two separate occasions. Activity was monitored by a leg vibration sensor. The calibration day (day 1) consisted of specified behaviors categorized as inactive (lying, sitting, standing) or active (two bicycle sessions). On the validation day (day 2), the child selected activities. Separate regression equations for VO2, VCO2, and EE for method 1 (combining awake and asleep using HR, HR2, and HR3), method 2 (separating awake and asleep), and method 3 (separating awake into active and inactive, and combining activity and HR) were developed using the calibration data. For day 1, the errors were similar for 24-h VO2, VCO2, and EE among methods and also among HR, HR2, and HR3. The methods were validated using measured data from day 2. There were no significant differences in HR, VO2, VCO2, respiratory quotient, and EE values during rest, sleep, or over the 24 h between days 1 and 2. Applying the linear HR equations to day 2 data, the errors were the lowest with the combined HR/activity method (-2.6 +/- 5.2%, -4.1 +/- 5.9%, -2.9 +/- 5.1% for VO2, VCO2, and EE, respectively). To demonstrate the utility of the HR/activity method, HR and activity were monitored for 24 h at home (day 3). Free-living EE was predicted as 7,410 +/- 1,326 kJ/day. In conclusion, the combination of HR and activity is an acceptable method for determining EE not only for groups of children, but for individuals. PMID:9688868

  8. PREFACE: XVth International Conference on Calorimetry in High Energy Physics (CALOR2012)

    NASA Astrophysics Data System (ADS)

    Akchurin, Nural

    2012-12-01

    The XVth International Conference on Calorimetry in High Energy Physics, CALOR2012, was held in Santa Fe, New Mexico from 4-8 June 2012. The series of conferences on calorimetry started in 1990 at Fermilab, and they have been the premier event for calorimeter aficionados, a trend that CALOR2012 upheld. This year, several presentations focused on the status of the major calorimeter systems, especially at the LHC. Discussions on new and developing techniques in calorimetry took a full day. Excellent updates on uses of calorimeters or about ideas that are deeply rooted in particle physics calorimetry in astrophysics and neutrino physics were followed by talks on algorithms and special triggers that rely on calorimeters. Finally, discussions of promising current developments and ongoing R&D work for future calorimeters capped the conference. The field of calorimetry is alive and well, as evidenced by the more than 100 attendees and the excellent quality of over 80 presentations. You will find the written contributions in this volume. The presentations can be found at calor2012.ttu.edu. The first day of the conference was dedicated to the LHC. In two invited talks, Guillaume Unal (CERN) and Tommaso Tabarelli de Fatis (Universita' & INFN Milano Bicocca) discussed the critical role electromagnetic calorimeters play in the hunt for the Standard Model Higgs boson in ATLAS and CMS, respectively. The enhanced sensitivity for light Higgs in the two-gamma decay channel renders electromagnetic calorimeters indispensible. Much of the higher mass region was already excluded for the SM Higgs by the time of this conference, and after less than a month, on 4 July, CERN announced the discovery of a new boson at 125 GeV, a particle that seems consistent with the Higgs particle so far. Once again, without the electromagnetic calorimeters, this would not have been possible. Professor Geoffrey West from the Santa Fe Institute gave the keynote address. His talk, 'Universal Scaling Laws

  9. Use of DSC and DMA to Study Rubber Crystallization as a Possible Cause for a Tear in a Neoprene Glove Used in a Space Shuttle Pressurized Astronaut Suit

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2009-01-01

    The Advanced Crew Escape Suit (ACES) is a pressurized suit normally worn by astronauts during launch and landing phases of Space Shuttle operations. In 2008, a large tear (0.5 -1 in. long, between the pinky and ring finger) in the ACES left-hand glove made of neoprene latex rubber was found during training for Shuttle flight STS-124. An investigation to help determine the cause(s) of the glove tear was headed by the NASA Johnson Space Center (JSC) in Houston, Texas. Efforts at JSC to reproduce the actual glove tear pattern by cutting/tearing or rupturing were unsuccessful. Chemical and material property data from JSC such as GC-MS, FTIR, DSC and TGA mostly showed little differences between samples from the torn and control gloves. One possible cause for the glove tear could be a wedding ring/band worn by a male astronaut. Even with a smooth edge, such a ring could scratch the material and initiate the tear observed in the left-hand glove. A decision was later made by JSC to not allow the wearing of such a ring during training or actual flight. Another possible cause for the ACES glove tear is crystallinity induced by strain in the neoprene rubber over a long period of time and use. Neoprene is one several elastomeric materials known to be susceptible to crystallization, and such a process is accelerated with exposure of the material to cold temperatures plus strain. When the temperature is lowered below room temperature, researchers have shown that neoprene crystallization may be maintained at temperatures as high as 45-50 F, with a maximum crystallization rate near 20-25 F (1). A convenient conditioning temperature for inducing neoprene crystallization is a typical freezer that is held near 0 F. For work at the NASA Marshall Space Flight Center (MSFC), samples were cut from several areas/locations (pinky/ring finger crotch, index finger and palm) on each of two pairs of unstrained ACES gloves for DSC and DMA thermal analysis testing. The samples were conditioned

  10. Measuring the temperature dependent thermal diffusivity of geomaterials using high-speed differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Vasseur, Jeremie; Lavallée, Yan

    2016-04-01

    Heat diffusion in the Earth's crust is critical to fundamental geological processes, such as the cooling of magma, heat dissipation during and following transient heating events (e.g. during frictional heating along faults), and to the timescales of contact metamorphosis. The complex composition and multiphase nature of geomaterials prohibits the accurate modeling of thermal diffusivities and measurements over a range of temperatures are sparse due to the specialized nature of the equipment and lack of instrument availability. We present a novel method to measure the thermal diffusivity of geomaterials such as minerals and rocks with high precision and accuracy using a commercially available differential scanning calorimeter (DSC). A DSC 404 F1 Pegasus® equipped with a Netzsch high-speed furnace was used to apply a step-heating program to corundum single crystal standards of varying thicknesses. The standards were cylindrical discs of 0.25-1 mm thickness with 5.2-6 mm diameter. Heating between each 50 °C temperature interval was conducted at a rate of 100 °C/min over the temperature range 150-1050 °C. Such large heating rates induces temperature disequilibrium in the samples used. However, isothermal segments of 2 minutes were used during which the temperature variably equilibrated with the furnace between the heating segments and thus the directly-measured heat-flow relaxed to a constant value before the next heating step was applied. A finite-difference 2D conductive heat transfer model was used in cylindrical geometry for which the measured furnace temperature was directly applied as the boundary condition on the sample-cylinder surfaces. The model temperature was averaged over the sample volume per unit time and converted to heat-flow using the well constrained thermal properties for corundum single crystals. By adjusting the thermal diffusivity in the model solution and comparing the resultant heat-flow with the measured values, we obtain a model

  11. Thermodynamic characteristics of the acid-base equilibria of taurine in aqueous solutions, according to calorimetry data

    NASA Astrophysics Data System (ADS)

    Gridchin, S. N.; Shekhanov, R. F.; Pyreu, D. F.

    2015-02-01

    Enthalpies of the neutralization and protonation of taurine (HL) are measured by direct calorimetry at 298.15 K and ionic strengths of 0.3, 0.5, and 1.0 (KNO3). The standard thermodynamic characteristics of HL protolytic equilibria are calculated.

  12. On the accuracy of instantaneous gas exchange rates, energy expenditure, and respiratory quotient calculations obtained in indirect whole room calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molar balance equations of indirect calorimetry are treated from the point of view of cause-effect relationship where the gaseous exchange rates representing the unknown causes heed to be inferred from a known noisy effect – gaseous concentrations. Two methods of such inversion are analyzed. Th...

  13. Validation and recovery rates of an indirect calorimetry headbox system used to measure heat production of cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A headbox system was constructed at the University of Nebraska-Lincoln to determine heat production from dairy cattle using indirect calorimetry. The system was designed for use in a tie-stall barn to allow the animal to be comfortable and was mounted on wheels to transport between animals between s...

  14. Use of scanning calorimetry and microrespiration to determine effects of Bt toxin doses on Pandemis leafroller (Lepidoptera: Tortricidae) metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differential scanning calorimetry and microrespiration were used to determine the effects of the biopesticide, Bt toxin, on the metabolism of infected Pandemis leafroller, Pandemis purusana (Kearfott). The metabolic heat rate, CO2 evolution, O2 consumption of 2nd and 3rd instars following a 2 h expo...

  15. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...

  16. Use of scanning calorimetry and microrespiration to determine effects of Bt toxin doses on Pandemis leafroller (Lepidoptera: Tortricidae) metabolosim

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differential scanning calorimetry and microrespiration were used to determine the effects of the biopesticide, Bt toxin, on the metabolism of infected Pandemis leafroller, Pandemis purusana (Kearfott). The metabolic heat rate, CO2 evolution, O2 consumption of 2nd and 3rd instars following a 2 h expo...

  17. Evaluation of three flame retardant (FR) grey cotton blend nonwoven fabrics using micro-scale combustion calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unbleached (grey or greige) cotton nonwoven (NW) fabrics (with 12.5% polypropylene scrim) were treated with three phosphate-nitrogen based FR formulations and evaluated with micro-scale combustion calorimetry (MCC). Heat release rate (HRR), Peak heat rate (PHRR), temperature at peak heat release ra...

  18. Adsorption calorimetry during metal vapor deposition on single crystal surfaces: Increased flux, reduced optical radiation, and real-time flux and reflectivity measurements

    SciTech Connect

    Sellers, Jason R. V.; James, Trevor E.; Hemmingson, Stephanie L.; Farmer, Jason A.; Campbell, Charles T.

    2013-12-15

    Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ∼18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.

  19. Thermodynamic study of Cu2+ binding to the DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the weaker competitor glycine.

    PubMed

    Trapaidze, Ana; Hureau, Christelle; Bal, Wojciech; Winterhalter, Mathias; Faller, Peter

    2012-01-01

    The peptides Asp-Ala-His-Lys (DAHK) and Gly-His-Lys (GHK) are naturally occurring Cu(II)-chelating motifs in human serum and cerebrospinal fluid. Here, the sensitive thermodynamic technique isothermal titration calorimetry was used to study the energetics of Cu(II) binding to DAHK and GHK peptides in the presence of the weaker ligand glycine as a competitor. DAHK and GHK bind Cu(II) predominantly in a 1:1 stoichiometry with conditional dissociation constants [i.e., at pH 7.4, in the absence of the competing chelators glycine and 2-(4-(2-hydroxyethyl)-1-piperazinyl)ethanesulfonic acid buffer] of 2.6 ± 0.4 × 10(-14) M and 7.0 ± 1.0 × 10(-14) M, respectively. Furthermore, the apparent ΔH values were measured and the number of protons released upon Cu(II) binding was determined by performing experiments in different buffers. This allowed us to determine the conditional ΔG, ΔH, and ΔS, i.e., corrected for the contributions of the weaker ligand glycine and the buffer at pH 7.4. We found that the entropic and enthalpic contributions to the Cu(II) binding to GHK and DAHK are distinct, with a enthalpic contribution for GHK. The thermodynamic parameters obtained correspond well to those in the literature obtained by other techniques, suggesting that the use of the weaker ligand glycine as a competitor in isothermal titration calorimetry provides accurate data for Cu(II) binding to high-affinity peptides, which cannot be accurately determined without the use of a competitor ligand. PMID:21898044

  20. Quantum-chemical insight into structure-reactivity relationship in 4,5,6,7-tetrahalogeno-1H-benzimidazoles: a combined X-ray, DSC, DFT/QTAIM, Hirshfeld surface-based, and molecular docking approach.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Maurin, Jan Krzysztof; Orzeszko, Andrzej; Kazimierczuk, Zygmunt

    2014-03-20

    The weak interaction patterns in 4,5,6,7-tetrahalogeno-1H-benzimidazoles, protein kinase CK2 inhibitors, in solid state are studied by the X-ray method and quantum chemistry calculations. The crystal structures of 4,5,6,7-tetrachloro- and 4,5,6,7-tetrabromo-1H-benzimidazole are determined by X-ray diffraction and refined to a final R-factor of 3.07 and 3.03%, respectively, at room temperature. The compound 4,5,6,7-tetrabromo-1H-benzimidazole, which crystallizes in the I41/a space group, is found to be isostructural with previously studied 4,5,6,7-tetraiodo-1H-benzimidazole in contrast to 4,5,6,7-tetrachloro-1H-benzimidazole, which crystallizes as triclinic P1̅ with 4 molecules in elementary unit. For 4,5,6,7-tetrachloro-1H-benzimidazole, differential scanning calorimetry (DSC) revealed a second order glassy phase transition at Tg = 95°/106° (heating/cooling), an indication of frozen disorder. The lack of 3D isostructurality found in all 4,5,6,7-tetrahalogeno-1H-benzimidazoles is elucidated on the basis of the intra- and intermolecular interactions (hydrogen bonding, van der Waals contacts, and C-H···π interactions). The topological Bader's Quantum Theory of Atoms in Molecules (QTAIM) and Spackman's Hirshfeld surface-based approaches reveal equilibration of electrostatic matching and dispersion van der Waals interactions between molecules consistent with the crystal site-symmetry. The weakening of van der Waals forces accompanied by increasing strength of the hydrogen bond (N-H···N) result in a decrease in the crystal site-symmetry and a change in molecular packing in the crystalline state. Crystal packing motifs were investigated with the aid of Hirshfeld surface fingerprint plots. The ordering 4,5,6,7-tetraiodo > 4,5,6,7-tetrabromo > 4,5,6,7-tetrachloro > 4,5,6,7-tetrafluoro reflects not only a decrease in crystal symmetry but also increase in chemical reactivity (electronic activation), which could explain some changes in biological activity of

  1. Differential scanning calorimetry investigation on vinyl ester resin curing process for polymer nanocomposite fabrication.

    PubMed

    Guo, Zhanhu; Ng, Ho Wai; Yee, Gary L; Hahn, H Thomas

    2009-05-01

    Two different ceramic (cerium oxide and titanium oxide) nanoparticles were introduced into vinyl ester resin for nanocomposite fabrication. The curing process of the vinyl ester resin was investigated by a differential scanning calorimetery (DSC). The incorporation of nanoparticles in the resin affects the curing process due to the physicochemical interaction between the nanoparticles and the polymer matrix. The particle loading has a significant effect on the initial and peak curing temperatures, reaction heat and curing extent. The fully cured vinyl ester resin nanocomposites reinforced with cerium oxide nanoparticles were fabricated after a 24-hour room temperature curing and a one-hour postcuring at 85 degrees C. Particle functionalization favors the composite fabrication with a higher curing extent after room-temperature curing as compared to the as-received nanoparticle filled vinyl ester resin nanocomposites. The nanofiller materials were observed to significantly affect the curing process. In comparison to cerium oxide nanoparticles, titanium oxide nanoparticles prohibit the curing process with a much higher initiating curing temperatures. The fully cured nanocomposites reinforced with titanium oxide nanoparticles were fabricated by one-hour postcuring at 85 degrees C. PMID:19453004

  2. A study of the use of lead fluoride for electromagnetic calorimetry

    SciTech Connect

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.; Weingarten, A.B.; Anderson, D.F.; Ramberg, E.J.; Kuno, Y.; Macdonald, J.A.; Konaka, A.; Hutcheon, D.A.

    1992-12-31

    A study has been made on the properties of lead fluoride as a Cherenkov material for use in electromagnetic calorimetry. A prototype calorimeter module consisting of a 5 {times} 5 array of 2.1 {times} 2.1 {times} 18.5 cm{sup 3} crystals has been built and tested in a test beam at the Brookhaven AGS. Results are given on energy resolution, shower size and e/{pi} separation for electrons and pions in the range from 1--4 GeV. The light output has been measured to give {approx_gt} 1000 photoelectrons per MeV in good quality crystals, and to provide useful signals down to as low as 32 MeV. Measurements were also made on radiation damage in lead fluoride using {sup 60}Co gamma rays and high energy ionizing particles, as well as on thermoluminescence after irradiation. It was found that only modest damage occurs up to a level of {approximately} 30 Krad in large, calorimeter size crystals, and that the damage can be easily removed by optical bleaching.

  3. A study of the use of lead fluoride for electromagnetic calorimetry

    SciTech Connect

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.; Weingarten, A.B. ); Anderson, D.F.; Ramberg, E.J. ); Kuno, Y.; Macdonald, J.A.; Konaka, A.; Hutcheon, D.A. )

    1992-01-01

    A study has been made on the properties of lead fluoride as a Cherenkov material for use in electromagnetic calorimetry. A prototype calorimeter module consisting of a 5 [times] 5 array of 2.1 [times] 2.1 [times] 18.5 cm[sup 3] crystals has been built and tested in a test beam at the Brookhaven AGS. Results are given on energy resolution, shower size and e/[pi] separation for electrons and pions in the range from 1--4 GeV. The light output has been measured to give [approx gt] 1000 photoelectrons per MeV in good quality crystals, and to provide useful signals down to as low as 32 MeV. Measurements were also made on radiation damage in lead fluoride using [sup 60]Co gamma rays and high energy ionizing particles, as well as on thermoluminescence after irradiation. It was found that only modest damage occurs up to a level of [approximately] 30 Krad in large, calorimeter size crystals, and that the damage can be easily removed by optical bleaching.

  4. AC Calorimetry and Thermophysical Properties of Bulk Glass-Forming Metallic Liquids

    NASA Technical Reports Server (NTRS)

    Johnson, William L.

    2000-01-01

    Thermo-physical properties of two bulk metallic glass forming alloys, Ti34Zr11Cu47Ni8 (VIT 101) and Zr57Nb5Ni12.6Al10CU15.4 (VIT 106), were investigated in the stable and undercooled melt. Our investigation focused on measurements of the specific heat in the stable and undercooled liquid using the method of AC modulation calorimetry. The VIT 106 exhibited a maximum undercooling of 140 K in free radiative cooling. Specific heat measurements could be performed in stable melt down to an undercooling of 80 K. Analysis of the specific heat data indicate an anomaly near the equilibrium liquidus temperature. This anomaly is also observed in y the temperature dependencies of the external relaxation time, the specific volume, and the surface tension; it is tentatively attributed to a phase separation in the liquid state. The VIT 101 specimen exhibited a small undercooling of about 50 K. Specific heat measurements were performed in the stable and undercooled melt. These various results will be combined with ground based work such as the measurement of T-T-T curves in the electrostatic levitator and low temperature viscosity and specific heat measurements for modeling the nucleation kinetics of these alloys.

  5. Quantifying the rates of relaxation of binary mixtures of amorphous pharmaceuticals with isothermal calorimetry.

    PubMed

    Alem, Naziha; Beezer, Anthony E; Gaisford, Simon

    2010-10-31

    While the use of isothermal calorimetry to quantify the rate of relaxation of one-phase amorphous pharmaceuticals, through application of models, is well documented, the resolution of the models to detect and quantify relaxation in systems containing two independent amorphous phases is not known. Addressing this knowledge gap is the focus of this work. Two fitting models were tested; the Kohlrausch-Williams-Watts model (KWW) and the modified-stretch exponential (MSE). The ability of each model to resolve relaxation processes in binary systems was determined with simulated calorimetric data. It was found that as long as the relaxation time constants of the relaxation processes were with 10(3) of each other, the models could determine that two events were occurring and could quantify the correct reaction parameters of each. With greater differences in the time constants, the faster process always dominates the data and the resolving power of the models is lost. Real calorimetric data were then obtained for two binary amorphous systems (sucrose-lactose and sucrose-indomethacin mixtures). The relaxation behaviour of all the single components was characterised as they relaxed individually to provide reference data. The ability of the KWW model to recover the expected relaxation parameters for two component data was impaired because of their inherently noisy nature. The MSE model reasonably recovered the expected parameters for each component for the sucrose-indomethacin system but not for the sucrose-lactose system, which may indicate a possible interaction in that case. PMID:20655372

  6. Alternative Calorimetry Based on the Photothermoelectric (PTE) Effect: Application to Magnetic Nanofluids

    NASA Astrophysics Data System (ADS)

    Dadarlat, Dorin; Misse, Patrick R. N.; Maignan, Antoine; Guilmeau, Emmanuel; Turcu, Rodica; Vekas, Ladislau; Tudoran, Cristian; Depriester, Michael; Sahraoui, Abdelhak Hadj

    2015-09-01

    Photothermoelectric (PTE) calorimetry was applied for the first time for thermal characterization of liquids. Both back and front detection configurations, together with the thermal-wave resonator cavity (TWRC) scanning procedure, have been used in order to measure the thermal diffusivity and thermal effusivity of a particular magnetic nanofluid: carrier liquid—transformer oil, surfactant—oleic acid, nanoparticles' type—{Fe}3{O}4.The investigations were performed as a function of the nanoparticles' concentration. Small increases of thermal diffusivity (from 9.06× 10^{-8} {m}2{\\cdot } {s}^{-1} up to 9.84× 10^{-8} {m}2{\\cdot } {s}^{-1}) and thermal effusivity (from 450 {W}{\\cdot } {s}^{1/2}{\\cdot } {m}^{-2}{\\cdot } {K}^{-1} up to 520 {W}{\\cdot } {s}^{1/2}{\\cdot } {m}^{-2}{\\cdot } {K}^{-1}) with increasing concentration of {Fe}3{O}4 nanoparticles (from 0 up to 0.623 mg {Fe}3{O}4/{ml} fluid) were observed. The comparison with the photopyroelectric (PPE) method shows that PTE and PPE give similar results but, for the moment, PPE is more accurate.

  7. Interaction of oridonin with human serum albumin by isothermal titration calorimetry and spectroscopic techniques.

    PubMed

    Li, Xiangrong; Yang, Zhenhua

    2015-05-01

    Oridonin has been traditionally and widely used for treatment of various human diseases due to its uniquely biological, pharmacological and physiological functions. In this study, the interaction between oridonin and human serum albumin (HSA) was investigated using isothermal titration calorimetry (ITC), in combination with fluorescence spectroscopy and UV-vis absorption spectroscopy. We found that the hydrogen bond and van der Waals force are the major binding forces in the binding of oridonin to HSA. The binding of oridonin to HSA is driven by favorable enthalpy and unfavorable entropy. Oridonin can quench the fluorescence of HSA through a static quenching mechanism. The binding constant between oridonin and HSA is moderate and the equilibrium fraction of unbound oridonin f(u) > 60%. Binding site I is found to be the primary binding site for oridonin. Additionally, oridonin may induce conformational changes of HSA and affect its biological function as the carrier protein. The results of the current study suggest that oridonin can be stored and transported from the circulatory system to reach its target organ to provide its therapeutic effects. But its side-effect in the clinics cannot be overlook. The study provides an accurate and full basic data for clarifying the binding mechanism of oridonin with HSA and is helpful for understanding its effect on protein function during the blood transportation process and its biological activity in vivo. PMID:25816984

  8. Effect of temperature on studtite stability: Thermogravimetry and differential scanning calorimetry investigations

    NASA Astrophysics Data System (ADS)

    Rey, A.; Casas, I.; Giménez, J.; Quiñones, J.; de Pablo, J.

    2009-03-01

    The main objective of this work is the study of the influence of temperature on the stability of the uranyl peroxide tetrahydrate (UO2O2 · 4H2O) studtite, which may form on the spent nuclear fuel surface as a secondary solid phase. Preliminary results on the synthesis of studtite in the laboratory at different temperatures have shown that the solid phases formed when mixing hydrogen peroxide and uranyl nitrate depends on temperature. Studtite is obtained at 298 K, meta-studtite (UO2O2 · 2H2O) at 373 K, and meta-schoepite (UO3 · nH2O, with n < 2) at 423 K. Because of the temperature effect on the stability of uranyl peroxides, a thermogravimetric (TG) study of studtite has been performed. The main results obtained are that three transformations occur depending on temperature. At 403 K, studtite transforms to meta-studtite, at 504 K, meta-studtite transforms to meta-schoepite, and, finally, at 840 K, meta-schoepite transforms to U3O8. By means of the differential scanning calorimetry the molar enthalpies of the transformations occurring at 403 and 504 K have been determined to be -42 ± 10 and -46 ± 2 kJ mol-1, respectively.

  9. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  10. Comparative continuous-indirect-calorimetry study of two carbohydrates with different glycemic indices.

    PubMed

    Ritz, P; Krempf, M; Cloarec, D; Champ, M; Charbonnel, B

    1991-11-01

    Six healthy young men were studied by indirect calorimetry for 6 h after eating a meal composed of glucose or manioc starch (equivalent to 50 g dextrose). Blood was drawn every 30 min for 6 h to measure plasma glucose, free fatty acid (FFA), and insulin concentrations. The glycemic index of the starch was 57%. Plasma insulin and glucose concentrations were significantly higher from 150 to 210 min and FFA concentrations remained significantly lower from 210 to 360 min after starch than after glucose. Carbohydrate oxidation rose from a similar initial concentration for glucose and starch, to a constant concentration until 200 min before becoming significantly higher for the starch load until the end of the test. Total glucose oxidation was significantly higher with starch. Total fat oxidation did not differ after the two loads. A negative correlation was found between glucose oxidation and plasma FFA concentrations. Use of low-glycemic-index carbohydrates increases carbohydrate oxidation because of lower plasma FFA concentrations and fat oxidation. PMID:1951156

  11. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies.

    PubMed

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper. PMID:27089183

  12. Sub-picowatt resolution calorimetry with niobium nitride thin-film thermometer

    SciTech Connect

    Dechaumphai, Edward; Chen, Renkun

    2014-09-15

    High-resolution calorimetry has many important applications such as probing nanoscale thermal transport and studying the thermodynamics of biological and chemical systems. In this work, we demonstrated a calorimeter with an unprecedentedly high resolution at room temperature using a high-performance resistive thermometry material, niobium nitride (NbN{sub x}). Based on a theoretical analysis, we first showed that the heat flux resolution of a resistive-thermometry based calorimeter depends on the parasitic thermal conductance of the device and the temperature coefficient of resistance (TCR) of the thermometer, when the noise is limited by the Johnson noise. Based on this analysis, we then developed a calorimeter using NbN{sub x} as the thermometry material because it possesses both high TCR (∼0.67%/K) and a low thermal conductivity (k ∼ 1.1 W/m K). This calorimeter, when used with the modulated heating scheme, demonstrated an unprecedentedly high power resolution of 0.26 pW at room temperature. In addition, NbN{sub x} based resistive thermometry can also be extended to cryogenic temperature, where the TCR is shown to be significantly higher.

  13. Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry.

    PubMed

    Kocherbitov, Vitaly; Ulvenlund, Stefan; Kober, Maria; Jarring, Kjell; Arnebrant, Thomas

    2008-03-27

    The hydration of two different polymorphs of microcrystalline cellulose (cellulose I and II), as well as the hydration of amorphous cellulose was studied using water sorption calorimetry, gravimetric water vapor sorption, nitrogen sorption, and X-ray powder diffraction. Amorphous cellulose was prepared by means of ball-milling of microcrystalline cellulose (MCC). Whereas X-ray data showed the untreated MCC to consist of cellulose I, the amorphous cellulose was found to recrystallize into cellulose II after contact with water or water vapor at relative humidities (RHs) above 90%. Sorption isotherms show an increase of water sorption in the sequence cellulose I

  14. Application of isothermal titration calorimetry and column chromatography for identification of biomolecular targets.

    PubMed

    Zhou, Xingding; Kini, R Manjunatha; Sivaraman, J

    2011-02-01

    This protocol describes a method for identifying unknown target proteins from a mixture of biomolecules for a given drug or a lead compound. This method is based on a combination of chromatography and isothermal titration calorimetry (ITC) where ITC is used as a tracking tool. The first step involves the use of ITC to confirm the binding of ligand to a component in the biomolecular mixture. Subsequently, the biomolecular mixture is fractionated by chromatography, and the binding of the ligand with individual fractions (or subfractions) is verified by ITC. The iteration of chromatographic purification on the fractions combined with ITC results in identifying the target protein. This method is useful when the target protein or ligand is unknown and/or not amenable to labeling, chemical modification or immobilization. This protocol has been successfully used by our team and by others to identify both low-abundance and highly abundant target proteins present in biomolecular mixtures. With this protocol, it takes approximately 3-5 d to identify the target protein from a mixture. PMID:21293457

  15. High Temperature Heat Capacity of Alloy D9 Using Drop Calorimetry Based Enthalpy Increment Measurements

    NASA Astrophysics Data System (ADS)

    Banerjee, Aritra; Raju, S.; Divakar, R.; Mohandas, E.

    2007-02-01

    Alloy D9 is a void-swelling resistant nuclear grade austenitic stainless steel (SS) based on AISI type 316-SS in which titanium constitutes an added predetermined alloying composition. In the present study, the high-temperature enthalpy values of alloy D9 with three different titanium-to-carbon mass percent ratios, namely Ti/C = 4, 6, and 8, have been measured using inverse drop calorimetry in the temperature range from 295 to 1323 K. It is found that within the level of experimental uncertainty, the enthalpy values are independent of the Ti-C mass ratio. The temperature dependence of the isobaric specific heat C P is obtained by a linear regression of the measured enthalpy data. The measured C P data for alloy D9 may be represented by the following best-fit expression: C_P(J \\cdot kg^{-1}\\cdot K^{-1})= 431 + 17.7 × 10^{-2}T + 8.72 × 10^{-5}/T^2. It is found that the measured enthalpy and specific heat values exhibit good agreement with reported data on 316 and other related austenitic stainless steels.

  16. Prospects for true calorimetry on Kerr black holes in core-collapse supernovae and mergers

    SciTech Connect

    Putten, Maurice H. P. M. van; Kanda, Nobuyuki; Tagoshi, Hideyuki; Tatsumi, Daisuke; Masa-Katsu, Fujimoto; Della Valle, Massimo

    2011-02-15

    Observational evidence for black hole spin down has been found in the normalized light curves of long gamma-ray bursts in the BATSE catalog. Over the duration T{sub 90} of the burst, matter swept up by the central black hole is susceptible to nonaxisymmetries, producing gravitational radiation with a negative chirp. A time-sliced matched filtering method is introduced to capture phase coherence on intermediate time scales, {tau}, here tested by the injection of templates into experimental strain noise, h{sub n}(t). For TAMA 300, h{sub n}(f){approx_equal}10{sup -21} Hz{sup -1/2} at f=1 kHz gives a sensitivity distance for a reasonably accurate extraction of the trajectory in the time-frequency domain of about D{approx_equal}0.07-0.10 Mpc for the spin down of black holes of mass M=10-12M{sub {center_dot}} with {tau}=1 s. Extrapolation to advanced detectors implies D{approx_equal}35-50 Mpc for h{sub n}(f){approx_equal}2x10{sup -24} Hz{sup -1/2} around 1 kHz, which will open a new window to rigorous calorimetry on Kerr black holes.

  17. Probing the binding of procyanidin B3 to human serum albumin by isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Li, Xiangrong; Yan, Yunhui

    2015-02-01

    Proanthocyanidins are a mixture of monomers, oligomers, and polymers of flavan-3-ols that are widely distributed in the plant kingdom. One of the most widely studied proanthocyanidins is procyanidin B3. In this study, the interaction between procyanidin B3 and human serum albumin (HSA) was investigated using isothermal titration calorimetry (ITC). Thermodynamic investigations reveal that the hydrogen bond and van der Waals force are the major binding forces in the binding of procyanidin B3 to HSA. The binding of procyanidin B3 to HSA is driven by favorable enthalpy and unfavorable entropy. The obtained binding constant for procyanidin B3 with HSA is in the intermediate range and the equilibrium fraction of unbound procyanidin B3 fu > 90% at the physiological concentration of HSA shows that procyanidin B3 can be stored and transported from the circulatory system to reach its target site. The stoichiometric binding number n approximately equals to 1, suggesting that one molecule of procyanidin B3 combines with one molecule of HSA and no more procyanidin B3 binding to HSA occurs at the concentration used in this study.

  18. Simulating SiD Calorimetry: Software Calibration Procedures and Jet Energy Resolution

    SciTech Connect

    Cassell, Ron; /SLAC

    2009-02-23

    Simulated calorimeter performance in the SiD detector is examined. The software calibration procedures are described, as well as the perfect pattern recognition PFA reconstruction. Performance of the SiD calorimeters is summarized with jet energy resolutions from calorimetry only, perfect pattern recognition and the SiD PFA algorithm. Presented at LCWS08[1]. Our objective is to simulate the calorimeter performance of the SiD detector, with and without a Particle Flow Algorithm (PFA). Full Geant4 simulations using SLIC[2] and the SiD simplified detector geometry (SiD02) are used. In this geometry, the calorimeters are represented as layered cylinders. The EM calorimeter is Si/W, with 20 layers of 2.5mm W and 10 layers of 5mm W, segmented in 3.5 x 3.5mm{sup 2} cells. The HAD calorimeter is RPC/Fe, with 40 layers of 20mm Fe and a digital readout, segmented in 10 x 10mm{sup 2} cells. The barrel detectors are layered in radius, while the endcap detectors are layered in z(along the beam axis).

  19. DCal: A custom integrated circuit for calorimetry at the International Linear Collider

    SciTech Connect

    Hoff, James R.; Mekkaoui, Abderrazek; Yarema, Ray; Drake, Gary; Repond, Jose; /Argonne

    2005-10-01

    A research and development collaboration has been started with the goal of producing a prototype hadron calorimeter section for the purpose of proving the Particle Flow Algorithm concept for the International Linear Collider. Given the unique requirements of a Particle Flow Algorithm calorimeter, custom readout electronics must be developed to service these detectors. This paper introduces the DCal or Digital Calorimetry Chip, a custom integrated circuit developed in a 0.25um CMOS process specifically for this International Linear Collider project. The DCal is capable of handling 64 channels, producing a 1-bit Digital-to-Analog conversion of the input (i.e. hit/no hit). It maintains a 24-bit timestamp and is capable of operating either in an externally triggered mode or in a self-triggered mode. Moreover, it is capable of operating either with or without a pipeline delay. Finally, in order to permit the testing of different calorimeter technologies, its analog front end is capable of servicing Particle Flow Algorithm calorimeters made from either Resistive Plate Chambers or Gaseous Electron Multipliers.

  20. Isothermal calorimetry: impact of measurements error on heat of reaction and kinetic calculations.

    PubMed

    Papadaki, Maria; Nawada, Hosadu P; Gao, Jun; Fergusson-Rees, Andrew; Smith, Michael

    2007-04-11

    Heat flow and power compensation calorimetry measures the power generation of a reaction via an energy balance over an appropriately designed isothermal reactor. However, the measurement of the power generated by a reaction is a relative measurement, and calibrations are used to eliminate the contribution of a number of unknown factors. In this work the effect of the error in the measurement of temperature of electric power used in the calibrations and the heat transfer coefficient and baseline is assessed. It has been shown that the error in all aforementioned quantities reflects on the baseline and it can have a very serious impact on the accuracy of the measurement. The influence of the fluctuation of ambient temperature has been evaluated and a means of a correction that reduces its impact has been implemented. The temperature of dosed material is affected by the heat loses if reaction is performed at high temperature and low dosing rate. An experimental methodology is presented that can provide means of assessment of the actual temperature of the dosed material. Depending on the reacting system, the heat of evaporation could be included in the baseline, especially if non-condensable gases are produced during the course of the reaction. PMID:16919873

  1. Investigations of cosmetic treatments on high-pressure differential scanning calorimetry.

    PubMed

    Marsh, J M; Clarke, C J; Meinert, K; Dahlgren, R M

    2007-01-01

    High Pressure Differential Scanning Calorimetry (HPDSC) can be used to gain information on both the degree of crystallinity in the intermediate filaments (IFs) and the structural rigidity of the surrounding matrix or intermediate filament associated proteins (IFAP) of the hair cortex. We have used HPDSC to measure changes in denaturation temperature (T(D)) and enthalpy (deltaH(D)) of the crystalline components after treatment with bleach products. Literature reports suggest that a decrease in peak denaturation temperature is indicative of permanent damage to the hair. However, changing the rigidity of the matrix surrounding the IFs, by temporarily changing electrostatic interactions, should also result in a similar decrease in peak temperature. The complex nature of bleach formulations including oxidants, alkalizers and salts suggests that several of the components could have a non-permanent affect on salt bridges and hydrogen bonds and hence rigidity or viscosity of the matrix. We have compared the denaturation temperature with levels of lightening (dL) and tensile properties of the fiber after treatment both before and after removal of actives from the fiber. It is evident that the HPDSC results are strongly influenced by formulation components and that these changes are reversible with extensive washing or dialysis. Combined with tensile data, it is proposed that a decrease in T(D) and deltaH(D) following treatment with bleach products can be due to both permanent and reversible changes to either the intermediate filaments or intermediate filament associated proteins of the hair fiber. PMID:17728932

  2. Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Stoliarov, Stanislav I.; Denlinger, Matthew; Masias, Alvaro; Snyder, Kent

    2015-04-01

    A lithium ion battery (LIB) subjected to external heat may fail irreversibly. Manifestations of this failure include venting of potentially combustible gases and aerosols followed by a rapid self-heating accompanied by ejection of the battery materials. It is important to be able to quantify the dynamics and energetics of this process to ensure safety of the energy storage systems utilizing LIBs. Here we report on development of a new experimental technique for the measurement of energetics of a thermally-induced battery failure. This technique, Copper Slug Battery Calorimetry (CSBC), was employed to investigate a widely utilized LIB of 2200 mAh capacity at various states of charge (SOC). It was shown that this techniques yields time and temperature resolved data on the rate of heat production inside the failing battery. The total energy generated inside the battery was found to increase with increasing SOC to the maximum value of 34.0 ± 1.8 kJ. To capture the energetics of flaming combustion of the materials ejected from the battery, CSBC was coupled with a cone calorimeter, which measures heat released in a non-premixed flame. The maximum amount of energy released by the battery through flaming combustion of ejected materials was found to be 97.5 ± 12.4 kJ.

  3. Phosphate sorption by three potential filter materials as assessed by isothermal titration calorimetry.

    PubMed

    Lyngsie, Gry; Penn, Chad J; Hansen, Hans C B; Borggaard, Ole K

    2014-10-01

    Phosphorus eutrophication of lakes and streams, coming from drained farmlands, is a serious problem in areas with intensive agriculture. Installation of phosphate (P) sorbing filters at drain outlets may be a solution. The aim of this study was to improve the understanding of reactions involved in P sorption by three commercial P sorbing materials, i.e. Ca/Mg oxide-based Filtralite-P, Fe oxide-based CFH-12 and Limestone in two particle sizes (2-1 mm and 1-0.5 mm), by means of isothermal titration calorimetry (ITC), sorption isotherms, sequential extractions and SEM-EDS. The results indicate that P retention by CFH is due to surface complexation by rapid formation of strong Fe-P bonds. In contrast, retention of P by Filtralite-P and Limestone strongly depends on pH and time and is interpreted due to formation of calcium phosphate precipitate(s). Consequently, CFH can unambiguously be recommended as P retention filter material in drain outlets, whereas the use of Filtralite-P and Limestone has certain (serious) limitations. Thus, Filtralite-P has high capacity to retain P but only at alkaline pH (pH ≥ 10) and P retention by Limestone requires long-time contact and a high ratio between sorbent and sorbate. PMID:24833525

  4. A Universal Method for Fishing Target Proteins from Mixtures of Biomolecules using Isothermal Titration Calorimetry

    SciTech Connect

    Zhou, X.; Sun, Q; Kini, R; Sivaraman, J

    2008-01-01

    The most challenging tasks in biology include the identification of (1) the orphan receptor for a ligand, (2) the ligand for an orphan receptor protein, and (3) the target protein(s) for a given drug or a lead compound that are critical for the pharmacological or side effects. At present, several approaches are available, including cell- or animal-based assays, affinity labeling, solid-phase binding assays, surface plasmon resonance, and nuclear magnetic resonance. Most of these techniques are not easy to apply when the target protein is unknown and the compound is not amenable to labeling, chemical modification, or immobilization. Here we demonstrate a new universal method for fishing orphan target proteins from a complex mixture of biomolecules using isothermal titration calorimetry (ITC) as a tracking tool. We took snake venom, a crude mixture of several hundred proteins/peptides, as a model to demonstrate our proposed ITC method in tracking the isolation and purification of two distinct target proteins, a major component and a minor component. Identities of fished out target proteins were confirmed by amino acid sequencing and inhibition assays. This method has the potential to make a significant advancement in the area of identifying orphan target proteins and inhibitor screening in drug discovery and characterization.

  5. Miniaturized calorimetry - a new method for real-time biofilm activity analysis.

    PubMed

    Lerchner, J; Wolf, A; Buchholz, F; Mertens, F; Neu, T R; Harms, H; Maskow, T

    2008-08-01

    The partial dissipation of Gibbs energy as heat reflects the metabolic dynamic of biofilms in real time and may also allow quantitative conclusions about the chemical composition of the biofilm via Hess' law. Presently, the potential information content of heat is hardly exploited due to the low flexibility, the low throughput and the high price of conventional calorimeters. In order to overcome the limitations of conventional calorimetry a miniaturized calorimeter for biofilm investigations has been evaluated. Using four thermopiles a heat production with spatial and temporal resolutions of 2.5 cm(-1) and 2 s(-1) could be determined. The limit of detection of the heat flow measurement was 20 nW, which corresponds to the cell density of an early stage biofilm (approx. 3x10(5) cells cm(-2)). By separating biofilm cultivation from the actual heat measurement, a high flexibility and a much higher throughput was achieved if compared with conventional calorimeters. The approach suggested allows cultivation of biofilms in places of interest such as technological settings as well as in nature followed by highly efficient measurements in the laboratory. Functionality of the miniaturized calorimeter was supported by parallel measurements with confocal laser scanning microscopy and a fiber optic based oxygen sensor using the oxycaloric equivalent (-460 kJ mol-O2(-1)). PMID:18502524

  6. Studies on sampling and homogeneous dual readout calorimetry with meta-crystals

    NASA Astrophysics Data System (ADS)

    Mavromanolakis, G.; Auffray, E.; Lecoq, P.

    2011-10-01

    The meta-crystals concept is an approach that consists of using both undoped and properly doped heavy crystal fibers of identical material as the active medium of a calorimeter. The undoped fibers behave as Cherenkov radiators while the doped ones behave as scintillators. A dual readout calorimeter can be built with its sensitive volume composed of a mixture of both types of crystals. In addition if the calorimeter is adequately finely segmented it can also function as a particle flow calorimeter at the same time. In this way one could possibly combine the advantages of both the particle flow concept and the dual readout scheme. We discuss the approach of dual readout calorimetry with meta-crystals made of Lutetium Aluminium Garnet (LuAG). We briefly present studies on the material development and first testbeam activities and then focus on performance expectation studies based on simulation. We discuss in more detail the results from generic systematic scannings of the design parameters of a dual readout calorimeter. The parameters under study include the transverse and longitudinal granularity, the sampling frequency and readout fraction of the scintillation and the Cherenkov signals, the total calorimeter length, the mixture of homogeneous and sampling dual readout components, their corresponding composition etc. We close with a brief outlook on open issues and further R&D needed to proceed from an ideal conceptual case to the design of a realistic detector.

  7. Thermodynamic analysis of Bacillus subtilis endospore protonation using isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Harrold, Zoë R.; Gorman-Lewis, Drew

    2013-05-01

    Bacterial proton and metal adsorption reactions have the capacity to affect metal speciation and transport in aqueous environments. We coupled potentiometric titration and isothermal titration calorimetry (ITC) analyses to study Bacillus subtilis spore-proton adsorption. We modeled the potentiometric data using a four and five-site non-electrostatic surface complexation model (NE-SCM). Heats of spore surface protonation from coupled ITC analyses were used to determine site specific enthalpies of protonation based on NE-SCMs. The five-site model resulted in a substantially better model fit for the heats of protonation but did not significantly improve the potentiometric titration model fit. The improvement observed in the five-site protonation heat model suggests the presence of a highly exothermic protonation reaction circa pH 7 that cannot be resolved in the less sensitive potentiometric data. From the log Ks and enthalpies we calculated corresponding site specific entropies. Log Ks and site concentrations describing spore surface protonation are statistically equivalent to B. subtilis cell surface protonation constants. Spore surface protonation enthalpies, however, are more exothermic relative to cell based adsorption suggesting a different bonding environment. The thermodynamic parameters defined in this study provide insight on molecular scale spore-surface protonation reactions. Coupled ITC and potentiometric titrations can reveal highly exothermic, and possibly endothermic, adsorption reactions that are overshadowed in potentiometric models alone. Spore-proton adsorption NE-SCMs derived in this study provide a framework for future metal adsorption studies.

  8. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry

    NASA Astrophysics Data System (ADS)

    Feng, Xuning; Fang, Mou; He, Xiangming; Ouyang, Minggao; Lu, Languang; Wang, Hao; Zhang, Mingxuan

    2014-06-01

    In this paper, the thermal runaway features of a 25 Ah large format prismatic lithium ion battery with Li(NixCoyMnz)O2 (NCM) cathode are evaluated using the extended volume-accelerating rate calorimetry (EV-ARC). 4 thermocouples are set at different positions of the battery. The temperature inside the battery is 870 °C or so, much higher than that outside the battery. The temperature difference is calculated from the recorded data. The temperature difference within the battery stays lower than 1 °C for 97% of the test period, while it rises to its highest, approximately 520 °C, when thermal runaway happens. The voltage of the battery is also measured during the test. It takes 15-40 s from the sharp drop of voltage to the instantaneous rise of temperature. Such a time interval is beneficial for early warning of the thermal runaway. Using a pulse charge/discharge profile, the internal resistance is derived from the quotient of the pulse voltage and the current during the ARC test. The internal resistance of the battery increases slowly from 20 mΩ to 60 mΩ before thermal runaway, while it rises to 370 mΩ when thermal runaway happens indicating the loss of the integrity of the separator or the battery swell.

  9. Energetics of genome ejection from phage revealed by isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Jeembaeva, Meerim; Jonsson, Bengt; Castelnovo, Martin; Evilevitch, Alex

    2009-03-01

    It has been experimentally shown that ejection of double-stranded DNA from phage is driven by internal pressure reaching tens of atmospheres. This internal pressure is partially responsible for delivery of DNA into the host cell. While several theoretical models and simulations nicely describe the experimental data of internal forces either resisting active packaging or equivalently favoring spontaneous ejection, there are no direct energy measurements available that would help to verify how quantitative these theories are. We performed direct measurements of the enthalpy responsible for DNA ejection from phage λ, using Isothermal Titration Calorimetry. The phage capsids were ``opened'' in vitro by titrating λ into a solution with LamB receptor and the enthalpy of DNA ejection process was measured. In his way, enthalpy stored in λ was determined as a function of packaged DNA length comparing wild-type phage λ (48.5 kb) with a shorter λ-DNA length mutant (37.7 kb). The temperature dependence of the ejection enthalpy was also investigated. The values obtained were in good agreement with existing models and provide a better understanding of ds- DNA packaging and release mechanisms in motor-packaged viruses (e.g., tailed bacteriophages, Herpes Simplex, and adenoviruses).

  10. Application of Differential Scanning Calorimetry to Evaluate Thermal Properties and Study of Microstructure of Biodegradable Films

    NASA Astrophysics Data System (ADS)

    Aguilar-Méndez, M. A.; Martin-Martínez, E. San; Ortega-Arroyo, L.; Cruz-Orea, A.

    2010-03-01

    The glass transition temperature ( T g) and melting temperature ( T m) of gelatin-starch films were determined using differential scanning calorimetry. Also, the microstructure was observed using scanning electron microscopy (SEM) and the crystalline structure by means of X-ray diffraction (XRD). The effect of starch and glycerol concentrations in films on the thermal properties was evaluated through response surface methodology (RSM). The highest values of T m were obtained at starch concentration intervals of (0.26 to 0.54) %w/w and glycerol concentrations lower than 0.5 (%w/w). On the other hand, the T g values diminished as the glycerol concentration increased. Mathematical models for both transitions were fitted to the experimental data. The micrographs obtained by SEM show the influence of glycerol in the microstructure of the films, being more “gummy” as the content of the plasticizer increased. The XRD patterns of the films demonstrate the existence of some pseudo-crystalline regions in the biodegradable materials.

  11. Prospects for true calorimetry on Kerr black holes in core-collapse supernovae and mergers

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.; Kanda, Nobuyuki; Tagoshi, Hideyuki; Tatsumi, Daisuke; Masa-Katsu, Fujimoto; Della Valle, Massimo

    2011-02-01

    Observational evidence for black hole spin down has been found in the normalized light curves of long gamma-ray bursts in the BATSE catalog. Over the duration T90 of the burst, matter swept up by the central black hole is susceptible to nonaxisymmetries, producing gravitational radiation with a negative chirp. A time-sliced matched filtering method is introduced to capture phase coherence on intermediate time scales, τ, here tested by the injection of templates into experimental strain noise, hn(t). For TAMA 300, hn(f)≃10-21Hz-1/2 at f=1kHz gives a sensitivity distance for a reasonably accurate extraction of the trajectory in the time-frequency domain of about D≃0.07-0.10Mpc for the spin down of black holes of mass M=10-12M⊙ with τ=1s. Extrapolation to advanced detectors implies D≃35-50Mpc for hn(f)≃2×10-24Hz-1/2 around 1 kHz, which will open a new window to rigorous calorimetry on Kerr black holes.

  12. Thermodynamic Study on the Protonation Reactions of Glyphosate in Aqueous Solution: Potentiometry, Calorimetry and NMR spectroscopy.

    PubMed

    Liu, Bijun; Dong, Lan; Yu, Qianhong; Li, Xingliang; Wu, Fengchang; Tan, Zhaoyi; Luo, Shunzhong

    2016-03-10

    Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject ( J. Phys. Chem. A 2015, , 119 , 5241 - 5249 ). The result is important because it confirms that the protonated site of glyphosate in pH range 7-8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action. PMID:26862689

  13. Isothermal calorimetry: a predictive tool to model drug-propellant interactions in pressurized metered dose systems.

    PubMed

    Ooi, Jesslynn; Gaisford, Simon; Boyd, Ben J; Young, Paul M; Traini, Daniela

    2014-01-30

    The purpose of this work was to evaluate gas perfusion isothermal calorimetry (ITC) as a method to characterize the physicochemical changes of active pharmaceutical ingredients (APIs) intended to be formulated in pressurized metered dose inhalers (pMDIs) after exposure to a model propellant. Spray dried samples of beclomethasone dipropionate (BDP) and salbutamol sulphate (SS) were exposed to controlled quantities of 2H,3H-decafluoropentane (HPFP) to determine whether ITC could be used as a suitable analytical method for gathering data on the behavioural properties of the powders in real time. The crystallization kinetics of BDP and the physiochemical properties of SS were successfully characterized using ITC and supported by a variety of other analytical techniques. Correlations between real and model propellant systems were also established using hydrofluoroalkane (HFA-227) propellant. In summary, ITC was found to be suitable for gathering data on the crystallization kinetics of BDP and SS. In a wider context, this work will have implications on the use of ITC for stability testing of APIs in HFA-based pMDIs. PMID:24325938

  14. The Effect of Various Vehicles on the Naproxen Permeability through Rat Skin: A Mechanistic Study by DSC and FT-IR Techniques

    PubMed Central

    Salimi, Anayatollah; Hedayatipour, Najme; Moghimipour, Eskandar

    2016-01-01

    Purpose: The purpose of the present investigation was to evaluate the effectiveness of different vehicles on drug permeability and microstructure of intercellular or lipids in SC layer of skin. Methods: Pre-treated skin of rat using some vehicles including Labarac PG ,Transcutol P, tween 80, span 80 and propylene glycol (PG), were mounted on specialized design franz-diffusion cell was used to assess naproxen permeation and parameters such as permeability coefficients and state flux (Jss) were evaluated. Any differences in peak position and also change in symmetric and asymmetric stretching of C-H bond, lipid ester carbonyl stretching in SC, C=O stretching (Amide I) and C-N stretching of keratin (Amide II) absorbance using Fourier transform infrared spectroscopy (FTIR) were considered to investigate the enhancing mechanism. DSC method was utilized to compare their mean transition temperature (Tm) and enthalpies (ΔH). Results: Steady-state flux (Jss), permeability coefficient (Kp) and diffusion coefficient (D) were significantly (p<0.05) increased by using their span80 showed the biggest enhancement ratio (ERflux) and Transcutol P, Labrafac PG, Tween 80 and Propylene glycol were at the next levels. In comprised to hydrated rat skin the maximum increase in diffusion coefficient was for Tween 80(p<0.05), Lipid fluidization, lipid disruption structure and the irreversible denaturation of proteins in the SC layer of skin by span 80, Tween 80, Labrafac PG, Transcutol P and propylene glycol, were indicated by FT-IR and DSC techniques. Conclusion: It is concluded that naproxen permeation through rat skin may be facilitated by utilizing the vehicle systems. Lipid fluidization and lipid extraction are among suggested mechanisms. PMID:27099831

  15. Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation

    SciTech Connect

    Xiao, Kechao; Lee, Dongwoo; Vlassak, Joost J.

    2014-10-27

    Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here, we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59 ± 0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.

  16. Calorimetry on a Chip: Toward Heat Capacities of Microgram Quantities of Iron-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Navrotsky, A.; Hellman, F.; Dorogova, M.; Cooke, D.; Queen, D.

    2005-12-01

    Heat capacities, standard entropies, and magnetic phase transitions in iron-bearing mantle minerals are poorly known because conventional adiabatic calorimetry requires samples too large to be synthesized at very high pressure. Specific heat measurements on microgram sized samples are based on a Si-micromachined calorimetry device. These devices have been in use for a decade in the physics and materials science community for measurements on metals and on selected oxides such as CoO. These calorimeters on a chip have been used for both thin films and small bulk samples. Different designs have been optimized for different uses, but the heart of the device is a thin (1800 ?) 0.5 x 0.5 cm2 amorphous Si3N4 membrane supported by a 1 x 1 cm2 Si frame. On one side of this membrane, we deposit and pattern thin film heater, thermometers, and electrical leads of appropriate resistance and temperature coefficient. On the other side, in a 0.25 x 0.25 cm2 area at the center, we deposit the sample and a thermally conducting material such as gold or copper. This thin membrane provides the necessary thermal isolation of sample from environment, while still providing a sample/thermometer platform. On the frame are matching thermometers to those on the membrane to permit a high sensitivity differential temperature measurement. We have made thousands of these devices and have measured hundreds. The devices are metallurgically stable and physically robust under cycling between 4.2 K and 1000 K, and can withstand photolithographic processing. Because of the nature of the fabrication process, reproducibility of specific heat addenda and of thermal link between sample and environment is very good, varying from device to device by less than 5%. Samples are measured using the relaxation method, requiring a separate determination of the thermal link between sample and environment (the steady state increase of the sample temperature with the sample heater turned on) and the time constant of

  17. Following mechanical activation of salbutamol sulphate during ball-milling with isothermal calorimetry.

    PubMed

    Gaisford, Simon; Dennison, Mansa; Tawfik, Mahmoud; Jones, Matthew D

    2010-06-30

    Formulation of actives for pulmonary delivery with dry powder inhaler devices frequently requires a particle size reduction step. The high-energy forces imparted to a material during milling, as well as reducing particle size, can cause a significant change in physicochemical properties, in particular mechanical activation of the surface (manifested as generation of amorphous regions) which can affect formulated product performance. It is not clear whether particle size reduction occurs prior to, or concomitantly with, generation of amorphous content. In this study the formation of amorphous content with time in crystalline salbutamol sulphate was quantified with isothermal gas perfusion calorimetry as the sample was ball-milled. The data showed that the most particle size reduction occurred initially (d(0.5) dropping from 12.83+/-0.4 to 4.2+/-0.4 within 5 min). During this time period, no detectable amorphous content was observed. Between 5 and 15 min milling time the particle size distribution remained relatively constant but the amorphous content increased non-linearly with time. After 20 min milling time the particle size increased slightly. The data suggest that particle size reduction occurs initially upon application of a force to the crystal. Once maximum particle size reduction has occurred the crystal absorbs the force being applied and the crystal lattice becomes disordered. After extended milling the conditions in the ball mill (heat and/or humidity) may cause crystallisation of some of the amorphous material resulting in particle-particle fusion. It would appear that the ball-milling process could be optimised to achieve the desired particle size distribution but without any loss of crystalline structure. PMID:20385222

  18. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry

    SciTech Connect

    Cavan, Alicia; Meyer, Juergen

    2014-02-15

    Purpose: To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. Methods: The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. Results: The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ±3.45 Gy (corresponding to an uncertainty in the temperature value of ±8.3 × 10{sup −4} K). The relative dose fall off was in agreement with treatment planning system modeled data. Conclusions: First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10{sup −5} m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  19. Isothermal titration calorimetry with micelles: Thermodynamics of inhibitor binding to carnitine palmitoyltransferase 2 membrane protein.

    PubMed

    Perspicace, Samantha; Rufer, Arne C; Thoma, Ralf; Mueller, Francis; Hennig, Michael; Ceccarelli, Simona; Schulz-Gasch, Tanja; Seelig, Joachim

    2013-01-01

    Carnitine palmitoyl transferase 2 (CPT-2) is a key enzyme in the mitochondrial fatty acid metabolism. The active site is comprised of a Y-shaped tunnel with distinct binding sites for the substrate acylcarnitine and the cofactor CoA. We investigated the thermodynamics of binding of four inhibitors directed against either the CoA or the acylcarnitine binding sites using isothermal titration calorimetry (ITC). CPT-2 is a monotopic membrane protein and was solubilized by β-octylglucoside (β-OG) above its critical micellar concentration (CMC) to perform inhibitor titrations in solutions containing detergent micelles. The CMC of β-OG in the presence of inhibitors was measured with ITC and small variations were observed. The inhibitors bound to rat CPT-2 (rCPT-2) with 1:1 stoichiometry and the dissociation constants were in the range of K D = 2-20 μM. New X-ray structures and docking models of rCPT-2 in complex with inhibitors enable an analysis of the thermodynamic data in the context of the interaction observed for the individual binding sites of the ligands. For all ligands the binding enthalpy was exothermic, and enthalpy as well as entropy contributed to the binding reaction, with the exception of ST1326 for which binding was solely enthalpy-driven. The substrate analog ST1326 binds to the acylcarnitine binding site and a heat capacity change close to zero suggests a balance of electrostatic and hydrophobic interactions. An excellent correlation of the thermodynamic (ITC) and structural (X-ray crystallography, models) data was observed suggesting that ITC measurements provide valuable information for optimizing inhibitor binding in drug discovery. PMID:23772395

  20. Isothermal titration calorimetry with micelles: Thermodynamics of inhibitor binding to carnitine palmitoyltransferase 2 membrane protein☆

    PubMed Central

    Perspicace, Samantha; Rufer, Arne C.; Thoma, Ralf; Mueller, Francis; Hennig, Michael; Ceccarelli, Simona; Schulz-Gasch, Tanja; Seelig, Joachim

    2013-01-01

    Carnitine palmitoyl transferase 2 (CPT-2) is a key enzyme in the mitochondrial fatty acid metabolism. The active site is comprised of a Y-shaped tunnel with distinct binding sites for the substrate acylcarnitine and the cofactor CoA. We investigated the thermodynamics of binding of four inhibitors directed against either the CoA or the acylcarnitine binding sites using isothermal titration calorimetry (ITC). CPT-2 is a monotopic membrane protein and was solubilized by β-octylglucoside (β-OG) above its critical micellar concentration (CMC) to perform inhibitor titrations in solutions containing detergent micelles. The CMC of β-OG in the presence of inhibitors was measured with ITC and small variations were observed. The inhibitors bound to rat CPT-2 (rCPT-2) with 1:1 stoichiometry and the dissociation constants were in the range of KD = 2–20 μM. New X-ray structures and docking models of rCPT-2 in complex with inhibitors enable an analysis of the thermodynamic data in the context of the interaction observed for the individual binding sites of the ligands. For all ligands the binding enthalpy was exothermic, and enthalpy as well as entropy contributed to the binding reaction, with the exception of ST1326 for which binding was solely enthalpy-driven. The substrate analog ST1326 binds to the acylcarnitine binding site and a heat capacity change close to zero suggests a balance of electrostatic and hydrophobic interactions. An excellent correlation of the thermodynamic (ITC) and structural (X-ray crystallography, models) data was observed suggesting that ITC measurements provide valuable information for optimizing inhibitor binding in drug discovery. PMID:23772395

  1. Practical utility and reliability of whole-room calorimetry in young children.

    PubMed

    Janssen, Xanne; Cliff, Dylan; Okely, Anthony D; Jones, Rachel A; Batterham, Marijka; Ekelund, Ulf; Brage, Søren; Reilly, John J

    2013-05-28

    The use of whole-room calorimetry (WRC) in young children can increase our understanding of children's energy balance. However, studies using WRC in young children are rare due to concerns about its feasibility. To assess the feasibility of WRC in young children, forty children, aged 4–6 years, were asked to follow a graded activity protocol while in a WRC. In addition, six children participated in two additional resting protocols to examine the effect of diet-induced thermogenesis on resting energy expenditure (REE) measures and the reliability of REE measurement. Refusals to participate and data loss were quantified as measures of practical utility, and REE measured after an overnight fast and after a 90-min fast were compared. In addition, both were compared to predicted BMR values using the Schofield equation. Our results showed that thirty (78·9 %) participants had acceptable data for all intensities of the activity protocol. The REE values measured after a 90-min fast (5·07 (SD 1·04) MJ/d) and an overnight fast (4·73 (SD 0·61) MJ/d) were not significantly different from each other (P= 0·472). However, both REE after an overnight fast and a 90-min fast were significantly higher than predicted BMR (3·96 (SD 0·18) MJ/d) using the Schofield equation (P= 0·024 and 0·042, respectively). We conclude that, with a developmentally sensitive approach, WRC is feasible and can be standardised adequately even in 4- to 6-year-old children. In addition, the effect of a small standardised breakfast, approximately 90 min before REE measurements, is likely to be small. PMID:22989510

  2. THE PHYSICS OF THE FAR-INFRARED-RADIO CORRELATION. I. CALORIMETRY, CONSPIRACY, AND IMPLICATIONS

    SciTech Connect

    Lacki, Brian C.; Thompson, Todd A.; Quataert, Eliot

    2010-07-01

    The far-infrared (FIR) and radio luminosities of star-forming galaxies are linearly correlated over a very wide range in star formation rate, from normal spirals like the Milky Way to the most intense starbursts. Using one-zone models of cosmic ray (CR) injection, cooling, and escape in star-forming galaxies, we attempt to reproduce the observed FIR-radio correlation (FRC) over its entire span. The normalization and linearity of the FRC, together with constraints on the CR population in the Milky Way, have strong implications for the CR and magnetic energy densities in star-forming galaxies. We show that for consistency with the FRC, {approx}2% of the kinetic energy from supernova explosions must go into high-energy primary CR electrons and that {approx}10%-20% must go into high-energy primary CR protons. Secondary electrons and positrons are likely comparable to or dominate primary electrons in dense starburst galaxies. We discuss the implications of our models for the magnetic field strengths of starbursts, the detectability of starbursts by Fermi, and CR feedback. Overall, our models indicate that both CR protons and electrons escape from low surface density galaxies, but lose most of their energy before escaping dense starbursts. The FRC is caused by a combination of the efficient cooling of CR electrons (calorimetry) in starbursts and a conspiracy of several factors. For lower surface density galaxies, the decreasing radio emission caused by CR escape is balanced by the decreasing FIR emission caused by the low effective UV dust opacity. In starbursts, bremsstrahlung, ionization, and inverse Compton cooling decrease the radio emission, but they are countered by secondary electrons/positrons and the dependence of synchrotron frequency on energy, both of which increase the radio emission. Our conclusions hold for a broad range of variations in our fiducial model, such as those including winds, different magnetic field strengths, and different diffusive escape

  3. In-situ investigation of Cu-In-Se reactions by thin film calorimetry

    SciTech Connect

    Wolf, D.; Mueller, G.

    1998-12-31

    Studies of the reaction path during annealing of Cu-In-Se thin films for solar cell absorbers have been limited up to now to ex-situ analyses of the phase composition by X-Ray Diffraction (XRD) after processing by a specific temperature-time program. As an indirect method, the application of ex-situ XRD /is not sufficient for the determination of reaction temperatures and reaction times for setting up a general model of CIS-formation. The authors show in this paper that the use of a calorimetric method (Thin film Calorimetry, TFC) offers the advantage of a direct (in-situ) observation of thin film reactions. Special care is taken to use film thicknesses of practical interest for industrial application (1.5--3 {micro}m). In a first step the authors show results of binary reactions in the Cu-In, In-Se and Cu-Se systems. Their knowledge is necessary for understanding the processes involved in the ternary CIS-layers. It turned out that thin Cu-In and Cu-Se films react already at room temperature and behave as predicted by the bulk equilibrium phase diagrams during heating. In-Se thin films show prominent exothermic reactions starting with the melting of In. The first phase to be formed is generally In{sub 2}Se which is then converted to more Se-rich compounds. In ternary Cu-In-Se films (Cu/In = 1.00) the authors observe transitions of the Cu-Se-system which can be attributed to the decomposition of CuSe{sub 2} and CuSe. Consequences for the model of improved CIS-growth by a Cu-Se flux agent are discussed.

  4. Comparative results of autogenous ignition temperature measurements by ASTM G 72 and pressurized scanning calorimetry in gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Lowrie, R.

    1986-01-01

    The autogenous ignition temperature of four materials was determined by ASTM (G 72) and pressurized differential scanning calorimetry at 0.68-, 3.4-, and 6.8-MPa oxygen pressure. All four materials were found to ignite at lower temperatures in the ASTM method. The four materials evaluated in this program were Neoprene, Vespel SP-21, Fluorel E-2160, and nylon 6/6.

  5. Spin density wave (SDW) transition in Ru doped BaFeAs{sub 2} investigated by AC steady state calorimetry

    SciTech Connect

    Vinod, K. Sharma, Shilpam; Sundar, C. S.; Bharathi, A.

    2015-06-24

    Heat capacity measurements were done on sub-micron sized BaFe{sub 2−x}Ru{sub x}As{sub 2} single crystals using thin film membrane based the AC steady state calorimetry technique. Noticeable thermal hysteresis is observed in the heat capacity of the BaFe{sub 2−x}Ru{sub x}As{sub 2} during cooling and warming cycles, indicating first order nature of the SDW transition.

  6. A Statistical Method and Tool to Account for Indirect Calorimetry Differential Measurement Error in a Single-Subject Analysis

    PubMed Central

    Tenan, Matthew S.

    2016-01-01

    Indirect calorimetry and oxygen consumption (VO2) are accepted tools in human physiology research. It has been shown that indirect calorimetry systems exhibit differential measurement error, where the error of a device is systematically different depending on the volume of gas flow. Moreover, systems commonly report multiple decimal places of precision, giving the clinician a false sense of device accuracy. The purpose of this manuscript is to demonstrate the use of a novel statistical tool which models the reliability of two specific indirect calorimetry systems, Douglas bag and Parvomedics 2400 TrueOne, as univariate normal distributions and implements the distribution overlapping coefficient to determine the likelihood that two VO2 measures are the same. A command line implementation of the tool is available for the R programming language as well as a web-based graphical user interface (GUI). This tool is valuable for clinicians performing a single-subject analysis as well as researchers interested in determining if their observed differences exceed the error of the device. PMID:27242546

  7. A Statistical Method and Tool to Account for Indirect Calorimetry Differential Measurement Error in a Single-Subject Analysis.

    PubMed

    Tenan, Matthew S

    2016-01-01

    Indirect calorimetry and oxygen consumption (VO2) are accepted tools in human physiology research. It has been shown that indirect calorimetry systems exhibit differential measurement error, where the error of a device is systematically different depending on the volume of gas flow. Moreover, systems commonly report multiple decimal places of precision, giving the clinician a false sense of device accuracy. The purpose of this manuscript is to demonstrate the use of a novel statistical tool which models the reliability of two specific indirect calorimetry systems, Douglas bag and Parvomedics 2400 TrueOne, as univariate normal distributions and implements the distribution overlapping coefficient to determine the likelihood that two VO2 measures are the same. A command line implementation of the tool is available for the R programming language as well as a web-based graphical user interface (GUI). This tool is valuable for clinicians performing a single-subject analysis as well as researchers interested in determining if their observed differences exceed the error of the device. PMID:27242546

  8. Characterizing water/rock interaction in simulated comet nuclei via calorimetry: Tool for in-situ science, laboratory analysis, and sample preservation

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Gooding, James L.

    1991-01-01

    Although results from the Giotto and Vega spacecraft flybys of comet P/Halley indicate a complex chemistry for both the ices and dust in the nucleus, carbonaceous chondrite meteorites are still regarded as useful analogs for the rocky components. Carbonaceous chondrites mixed with water enable simulation of water/rock interactions which may occur in cometary nuclei. Three general types of interactions can be expected between water and minerals at sub-freezing temperatures: heterogeneous nucleation of ice by insoluble minerals; adsorption of water vapor by hygroscopic phases; and freezing and melting point depression of liquid water sustained by soluble minerals. Two series of experiments were performed in a differential scanning calorimeter (DSC) with homogenized powders of the following whole-rock meteorites and comparison samples: Allende (CV3), Murchison (CM2), Orgueil (CI), Holbrook (L6), and Pasamonte (eucrite) meteorites as well as on peridotite (PCC-1, USGS), saponite (Sap-Ca-1, CMS), montmorillonite (STx-1, CMS), and serpentine (Franciscan Formation, California). Results are briefly discussed.

  9. Thermal unfolding and aggregation of human complement protein C9: a differential scanning calorimetry study.

    PubMed

    Lohner, K; Esser, A F

    1991-07-01

    The thermotropic behavior of purified human complement protein C9 was investigated by high-sensitivity differential scanning calorimetry. When dissolved in physiological buffers (pH 7.2, 150 mM NaCl), C9 underwent three endothermic transitions with transition temperatures (Tm) centered at about 32, 48, and 53 degrees C, respectively, and one exothermic transition above 64 degrees C that correlated with protein aggregation. The associated calorimetric enthalpies of the three endothermic transitions were about 45, 60, and 161 kcal/mol with cooperative ratios (delta Hcal/delta HvH) close to unity. The total calorimetric enthalphy for the unfolding process was in the range of 260-280 kcal/mol under all conditions. The exothermic aggregation temperature was strongly pH dependent, changing from 60 degrees C at pH 6.6 to 81.4 degrees C at pH 8.0, whereas none of the three endothermic transitions was significantly affected by pH changes. They were, however, sensitive to addition of calcium ions; most affected was Tm1 which shifted from 32 to 35.8 degrees C in the presence of 3 mM calcium, i.e., the normal blood concentration. Kosmotropic ions stabilized the protein by shifting the endothermic transitions to slightly higher temperatures whereas inclusion of chaotropic ions (such as choline), removal of bound calcium by addition of EDTA, or proteolysis with thrombin lowered the transition temperatures. Previous studies had indicated the formation of at least three different forms of C9 during membrane insertion or during heat polymerization, and it is suggested that the three endothermic transitions reflect the formation of such C9 conformers. Choline, which is present at high concentrations on the surface of biological membranes, and calcium ions have the ability to shift the transition temperatures of the first two transitions to be either close to or below body temperature. Thus, it is very likely that C9 is present in vivo in a partially unfolded state when bound to a

  10. A precise determination of the triplet energy of C sub 60 by photoacoustic calorimetry

    SciTech Connect

    Hung, R.R.; Grabowski, J.J. )

    1991-08-08

    The relatively new technique of time-resolved, pulsed-laser photoacoustic calorimetry has been exploited to precisely determine the triplet-state energy of C{sub 60}, the newly discovered spheroidal allotrope of carbon. Excitation at 510 nm, in the long-wavelength absorption band of C{sub 60}, produces C{sub 60}(T{sub 1}) with unit efficiency; in the presence of dioxygen, triplet C{sub 60} is readily quenched by energy transfer. Photoacoustic waves were recorded for C{sub 60} in argon-saturated, air-saturated, and partially argon-saturated toluene solutions. Each experimental wave was then fit to a two-component model, the first component of which corresponds to production of C{sub 60}(T{sub 1}) and the second of which relates to its decay. The recovered heat-deposition parameters are {phi}{sub 1} = 0.359 {plus minus} 0.005 and {phi}{sub 2} = 0.237 {plus minus} 0.011; these correspond to the fraction of the absorbed photon energy that is released in forming C{sub 60}(T{sub 1}) and in the quenching of C{sub 60}(T{sub 1}) by dioxygen. Since the quantum yield for intersystem crossing of C{sub 60}, from S{sub 1} to T{sub 1}, is unity, {phi}{sub 1} corresponds to a C{sub 60}(T{sub 1}) energy of 36.0 {plus minus} 0.6 kcal mol{sup {minus}1}. Since the energy of C{sub 60}(T{sub 1}) is defined by {phi}{sub 1} and the energy of O{sub 2}({sup 1}{Delta}) is known {phi}{sub 2} is used to calculate a singlet oxygen sensitization quantum yield of 1.01 {plus minus} 0.03. The lifetime of C{sub 60}(T{sub 1}) in argon-saturated toluene is found to be > 10 {mu}s, and in air-saturated toluene, to be 290 {plus minus} 40 ns.

  11. Molecular determinants of expansivity of native globular proteins: a pressure perturbation calorimetry study.

    PubMed

    Vasilchuk, Daniel; Pandharipande, Pranav P; Suladze, Saba; Sanchez-Ruiz, Jose M; Makhatadze, George I

    2014-06-12

    There is a growing interest in understanding how hydrostatic pressure (P) impacts the thermodynamic stability (ΔG) of globular proteins. The pressure dependence of stability is defined by the change in volume upon denaturation, ΔV = (∂ΔG/∂P)T. The temperature dependence of change in volume upon denaturation itself is defined by the changes in thermal expansivity (ΔE), ΔE = (∂ΔV/∂T)P. The pressure perturbation calorimetry (PPC) allows direct experimental measurement of the thermal expansion coefficient, α = E/V, of a protein in the native, αN(T), and unfolded, αU(T), states as a function of temperature. We have shown previously that αU(T) is a nonlinear function of temperature but can be predicted well from the amino acid sequence using α(T) values for individual amino acids (J. Phys. Chem. B 2010, 114, 16166-16170). In this work, we report PPC results on a diverse set of nine proteins and discuss molecular factors that can potentially influence the thermal expansion coefficient, αN(T), and the thermal expansivity, EN(T), of proteins in the native state. Direct experimental measurements by PPC show that αN(T) and EN(T) functions vary significantly for different proteins. Using comparative analysis and site-directed mutagenesis, we have eliminated the role of various structural or thermodynamic properties of these proteins such as the number of amino acid residues, secondary structure content, packing density, electrostriction, dynamics, or thermostability. We have also shown that αN(T) and EN,sp(T) functions for a given protein are rather insensitive to the small changes in the amino acid sequence, suggesting that αN(T) and EN(T) functions might be defined by a topology of a given protein fold. This conclusion is supported by the similarity of αN(T) and EN(T) functions for six resurrected ancestral thioredoxins that vary in sequence but have very similar tertiary structure. PMID:24849138

  12. Reversible melting and crystallization of short and long flexible chain molecules by temperature-modulated calorimetry

    NASA Astrophysics Data System (ADS)

    Pak, Jeongihm

    2001-12-01

    Melting and crystallization of linear, flexible molecules of different lengths was studied by temperature-modulated differential scanning calorimetry, TMDSC. Various techniques for TMDSC with single and multifrequency modulations have been analyzed to optimize the conditions for the present study. The finally chosen method involved a quasi-isothermal mode with a temperature amplitude of 0.5 K and a period of 60 s (frequency = 0.167 Hz). The interpretation of the reversible and irreversible melting was developed by comparison of a variety of different modes of analysis (sinusoidal, sawtooth, and complex sawtooth). The analyzed molecules ranged from n-paraffins, oligomeric fractions of polyethylene and poly(oxyethylene) to macromolecules of polyethylene. The most important discovery was that there is a critical chain length for reversible melting and crystallization of small, flexible molecules at 10 nm or about 75 backbone chain atoms. Below this chain length, melting and crystallization is reversible under the given conditions of analysis and in the presence of primary crystal nuclei. Above this chain length, the crystallization requires a degree of supercooling which becomes constant for 200 chain atoms or more at a value of 6.0--10 K. This critical chain length sets a lower limit for the need of supercooling, a characteristic property of flexible polymers. This result was then applied to resolving the problem of the existence of a small amount of reversible melting in polymers, discovered about five years ago. The following was shown: chain segments with melting temperatures equal to oligomers of less than the critical chain length can crystallize and melt reversibly, even when contained within the metastable structure of semicrystalline polymers. Above this chain length, longer segments can only show reversible melting when a molecular nucleus remains on the crystal surface after partial melting. The short-chain segments have been seen in linear

  13. Direct measurement of electron beam quality conversion factors using water calorimetry

    SciTech Connect

    Renaud, James Seuntjens, Jan; Sarfehnia, Arman; Marchant, Kristin; McEwen, Malcolm; Ross, Carl

    2015-11-15

    . General agreement between the relative electron energy dependence of the PTW Roos data measured in this work and a recent MC-based study are also shown. Conclusions: This is the first time that water calorimetry has been successfully used to measure electron beam quality conversion factors for energies as low as 6 MeV (R{sub 50} = 2.25 cm)

  14. Physicochemical characterization by AFM, FT-IR and DSC and biological assays of a promising antileishmania delivery system loaded with a natural Brazilian product.

    PubMed

    Marquele-Oliveira, Franciane; Torres, Elina Cassia; Barud, Hernane da Silva; Zoccal, Karina Furlani; Faccioli, Lúcia Helena; Hori, Juliana I; Berretta, Andresa Aparecida

    2016-05-10

    The control and treatment of Leishmaniasis, a neglected and infectious disease affecting approximately 12 million people worldwide, are challenging. Leishmania parasites multiply intracellularly within macrophages located in deep skin and in visceral tissues, and the currently employed treatments for this disease are subject to significant drawbacks, such as resistance and toxicity. Thus, the search for new Leishmaniasis treatments is compulsory, and Ocotea duckei Vattimo, a plant-derived product from the biodiverse Brazilian flora, may be a promising new treatment for this disease. In this regard, the aim of this work was to develop and characterize a delivery system based on solid lipid nanoparticles (SLN) that contain the liposoluble lignan fraction (LF) of Ocotea duckei Vattimo, which targets the Leishmania phagolysosome of infected macrophages. LF-loaded SLNs were obtained via the hot microemulsion method, and their physical and chemical properties were comprehensively assessed using PCS, AFM, SEM, FT-IR, DSC, HPLC, kinetic drug release studies, and biological assays. The size of the developed delivery system was 218.85±14.2 nm, its zeta potential was -30 mV and its entrapment efficiency (EE%) was high (the EEs% of YAN [yangambin] and EPI-YAN [epi-yangambin] markers were 94.21±0.40% and 94.20±0.00%, respectively). Microscopy, FT-IR and DSC assays confirmed that the delivery system was nanosized and indicated a core-shell encapsulation model, which corroborated the measured kinetics of drug release. The total in vitro release rates of YAN and EPI-YAN in buffer (with sink conditions attained) were 29.6±8.3% and 34.3±8.9%, respectively, via diffusion through the cellulose acetate membrane of the SLN over a period of 4 h. After 24 h, the release rates of both markers reached approximately 45%, suggesting a sustained pattern of release. Mathematical modeling indicated that both markers, YAN and EPI-YAN, followed matrix diffusion-based release kinetics (Higuchi

  15. Novel organic NLO material bis(N-phenylbiguanidium(1+)) oxalate - A combined X-ray diffraction, DSC and vibrational spectroscopic study of its unique polymorphism.

    PubMed

    Matulková, Irena; Císařová, Ivana; Vaněk, Přemysl; Němec, Petr; Němec, Ivan

    2017-01-01

    Three polymorphic modifications of bis(N-phenylbiguanidium(1+)) oxalate are reported, and their characterization is discussed in this paper. The non-centrosymmetric bis(N-phenylbiguanidium(1+)) oxalate (I), which was obtained from an aqueous solution at 313K, belongs to the monoclinic space group Cc (a=6.2560(2)Å, b=18.6920(3)Å, c=18.2980(5)Å, β=96.249(1)°, V=2127.0(1)Å(3), Z=4, R=0.0314 for 4738 observed reflections). The centrosymmetric bis(N-phenylbiguanidium(1+)) oxalate (II) was obtained from an aqueous solution at 298K and belongs to the monoclinic space group P21/n (a=6.1335(3)Å, b=11.7862(6)Å, c=14.5962(8)Å, β=95.728(2)°, V=1049.90(9)Å(3), Z=4, R=0.0420 for 2396 observed reflections). The cooling of the centrosymmetric phase (II) leads to the formation of bis(N-phenylbiguanidium(1+)) oxalate (III) (a=6.1083(2)Å, b=11.3178(5)Å, c=14.9947(5)Å, β=93.151(2)°, V=1035.05(8)Å(3), Z=4, R=0.0345 for 2367 observed reflections and a temperature of 110K), which also belongs to the monoclinic space group P21/n. The crystal structures of the three characterized phases are generally based on layers of isolated N-phenylbiguanidium(1+) cations separated by oxalate anions and interconnected with them by several types of N-H(...)O hydrogen bonds. The observed phases generally differ not only in their crystal packing but also in the lengths and characteristics of their hydrogen bonds. The thermal behaviour of the prepared compounds was studied using the DSC method in the temperature range from 90K up to a temperature near the melting point of each crystal. The bis(N-phenylbiguanidium(1+)) oxalate (II) crystals exhibit weak reversible thermal effects on the DSC curve at 147K (heating run). Further investigation of this effect, which was assigned to the isostructural phase transformation, was performed using FTIR, Raman spectroscopy and X-ray diffraction analysis in a wide temperature range. PMID:27467544

  16. Analysis of the interactions between human serum albumin/amphiphilic penicillin in different aqueous media: an isothermal titration calorimetry and dynamic light scattering study

    NASA Astrophysics Data System (ADS)

    Barbosa, Silvia; Taboada, Pablo; Mosquera, Victor

    2005-04-01

    The complexation process of the amphiphilic penicillins sodium cloxacillin and sodium dicloxacillin with the protein human serum albumin (HSA) in aqueous buffered solutions of pH 4.5 and 7.4 at 25 °C was investigated through isothermal titration calorimetry (ITC) and dynamic light scattering. ITC experiments were carried out in the very dilute regime and showed that although hydrophobic interactions are the leading forces for complexation, electrostatic interactions also play an important role. The possibility of the formation of hydrogen bonds is also deduced from experimental data. The thermodynamic quantities of the binding mechanism, i.e, the enthalpy, ΔHITCi, entropy, ΔSITCi, Gibbs energy, ΔGITCi, binding constant, KITCi and the number of binding sites, ni, were obtained. The binding was saturable and is characterised by Langmuir adsorption isotherms. From ITC data and following a theoretical model, the number of bound and free penicillin molecules was calculated. From Scatchard plots, KITCi and ni were obtained and compared with those from ITC data. The interaction potential between the HSA-penicillin complexes and their stability were determined at pH 7.4 from the dependence of the diffusion coefficients on protein concentration by application of the DLVO colloidal stability theory. The results indicate decreasing stability of the colloidal dispersion of the drug-protein complexes with increase in the concentration of added drug.

  17. Evaluating the Feasibility of an Agglomerative Hierarchy Clustering Algorithm for the Automatic Detection of the Arterial Input Function Using DSC-MRI

    PubMed Central

    Yin, Jiandong; Yang, Jiawen; Guo, Qiyong

    2014-01-01

    During dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI), it has been demonstrated that the arterial input function (AIF) can be obtained using fuzzy c-means (FCM) and k-means clustering methods. However, due to the dependence on the initial centers of clusters, both clustering methods have poor reproducibility between the calculation and recalculation steps. To address this problem, the present study developed an alternative clustering technique based on the agglomerative hierarchy (AH) method for AIF determination. The performance of AH method was evaluated using simulated data and clinical data based on comparisons with the two previously demonstrated clustering-based methods in terms of the detection accuracy, calculation reproducibility, and computational complexity. The statistical analysis demonstrated that, at the cost of a significantly longer execution time, AH method obtained AIFs more in line with the expected AIF, and it was perfectly reproducible at different time points. In our opinion, the disadvantage of AH method in terms of the execution time can be alleviated by introducing a professional high-performance workstation. The findings of this study support the feasibility of using AH clustering method for detecting the AIF automatically. PMID:24932638

  18. Intermolecular interaction of voriconazole analogues with model membrane by DSC and NMR, and their antifungal activity using NMR based metabolic profiling.

    PubMed

    Kalamkar, Vaibhav; Joshi, Mamata; Borkar, Varsha; Srivastava, Sudha; Kanyalkar, Meena

    2013-11-01

    The development of novel antifungal agents with high susceptibility and increased potency can be achieved by increasing their overall lipophilicity. To enhance the lipophilicity of voriconazole, a second generation azole antifungal agent, we have synthesized its carboxylic acid ester analogues, namely p-methoxybenzoate (Vpmb), toluate (Vtol), benzoate (Vbz) and p-nitrobenzoate (Vpnb). The intermolecular interactions of these analogues with model membrane have been investigated using nuclear magnetic resonance (NMR) and differential scanning calorimetric (DSC) techniques. The results indicate varying degree of changes in the membrane bilayer's structural architecture and physico-chemical characteristics which possibly can be correlated with the antifungal effects via fungal membrane. Rapid metabolite profiling of chemical entities using cell preparations is one of the most important steps in drug discovery. We have evaluated the effect of synthesized analogues on Candida albicans. The method involves real time (1)H NMR measurement of intact cells monitoring NMR signals from fungal metabolites which gives Metabolic End Point (MEP). This is then compared with Minimum Inhibitory Concentration (MIC) determined using conventional methods. Results indicate that one of the synthesized analogues, Vpmb shows reasonably good activity. PMID:24012381

  19. Lawrence Livermore National Laboratory Measurements of Plutonium-bearing Oxide in DOE-STD-3013-2000 Containers Using Calorimetry and Gamma Isotopic Analyses

    SciTech Connect

    Dearborn, D M; Keeton, S C

    2004-06-23

    Lawrence Livermore National Laboratory (LLNL) routinely uses calorimetry and gamma isotopic analyses (Cal/Iso) for the accountability measurement of plutonium (Pu) bearing items. In the past 15 years, the vast majority of those items measured by Cal/Iso were contained in a thin-walled convenience can enclosed in another thin-walled outer container. However, LLNL has recently begun to use DOE-STD-3013-2000 containers as well. These DOE-STD-3013-2000 containers are comprised of a stainless steel convenience can enclosed in welded stainless steel primary and secondary containers. In addition to the fact that the wall thickness of the DOE-STD-3013-2000 containers is much greater than that of other containers in our experience, the DOE-STD-3013-2000 containers appear to have larger thermal insulation characteristics. To date, we have derived Pu-mass values from Cal/Iso measurements of 74 different DOE-STD-3013-2000 containers filled with Pu-bearing oxide or mixed uranium-plutonium (U-Pu) oxide material. Both water-bath and air-bath calorimeters were used for these measurements and both use software to predict when thermal equilibrium is attained. Our experience has shown that after apparent equilibrium has been attained, at least one more complete cycle, and sometimes two or three more complete cycles, is required to gain a measure of true thermal equilibrium. Otherwise, the derived Pu-mass values are less than would be expected from a combination of previously measured Pu-bearing items and would contribute to increased loss in our inventory difference determinations. Conclusions and recommendations drawn from LLNL experience with measurements of Pu mass in Pu-bearing oxide or mixed U-Pu oxide in DOE-STD-3013-2000 containers using the Cal/Iso technique are included.

  20. Particle Size (Sieving) and Enthalpy (Acid Calorimetry) Analysis of Single-Pull K East Basin Floor and Pit Sludges

    SciTech Connect

    Bredt, Paul R. ); Delegard, Calvin H. ); Schmidt, Andrew J. ); Silvers, Kurt L. ); Thornton, Brenda M. ); Gano, Sue )

    2000-10-31

    This report discusses particle size and calorimetry analyses performed on single-pull sludge samples collected from the Hanford K East Basin floor and pits. This study was conducted by the Pacific Northwest National Laboratory (PNNL) in support of the baseline sludge management plan, which calls for the sludge to be packaged, shipped and stored at T Plant in the Hanford 200 West Area until final processing as a future date. These analyses were needed to better understand the K Basin sludge inventory and chemical reactivity.

  1. Temperature-modulated calorimetry of the frequency dependence of the glass transition of poly(ethylene terephthalate) and ....

    SciTech Connect

    Wunderlich, B.; Okazaki, I.

    1997-03-01

    Temperature-modulated differential scanning calorimetry, TMDSC, is new technique that permits to measure the apparent heat capacity vs modulation frequency. The method is briefly described and a quasi- isothermal measurement method is used to derive the kinetic parameters for PET and PS. A first-order kinetics expression was used to describe the approach to equilibrium and point out the limits caused by asymmetry and cooperativity of the kinetics. Use of a complex description of heat capacity and entropy is discussed. Activation energies vary from 75 to 350 kJ/mol, dependent on thermal pretreatment and the preexponential factor is correlated with the activation energy.

  2. Development of silicon photomultipliers and their applications to GlueX calorimetry

    NASA Astrophysics Data System (ADS)

    Smith, Elton S.

    2016-07-01

    The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 × 1.2 cm2) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chose the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.

  3. Thermal characterization of Li/sulfur, Li/ S-LiFePO4 and Li/S-LiV3O8 cells using Isothermal Micro-Calorimetry and Accelerating Rate Calorimetry

    NASA Astrophysics Data System (ADS)

    Seo, Jeongwook; Sankarasubramanian, Shrihari; Kim, Chi-Su; Hovington, Pierre; Prakash, Jai; Zaghib, Karim

    2015-09-01

    The thermal behavior of three cathode materials for the lithium/sulfur (Li/S) cell, namely - sulfur, sulfur-LiFePO4 (S-LFP) composite and sulfur-LiV3O8 (S-LVO) composite was studied using Isothermal Micro-Calorimetry (IMC) at various discharge rates. A continuum model was used to calculate the reversible entropic heat and irreversible resistive heat generated over the discharge process and the model data was compared to the experimental data to elucidate contributions of reversible and irreversible heats to the overall heat generated during discharge. The reaction enthalpy (ΔHRx) was measured using IMC for each elementary reaction step and in combination with the calculated reversible entropic heat and irreversible resistive heat was fitted against the experimental total heat measurement. The model showed an excellent fit against the experimental data. Further, Accelerating Rate Calorimetry (ARC) was used to study the thermal safety of these three cells. The cell with the S-LVO composite cathode was found to have the highest onset temperature for thermal runaway and also the lowest maximum self-heat rate. Results of this study suggest that S-LVO composite is a promising electrode for Li/S cells.

  4. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.

    PubMed

    Rogez-Florent, Tiphaine; Duhamel, Laetitia; Goossens, Laurence; Six, Perrine; Drucbert, Anne-Sophie; Depreux, Patrick; Danzé, Pierre-Marie; Landy, David; Goossens, Jean-François; Foulon, Catherine

    2014-01-01

    This work describes the development of biophysical unbiased methods to study the interactions between new designed compounds and carbonic anhydrase II (CAII) enzyme. These methods have to permit both a screening of a series of sulfonamide derivatives and the identification of a lead compound after a thorough study of the most promising molecules. Interactions data were collected using surface plasmon resonance (SPR) and thermal shift assay (TSA). In the first step, experiments were performed with bovine CAII isoform and were extended to human CAII. Isothermal titration calorimetry (ITC) experiments were also conducted to obtain thermodynamics parameters necessary for the processing of the TSA data. Results obtained with this reference methodology demonstrate the effectiveness of SPR and TSA. KD values obtained from SPR data were in perfect accordance with ITC. For TSA, despite the fact that the absolute values of KD were quite different, the same affinity scale was obtained for all compounds. The binding affinities of the analytes studied vary by more than 50 orders of magnitude; for example, the KD value determined by SPR were 6 ± 4 and 299 ± 25 nM for compounds 1 and 3, respectively. This paper discusses some of the theoretical and experimental aspects of the affinity-based methods and evaluates the protein consumption to develop methods for the screening of further new compounds. The double interest of SPR, that is, for screening and for the quick thorough study of the interactions parameters (ka , kd , and KD ), leads us to choose this methodology for the study of new potential inhibitors. PMID:24375583

  5. Alchemical Free Energy Calculations and Isothermal Titration Calorimetry Measurements of Aminoadamantanes Bound to the Closed State of Influenza A/M2TM.

    PubMed

    Ioannidis, Harris; Drakopoulos, Antonios; Tzitzoglaki, Christina; Homeyer, Nadine; Kolarov, Felix; Gkeka, Paraskevi; Freudenberger, Kathrin; Liolios, Christos; Gauglitz, Günter; Cournia, Zoe; Gohlke, Holger; Kolocouris, Antonios

    2016-05-23

    Adamantane derivatives, such as amantadine and rimantadine, have been reported to block the transmembrane domain (TM) of the M2 protein of influenza A virus (A/M2) but their clinical use has been discontinued due to evolved resistance in humans. Although experiments and simulations have provided adequate information about the binding interaction of amantadine or rimantadine to the M2 protein, methods for predicting binding affinities of whole series of M2 inhibitors have so far been scarcely applied. Such methods could assist in the development of novel potent inhibitors that overcome A/M2 resistance. Here we show that alchemical free energy calculations of ligand binding using the Bennett acceptance ratio (BAR) method are valuable for determining the relative binding potency of A/M2 inhibitors of the aminoadamantane type covering a binding affinity range of only ∼2 kcal mol(-1). Their binding affinities measured by isothermal titration calorimetry (ITC) against the A/M2TM tetramer from the Udorn strain in its closed form at pH 8 were used as experimental probes. The binding constants of rimantadine enantiomers against M2TMUdorn were measured for the first time and found to be equal. Two series of alchemical free energy calculations were performed using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids to mimic the membrane environment. A fair correlation was found for DPPC that was significantly improved using DMPC, which resembles more closely the DPC lipids used in the ITC experiments. This demonstrates that binding free energy calculations by the BAR approach can be used to predict relative binding affinities of aminoadamantane derivatives toward M2TM with good accuracy. PMID:27105206

  6. A Second Look at Mini-Protein Stability: Analysis of FSD-1 Using Circular Dichroism, Differential Scanning Calorimetry, and Simulations

    PubMed Central

    Feng, Jianwen A.; Kao, Jeff; Marshall, Garland R.

    2009-01-01

    Abstract Mini-proteins that contain <50 amino acids often serve as model systems for studying protein folding because their small size makes long timescale simulations possible. However, not all mini-proteins are created equal. The stability and structure of FSD-1, a 28-residue mini-protein that adopted the ββα zinc-finger motif independent of zinc binding, was investigated using circular dichroism, differential scanning calorimetry, and replica-exchange molecular dynamics. The broad melting transition of FSD-1, similar to that of a helix-to-coil transition, was observed by using circular dichroism, differential scanning calorimetry, and replica-exchange molecular dynamics. The N-terminal β-hairpin was found to be flexible. The FSD-1 apparent melting temperature of 41°C may be a reflection of the melting of its α-helical segment instead of the entire protein. Thus, despite its attractiveness due to small size and purposefully designed helix, sheet, and turn structures, the status of FSD-1 as a model system for studying protein folding should be reconsidered. PMID:19917235

  7. Photodegradation assessment of ciprofloxacin, moxifloxacin, norfloxacin and ofloxacin in the presence of excipients from tablets by UPLC-MS/MS and DSC

    PubMed Central

    2013-01-01

    Background Ciprofloxacin (CIP), moxifloxacin (MOX), norfloxacin (NOR) and ofloxacin (OFL), are the antibacterial synthetic drugs, belonging to the fluoroquinolones group. Fluoroquinolones are compounds susceptible to photodegradation process, which may lead to reduction of their antibacterial activity and to induce phototoxicity as a side effect. This paper describes a simple, sensitive UPLC-MS/MS method for the determination of CIP, MOX, NOR and OFL in the presence of photodegradation products. Results Chromatographic separations were carried out using the Acquity UPLC BEH C18 column; (2.1 × 100 mm, 1.7 μm particle size). The column was maintained at 40°C, and the following gradient was used: 0 min, 95% of eluent A and 5% of eluent B; 10 min, 0% of eluent A and 100% of eluent B, at a flow rate of 0.3 mL min-1. Eluent A: 0.1% (v/v) formic acid in water; eluent B: 0.1% (v/v) formic acid in acetonitrile. The method was validated and all the validation parameters were in the ranges acceptable by the guidelines for analytical method validation. The photodegradation of examined fluoroquinolones in solid phase in the presence of excipients followed kinetic of the first order reaction and depended upon the type of analyzed drugs and coexisting substances. Photodegradation process of analyzed drugs was confirmed by differential scanning calorimetry. In addition, the identification of degradation products was carried out by mass spectrometry. Conclusion The developed UPLC-MS/MS method enables the determination of CIP, MOX, NOR and OFL in the presence of photodegradation products and identification of photodegradation products. PMID:23899303

  8. Quantitative determination of two polymorphic forms of imatinib mesylate in a drug substance and tablet formulation by X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Bellur Atici, Esen; Karlığa, Bekir

    2015-10-10

    Imatinib has been identified as a tyrosine kinase inhibitor that selectively inhibits the Abl tyrosine kinases, including Bcr-Abl. The active substance used in drug product is the mesylate salt form of imatinib, a phenylaminopyrimidine derivative and chemically named as N-(3-(4-(pyridin-3-yl) pyrimidin-2-ylamino)-4-methylphenyl)-4-((4-methylpiperazin-1-yl) methyl)-benzamide methanesulfonic acid salt. It exhibits many polymorphic forms and most stable and commercialized polymorphs are known as α and β forms. Molecules in α and β polymorphic forms exhibit significant conformational differences due to their different intra- and intermolecular interactions, which stabilize their molecular conformations and affect their physicochemical properties such as bulk density, melting point, solubility, stability, and processability. The manufacturing process of a drug tablet included granulation, compression, coating, and drying may cause polymorphic conversions. Therefore, polymorphic content of the drug substance should be controlled during quality control and stability testing. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) methods were evaluated for determination of the polymorphic content of the drug substance and drug product; and PXRD was the most accurate technique and selected as preferred method and validated. Prior to development of a quantification method, pure α and β polymorphs were characterized and used throughout the method development and validation studies. Mixtures with different ratios of α and β forms were scanned using X-ray diffractometer with a scan rate of 0.250°/min over an angular range of 19.5-21.0° 2θ and the peak heights for characteristic peak of β form at 20.5 ± 0.2° 2θ diffraction angle were used to generate a calibration curve. The detection limit of β polymorph in α form imatinib mesylate tablets was found as 4% and

  9. Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals.

    PubMed

    Fullmer, Susan; Benson-Davies, Sue; Earthman, Carrie P; Frankenfield, David C; Gradwell, Erica; Lee, Peggy S P; Piemonte, Tami; Trabulsi, Jillian

    2015-09-01

    When measurement of resting metabolic rate (RMR) by indirect calorimetry is necessary, following evidence-based protocols will ensure the individual has achieved a resting state. The purpose of this project was to update the best practices for measuring RMR by indirect calorimetry in healthy and non-critically ill adults and children found the Evidence Analysis Library of the Academy of Nutrition and Dietetics. The Evidence Analysis process described by the Academy of Nutrition and Dietetics was followed. The Ovid database was searched for papers published between 2003 and 2012 using key words identified by the work group and research consultants, studies used in the previous project were also considered (1980 to 2003), and references were hand searched. The work group worked in pairs to assign papers to specific questions; however, the work group developed evidence summaries, conclusion statements, and recommendations as a group. Only 43 papers were included to answer 21 questions about the best practices to ensure an individual is at rest when measuring RMR in the non-critically ill population. In summary, subjects should be fasted for at least 7 hours and rest for 30 minutes in a thermoneutral, quiet, and dimly lit room in the supine position before the test, without doing any activities, including fidgeting, reading, or listening to music. RMR can be measured at any time of the day as long as resting conditions are met. The duration of the effects of nicotine and caffeine and other stimulants is unknown, but lasts longer than 140 minutes and 240 minutes, respectively. The duration of the effects of various types of exercise on RMR is unknown. Recommendations for achieving steady state, preferred gas-collection devices, and use of respiratory quotient to detect measurement errors are also given. Of the 21 conclusions statements developed in this systemic review, only 5 received a grade I or II. One limitation is the low number of studies available to address the

  10. Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide l-Ala-l-Pro-Gly·H2O Revealed by Adiabatic Calorimetry

    PubMed Central

    Markin, Alexey V.; Markhasin, Evgeny; Sologubov, Semen S.; Ni, Qing Zhe; Smirnova, Natalia N.; Griffin, Robert G.

    2015-01-01

    We demonstrate application of precise adiabatic vacuun calorimetry to observation of phase transition in the tripeptide l-alanyl-l-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuun calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide. PMID:25588051

  11. Archeomagnetic dating of the eruption of Xitle volcano (Mexico) from a reappraisal of the paleointensity with the MSP-DSC protocol.

    NASA Astrophysics Data System (ADS)

    Bravo-Ayala, Manuel; Camps, Pierre; Alva-Valdivia, Luis; Poidras, Thierry; Nicol, Patrick

    2014-05-01

    The Xitle volcano, located south of Mexico City, is a monogenic volcano that has provided seven lava flows in a time interval of a few years. The age of these eruptions, estimated by means of radiocarbon dates on charcoal from beneath the flows, is still very poorly known, ranging from 4765±90 BC to 520±200 AD (see Siebe, JVGR, 2000 for a review). This lava field was emplaced over the archaeological city of Cuicuilco whose occupation is estimated between 700 BC and 150 AD. Thus a question is still pending: Is the downfall of Cuicuilco directly attributable to the eruption of Xitle? It seems that the answer is negative if we consider the latest radiocarbon dating by Siebe (2000), which sets the age of the eruption to 280±35 AD, that is significantly younger to the abandon of the city. Because this new age has direct implications on the history of the movements of ancient populations in the Central Valley of Mexico, we propose in the present study to check this estimate by archaeomagnetic dating. Xitle lava have been investigated several times for paleomagnetism, including directional analyses and absolute paleointensity determinations (see Alva, EPS, 57, 839-853, 2005 for a review). The characteristic Remanence direction is precisely determined. It is much more difficult to estimate precisely the paleointensity with the Thellier method: values scatter between 40 and 90 μT in a single flow (Alva, 2005). We propose here to estimate the paleointensity by means of the MSP-DSC protocol (Fabian and Leonhardt, 2010) with the new ultra-fast heating furnace FUReMAG developed in Montpellier (France). The sampling was performed along four profiles, one vertical through the entire thickness of the flow and three horizontal (at the top, middle and the bottom of the flow). Our preliminary results show that there is no difference between the values found in the different profiles, all providing a value around 62 μT. The comparison of our results (Dec = 359.0°, Inc = 35.2

  12. Limitations of amorphous content quantification by isothermal calorimetry using saturated salt solutions to control relative humidity: alternative methods.

    PubMed

    Khalef, Nawel; Pinal, Rodolfo; Bakri, Aziz

    2010-04-01

    Despite the high sensitivity of isothermal calorimetry (IC), reported measurements of amorphous content by this technique show significant variability even for the same compound. An investigation into the reasons behind such variability is presented using amorphous lactose and salbutamol sulfate as model compounds. An analysis was carried out on the heat evolved as a result of the exchange of water vapor between the solid sample during crystallization and the saline solution reservoir. The use of saturated salt solutions as means of control of the vapor pressure of water within sealed ampoules bears inherent limitations that lead in turn to the variability associated with the IC technique. We present an alternative IC method, based on an open cell configuration that effectively addresses the limitations encountered with the sealed ampoule system. The proposed approach yields an integral whose value is proportional to the amorphous content in the sample, thus enabling reliable and consistent quantifications. PMID:19774655

  13. Considerations on the design of front-end electronics for silicon calorimetry for the SSC (Superconducting Super Collider)

    SciTech Connect

    Wintenberg, A.L.; Bauer, M.L.; Britton, C.L. Jr.; Kennedy, E.J.; Todd, R.A. ); Berridge, S.C.; Bugg, W.M. )

    1990-01-01

    Some considerations are described for the design of a silicon-based sampling calorimetry detector for the Superconducting Super Collider (SSC). The use of silicon as the detection medium allows fast, accurate, and fine-grained energy measurements -- but for optimal performance, the front-end electronics must be matched to the detector characteristics and have the speed required by the high SSC interaction rates. The relation between the signal-to-noise ratio of the calorimeter electronics and the charge collection time, the preamplifier power dissipation, detector capacitance and leakage, charge gain, and signal shaping and sampling was studied. The electrostatic transformer connection was analyzed and found to be unusable for a tightly arranged calorimeter because of stray capacitance effects. The method of deconvolutional sampling was developed as a means for pileup correction following synchronous sampling and analog storage. 3 refs., 6 figs.

  14. Measuring thermal diffusivity of mechanical and optical grades of polycrystalline diamond using an AC laser calorimetry method

    SciTech Connect

    Rule, Toby D.; Cai, Wei; Wang, Hsin

    2013-01-01

    Because of its extremely high thermal conductivity, measuring the thermal conductivity or diffusivity of optical-grade diamond can be challenging. Various methods have been used to measure the thermal conductivity of thick diamond films. For the purposes of commercial quality control, the AC laser calorimetry method is appealing because it enables fairly rapid and convenient sample preparation and measurement. In this paper, the method is used to measure the thermal diffusivity of optical diamond. It is found that sample dimensions and measurement parameters are critical, and data analysis must be performed with great care. The results suggest that the method as it is applied to optical-grade diamond could be enhanced by a more powerful laser, higher frequency beam modulation, and post-processing based on 2D thermal simulation.

  15. CALORIMETRY OF GRB 030329: SIMULTANEOUS MODEL FITTING TO THE BROADBAND RADIO AFTERGLOW AND THE OBSERVED IMAGE EXPANSION RATE

    SciTech Connect

    Mesler, Robert A.; Pihlstroem, Ylva M.

    2013-09-01

    We perform calorimetry on the bright gamma-ray burst GRB 030329 by fitting simultaneously the broadband radio afterglow and the observed afterglow image size to a semi-analytic MHD and afterglow emission model. Our semi-analytic method is valid in both the relativistic and non-relativistic regimes, and incorporates a model of the interstellar scintillation that substantially effects the broadband afterglow below 10 GHz. The model is fitted to archival measurements of the afterglow flux from 1 day to 8.3 yr after the burst. Values for the initial burst parameters are determined and the nature of the circumburst medium is explored. Additionally, direct measurements of the lateral expansion rate of the radio afterglow image size allow us to estimate the initial Lorentz factor of the jet.

  16. Combined FPPE-PTR Calorimetry Involving TWRC Technique II. Experimental: Application to Thermal Effusivity Measurements of Solids

    NASA Astrophysics Data System (ADS)

    Dadarlat, Dorin; Pop, Mircea Nicolae; Streza, Mihaela; Longuemart, Stephane; Depriester, Michael; Sahraoui, Abdelhak Hadj; Simon, Viorica

    2011-10-01

    Photopyroelectric calorimetry in the front detection configuration (FPPE) and photothermal radiometry (PTR) were simultaneously used, together with the thermal-wave resonator cavity method (TWRC), in order to investigate the thermal effusivity of solids inserted as backing layers in a detection cell. A new combined FPPE-PTR-TWRC setup was designed. It was demonstrated experimentally that the PTR technique, combined with the TWRC method, is able to provide calorimetric information about the third layer of a detection cell. Applications on solids with different values of the thermal effusivity (starting from metals, down to thermal isolators) are presented. The values of the thermal effusivity obtained with the PTR technique are similar to those obtained with the PPE technique, and in agreement with literature values; the two methods reciprocally support each other. The accuracy of both methods is higher when the values of the thermal effusivity of the backing layer and coupling fluid are close.

  17. Enthalpy of formation of talc Mg3[Si4O10](OH)2 according to dissolution calorimetry

    NASA Astrophysics Data System (ADS)

    Ogorodova, L. P.; Kiseleva, I. A.

    2011-09-01

    A thermochemical study of natural talc was performed by high-temperature melt dissolution calorimetry on a Tian-Calvet calorimeter. Based on the total values of the increment in enthalpy upon heating the sample from room temperature to 973 K, and of the dissolution enthalpy at 973 K measured in this work for talc and gibbsite (along with those determined for tremolite, brucite, and their corresponding oxides), the enthalpy of formation was calculated for talc composed of elements, Mg3[Si4O10](OH)2, at 298.15 K: Δf H {el/o}(298.15 K) = -5900.6 ± 4.7 kJ/mol.

  18. Binding of an Oligomeric Ellagitannin Series to Bovine Serum Albumin (BSA): Analysis by Isothermal Titration Calorimetry (ITC).

    PubMed

    Karonen, Maarit; Oraviita, Marianne; Mueller-Harvey, Irene; Salminen, Juha-Pekka; Green, Rebecca J

    2015-12-16

    A unique series of oligomeric ellagitannins was used to study their interactions with bovine serum albumin (BSA) by isothermal titration calorimetry. Oligomeric ellagitannins, ranging from monomer to heptamer and a mixture of octamer-undecamers, were isolated as individual pure compounds. This series allowed studying the effects of oligomer size and other structural features. The monomeric to trimeric ellagitannins deviated most from the overall trends. The interactions of ellagitannin oligomers from tetramers to octa-undecamers with BSA revealed strong similarities. In contrast to the equilibrium binding constant, enthalpy showed an increasing trend from the dimer to larger oligomers. It is likely that first the macrocyclic part of the ellagitannin binds to the defined binding sites on the protein surface and then the "flexible tail" of the ellagitannin coats the protein surface. The results highlight the importance of molecular flexibility to maximize binding between the ellagitannin and protein surfaces. PMID:26608224

  19. Calorimetry study of the synthesis of amorphous Ni-Ti alloys by mechanical alloying. [Ni33 Ti67

    SciTech Connect

    Schwarz, R.B.; Petrich, R.R.

    1988-01-01

    We synthesized amorphous Ni/sub 33/Ti/sub 67/ alloy powder by ball milling (a) a mixture of elemental nickel and titanium powders and (b) powders of the crystalline intermetallic NiTi/sub 2/. We characterized the reaction products as a function of ball-milling time by differential scanning calorimetry and x-ray diffraction. The measurements suggest that in process (a) the amorphous alloy forms by a solid-state interdiffusion reaction at the clean Ni/Ti interfaces generated by the mechanical attrition. In process (b), the crystalline alloy powder stores energy in the form of chemical disorder and lattice and point defects. The crystal-to-amorphous transformation occurs when the stored energy reaches a critical value. The achievement of the critical stored energy competes with the dynamic recovery of the lattice. 23 refs., 7 figs.

  20. Determination of Volatility of Ionic Liquids at the Nanoscale by means of Ultra-Fast Scanning Calorimetry - the Method

    NASA Astrophysics Data System (ADS)

    Ahrenberg, Mathias; Beck, Martin; Schmidt, Christin; Verevkin, Sergey P.; Kessler, Olaf; Kragl, Udo; Schick, Christoph

    2015-03-01

    We present a new method for the determination of the vapour pressure of low volatile compounds using differential fast scanning calorimetry. We have developed and proven this method using the ionic liquids [EMIm][NTf2] and [EMIm][NO3] at temperatures up to 750 K and in different atmospheres to distinguish between decomposition and evaporation1. It was demonstrated that evaporation is still the dominating process of mass loss even at temperatures 100 K above the onset of decomposition as measured with common techniques, e.g TGA. Since the method allows very high heating rates (up to 106 K/s)2, much higher temperatures can be reached in the measurement of the vapour pressure as compared to common devices without significant decomposition of the ionic liquid. Furthermore, this method represents an improvement of the boiling point estimation of ILs due to the large accessible temperature range of mass loss rate determination.

  1. Particle Size (Sieving) and Enthalpy (Acid Calorimetry) Analysis of Single-Pull K East Basin Floor and Pit Sludges

    SciTech Connect

    PR Bredt; CH Delegard; AJ Schmidt; KL Silvers; BM Thornton; S Gano

    2000-12-22

    This report presents the results of particle size analyses and calorimetry testing performed on selected single-pull sludge samples collected from the Hanford K East Basin between December 1998 and June 1999. The samples were collected as isolated cores predominantly from areas that had not been previously sampled (e.g., North Loadout Pit, Dummy Elevator Pit, Tech View Pit), or from areas in which the sludge composition had been altered since the last sampling (e.g., Weasel Pit). Particle size analyses were performed by washing wet sludge samples through a series of four sieves with openings of 250, 500, 1410, and 4000 {micro}m. The loaded sieves were weighed before and after drying to obtain wet and dry particle size distributions. Knowledge of the particle size distribution is needed to design and predict the performance of the systems that will be used to retrieve, transport, and recover sludge. Also, sieving provides an opportunity to observe the components in the sludge. For example, during sieving of the sludge sample from the North Loadout Pit, significant quantities of organic ion exchange beads were observed. The uranium metal content and the particle size of the uranium metal in the K Basin sludge will largely determine the chemical reactivity of the sludge. In turn, the designs for the sludge handling and storage systems must be compatible with the reactivity of the sludge. Therefore, acid calorimetry was performed to estimate the uranium metal content of the sludge. For this testing, sludge samples were dissolved in nitric acid within a calibrated adiabatic calorimeter. The resulting dissolution enthalpy data were then used to discriminate between metallic uranium ({minus}3750 J/g in nitric acid) and uranium oxide ({minus}394 J/g in nitric acid). Results from this testing showed that the single-pull sludge samples contained little or no uranium metal.

  2. Development of a water calorimetry-based standard for absorbed dose to water in HDR {sup 192}Ir brachytherapy

    SciTech Connect

    Sarfehnia, Arman; Seuntjens, Jan

    2010-04-15

    Purpose: The aim of this article is to develop and evaluate a primary standard for HDR {sup 192}Ir brachytherapy based on 4 deg. C stagnant water calorimetry. Methods: The absolute absorbed dose to water was directly measured for several different Nucletron microSelectron {sup 192}Ir sources of air kerma strength ranging between 21 000 and 38 000 U and for source-to-detector separations ranging between 25 and 70 mm. The COMSOL MULTIPHYSICS software was used to accurately calculate the heat transport in a detailed model geometry. Through a coupling of the ''conduction and convection'' module with the ''Navier-Stokes incompressible fluid'' module in the software, both the conductive and convective effects were modeled. Results: A detailed uncertainty analysis resulted in an overall uncertainty in the absorbed dose of 1.90%(1{sigma}). However, this includes a 1.5% uncertainty associated with a nonlinear predrift correction which can be substantially reduced if sufficient time is provided for the system to come to a new equilibrium in between successive calorimetric runs, an opportunity not available to the authors in their clinical setting due to time constraints on the machine. An average normalized dose rate of 361{+-}7 {mu}Gy/(h U) at a source-to-detector separation of 55 mm was measured for the microSelectron {sup 192}Ir source based on water calorimetry. The measured absorbed dose per air kerma strength agreed to better than 0.8%(1{sigma}) with independent ionization chamber and EBT-1 Gafchromic film reference dosimetry as well as with the currently accepted AAPM TG-43 protocol measurements. Conclusions: This work paves the way toward a primary absorbed dose to water standard in {sup 192}Ir brachytherapy.

  3. Stereo-Selectivity of Human Serum Albumin to Enantiomeric and Isoelectronic Pollutants Dissected by Spectroscopy, Calorimetry and Bioinformatics

    PubMed Central

    Ahmad, Ejaz; Rabbani, Gulam; Zaidi, Nida; Singh, Saurabh; Rehan, Mohd; Khan, Mohd Moin; Rahman, Shah Kamranur; Quadri, Zainuddin; Shadab, Mohd.; Ashraf, Mohd Tashfeen; Subbarao, Naidu; Bhat, Rajiv; Khan, Rizwan Hasan

    2011-01-01

    1–naphthol (1N), 2–naphthol (2N) and 8–quinolinol (8H) are general water pollutants. 1N and 2N are the configurational enantiomers and 8H is isoelectronic to 1N and 2N. These pollutants when ingested are transported in the blood by proteins like human serum albumin (HSA). Binding of these pollutants to HSA has been explored to elucidate the specific selectivity of molecular recognition by this multiligand binding protein. The association constants (Kb) of these pollutants to HSA were moderate (104–105 M−1). The proximity of the ligands to HSA is also revealed by their average binding distance, r, which is estimated to be in the range of 4.39–5.37 nm. The binding free energy (ΔG) in each case remains effectively the same for each site because of enthalpy–entropy compensation (EEC). The difference observed between ΔCpexp and ΔCpcalc are suggested to be caused by binding–induced flexibility changes in the HSA. Efforts are also made to elaborate the differences observed in binding isotherms obtained through multiple approaches of calorimetry, spectroscopy and bioinformatics. We suggest that difference in dissociation constants of pollutants by calorimetry, spectroscopic and computational approaches could correspond to occurrence of different set of populations of pollutants having different molecular characteristics in ground state and excited state. Furthermore, our observation of enhanced binding of pollutants (2N and 8H) in the presence of hemin signifies that ligands like hemin may enhance the storage period of these pollutants in blood that may even facilitate the ill effects of these pollutants. PMID:22073150

  4. Piezoelectric resonance calorimetry of nonlinear-optical crystals under laser irradiation

    NASA Astrophysics Data System (ADS)

    Ryabushkin, Oleg A.; Konyashkin, Aleksey V.; Myasnikov, Daniil V.; Tyrtyshnyy, Valentin A.; Vershinin, Oleg I.

    2013-09-01

    Novel method is proposed for determination of nonlinear-optical crystal both heat transfer and optical absorption coefficients by measuring kinetics of the laser-irradiated crystal temperature-dependent piezoelectric resonance frequency. When laser radiation propagates through the crystal its temperature evaluation with time is directly determined from crystal piezoelectric resonance frequency shift, which is precisely measured by analyzing crystal response to the applied ac electric voltage. Heat transfer and optical absorption coefficients are obtained using measured characteristic time of crystal laser heating kinetics by solving nonstationary heat conduction equation. Experiments were performed with nonlinear-optical α-quartz, lithium triborate (LBO) and periodically poled lithium niobate (PPLN) crystals.

  5. Cold-cap reactions in vitrification of nuclear waste glass: experiments and modeling

    SciTech Connect

    Chun, Jaehun; Pierce, David A.; Pokorny, Richard; Hrma, Pavel R.

    2013-05-01

    Cold-cap reactions are multiple overlapping reactions that occur in the waste-glass melter during the vitrification process when the melter feed is being converted to molten glass. In this study, we used differential scanning calorimetry (DSC) to investigate cold-cap reactions in a high-alumina high-level waste melter feed. To separate the reaction heat from both sensible heat and experimental instability, we employed the run/rerun method, which enabled us to define the degree of conversion based on the reaction heat and to estimate the heat capacity of the reacting feed. Assuming that the reactions are nearly independent and can be approximated by the nth order kinetics, we obtained the kinetic parameters using the Kissinger method combined with least squares analysis. The resulting mathematical simulation of the cold-cap reactions provides a key element for the development of an advanced cold-cap model.

  6. Structure and Energetics of Encapsidated DNA in Bacteriophage HK97 Studied by Scanning Calorimetry and Cryo-electron Microscopy

    PubMed Central

    Duda, Robert L.; Ross, Philip D.; Cheng, Naiqian; Firek, Brian A.; Hendrix, Roger W.; Conway, James F.; Steven, Alasdair C.

    2009-01-01

    Encapsidation of duplex DNA by bacteriophages represents an extreme case of genome condensation, reaching near-crystalline concentrations of DNA. The HK97 system is well suited to study this phenomenon in view of detailed knowledge of its capsid structure. To characterize the interactions involved, we combined calorimetry with cryo-EM and native gel electrophoresis. We found that, as in other phages, HK97 DNA is organized in coaxially wound nested shells. When scanned in buffer containing 1mM [Mg++], filled capsids exhibit a complex thermal profile between 82° and 96°, to which DNA melting and capsid denaturation both contribute. In the absence of (unbound) [Mg++], DNA melting shifts to lower temperatures and the two events are resolved. Filled capsids release their DNA at temperatures well below the onset of DNA melting or capsid denaturation. On heating, the internal pressure increases, causing the DNA to exit – probably, via the portal vertex; the capsid, although largely intact, sustains local damage that leads to an earlier onset of thermal denaturation. Filled capsids differ structurally from empty capsids in the curvature of their protein shell, a change attributable to outwards pressure exerted by the DNA. We propose that this transition is sensed by the portal which is embedded in the capsid wall, whereupon the portal's structure and its interactions with terminase, the packaging enzyme, are altered, thus signaling that packaging is at or approaching completion. PMID:19540242

  7. Determination of volatility of ionic liquids at the nanoscale by means of ultra-fast scanning calorimetry.

    PubMed

    Ahrenberg, Mathias; Brinckmann, Marcel; Schmelzer, Jürn W P; Beck, Martin; Schmidt, Christin; Kessler, Olaf; Kragl, Udo; Verevkin, Sergey P; Schick, Christoph

    2014-02-21

    The determination of vaporization enthalpies of extremely low volatility ionic liquids is challenging and time consuming due to the low values of vapor pressure. In addition, these liquids tend to decompose even at temperatures where the vapor pressure is still low. Conventional methods for determination of vaporization enthalpies are thus limited to temperatures below the decomposition temperature. Here we present a new method for the determination of vaporization enthalpies of such liquids using differential fast scanning calorimetry. We have developed and proven this method using [EMIm][NTf2] at temperatures of up to 750 K and in different atmospheres. It was demonstrated that evaporation is still the dominating process of mass loss even at such highly elevated temperatures. In addition, since the method allows very high heating rates (up to 10(5) K s(-1)), much higher temperatures can be reached in the measurement of the mass loss rate as compared to common devices without significant decomposition of the ionic liquid. We discuss the advantages and limits of this new method of vaporization enthalpy determination and compare the results with data obtained from established methods. PMID:24390395

  8. Langmuir monolayers and Differential Scanning Calorimetry for the study of the interactions between camptothecin drugs and biomembrane models.

    PubMed

    Casadó, Ana; Giuffrida, M Chiara; Sagristá, M Lluïsa; Castelli, Francesco; Pujol, Montserrat; Alsina, M Asunción; Mora, Margarita

    2016-02-01

    CPT-11 and SN-38 are camptothecins with strong antitumor activity. Nevertheless, their severe side effects and the chemical instability of their lactone ring have questioned the usual forms for its administration and have focused the current research on the development of new suitable pharmaceutical formulations. This work presents a biophysical study of the interfacial interactions of CPT-11 and SN-38 with membrane mimetic models by using monolayer techniques and Differential Scanning Calorimetry. The aim is to get new insights for the understanding of the bilayer mechanics after drug incorporation and to optimize the design of drug delivery systems based on the formation of stable bilayer structures. Moreover, from our knowledge, the molecular interactions between camptothecins and phospholipids have not been investigated in detail, despite their importance in the context of drug action. The results show that neither CPT-11 nor SN-38 disturbs the structure of the complex liposome bilayers, despite their different solubility, that CPT-11, positively charged in its piperidine group, interacts electrostatically with DOPS, making stable the incorporation of a high percentage of CPT-11 into liposomes and that SN-38 establishes weak repulsive interactions with lipid molecules that modify the compressibility of the bilayer without affecting significantly neither the lipid collapse pressure nor the miscibility pattern of drug-lipid mixed monolayers. The suitability of a binary and a ternary lipid mixture for encapsulating SN-38 and CPT-11, respectively, has been demonstrated. PMID:26656185

  9. Characterization of a water-dispersible metal protective coating with Fourier transform infrared spectroscopy, modulated differential scanning calorimetry, and ellipsometry.

    PubMed

    Boyatzis, Stamatis C; Douvas, Antonios M; Argyropoulos, Vassilike; Siatou, Amalia; Vlachopoulou, Marilena

    2012-05-01

    An ethylene-methacrylic acid copolymer, formulated by BASF as a waterborne suspension of its alkylammonium salt and used, among other applications, in art conservation as a temporary protective coating was characterized using Fourier transform infrared (FT-IR) spectroscopy aided by modulated differential scanning calorimetry (MDSC) and ellipsometry. The thermal conversion of thin copolymer films from the freshly applied state, where carboxylic acid and carboxylate ion functional groups co-exist, to a purely acidic working state was spectroscopically followed. Transmission mid-infrared data of the working state showed a 1 : 12 ratio of methacrylic acid towards ethylene units. The glass transition temperature (T(g)) in the same state was found at 45 °C. Copolymer films spin-coated on mechanically polished bronze and iron coupons were characterized with transflection infrared spectroscopy and compared to corresponding transmission mid-infrared spectra of copolymer films spin-coated on silicon wafers. In the case of bronze coupons, evidence for interaction of the carboxylate ion with the copper substrate was obtained. The chemical structure and the thermal behavior of the coating, as well as some implications on its protective capability towards iron and copper alloys, is discussed as this material has received considerable attention in the field of metal conservation and coatings. PMID:22524964

  10. An Explicit Formulation Approach for the Analysis of Calcium Binding to EF-Hand Proteins Using Isothermal Titration Calorimetry

    PubMed Central

    Keeler, Camille; Poon, Gregory; Kuo, Ivana Y.; Ehrlich, Barbara E.; Hodsdon, Michael E.

    2013-01-01

    We present an improved and extended version of a recently proposed mathematical approach for modeling isotherms of ligand-to-macromolecule binding from isothermal titration calorimetry. Our approach uses ordinary differential equations, solved implicitly and numerically as initial value problems, to provide a quantitative description of the fraction bound of each competing member of a complex mixture of macromolecules from the basis of general binding polynomials. This approach greatly simplifies the formulation of complex binding models. In addition to our generalized, model-free approach, we have introduced a mathematical treatment for the case where ligand is present before the onset of the titration, essential for data analysis when complete removal of the binding partner may disrupt the structural and functional characteristics of the macromolecule. Demonstration programs playable on a freely available software platform are provided. Our method is experimentally validated with classic calcium (Ca2+) ion-selective potentiometry and isotherms of Ca2+ binding to a mixture of chelators with and without residual ligand present in the reaction vessel. Finally, we simulate and compare experimental data fits for the binding isotherms of Ca2+ binding to its canonical binding site (EF-hand domain) of polycystin 2, a Ca2+-dependent channel with relevance to polycystic kidney disease. PMID:24359756

  11. Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity

    PubMed Central

    Verma, Pradeep; Dyckmans, Jens; Militz, Holger

    2008-01-01

    Beech and pine wood blocks were treated with 1,3-dimethylol-4,5-dihydroxyethylen urea (DMDHEU) to increasing weight percent gains (WPG). The resistance of the treated specimens against Trametes versicolor and Coniophora puteana, determined as mass loss, increased with increasing WPG of DMDHEU. Metabolic activity of the fungi in the wood blocks was assessed as total esterase activity (TEA) based on the hydrolysis of fluorescein diacetate and as heat or energy production determined by isothermal micro-calorimetry. Both methods revealed that the fungal activity was related with the WPG and the mass loss caused by the fungi. Still, fungal activity was detected even in wood blocks of the highest WPG and showed that the treatment was not toxic to the fungi. Energy production showed a higher consistency with the mass loss after decay than TEA; higher mass loss was more stringently reflected by higher heat production rate. Heat production did not proceed linearly, possibly due to the inhibition of fungal activity by an excess of carbon dioxide. PMID:18542949

  12. Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry.

    PubMed

    Zubrienė, Asta; Smirnovienė, Joana; Smirnov, Alexey; Morkūnaitė, Vaida; Michailovienė, Vilma; Jachno, Jelena; Juozapaitienė, Vaida; Norvaišas, Povilas; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas

    2015-10-01

    Para substituted tetrafluorobenzenesulfonamides bind to carbonic anhydrases (CAs) extremely tightly and exhibit some of the strongest known protein-small ligand interactions, reaching an intrinsic affinity of 2 pM as determined by displacement isothermal titration calorimetry (ITC). The enthalpy and entropy of binding to five CA isoforms were measured by ITC in two buffers of different protonation enthalpies. The pKa values of compound sulfonamide groups were measured potentiometrically and spectrophotometrically, and enthalpies of protonation were measured by ITC in order to evaluate the proton linkage contributions to the observed binding thermodynamics. Intrinsic means the affinity of a sulfonamide anion for the Zn bound water form of CAs. Fluorination of the benzene ring significantly enhanced the observed affinities as it increased the fraction of deprotonated ligand while having little impact on intrinsic affinities. Intrinsic enthalpy contributions to the binding affinity were dominant over entropy and were more exothermic for CA I than for other CA isoforms. Thermodynamic measurements together with the X-ray crystallographic structures of protein-ligand complexes enabled analysis of structure-activity relationships in this enzyme ligand system. PMID:26079542

  13. Studies of Highly-Ordered Heterodiantennary Mannose/Glucose-Functionalized Polymers and Concanavalin A Protein Interactions Using Isothermal Titration Calorimetry

    PubMed Central

    Nguyen, Hien M.

    2016-01-01

    Preparations of the highly-ordered monoantennary, homofunctional diantennary, and heterofunctional diantennary neoglycopolymers of a-D-mannose and β-D-glucose residues were achieved via ring-opening metathesis polymerization. Isothermal titration calorimetry measurements of these synthetic neoglycopolymers with Concanavalin A, revealed that hetero-functional diantennary architectures bearing both a-mannose and non-binding β-glucose units, poly(Man-Glc), binds to Concanavalin A (Ka = 16.1 × 106 M−1) comparably to homofunctional diantennary neoglycopolymer (Ka = 30 × 106 M−1) bearing only a-mannose unit, poly(Man-Man). In addition, poly(Man-Glc) neoglycopolymer shows a nearly five-fold increasing in binding affinity compared to monoantennary neoglycopolymer, poly(Man). Although the exact mechanism for the high binding affinity of poly(Man-Glc) to Con A is unclear, we hypothesize that the α-mannose bound to Con A might facilitate interaction of β-glucose with the extended binding site of Con A due to the close proximity of β-glucose to α-mannose residues in the designed polymerizable scaffold. PMID:26580410

  14. Crystallization and fusion behaviors, observed by adiabatic calorimetry, of benzene confined in silica mesopores with uniform diameters.

    PubMed

    Nagoe, Atsushi; Oguni, Masaharu; Fujimori, Hiroki

    2015-03-18

    Heat capacities and spontaneous enthalpy-relaxation effects of the benzene confined in silica MCM-41 and SBA-15 pores with uniform diameters were measured by high-precision adiabatic calorimetry. The fusion temperatures and fusion enthalpies determined were compared with the literature results of benzene confined within pores of CPG glasses. It was confirmed, from the observed spontaneous heat-release or -absorption effects, that there exists a non-crystallizing amorphous component of confined benzene, as reported previously. The pore-diameter dependence of fusion enthalpy observed was inconsistent with the previously proposed model which suggested that the non-crystallizing amorphous component is located on the pore wall in the form of a shell-like structure of a few nm in thickness. A very slow relaxation process corresponding to a translational-diffusion motion of molecule was observed, indicating that the benzene fills the pores incompletely along the pore channel. In addition, we found that the fusion enthalpy as a function of inverse pore-diameter dependence decreases steeply in the range of 60-10 nm in diameter while gradually in the range around 5 nm. PMID:25627639

  15. Crystallization and fusion behaviors, observed by adiabatic calorimetry, of benzene confined in silica mesopores with uniform diameters

    NASA Astrophysics Data System (ADS)

    Nagoe, Atsushi; Oguni, Masaharu; Fujimori, Hiroki

    2015-03-01

    Heat capacities and spontaneous enthalpy-relaxation effects of the benzene confined in silica MCM-41 and SBA-15 pores with uniform diameters were measured by high-precision adiabatic calorimetry. The fusion temperatures and fusion enthalpies determined were compared with the literature results of benzene confined within pores of CPG glasses. It was confirmed, from the observed spontaneous heat-release or -absorption effects, that there exists a non-crystallizing amorphous component of confined benzene, as reported previously. The pore-diameter dependence of fusion enthalpy observed was inconsistent with the previously proposed model which suggested that the non-crystallizing amorphous component is located on the pore wall in the form of a shell-like structure of a few nm in thickness. A very slow relaxation process corresponding to a translational-diffusion motion of molecule was observed, indicating that the benzene fills the pores incompletely along the pore channel. In addition, we found that the fusion enthalpy as a function of inverse pore-diameter dependence decreases steeply in the range of 60-10 nm in diameter while gradually in the range around 5 nm.

  16. Properties of mixed DOTAP-DPPC bilayer membranes as reported by differential scanning calorimetry and dynamic light scattering measurements.

    PubMed

    Cinelli, S; Onori, G; Zuzzi, S; Bordi, F; Cametti, C; Sennato, S; Diociaiuti, M

    2007-08-23

    We have investigated the effect of a cationic lipid [DOTAP] on both the thermotropic phase behavior and the structural organization of aqueous dispersions of dipalmitoyl-phosphatidylcholine [DPPC] by means of high-sensitivity differential scanning calorimetry and dynamic light scattering measurements. We find that the incorporation of increasing quantities of DOTAP progressively reduces the temperature and the enthalpy of the gel-to-liquid crystalline transition. We are further showing that, in mixed DOTAP-DPPC systems, the reduction of the phase transition temperature is accompanied by a reduction of the average size of the structures present in the aqueous mixtures, whatever the DOTAP concentration is. These results, which extend a previous investigation by Campbell et al. (Campbell, R. B.; Balasubramanian, S. V.; Straubinger, R. M.; Biochim. Biosphys. Acta 2001, 27, 1512.) limited to a DOTAP concentration below 20 mol %, confirm that the insertion of cationic head groups in zwitterionic phosphatidylcholine bilayers facilitates the formation of stable, relatively small, unilamellar vesicles. This self-assembling restructuring from an aqueous multilamellar structure toward a liposomal phase is favored by decreasing the phospholipid phase transition temperature and by increasing the temperature of the system. This reduction of the average size and the appearance of a stable liposomal phase is also promoted by a heating and cooling thermal treatment. PMID:17663578

  17. Synthesis of a Self-Healing Polymer Based on Reversible Diels-Alder Reaction: An Advanced Undergraduate Laboratory at the Interface of Organic Chemistry and Materials Science

    ERIC Educational Resources Information Center

    Weizman, Haim; Nielsen, Christian; Weizman, Or S.; Nemat-Nasser, Sia

    2011-01-01

    This laboratory experiment exposes students to the chemistry of self-healing polymers based on a Diels-Alder reaction. Students accomplish a multistep synthesis of a monomer building block and then polymerize it to form a cross-linked polymer. The healing capability of the polymer is verified by differential scanning calorimetry (DSC) experiments.…

  18. The effect of feeding on CO2 production and energy expenditure in ponies measured by indirect calorimetry and the 13C-bicarbonate technique.

    PubMed

    Jensen, R B; Kyrstein, T D; Junghans, P; Tauson, A H

    2015-11-01

    Energy expenditure (EE) can be estimated based on respiratory gas exchange measurements, traditionally done in respiration chambers by indirect calorimetry (IC). However, the (13)C-bicarbonate technique ((13)C-BT) might be an alternative minimal invasive method for estimation of CO(2) production and EE in the field. In this study, four Shetland ponies were used to explore the effect of feeding on CO(2) production and EE measured simultaneously by IC and (13)C-BT. The ponies were individually housed in respiration chambers and received either a single oral or intravenous (IV) bolus dose of (13)C-labelled sodium bicarbonate (NaH(13)CO(3)). The ponies were fed haylage 3 h before (T(-3)), simultaneously with (T(0)) or 3 h after (T(+3)) administration of (13)C-bicarbonate. The CO(2) produced and O(2) consumed by the ponies were measured for 6 h with both administration routes of (13)C-bicarbonate at the three different feeding times. Feeding time affected the CO(2) production (P<0.001) and O(2) consumption (P<0.001), but not the respiratory quotient (RQ) measured by IC. The recovery factor (RF) of (13)C in breath CO(2) was affected by feeding time (P<0.01) and three different RF were used in the calculation of CO(2) production measured by 13C-BT. An average RQ was used for the calculations of EE. There was no difference between IC and (13)C-BT for estimation of CO(2) production. An effect of feeding time (P<0.001) on the estimated EE was found, with higher EE when feed was offered (T(0) and T(+3)) compared with when no feed was available (T -3) during measurements. In conclusion, this study showed that feeding time affects the RF and measurements of CO(2) production and EE. This should be considered when the (13)C-BT is used in the field. IV administration of (13)C-bicarbonate is recommended in future studies with horses to avoid complex (13)C enrichment-time curves with maxima and shoulders as observed in several experiments with oral administration of (13)C

  19. Adiabatic calorimetry test of the reaction kinetics and self-heating model for 18650 Li-ion cells in various states of charge

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chun; Wang, Yih-Wen; Shu, Chi-Min

    2016-06-01

    Use of adiabatic calorimetry to characterise thermal runaway of Li-ion cells is a crucial technique in battery safety testing. Various states of charge (SoC) of Li-ion cells were investigated to ascertain their thermal runaway features using a Vent Sizing Package 2 (VSP2) adiabatic calorimeter. To evaluate the thermal runaway characteristics, the temperature-pressure-time trajectories of commercial cylindrical cells were tested, and it was found that cells at a SoC of greater than 50% were subject to thermal explosion at elevated temperatures. Calorimetry data from various 18650 Li-ion cells with different SoC were used to calculate the thermal explosion energies and chemical kinetics; furthermore, a novel self-heating model based on a pseudo-zero-order reaction that follows the Arrhenius equation was found to be applicable for studying the exothermic reaction of a charged cell.

  20. Optical microscopy, DSC, and X-ray diffraction studies on octyl and decyl members of the homologous series 4(4'-n-alkoxybenzoyloxy)phenyl azo-4"-isoamyloxy benzene

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Mandal, P. K.; Patel, P. R.; Dave, J. S.

    2004-09-01

    Octyl and decyl members of the homologous series 4(4'-n-Alkoxybenzoyloxy)phenyl azo-4"-isoamyloxy benzene have been studied by optical microscopy, DSC and X-ray diffraction techniques. Transition temperatures of the compounds are determined by observing texture by a polarizing microscope while transition enthalpies and entropies are determined by DSC studies. X-ray diffraction photographs of magnetically aligned samples indicate that the octyl member has cybotactic nematic phase while decyl member has cybotactic nematic and monotropic smectic A phase. X-ray photographs are analyzed to calculate intermolecular distance, apparent molecular length in nematics, layer spacing in smectics and orientational order parameters ( and ). Temperature dependence of these parameters has been discussed. Values of and are found to be consistent with Maier-Soupe theoretical values. Lengths of the molecules (L) in most extended conformation are found to be greater than the apparent molecular lengths in nematic phase which suggest that the molecules are tilted in the plane of cybotactic groups. Calculated tilt angles are found to be in between 41.8° to 43.3°.

  1. Calorimetry in a Nutshell.

    ERIC Educational Resources Information Center

    Markow, Peter

    1992-01-01

    Provides information on nutritional caloric value determination. Describes the chemical components of peanuts. Explains how to construct a soda can calorimeter for determining the heat released by a burning nut. Describes how to determine calories and kilocalories. Author asserts the activity can be adopted for children of any age. (eight…

  2. Fiber optic calorimetry

    SciTech Connect

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian ({mu}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  3. Fiber Optic Calorimetry

    SciTech Connect

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-12-12

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian ({micro}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  4. Calorimetry Network Program

    Energy Science and Technology Software Center (ESTSC)

    1998-01-30

    This is a Windows NT based program to run the SRTC designed calorimeters. The network version can communicate near real time data and final data values over the network. This version, due to network specifics, can function in a stand-alone operation also.

  5. Assessing the performance under ionising radiation of lead tungstate scintillators for EM calorimetry in the CLAS12 Forward Tagger

    NASA Astrophysics Data System (ADS)

    Fegan, S.; Auffray, E.; Battaglieri, M.; Buchanan, E.; Caiffi, B.; Celentano, A.; Colaneri, L.; D`Angelo, A.; De Vita, R.; Dormenev, V.; Fanchini, E.; Lanza, L.; Novotny, R. W.; Parodi, F.; Rizzo, A.; Sokhan, D.; Tarasov, I.; Zonta, I.

    2015-07-01

    The well-established technology of electromagnetic calorimetry using Lead Tungstate crystals has recently seen an upheaval, with the closure of one of the most experienced large-scale suppliers of such crystals, the Bogoroditsk Technical Chemical Plant (BTCP), which was instrumental in the development of mass production procedures for PWO-II, the current benchmark for this scintillator. Obtaining alternative supplies of Lead Tungstate crystals matching the demanding specifications of contemporary calorimeter devices now presents a significant challenge to detector research and development programmes. In this paper we describe a programme of assessment carried out for the selection, based upon the performance under irradiation, of Lead Tungstate crystals for use in the Forward Tagger device, part of the CLAS12 detector in Hall B at Jefferson Lab. The crystals tested were acquired from SICCAS, the Shanghai Institute of Ceramics, Chinese Academy of Sciences. The tests performed are intended to maximise the performance of the detector within the practicalities of the crystal manufacturing process. Results of light transmission, before and after gamma ray irradiation, are presented and used to calculate dk, the induced radiation absorption coefficient, at 420 nm, the peak of the Lead Tungstate emission spectrum. Results for the SICCAS crystals are compared with identical measurements carried out on Bogoroditsk samples, which were acquired for the Forward Tagger development program before the closure of the facility. Also presented are a series of tests performed to determine the feasibility of recovering radiation damage to the crystals using illumination from an LED, with such illumination available in the Forward Tagger from a light monitoring system integral to the detector.

  6. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    DOE PAGESBeta

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that canmore » determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.« less

  7. Versatile peroxidase degradation of humic substances: use of isothermal titration calorimetry to assess kinetics, and applications to industrial wastes.

    PubMed

    Siddiqui, Khawar Sohail; Ertan, Haluk; Charlton, Timothy; Poljak, Anne; Daud Khaled, A K; Yang, Xuexia; Marshall, Gavin; Cavicchioli, Ricardo

    2014-05-20

    The kinetic constants of a hybrid versatile-peroxidase (VP) which oxidizes complex polymeric humic substances (HS) derived from lignin (humic and fulvic acids) and industrial wastes were determined for the first time using isothermal titration calorimetry (iTC). The reaction conditions were manipulated to enable manganese-peroxidase (MnP) and/or lignin-peroxidase (LiP) activities to be evaluated. The peroxidase reactions exhibited varying degrees of product inhibition or activation; properties which have not previously been reported for VP enzymes. In contrast to previous work (Ertan et al., 2012) on small non-polymeric substrates (MnSO4, veratryl alcohol and dyes), all kinetic plots for polymeric HS were sigmoidal, lacked Michaelis-Menten characteristics, and were indicative of positive cooperativity. Under conditions when both LiP and MnP were active, the kinetic data fitted to a novel biphasic Hill Equation, and the rate of enzymatic reaction was significantly greater than the sum of individual LiP plus MnP activities implying synergistic activation. By employing size-exclusion chromatography and electrospray ionization mass spectrometry, the characteristics of the oxidative degradation products of the HS were also monitored. Our study showed that the allosteric behaviour of the VP enzyme promotes a high level of regulation of activity during the breakdown of model and industrial ligninolytic substrates. The work was extended to examine the kinetics of breakdown of industrial wastes (effluent from a pulp and paper plant, and fouled membrane solids extracted from a ground water treatment membrane) revealing unique, VP-mediated, kinetic responses. This work demonstrates that iTC can be successfully employed to study the kinetic properties of VP enzymes in order to devise reaction conditions optimized for oxidative degradation of HS present in materials used in a wide range of industries. PMID:24631722

  8. Thermodynamic characterization of the interaction between TRAF2 and tumor necrosis factor receptor peptides by isothermal titration calorimetry

    PubMed Central

    Ye, Hong; Wu, Hao

    2000-01-01

    The tumor necrosis factor receptor (TNFR) superfamily can induce diverse biological effects, including cell survival, proliferation, differentiation, and apoptosis. The major signal transducers for TNFRs are the family of TNF receptor associated factors (TRAFs). The direct interaction between TRAFs and the intracellular tails of TNFRs is the first step of this signal relay process. Structural studies have revealed a trimeric nature of TRAF2 and a symmetrical mode of receptor binding, suggesting the involvement of trivalent TNFR2-receptor interaction in the signal transduction. In this study, using isothermal titration calorimetry (ITC), we report thermodynamic characterization of the interaction between TRAF2 and monomeric peptide sequences from TNFR members, including TNFR2, CD40, CD30, Ox40, and 4-1BB, and the Epstein–Barr virus (EBV)-transforming protein, latent infection membrane protein-1 (LMP1). The dissociation constants of the interaction were shown to range between 40 μM and 1.9 mM, which are substantially weaker than most protein–peptide interactions. The interaction is entirely driven by exothermic enthalpy, consistent with the abundance of polar contacts. The enthalpy of the interaction has a significant temperature dependence (ΔCp = −245 cal/mol⋅K). The unfavorable entropy in the interaction and the comparison with structural energetics calculations suggest the involvement of conformational rearrangement in the interaction. The low affinity of TRAF2 to monomeric receptor peptides further supports the importance of avidity contribution in TRAF2 recruitment by these receptors upon ligand-induced trimerization or higher order oligomerization. PMID:10908665

  9. Interaction of Bile Salts with Model Membranes Mimicking the Gastrointestinal Epithelium: A Study by Isothermal Titration Calorimetry.

    PubMed

    Coreta-Gomes, Filipe M; Martins, Patrícia A T; Velazquez-Campoy, Adrián; Vaz, Winchil L C; Geraldes, Carlos F G; Moreno, Maria João

    2015-08-25

    Bile salts (BS) are biosurfactants synthesized in the liver and secreted into the intestinal lumen where they solubilize cholesterol and other hydrophobic compounds facilitating their gastrointestinal absorption. Partition of BS toward biomembranes is an important step in both processes. Depending on the loading of the secreted BS micelles with endogeneous cholesterol and on the amount of cholesterol from diet, this may lead to the excretion or absorption of cholesterol, from cholesterol-saturated membranes in the liver or to gastrointestinal membranes, respectively. The partition of BS toward the gastrointestinal membranes may also affect the barrier properties of those membranes affecting the permeability for hydrophobic and amphiphilic compounds. Two important parameters in the interaction of the distinct BS with biomembranes are their partition coefficient and the rate of diffusion through the membrane. Altogether, they allow the calculation of BS local concentrations in the membrane as well as their asymmetry in both membrane leaflets. The local concentration and, most importantly, its asymmetric distribution in the bilayer are a measure of induced membrane perturbation, which is expected to significantly affect its properties as a cholesterol donor and hydrophobic barrier. In this work we have characterized the partition of several BS, nonconjugated and conjugated with glycine, to large unilamellar vesicles (LUVs) in the liquid-disordered phase and with liquid-ordered/liquid-disordered phase coexistence, using isothermal titration calorimetry (ITC). The partition into the liquid-disordered bilayer was characterized by large partition coefficients and favored by enthalpy, while association with the more ordered membrane was weak and driven only by the hydrophobic effect. The trihydroxy BS partitions less efficiently toward the membranes but shows faster translocation rates, in agreement with a membrane protective effect of those BS. The rate of translocation

  10. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    SciTech Connect

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that can determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.

  11. Characterization of ciclosporin A loaded poly (D,L lactide-co-glycolide) microspheres using modulated temperature differential scanning calorimetry.

    PubMed

    Passerini, N; Craig, D Q M

    2002-07-01

    The aim of this study was to investigate the physical structure of poly (D,L lactide-co-glycolide) (PLGA) microspheres loaded with ciclosporin A in terms of the amorphous properties of the individual components and the phase separation characteristics of the binary systems. Microspheres were prepared using a standard oil-in-water emulsion technique. The thermal properties of the PLGA, ciclosporin A and loaded spheres were investigated using modulated temperature differential scanning calorimetry (MTDSC) using a TA Instruments MTDSC 2920, with scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and high-performance liquid chromatography used as supportive techniques. MTDSC indicated a glass transition for ciclosporin A in the reversing heat flow signal at 107 degrees C, supported by temperature cycling studies, while XRD showed clear evidence for diffraction peaks, thereby indicating that the material as received is semi-crystalline. The unloaded PLGA spheres showed a glass transition (Tg) at 43 degrees C, with no reduction in Tg being observed on loading the peptide up to 50%, w/w. Similarly, no evidence for diffraction peaks were seen for the drug-loaded systems, although the glass transition corresponding to the peptide was observed for the loaded microspheres, suggesting that the drug is present as a separate amorphous phase. Similarly, SEM studies showed the appearance of distinct "islands" on the surface of the spheres that are suggested to correspond to the drug phase, with the size of the islands increasing with drug loading. Evidence is therefore presented that ciclosporin A may exist in a range of solid states, with the degree of crystallinity being altered by processing. In addition, there appears to be little or no miscibility between the drug and PLGA using the manufacturing protocol employed here. These findings may have implications for the choice of manufacturing protocol, the release of peptide drugs from PLGA microspheres and the

  12. The influence of dioxane on the hydration of bovine pancreatic α-chymotrypsin according to isothermal calorimetry and IR spectroscopy data

    NASA Astrophysics Data System (ADS)

    Sirotkin, V. A.; Korolev, D. V.

    2006-11-01

    The influence of dioxane on the thermochemical characteristics of the hydration of bovine pancreatic α-chymotrypsin enzyme over the whole range of water thermodynamic activities was studied by comparing the isothermal calorimetry data on the thermochemistry of interaction between the enzyme and water in the presence and absence of dioxane and using the IR spectral data on the adsorption of water and organic solvent vapors on the protein.

  13. Direct measurement of absorbed dose to water in HDR {sup 192}Ir brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43

    SciTech Connect

    Sarfehnia, Arman; Kawrakow, Iwan; Seuntjens, Jan

    2010-04-15

    Purpose: Gafchromic film and ionometric calibration procedures for HDR {sup 192}Ir brachytherapy sources in terms of dose rate to water are presented and the experimental results are compared to the TG-43 protocol as well as with the absolute dose measurement results from a water calorimetry-based primary standard. Methods: EBT-1 Gafchromic films, an A1SL Exradin miniature Shonka thimble type chamber, and an SI HDR 1000 Plus well-type chamber (Standard Imaging, Inc., Middleton, WI) with an ADCL traceable S{sub k} calibration coefficient (following the AAPM TG-43 protocol) were used. The Farmer chamber and Gafchromic film measurements were performed directly in water. All results were compared to direct and absolute absorbed dose to water measurements from a 4 deg. C stagnant water calorimeter. Results: Based on water calorimetry, the authors measured the dose rate to water to be 361{+-}7 {mu}Gy/(h U) at a 55 mm source-to-detector separation. The dose rate normalized to air-kerma strength for all the techniques agree with the water calorimetry results to within 0.83%. The overall 1-sigma uncertainty on water calorimetry, ionization chamber, Gafchromic film, and TG-43 dose rate measurement amounts to 1.90%, 1.44%, 1.78%, and 2.50%, respectively. Conclusions: This work allows us to build a more realistic uncertainty estimate for absorbed dose to water determination using the TG-43 protocol. Furthermore, it provides the framework necessary for a shift from indirect HDR {sup 192}Ir brachytherapy dosimetry to a more accurate, direct, and absolute measurement of absorbed dose to water.

  14. Avalanche correlations in the martensitic transition of a Cu-Zn-Al shape memory alloy: analysis of acoustic emission and calorimetry.

    PubMed

    Baró, Jordi; Martín-Olalla, José-María; Romero, Francisco Javier; Gallardo, María Carmen; Salje, Ekhard K H; Vives, Eduard; Planes, Antoni

    2014-03-26

    The existence of temporal correlations during the intermittent dynamics of a thermally driven structural phase transition is studied in a Cu-Zn-Al alloy. The sequence of avalanches is observed by means of two techniques: acoustic emission and high sensitivity calorimetry. Both methods reveal the existence of event clustering in a way that is equivalent to the Omori correlations between aftershocks in earthquakes as are commonly used in seismology. PMID:24599153

  15. Isothermal calorimetry study of calcium caseinate and whey protein isolate edible films cross-linked by heating and gamma-irradiation.

    PubMed

    Letendre, M; D'Aprano, G; Delmas-Patterson, G; Lacroix, M

    2002-10-01

    The contribution of thermal and radiative treatments as well as the presence of some excipients, namely glycerol, carboxymethylcellulose (CMC), pectin, and agar, on the formation of protein-protein interactions as well as the formation and loss of protein-water interactions was investigated by means of differential scanning calorimetry in an isothermal mode. Protein-water interactions were assessed through measurement of the heat of the wetting parameter. Isothermal calorimetry measurements pointed out that gamma-irradiation does not favor protein-water interactions, as reflected by its endothermic contribution (P < or = 0.05) to the heat of wetting values. Although significant (P < or = 0.05), the effect of the thermal treatment on endothermic responses using isothermal calorimetry was found to be somewhat lower. Among excipients added to biofilm formulations, glycerol generated the most important losses of protein-water interactions, as inferred by its significant (P < or = 0.05) endothermic impact on the heat of wetting values. PMID:12358479

  16. Dietary effects on resting metabolic rate in C57BL/6 mice are differentially detected by indirect (O2/CO2 respirometry) and direct calorimetry

    PubMed Central

    Burnett, Colin M.L.; Grobe, Justin L.

    2014-01-01

    Resting metabolic rate (RMR) studies frequently involve genetically-manipulated mice and high fat diets (HFD). We hypothesize that the use of inadequate methods impedes the identification of novel regulators of RMR. This idea was tested by simultaneously measuring RMR by direct calorimetry and respirometry in C57BL/6J mice fed chow, 45% HFD, and then returned to chow. Comparing results during chow feeding uncovered an underestimation of RMR by respirometry (0.010 ± 0.001 kcal/h, P < 0.05), which is equivalent in magnitude to ∼2% of total daily caloric turnover. RMR during 45% HFD feeding was increased by respirometry (+0.013 ± 0.003 kcal/h, P < 0.05), but not direct calorimetry (+0.001 ± 0.002 kcal/h). Both methods indicated that return to chow reduced RMR compared to HFD, though direct calorimetry indicated a reduction below the initial chow fed state (−0.019 ± 0.004 kcal/h versus baseline, P < 0.05) that was not detected by respirometry (−0.003 ± 0.002 kcal/h versus baseline). These results highlight method-specific interpretations of the effects of dietary interventions upon RMR in mice, and prompt the reevaluation of preclinical screening methods used to identify novel RMR modulators. PMID:24944905

  17. The Compass Experiment at CERN

    SciTech Connect

    Magnon, A.

    2005-02-10

    The COMPASS experiment at the CERN SPS has a broad physics program focused on the study of the spin structure of the nucleon and on hadron spectroscopy. Key measurements for the spin program are the gluon contribution to the spin of the nucleon, flavor dependent quark spin distribution, and the measurement of the transverse spin structure function. The apparatus consists of a two-stage spectrometer designed for high data rates and equipped with high-resolution tracking, particle identification, electromagnetic and hadronic calorimetry. Data taking has started in 2002. Following the CERN SPS shut down in 2005, the experiment will resume data taking in 2006 and is planned to continue (at least) until 2010. Few hundreds of Terabytes of data are put on tape each year. Out of this large amount of data first important physics results have been obtained.

  18. Direct correlation of structure changes and thermal events in hydrated lipid established by simultaneous calorimetry and time-resolved x-ray diffraction.

    PubMed Central

    Chung, H; Caffrey, M

    1992-01-01

    In many lipid systems, polymorphic and mesomorphic behavior depends on sample thermal history. To establish unequivocally the structural origin of endothermic and exothermic events in such systems, we have performed simultaneous calorimetry and time-resolved x-ray diffraction (SCALTRD). To this end, aluminum calorimetry crucibles were used to contain the hydrated lipid sample, and the calorimeter was mounted with the base of the crucible oriented perpendicular to a synchrotron-derived focused monochromatic x-ray beam for SCALTRD data collection. Measurements were made with hydrated monoelaidin and 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) contained in hermetically sealed crucibles. Time-resolved x-ray diffraction (TRXRD) data were collected using an x-ray image intensifier/video system and a streak camera containing an x-ray sensitive image plate and/or film. SCALTRD analysis of the lamellar gel to lamellar liquid crystalline phase transition in hydrated monoelaidin gives identical progress curves by calorimetry and TRXRD at a scan rate of 1 degree C/min. At faster rates, calorimetry shows a broader phase transition that starts at a lower and ends at a higher temperature than is observed by TRXRD. The disparity arises in part because the x-ray beam used in TRXRD interrogates only a small portion of the sample, whereas the calorimeter responds to the entire sample volume. Because data collection times are relatively long, radiation damage is an important potential problem for SCALTRD measurements. Such an effect was observed with DEPE/water in that TRXRD shows the lamellar gel to lamellar liquid crystalline phase transition occurring at a lower temperature than observed by calorimetry. We speculate that the sample accumulates impurities locally as a result of radiation damage that has the effect of lowering the phase transition temperature at the site of interrogation by the x-ray beam. This "methods-in-combination" SCALTRD approach facilitates the

  19. SU-E-T-410: Fringe Stability and Phase Shift Measurements in a Michelson Interferometer for Optical Calorimetry

    SciTech Connect

    Flores-Martinez, E; Malin, M; DeWerd, L

    2014-06-01

    Purpose: To identify the variables limiting the resolution of a Michelson interferometer used to measure phase shifts (PS) in water as part of a radiometric calorimeter. Methods: We investigated the output stability of a He-Ne laser and a laser diode. The short and long term stability of the fringe pattern in a Michelson interferometer was tested with different types of lasers, thermal insulation arrangements, damping systems and optical mounts to optimize system performance. PS were induced by electrically heating water in a 1 cm quartz cuvette located in one of the interferometer arms. The PS was calculated from fringe intensity changes and compared to a calculated PS using thermocouple-measured temperature changes in the water. Results: The intensity of the laser diode is more stable, but the gas laser’s profile is more suitable for fringe analysis and has better temporal coherence. The laser requires a warm-up time of 4 hours before its output is stabilized (SNR>95). The fringe’s stability strongly depends on the thermal insulation. When the interferometer is exposed to ambient temperature swings of 0.7 K, it is not possible to stabilize the fringe pattern. Enclosing the system in a 2.5 cm-thick Styrofoam box improves the SNR, but further insulation will be needed to increase the SNR above 50. High frequency noise is significantly reduced by damping the system.Inducing a temperature rise in water, starting at 299 K, the average temperature increase for a 2π PS is 0.29 ± 0.02 K and the proportionality constant is -21.1 ± 0.8 radians/K. This is 5.8% lower than the calculated value using the thermocouple. Conclusion: Interferometric PS measurements of temperature may provide an alternative to thermistors for water calorimetry. The resolution of the current prototype is limited by ambient temperature stability. Calculated and measured thermally-induced PS in water agreed to within 5.8%.

  20. Differential scanning calorimetry of thermotropic phase transitions in vitaminylated lipids: aqueous dispersions of N-biotinyl phosphatidylethanolamines.

    PubMed Central

    Swamy, M. J.; Angerstein, B.; Marsh, D.

    1994-01-01

    The thermotropic phase behavior of a homologous series of saturated diacyl phosphatidylethanolamines in which the headgroup is N-derivatized with biotin has been investigated by differential scanning calorimetry. In 1 M NaCl, derivatives with acyl chainlengths from C(12:0) to C(20:0) all exhibit sharp chain-melting phase transitions, which are reversible with a hysteresis of 1.5 degrees or less, except for the C(12:0) lipid which has a transition temperature below 0 degree C. The transition enthalpy and the transition entropy depend approximately linearly on the lipid chainlength, with incremental values per CH2 group that are very similar to those obtained for the corresponding underivatized phosphatidylethanolamines in aqueous dispersion. The chainlength-independent contribution to the transition enthalpy is significantly smaller than that for the underivatized phosphatidylethanolamines, and that for the transition entropy is much smaller; the latter suggesting that the N-biotinylated phosphatidylethanolamine headgroups are differently hydrated from those of the underivatized lipids. The gel-to-fluid phase transition temperatures of the N-biotinylated lipids are lower than those of the parent phosphatidylethanolamines, and their chainlength dependence conforms well with that predicted by assuming that the transition enthalpy and entropy are linearly dependent on chainlength. Although the chain-melting phase behavior is generally similar to that of the parent phosphatidylethanolamines, the gel phases (and the fluid phases in the case of chainlengths C(12:0) to C(16:0)) have a different lyotropic structure in the two cases, and this is reflected in the chainlength-independent contributions to the thermodynamic parameters. In the absence of salt, the thermotropic phase behavior of aqueous dispersions of the N-biotinyl phosphatidylethanolamines is considerably more complex. The transition temperatures are consistently lower than those in 1 M NaCI, but the transitions

  1. Preparation and thermal behaviour of a series of liquid wood-polypropylene composites

    NASA Astrophysics Data System (ADS)

    Blanco, Ignazio; Cicala, Gianluca; Latteri, Alberta; Saccullo, Giuseppe

    2016-05-01

    Liquid Wood (a mixture of cellulose, hemp, fax and lignin) was used to prepare, by mechanical mixing followed by thermal extrusion, blends of various Polypropylene (PP)/Liquid Wood ratios. To verify if and how much the composition of the obtained composites affects their thermal properties Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) experiments were carried out.

  2. Dual Readout Calorimetry for High-Quality Energy Measurements - Chapter 3 R&D for Future Particle Physics Experiments (Task B)

    SciTech Connect

    Hans P. Paar, Richard Wigmans

    2006-09-19

    We report of the design, constrcution, commissioning, and beamtests of a prototype calorimeter. This calorimeter is of a novel design so as to equalize its response to electromagnetic and hadronic energy deposits of equal primary energy. Thus its response to jets is independent of the jet's electromagnetic versus hadronic composition. The beamtests show that the prototype satisfies the design requirements. The design, construction and the results of beamtests have been published in several papers in a refereed journal.

  3. An Undergraduate Experiment Using Differential Scanning Calorimetry: A Study of the Thermal Properties of a Binary Eutectic Alloy of Tin and Lead

    ERIC Educational Resources Information Center

    D'Amelia, Ronald P.; Clark, Daniel; Nirode, William

    2012-01-01

    An alloy is an intimate association of two or more metals, with or without a definite composition, which has metallic properties. Heterogeneous alloys, such as tin-lead (Sn/Pb) solders, consist of a mixture of crystalline phases with different compositions. A homogeneous alloy with a unique composition having the lowest possible melting point is…

  4. An absorbed dose to water standard for HDR 192Ir brachytherapy sources based on water calorimetry: numerical and experimental proof-of-principle.

    PubMed

    Sarfehnia, Arman; Stewart, Kristin; Seuntjens, Jan

    2007-12-01

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 (192Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR 192Ir brachytherapy source was simulated using COMSOL MULTIPHYSICS software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction k(c) was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502 +/- 0.007) microGy/(s U) compares well with the TG-43 derived 0.505 microGy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR 192Ir brachytherapy. PMID:18196821

  5. Hydration water and peptide dynamics--two sides of a coin. A neutron scattering and adiabatic calorimetry study at low hydration and cryogenic temperatures.

    PubMed

    Bastos, Margarida; Alves, Nuno; Maia, Sílvia; Gomes, Paula; Inaba, Akira; Miyazaki, Yuji; Zanotti, Jean-Marc

    2013-10-21

    In the present work we bridge neutron scattering and calorimetry in the study of a low-hydration sample of a 15-residue hybrid peptide from cecropin and mellitin CA(1-7)M(2-9) of proven antimicrobial activity. Quasielastic and low-frequency inelastic neutron spectra were measured at defined hydration levels - a nominally 'dry' sample (specific residual hydration h = 0.060 g/g), a H2O-hydrated (h = 0.49) and a D2O-hydrated one (h = 0.51). Averaged mean square proton mobilities were derived over a large temperature range (50-300 K) and the vibrational density of states (VDOS) were evaluated for the hydrated samples. The heat capacity of the H2O-hydrated CA(1-7)M(2-9) peptide was measured by adiabatic calorimetry in the temperature range 5-300 K, for different hydration levels. The glass transition and water crystallization temperatures were derived in each case. The existence of different types of water was inferred and their amounts calculated. The heat capacities as obtained from direct calorimetric measurements were compared to the values derived from the neutron spectroscopy by way of integrating appropriately normalized VDOS functions. While there is remarkable agreement with respect to both temperature dependence and glass transition temperatures, the results also show that the VDOS derived part represents only a fraction of the total heat capacity obtained from calorimetry. Finally our results indicate that both hydration water and the peptide are involved in the experimentally observed transitions. PMID:23986181

  6. An absorbed dose to water standard for HDR {sup 192}Ir brachytherapy sources based on water calorimetry: Numerical and experimental proof-of-principle

    SciTech Connect

    Sarfehnia, Arman; Stewart, Kristin; Seuntjens, Jan

    2007-12-15

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 ({sup 192}Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR {sup 192}Ir brachytherapy source was simulated using COMSOL MULTIPHYSICSTM software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction k{sub c} was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502{+-}0.007) {mu}Gy/(s U) compares well with the TG-43 derived 0.505 {mu}Gy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR {sup 192}Ir brachytherapy.

  7. Oxide Melt Solution Calorimetry of Fe2+ -bearing Oxides and Application to the Magnetite - Maghemite (Fe3O4-Fe8/3O4) system

    SciTech Connect

    Lilova, Kristina I.; Xu, Fen; Rosso, Kevin M.; Pearce, Carolyn I.; Kamali, Saeed; Navrotsky, Alexandra

    2012-01-01

    A consistent methodology for obtaining enthalpy of formation of Fe{sup 2+}-containing binary and multicomponent oxides using high temperature oxide melt solution calorimetry has been developed. The enthalpies of wuestite (FeO) and magnetite (Fe{sub 3}O{sub 4}) oxidation to hematite (Fe{sub 2}O{sub 3}) were measured using oxidative drop solution calorimetry in which the final product is dissolved ferric oxide. Two methods were applied: drop solution calorimetry at 1073 K in lead borate solvent and at 973 K in sodium molybdate, each under both oxygen flowing over and bubbling through the solvent, giving consistent results in agreement with literature values. The enthalpies of formation of all three iron oxides from the elements were obtained using a thermodynamic cycle involving the directly measured oxidative dissolution enthalpy of iron metal in sodium molybdate at 973 K and gave excellent consistency with literature data. The methodology was then applied to the magnetite - maghemite system. The enthalpy of mixing of the Fe{sub 3}O{sub 4}-Fe{sub 8/3}O{sub 4} spinel solid solution is exothermic and, 2 represented by a subregular (Margules) formalism, {Delta}H{sub mix} = x(1-x)(-63.36 {+-} 8.60(1-x) + 17.65 {+-} 6.40x) kJ/mol, where x is the mole fraction of magnetite. The entropies of mixing of the solid solution were calculated for different assumptions about the distribution of cations, charges, and vacancies in these defect spinels. The different models lead to only small differences in the entropy of mixing. Calculated free energies of mixing show no evidence for a solvus in the magnetite - maghemite system.

  8. Miscibility, Crystallization, and Rheological Behavior of Solution Casting Poly(3-hydroxybutyrate)/poly(ethylene succinate) Blends Probed by Differential Scanning Calorimetry, Rheology, and Optical Microscope Techniques

    NASA Astrophysics Data System (ADS)

    Sun, Wei-hua; Qiao, Xiao-ping; Cao, Qi-kun; Liu, Jie-ping

    2010-02-01

    The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybutyrate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.

  9. Calorimetry Study of the Phase Diagrams of EuNi2Ge2 and Eu2Ni3Ge5 under Pressure

    NASA Astrophysics Data System (ADS)

    Esakki Muthu, Sankaran; Braithwaite, Daniel; Salce, Bernard; Nakamura, Ai; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2016-09-01

    We report here the phase diagrams of EuNi2Ge2 and Eu2Ni3Ge5 studied by ac calorimetry under pressure using a diamond anvil cell. We follow the antiferromagnetic transition for EuNi2Ge2 up to 1.5 GPa. The sudden disappearance of magnetic order at around 2 GPa is confirmed, consistent with the probable occurrence of a first-order valence transition near that pressure. The ac calorimetry results on Eu2Ni3Ge5 clearly show two antiferromagnetic transitions, and suggest that magnetic order persists up to higher pressure than previously expected. At high pressure, where heavy-fermion behavior has been reported, the Néel temperature is decreasing, and magnetic order is expected to disappear at an extrapolated pressure of 12-14 GPa. A semi quantitative analysis of the pressure dependence of the specific heat does not show any large changes, but is compatible with a moderate enhancement of γ. The phase diagrams of Yb and Ce heavy fermion systems are compared and discussed with our system.

  10. Isothermal micro calorimetry – a new method for MIC determinations: results for 12 antibiotics and reference strains of E. coli and S. aureus

    PubMed Central

    2009-01-01

    Background Antimicrobial susceptibility testing of microorganisms is performed by either disc diffusion or broth dilution tests. In clinical use, the tests are often still performed manually although automated systems exist. Most systems, however, are based on turbidometric methods which have well-known drawbacks. Results In this study we evaluated isothermal micro calorimetry (IMC) for the determination of minimal inhibitory concentrations (MICs) of 12 antibiotics for five micro-organisms. Here we present the data for the 12 antibiotics and two representative microorganisms E. coli (a Gram-) and S. aureus (a Gram+). IMC was able to determine the MICs correctly according to CLSI values. Since MICs require 24 hours, time was not reduced. However, IMC provided new additional data – a continuous record of heat-producing bacterial activity (e.g. growth) in calorimetry ampoules at subinhibitory antibiotic concentrations. Key features of the heatflow (P) and aggregate heat (Q) vs. time curves were identified (tdelay and ΔQ/Δt respectively). Antibiotics with similar modes of action proved to have similar effects on tdelay and/or ΔQ/Δt. Conclusion IMC can be a powerful tool for determining the effects of antibiotics on microorganisms in vitro. It easily provides accurate MICs – plus a potential means for analyzing and comparing the modes of action of antibiotics at subinhibitory concentrations. Also IMC is completely passive, so after evaluation, ampoule contents (media, bacteria, etc.) can be analyzed by any other method desired. PMID:19470161

  11. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    PubMed

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-01

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison. PMID:16861773

  12. Two-Phase Calorimetry. II. Studies on the Thermodynamics of Cesium and Strontium Extraction by Mixtures of H+CCD- and PEG-400 in FS-13

    SciTech Connect

    Zalupski, Peter R.; Herbst, R. S.; Delmau, Laetitia Helene; Martin, L. R.; Peterman, D. R.; Nash, Ken L

    2010-01-01

    Thermochemical characterization of the partitioning of cesium and strontium from nitric acid solutions into mixtures of the acid form of chlorinated cobalt dicarbollide (H+CCD-) and polyethylene glycol (PEG-400) in FS-13 diluent has been completed using isothermal titration microcalorimetry and radiotracer distribution methods. The phase transfer reaction for Cs+ is a straightforward (H+ for Cs+) cation exchange reaction. In contrast, the extraction of Sr2+ does not proceed in the absence of the co-solvent molecule PEG-400. This molecule is believed to facilitate the dehydration of the Sr2+ aquo cation to overcome its resistance to partitioning. The phase transfer reactions for both Cs+ and Sr2+ are enthalpy driven (exothermic), but partially compensated by an unfavorable entropy. The results of the calorimetry studies suggest that the PEG-400 functions as a stoichiometric phase transfer reagent rather than acting simply as a phase transfer catalyst or phase modifier. The calorimetry results also demonstrate that the extraction of Sr2+ is complex, including evidence for both the partitioning of Sr(NO3)+ and endothermic ion pairing interactions in the organic phase that contribute to the net enthalpic effect. The thermodynamics of the liquid-liquid distribution equilibria are discussed mainly considering the basic features of the ion solvation thermochemistry.

  13. A new technique for determining charge and momentum of electrons and positrons using calorimetry and silicon tracking

    SciTech Connect

    Fan, Q.; Bodek, A. |

    1996-12-01

    We describe the application of a new methods for the determination of charge and track parameters for electrons and positrons in both central (pseudo-rapidity 0 < |{eta}| < 1.2) and forward (pseudo- rapidity 1.2 < |{eta}| < 2.3) regions at CDF. The method uses the shower centroid position in the calorimeter in combination with a track in the inner silicon vertex detector. The use of the central tracking chamber is not required. A comparison of the shower centroid in the calorimeter, with the extrapolated silicon vertex detector track determines the electron sign. This technique has been used to measure the W asymmetry in CDF in regions beyond the pseudo-rapidity coverage of the central tracking chamber. Application to other Physics analyses in current collider experiments at the Tevatron and in future high luminosity experiments at the LHC are discussed. 5 refs., 5 figs., 1 tab.

  14. Non-additive response of blends of rice and potato starch during heating at intermediate water contents: A differential scanning calorimetry and proton nuclear magnetic resonance study.

    PubMed

    Bosmans, Geertrui M; Pareyt, Bram; Delcour, Jan A

    2016-02-01

    The impact of different hydration levels, on gelatinization of potato starch (PS), rice starch (RS) and a 1:1 blend thereof, was investigated by differential scanning calorimetry and related to nuclear magnetic resonance proton distributions of hydrated samples, before and after heating. At 20% or 30% hydration, the visual appearance of all samples was that of a wet powder, and limited, if any, gelatinization occurred upon heating. At 30% hydration, changes in proton distributions were observed and related to plasticization of amorphous regions in the granules. At 50% hydration, the PS-RS blend appeared more liquid-like than other hydrated samples and showed more pronounced gelatinization than expected based on additive behavior of pure starches. This was due to an additional mobile water fraction in the unheated PS-RS blend, originating from differences in water distribution due to altered stacking of granules and/or altered hydration of PS due to presence of cations in RS. PMID:26304387

  15. Low validity of the Sensewear Pro3 activity monitor compared to indirect calorimetry during simulated free living in patients with osteoarthritis of the hip

    PubMed Central

    2014-01-01

    Background To validate physical activity estimates by the Sensewear Pro3 activity monitor compared with indirect calorimetry during simulated free living in patients diagnosed with osteoarthritis of the hip pre or post total hip arthroplasty. Methods Twenty patients diagnosed with hip osteoarthritis (10 pre- and 10 post total hip arthroplasty; 40% female; age: 63.3 ± 9.0; BMI: 23.7 ± 3.7). All patients completed a 2 hour protocol of simulated free living with 8 different typical physical activity types. Energy consumption (kcal/min) was estimated by the Sense Wear pro3 Armband activity monitor and validated against indirect calorimetry (criterion method) by means of a portable unit (Cosmed K4b2). Bias and variance was analyzed using functional ANOVA. Results Mean bias during all activities was 1.5 Kcal/min 95%CI [1.3; 1.8] corresponding to 72% (overestimation). Normal gait speed showed an overestimation of 2.8 Kcal/min, 95%CI [2.3; 3.3] (93%) while an underestimation of -1.1 Kcal/min, 95%CI [-1.8; -0.3] (-25%) was recorded during stair climb. Activities dominated by upper body movements showed large overestimation with 4.37 Kcal/min, 95%CI [3.8; 5.1] (170%) being recorded during gardening. Both bias and variance appeared to be dependent on activity type. Conclusion The activity monitor generally overestimated the energy consumption during common activities of low to medium intensity in the patient group. The size and direction of the bias was highly dependent on the activity type which indicates the activity monitor is of limited value in patients with hip osteoarthritis and that the results do not express the real energy expenditure. PMID:24552503

  16. Implementation of water calorimetry in a 180 MeV scanned pulsed proton beam including an experimental determination of kQ for a Farmer chamber

    NASA Astrophysics Data System (ADS)

    Medin, Joakim

    2010-06-01

    Water calorimetric measurements have been performed in a 180 MeV scanned pulsed proton beam and the absorbed dose determined has been compared with the results obtained using two NE2571 Farmer chambers and the IAEA TRS-398 code of practice. The depth of measurement in water corresponded to a residual range of Rres = 16.5 cm, corresponding to a mean energy of about 150 MeV. Ionization chambers were calibrated in terms of the absorbed dose to water in 60Co at the Swedish Secondary Standard Dosimetry Laboratory, directly traceable to Bureau International des Poids et Mesures. The present experimental investigation has shown that water calorimetry is feasible in a high-energy scanned pulsed proton beam. When comparing the results obtained with water calorimetry and ionometry, the beam quality correction factor, kQ, could be determined for the two NE2571 ionization chambers used. The kQ-factor was found to be 1.032 ± 0.013, which is in good agreement with the factor tabulated in IAEA TRS-398 for this chamber type (1.039 ± 0.018). The present result has also been compared with a previously obtained result in a passively scattered proton beam having similar energy. This comparison yielded a 1.1% deviation, which is not significant considering the combined uncertainties of the two experimental determinations of kQ. The dominating contribution to the combined uncertainty stems from the correction factor for ion recombination in the scanned proton beam (1%), and further studies are required in order to reduce this uncertainty and reveal any possible differences in the kQ-factor between these two proton beam delivery techniques.

  17. The Status of the Cms Experiment

    NASA Astrophysics Data System (ADS)

    Green, Dan

    The CMS experiment was completely assembled in the fall of 2008 after a decade of design, construction and installation. During the last two years, cosmic ray data were taken on a regular basis. These data have enabled CMS to align the detector components, both spatially and temporally. Initial use of muons has also established the relative alignment of the CMS tracking and muon systems. In addition, the CMS calorimetry has been crosschecked with test beam data, thus providing an initial energy calibration of CMS calorimetry to about 5%. The CMS magnet has been powered and field mapped. The trigger and data acquisition systems have been installed and run at full speed. The tiered data analysis system has been exercised at full design bandwidth for Tier0, Tier1 and Tier2 sites. Monte Carlo simulation of the CMS detector has been constructed at a detailed geometric level and has been tuned to test beam and other production data to provide a realistic model of the CMS detector prior to first collisions.

  18. Comparison between absorbed dose to water standards established by water calorimetry at the LNE-LNHB and by application of international air-kerma based protocols for kilovoltage medium energy x-rays

    NASA Astrophysics Data System (ADS)

    Perichon, N.; Rapp, B.; Denoziere, M.; Daures, J.; Ostrowsky, A.; Bordy, J.-M.

    2013-05-01

    Nowadays, the absorbed dose to water for kilovoltage x-ray beams is determined from standards in terms of air-kerma by application of international dosimetry protocols. New standards in terms of absorbed dose to water has just been established for these beams at the LNE-LNHB, using water calorimetry, at a depth of 2 cm in water in accordance with protocols. The aim of this study is to compare these new standards in terms of absorbed dose to water, to the dose values calculated from the application of four international protocols based on air-kerma standards (IAEA TRS-277, AAPM TG-61, IPEMB and NCS-10). The acceleration potentials of the six beams studied are between 80 and 300 kV with half-value layers between 3.01 mm of aluminum and 3.40 mm of copper. A difference between the two methods smaller than 2.1% was reported. The standard uncertainty of water calorimetry being below 0.8%, and the one associated with the values from protocols being around 2.5%, the results are in good agreement. The calibration coefficients of some ionization chambers in terms of absorbed dose to water, established by application of calorimetry and air-kerma based dosimetry protocols, were also compared. The best agreement with the calibration coefficients established by water calorimetry was found for those established with the AAPM TG-61 protocol.

  19. Metabolic responses to forced dives in Pekin duck measured by indirect calorimetry and 31P-MRS.

    PubMed

    Stephenson, R; Jones, D R

    1992-12-01

    We tested the hypothesis that forced-dived ducks experience a reduction in metabolic rate during prolonged submergence. Unidirectionally ventilated conscious ducks were subjected to forced dives by temporarily stopping the airflow in the ventilation system and simultaneously filling a face mask with cold water. A typical cardiovascular response to submergence was observed: bradycardia and maintained arterial blood pressure. Phosphorylated metabolite concentrations in the pectoral muscle were measured noninvasively by phosphorus magnetic resonance spectroscopy (31P-MRS). ATP content was constant, and phosphocreatine was depleted via the creatine kinase reaction at a rate similar to the resting rate of ATP turnover, which was estimated to be 0.9 mumol.min-1 x g-1 in resting perfused pectoral muscle of pentobarbital-anesthetized ducks. Oxygen from myoglobin supplied at most 12% of the ATP required by the resting muscle during dives. Whole animal postdive excess oxygen consumption and blood lactic acid accumulation suggested that the shortfall in aerobic metabolism during forced dives was compensated by an increase in anaerobic metabolism. PMID:1481944

  20. Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models

    NASA Astrophysics Data System (ADS)

    Kloutse, A. F.; Zacharia, R.; Cossement, D.; Chahine, R.; Balderas-Xicohténcatl, R.; Oh, H.; Streppel, B.; Schlichtenmayer, M.; Hirscher, M.

    2015-12-01

    Isosteric heat of adsorption is an important parameter required to describe the thermal performance of adsorptive storage systems. It is most frequently calculated from adsorption isotherms measured over wide ranges of pressure and temperature, using the so-called adsorption isosteric method. Direct quantitative estimation of isosteric heats on the other hand is possible using the coupled calorimetric-volumetric method, which involves simultaneous measurement of heat and adsorption. In this work, we compare the isosteric heats of hydrogen adsorption on microporous materials measured by both methods. Furthermore, the experimental data are compared with the isosteric heats obtained using the modified Dubinin-Astakhov, Tóth, and Unilan adsorption analytical models to establish the reliability and limitations of simpler methods and assumptions. To this end, we measure the hydrogen isosteric heats on five prototypical metal-organic frameworks: MOF-5, Cu-BTC, Fe-BTC, MIL-53, and MOF-177 using both experimental methods. For all MOFs, we find a very good agreement between the isosteric heats measured using the calorimetric and isosteric methods throughout the range of loading studied. Models' prediction on the other hand deviates from both experiments depending on the MOF studied and the range of loading. Under low-loadings of less than 5 mol kg-1, the isosteric heat of hydrogen adsorption decreases in the order Cu-BTC > MIL-53 > MOF-5 > Fe-BTC > MOF-177. The order of isosteric heats is coherent with the strength of hydrogen interaction revealed from previous thermal desorption spectroscopy measurements.