Science.gov

Sample records for calreticulin transacetylase catalyzed

  1. Crystal Structure of Homoserine Transacetylase from Haemophilus Influenzae Reveals a New Family of alpha/beta-Hydrolases

    SciTech Connect

    Mirza,I.; Nazi, I.; Korczynska, M.; Wright, G.; Berghuis, A.

    2005-01-01

    Homoserine transacetylase catalyzes one of the required steps in the biosynthesis of methionine in fungi and several bacteria. We have determined the crystal structure of homoserine transacetylase from Haemophilus influenzae to a resolution of 1.65 A. The structure identifies this enzyme to be a member of the alpha/beta-hydrolase structural superfamily. The active site of the enzyme is located near the end of a deep tunnel formed by the juxtaposition of two domains and incorporates a catalytic triad involving Ser143, His337, and Asp304. A structural basis is given for the observed double displacement kinetic mechanism of homoserine transacetylase. Furthermore, the properties of the tunnel provide a rationale for how homoserine transacetylase catalyzes a transferase reaction vs. hydrolysis, despite extensive similarity in active site architecture to hydrolytic enzymes.

  2. Calreticulin Mutations in Myeloproliferative Neoplasms

    PubMed Central

    Lavi, Noa

    2014-01-01

    With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph−) myeloproliferative neoplasms (MPNs) in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET) and primary myelofibrosis (PMF). At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR) using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations) and recurrent 5-bp insertions (type 2 mutations) in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin) were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph− MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review. PMID:25386351

  3. Calreticulin mutations in myeloproliferative neoplasms.

    PubMed

    Lavi, Noa

    2014-10-01

    With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph(-)) myeloproliferative neoplasms (MPNs) in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET) and primary myelofibrosis (PMF). At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR) using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations) and recurrent 5-bp insertions (type 2 mutations) in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin) were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph(-) MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review. PMID:25386351

  4. Calreticulin: one protein, one gene, many functions.

    PubMed Central

    Michalak, M; Corbett, E F; Mesaeli, N; Nakamura, K; Opas, M

    1999-01-01

    The endoplasmic reticulum (ER) plays a critical role in the synthesis and chaperoning of membrane-associated and secreted proteins. The membrane is also an important site of Ca(2+) storage and release. Calreticulin is a unique ER luminal resident protein. The protein affects many cellular functions, both in the ER lumen and outside of the ER environment. In the ER lumen, calreticulin performs two major functions: chaperoning and regulation of Ca(2+) homoeostasis. Calreticulin is a highly versatile lectin-like chaperone, and it participates during the synthesis of a variety of molecules, including ion channels, surface receptors, integrins and transporters. The protein also affects intracellular Ca(2+) homoeostasis by modulation of ER Ca(2+) storage and transport. Studies on the cell biology of calreticulin revealed that the ER membrane is a very dynamic intracellular compartment affecting many aspects of cell physiology. PMID:10567207

  5. Calreticulin: Roles in Cell-Surface Protein Expression

    PubMed Central

    Jiang, Yue; Dey, Sandeepa; Matsunami, Hiroaki

    2014-01-01

    In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins. PMID:25230046

  6. Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations

    PubMed Central

    Andrikovics, Hajnalka; Krahling, Tunde; Balassa, Katalin; Halm, Gabriella; Bors, Andras; Koszarska, Magdalena; Batai, Arpad; Dolgos, Janos; Csomor, Judit; Egyed, Miklos; Sipos, Andrea; Remenyi, Peter; Tordai, Attila; Masszi, Tamas

    2014-01-01

    Somatic insertions/deletions in the calreticulin gene have recently been discovered to be causative alterations in myeloproliferative neoplasms. A combination of qualitative and quantitative allele-specific polymerase chain reaction, fragment-sizing, high resolution melting and Sanger-sequencing was applied for the detection of three driver mutations (in Janus kinase 2, calreticulin and myeloproliferative leukemia virus oncogene genes) in 289 cases of essential thrombocythemia and 99 cases of primary myelofibrosis. In essential thrombocythemia, 154 (53%) Janus kinase 2 V617F, 96 (33%) calreticulin, 9 (3%) myeloproliferative leukemia virus oncogene gene mutation-positive and 30 triple-negative (11%) cases were identified, while in primary myelofibrosis 56 (57%) Janus kinase 2 V617F, 25 (25%) calreticulin, 7 (7%) myeloproliferative leukemia virus oncogene gene mutation-positive and 11 (11%) triple-negative cases were identified. Patients positive for the calreticulin mutation were younger and had higher platelet counts compared to Janus kinase 2 mutation-positive counterparts. Calreticulin mutation-positive patients with essential thrombocythemia showed a lower risk of developing venous thrombosis, but no difference in overall survival. Calreticulin mutation-positive patients with primary myelofibrosis had a better overall survival compared to that of the Janus kinase 2 mutation-positive (P=0.04) or triple-negative cases (P=0.01). Type 2 calreticulin mutation occurred more frequently in essential thrombocythemia than in primary myelofibrosis (P=0.049). In essential thrombocythemia, the calreticulin mutational load was higher than the Janus kinase 2 mutational load (P<0.001), and increased gradually in advanced stages. Calreticulin mutational load influenced blood counts even at the time point of diagnosis in essential thrombocythemia. We confirm that calreticulin mutation is associated with distinct clinical characteristics and explored relationships between mutation

  7. Expression and purification of mammalian calreticulin in Pichia pastoris.

    PubMed

    Andrin, C; Corbett, E F; Johnson, S; Dabrowska, M; Campbell, I D; Eggleton, P; Opas, M; Michalak, M

    2000-11-01

    Calreticulin is a 46-kDa Ca(2+)-binding chaperone of the endoplasmic reticulum membranes. The protein binds Ca(2+) with high capacity, affects intracellular Ca(2+) homeostasis, and functions as a lectin-like chaperone. In this study, we describe expression and purification procedures for the isolation of recombinant rabbit calreticulin. The calreticulin was expressed in Pichia pastoris and purified to homogeneity by DEAE-Sepharose and Resource Q FPLC chromatography. The protein was not retained in the endoplasmic reticulum of Pichia pastoris but instead it was secreted into the external media. The purification procedures reported here for recombinant calreticulin yield homogeneous preparations of the protein by SDS-PAGE and mass spectroscopy analysis. Purified calreticulin was identified by its NH(2)-terminal amino acid sequences, by its Ca(2+) binding, and by its reactivity with anti-calreticulin antibodies. The protein contained one disulfide bond between (88)Cys and (120)Cys. CD spectral analysis and Ca(2+)-binding properties of the recombinant protein indicated that it was correctly folded. PMID:11049745

  8. Calreticulin Is a Receptor for Nuclear Export

    PubMed Central

    Holaska, James M.; Black, Ben E.; Love, Dona C.; Hanover, John A.; Leszyk, John; Paschal, Bryce M.

    2001-01-01

    In previous work, we used a permeabilized cell assay that reconstitutes nuclear export of protein kinase inhibitor (PKI) to show that cytosol contains an export activity that is distinct from Crm1 (Holaska, J.M., and B.M. Paschal. 1995. Proc. Natl. Acad. Sci. USA. 95: 14739–14744). Here, we describe the purification and characterization of the activity as calreticulin (CRT), a protein previously ascribed to functions in the lumen of the ER. We show that cells contain both ER and cytosolic pools of CRT. The mechanism of CRT-dependent export of PKI requires a functional nuclear export signal (NES) in PKI and involves formation of an export complex that contains RanGTP. Previous studies linking CRT to downregulation of steroid hormone receptor function led us to examine its potential role in nuclear export of the glucocorticoid receptor (GR). We found that CRT mediates nuclear export of GR in permeabilized cell, microinjection, and transfection assays. GR export is insensitive to the Crm1 inhibitor leptomycin B in vivo, and it does not rely on a leucine-rich NES. Rather, GR export is facilitated by its DNA-binding domain, which is shown to function as an NES when transplanted to a green fluorescent protein reporter. CRT defines a new export pathway that may regulate the transcriptional activity of steroid hormone receptors. PMID:11149926

  9. Calreticulin Is a receptor for nuclear export.

    PubMed

    Holaska, J M; Black, B E; Love, D C; Hanover, J A; Leszyk, J; Paschal, B M

    2001-01-01

    In previous work, we used a permeabilized cell assay that reconstitutes nuclear export of protein kinase inhibitor (PKI) to show that cytosol contains an export activity that is distinct from Crm1 (Holaska, J.M., and B.M. Paschal. 1995. Proc. Natl. Acad. Sci. USA. 95: 14739-14744). Here, we describe the purification and characterization of the activity as calreticulin (CRT), a protein previously ascribed to functions in the lumen of the ER. We show that cells contain both ER and cytosolic pools of CRT. The mechanism of CRT-dependent export of PKI requires a functional nuclear export signal (NES) in PKI and involves formation of an export complex that contains RanGTP. Previous studies linking CRT to downregulation of steroid hormone receptor function led us to examine its potential role in nuclear export of the glucocorticoid receptor (GR). We found that CRT mediates nuclear export of GR in permeabilized cell, microinjection, and transfection assays. GR export is insensitive to the Crm1 inhibitor leptomycin B in vivo, and it does not rely on a leucine-rich NES. Rather, GR export is facilitated by its DNA-binding domain, which is shown to function as an NES when transplanted to a green fluorescent protein reporter. CRT defines a new export pathway that may regulate the transcriptional activity of steroid hormone receptors. PMID:11149926

  10. Calreticulin Exon 9 Mutations in Myeloproliferative Neoplasms

    PubMed Central

    Kim, Yu-Kyung

    2015-01-01

    Background Calreticulin (CALR) mutations were recently discovered in patients with myeloproliferative neoplasms (MPNs). We studied the frequency and type of CALR mutations and their hematological characteristics. Methods A total of 168 MPN patients (36 polycythemia vera [PV], 114 essential thrombocythemia [ET], and 18 primary myelofibrosis [PMF] cases) were included in the study. CALR mutation was analyzed by the direct sequencing method. Results CALR mutations were detected in 21.9% of ET and 16.7% of PMF patients, which accounted for 58.5% and 33.3% of ET and PMF patients without Janus kinase 2 (JAK2) or myeloproliferative leukemia virus oncogenes (MPL) mutations, respectively. A total of five types of mutation were detected, among which, L367fs*46 (53.6%) and K385fs*47 (35.7%) were found to be the most common. ET patients with CALR mutation had lower leukocyte counts and ages compared with JAK2-mutated ET patients. Conclusion Genotyping for CALR could be a useful diagnostic tool for JAK2-or MPL-negative ET or PMF patients. CALR mutation may be a distinct disease group, with different hematological characteristics than that of JAK2-positive patients. PMID:25553276

  11. Calreticulin (CALR) mutation in myeloproliferative neoplasms (MPNs)

    PubMed Central

    Luo, Wenyi

    2015-01-01

    As a heterogeneous group of disease, myeloproliferative neoplasms (MPNs) have confused hematologists and hematopathologists with their protean clinical presentations and myriads of morphologies. A thought of classifying MPNs based on molecular alterations has gained popularity because there is increasing evidence that molecular or chromosomal alterations have a better correlation with clinical presentation, response to therapies, and prognosis than conventional morphological classification. This type of efforts has been facilitated by the advancement of molecular technologies. A significant number of gene mutations have been identified in MPNs with JAK2 and MPL being the major ones. However, a significant gap is present in that many cases of MPNs do not harbor any of these mutations. This gap is recently filled by the discovery of Calreticulin (CALR) mutation in MPNs without JAK2 or MPL mutation and since then, the clinical and molecular correlation in MPNs has become a hot research topic. There seems to be a fairly consistent correlation between CALR mutation and certain hematological parameters such as a high platelet count and a better prognosis in MPNs with CALR mutation. However, controversies are present regarding the risks of thrombosis, interactions of CALR with other gene mutation, the role of CALR in the pathogenesis, and the optimal treatment strategies. In addition, there are many questions remain to be answered, which all boiled down to the molecular mechanisms by which CALR causes or contributes to MPNs. Here, we summarized current published literatures on CALR mutations in MPNs with an emphasis on the clinical-molecular correlation. We also discussed the controversies and questions remain to be answered. PMID:27358884

  12. Prevention of benzene-induced genotoxicity in bone marrow and lung cells: superiority of polyphenolic acetates to polyphenols.

    PubMed

    Kumar, Ajit; Sushama, Anupam; Rohil, Vishwajeet; Manral, Sushma; Gangopadhyay, Sukanya; Prasad, Ashok K; Raj, Hanumantharao G; Parmar, Virender S

    2011-09-01

    Previous investigations carried out in our laboratory have highlighted that 7,8-diacetoxy-4-methylcoumarin demonstrates a mechanism-based inhibition of cytochrome P450 (Cyt-P450) activities such as microsome-mediated aflatoxin B1 (AFB1) epoxidation, dealkylation of alkylated resorufin, and toxicokinetics of benzene. 7,8-Diacetoxy-4-methylcoumarin, quercetin pentaacetate, and ellagic acid peracetate were also found to be effective in giving the protection of AFB1-induced genotoxicity in rat's bone marrow and lung cells possibly due to acetylation of Cyt-P450 apoprotein mediated by acetoxy drug: protein transacetylase. Later, this transacetylase was identified as calreticulin, and the acetyltransferase function of calreticulin was appropriately termed calreticulin transacetylase. In this communication, we have focused on the superiority of several classes of polyphenolic acetates to polyphenols in the modification of Cyt-P450-linked mixed function oxidases (MFOs) such as 7-ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-dealkylase (PROD). Special attention has also been focused on benzene-induced genotoxicity in bone marrow and lung cells. Results clearly indicated that polyphenolic acetates demonstrated time-dependent inhibition of Cyt-P450-linked MFOs, while parent polyphenols failed to demonstrate the same. Polyphenolic acetates were found to be more superior to polyphenols in preventing benzene-induced micronuclei formation. The pattern of inhibition of Cyt-P450-dependent MFOs and benzene-induced micronuclei formation by polyphenolic acetates was found in tune with their specificities to calreticulin transacetylase. These results further substantiated that inhibition of Cyt-P450-linked MFOs and benzene-induced genotoxicity in bone marrow and lung cells by polyphenolic acetates are mediated by the action of calreticulin transacetylase that catalyzes the acetylation of concerned proteins. PMID:21267547

  13. The C-Terminal Acidic Region of Calreticulin Mediates Phosphatidylserine Binding and Apoptotic Cell Phagocytosis.

    PubMed

    Wijeyesakere, Sanjeeva Joseph; Bedi, Sukhmani Kaur; Huynh, David; Raghavan, Malini

    2016-05-01

    Calreticulin is a calcium-binding chaperone that is normally localized in the endoplasmic reticulum. Calreticulin is detectable on the surface of apoptotic cells under some apoptosis-inducing conditions, where it promotes the phagocytosis and immunogenicity of dying cells. However, the precise mechanism by which calreticulin, a soluble protein, localizes to the outer surface of the plasma membrane of dying cells is unknown, as are the molecular mechanisms that are relevant to calreticulin-induced cellular phagocytosis. Calreticulin comprises three distinct structural domains: a globular domain, an extended arm-like P-domain, and a C-terminal acidic region containing multiple low-affinity calcium binding sites. We show that calreticulin, via its C-terminal acidic region, preferentially interacts with phosphatidylserine (PS) compared with other phospholipids and that this interaction is calcium dependent. Additionally, exogenous calreticulin binds apoptotic cells via a higher-affinity calcium-dependent mode that is acidic region dependent. Exogenous calreticulin also binds live cells, including macrophages, via a second, lower-affinity P-domain and globular domain-dependent, but calcium-independent binding mode that likely involves its generic polypeptide binding site. Truncation constructs lacking the acidic region or arm-like P-domain of calreticulin are impaired in their abilities to induce apoptotic cell phagocytosis by murine peritoneal macrophages. Taken together, the results of this investigation provide the first molecular insights into the phospholipid binding site of calreticulin as a key anchor point for the cell surface expression of calreticulin on apoptotic cells. These findings also support a role for calreticulin as a PS-bridging molecule that cooperates with other PS-binding factors to promote the phagocytosis of apoptotic cells. PMID:27036911

  14. lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA.

    PubMed

    Marbach, Anja; Bettenbrock, Katja

    2012-01-01

    Most commonly used expression systems in bacteria are based on the Escherichia coli lac promoter. Furthermore, lac operon elements are used today in systems and synthetic biology. In the majority of the cases the gratuitous inducers IPTG or TMG are used. Here we report a systematic comparison of lac promoter induction by TMG and IPTG which focuses on the aspects inducer uptake, population heterogeneity and a potential influence of the transacetylase, LacA. We provide induction curves in E. coli LJ110 and in isogenic lacY and lacA mutant strains and we show that both inducers are substrates of the lactose permease at low inducer concentrations but can also enter cells independently of lactose permease if present at higher concentrations. Using a gfp reporter strain we compared TMG and IPTG induction at single cell level and showed that bimodal induction with IPTG occurred at approximately ten-fold lower concentrations than with TMG. Furthermore, we observed that lac operon induction is influenced by the transacetylase, LacA. By comparing two Plac-gfp reporter strains with and without a lacA deletion we could show that in the lacA(+) strain the fluorescence level decreased after few hours while the fluorescence further increased in the lacA(-) strain. The results indicate that through the activity of LacA the IPTG concentration can be reduced below an inducing threshold concentration-an influence that should be considered if low inducer amounts are used. PMID:22079752

  15. Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins.

    PubMed Central

    Peterson, J R; Ora, A; Van, P N; Helenius, A

    1995-01-01

    The soluble, calcium-binding protein calreticulin shares high sequence homology with calnexin, a transmembrane chaperone of glycoprotein folding. Our experiments demonstrated that calreticulin, like calnexin, associated transiently with numerous newly synthesized proteins in the endoplasmic reticulum. The population of proteins that bound to calreticulin was partially overlapping with those that bound to calnexin. Hemagglutinin (HA) of influenza virus was shown to associate with both calreticulin and calnexin. Using HA as a model substrate, it was found that both calreticulin- and calnexin-bound HA corresponded primarily to incompletely disulfide-bonded folding intermediates and conformationally trapped forms. Binding of all substrates was oligosaccharide-dependent and required the trimming of glucose residues from asparagine-linked core glycans by glucosidases I and II. In vitro, alpha-mannosidase digestion of calreticulin-bound HA indicated that calreticulin was specific for monoglucosylated glycans. Thus, calreticulin appeared to be a lectin with similar oligosaccharide specificity as its membrane-bound homologue, calnexin. Both are therefore likely to play an important role in glycoprotein maturation and quality control in the endoplasmic reticulum. Images PMID:8534914

  16. Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin.

    PubMed

    Martin, Virginie; Groenendyk, Jody; Steiner, Simone S; Guo, Lei; Dabrowska, Monika; Parker, J M Robert; Müller-Esterl, Werner; Opas, Michal; Michalak, Marek

    2006-01-27

    Calreticulin is a Ca2+ -binding chaperone that resides in the lumen of the endoplasmic reticulum and is involved in the regulation of intracellular Ca2+ homeostasis and in the folding of newly synthesized glycoproteins. In this study, we have used site-specific mutagenesis to map amino acid residues that are critical in calreticulin function. We have focused on two cysteine residues (Cys(88) and Cys(120)), which form a disulfide bridge in the N-terminal domain of calreticulin, on a tryptophan residue located in the carbohydrate binding site (Trp(302)), and on certain residues located at the tip of the "hairpin-like" P-domain of the protein (Glu(238), Glu(239), Asp(241), Glu(243), and Trp(244)). Calreticulin mutants were expressed in crt(-/-) fibroblasts, and bradykinin-dependent Ca2+ release was measured as a marker of calreticulin function. Bradykinin-dependent Ca2+ release from the endoplasmic reticulum was rescued by wild-type calreticulin and by the Glu(238), Glu(239), Asp(241), and Glu(243) mutants. The Cys(88) and Cys(120) mutants rescued the calreticulin-deficient phenotype only partially ( approximately 40%), and the Trp(244) and Trp(302) mutants did not rescue it at all. We identified four amino acid residues (Glu(239), Asp(241), Glu(243), and Trp(244)) at the hairpin tip of the P-domain that are critical in the formation of a complex between ERp57 and calreticulin. Although the Glu(239), Asp(241), and Glu(243) mutants did not bind ERp57 efficiently, they fully restored bradykinin-dependent Ca2+ release in crt(-/-) cells. This indicates that binding of ERp57 to calreticulin may not be critical for the chaperone function of calreticulin with respect to the bradykinin receptor. PMID:16291754

  17. Calreticulin mutation-specific immunostaining in myeloproliferative neoplasms: pathogenetic insight and diagnostic value

    PubMed Central

    Vannucchi, A M; Rotunno, G; Bartalucci, N; Raugei, G; Carrai, V; Balliu, M; Mannarelli, C; Pacilli, A; Calabresi, L; Fjerza, R; Pieri, L; Bosi, A; Manfredini, R; Guglielmelli, P

    2014-01-01

    Mutations in the gene calreticulin (CALR) occur in the majority of JAK2- and MPL-unmutated patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF); identifying CALR mutations contributes to the diagnostic pathway of ET and PMF. CALR mutations are heterogeneous spanning over the exon 9, but all result in a novel common protein C terminus. We developed a polyclonal antibody against a 17-amino-acid peptide derived from mutated calreticulin that was used for immunostaining of bone marrow biopsies. We show that this antibody specifically recognized patients harboring different types of CALR mutation with no staining in healthy controls and JAK2- or MPL-mutated ET and PMF. The labeling was mostly localized in megakaryocytes, whereas myeloid and erythroid cells showed faint staining, suggesting a preferential expression of calreticulin in megakaryocytes. Megakaryocytic-restricted expression of calreticulin was also demonstrated using an antibody against wild-type calreticulin and by measuring the levels of calreticulin RNA by gene expression analysis. Immunostaining using an antibody specific for mutated calreticulin may become a rapid, simple and cost-effective method for identifying CALR-mutated patients complementing molecular analysis; furthermore, the labeling pattern supports the preferential expansion of megakaryocytic cell lineage as a result of CALR mutation in an immature hematopoietic stem cell. PMID:24618731

  18. Decoded calreticulin-deficient embryonic stem cell transcriptome resolves latent cardiophenotype.

    PubMed

    Faustino, Randolph S; Chiriac, Anca; Niederlander, Nicolas J; Nelson, Timothy J; Behfar, Atta; Mishra, Prasanna K; Macura, Slobodan; Michalak, Marek; Terzic, Andre; Perez-Terzic, Carmen

    2010-07-01

    Genomic perturbations that challenge normal signaling at the pluripotent stage may trigger unforeseen ontogenic aberrancies. Anticipatory systems biology identification of transcriptome landscapes that underlie latent phenotypes would offer molecular diagnosis before the onset of symptoms. The purpose of this study was to assess the impact of calreticulin-deficient embryonic stem cell transcriptomes on molecular functions and physiological systems. Bioinformatic surveillance of calreticulin-null stem cells, a monogenic insult model, diagnosed a disruption in transcriptome dynamics, which re-prioritized essential cellular functions. Calreticulin-calibrated signaling axes were uncovered, and network-wide cartography of undifferentiated stem cell transcripts suggested cardiac manifestations. Calreticulin-deficient stem cell-derived cardiac cells verified disorganized sarcomerogenesis, mitochondrial paucity, and cytoarchitectural aberrations to validate calreticulin-dependent network forecasts. Furthermore, magnetic resonance imaging and histopathology detected a ventricular septal defect, revealing organogenic manifestation of calreticulin deletion. Thus, bioinformatic deciphering of a primordial calreticulin-deficient transcriptome decoded at the pluripotent stem cell stage a reconfigured multifunctional molecular registry to anticipate predifferentiation susceptibility toward abnormal cardiophenotype. PMID:20506533

  19. Inducible expression of calreticulin-N58 in Pichia pastoris by high density cell culture.

    PubMed

    Su, D X; Zhang, A L; Yi, G H; Liu, Z W; Luo, J X; Rao, L Y; Zhang, T Y; Zhou, Z J

    2011-11-01

    Calreticulin-N58 (CRT-N58), an active fragment of calreticulin with anti-angiogenesis activity, was expressed in P. pastoris by high density cell culture. Calreticulin-N58 DNA was synthesized by PCR and cloned to plasmid pPIC9 K resulting in the plasmid pPIC9 K-crt-N58 which was then transformed into P. pastoris GS115. The fermentation was carried out in a 50 l bioreactor with 20 l modified growth medium recommended by Invitrogen at 30°C. The cells were first grown in glycerol-PTM4 trace salts for 24 h. When the cell density was grown to A(600) = 135, methanol-PTM4 trace salts was added to induce the expression of calreticulin-N58. During the fermentation, dissolved oxygen level was maintained at 20-30%, pH was controlled at 5 by adding 7 M NH(4)OH. After 52 h of induction, the yield of secreted calreticulin-N58 was 70 mg/l and biomass growth was 293 as measured by absorption of 600 nm. The secreted calreticulin-N58 was purified to a purity of 100% by the use of SP-Sepharose FF ion-exchange chromatography (Pharmacia Biotech. NJ, USA) and desalted with ultrafiltration device (Millipore, Bedford, MA, USA). The recombinant calreticulin-N58 induced endothelial cell apoptosis and inhibited the angiogenesis on the CAM. PMID:21181274

  20. Molecular cloning and characterization of a calreticulin cDNA from the pinewood nematode Bursaphelenchus xylophilus.

    PubMed

    Li, Xundong; Zhuo, Kan; Luo, Mei; Sun, Longhua; Liao, Jinling

    2011-06-01

    The cloning and characterization of a cDNA encoding a calreticulin from the pinewood nematode Bursaphelenchus xylophilus is described herein. The full-length cDNA (Bx-crt-1) contained a 1200 bp open reading frame that could be translated to a 399 amino acid polypeptide. The deduced protein contained highly conserved regions of a calreticulin gene and had 66.2-70.1% amino acid sequence identity to other calreticulin sequences from nematodes. RNAi, RT-PCR amplification, and southern blot suggest that Bx-crt-1 may be important for the development of B. xylophilus. PMID:21371475

  1. Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library.

    PubMed

    Mohrlüder, Jeannine; Stangler, Thomas; Hoffmann, Yvonne; Wiesehan, Katja; Mataruga, Anja; Willbold, Dieter

    2007-11-01

    4-Aminobutyrate type A (GABA(A)) receptor-associated protein (GABARAP) is a ubiquitin-like modifier implicated in the intracellular trafficking of GABA(A) receptors, and belongs to a family of proteins involved in intracellular vesicular transport processes, such as autophagy and intra-Golgi transport. In this article, it is demonstrated that calreticulin is a high affinity ligand of GABARAP. Calreticulin, although best known for its functions as a Ca(2+) -dependent chaperone and a Ca(2+) -buffering protein in the endoplasmic reticulum, is also localized to the cytosol and exerts a variety of extra-endoplasmic reticulum functions. By phage display screening of a randomized peptide library, peptides that specifically bind GABARAP were identified. Their amino acid sequences allowed us to identify calreticulin as a potential GABARAP binding protein. GABARAP binding to calreticulin was confirmed by pull-down experiments with brain lysate and colocalization studies in N2a cells. Calreticulin and GABARAP interact with a dissociation constant K(d) = 64 nm and a mean lifetime of the complex of 20 min. Thus, the interaction between GABARAP and calreticulin is the strongest so far reported for each protein. PMID:17916189

  2. Antiangiogenic and Antitumor Effects of Trypanosoma cruzi Calreticulin

    PubMed Central

    López, Nandy C.; Valck, Carolina; Ramírez, Galia; Rodríguez, Margarita; Ribeiro, Carolina; Orellana, Juana; Maldonado, Ismael; Albini, Adriana; Anacona, Daniel; Lemus, David; Aguilar, Lorena; Schwaeble, Wilhelm; Ferreira, Arturo

    2010-01-01

    Background In Latin America, 18 million people are infected with Trypanosoma cruzi, the agent of Chagas' disease, with the greatest economic burden. Vertebrate calreticulins (CRT) are multifunctional, intra- and extracellular proteins. In the endoplasmic reticulum (ER) they bind calcium and act as chaperones. Since human CRT (HuCRT) is antiangiogenic and suppresses tumor growth, the presence of these functions in the parasite orthologue may have consequences in the host/parasite interaction. Previously, we have cloned and expressed T. cruzi calreticulin (TcCRT) and shown that TcCRT, translocated from the ER to the area of trypomastigote flagellum emergence, promotes infectivity, inactivates the complement system and inhibits angiogenesis in the chorioallantoid chicken egg membrane. Most likely, derived from these properties, TcCRT displays in vivo inhibitory effects against an experimental mammary tumor. Methodology and Principal Findings TcCRT (or its N-terminal vasostatin-like domain, N-TcCRT) a) Abrogates capillary growth in the ex vivo rat aortic ring assay, b) Inhibits capillary morphogenesis in a human umbilical vein endothelial cell (HUVEC) assay, c) Inhibits migration and proliferation of HUVECs and the human endothelial cell line Eahy926. In these assays TcCRT was more effective, in molar terms, than HuCRT: d) In confocal microscopy, live HUVECs and EAhy926 cells, are recognized by FITC-TcCRT, followed by its internalization and accumulation around the host cell nuclei, a phenomenon that is abrogated by Fucoidin, a specific scavenger receptor ligand and, e) Inhibits in vivo the growth of the murine mammary TA3 MTXR tumor cell line. Conclusions/Significance We describe herein antiangiogenic and antitumor properties of a parasite chaperone molecule, specifically TcCRT. Perhaps, by virtue of its capacity to inhibit angiogenesis (and the complement system), TcCRT is anti-inflammatory, thus impairing the antiparasite immune response. The TcCRT antiangiogenic

  3. A Case of Adenomyosis with a High Titer of IgG Autoantibody to Calreticulin.

    PubMed

    Gude, Neil M; Stevenson, Janet L; Sheehan, Penelope M; Brennecke, Shaun P

    2013-01-01

    Background. High prevalence of autoantibodies to the calcium-binding, endoplasmic reticulum chaperone protein calreticulin has been reported in various autoimmune and parasitic diseases. It has been reported that adenomyosis is associated with the presence of autoantibodies, in particular to phospholipids; however, it is not known whether it is associated with autoimmunity to calreticulin. Results. A 35-year-old gravida 4 para 4 woman presented with a history of many years of intractable menorrhagia. Histopathological examination of a subsequent hysterectomy specimen revealed a bulky uterus, a poorly developed secretory endometrium with decidualization of the stroma and chronic endometritis, as well as the presence of adenomyosis uteri. IgG autoantibodies to calreticulin were measured in the plasma of this and 234 other patients. Nine (3.8%) patients tested positive. The titer of anticalreticulin IgG autoantibody in the sole case with adenomyosis was approximately 8 times the average of other positive-testing samples. Conclusions. The etiology of adenomyosis is unclear. The presence of a high titer, blocking anticalreticulin autoantibody may directly increase the risk that adenomyosis might develop. It is also possible that the expansion of endometrial glandular tissue, as well as elevated estrogens, during adenomyosis may lead to elevated calreticulin, which induces an autoimmune reaction to it. Further study is required to determine whether there is a significant association between adenomyosis and the prevalence of calreticulin autoantibodies. PMID:26425587

  4. A Case of Adenomyosis with a High Titer of IgG Autoantibody to Calreticulin

    PubMed Central

    Stevenson, Janet L.; Sheehan, Penelope M.; Brennecke, Shaun P.

    2013-01-01

    Background. High prevalence of autoantibodies to the calcium-binding, endoplasmic reticulum chaperone protein calreticulin has been reported in various autoimmune and parasitic diseases. It has been reported that adenomyosis is associated with the presence of autoantibodies, in particular to phospholipids; however, it is not known whether it is associated with autoimmunity to calreticulin. Results. A 35-year-old gravida 4 para 4 woman presented with a history of many years of intractable menorrhagia. Histopathological examination of a subsequent hysterectomy specimen revealed a bulky uterus, a poorly developed secretory endometrium with decidualization of the stroma and chronic endometritis, as well as the presence of adenomyosis uteri. IgG autoantibodies to calreticulin were measured in the plasma of this and 234 other patients. Nine (3.8%) patients tested positive. The titer of anticalreticulin IgG autoantibody in the sole case with adenomyosis was approximately 8 times the average of other positive-testing samples. Conclusions. The etiology of adenomyosis is unclear. The presence of a high titer, blocking anticalreticulin autoantibody may directly increase the risk that adenomyosis might develop. It is also possible that the expansion of endometrial glandular tissue, as well as elevated estrogens, during adenomyosis may lead to elevated calreticulin, which induces an autoimmune reaction to it. Further study is required to determine whether there is a significant association between adenomyosis and the prevalence of calreticulin autoantibodies. PMID:26425587

  5. Trypanosoma cruzi Calreticulin Topographical Variations in Parasites Infecting Murine Macrophages.

    PubMed

    González, Andrea; Valck, Carolina; Sánchez, Gittith; Härtel, Steffen; Mansilla, Jorge; Ramírez, Galia; Fernández, María Soledad; Arias, José Luis; Galanti, Norbel; Ferreira, Arturo

    2015-05-01

    Trypanosoma cruzi calreticulin (TcCRT), a 47-kDa chaperone, translocates from the endoplasmic reticulum to the area of flagellum emergence. There, it binds to complement components C1 and mannan-binding lectin (MBL), thus acting as a main virulence factor, and inhibits the classical and lectin pathways. The localization and functions of TcCRT, once the parasite is inside the host cell, are unknown. In parasites infecting murine macrophages, polyclonal anti-TcCRT antibodies detected TcCRT mainly in the parasite nucleus and kinetoplast. However, with a monoclonal antibody (E2G7), the resolution and specificity of the label markedly improved, and TcCRT was detected mainly in the parasite kinetoplast. Gold particles, bound to the respective antibodies, were used as probes in electron microscopy. This organelle may represent a stopover and accumulation site for TcCRT, previous its translocation to the area of flagellum emergence. Finally, early during T. cruzi infection and by unknown mechanisms, an important decrease in the number of MHC-I positive host cells was observed. PMID:25758653

  6. Trypanosoma cruzi Calreticulin Topographical Variations in Parasites Infecting Murine Macrophages

    PubMed Central

    González, Andrea; Valck, Carolina; Sánchez, Gittith; Härtel, Steffen; Mansilla, Jorge; Ramírez, Galia; Fernández, María Soledad; Arias, José Luis; Galanti, Norbel; Ferreira, Arturo

    2015-01-01

    Trypanosoma cruzi calreticulin (TcCRT), a 47-kDa chaperone, translocates from the endoplasmic reticulum to the area of flagellum emergence. There, it binds to complement components C1 and mannan-binding lectin (MBL), thus acting as a main virulence factor, and inhibits the classical and lectin pathways. The localization and functions of TcCRT, once the parasite is inside the host cell, are unknown. In parasites infecting murine macrophages, polyclonal anti-TcCRT antibodies detected TcCRT mainly in the parasite nucleus and kinetoplast. However, with a monoclonal antibody (E2G7), the resolution and specificity of the label markedly improved, and TcCRT was detected mainly in the parasite kinetoplast. Gold particles, bound to the respective antibodies, were used as probes in electron microscopy. This organelle may represent a stopover and accumulation site for TcCRT, previous its translocation to the area of flagellum emergence. Finally, early during T. cruzi infection and by unknown mechanisms, an important decrease in the number of MHC-I positive host cells was observed. PMID:25758653

  7. Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.

    PubMed

    Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito

    2005-04-22

    Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease. PMID:15766574

  8. Calreticulin Mutations in Myeloproliferative Neoplasms: Comparison of Three Diagnostic Methods

    PubMed Central

    Park, Ji-Hye; Sevin, Margaux; Ramla, Selim; Truffot, Aurélie; Verrier, Tiffany; Bouchot, Dominique; Courtois, Martine; Bas, Mathilde; Benali, Sonia; Bailly, François; Favre, Bernardine; Guy, Julien; Martin, Laurent; Maynadié, Marc; Carillo, Serge; Girodon, François

    2015-01-01

    Calreticulin (CALR) mutations have recently been reported in 70–84% of JAK2V617F-negative myeloproliferative neoplasms (MPN), and this detection has become necessary to improve the diagnosis of MPN. In a large single-centre cohort of 298 patients suffering from Essential Thrombocythemia (ET), the JAK2V617F, CALR and MPL mutations were noted in 179 (60%), 56 (18.5%) and 13 (4.5%) respectively. For the detection of the CALR mutations, three methods were compared in parallel: high-resolution melting-curve analysis (HRM), product-sizing analysis and Sanger sequencing. The sensitivity for the HRM, product-sizing analysis and Sanger sequencing was 96.4%, 98.2% and 89.3% respectively, whereas the specificity was 96.3%, 100% and 100%. In our cohort, the product-sizing analysis was the most sensitive method and was the easiest to interpret, while the HRM was sometimes difficult to interpret. In contrast, when large series of samples were tested, HRM provided results more quickly than did the other methods, which required more time. Finally, the sequencing method, which is the reference method, had the lowest sensitivity but can be used to describe the type of mutation precisely. Altogether, our results suggest that in routine laboratory practice, product-sizing analysis is globally similar to HRM for the detection of CALR mutations, and that both may be used as first-line screening tests. If the results are positive, Sanger sequencing can be used to confirm the mutation and to determine its type. Product-sizing analysis provides sensitive and specific results, moreover, with the quantitative measurement of CALR, which might be useful to monitor specific treatments. PMID:26501981

  9. Calreticulin binds to gentamicin and reduces drug-induced ototoxicity.

    PubMed

    Karasawa, Takatoshi; Wang, Qi; David, Larry L; Steyger, Peter S

    2011-12-01

    Aminoglycosides like gentamicin are among the most commonly used antibiotics in clinical practice and are essential for treating life-threatening tuberculosis and Gram-negative bacterial infections. However, aminoglycosides are also nephrotoxic and ototoxic. Although a number of mechanisms have been proposed, it is still unclear how aminoglycosides induce cell death in auditory sensory epithelia and subsequent deafness. Aminoglycosides bind to various intracellular molecules, such as RNA and phosphoinositides. We hypothesized that aminoglycosides, based on their tissue-specific susceptibility, also bind to intracellular proteins that play a role in drug-induced ototoxicity. By conjugating an aminoglycoside, gentamicin, to agarose beads and conducting a gentamicin-agarose pull-down assay, we have isolated gentamicin-binding proteins (GBPs) from immortalized cells of mouse organ of Corti, HEI-OC1. Mass spectrometry identified calreticulin (CRT) as a GBP. Immunofluorescence revealed that CRT expression is concentrated in strial marginal cells and hair cell stereocilia, primary locations of drug uptake and cytotoxicity in the cochlea. In HEI-OC1 cells treated with gentamicin, reduction of CRT expression using small interfering RNA (siRNA) reduced intracellular drug levels. CRT-deficient mouse embryonic fibroblast (MEF) cells as well as CRT siRNA-transfected wild-type MEFs also had reduced cell viability after gentamicin treatment. A pull-down assay using deletion mutants of CRT determined that the carboxyl C-domain of CRT binds to gentamicin. HeLa cells transfected with CRT C-domain deletion mutant construct were more susceptible to gentamicin-induced cytotoxicity compared with cells transfected with full-length CRT or other deletion mutants. Therefore, we conclude that CRT binding to gentamicin is protective against gentamicin-induced cytotoxicity. PMID:21785162

  10. The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo.

    PubMed Central

    Denecke, J; Carlsson, L E; Vidal, S; Höglund, A S; Ek, B; van Zeijl, M J; Sinjorgo, K M; Palva, E T

    1995-01-01

    The analysis of protein sorting signals responsible for the retention of reticuloplasmins (RPLs), a group of soluble proteins that reside in the lumen of the endoplasmic reticulum (ER), has revealed a structural similarity between mammalian and plant ER retention signals. We present evidence that the corresponding epitope is conserved in a vast family of soluble ER resident proteins. Microsequences of RPL60 and RPL90, two abundant members of this family, show high sequence similarity with mammalian calreticulin and endoplasmin. RPL60/calreticulin cofractionates and costains with the lumenal binding protein (BiP). Both proteins were detected in the nuclear envelope and the ER, and in mitotic cells in association with the spindle apparatus and the phragmoplast. Immunoprecipitation of proteins from in vivo-labeled cells demonstrated that RPL60/calreticulin is associated with other polypeptides in a stress- and ATP-dependent fashion. RPL60/calreticulin transcript levels increased rapidly in abundance during the proliferation of the secretory apparatus and the onset of hydrolase secretion in gibberellic acid-treated barley aleurone cells. This induction profile is identical to that of the well-characterized ER chaperones BiP and endoplasmin. However, expression patterns in response to different stress conditions as well as tissue-specific expression patterns indicate that these genes are differentially regulated and may not act in concert. PMID:7773014

  11. Transient dissociation of polyribosomes and concurrent recruitment of calreticulin and calmodulin transcripts in gravistimulated maize pulvini

    NASA Technical Reports Server (NTRS)

    Heilmann, I.; Shin, J.; Huang, J.; Perera, I. Y.; Davies, E.

    2001-01-01

    The dynamics of polyribosome abundance were studied in gravistimulated maize (Zea mays) stem pulvini. During the initial 15 min of gravistimulation, the amount of large polyribosomes transiently decreased. The transient decrease in polyribosome levels was accompanied by a transient decrease in polyribosome-associated mRNA. After 30 min of gravistimulation, the levels of polyribosomes and the amount of polyribosome-associated mRNA gradually increased over 24 h up to 3- to 4-fold of the initial value. Within 15 min of gravistimulation, total levels of transcripts coding for calreticulin and calmodulin were elevated 5-fold in maize pulvinus total RNA. Transcripts coding for calreticulin and calmodulin were recruited into polyribosomes within 15 min of gravistimulation. Over 4 h of gravistimulation, a gradual increase in the association of calreticulin and calmodulin transcripts with polyribosomes was seen predominantly in the lower one-half of the maize pulvinus; the association of transcripts for vacuolar invertase with polyribosomes did not change over this period. Our results suggest that within 15 min of gravistimulation, the translation of the majority of transcripts associated with polyribosomes decreased, resembling a general stress response. Recruitment of calreticulin and calmodulin transcripts into polyribosomes occurred predominantly in the lower pulvinus one-half during the first 4 h when the presentation time for gravistimulation in the maize pulvinus is not yet complete.

  12. Calreticulin enriched as an early-stage encapsulation protein in wax moth Galleria mellonella larvae.

    PubMed

    Choi, J Y; Whitten, M M A; Cho, M Y; Lee, K Y; Kim, M S; Ratcliffe, N A; Lee, B L

    2002-05-01

    To investigate the molecular mechanism of the early-stage encapsulation reaction in insects, we purified a 47kDa protein from injected beads into Galleria mellonella larvae. When a cDNA clone was isolated, the 47kDa protein showed high homology with Drosophila and human calreticulin. Western blotting analysis showed that the 47kDa protein was present in the hemocytes, but not in the plasma. When the early-stage encapsulated beads were coated with 47kDa protein antibody and reinjected into G. mellonella larvae, any further encapsulation reaction was inhibited. These results suggest that calreticulin is involved in non-self recognition in invertebrate cellular defense reactions. PMID:11888648

  13. Cloning and characterization of calreticulin and its association with salinity stress in P. trituberculatus.

    PubMed

    Lv, Jianjian; Wang, Yu; Zhang, Dening; Gao, Baoquan; Liu, Ping; Li, Jian

    2015-09-01

    Calreticulin (CRT) is a highly conserved and multifunctional endoplasmic reticulum (ER) chaperone protein and plays important roles in salinity stress response. Portunus trituberculatus is a commercially important fishery species, and water salinity conditions influence its commercial farming significantly. In order to research the function of calreticulin under salinity stress, the full-length cDNA sequence of calreticulin from P. trituberculatus (PtCRT) was firstly cloned and characterized. The complete cDNA sequence of PtCRT is 1676 bp with 1218 bp open reading frame (ORF), encoding a polypeptide of 405 amino acids. Multiple sequence alignments showed that the deduced acid amino sequences of PtCRT shared the highest homology to CRT of Fenneropenaeus chinensis (89%). Fluorescent quantitative real-time PCR analysis indicated that PtCRT was expressed in all detected tissues and showed the highest expression level in hepatopancreas. In addition, salinity challenge significantly influenced the expression level of PtCRT in gill. Six single nucleotide polymorphisms (SNPs) were detected in cDNA sequence of PtCRT, and one SNP was associated with the salt tolerant trait. All results indicated that PtCRT plays an important role in mediating the salinity adaption of P. trituberculatus. PMID:25995067

  14. Increased calreticulin stability in differentiated NG-108-15 cells correlates with resistance to apoptosis induced by antisense treatment.

    PubMed

    Johnson, R J; Liu, N; Shanmugaratnam, J; Fine, R E

    1998-01-01

    Since its first identification as a high-affinity calcium-binding protein over two decades ago [T.J. Ostwald and D.H. MacLennan, Isolation of a high-affinity calcium-binding protein from sarcoplasmic reticulum, J. Biol. Chem., 249 (1974) 974-979], calreticulin has become recognized as a multifunctional protein involved in a wide variety of cellular processes. We have previously shown that it has a protective function in Ca2+-mediated cell death [N. Liu, R.E. Fine, E. Simons and R.J. Johnson, Decreasing calreticulin expression lowers the Ca2+ response to bradykinin and increases sensitivity to ionomycin in NG-108-15 cells, J. Biol. Chem. , 269 (1994) 28635-28639]. We report here that in NG-108-15 neuroblastomaxglioma hybrid cells, calreticulin protein levels increase markedly when these cells are induced to differentiate by treating them with N,N-dibutyryl cAMP (db-cAMP). We demonstrate that the reason for this increase is mostly due to a large increase in the turnover time of calreticulin in differentiated cells. We also show that a calreticulin antisense oligonucleotide, CrtAS1, previously described by Liu and co-workers [N. Liu, R.E. Fine, E. Simons and R.J. Johnson, Decreasing calreticulin expression lowers the Ca2+ response to bradykinin and increases sensitivity to ionomycin in NG-108-15 cells, J. Biol. Chem., 269 (1994) 28635-28639] causes cell death in undifferentiated NG-108-15 cells when antisense treatment is extended for more than 24 h. This effect is not seen in NG-108-15 cells that have been induced to differentiate with db-cAMP until the cells have been treated with antisense for more than 4 days, due to the increased stability of Crt in these cells. Our results indicate that the mechanism by which these cells die is likely to be apoptosis. PMID:9473613

  15. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway.

    PubMed

    Grespin, Matthew E; Bonamy, Ghislain M C; Roggero, Vincent R; Cameron, Nicole G; Adam, Lindsay E; Atchison, Andrew P; Fratto, Victoria M; Allison, Lizabeth A

    2008-09-12

    The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm. PMID:18641393

  16. Protein kinase C is involved in the regulation of several calreticulin posttranslational modifications.

    PubMed

    Cristina Castañeda-Patlán, M; Razo-Paredes, Roberto; Carrisoza-Gaytán, Rolando; González-Mariscal, Lorenza; Robles-Flores, Martha

    2010-01-01

    Calreticulin (CRT) is a highly versatile lectin-like chaperone that affects many cellular functions both inside and outside the endoplasmic reticulum lumen. We previously reported that calreticulin interacts with several protein kinase C isozymes both in vitro and in vivo. The aim of this study was to elucidate the molecular determinants involved in the association between these proteins and the biochemical significance of their interaction. Using full-length or CRT-domain constructs expressed as GST-fusion proteins, we found that protein kinase C binds to the CRT N domain in overlay and pull-down assays. Phosphorylation experiments showed that only this CRT domain is phosphorylated by the kinase. Lectin blot analysis demonstrated that CRT is modified by N-glycosylation, but this modification did not affect its interaction with protein kinase C. We also demonstrated that although both domains of protein kinase C theta can bind to CRT, it is the catalytic one that binds with higher affinity to CRT. Immunofluorescence studies showed that CRT and PKC co-localize mainly at the ER (estimated in 35%). Activation of protein kinase C induced caused transient changes in CRT localization, and unexpectedly, also induced changes in posttranslational modifications found in the protein: CRT N-glycosylation is abolished, whereas tyrosine phosphorylation and O-linked beta-N-acetylglucosamine modification are increased. Together, these findings suggest that protein kinase C is involved in the regulation of CRT function. PMID:19800981

  17. Calreticulin is a microbial-binding molecule with phagocytosis-enhancing capacity.

    PubMed

    Liu, Xuemei; Xu, Na; Zhang, Shicui

    2013-09-01

    Calreticulin (CRT) is a highly conserved calcium-binding protein mainly involved in directing proper conformation of proteins and controlling calcium level. Accumulating data also show that CRT is emerging as an immune-relevant molecule. In this study, we demonstrated that the CRT gene from the amphioxus Branchiostoma japonicum, named Bjcrt, consisted of a signal peptide, three domains (N-, P-, C-domains) and an ER retrieval signal sequence (KDEL), which appears to be the ancient form of vertebrate CRTs, and Bjcrt was expressed in a tissue-specific manner, with the most abundant expression in the notochord. We also demonstrated for the first time that the recombinant BjCRT (rBjCRT) was able to bind the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Staphylococcus aureus. Moreover, both BjCRT as well as human recombinant calreticulin were able to promote the phagocytosis of E. coli and S. aureus by sea bass macrophages. These results indicate that CRT is a microbial-binding molecule and possesses an ability to enhance phagocytosis, a novel function assigned to CRT, reenforcing the notion that CRT is an immune-relevant molecule associated with host immune responses. PMID:23791863

  18. Pyruvate dehydrogenase/sub b/ phosphatase inhibition by NADH and dihydrolipoamide along with effects of and capacity for binding the phosphatase to the bovine kidney transacetylase-protein X subcomplex

    SciTech Connect

    Roche, T.E.; Rahmatullah, M.; Maher, J.

    1986-05-01

    NADH inhibits PDH/sub b/ phosphatase activity when /sup 32/P-PDH is associated with the intact complex but not when /sup 32/P-PDH is prepared free of other components of the complex. Addition of the transacetylase-protein X (E2-X) subcomplex both activated the phosphatase and restored NADH inhibition. Low levels of dihydrolipoyl dehydrogenase associated with the subcomplex might be required for NADH inhibition. Dihydrolipoamide gave inhibition of the phosphatase equivalent to NADH and the combination did not give additional inhibition suggesting a common mechanism. Pretreatment of phosphorylated complex and phosphatase with 2.0 mM dithiothreitol nearly eliminated inhibition of the phosphatase by NADH or dihydrolipoamide. Strong arsenite inhibition of phosphatase activity occurred only in the presence of NADH suggesting modification of thiols reduced by NADH can alter phosphatase activity. Only about 6 molecules of purified phosphatase could be activated by 1 molecule of E2-X subcomplex (initial velocities measured in 15s period). Since that corresponded to the number of protein X rather than E2 subunits, protein X may contribute to the Ca/sup 2 +/-dependent binding of the phosphatase. Since protein X also contains a lipoyl moiety, it may also contribute to NADH inhibition of the phosphatase.

  19. Unfolding the complexities of ER chaperones in health and disease: report on the 11th international calreticulin workshop.

    PubMed

    Gold, Leslie; Williams, David; Groenendyk, Jody; Michalak, Marek; Eggleton, Paul

    2015-11-01

    The 11th International Calreticulin workshop was held May 15-18, 2015 at New York University School of Medicine-Langone Medical Center, New York. The meeting highlighted many of the new discoveries in the past 2 years involving the important role of molecular chaperones in physiological and pathological processes. Crucial to the understanding of these disease processes was the role of chaperones in maintaining quality control of protein processing in the endoplasmic reticulum, the importance of Ca(2) regulation acting through its action in stress-related diseases, and the trafficking of glycoproteins to the cell surface. Central to maintaining healthy cell physiology is the correct ER-associated protein degradation of specific misfolded proteins. Information on different mechanisms involved in the degradation of misfolded proteins was revealed. This was a landmark meeting for the chaperone field in terms of new insights into their roles in physiology. These insights included the unfolded protein response, innate/adaptive immunity, tissue repair, the functions of calreticulin/chaperones from the cell surface, and extracellular environment. Diseases included neurodegenerative disorders, prion disease, autoimmunity, fibrosis-related disease, the host immune response to cancer, and hematologic diseases associated with calreticulin mutations. The 12th calreticulin workshop is planned for the spring of 2017 in Delphi, Greece. PMID:26395641

  20. Calreticulin-independent regulation of the platelet integrin alphaIIbbeta3 by the KVGFFKR alphaIIb-cytoplasmic motif.

    PubMed

    Reilly, Dermot; Larkin, Deirdre; Devocelle, Marc; Fitzgerald, Desmond J; Moran, Niamh

    2004-02-01

    The platelet integrin alphaIIbbeta3 alters conformation in response to platelet activation and ligand binding, although the molecular mechanisms involved are not known. We previously showed that a lipid modified peptide, corresponding to the membrane proximal 989KVGFFKR995 portion of the alphaIIb cytoplasmic tail, independently activates platelet alphaIIbbeta3. Calreticulin (CRT) is a potential integrin regulatory protein based on its interaction with the highly conserved alpha-integrin sequence KxGFFKR. We therefore examined the possible interaction of calreticulin and alphaIIbbeta3 in human platelets. We demonstrate that calreticulin in platelets is localised to the granulomere. In contrast, the known integrin-binding protein talin accumulates at the periphery of spreading platelets and colocalises with alphaIIbbeta3 during the process of adhesion. An interaction between calreticulin and alphaIIbbeta3 could not be demonstrated using co-immunoprecipitation techniques under various platelet activation states, even in the presence of covalent chemical crosslinkers. Thus, calreticulin does not functionally interact with the major integrin in human platelets. In order to identify proteins that interact with the integrin KVGFFKR motif we then used a peptide 'pull-down' assay from platelet lysates with biotinylated peptides and demonstrate that only the alphaIIb and beta3 subunits selectively and individually interact with this sequence. This interaction is divalent cation-dependent, has high-affinity, and occurs both with purified alphaIIbbeta3 complex and with electroeluted alpha and beta subunits. Thus, our data show that the conserved integrin KVGFFKR domain interacts primarily with the alpha and beta cytoplasmic tails and not with CRT in human platelets. PMID:14985176

  1. Calreticulin, a potential cell surface receptor involved in cell penetration of anti-DNA antibodies.

    PubMed

    Seddiki, N; Nato, F; Lafaye, P; Amoura, Z; Piette, J C; Mazié, J C

    2001-05-15

    A 50-kDa protein was purified as a potential receptor, using an affinity matrix containing biotinylated F14.6 or H9.3 anti-DNA mAbs derived from autoimmune (New Zealand Black x New Zealand White)F(1) mouse and membrane extracts from cells. This protein was identified as calreticulin (CRT) by microsequencing. Confocal microscopy and FACS analysis showed that CRT was present on the surface of various cells. CRT protein was recognized by a panel of anti-DNA mAbs in ELISA. The binding of F14.6 to lymphocytes and Chinese hamster ovary cells was inhibited by soluble CRT or SPA-600. Thus, the anti-DNA mAbs used in this study bound to CRT, suggesting that CRT may mediate their penetration into the cells and play an important role in lupus pathogenesis. PMID:11342668

  2. Postpartum haemorrhage in a woman with essential thrombocythemia carrying calreticulin mutation: a case report.

    PubMed

    Villani, Michela; Colaizzo, Donatella; Tiscia, Giovanni L; Chinni, Elena; Bodenizza, Carl'Antonio; Cascavilla, Nicola; Grandone, Elvira

    2016-09-01

    Coagulation disorder associated with essential thrombocythemia may exacerbate the prothrombotic state physiologically occurring during pregnancy. We report a case of a severe postpartum haemorrhage in a 35-year-old woman previously diagnosed with essential thrombocythemia and carrying the somatic calreticulin mutation. She was referred to our Thrombosis and Haemostasis Unit for pregnancy management. A treatment with low-dose aspirin was prescribed until the labour started, as the platelets count raised above 1000 × 10/l. At the time of bleeding, no residual placenta was detected at the revision of the uterine cavity.Although the postpartum is a high-risk period for thrombotic events, we have to carefully evaluate in women with essential thrombocythemia the likelihood of developing a hemorrhagic complication. PMID:26650457

  3. Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum.

    PubMed Central

    Di Jeso, Bruno; Ulianich, Luca; Pacifico, Francesco; Leonardi, Antonio; Vito, Pasquale; Consiglio, Eduardo; Formisano, Silvestro; Arvan, Peter

    2003-01-01

    During its initial folding in the endoplasmic reticulum (ER), newly synthesized thyroglobulin (Tg) is known to interact with calnexin and other ER molecular chaperones, but its interaction with calreticulin has not been examined previously. In the present study, we have investigated the interactions of endogenous Tg with calreticulin and with several other ER chaperones. We find that, in FRTL-5 and PC-Cl3 cells, calnexin and calreticulin interact with newly synthesized Tg in a carbohydrate-dependent manner, with largely overlapping kinetics that are concomitant with the maturation of Tg intrachain disulphide bonds, preceding Tg dimerization and exit from the ER. Calreticulin co-precipitates more newly synthesized Tg than does calnexin; however, using two different experimental approaches, calnexin and calreticulin were found in ternary complexes with Tg, making this the first endogenous protein reported in ternary complexes with calnexin and calreticulin in the ER of live cells. Depletion of Ca(2+) from the ER elicited by thapsigargin (a specific inhibitor of ER Ca(2+)-ATPases) results in retention of Tg in this organelle. Interestingly, thapsigargin treatment induces the premature exit of Tg from the calnexin/calreticulin cycle, while stabilizing and prolonging interactions of Tg with BiP (immunoglobulin heavy chain binding protein) and GRP94 (glucose-regulated protein 94), two chaperones whose binding is not carbohydrate-dependent. Our results suggest that calnexin and calreticulin, acting in ternary complexes with a large glycoprotein substrate such as Tg, might be engaged in the folding of distinct domains, and indicate that lumenal Ca(2+) strongly influences the folding of exportable glycoproteins, in part by regulating the balance of substrate binding to different molecular chaperone systems within the ER. PMID:12401114

  4. Mutation specific immunohistochemistry is highly specific for the presence of calreticulin mutations in myeloproliferative neoplasms.

    PubMed

    Andrici, Juliana; Farzin, Mahtab; Clarkson, Adele; Sioson, Loretta; Sheen, Amy; Watson, Nicole; Toon, Christopher W; Koleth, Mary; Stevenson, William; Gill, Anthony J

    2016-06-01

    The identification of somatic calreticulin (CALR) mutations can be used to confirm the diagnosis of a myeloproliferative disorder in Philadelphia chromosome-negative, JAK2 and MPL wild type patients with thrombocytosis. All pathogenic CALR mutations result in an identical C-terminal protein and therefore may be identifiable by immunohistochemistry. We sought to test the sensitivity and specificity of mutation specific immunohistochemistry for pathogenic CALR mutations using a commercially available mouse monoclonal antibody (clone CAL2). Immunohistochemistry for mutant calreticulin was performed on the most recent bone marrow trephine from a cohort of patients enriched for CALR mutations and compared to mutation testing performed by polymerase chain reaction (PCR) amplification followed by fragment length analysis. Twenty-nine patients underwent both immunohistochemistry and molecular testing. Eleven patients had CALR mutation, and immunohistochemistry was positive in nine (82%). One discrepant case appeared to represent genuine false negative immunohistochemistry. The other may be attributable to a 12 year delay between the bone marrow trephine and the specimen which underwent molecular testing, particularly because a liver biopsy performed at the same time as molecular testing demonstrated positive staining in megakaryocytes in extramedullary haematopoiesis. All 18 cases which lacked CALR mutation demonstrated negative staining. In this population enriched for CALR mutations, the specificity was 100%; sensitivity 82-91%, positive predictive value 100% and negative predictive value 90-95%. We conclude that mutation specific immunohistochemistry is highly specific for the presence of CALR mutations. Whilst it may not identify all mutations, it may be very valuable in routine clinical care. PMID:27114372

  5. Cytokine, Antibody and Proliferative Cellular Responses Elicited by Taenia solium Calreticulin upon Experimental Infection in Hamsters

    PubMed Central

    Mendlovic, Fela; Cruz-Rivera, Mayra; Ávila, Guillermina; Vaughan, Gilberto; Flisser, Ana

    2015-01-01

    Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT) on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus). Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA) were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN) cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis. PMID:25811778

  6. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  7. Calreticulin contributes to C1q-dependent recruitment of microglia in the leech Hirudo medicinalis following a CNS injury

    PubMed Central

    Le Marrec-Croq, Françoise; Bocquet-Garcon, Annelise; Vizioli, Jacopo; Vancamp, Christelle; Drago, Francesco; Franck, Julien; Wisztorski, Maxence; Salzet, Michel; Sautiere, Pierre-Eric; Lefebvre, Christophe

    2014-01-01

    Background The medicinal leech is considered as a complementary and appropriate model to study immune functions in the central nervous system (CNS). In a context in which an injured leech’s CNS can naturally restore normal synaptic connections, the accumulation of microglia (immune cells of the CNS that are exclusively resident in leeches) has been shown to be essential at the lesion to engage the axonal sprouting. HmC1q (Hm for Hirudo medicinalis) possesses chemotactic properties that are important in the microglial cell recruitment by recognizing at least a C1q binding protein (HmC1qBP alias gC1qR). Material/Methods Recombinant forms of C1q were used in affinity purification and in vitro chemotaxis assays. Anti-calreticulin antibodies were used to neutralize C1q-mediated chemotaxis and locate the production of calreticulin in leech CNS. Results A newly characterized leech calreticulin (HmCalR) has been shown to interact with C1q and participate to the HmC1q-dependent microglia accumulation. HmCalR, which has been detected in only some microglial cells, is consequently a second binding protein for HmC1q, allowing the chemoattraction of resident microglia in the nerve repair process. Conclusions These data give new insight into calreticulin/C1q interaction in an immune function of neuroprotection, suggesting another molecular target to use in investigation of microglia reactivity in a model of CNS injury. PMID:24747831

  8. Ligand-specific, transient interaction between integrins and calreticulin during cell adhesion to extracellular matrix proteins is dependent upon phosphorylation/dephosphorylation events.

    PubMed Central

    Coppolino, M G; Dedhar, S

    1999-01-01

    As transmembrane heterodimers, integrins bind to both extracellular ligands and intracellular proteins. We are currently investigating the interaction between integrins and the intracellular protein calreticulin. A prostatic carcinoma cell line (PC-3) was used to demonstrate that calreticulin can be found in the alpha3 immunoprecipitates of cells plated on collagen type IV, but not when plated on vitronectin. Conversely, alphav immunoprecipitates contained calreticulin only when cells were plated on vitronectin, i. e. not when plated on collagen IV. The interactions between these integrins and calreticulin were independent of actin cytoskeleton assembly and were transient, being maximal approx. 10-30 min after the cells came into contact with the substrates prior to complete cell spreading and formation of firm adhesive contacts. We demonstrate that okadaic acid, an inhibitor of intracellular serine/threonine protein phosphatases, inhibited the alpha3beta1-mediated adhesion of PC-3 cells to collagen IV and the alpha2beta1-mediated attachment of Jurkat cells to collagen I. This inhibition by okadaic acid was accompanied by inhibition of the ligand-specific interaction of calreticulin with the respective integrins in the two cell types. Additionally, we found that pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) resulted in prolongation of the calreticulin-integrin interaction, and enhancement of PC-3 cell attachment to collagen IV. We conclude that calreticulin interacts transiently with integrins during cell attachment and spreading. This interaction depends on receptor occupation, is ligand-specific, and can be modulated by protein phosphatase and MEK activity. PMID:10229657

  9. Soluble tyrosinase is an endoplasmic reticulum (ER)-associated degradation substrate retained in the ER by calreticulin and BiP/GRP78 and not calnexin.

    PubMed

    Popescu, Costin I; Paduraru, Crina; Dwek, Raymond A; Petrescu, Stefana M

    2005-04-01

    Tyrosinase is a type I membrane protein regulating the pigmentation process in humans. Mutations of the human tyrosinase gene cause the tyrosinase negative type I oculocutaneous albinism (OCAI). Some OCAI mutations were shown to delete the transmembrane domain or to affect its hydrophobic properties, resulting in soluble tyrosinase mutants that are retained in the endoplasmic reticulum (ER). To understand the specific mechanisms involved in the ER retention of soluble tyrosinase, we have constructed a tyrosinase mutant truncated at its C-terminal end and investigated its maturation process. The mutant is retained in the ER, and it is degraded through the proteasomal pathway. We determined that the mannose trimming is required for an efficient degradation process. Moreover, this soluble ER-associated degradation substrate is stopped at the ER quality control checkpoint with no requirements for an ER-Golgi recycling pathway. Co-immmunoprecipitation experiments showed that soluble tyrosinase interacts with calreticulin and BiP/GRP78 (and not calnexin) during its ER transit. Expression of soluble tyrosinase in calreticulin-deficient cells resulted in the export of soluble tyrosinase of the ER, indicating the calreticulin role in ER retention. Taken together, these data show that OCAI soluble tyrosinase is an ER-associated degradation substrate that, unlike other albino tyrosinases, associates with calreticulin and BiP/GRP78. The lack of specificity for calnexin interaction reveals a novel role for calreticulin in OCAI albinism. PMID:15677452

  10. Calnexin and calreticulin bind to enzymically active tissue-type plasminogen activator during biosynthesis and are not required for folding to the native conformation.

    PubMed Central

    Allen, S; Bulleid, N J

    1997-01-01

    The roles of the endoplasmic-reticulum lectins calnexin and calreticulin in the folding of tissue-type plasminogen activator (tPA) have been investigated using an in vitro translation system that reconstitutes these processes as they would occur in the intact cell. Using co-immunoprecipitation of newly synthesized tPA with antibodies to calnexin and calreticulin, it was demonstrated that the interaction of tPA with both lectins was dependent upon tPA glycosylation and glucosidase trimming. When tPA was synthesized in the presence of semi-permeabilized cells under conditions preventing complex formation with calnexin and calreticulin, the translation product had a specific plasminogenolytic activity identical with that when synthesized under conditions permitting interactions with both lectins. Furthermore, complexes of tPA bound to calnexin and calreticulin were shown to be enzymically active. These results demonstrate that calnexin and calreticulin can form a stable interaction with correctly folded tPA; however, such interactions are not required for the synthesis of enzymically active tPA. PMID:9359841

  11. Overview of the role for calreticulin in the enhancement of wound healing through multiple biological effects.

    PubMed

    Gold, Leslie I; Rahman, Mohammad; Blechman, Keith M; Greives, Matthew R; Churgin, Samara; Michaels, Joseph; Callaghan, Matthew J; Cardwell, Nancy L; Pollins, Alonda C; Michalak, Marek; Siebert, John W; Levine, Jamie P; Gurtner, Geoffrey C; Nanney, Lillian B; Galiano, Robert D; Cadacio, Caprice L

    2006-09-01

    Calreticulin (CRT), an intracellular chaperone protein crucial for the proper folding and transport of proteins through the endoplasmic reticulum, has more recent acclaim as a critical regulator of extracellular functions, particularly in mediating cellular migration and as a requirement for phagocytosis of apoptotic cells. Consistent with these functions, we show that the topical application of CRT has profound effects on the process of wound healing by causing a dose-dependent increase in epithelial migration and granulation tissue formation in both murine and porcine normal and impaired animal models of skin injury. These effects of CRTare substantiated, in vitro, as we show that CRT strongly induces cell migration/wound closure of human keratinocytes and fibroblasts, using a wound/scratch plate assay, and stimulates cellular proliferation of human keratinocytes, fibroblasts, and vascular endothelial cells, providing mechanistic insight into how CRT functions in repair. Similarly, in both animal models, the histology of the wounds show marked proliferation of basal keratinocytes and dermal fibroblasts, dense cellularity of the dermis with notably increased numbers of macrophages and well-organized collagen fibril deposition. Thus, CRT profoundly affects the wound healing process by recruiting cells essential for repair into the wound, stimulating cell growth, and increasing extracellular matrix production. PMID:17069011

  12. Hepatitis B virus-induced calreticulin protein is involved in IFN resistance.

    PubMed

    Yue, Xin; Wang, Hui; Zhao, Fanpeng; Liu, Shi; Wu, Jianguo; Ren, Wendan; Zhu, Ying

    2012-07-01

    IFN-α is a widely used treatment for hepatitis B virus (HBV) infection, and IFN resistance caused by viral and/or host factors is currently a challenging clinical problem. A better understanding of the molecular mechanisms underlying IFN immunotherapy in the treatment of viral infection would be very beneficial clinically and is of immense clinical importance. Calreticulin (CRT) is an endoplasmic reticulum luminal calcium-binding chaperone that is involved in the regulation of calcium homoeostasis, the folding of newly synthesized proteins, and many other cellular functions. However, little is known about the role of CRT in HBV infection. In this study, we observed high levels of CRT expression in the sera and PBMCs of patients with HBV relative to those of healthy individuals. HBV upregulated the expression of CRT at the transcriptional level. Further investigation showed that HBV-induced CRT enhanced HBV replication by antagonizing the IFN pathway. CRT suppressed the production of endogenous IFN-α by reducing the nuclear translocation of IFN regulatory factor-7 but not IFN regulatory factor-3. Furthermore, CRT also suppressed the antiviral activity of IFN-α by inhibiting the phosphorylation of STAT1 and decreasing the expression of two IFN-α downstream effectors, protein kinase R and 2',5'-oligoadenylate synthetase. Our results offer new insights into the pathogenesis of HBV infection and may provide potential targets for anti-HBV therapy. PMID:22661095

  13. Is the Antitumor Property of Trypanosoma cruzi Infection Mediated by Its Calreticulin?

    PubMed Central

    Ramírez-Toloza, Galia; Abello, Paula; Ferreira, Arturo

    2016-01-01

    Eight to 10 million people in 21 endemic countries are infected with Trypanosoma cruzi. However, only 30% of those infected develop symptoms of Chagas’ disease, a chronic, neglected tropical disease worldwide. Similar to other pathogens, T. cruzi has evolved to resist the host immune response. Studies, performed 80 years ago in the Soviet Union, proposed that T. cruzi infects tumor cells with similar capacity to that displayed for target tissues such as cardiac, aortic, or digestive. An antagonistic relationship between T. cruzi infection and cancer development was also proposed, but the molecular mechanisms involved have remained largely unknown. Probably, a variety of T. cruzi molecules is involved. This review focuses on how T. cruzi calreticulin (TcCRT), exteriorized from the endoplasmic reticulum, targets the first classical complement component C1 and negatively regulates the classical complement activation cascade, promoting parasite infectivity. We propose that this C1-dependent TcCRT-mediated virulence is critical to explain, at least an important part, of the parasite capacity to inhibit tumor development. We will discuss how TcCRT, by directly interacting with venous and arterial endothelial cells, inhibits angiogenesis and tumor growth. Thus, these TcCRT functions not only illustrate T. cruzi interactions with the host immune defensive strategies, but also illustrate a possible co-evolutionary adaptation to privilege a prolonged interaction with its host. PMID:27462315

  14. Low neutrophil alkaline phosphatase score is a new aspect of calreticulin-mutated myeloproliferative neoplasms.

    PubMed

    Kondo, Toshinori; Tasaka, Taizo; Tomioka, Nanako; Sano, Fuminori; Tokunaga, Hirotoshi; Suemori, Shin-Ichiro; Tsujioka, Takayuki; Matsuhashi, Yoshiko; Nakanishi, Hidekazu; Wada, Hideho; Tohyama, Kaoru; Sugihara, Takashi

    2016-01-01

    Calreticulin (CALR) and JAK2-V617F gene mutations, which are major genetic mutations in patients with primary myelofibrosis (PMF) and essential thrombocythemia (ET), exert different effects on the clinical features and outcomes of these diseases. We analyzed 88 and 9 patients with ET and PMF, respectively, and determined the differences in the clinical characteristics of ET patients with JAK2-V617F compared with CALR mutations. The frequency of the JAK2-V617F and CALR mutations were 64 and 22 %, respectively. Patients with CALR mutations were younger, had a lower white blood cell count, and had a lower rate of thrombotic events than patients with the JAK2 mutation. The neutrophil alkaline phosphatase (NAP) score of 16 patients with CALR mutations was significantly lower than the normal controls, which was mainly due to the high proportion of NAP-negative neutrophils. This is the first report to show an association between CALR mutations in patients with myeloproliferative neoplasms (MPN) and the NAP score. Although the mechanism is unclear, the NAP score could be a useful and reliable biochemical marker to discriminate the mutational status of MPN patients. Further investigation is warranted to determine whether these characteristics contribute to the pathogenesis of MPN and the NAP score. PMID:27504244

  15. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms.

    PubMed

    Araki, Marito; Yang, Yinjie; Masubuchi, Nami; Hironaka, Yumi; Takei, Hiraku; Morishita, Soji; Mizukami, Yoshihisa; Kan, Shin; Shirane, Shuichi; Edahiro, Yoko; Sunami, Yoshitaka; Ohsaka, Akimichi; Komatsu, Norio

    2016-03-10

    Recurrent somatic mutations of calreticulin (CALR) have been identified in patients harboring myeloproliferative neoplasms; however, their role in tumorigenesis remains elusive. Here, we found that the expression of mutant but not wild-type CALR induces the thrombopoietin (TPO)-independent growth of UT-7/TPO cells. We demonstrated that c-MPL, the TPO receptor, is required for this cytokine-independent growth of UT-7/TPO cells. Mutant CALR preferentially associates with c-MPL that is bound to Janus kinase 2 (JAK2) over the wild-type protein. Furthermore, we demonstrated that the mutant-specific carboxyl terminus portion of CALR interferes with the P-domain of CALR to allow the N-domain to interact with c-MPL, providing an explanation for the gain-of-function property of mutant CALR. We showed that mutant CALR induces the phosphorylation of JAK2 and its downstream signaling molecules in UT-7/TPO cells and that this induction was blocked by JAK2 inhibitor treatment. Finally, we demonstrated that c-MPL is required for TPO-independent megakaryopoiesis in induced pluripotent stem cell-derived hematopoietic stem cells harboring the CALR mutation. These findings imply that mutant CALR activates the JAK2 downstream pathway via its association with c-MPL. Considering these results, we propose that mutant CALR promotes myeloproliferative neoplasm development by activating c-MPL and its downstream pathway. PMID:26817954

  16. Thrombospondin-1 interacts with Trypanosoma cruzi surface calreticulin to enhance cellular infection.

    PubMed

    Johnson, Candice A; Kleshchenko, Yulia Y; Ikejiani, Adaeze O; Udoko, Aniekanabasi N; Cardenas, Tatiana C; Pratap, Siddharth; Duquette, Mark A; Lima, Maria F; Lawler, Jack; Villalta, Fernando; Nde, Pius N

    2012-01-01

    Trypanosoma cruzi causes Chagas disease, which is a neglected tropical disease that produces severe pathology and mortality. The mechanisms by which the parasite invades cells are not well elucidated. We recently reported that T. cruzi up-regulates the expression of thrombospondin-1 (TSP-1) to enhance the process of cellular invasion. Here we characterize a novel TSP-1 interaction with T. cruzi that enhances cellular infection. We show that labeled TSP-1 interacts specifically with the surface of T. cruzi trypomastigotes. We used TSP-1 to pull down interacting parasite surface proteins that were identified by mass spectrometry. We also show that full length TSP-1 and the N-terminal domain of TSP-1 (NTSP) interact with T. cruzi surface calreticulin (TcCRT) and other surface proteins. Pre-exposure of recombinant NTSP or TSP-1 to T. cruzi significantly enhances cellular infection of wild type mouse embryo fibroblasts (MEF) compared to the C-terminal domain of TSP-1, E3T3C1. In addition, blocking TcCRT with antibodies significantly inhibits the enhancement of cellular infection mediated by the TcCRT-TSP-1 interaction. Taken together, our findings indicate that TSP-1 interacts with TcCRT on the surface of T. cruzi through the NTSP domain and that this interaction enhances cellular infection. Thus surface TcCRT is a virulent factor that enhances the pathogenesis of T. cruzi infection through TSP-1, which is up-regulated by the parasite. PMID:22808206

  17. Is the Antitumor Property of Trypanosoma cruzi Infection Mediated by Its Calreticulin?

    PubMed

    Ramírez-Toloza, Galia; Abello, Paula; Ferreira, Arturo

    2016-01-01

    Eight to 10 million people in 21 endemic countries are infected with Trypanosoma cruzi. However, only 30% of those infected develop symptoms of Chagas' disease, a chronic, neglected tropical disease worldwide. Similar to other pathogens, T. cruzi has evolved to resist the host immune response. Studies, performed 80 years ago in the Soviet Union, proposed that T. cruzi infects tumor cells with similar capacity to that displayed for target tissues such as cardiac, aortic, or digestive. An antagonistic relationship between T. cruzi infection and cancer development was also proposed, but the molecular mechanisms involved have remained largely unknown. Probably, a variety of T. cruzi molecules is involved. This review focuses on how T. cruzi calreticulin (TcCRT), exteriorized from the endoplasmic reticulum, targets the first classical complement component C1 and negatively regulates the classical complement activation cascade, promoting parasite infectivity. We propose that this C1-dependent TcCRT-mediated virulence is critical to explain, at least an important part, of the parasite capacity to inhibit tumor development. We will discuss how TcCRT, by directly interacting with venous and arterial endothelial cells, inhibits angiogenesis and tumor growth. Thus, these TcCRT functions not only illustrate T. cruzi interactions with the host immune defensive strategies, but also illustrate a possible co-evolutionary adaptation to privilege a prolonged interaction with its host. PMID:27462315

  18. Overexpression of a Triticum aestivum Calreticulin gene (TaCRT1) Improves Salinity Tolerance in Tobacco

    PubMed Central

    Song, Min; Wang, Yun; Xu, Wenqi; Wu, Lintao; Wang, Hancheng; Ma, Zhengqiang

    2015-01-01

    Calreticulin (CRT) is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum) remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants. PMID:26469859

  19. Thrombospondin-1 Interacts with Trypanosoma cruzi Surface Calreticulin to Enhance Cellular Infection

    PubMed Central

    Johnson, Candice A.; Kleshchenko, Yulia Y.; Ikejiani, Adaeze O.; Udoko, Aniekanabasi N.; Cardenas, Tatiana C.; Pratap, Siddharth; Duquette, Mark A.; Lima, Maria F.; Lawler, Jack; Villalta, Fernando; Nde, Pius N.

    2012-01-01

    Trypanosoma cruzi causes Chagas disease, which is a neglected tropical disease that produces severe pathology and mortality. The mechanisms by which the parasite invades cells are not well elucidated. We recently reported that T. cruzi up-regulates the expression of thrombospondin-1 (TSP-1) to enhance the process of cellular invasion. Here we characterize a novel TSP-1 interaction with T. cruzi that enhances cellular infection. We show that labeled TSP-1 interacts specifically with the surface of T. cruzi trypomastigotes. We used TSP-1 to pull down interacting parasite surface proteins that were identified by mass spectrometry. We also show that full length TSP-1 and the N-terminal domain of TSP-1 (NTSP) interact with T. cruzi surface calreticulin (TcCRT) and other surface proteins. Pre-exposure of recombinant NTSP or TSP-1 to T. cruzi significantly enhances cellular infection of wild type mouse embryo fibroblasts (MEF) compared to the C-terminal domain of TSP-1, E3T3C1. In addition, blocking TcCRT with antibodies significantly inhibits the enhancement of cellular infection mediated by the TcCRT-TSP-1 interaction. Taken together, our findings indicate that TSP-1 interacts with TcCRT on the surface of T. cruzi through the NTSP domain and that this interaction enhances cellular infection. Thus surface TcCRT is a virulent factor that enhances the pathogenesis of T. cruzi infection through TSP-1, which is up-regulated by the parasite. PMID:22808206

  20. Novel distribution of calreticulin to cardiomyocyte mitochondria and its increase in a rat model of dilated cardiomyopathy

    SciTech Connect

    Zhang, Ming; Wei, Jin; Li, Yali; Shan, Hu; Yan, Rui; Lin, Lin; Zhang, Qiuhong; Xue, Jiahong

    2014-06-20

    Highlights: • Calreticulin can also be found in cardiomyocyte mitochondria. • The mitochondrial content of calreticulin is increased in DCM hearts. • Increased expression of mitochondrial CRT may induce mitochondrial damage. • Mitochondrial CRT may inhibit the phosphorylation of mitochondrial STAT3. - Abstract: Background: Calreticulin (CRT), a Ca{sup 2+}-binding chaperone of the endoplasmic reticulum, can also be found in several other locations including the cytosol, nucleus, secretory granules, the outer side of the plasma membrane, and the extracellular matrix. Whether CRT is localized at mitochondria of cardiomyocytes and whether such localization is affected under DCM are still unclear. Methods and results: The DCM model was generated in rats by the daily oral administration of furazolidone for thirty weeks. Echocardiographic and hemodynamic studies demonstrated enlarged left ventricular dimensions and reduced systolic and diastolic function in DCM rats. Immuno-electron microscopy and Western blot showed that CRT was present in cardiomyocyte mitochondria and the mitochondrial content of CRT was increased in DCM hearts (P < 0.05). Morphometric analysis showed notable myocardial apoptosis and mitochondrial swelling with fractured or dissolved cristae in the DCM hearts. Compared with the control group, the mitochondrial membrane potential level of the freshly isolated cardiac mitochondria and the enzyme activities of cytochrome c oxidase and succinate dehydrogenase in the model group were significantly decreased (P < 0.05), and the myocardial apoptosis index and the caspase activities of caspase-9 and caspase-3 were significantly increased (P < 0.05). Pearson linear correlation analysis showed that the mitochondrial content of CRT had negative correlations with the mitochondrial function, and a positive correlation with myocardial apoptosis index (P < 0.001). The protein expression level of cytochrome c and the phosphorylation activity of STAT3 in the

  1. Label-free proteomics identifies Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers for spinal muscular atrophy

    PubMed Central

    2013-01-01

    Background Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations in the survival motor neuron 1 (SMN1) gene. Recent breakthroughs in preclinical research have highlighted several potential novel therapies for SMA, increasing the need for robust and sensitive clinical trial platforms for evaluating their effectiveness in human patient cohorts. Given that most clinical trials for SMA are likely to involve young children, there is a need for validated molecular biomarkers to assist with monitoring disease progression and establishing the effectiveness of therapies being tested. Proteomics technologies have recently been highlighted as a potentially powerful tool for such biomarker discovery. Methods We utilized label-free proteomics to identify individual proteins in pathologically-affected skeletal muscle from SMA mice that report directly on disease status. Quantitative fluorescent western blotting was then used to assess whether protein biomarkers were robustly changed in muscle, skin and blood from another mouse model of SMA, as well as in a small cohort of human SMA patient muscle biopsies. Results By comparing the protein composition of skeletal muscle in SMA mice at a pre-symptomatic time-point with the muscle proteome at a late-symptomatic time-point we identified increased expression of both Calreticulin and GRP75/Mortalin as robust indicators of disease progression in SMA mice. We report that these protein biomarkers were consistently modified in different mouse models of SMA, as well as across multiple skeletal muscles, and were also measurable in skin biopsies. Furthermore, Calreticulin and GRP75/Mortalin were measurable in muscle biopsy samples from human SMA patients. Conclusions We conclude that label-free proteomics technology provides a powerful platform for biomarker identification in SMA, revealing Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers capable of reporting on disease progression in

  2. Aberrant Calreticulin Expression in Articular Cartilage of Dio2 Deficient Mice

    PubMed Central

    Bomer, Nils; Cornelis, Frederique M. F.; Ramos, Yolande F. M.; den Hollander, Wouter; Lakenberg, Nico; van der Breggen, Ruud; Storms, Lies; Slagboom, P. Eline; Lories, Rik J. U.; Meulenbelt, Ingrid

    2016-01-01

    Objective To identify intrinsic differences in cartilage gene expression profiles between wild-type- and Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tissue homeostasis. Methods Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes independent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells (ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage deposition. Results Differential expression analyses of articular cartilage of Dio2-/- (N = 9) and wild-type-mice (N = 11) while applying a cutoff threshold (P < 0.05 (FDR) and FC > |1,5|) resulted in 1 probe located in Calreticulin (Calr) that was found significantly downregulated in Dio2-/- mice (FC = -1.731; P = 0.044). Furthermore, overexpression of Calr during early chondrogenesis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding lower Aggrecan expression, whereas knocking down Calr expression does not lead to histological differences of matrix composition. Conclusion We here demonstrate that the beneficial homeostatic state of articular cartilage in Dio2-/- mice is accompanied with significant lower expression of Calr. Functional analyses further showed that upregulation of Calr expression could act as an initiator of cartilage destruction. The consistent association between Calr and Dio2 expression suggests that enhanced expression of these genes facilitate detrimental effects on cartilage integrity. PMID:27163789

  3. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8

    PubMed Central

    Sukkurwala, A Q; Martins, I; Wang, Y; Schlemmer, F; Ruckenstuhl, C; Durchschlag, M; Michaud, M; Senovilla, L; Sistigu, A; Ma, Y; Vacchelli, E; Sulpice, E; Gidrol, X; Zitvogel, L; Madeo, F; Galluzzi, L; Kepp, O; Kroemer, G

    2014-01-01

    The exposure of calreticulin (CRT) on the surface of stressed and dying cancer cells facilitates their uptake by dendritic cells and the subsequent presentation of tumor-associated antigens to T lymphocytes, hence stimulating an anticancer immune response. The chemotherapeutic agent mitoxantrone (MTX) can stimulate the peripheral relocation of CRT in both human and yeast cells, suggesting that the CRT exposure pathway is phylogenetically conserved. Here, we show that pheromones can act as physiological inducers of CRT exposure in yeast cells, thereby facilitating the formation of mating conjugates, and that a large-spectrum inhibitor of G protein-coupled receptors (which resemble the yeast pheromone receptor) prevents CRT exposure in human cancer cells exposed to MTX. An RNA interference screen as well as transcriptome analyses revealed that chemokines, in particular human CXCL8 (best known as interleukin-8) and its mouse ortholog Cxcl2, are involved in the immunogenic translocation of CRT to the outer leaflet of the plasma membrane. MTX stimulated the production of CXCL8 by human cancer cells in vitro and that of Cxcl2 by murine tumors in vivo. The knockdown of CXCL8/Cxcl2 receptors (CXCR1/Cxcr1 and Cxcr2) reduced MTX-induced CRT exposure in both human and murine cancer cells, as well as the capacity of the latter-on exposure to MTX-to elicit an anticancer immune response in vivo. Conversely, the addition of exogenous Cxcl2 increased the immunogenicity of dying cells in a CRT-dependent manner. Altogether, these results identify autocrine and paracrine chemokine signaling circuitries that modulate CRT exposure and the immunogenicity of cell death. PMID:23787997

  4. Calreticulin mutation does not contribute to disease progression in essential thrombocythemia by inhibiting phagocytosis.

    PubMed

    Daitoku, Shinya; Takenaka, Katsuto; Yamauchi, Takuji; Yurino, Ayano; Jinnouchi, Fumiaki; Nunomura, Takuya; Eto, Tetsuya; Kamimura, Tomohiko; Higuchi, Masakazu; Harada, Naoki; Saito, Noriyuki; Miyamoto, Toshihiro; Iwasaki, Hiromi; Akashi, Koichi

    2016-09-01

    Somatic mutations of calreticulin (CALR) have been observed in many cases of essential thrombocythemia (ET) or primary myelofibrosis that harbor non-mutated Janus kinase 2 (JAK2). CALR mainly localizes within the endoplasmic reticulum lumen, but a small fraction of the total CALR pool is distributed over the cell surface. Cell surface CALR is known to transduce prophagocytic "eat me" signals to macrophages and acts as one of the important regulators for macrophage engulfment. In this study, we attempted to clarify whether mutant CALR may affect the threshold for macrophage engulfment and play an integral role in the pathogenesis of CALR-mutated ET. First, we compared the surface expression levels of CALR on hematopoietic stem and progenitor cells (HSPCs) and mature blood cells in patients with myeloproliferative neoplasms and found that the surface expression of mutant CALR did not change. Next, we compared the threshold for macrophage phagocytosis of each HSPC fraction and mature blood cells and found no significant change in the efficiency of macrophage engulfment. Our data suggest that CALR mutation does not affect sensitivity to phagocytosis by macrophages. Finally, we analyzed the phosphorylation statuses of molecules downstream of JAK2 at each HSPC level in patients with ET and found that CALR mutations activated the JAK-STAT pathway in a manner similar to that associated with JAK2 mutations. These results indicate that mutant CALR causes myeloproliferation because of the activation of JAK-STAT pathway and not by the inhibition of phagocytosis, which is similar to the myeloproliferation caused by JAK2 V617F mutation. PMID:27185380

  5. Identification of the Rheumatoid Arthritis Shared Epitope Binding Site on Calreticulin

    PubMed Central

    Ling, Song; Cheng, Andrew; Pumpens, Paul; Michalak, Marek; Holoshitz, Joseph

    2010-01-01

    Background The rheumatoid arthritis (RA) shared epitope (SE), a major risk factor for severe disease, is a five amino acid motif in the third allelic hypervariable region of the HLA-DRβ chain. The molecular mechanisms by which the SE affects susceptibility to – and severity of - RA are unknown. We have recently demonstrated that the SE acts as a ligand that interacts with cell surface calreticulin (CRT) and activates innate immune signaling. In order to better understand the molecular basis of SE-RA association, here we have undertaken to map the SE binding site on CRT. Principal Findings Surface plasmon resonance (SPR) experiments with domain deletion mutants suggested that the SE binding site is located in the P-domain of CRT. The role of this domain as a SE-binding region was further confirmed by a sulfosuccinimidyl-2-[6-(biotinamido)-2-(p-azido-benzamido) hexanoamido] ethyl-1,3-dithiopropionate (sulfo-SBED) photoactive cross-linking method. In silico analysis of docking interactions between a conformationally intact SE ligand and the CRT P-domain predicted the region within amino acid residues 217–224 as a potential SE binding site. Site-directed mutagenesis demonstrated involvement of residues Glu217 and Glu223 - and to a lesser extent residue Asp220 - in cell-free SPR-based binding and signal transduction assays. Significance We have characterized here the molecular basis of a novel ligand-receptor interaction between the SE and CRT. The interaction represents a structurally and functionally well-defined example of cross talk between the adaptive and innate immune systems that could advance our understanding of the pathogenesis of autoimmunity. PMID:20661469

  6. Transcriptome profiling identifies p53 as a key player during calreticulin deficiency: Implications in lipid accumulation

    PubMed Central

    Vig, Saurabh; Talwar, Puneet; Kaur, Kirandeep; Srivastava, Rohit; Srivastava, Arvind K; Datta, Malabika

    2015-01-01

    Calreticulin (CRT) is an endoplasmic reticulum (ER) resident calcium binding protein that is involved in several cellular activities. Transcriptome analyses in CRT knockdown HepG2 cells revealed 253 altered unique genes and subsequent in silico protein-protein interaction network and MCODE clustering identified 34 significant clusters, of which p53 occupied the central hub node in the highest node-rich cluster. Toward validation, we show that CRT knockdown leads to inhibition of p53 protein levels. Both, CRT and p53 siRNA promote hepatic lipid accumulation and this was accompanied by elevated SREBP-1c and FAS levels. p53 was identified to bind at −219 bp on the SREBP-1c promoter and in the presence of CRT siRNA, there was decreased occupancy of p53 on this binding element. This was associated with increased SREBP-1c promoter activity and both, mutation in this binding site or p53 over-expression antagonised the effects of CRT knockdown. We, therefore, identify a negatively regulating p53 binding site on the SREBP-1c promoter that is critical during hepatic lipid accumulation. These results were validated in mouse primary hepatocytes and toward a physiological relevance, we report that while the levels of CRT and p53 are reduced in the fatty livers of diabetic db/db mice, SREBP-1c levels are significantly elevated. Our results suggest that decreased CRT levels might be involved in the development of a fatty liver by preventing p53 occupancy on the SREBP-1c promoter and thereby facilitating SREBP-1c up-regulation and consequently, lipid accumulation. PMID:25946468

  7. A new approach for investigating venom function applied to venom calreticulin in a parasitoid wasp.

    PubMed

    Siebert, Aisha L; Wheeler, David; Werren, John H

    2015-12-01

    A new method is developed to investigate functions of venom components, using venom gene RNA interference knockdown in the venomous animal coupled with RNA sequencing in the envenomated host animal. The vRNAi/eRNA-Seq approach is applied to the venom calreticulin component (v-crc) of the parasitoid wasp Nasonia vitripennis. Parasitoids are common, venomous animals that inject venom proteins into host insects, where they modulate physiology and metabolism to produce a better food resource for the parasitoid larvae. vRNAi/eRNA-Seq indicates that v-crc acts to suppress expression of innate immune cell response, enhance expression of clotting genes in the host, and up-regulate cuticle genes. V-crc KD also results in an increased melanization reaction immediately following envenomation. We propose that v-crc inhibits innate immune response to parasitoid venom and reduces host bleeding during adult and larval parasitoid feeding. Experiments do not support the hypothesis that v-crc is required for the developmental arrest phenotype observed in envenomated hosts. We propose that an important role for some venom components is to reduce (modulate) the exaggerated effects of other venom components on target host gene expression, physiology, and survival, and term this venom mitigation. A model is developed that uses vRNAi/eRNA-Seq to quantify the contribution of individual venom components to total venom phenotypes, and to define different categories of mitigation by individual venoms on host gene expression. Mitigating functions likely contribute to the diversity of venom proteins in parasitoids and other venomous organisms. PMID:26359852

  8. Homozygous calreticulin mutations in patients with myelofibrosis lead to acquired myeloperoxidase deficiency.

    PubMed

    Theocharides, Alexandre P A; Lundberg, Pontus; Lakkaraju, Asvin K K; Lysenko, Veronika; Myburgh, Renier; Aguzzi, Adriano; Skoda, Radek C; Manz, Markus G

    2016-06-23

    The pathogenesis of acquired myeloperoxidase (MPO) deficiency, a rare phenomenon observed in patients with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), is unknown. MPO is a glycoprotein (GP) chaperoned by calreticulin (CALR) in the endoplasmic reticulum. Mutations in CALR are frequently found in patients with myelofibrosis (MF) and essential thrombocythemia (ET) with nonmutated Janus kinase 2 (JAK2). We hypothesized that acquired MPO deficiency in MPN could be associated with the presence of CALR mutations. A cohort of 317 patients with MPN (142 polycythemia vera [PV], 94 ET, and 81 MF) was screened for MPO deficiency. MPO deficiency was observed in 6/81 MF patients (7.4%), but not in PV or ET patients. Susceptibility to infections had been documented in 2/6 (33%) MPO-deficient patients. Five out of 6 patients with MPO deficiency carried a homozygous CALR mutation and were also deficient in eosinophilic peroxidase (EPX). In contrast, 1 patient with MF, a JAK2-V617F mutation, and MPO deficiency, carried 2 previously reported MPO mutations and showed normal EPX activity. Patients with homozygous CALR mutations had reduced MPO protein, but normal MPO messenger RNA (mRNA) levels supporting a posttranscriptional defect in MPO production. Finally, we demonstrate in vitro that in the absence of CALR, immature MPO protein precursors are degraded in the proteasome. Therefore, 4 decades after the first description of acquired MPO deficiency in MPN, we provide the molecular correlate associated with this phenomenon and evidence that CALR mutations can affect the biosynthesis of GPs. PMID:27013444

  9. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis.

    PubMed

    Marty, Caroline; Pecquet, Christian; Nivarthi, Harini; El-Khoury, Mira; Chachoua, Ilyas; Tulliez, Micheline; Villeval, Jean-Luc; Raslova, Hana; Kralovics, Robert; Constantinescu, Stefan N; Plo, Isabelle; Vainchenker, William

    2016-03-10

    Frameshift mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and myelofibrosis patients. To address the contribution of the CALR mutants to the pathogenesis of myeloproliferative neoplasms, we engrafted lethally irradiated recipient mice with bone marrow cells transduced with retroviruses expressing these mutants. In contrast to wild-type CALR, CALRdel52 (type I) and, to a lesser extent, CALRins5 (type II) induced thrombocytosis due to a megakaryocyte (MK) hyperplasia. Disease was transplantable into secondary recipients. After 6 months, CALRdel52-, in contrast to rare CALRins5-, transduced mice developed a myelofibrosis associated with a splenomegaly and a marked osteosclerosis. Monitoring of virus-transduced populations indicated that CALRdel52 leads to expansion at earlier stages of hematopoiesis than CALRins5. However, both mutants still specifically amplified the MK lineage and platelet production. Moreover, a mutant deleted of the entire exon 9 (CALRdelex9) did not induce a disease, suggesting that the oncogenic property of CALR mutants was related to the new C-terminus peptide. To understand how the CALR mutants target the MK lineage, we used a cell-line model and demonstrated that the CALR mutants, but not CALRdelex9, specifically activate the thrombopoietin (TPO) receptor (MPL) to induce constitutive activation of Janus kinase 2 and signal transducer and activator of transcription 5/3/1. We confirmed in c-mpl- and tpo-deficient mice that expression of Mpl, but not of Tpo, was essential for the CALR mutants to induce thrombocytosis in vivo, although Tpo contributes to disease penetrance. Thus, CALR mutants are sufficient to induce thrombocytosis through MPL activation. PMID:26608331

  10. Collaboration between a soluble C-type lectin and calreticulin facilitates white spot syndrome virus infection in shrimp.

    PubMed

    Wang, Xian-Wei; Xu, Yi-Hui; Xu, Ji-Dong; Zhao, Xiao-Fan; Wang, Jin-Xing

    2014-09-01

    White spot syndrome virus (WSSV) mainly infects crustaceans through the digestive tract. Whether C-type lectins (CLs), which are important receptors for many viruses, participate in WSSV infection in the shrimp stomach remains unknown. In this study, we orally infected kuruma shrimp Marsupenaeus japonicus to model the natural transmission of WSSV and identified a CL (designated as M. japonicus stomach virus-associated CL [MjsvCL]) that was significantly induced by virus infection in the stomach. Knockdown of MjsvCL expression by RNA interference suppressed the virus replication, whereas exogenous MjsvCL enhanced it. Further analysis by GST pull-down and coimmunoprecipitation showed that MjsvCL could bind to viral protein 28, the most abundant and functionally relevant envelope protein of WSSV. Furthermore, cell-surface calreticulin was identified as a receptor of MjsvCL, and the interaction between these proteins was a determinant for the viral infection-promoting activity of MjsvCL. The MjsvCL-calreticulin pathway facilitated virus entry likely in a cholesterol-dependent manner. This study provides insights into a mechanism by which soluble CLs capture and present virions to the cell-surface receptor to facilitate viral infection. PMID:25070855

  11. Protein Recycling from the Golgi Apparatus to the Endoplasmic Reticulum in Plants and Its Minor Contribution to Calreticulin Retention

    PubMed Central

    Pagny, Sophie; Cabanes-Macheteau, Marion; Gillikin, Jeffrey W.; Leborgne-Castel, Nathalie; Lerouge, Patrice; Boston, Rebecca S.; Faye, Loïc; Gomord, Véronique

    2000-01-01

    Using pulse–chase experiments combined with immunoprecipitation and N-glycan structural analysis, we showed that the retrieval mechanism of proteins from post–endoplasmic reticulum (post-ER) compartments is active in plant cells at levels similar to those described previously for animal cells. For instance, recycling from the Golgi apparatus back to the ER is sufficient to block the secretion of as much as 90% of an extracellular protein such as the cell wall invertase fused with an HDEL C-terminal tetrapeptide. Likewise, recycling can sustain fast retrograde transport of Golgi enzymes into the ER in the presence of brefeldin A. However, on the basis of our data, we propose that this retrieval mechanism in plants has little impact on the ER retention of a soluble ER protein such as calreticulin. Indeed, the latter is retained in the ER without any N-glycan–related evidence for a recycling through the Golgi apparatus. Taken together, these results indicate that calreticulin and perhaps other plant reticuloplasmins are possibly largely excluded from vesicles exported from the ER. Instead, they are probably retained in the ER by mechanisms that rely primarily on signals other than H/KDEL motifs. PMID:10810147

  12. Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination

    PubMed Central

    2013-01-01

    Background Calreticulin (CRT) is a chaperone protein, which aids correct folding of glycosylated proteins in the endoplasmic reticulum (ER). Under conditions of ER stress, CRT is upregulated and may be displayed on the surface of cells or be secreted. This ‘ecto-CRT’ may activate the innate immune response or it may aid clearance of apoptotic cells. Our and other studies have demonstrated upregulation of ER stress markers CHOP, BiP, ATF4, XBP1 and phosphorylated e-IF2 alpha (p-eIF2 alpha) in biopsy and post-mortem human multiple sclerosis (MS) samples. We extend this work by analysing changes in expression of CRT, BiP, CHOP, XBP1 and p-eIF2 alpha in a rat model of inflammatory demyelination. Demyelination was induced in the spinal cord by intradermal injection of recombinant mouse MOG mixed with incomplete Freund’s adjuvant (IFA) at the base of the tail. Tissue samples were analysed by semi-quantitative scoring of immunohistochemically stained frozen tissue sections. Data generated following sampling of tissue from animals with spinal cord lesions, was compared to that obtained using tissue derived from IFA- or saline-injected controls. CRT present in rat serum and in a cohort of human serum derived from 14 multiple sclerosis patients and 11 healthy controls was measured by ELISA. Results Stained tissue scores revealed significantly (p<0.05) increased amounts of CRT, CHOP and p-eIF2 alpha in the lesion, lesion edge and normal-appearing white matter when compared to controls. CHOP and p-eIF2 alpha were also significantly raised in regions of grey matter and the central canal (p<0.05). Immunofluorescent dual-label staining confirmed expression of these markers in astrocytes, microglia or neurons. Dual staining of rat and human spinal cord lesions with Oil Red O and CRT antibody showed co-localisation of CRT with the rim of myelin fragments. ELISA testing of sera from control and EAE rats demonstrated significant down-regulation (p<0.05) of CRT in the serum of

  13. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells

    PubMed Central

    Colangelo, T; Polcaro, G; Ziccardi, P; Muccillo, L; Galgani, M; Pucci, B; Rita Milone, M; Budillon, A; Santopaolo, M; Mazzoccoli, G; Matarese, G; Sabatino, L; Colantuoni, V

    2016-01-01

    Immunogenic cell death (ICD) evoked by chemotherapeutic agents implies emission of selected damage-associated molecular patterns (DAMP) such as cell surface exposure of calreticulin, secretion of ATP and HMGB1. We sought to verify whether miR-27a is implicated in ICD, having demonstrated that it directly targets calreticulin. To this goal, we exposed colorectal cancer cell lines, genetically modified to express high or low miR-27a levels, to two bona fide ICD inducers (mitoxantrone and oxaliplatin). Low miR-27a-expressing cells displayed more ecto-calreticulin on the cell surface and increased ATP and HMGB1 secretion than high miR-27a-expressing ones in time-course experiments upon drug exposure. A calreticulin target protector counteracted the miR-27a effects while specific siRNAs mimicked them, confirming the results reported. In addition, miR-27a negatively influenced the PERK-mediated route and the late PI3K-dependent secretory step of the unfolded protein response to endoplasmic reticulum stress, suggesting that miR-27a modulates the entire ICD program. Interestingly, upon chemotherapeutic exposure, low miR-27a levels associated with an earlier and stronger induction of apoptosis and with morphological and molecular features of autophagy. Remarkably, in ex vivo setting, under the same chemotherapeutic induction, the conditioned media from high miR-27a-expressing cells impeded dendritic cell maturation while increased the secretion of specific cytokines (interleukin (IL)-4, IL-6, IL-8) and negatively influenced CD4+ T-cell interferon γ production and proliferation, all markers of a tumor immunoevasion strategy. In conclusion, we provide the first evidence that miR-27a impairs the cell response to drug-induced ICD through the regulatory axis with calreticulin. PMID:26913599

  14. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  15. Frequency of Calreticulin (CALR) Mutation and Its Clinical Prognostic Significance in Essential Thrombocythemia and Primary Myelofibrosis: A Meta-analysis.

    PubMed

    Kong, Hao; Liu, Yancheng; Luo, Sai; Li, Qiaoqiao; Wang, Qinglu

    2016-01-01

    Objective As the calreticulin (CALR) mutation frequency is significantly associated with essential thrombocythemia (ET) and primary myelofibrosis (PMF), this mutation may be an important biomarker in patients with ET and PMF. Methods We performed a literature search until April 2015 and obtained 21 relevant studies. The outcome was pooled as the effect size by using the Stata software program. Results The CALR mutation frequencies in patients with ET and PMF were 19% and 22%, respectively. The CALR mutation ratio in Asian patients with ET was 23% and higher than that in European-American patients (16%). Moreover, the mutation ratio in Asian patients with PMF was lower (21%) than that in European-American patients (23%). A slight trend toward fibrotic transformation was found in ET with CALR mutations, whereas leukemic transformation was not significant in patients with ET or PMF with CALR mutations. Conclusion CALR mutations significantly influence the incident of ET as demonstrated by the meta-analysis. PMID:27477402

  16. Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer

    PubMed Central

    Colangelo, T; Polcaro, G; Ziccardi, P; Pucci, B; Muccillo, L; Galgani, M; Fucci, A; Milone, M R; Budillon, A; Santopaolo, M; Votino, C; Pancione, M; Piepoli, A; Mazzoccoli, G; Binaschi, M; Bigioni, M; Maggi, C A; Fassan, M; Laudanna, C; Matarese, G; Sabatino, L; Colantuoni, V

    2016-01-01

    Impairment of the immune response and aberrant expression of microRNAs are emerging hallmarks of tumour initiation/progression, in addition to driver gene mutations and epigenetic modifications. We performed a preliminary survey of independent adenoma and colorectal cancer (CRC) miRnoma data sets and, among the most dysregulated miRNAs, we selected miR-27a and disclosed that it is already upregulated in adenoma and further increases during the evolution to adenocarcinoma. To identify novel genes and pathways regulated by this miRNA, we employed a differential 2DE-DIGE proteome analysis. We showed that miR-27a modulates a group of proteins involved in MHC class I cell surface exposure and, mechanistically, demonstrated that calreticulin is a miR-27a direct target responsible for most downstream effects in epistasis experiments. In vitro miR-27a affected cell proliferation and angiogenesis; mouse xenografts of human CRC cell lines expressing different miR-27a levels confirmed the protein variations and recapitulated the cell growth and apoptosis effects. In vivo miR-27a inversely correlated with MHC class I molecules and calreticulin expression, CD8+ T cells infiltration and cytotoxic activity (LAMP-1 exposure and perforin release). Tumours with high miR-27a, low calreticulin and CD8+ T cells' infiltration were associated with distant metastasis and poor prognosis. Our data demonstrate that miR-27a acts as an oncomiRNA, represses MHC class I expression through calreticulin downregulation and affects tumour progression. These results may pave the way for better diagnosis, patient stratification and novel therapeutic approaches. PMID:26913609

  17. A panel of tumor markers, calreticulin, annexin A2, and annexin A3 in upper tract urothelial carcinoma identified by proteomic and immunological analysis

    PubMed Central

    2014-01-01

    Background Upper tract urothelial carcinoma (UTUC) is a tumor with sizable metastases and local recurrence. It has a worse prognosis than bladder cancer. This study was designed to investigate the urinary potential tumor markers of UTUC. Methods Between January 2008 and January 2009, urine was sampled from 13 patients with UTUC and 20 healthy adults. The current study identified biomarkers for UTUC using non-fixed volume stepwise weak anion exchange chromatography for fractionation of urine protein prior to two-dimensional gel electrophoresis. Results Fifty five differential proteins have been determined by comparing with the 2-DE maps of the urine of UTUC patients and those of healthy people. Western blotting analysis and immunohistochemistry of tumor tissues and normal tissues from patients with UTUC were carried out to further verify five possible UTUC biomarkers, including zinc-alpha-2-glycoprotein, calreticulin, annexin A2, annexin A3 and haptoglobin. The data of western blot and immunohistochemical analysis are consistent with the 2-DE data. Combined the experimental data in the urine and in tumor tissues collected from patients with UTUC, the crucial over-expressed proteins are calreticulin, annexin A2, and annexin A3. Conclusions Calreticulin, annexin A2, and annexin A3 are very likely a panel of biomarkers with potential value for UTUC diagnosis. PMID:24884814

  18. Catalyzed sodium chlorate candles

    NASA Technical Reports Server (NTRS)

    Malich, C. W.; Wydeven, T.

    1972-01-01

    The catalytic effect of cobalt powder on chlorate decomposition has been confirmed. Catalysis is enhanced by oxidation of the metal during burning. Catalysts other than cobalt compounds should also be effective; the complete elimination of fuel has shown that the oxidation of cobalt during decomposition is not a vital factor in the improved performance of catalyzed candles.

  19. The Interaction of Classical Complement Component C1 with Parasite and Host Calreticulin Mediates Trypanosoma cruzi Infection of Human Placenta

    PubMed Central

    Castillo, Christian; Ramírez, Galia; Valck, Carolina; Aguilar, Lorena; Maldonado, Ismael; Rosas, Carlos; Galanti, Norbel; Kemmerling, Ulrike; Ferreira, Arturo

    2013-01-01

    Background 9 million people are infected with Trypanosoma cruzi in Latin America, plus more than 300,000 in the United States, Canada, Europe, Australia, and Japan. Approximately 30% of infected individuals develop circulatory or digestive pathology. While in underdeveloped countries transmission is mainly through hematophagous arthropods, transplacental infection prevails in developed ones. Methodology/Principal Findings During infection, T. cruzi calreticulin (TcCRT) translocates from the endoplasmic reticulum to the area of flagellum emergence. There, TcCRT acts as virulence factor since it binds maternal classical complement component C1q that recognizes human calreticulin (HuCRT) in placenta, with increased parasite infectivity. As measured ex vivo by quantitative PCR in human placenta chorionic villi explants (HPCVE) (the closest available correlate of human congenital T. cruzi infection), C1q mediated up to a 3–5-fold increase in parasite load. Because anti-TcCRT and anti-HuCRT F(ab′)2 antibody fragments are devoid of their Fc-dependent capacity to recruit C1q, they reverted the C1q-mediated increase in parasite load by respectively preventing its interaction with cell-bound CRTs from both parasite and HPCVE origins. The use of competing fluid-phase recombinant HuCRT and F(ab′)2 antibody fragments anti-TcCRT corroborated this. These results are consistent with a high expression of fetal CRT on placental free chorionic villi. Increased C1q-mediated infection is paralleled by placental tissue damage, as evidenced by histopathology, a damage that is ameliorated by anti-TcCRT F(ab′)2 antibody fragments or fluid-phase HuCRT. Conclusions/Significance T. cruzi infection of HPCVE is importantly mediated by human and parasite CRTs and C1q. Most likely, C1q bridges CRT on the parasite surface with its receptor orthologue on human placental cells, thus facilitating the first encounter between the parasite and the fetal derived placental tissue. The results

  20. A molluscan calreticulin ortholog from Haliotis discus discus: Molecular characterization and transcriptional evidence for its role in host immunity.

    PubMed

    Udayantha, H M V; Godahewa, G I; Bathige, S D N K; Wickramaarachchi, W D Niroshana; Umasuthan, Navaneethaiyer; De Zoysa, Mahanama; Jeong, Hyung-Bok; Lim, Bong-Soo; Lee, Jehee

    2016-05-20

    Calreticulin (CALR), a Ca(2+) binding chaperone of the endoplasmic reticulum (ER) and mainly involved in Ca(2+) storage and signaling. In this study, we report the molecular characterization and immune responses of CALR homolog from disk abalone (AbCALR). The full length AbCALR cDNA (1837 bp) had an ORF of 1224 bp. According to the multiple alignments analysis, N- and P-domains were highly conserved in all the selected members of CALRs. In contrast, the C-domain which terminated with the characteristic ER retrieval signal (HDEL) was relatively less conserved. The phylogenetic analysis showed that all the selected molluscan homologs clustered together. Genomic sequence of AbCALR revealed that cDNA sequence was dispersed into ten exons interconnected with nine introns. AbCALR mRNA expression shows the significant (P < 0.05) up-regulation of AbCALR transcripts in hemocytes upon bacterial (Listeria monocytogenes and Vibrio parahaemolyticus), viral (Viral haemorrhagic septicaemia virus; VHSV) and immune stimulants (LPS and poly I:C) challenges at middle and/or late phases. These results collectively implied that AbCALR is able to be stimulated by pathogenic signals and might play a potential role in host immunity. PMID:27086846

  1. Detection of cell surface calreticulin as a potential cancer biomarker using near-infrared emitting gold nanoclusters.

    PubMed

    Ramesh, Bala Subramaniyam; Giorgakis, Emmanouil; Lopez-Davila, Victor; Dashtarzheneha, Ashkan Kamali; Loizidou, Marilena

    2016-07-15

    Calreticulin (CRT) is a cytoplasmic calcium-binding protein. The aim of this study was to investigate CRT presence in cancer with the use of fluorescent gold nanoclusters (AuNCs) and to explore AuNC synthesis using mercaptosuccinic acid (MSA) as a coating agent. MSA-coated AuNCs conferred well-dispersed, bio-stable, water-soluble nanoparticles with bioconjugation capacity and 800-850 nm fluorescence after broad-band excitation. Cell-viability assay revealed good AuNC tolerability. A native CRT amino-terminus corresponding peptide sequence was synthesised and used to generate rabbit site-specific antibodies. Target specificity was demonstrated with antibody blocking in colorectal and breast cancer cell models; human umbilical vein endothelial cells served as controls. We demonstrated a novel route of AuNC/MSA manufacture and CRT presence on colonic and breast cancerous cell surface. AuNCs served as fluorescent bio-probes specifically recognising surface-bound CRT. These results are promising in terms of AuNC application in cancer theranostics and CRT use as surface biomarker in human cancer. PMID:27255548

  2. Two endoplasmic reticulum proteins (calnexin and calreticulin) are involved in innate immunity in Chinese mitten crab (Eriocheir sinensis)

    PubMed Central

    Huang, Ying; Hui, Kaimin; Jin, Min; Yin, Shaowu; Wang, Wen; Ren, Qian

    2016-01-01

    Calnexin (Cnx) and calreticulin (Crt), which are important chaperones in the endoplasmic reticulum (ER), participate in the folding and quality control of client proteins. Cnx and Crt identified from Chinese mitten crab (Eriocheir sinensis) are designated as EsCnx and EsCrt, respectively. EsCnx and EsCrt are expressed in the hemocyte, hepatopancrea, gill, and intestine at the mRNA and protein level. Immunofluorescence analysis indicated that EsCnx and EsCRT are located in the ER. Moreover, the mRNA and protein expression levels of EsCnx and EsCrt were altered by challenge with lipopolysaccharides (LPS), peptidoglycans (PGN), Staphyloccocus aureus, and Vibrio parahaemolyticus. Recombinant EsCnx and EsCrt (rEsCnx and rEsCrt, respectively) proteins can bind to various Gram-positive and Gram-negative bacteria, as well as to different polysaccharides (LPS and PGN). rEsCnx and rEsCrt assisted in the clearance of V. parahaemolyticus in vivo, and the clearance efficiency was impaired after silencing of EsCnx and EsCrt. Our results suggest that the two ER proteins are involved in anti-bacterial immunity in E. sinensis. PMID:27279413

  3. Detection of cell surface calreticulin as a potential cancer biomarker using near-infrared emitting gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Subramaniyam Ramesh, Bala; Giorgakis, Emmanouil; Lopez-Davila, Victor; Kamali Dashtarzheneha, Ashkan; Loizidou, Marilena

    2016-07-01

    Calreticulin (CRT) is a cytoplasmic calcium-binding protein. The aim of this study was to investigate CRT presence in cancer with the use of fluorescent gold nanoclusters (AuNCs) and to explore AuNC synthesis using mercaptosuccinic acid (MSA) as a coating agent. MSA-coated AuNCs conferred well-dispersed, bio-stable, water-soluble nanoparticles with bioconjugation capacity and 800–850 nm fluorescence after broad-band excitation. Cell-viability assay revealed good AuNC tolerability. A native CRT amino-terminus corresponding peptide sequence was synthesised and used to generate rabbit site-specific antibodies. Target specificity was demonstrated with antibody blocking in colorectal and breast cancer cell models; human umbilical vein endothelial cells served as controls. We demonstrated a novel route of AuNC/MSA manufacture and CRT presence on colonic and breast cancerous cell surface. AuNCs served as fluorescent bio-probes specifically recognising surface-bound CRT. These results are promising in terms of AuNC application in cancer theranostics and CRT use as surface biomarker in human cancer.

  4. Occurrence of calreticulin during the exchange of nucleohistones into protamine-type proteins in Chara vulgaris spermiogenesis.

    PubMed

    Popłońska, Katarzyna

    2013-02-01

    During spermiogenesis of an alga Chara vulgaris, which resembles that of animals, nucleohistones are replaced by protamine-type proteins. This exchange takes place in a spermatid nucleus during the key V spermiogenesis stage, in which rough endoplasmic reticulum is the site of protamine-type protein synthesis and is also the pathway guiding the proteins to their destination, nucleus. In the present work, it was shown that a chaperon protein, calreticulin (CRT), abundantly present at this significant V stage of spermiogenesis in a few cellular compartments, i.e., a nucleus, lumen of cisternae, and vesicles of significantly swollen ER as well as outside these structures, e.g., in Golgi apparatus, could have taken part in the process of exchange of nuclear proteins. Colocalization of two proteins, protamine-type proteins, crucial for reproduction, and CRT, was especially visible in a nucleus, mainly on its peripheries where condensed chromatin was present. Localization of protamine-type proteins and CRT in nucleus is in agreement with our previous results showing that protamine-type proteins were twofold more labelled in the peripheral area in comparison to the nucleus center occupied by noncondensed chromatin. The role of CRT in the reproduction of both plants and animals is also discussed. PMID:22198493

  5. Two endoplasmic reticulum proteins (calnexin and calreticulin) are involved in innate immunity in Chinese mitten crab (Eriocheir sinensis).

    PubMed

    Huang, Ying; Hui, Kaimin; Jin, Min; Yin, Shaowu; Wang, Wen; Ren, Qian

    2016-01-01

    Calnexin (Cnx) and calreticulin (Crt), which are important chaperones in the endoplasmic reticulum (ER), participate in the folding and quality control of client proteins. Cnx and Crt identified from Chinese mitten crab (Eriocheir sinensis) are designated as EsCnx and EsCrt, respectively. EsCnx and EsCrt are expressed in the hemocyte, hepatopancrea, gill, and intestine at the mRNA and protein level. Immunofluorescence analysis indicated that EsCnx and EsCRT are located in the ER. Moreover, the mRNA and protein expression levels of EsCnx and EsCrt were altered by challenge with lipopolysaccharides (LPS), peptidoglycans (PGN), Staphyloccocus aureus, and Vibrio parahaemolyticus. Recombinant EsCnx and EsCrt (rEsCnx and rEsCrt, respectively) proteins can bind to various Gram-positive and Gram-negative bacteria, as well as to different polysaccharides (LPS and PGN). rEsCnx and rEsCrt assisted in the clearance of V. parahaemolyticus in vivo, and the clearance efficiency was impaired after silencing of EsCnx and EsCrt. Our results suggest that the two ER proteins are involved in anti-bacterial immunity in E. sinensis. PMID:27279413

  6. Calreticulin activates β1 integrin via fucosylation by fucosyltransferase 1 in J82 human bladder cancer cells.

    PubMed

    Lu, Yi-Chien; Chen, Chiung-Nien; Chu, Chia-Ying; Lu, Jenher; Wang, Bo-Jeng; Chen, Chia-Hua; Huang, Min-Chuan; Lin, Tsui-Hwa; Pan, Chin-Chen; Chen, Swey-Shen Alex; Hsu, Wen-Ming; Liao, Yung-Feng; Wu, Pei-Yi; Hsia, Hsin-Yi; Chang, Cheng-Chi; Lee, Hsinyu

    2014-05-15

    Fucosylation regulates various pathological events in cells. We reported that different levels of CRT (calreticulin) affect the cell adhesion and metastasis of bladder cancer. However, the precise mechanism of tumour metastasis regulated by CRT remains unclear. Using a DNA array, we identified FUT1 (fucosyltransferase 1) as a gene regulated by CRT expression levels. CRT regulated cell adhesion through α1,2-linked fucosylation of β1 integrin and this modification was catalysed by FUT1. To clarify the roles for FUT1 in bladder cancer, we transfected the human FUT1 gene into CRT-RNAi stable cell lines. FUT1 overexpression in CRT-RNAi cells resulted in increased levels of β1 integrin fucosylation and rescued cell adhesion to type-I collagen. Treatment with UEA-1 (Ulex europaeus agglutinin-1), a lectin that recognizes FUT1-modified glycosylation structures, did not affect cell adhesion. In contrast, a FUT1-specific fucosidase diminished the activation of β1 integrin. These results indicated that α1,2-fucosylation of β1 integrin was not involved in integrin-collagen interaction, but promoted β1 integrin activation. Moreover, we demonstrated that CRT regulated FUT1 mRNA degradation at the 3'-UTR. In conclusion, the results of the present study suggest that CRT stabilized FUT1 mRNA, thereby leading to an increase in fucosylation of β1 integrin. Furthermore, increased fucosylation levels activate β1 integrin, rather than directly modifying the integrin-binding sites. PMID:24593306

  7. A new monoclonal antibody (CAL2) detects CALRETICULIN mutations in formalin-fixed and paraffin-embedded bone marrow biopsies

    PubMed Central

    Stein, H; Bob, R; Dürkop, H; Erck, C; Kämpfe, D; Kvasnicka, H-M; Martens, H; Roth, A; Streubel, A

    2016-01-01

    Recent advances in the diagnostic of myeloproliferative neoplasms (MPNs) discovered CALRETICULIN (CALR) mutations as a major driver in these disorders. In contrast to JAK2 mutations being mainly associated with polycythaemia vera, CALR mutations are only associated with primary myelofibrosis (PMF) and essential thrombocythaemia (ET). CALR mutations are present in the majority of PMF and ET patients lacking JAK2 and MPL mutations. As these CALR mutations are absent from reactive bone marrow (BM) lesions their presence indicates ET or PMF. So far these mutations are detectable only by molecular assays. Their molecular detection is cumbersome because of the great CALR mutation heterogeneity. Therefore, the availability of a simple assay would be of great help. All CALR mutations reported lead to a frameshift generating a new 36 amino-acid C-terminus. We generated a monoclonal antibody (CAL2) to this C-neoterminus by immunizing mice with a representative peptide and compared its performance with Sanger sequencing data in 173 MPNs and other BM diseases. There was a 100% correlation between the molecular and the CAL2 immunohistochemical (IHC) assays. Thus, the detection of CALR mutations by the CAL2 IHC is a specific, sensitive, rapid, simple and low-cost method. PMID:26202929

  8. Abundant accumulation of the calcium-binding molecular chaperone calreticulin in specific floral tissues of Arabidopsis thaliana.

    PubMed Central

    Nelson, D E; Glaunsinger, B; Bohnert, H J

    1997-01-01

    Calreticulin (CRT) is a calcium-binding protein in the endoplasmic reticulum (ER) with an established role as a molecular chaper-one. An additional function in signal transduction, specifically in calcium distribution, is suggested but not proven. We have analyzed the expression pattern of Arabidopsis thaliana CRTs for a comparison with these proposed roles. Three CRT genes were expressed, with identities of the encoded proteins ranging from 54 to 86%. Protein motifs with established functions found in CRTs of other species were conserved. CRT was found in all of the cells in low amounts, whereas three distinct floral tissues showed abundant expression: secreting nectaries, ovules early in development, and a set of subepidermal cells near the abaxial surface of the anther. Localization in the developing endosperm, which is characterized by high protein synthesis rates, can be reconciled with a specific chaperone function. Equally, nectar production and secretion, a developmental stage marked by abundant ER, may require abundant CRT to accommodate the traffic of secretory proteins through the ER. Localization of CRT in the anthers, which are degenerating at the time of maximum expression of CRT, cannot easily be reconciled with a chaperone function but may indicate a role for CRT in anther maturation or dehiscence. PMID:9159940

  9. Involvement of calreticulin in cell proliferation, invasion and differentiation in diallyl disulfide-treated HL-60 cells

    PubMed Central

    Yi, Lan; Shan, Jian; Chen, Xin; Li, Guoqing; Li, Linwei; Tan, Hui; Su, Qi

    2016-01-01

    Diallyl disulfide (DADS) has shown potential as a therapeutic agent in various cancers. Previously, calreticulin (CRT) was found to be downregulated in differentiated HL-60 cells treated with DADS. The present study investigated the role of CRT proteins in DADS-induced proliferation, invasion and differentiation in HL-60 cells. The present study demonstrated that DADS treatment significantly changed the morphology of HL-60 cells and caused the significant time-dependent downregulation of CRT. Small interfering RNA (siRNA)-mediated knockdown of CRT expression significantly inhibited proliferation, decreased invasion ability, increased the expression of cluster of differentiation (CD)11b and reduced the expression of CD33 in DADS-treated HL-60 cells. DADS also significantly affected cell proliferation, invasion and differentiation in CRT-overexpressed HL-60 cells. Nitroblue tetrazolium (NBT) reduction assays showed decreased NBT reduction activity in the CRT overexpression group and increased NBT reduction in the CRT siRNA group. Following treatment with DADS, the NBT reduction abilities in all groups were increased. In conclusion, the present study clearly demonstrates the downregulation of CRT during DADS-induced differentiation in HL-60 cells and indicates that CRT is involved in cell proliferation, invasion and differentiation in DADS-treated HL-60 cells. PMID:27588133

  10. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  11. Catalyzed Ceramic Burner Material

    SciTech Connect

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  12. A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis

    PubMed Central

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Yan-Tao; Wang, Dong-Wei; Xu, Chun-Lin; Huang, Xin; Wang, De-Sen

    2015-01-01

    Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT) is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt), which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis. PMID:26061142

  13. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade

    PubMed Central

    Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini; Mulenga, Albert

    2014-01-01

    In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it’s plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it’s current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation aggregation. We discuss our findings in the context of tick feeding physiology. PMID:25454607

  14. Role of calreticulin in the sensitivity of myocardiac H9c2 cells to oxidative stress caused by hydrogen peroxide.

    PubMed

    Ihara, Yoshito; Urata, Yoshishige; Goto, Shinji; Kondo, Takahito

    2006-01-01

    Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells. PMID:16135540

  15. Artificial feeding of Rhipicephalus microplus female ticks with anti calreticulin serum do not influence tick and Babesia bigemina acquisition.

    PubMed

    Antunes, Sandra; Merino, Octávio; Lérias, Joana; Domingues, Nuno; Mosqueda, Juan; de la Fuente, José; Domingos, Ana

    2015-02-01

    Ticks are obligate haematophagous ectoparasites considered the principal vectors of disease among animals. Rhipicephalus microplus and R. annulatus ticks are the most important vectors for Babesia bigemina and B. bovis, two of the most important intraerythrocytic protozoan parasites species in cattle, responsible for babesiosis which together with anaplasmosis account for substantial economic losses in the livestock industry worldwide. Anti-tick vaccines are a proved alternative to traditional tick and tick borne diseases control methods but are still limited primarily due to the lack of effective antigens. Subsequently to the identification of antigens the validation is a laborious work often expensive. Tick artificial feeding, is a low cost alternative to test antigens allowing achieving critical data. Herein, R. microplus females were successfully artificially fed using capillary tubes. Calreticulin (CRT) protein, which in a previous study has been identified as being involved in B. bigemina infection in R. annulatus ticks, was expressed as recombinant protein (rCRT) in an E. coli expression system and antibodies raised against rCRT. Anti-rCRT serum was supplemented to a blood meal, offered to partially engorged R. microplus females and their effect in feeding process as well as infection by B. bigemina was analyzed. No significant reductions in tick and egg weight were observed when ticks fed with anti-rCRT serum. Furthermore, B. bigemina infection levels did not show a statistically significant decrease when ticks fed with anti-rCRT antibodies. Results suggest that CRT is not a suitable candidate for cattle vaccination trials. PMID:25262467

  16. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition.

    PubMed

    Liu, Shing-Hwa; Lee, Wen-Jane; Lai, De-Wei; Wu, Sheng-Mao; Liu, Chia-Yu; Tien, Hsing-Ru; Chiu, Chien-Shan; Peng, Yen-Chun; Jan, Yee-Jee; Chao, Te-Hsin; Pan, Hung-Chuan; Sheu, Meei-Ling

    2015-04-01

    Peritoneal dissemination is a major clinical obstacle in gastrointestinal cancer therapy, and it accounts for the majority of cancer-related mortality. Calreticulin (CRT) is over-expressed in gastric tumors and has been linked to poor prognosis. In this study, immunohistochemistry studies revealed that the up-regulation of CRT was associated with lymph node and distant metastasis in patients with gastric cancer specimens. CRT was significantly down-regulated in highly metastatic gastric cancer cell lines and metastatic animal by Honokiol-treated. Small RNA interference blocking CRT by siRNA-CRT was translocated to the cells in the early immunogenic response to Honokiol. Honokiol activated endoplasmic reticulum (ER) stress and down-regulated peroxisome proliferator-activated receptor-γ (PPARγ) activity resulting in PPARγ and CRT degradation through calpain-II activity, which could be reversed by siRNA-calpain-II. The Calpain-II/PPARγ/CRT axis and interaction evoked by Honokiol could be blocked by gene silencing or pharmacological agents. Both transforming growth factor (TGF)-β1 and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced cell migration, invasion and reciprocal down-regulation of epithelial marker E-cadherin, which could be abrogated by siRNA-CRT. Moreover, Honokiol significantly suppressed MNNG-induced gastrointestinal tumor growth and over-expression of CRT in mice. Knockdown CRT in gastric cancer cells was found to effectively reduce growth ability and metastasis in vivo. The present study provides insight into the specific biological behavior of CRT in epithelial-to-mesenchymal transition (EMT) and metastasis. Taken together, our results suggest that the therapeutic inhibition of CRT by Honokiol suppresses both gastric tumor growth and peritoneal dissemination by dictating early translocation of CRT in immunogenic cell death, activating ER stress, and blocking EMT. PMID:25619450

  17. The Ca(2+) status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants

    NASA Technical Reports Server (NTRS)

    Persson, S.; Wyatt, S. E.; Love, J.; Thompson, W. F.; Robertson, D.; Boss, W. F.; Brown, C. S. (Principal Investigator)

    2001-01-01

    To investigate the endoplasmic reticulum (ER) Ca(2+) stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca(2+)-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca(2+) uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent (45)Ca(2+) accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca(2+) ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of (45)Ca(2+) released, and a 2- to 3-fold increase in the amount of (45)Ca(2+) retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca(2+) pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca(2+)-containing medium to Ca(2+)-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca(2+) stores and thereby enhances the survival of plants grown in low Ca(2+) medium.

  18. Entamoeba histolytica and E. dispar Calreticulin: Inhibition of Classical Complement Pathway and Differences in the Level of Expression in Amoebic Liver Abscess

    PubMed Central

    Ximénez, Cecilia; González, Enrique; Nieves, Miriam E.; Silva-Olivares, Angélica; Shibayama, Mineko; Galindo-Gómez, Silvia; Escobar-Herrera, Jaime; García de León, Ma del Carmen; Morán, Patricia; Valadez, Alicia; Rojas, Liliana; Hernández, Eric G.; Partida, Oswaldo; Cerritos, René

    2014-01-01

    The role of calreticulin (CRT) in host-parasite interactions has recently become an important area of research. Information about the functions of calreticulin and its relevance to the physiology of Entamoeba parasites is limited. The present work demonstrates that CRT of both pathogenic E. histolytica and nonpathogenic E. dispar species specifically interacted with human C1q inhibiting the activation of the classical complement pathway. Using recombinant EhCRT protein, we demonstrate that CRT interaction site and human C1q is located at the N-terminal region of EhCRT. The immunofluorescence and confocal microscopy experiments show that CRT and human C1q colocalize in the cytoplasmic vesicles and near to the surface membrane of previously permeabilized trophozoites or are incubated with normal human serum which is known to destroy trophozoites. In the presence of peripheral mononuclear blood cells, the distribution of EhCRT and C1q is clearly over the surface membrane of trophozoites. Nevertheless, the level of expression of CRT in situ in lesions of amoebic liver abscess (ALA) in the hamster model is different in both Entamoeba species; this molecule is expressed in higher levels in E. histolytica than in E. dispar. This result suggests that EhCRT may modulate some functions during the early moments of the host-parasite relationship. PMID:24860808

  19. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  20. Nickel-Catalyzed Reductive Couplings.

    PubMed

    Wang, Xuan; Dai, Yijing; Gong, Hegui

    2016-08-01

    The Ni-catalyzed reductive coupling of alkyl/aryl with other electrophiles has evolved to be an important protocol for the construction of C-C bonds. This chapter first emphasizes the recent progress on the Ni-catalyzed alkylation, arylation/vinylation, and acylation of alkyl electrophiles. A brief overview of CO2 fixation is also addressed. The chemoselectivity between the electrophiles and the reactivity of the alkyl substrates will be detailed on the basis of different Ni-catalyzed conditions and mechanistic perspective. The asymmetric formation of C(sp(3))-C(sp(2)) bonds arising from activated alkyl halides is next depicted followed by allylic carbonylation. Finally, the coupling of aryl halides with other C(sp(2))-electrophiles is detailed at the end of this chapter. PMID:27573395

  1. Identification of Up- and Down-Regulated Proteins in Pemetrexed-Resistant Human Lung Adenocarcinoma: Flavin Reductase and Calreticulin Play Key Roles in the Development of Pemetrexed-Associated Resistance.

    PubMed

    Chou, Hsiu-Chuan; Chen, Jing-Yi; Lin, Dai-Ying; Wen, Yueh-Feng; Lin, Chi-Chen; Lin, Sheng-Hao; Lin, Ching-Hsiung; Chung, Ting-Wen; Liao, En-Chi; Chen, Ying-Jen; Wei, Yu-Shan; Tsai, Yi-Ting; Chan, Hong-Lin

    2015-11-01

    Drug resistance is one of the major causes of cancer chemotherapy failure. In the current study, we used a pair of lung adenocarcinoma cell lines, A549 and the pemetrexed-resistant A549/PEM cells, as a model to monitor resistance-dependent cellular responses and identify potential therapeutic targets. By means of 2D differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), we investigated the global protein expression alterations induced by pemetrexed treatment and resistance. The proteomic result revealed that pemetrexed exposure obviously altered the expression of 81 proteins in the A549 cells, whereas no significant response was observed in the similarly treated A549/PEM cells, hence implying an association between these proteins and the drug-specific response. Moreover, 72 proteins including flavin reductase and calreticulin demonstrated differential expression between the A549 and A549/PEM cells, indicating baseline resistance. Additional tests employed siRNA silencing, protein overexpression, cell viability analysis, and analysis of apoptosis to examine and confirm the potency of flavin reductase and calreticulin proteins in the development of pemetrexed resistance. In summary, by using a proteomic approach, we identified numerous proteins, including flavin reductase and calreticulin, involved in pemetrexed drug resistance-developing mechanisms. Our results provide useful diagnostic markers and therapeutic candidates for pemetrexed-resistant lung cancer treatment. PMID:26452990

  2. Iodine-Catalyzed Polysaccharide Esterification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  3. Silanediol-Catalyzed Chromenone Functionalization.

    PubMed

    Hardman-Baldwin, Andrea M; Visco, Michael D; Wieting, Joshua M; Stern, Charlotte; Kondo, Shin-Ichi; Mattson, Anita E

    2016-08-01

    Promising levels of enantiocontrol are observed in the silanediol-catalyzed addition of silyl ketene acetals to benzopyrylium triflates. This rare example of enantioselective, intermolecular chromenone functionalization with carbonyl-containing nucleophiles has potential applications in the synthesis of bioactive chromanones and tetrahydroxanthones. PMID:27453257

  4. Performance of catalyzed hydrazine in field applications

    SciTech Connect

    Allgood, T.B.

    1987-01-01

    The performance of newly developed oxygen scavengers for boilers is often compared to sulfite and hydrazine. Catalyzed hydrazine out-performs hydrazine and might be preferred when catalyzed sulfite cannot be used. Data from a Midwest Utility confirms that, under field conditions, catalyzed hydrazine out-performance hydrazine and carbohydrazine when feedwater oxygen and iron levels were critical. Catalyzed hydrazine might be preferred when high performance and economics are the primary concerns.

  5. Endogenous substrates of sphingosine-dependent kinases (SDKs) are chaperone proteins: heat shock proteins, glucose-regulated proteins, protein disulfide isomerase, and calreticulin.

    PubMed

    Megidish, T; Takio, K; Titani, K; Iwabuchi, K; Hamaguchi, A; Igarashi, Y; Hakomori, S

    1999-03-16

    Protein kinases whose activity is detectable only in the presence of sphingosine (Sph) or N,N'-dimethyl-Sph (DMS), but not in the presence of 15 other sphingolipids, phospholipids, and glycerolipids tested (Megidish, T., et al. (1995) Biochem. Biophys. Res. Commun. 216, 739-747), have been termed "sphingosine-dependent kinases" (SDKs). We showed previously that a purified SDK (termed "SDK1") phosphorylates a specific Ser position of adapter/chaperone protein 14-3-3 isoforms beta, eta, and zeta but not tau or sigma (Megidish, T., et al. (1998) J. Biol. Chem. 273, 21834-45). In this study we found the following: (i) other SDKs with different substrate specificities are present in cytosolic and membrane extracts of mouse Balb/c 3T3 (A31) fibroblasts. (ii) The activation of these SDKs is specific to D-erythro-Sph and its N-methyl derivatives, the effect of L-threo-Sph or its N-methyl derivatives is minimal, and nonspecific cationic amphiphiles have no effect at all. An SDK separated as fractions "TN31-33" phosphorylated a 50 kDa substrate which was identified as calreticulin, as well as two endogenous substrates with molecular mass 58 and 55 kDa, both identified as protein disulfide isomerase (PDI). This SDK, which specifically phosphorylates calreticulin and PDI, both molecular chaperones found at high levels in endoplasmic reticulum, is tentatively termed "SDK2". Another SDK activity was copurified with glucose-regulated protein (GRP) and heat shock proteins (HSP). One GRP substrate had the same amino acid sequence as GRP94 (synonym: endoplasmin); another HSP substrate had the same amino acid sequence as mouse HSP86 or HSP84, the analogues of human HSP90. An SDK activity separated and present in "fraction 42" from Q-Sepharose chromatography specifically phosphorylated GRP105 (or GRP94) and HSP68 but did not phosphorylate PDI or 14-3-3. This SDK is clearly different from other SDKs in its substrate specificity and is tentatively termed "SDK3". Interestingly

  6. Gold-Catalyzed Synthesis of Heterocycles

    NASA Astrophysics Data System (ADS)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  7. Calreticulin discriminates the proximal region at the N-glycosylation site of Glc1Man9GlcNAc2 ligand.

    PubMed

    Hirano, Makoto; Adachi, Yuka; Ito, Yukishige; Totani, Kiichiro

    2015-10-23

    Calreticulin (CRT) is well known as a lectin-like chaperone that recognizes Glc1Man9GlcNAc2 (G1M9)-glycoproteins in the endoplasmic reticulum (ER). However, whether CRT can directly interact with the aglycone moiety (protein portion) of the glycoprotein remains controversial. To improve our understanding of CRT interactions, structure-defined G1M9-derivatives with different aglycones (-OH, -Gly-NH2, and -Gly-Glu-(t)Bu) were used as CRT ligands, and their interactions with recombinant CRT were analyzed using thermal shift analysis. The results showed that CRT binds strongly to a G1M9-ligand in the order -Gly-Glu-(t)Bu > -Gly-NH2 > -OH, which is the same as that of the reglucosylation of Man9GlcNAc2 (M9)-derivatives by the folding sensor enzyme UGGT (UDP-glucose: glycoprotein glucosyltransferase). Our results indicate that, similar to UGGT, CRT discriminates the proximal region at the N-glycosylation site, suggesting a similar mechanism mediating the recognition of aglycone moieties in the ER glycoprotein quality control system. PMID:26362185

  8. Adjuvanticity of a Recombinant Calreticulin Fragment in Assisting Anti-β-Glucan IgG Responses in T Cell-Deficient Mice

    PubMed Central

    Li, Wei-Ji; Long, Kai; Dong, Hong-Liang

    2013-01-01

    Polysaccharide-encapsulated fungi are the chief source of diseases in immunocompromised hosts such as those infected with human immunodeficiency virus or neutropenia patients. Currently available polysaccharide-protein conjugate vaccines are mainly T cell dependent and are usually ineffective in weakened immune systems. In this study, laminarin, a well-characterized β-1,3-glucan, was conjugated with a prokaryotically expressed recombinant fragment (amino acids [aa] 39 to 272) of calreticulin (rCRT/39–272), which exhibits extraordinarily potent immunogenicity and adjuvanticity in experimental animals. The resultant conjugate reserves the immunostimulatory effect of rCRT/39–272 on naïve murine B cells and is capable of eliciting anti-β-glucan IgG (mostly IgG1) responses in not only BALB/c mice but also athymic nude mice. Laminarin-CRT-induced mouse antibodies (Abs) are able to bind with Candida albicans and inhibit its growth in vitro. In addition, vaccination with laminarin-CRT partially protects mice from lethal C. albicans challenge. These results imply that rCRT/39–272 could be used as an ideal carrier or adjuvant for carbohydrate vaccines aimed at inducing or boosting IgG responses to fungal infections in immunodeficient hosts. PMID:23408527

  9. Calreticulin expression: Interaction with the immune infiltrate and impact on survival in patients with ovarian and non-small cell lung cancer.

    PubMed

    Stoll, Gautier; Iribarren, Kristina; Michels, Judith; Leary, Alexandra; Zitvogel, Laurence; Cremer, Isabelle; Kroemer, Guido

    2016-07-01

    Loss of expression of calreticulin (CALR) has been detected by immunohistochemistry in a fraction of non-small cell lung cancers (NSCLC) and has been demonstrated to have a major negative prognostic impact on overall patient survival. Here, we analyzed the impact of CALR expression levels detected by microarray finding a positive correlation between CALR and the expression of a metagene indicating the presence of cytotoxic T lymphocytes (CTL) in NSCLC and ovarian cancer. In addition, we detected a positive correlation with a metagene suggestive of activated dendritic cell (aDC) infiltration in ovarian cancer. Combination of two parameters (CALR + DC (dendritic cell) in NSCL and CALR + aDC in ovarian cancer) or three parameters (CALR + CTL + DC in NSCL and CALR + CTL + aDC in ovarian cancer) had a significant impact on overall patient survival in NSCL (Adenoconsortium) and ovarian cancer (TCGA collection), allowing the stratification of patients in high-risk and low-risk groups. In addition, CALR and aDC alone have a significant impact on overall survival in ovarian cancer. In contrast, in mammary, colorectal and prostate cancer, CALR had no impact on patient survival if analyzed alone or in combination with the immune infiltrate. In addition, CALR correlates with CTL infiltrate in three cancer types (colorectal, breast, ovarian). Altogether, these results support the contention that, at least in some cancers, loss of CALR expression may negatively affect immunosurveillance, thereby reducing patient survival. PMID:27622029

  10. Additive effect of calreticulin and translation initiation factor eIF4E on secreted protein production in the baculovirus expression system.

    PubMed

    Teng, Chao-Yi; van Oers, Monique M; Wu, Tzong-Yuan

    2013-10-01

    The baculovirus expression vector system is widely used for the production of recombinant proteins. However, the yield of membrane-bound or secreted proteins is relatively low when compared with intracellular or nuclear proteins. In a previous study, we had demonstrated that the co-expression of the human chaperones calreticulin (CALR) or β-synuclein (β-syn) increased the production of a secreted protein considerably. A similar effect was also seen when co-expressing insect translation initiation factor eIF4E. In this study, different combinations of the three genes were tested (CALR alone, β-syn + CALR, or β-syn + CALR + eIF4E) to further improve secretory protein production by assessing the expression level of a recombinant secreted alkaline phosphatase (SEFP). An additional 1.8-fold increment of SEFP production was obtained when cells co-expressed all the three "helper" genes, compared to cells, in which only CALR was co-produced with SEFP. Moreover, the duration of the SEFP production lasted much longer in cells that co-expressed these three "helper" genes, up to 10 dpi was observed. Utilization of this "triple-supporters" containing vector offers significant advantages when producing secreted proteins and is likely to have benefits for the production of viral vaccines and other pharmaceutical products. PMID:23900798

  11. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  12. Iridium-Catalyzed Allylic Substitution

    NASA Astrophysics Data System (ADS)

    Hartwig, John F.; Pouy, Mark J.

    Iridium-catalyzed asymmetric allylic substitution has become a valuable method to prepare products from the addition of nucleophiles at the more substituted carbon of an allyl unit. The most active and selective catalysts contain a phosphoramidite ligand possessing at least one arylethyl substituent on the nitrogen atom of the ligand. In these systems, the active catalyst is generated by a base-induced cyclometalation at the methyl group of this substituent to generate an iridium metalacycle bound by the COD ligand of the [Ir(COD)Cl]2 precursor and one additional labile dative ligand. Such complexes catalyze the reactions of linear allylic esters with alkylamines, arylamines, phenols, alcohols, imides, carbamates, ammonia, enolates and enolate equivalents, as well as typical stabilized carbon nucleophiles generated from malonates and cyanoesters. Iridium catalysts for enantioselective allylic substitution have also been generated from phosphorus ligands with substituents bound by heteroatoms, and an account of the studies of such systems, along with a description of the development of iridium catalysts is included.

  13. BEND3 is involved in the human-specific repression of calreticulin: Implication for the evolution of higher brain functions in human.

    PubMed

    Aghajanirefah, A; Nguyen, L N; Ohadi, M

    2016-01-15

    Recent emerging evidence indicates that changes in gene expression levels are linked to human evolution. We have previously reported a human-specific nucleotide in the promoter sequence of the calreticulin (CALR) gene at position -220C, which is the site of action of valproic acid. Reversion of this nucleotide to the ancestral A-allele has been detected in patients with degrees of deficit in higher brain cognitive functions. This mutation has since been reported in the 1000 genomes database at an approximate frequency of <0.0004 in humans (rs138452745). In the study reported here, we present update on the status of rs138452745 across evolution, based on the Ensembl and NCBI databases. The DNA pulldown assay was also used to identify the proteins binding to the C- and A-alleles, using two cell lines, SK-N-BE and HeLa. Consistent with our previous findings, the C-allele is human-specific, and the A-allele is the rule across all other species (N=38). This nucleotide resides in a block of 12-nucleotides that is strictly conserved across evolution. The DNA pulldown experiments revealed that in both SK-N-BE and HeLa cells, the transcription repressor BEN domain containing 3 (BEND3) binds to the human-specific C-allele, whereas the nuclear factor I (NFI) family members, NF1A, B, C, and X, specifically bind to the ancestral A-allele. This binding pattern is consistent with a previously reported decreased promoter activity of the C-allele vs. the A-allele. We propose that there is a link between binding of BEND3 to the CALR rs138452745 C-allele and removal of NFI binding site from this nucleotide, and the evolution of human-specific higher brain functions. To our knowledge, CALR rs138452745 is the first instance of enormous nucleotide conservation across evolution, except in the human species. PMID:26481236

  14. Decreased gene expression activity as a result of a mutation in the calreticulin gene promoter in a family case of schizoaffective disorder.

    PubMed

    Farashi, S; Ohadi, M; Hosseinkhani, S; Darvish, H; Mirabzadeh, A

    2016-06-01

    Accumulating evidence of population association studies support the hypothesis that the high heritability of major psychiatric disorders is a combination of relatively common alleles of modest effect, and rare alleles some with relatively larger effects. We have previously reported low frequency mutations in the proximal promoter of the human calreticulin (CALR) gene that co-occur with the spectrum of major psychiatric disorders. One of those mutations at -205C>T (rs556992558) was detected in an isolate case of schizoaffective disorder. In the current study, the functional implication of mutation -205T is studied in the human neuronal cell lines LAN-5, BE(2)-C and HEK-293. In contrast with other mutations in the promoter region which increase gene expression activity, the -205T mutation significantly decreased gene expression in those cell lines in comparison with the wild-type -205C nucleotide (p < 0.000001, p < 0.0005, and p < 0.017, respectively). Treatment of the cell lines with the mood-stabilizing drug, valproic acid (VPA) resulted in differential gene expression activity in the mutant -205T versus the wild-type -205C construct. VPA increased gene expression activity in both constructs, while a significantly higher expression activity was observed in the mutant construct (p < 0.01), indicative of the creation of a positive effector binding site for VPA as a result of the -205T mutation. We conclude that deviation from normalcy in the level of CALR in either direction is associated with major psychiatric disorders. PMID:27275382

  15. Clinical Manifestation of Calreticulin Gene Mutations in Essential Thrombocythemia without Janus Kinase 2 and MPL Mutations: A Chinese Cohort Clinical Study

    PubMed Central

    Sun, Chao; Zhou, Xin; Zou, Zhi-Jian; Guo, Hong-Feng; Li, Jian-Yong; Qiao, Chun

    2016-01-01

    Background: Recently, calreticulin (CALR) gene mutations have been identified in patients with essential thrombocythemia (ET). A high-frequency of ET cases without Janus kinase 2 (JAK2) mutations contain CALR mutations and exhibit clinical characteristics different from those with mutant JAK2. Thus, we investigated the frequency and clinical features of Chinese patients of Han ethnicity with CALR mutations in ET. Methods: We recruited 310 Chinese patients of Han ethnicity with ET to analyze states of CALR, JAK2V617F, and MPLW515 mutations by polymerase chain reaction and direct sequencing. We analyzed the relationship between the mutations and clinical features. Results: CALR, JAK2V617F, and MPLW515 mutations were detected in 30% (n = 92), 48% (n = 149), and 1% (n = 4) of patients with ET, respectively. The mutation types of CALR involved deletion and insertion of base pairs. Most of them were Type 1 (52-bp deletion) and Type 2 (5-bp insertion, TTGTC) mutations, leading to del367fs46 and ins385fs47, respectively. The three mutations were exclusive. Clinically, patients with mutated CALR had a lower hemoglobin level, lower white blood cell (WBC) count, and higher platelet count compared to those with mutated JAK2 (P < 0.05). Furthermore, a significant difference was found in WBCs between wild-type patients (triple negative for JAK2, MPL, and CALR mutations) and patients with JAK2 mutations. Patients with CALR mutations predominantly clustered into low or intermediate groups according to the International Prognostic Score of thrombosis for ET (P < 0.05). Conclusions: CALR mutations were frequent in Chinese patients with ET, especially in those without JAK2 or MPL mutations. Compared with JAK2 mutant ET, CALR mutant ET showed a different clinical manifestation and an unfavorable prognosis. Thus, CALR is a potentially valuable diagnostic marker and therapeutic target in ET. PMID:27453224

  16. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  17. Gold-catalyzed naphthalene functionalization

    PubMed Central

    Rivilla, Iván

    2011-01-01

    Summary The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO2Et (R = H, Me) from N2C(R)CO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C–H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  18. Hydrogen evolution catalyzed by cobaloximes.

    PubMed

    Dempsey, Jillian L; Brunschwig, Bruce S; Winkler, Jay R; Gray, Harry B

    2009-12-21

    Natural photosynthesis uses sunlight to drive the conversion of energy-poor molecules (H(2)O, CO(2)) to energy-rich ones (O(2), (CH(2)O)(n)). Scientists are working hard to develop efficient artificial photosynthetic systems toward the "Holy Grail" of solar-driven water splitting. High on the list of challenges is the discovery of molecules that efficiently catalyze the reduction of protons to H(2). In this Account, we report on one promising class of molecules: cobalt complexes with diglyoxime ligands (cobaloximes). Chemical, electrochemical, and photochemical methods all have been utilized to explore proton reduction catalysis by cobaloxime complexes. Reduction of a Co(II)-diglyoxime generates a Co(I) species that reacts with a proton source to produce a Co(III)-hydride. Then, in a homolytic pathway, two Co(III)-hydrides react in a bimolecular step to eliminate H(2). Alternatively, in a heterolytic pathway, protonation of the Co(III)-hydride produces H(2) and Co(III). A thermodynamic analysis of H(2) evolution pathways sheds new light on the barriers and driving forces of the elementary reaction steps involved in proton reduction by Co(I)-diglyoximes. In combination with experimental results, this analysis shows that the barriers to H(2) evolution along the heterolytic pathway are, in most cases, substantially greater than those of the homolytic route. In particular, a formidable barrier is associated with Co(III)-diglyoxime formation along the heterolytic pathway. Our investigations of cobaloxime-catalyzed H(2) evolution, coupled with the thermodynamic preference for a homolytic route, suggest that the rate-limiting step is associated with formation of the hydride. An efficient water splitting device may require the tethering of catalysts to an electrode surface in a fashion that does not inhibit association of Co(III)-hydrides. PMID:19928840

  19. Calreticulin acts as an adjuvant to promote dendritic cell maturation and enhances antigen-specific cytotoxic T lymphocyte responses against non-small cell lung cancer cells.

    PubMed

    Liu, Xinli; Li, Jijia; Liu, Yu; Ding, Jianqiao; Tong, Zhuang; Liu, Yang; Zhou, Yang; Liu, Yongyu

    2016-02-01

    Dendritic cell (DC)-based immunotherapy has promising for treatment of non-small cell lung cancer (NSCLC). Melanoma-associated antigen 3 (MAGE-A3) is a tumor-specific antigen and expressed in approximately 35-40% of NSCLC tissues. Calreticulin (CALR) is a protein chaperone and can enhance DC maturation and antigen presentation. In this study, we evaluated the adjuvant activity of CALR in human DC maturation and their capacity to induce MAGE-A3-specific CD8+ cytotoxic T lymphocyte (CTL) responses to NSCLC in vitro. Infection with recombinant Ad-CALR and/or Ad-MAGE-A3, but not with control Ads, induced CALR and/or MAGE-A3 expression in DCs. Infection with Ad-CALR significantly increased the percentages of CD80+, CD83+, CD86+ and HLA-DR+ DCs and IL-12 secretion, but reduced IL-10 production in DCs. Co-culture of autologous lymphocytes with DC-Ad-CALR or DC-Ad-CM significantly increased the numbers of induced CD8+ CTLs. The percentages of IFNγ-secreting CTLs responding to SK-LU-1 and NCI-H522 NSCLC, but not to non-tumor NL-20 cells in Ad-C-CTL, Ad-M-CTL and Ad-CM-CTL were significantly higher than that of DC-CTL and Ad-null-CTL. Ad-C-CTL, Ad-M-CTL and Ad-CM-CTL, but not control DC-CTL and Ad-null-CTL, induced higher frequency of MAGE-A3+HLA-A2+ NCI-H-522 cell apoptosis, but did not affect the survival of MAGE-A3+HLA-A2- SK-LU-1 and non-tumor NL20 cells in vitro. Treatment with anti-HLA-I antibody, but not with anti-HLA-II, dramatically diminished the cytotoxicity of Ad-CM-CTLs against NCI-H522 cells. Our data indicated that CALR acted as an adjuvant to promote DC maturation, which induced CTL development and enhanced MAGE-A3-specific CTL cytotoxicity against NSCLC. PMID:26702740

  20. In Silico and In Vitro Studies on the Protein-Protein Interactions between Brugia malayi Immunomodulatory Protein Calreticulin and Human C1q

    PubMed Central

    Yadav, Sunita; Gupta, Smita; Selvaraj, Chandrabose; Doharey, Pawan Kumar; Verma, Anita; Singh, Sanjeev Kumar; Saxena, Jitendra Kumar

    2014-01-01

    Filarial parasites modulate effective immune response of their host by releasing a variety of immunomodulatory molecules, which help in the long persistence of the parasite within the host. The present study was aimed to characterize an immunomodulatory protein of Brugia malayi and its interaction with the host immune component at the structural and functional level. Our findings showed that Brugia malayi Calreticulin (BmCRT) is responsible for the prevention of classical complement pathway activation via its interaction with the first component C1q of the human host. This was confirmed by inhibition of C1q dependent lysis of immunoglobulin-sensitized Red Blood Cells (S-RBCs). This is possibly the first report which predicts CRT-C1q interaction on the structural content of proteins to explain how BmCRT inhibits this pathway. The molecular docking of BmCRT-C1q complex indicated that C1qB chain (IgG/M and CRP binding sites on C1q) played a major role in the interaction with conserved and non-conserved regions of N and P domain of BmCRT. Out of 37 amino acids of BmCRT involved in the interaction, nine amino acids (Pro126, Glu132, His147, Arg151, His153, Met154, Lys156, Ala196 and Lys212) are absent in human CRT. Both ELISA and in silico analysis showed the significant role of Ca+2 in BmCRT-HuC1q complex formation and deactivation of C1r2–C1s2. Molecular dynamics studies of BmCRT-HuC1q complex showed a deviation from ∼0.4 nm to ∼1.0 nm. CD analyses indicated that BmCRT is composed of 49.6% α helix, 9.6% β sheet and 43.6% random coil. These findings provided valuable information on the architecture and chemistry of BmCRT-C1q interaction and supported the hypothesis that BmCRT binds with huC1q at their targets (IgG/M, CRP) binding sites. This interaction enables the parasite to interfere with the initial stage of host complement activation, which might be helpful in parasites establishment. These results might be utilized for help in blocking the C1q

  1. Trypsin-Catalyzed Deltamethrin Degradation

    PubMed Central

    Xiong, Chunrong; Fang, Fujin; Chen, Lin; Yang, Qinggui; He, Ji; Zhou, Dan; Shen, Bo; Ma, Lei; Sun, Yan; Zhang, Donghui; Zhu, Changliang

    2014-01-01

    To explore if trypsin could catalyze the degradation of non-protein molecule deltamethrin, we compared in vitro hydrolytic reactions of deltamethrin in the presence and absence of trypsin with ultraviolet-visible (UV/Vis) spectrophotometry and gas chromatography-mass spectrometry (GC/MS). In addition, acute oral toxicity of the degradation products was determined in Wistar rats. The results show that the absorption peak of deltamethrin is around 264 nm, while the absorption peaks of deltamethrin degradation products are around 250 nm and 296 nm. In our GC setting, the retention time of undegraded deltamethrin was 37.968 min, while those of deltamethrin degradation products were 15.289 min and 18.730 min. The LD50 of deltamethrin in Wistar rats is 55 mg/kg, while that of deltamethrin degradation products is 3358 mg/kg in female rats and 1045 mg/kg in male rates (61-fold and 19-fold reductions in toxicity), suggesting that trypsin could directly degrade deltamethrin, which significantly reduces the toxicity of deltamethrin. These results expand people's understanding of the functions of proteases and point to potential applications of trypsin as an attractive agent to control residual pesticides in the environment and on agricultural products. PMID:24594869

  2. Ni-Catalyzed Amination Reactions: An Overview.

    PubMed

    Marín, Mario; Rama, Raquel J; Nicasio, M Carmen

    2016-08-01

    Nitrogen-containing organic compounds are valuable in many fields of science and industry. The most reliable method for the construction of C(sp(2) )-N bonds is undoubtedly palladium-catalyzed amination. In spite of the great achievements made in this area, the use of expensive Pd-based catalysts constitutes an important limitation for large-scale applications. Since nickel is the least expensive and most abundant among the group 10 metals, the interest in Ni-based catalysts for processes typically catalyzed by palladium has grown considerably over the last few years. Herein, we revise the development of Ni-catalyzed amination reactions, emphasizing the most relevant and recent advances in the field. PMID:27265724

  3. Iron catalyzed asymmetric oxyamination of olefins.

    PubMed

    Williamson, Kevin S; Yoon, Tehshik P

    2012-08-01

    The regioselective and enantioselective oxyamination of alkenes with N-sulfonyl oxaziridines is catalyzed by a novel iron(II) bis(oxazoline) complex. This process affords oxazolidine products that can be easily manipulated to yield highly enantioenriched free amino alcohols. The regioselectivity of this process is complementary to that obtained from the analogous copper(II)-catalyzed reaction. Thus, both regioisomers of enantioenriched 1,2-aminoalcohols can be obtained using oxaziridine-mediated oxyamination reactions, and the overall sense of regiochemistry can be controlled using the appropriate choice of inexpensive first-row transition metal catalyst. PMID:22793789

  4. Attractor Explosions and Catalyzed Vacuum Decay

    SciTech Connect

    Green, Daniel; Silverstein, Eva; Starr, David

    2006-05-05

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new endpoint for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  5. Attractor explosions and catalyzed vacuum decay

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Silverstein, Eva; Starr, David

    2006-07-01

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new end point for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  6. Data, Leadership, and Catalyzing Culture Change

    ERIC Educational Resources Information Center

    Benson, R. Todd; Trower, Cathy A.

    2012-01-01

    It is crucial to understand today's tenure-track workers so that colleges and universities can continue to attract and retain a large subset of them by understanding and supporting their satisfaction and success at work. In this article, the authors talk about data, leadership, and catalyzing culture change. They discuss data use in the academy…

  7. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  8. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  9. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  10. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  11. Palladium-Catalyzed Environmentally Benign Acylation.

    PubMed

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-01

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone. PMID:27377566

  12. Cold fusion catalyzed by muons and electrons

    SciTech Connect

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  13. Heterogeneously-Catalyzed Conversion of Carbohydrates

    NASA Astrophysics Data System (ADS)

    Vigier, Karine De Oliveira; Jérôme, François

    Polyfunctionality of carbohydrates and their low solubility in conventional organic solvents make rather complex their conversion to higher value added chemicals. Therefore, innovative processes are now strongly needed in order to increase the selectivity of these reactions. Here, we report an overview of the different heterogeneously-catalyzed processes described in the literature. In particular, hydrolysis, dehydration, oxidation, esterification, and etherification of carbohydrates are presented. We shall discuss the main structural parameters that need to be controlled and that permit the conversion of carbohydrates to bioproducts with good selectivity. The conversion of monosaccharides and disaccharides over solid catalysts, as well as recent advances in the heterogeneously-catalyzed conversion of cellulose, will be presented.

  14. Antiproton catalyzed microfission/fusion propulsion

    NASA Technical Reports Server (NTRS)

    Chiang, Pi-Ren; Lewis, Raymond A.; Smith, Gerald A.; Newton, Richard; Dailey, James; Werthman, W. Lance; Chakrabarti, Suman

    1994-01-01

    Inertial confinement fusion (ICF) utilizing an antiproton catalyzed hybrid fission/fusion target is discussed as a potential energy source for interplanetary propulsion. A proof-of-principle experiment underway at Phillips Laboratory, Kirtland AFB and antiproton trapping experiments at CERN, Geneva, Switzerland, are presented. The ICAN propulsion concept is described and results of performance analyses are reviewed. Future work to further define the ICAN concept is outlined.

  15. Nickel-Catalyzed Stereoselective Dicarbofunctionalization of Alkynes.

    PubMed

    Li, Zhaodong; García-Domínguez, Andrés; Nevado, Cristina

    2016-06-01

    A nickel-catalyzed three-component reaction involving terminal alkynes, boronic acids, and alkyl halides is presented herein. Trisubstituted alkenes can be obtained in a highly regio- and stereocontrolled manner by the simultaneous addition of both aryl and alkyl groups across the triple bond in a radical-mediated process. The reaction, devoid of air- and moisture-sensitive organometallic reagents and catalysts, is operationally simple and offers a broad scope and functional-group tolerance. PMID:27111115

  16. Mechanism of salicylate hydroxylase-catalyzed decarboxylation.

    PubMed

    Suzuki, K; Katagiri, M

    1981-02-13

    Salicylate hydroxylase (salicylate, NADH: oxygen oxidoreductase (1-hydroxylating, decarboxylating), EC 1.14.13.1) in Pseudomonas putida catalyzed hydroxylation of the substrate analogue, salicylaldehyde, to form catechol and formate with stoichiometric consumption of NADH and O2. Consequently, a study of primary product derived from the carboxyl group of the authentic substrate, salicylate, was undertaken. The experimental results revealed that CO2 not H2CO3, was produced first. PMID:7213760

  17. Iron-catalyzed asymmetric haloamination reactions.

    PubMed

    Cai, Yunfei; Liu, Xiaohua; Zhou, Pengfei; Kuang, Yulong; Lin, Lili; Feng, Xiaoming

    2013-09-21

    The first iron(III)/N,N'-dioxide-catalyzed asymmetric haloamination of 3-alkylidene- and 3-arylidene-indolin-2-ones was developed, affording the corresponding chiral oxindole derivatives bearing vicinal haloamine substituents with excellent results (up to 99% yield, 99% ee, >19 : 1 dr). This iron catalyst also exhibits perfect enantioselectivity for chalcone derivatives. The cooperative activation of the substrate and the reagent in concert guarantees the high stereoselectivity. PMID:23903004

  18. Microwave-assisted FLP-catalyzed hydrogenations.

    PubMed

    Tussing, S; Paradies, J

    2016-03-30

    FLP-catalyzed hydrogenations of 15 substrates were compared using microwave irradiation and conventional heating. The direct comparison revealed that a rate acceleration of up to 2.5 was achieved in the presence of microwaves. This heating method is particularly promising for the hydrogenation of nitrogen-containing heterocycles. Acridine, quinines and especially 1-methyl indole were reduced very efficiently under mild conditions and only 4 bar hydrogen pressure in high yields. PMID:26580129

  19. Antibody-Catalyzed Degradation of Cocaine

    NASA Astrophysics Data System (ADS)

    Landry, Donald W.; Zhao, Kang; Yang, Ginger X.-Q.; Glickman, Michael; Georgiadis, Taxiarchis M.

    1993-03-01

    Immunization with a phosphonate monoester transition-state analog of cocaine provided monoclonal antibodies capable of catalyzing the hydrolysis of the cocaine benzoyl ester group. An assay for the degradation of radiolabeled cocaine identified active enzymes. Benzoyl esterolysis yields ecgonine methyl ester and benzoic acid, fragments devoid of cocaine's stimulant activity. Passive immunization with such an artificial enzyme could provide a treatment for dependence by blunting reinforcement.

  20. Palladium-catalyzed oxidative carbonylation reactions.

    PubMed

    Wu, Xiao-Feng; Neumann, Helfried; Beller, Matthias

    2013-02-01

    Palladium-catalyzed coupling reactions have become a powerful tool for advanced organic synthesis. This type of reaction is of significant value for the preparation of pharmaceuticals, agrochemicals, as well as advanced materials. Both, academic as well as industrial laboratories continuously investigate new applications of the different methodologies. Clearly, this area constitutes one of the major topics in homogeneous catalysis and organic synthesis. Among the different palladium-catalyzed coupling reactions, several carbonylations have been developed and widely used in organic syntheses and are even applied in the pharmaceutical industry on ton-scale. Furthermore, methodologies such as the carbonylative Suzuki and Sonogashira reactions allow for the preparation of interesting building blocks, which can be easily refined further on. Although carbonylative coupling reactions of aryl halides have been well established, palladium-catalyzed oxidative carbonylation reactions are also interesting. Compared with the reactions of aryl halides, oxidative carbonylation reactions offer an interesting pathway. The oxidative addition step could be potentially avoided in oxidative reactions, but only few reviews exist in this area. In this Minireview, we summarize the recent development in the oxidative carbonylation reactions. PMID:23307763

  1. Transition-Metal-Catalyzed Bioorthogonal Cycloaddition Reactions.

    PubMed

    Yang, Maiyun; Yang, Yi; Chen, Peng R

    2016-02-01

    In recent years, bioorthogonal reactions have emerged as a powerful toolbox for specific labeling and visualization of biomolecules, even within the highly complex and fragile living systems. Among them, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is one of the most widely studied and used biocompatible reactions. The cytotoxicity of Cu(I) ions has been greatly reduced due to the use of Cu(I) ligands, which enabled the CuAAC reaction to proceed on the cell surface, as well as within an intracellular environment. Meanwhile, other transition metals such as ruthenium, rhodium and silver are now under development as alternative sources for catalyzing bioorthogonal cycloadditions. In this review, we summarize the development of CuAAC reaction as a prominent bioorthogonal reaction, discuss various ligands used in reducing Cu(I) toxicity while promoting the reaction rate, and illustrate some of its important biological applications. The development of additional transition metals in catalyzing cycloaddition reactions will also be briefly introduced. PMID:27572985

  2. Fe-catalyzed etching of graphene layers

    NASA Astrophysics Data System (ADS)

    Cheng, Guangjun; Calizo, Irene; Hight Walker, Angela; PML, NIST Team

    We investigate the Fe-catalyzed etching of graphene layers in forming gas. Fe thin films are deposited by sputtering onto mechanically exfoliated graphene, few-layer graphene (FLG), and graphite flakes on a Si/SiO2 substrate. When the sample is rapidly annealed in forming gas, particles are produced due to the dewetting of the Fe thin film and those particles catalyze the etching of graphene layers. Monolayer graphene and FLG regions are severely damaged and that the particles catalytically etch channels in graphite. No etching is observed on graphite for the Fe thin film annealed in nitrogen. The critical role of hydrogen indicates that this graphite etching process is catalyzed by Fe particles through the carbon hydrogenation reaction. By comparing with the etched monolayer and FLG observed for the Fe film annealed in nitrogen, our Raman spectroscopy measurements identify that, in forming gas, the catalytic etching of monolayer and FLG is through carbon hydrogenation. During this process, Fe particles are catalytically active in the dissociation of hydrogen into hydrogen atoms and in the production of hydrogenated amorphous carbon through hydrogen spillover.

  3. Imidazole catalyzes chlorination by unreactive primary chloramines

    PubMed Central

    Roemeling, Margo D.; Williams, Jared; Beckman, Joseph S.; Hurst, James K.

    2015-01-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically-derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated—loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case NAHCl did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl+) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl+). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second order reaction to give 3′-monochloro and 3′,5′-dichloro products. Equilibrium constants for the transchlorination reactions: HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants upon [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl+; consistent with this interpretation, MeIm markedly catalyzed fluorescein chlorination by HOCl

  4. Imidazole catalyzes chlorination by unreactive primary chloramines.

    PubMed

    Roemeling, Margo D; Williams, Jared; Beckman, Joseph S; Hurst, James K

    2015-05-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated--loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case N-α-acetylhistidine chloramine (NAHCl) did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl(+)) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl(+)). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second-order reaction to give 3'-monochloro and 3',5'-dichloro products. Equilibrium constants for the transchlorination reactions HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants on [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl(+); consistent with this interpretation, MeIm markedly catalyzed

  5. Asymmetric petasis reactions catalyzed by chiral biphenols.

    PubMed

    Lou, Sha; Schaus, Scott E

    2008-06-01

    Chiral biphenols catalyze the enantioselective Petasis reaction of alkenyl boronates, secondary amines, and ethyl glyoxylate. The reaction requires the use of 15 mol % of (S)-VAPOL as the catalyst, alkenyl boronates as nucleophiles, ethyl glyoxylate as the aldehyde component, and 3 A molecular sieves as an additive. The chiral alpha-amino ester products are obtained in good yields (71-92%) and high enantiomeric ratios (89:11-98:2). Mechanistic investigations indicate single ligand exchange of acyclic boronate with VAPOL and tetracoordinate boronate intermediates. PMID:18459782

  6. Silver-catalyzed late-stage fluorination.

    PubMed

    Tang, Pingping; Furuya, Takeru; Ritter, Tobias

    2010-09-01

    Carbon-fluorine bond formation by transition metal catalysis is difficult, and only a few methods for the synthesis of aryl fluorides have been developed. All reported transition-metal-catalyzed fluorination reactions for the synthesis of functionalized arenes are based on palladium. Here we present silver catalysis for carbon-fluorine bond formation. Our report is the first example of the use of the transition metal silver to form carbon-heteroatom bonds by cross-coupling catalysis. The functional group tolerance and substrate scope presented here have not been demonstrated for any other fluorination reaction to date. PMID:20695434

  7. Cyanide-catalyzed cyclizations via aldimine coupling.

    PubMed

    Reich, B Jesse E; Justice, Aaron K; Beckstead, Brittany T; Reibenspies, Joseph H; Miller, Stephen A

    2004-02-20

    Aldimine coupling (AIC) is the nitrogen analogue of the benzoin condensation and has been applied to dialdimines, providing the first examples of cyclizations effected by cyanide-catalyzed AIC. Sodium cyanide promoted the facile, intramolecular cyclization of several dialdimines in N,N-dimethylformamide, methanol, or methylene chloride/water (phase-transfer conditions) yielding a variety of six-membered heterocycles. Under aerobic conditions, an oxidative cyclization occurs to provide the diimine heterocycle. Oligomerization was observed with rigid dialdimines for which cyclization was precluded. PMID:14961691

  8. Palladium-Catalyzed Arylation of Fluoroalkylamines

    PubMed Central

    Brusoe, Andrew T.; Hartwig, John F.

    2015-01-01

    We report the synthesis of fluorinated anilines by palladium-catalyzed coupling of fluoroalkylamines with aryl bromides and aryl chlorides. The products of these reactions are valuable because anilines typically require the presence of an electron-withdrawing substituent on nitrogen to suppress aerobic or metabolic oxidation, and the fluoroalkyl groups have steric properties and polarity distinct from those of more common electron-withdrawing amide and sulfonamide units. The fluoroalkylaniline products are unstable under typical conditions for C–N coupling reactions (heat and strong base). However, the reactions conducted with the weaker base KOPh, which has rarely been used in cross-coupling to form C–N bonds, occurred in high yield in the presence of a catalyst derived from commercially available AdBippyPhos and [Pd(allyl)Cl]2. Under these conditions, the reactions occur with low catalyst loadings (<0.50 mol % for most substrates) and tolerate the presence of various functional groups that react with the strong bases that are typically used in Pd-catalyzed C–N cross-coupling reactions of aryl halides. The resting state of the catalyst is the phenoxide complex, (BippyPhosPd(Ar)OPh); due to the electron-withdrawing property of the fluoroalkyl substituent, the turnover-limiting step of the reaction is reductive elimination to form the C–N bond. PMID:26065341

  9. Catalyzed D-D stellarator reactor

    DOE PAGESBeta

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, FR = 0.9 to 1.15, <β> ≈ 8.0% to 11.5%, Zeff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, Bm ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  10. Manganese Catalyzed C-H Halogenation.

    PubMed

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  11. Homogeneous gold-catalyzed efficient oxidative dimerization of propargylic acetates.

    PubMed

    Cui, Li; Zhang, Guozhu; Zhang, Liming

    2009-07-15

    A highly efficient gold-catalyzed oxidative dimerization of propargylic acetates is developed. In this chemistry, Selectfluor oxidation of Au(I) to Au(III) is readily incorporated into Au-catalyzed tandem reactions of propargylic acetates, and transmetallation and reductive elimination on Au(III) intermediates are likely involved. PMID:19362834

  12. Copper-catalyzed synthesis of purine-fused polycyclics.

    PubMed

    Qu, Gui-Rong; Liang, Lei; Niu, Hong-Ying; Rao, Wei-Hao; Guo, Hai-Ming; Fossey, John S

    2012-09-01

    A novel protocol for a Cu-catalyzed direct C((sp(2)))-H activation/intramolecular amination reaction of 6-anilinopurine nucleosides has been developed. This approach provides a new access to a variety of multiheterocyclic compounds from purine compounds via Cu-catalyzed intramolecular N-H bond tautomerism which are endowed with fluorescence. PMID:22900616

  13. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  14. Titanium-catalyzed C-F activation of fluoroalkenes.

    PubMed

    Kühnel, Moritz F; Lentz, Dieter

    2010-04-01

    Detox: air-stable titanocene difluoride efficiently catalyzes the chemoselective hydrodefluorination of fluoroalkenes at room temperature leading to hydrofluoroalkenes in high yields (see scheme: Cp=cyclopentadienyl). This is a rare example of the catalyzed conversion of fluoroalkenes into less-fluorinated compounds, which have a lower climatic impact, and is a potential method for breaking down toxic perfluoroalkenes. PMID:20229554

  15. Acid-Catalyzed Isomerization of Carvone to Carvacrol

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Mattingly, Shawn P.

    2005-01-01

    The acid-catalyzed isomerization of carvone to carvacrol, first reported by Ritter and Ginsburg, is especially well suited with a permanent-magnet FT instrument. The acid-catalyzed isomerization of carvone to carvacrol produced a 61% yield after a three hour reflux with 30% aqueous sulfuric acid.

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  17. Tax Posttranslational Modifications and Interaction with Calreticulin in MT-2 Cells and Human Peripheral Blood Mononuclear Cells of Human T Cell Lymphotropic Virus Type-I-Associated Myelopathy/Tropical Spastic Paraparesis Patients

    PubMed Central

    Medina, Fernando; Quintremil, Sebastian; Alberti, Carolina; Barriga, Andres; Cartier, Luis; Puente, Javier; Ramírez, Eugenio; Ferreira, Arturo; Tanaka, Yuetsu

    2014-01-01

    Abstract The human retrovirus human T cell lymphotropic virus type-I (HTLV-1) is the etiologic agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Axonal degeneration in HAM/TSP patients occurs without neuron infection, with the secreted viral Tax protein proposed to be involved. We previously found that Tax secreted into the culture medium of MT-2 cells (HTLV-1-infected cell line) produced neurite retraction in neuroblastoma cells differentiated to neuronal type. To assess the relevance of Tax posttranslational modifications on this effect, we addressed the question of whether Tax secreted by MT-2 cells and peripheral blood mononuclear cells (PBMCs) of HTLV-1-infected subjects is modified. The interaction of Tax with calreticulin (CRT) that modulates intracellular Tax localization and secretion has been described. We studied Tax localization and modifications in MT-2 cells and its interaction with CRT. Intracellular Tax in MT-2 cells was assessed by flow cytometry, corresponding mainly to a 71-kDa protein followed by western blot. This protein reported as a chimera with gp21 viral protein—confirmed by mass spectrometry—showed no ubiquitination or SUMOylation. The Tax–CRT interaction was determined by confocal microscopy and coimmunoprecipitation. Extracellular Tax from HAM/TSP PBMCs is ubiquitinated according to western blot, and its interaction with CRT was shown by coimmunoprecipitation. A positive correlation between Tax and CRT secretion was observed in HAM/TSP PBMCs and asymptomatic carriers. For both proteins inhibitors and activators of secretion showed secretion through the endoplasmic reticulum–Golgi complex. Tax, present in PBMC culture medium, produced neurite retraction in differentiated neuroblastoma cells. These results suggest that Tax, whether ubiquitinated or not, is active for neurite retraction. PMID:24321043

  18. Enzyme-catalyzed synthesis of aliphatic-aromatic oligoamides.

    PubMed

    Stavila, E; Alberda van Ekenstein, G O R; Loos, K

    2013-05-13

    Enzymatically catalyzed polycondensation of p-xylylenediamine and diethyl sebacate resulted in oligo(p-xylylene sebacamide) with high melting temperatures (223-230 °C) and the enzymatic polycondensation of dimethyl terephthalate and 1,8-diaminooctane leads to oligo(octamethylene terephthalamide) with two melting temperatures at 186 and 218 °C. No oligoamides, but products 1 and 2, were formed from the enzymatic reaction of dimethyl terephthalate and p-xylylenediamine. All reactions were catalyzed by CAL-B, icutinase, or CLEA cutinase. All reactions catalyzed by CAL-B show higher conversion than reactions catalyzed by icutinase or CLEA cutinase. The highest DPmax of 15 was achieved in a one-step and two-step synthesis of oligo(p-xylylene sebacamide) catalyzed by CLEA cutinase. PMID:23544613

  19. RNA-Catalyzed RNA Ligation on an External RNA Template

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Joyce, Gerald F.

    2002-01-01

    Variants of the hc ligase ribozyme, which catalyzes ligation of the 3' end of an RNA substrate to the 5' end of the ribozyme, were utilized to evolve a ribozyme that catalyzes ligation reactions on an external RNA template. The evolved ribozyme catalyzes the joining of an oligonucleotide 3'-hydroxyl to the 5'-triphosphate of an RNA hairpin molecule. The ribozyme can also utilize various substrate sequences, demonstrating a largely sequence-independent mechanism for substrate recognition. The ribozyme also carries out the ligation of two oligonucleotides that are bound at adjacent positions on a complementary template. Finally, it catalyzes addition of mononucleoside '5-triphosphates onto the '3 end of an oligonucleotide primer in a template-dependent manner. The development of ribozymes that catalyze polymerase-type reactions contributes to the notion that an RNA world could have existed during the early history of life on Earth.

  20. Pd and Mo Catalyzed Asymmetric Allylic Alkylation

    PubMed Central

    Trost, Barry M.

    2012-01-01

    The ability to control the alkylation of organic substrates becomes ever more powerful by using metal catalysts. Among the major benefits of metal catalysis is the possibility to perform such processes asymmetrically using only catalytic amounts of the chiral inducing agent which is a ligand to the metal of the catalyst. A unique aspect of asymmetric metal catalyzed processes is the fact that many mechanisms exist for stereoinduction. Furthermore, using the same catalyst system, many types of bonds including but not limited to C-C, C-N, C-O, C-S, C-P, and C-H can be formed asymmetrically. An overview of this process using palladium and molybdenum based metals being developed in my laboratories and how they influence strategy in synthesizing bioactive molecular targets is presented. PMID:22736934

  1. Catalyzed deuterium fueled tandem mirror reactor assessment

    SciTech Connect

    Dobrott, D.

    1985-01-01

    This study was part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corp. The purpose of this portion of the study is to perform an assessment of a conceptual tandem mirror reactor (TMR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to the physics, technology, safety, and cost. Achievable stable betas and magnet configurations are found to be comparable for the Cat-d and d-t fueled TMR. A comparison with respect to cost, reactor performance, and technology requirements for a Cat-d fueled reactor and a comparable d-t fueled reactor such as MARS is also made.

  2. Fabrication of catalyzed ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  3. Palladium-Catalyzed Aminocarbonylation of Allylic Alcohols.

    PubMed

    Li, Haoquan; Neumann, Helfried; Beller, Matthias

    2016-07-11

    A benign and efficient palladium-catalyzed aminocarbonylation reaction of allylic alcohols is presented. The generality of this novel process is demonstrated by the synthesis of β,γ-unsaturated amides including aliphatic, cinnamyl, and terpene derivatives. The choice of ligand is crucial for optimal carbonylation processes: Whereas in most cases the combination of PdCl2 with Xantphos (L6) gave best results, sterically hindered substrates performed better in the presence of simple triphenylphosphine (L10), and primary anilines gave the best results using cataCXium® PCy (L8). The reactivity of the respective catalyst system is significantly enhanced by addition of small amounts of water. Mechanistic studies and control experiments revealed a tandem allylic alcohol amination/C-N bond carbonylation reaction sequence. PMID:27283958

  4. Rhodium-Catalyzed Alkene Difunctionalization with Nitrenes.

    PubMed

    Ciesielski, Jennifer; Dequirez, Geoffroy; Retailleau, Pascal; Gandon, Vincent; Dauban, Philippe

    2016-06-27

    The Rh(II) -catalyzed oxyamination and diamination of alkenes generate 1,2-amino alcohols and 1,2-diamines, respectively, in good to excellent yields and with complete regiocontrol. In the case of diamination, the intramolecular reaction provides an efficient method for the preparation of pyrrolidines, and the intermolecular reaction produces vicinal amines with orthogonal protecting groups. These alkene difunctionalizations proceed by aziridination followed by nucleophilic ring opening induced by an Rh-bound nitrene generated in situ, details of which were uncovered by both experimental and theoretical studies. In particular, DFT calculations show that the nitrogen atom of the putative [Rh]2 =NR metallanitrene intermediate is electrophilic and support an aziridine activation pathway by N⋅⋅⋅N=[Rh]2 bond formation, in addition to the N⋅⋅⋅[Rh]2 =NR coordination mode. PMID:27258005

  5. Enzyme-catalyzed degradation of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Kotchey, Gregg P.

    Carbon nanotubes and graphene, the nanoscale sp 2 allotropes of carbon, have garnered widespread attention as a result of their remarkable electrical, mechanical, and optical properties and the promise of new technologies that harness these properties. Consequently, these carbon nanomaterials (CNMs) have been employed for diverse applications such as electronics, sensors, composite materials, energy conversion devices, and nanomedicine. The manufacture and eventual disposal of these products may result in the release of CNMs into the environment and subsequent exposure to humans, animals, and vegetation. Given the possible pro-inflammatory and toxic effects of CNMs, much attention has been focused on the distribution, toxicity, and persistence of CNMs both in living systems and the environment. This dissertation will guide the reader though recent studies aimed at elucidating fundamental insight into the persistence of CNMs such as carbon nanotubes (CNTs) and graphene derivatives (i.e., graphene oxide and reduced graphene oxide). In particular, in-testtube oxidation/degradation of CNMs catalyzed by peroxidase enzymes will be examined, and the current understanding of the mechanisms underlying these processes will be discussed. Finally, an outlook of the current field including in vitro and in vivo biodegradation experiments, which have benefits in terms of human health and environmental safety, and future directions that could have implications for nanomedical applications such as imaging and drug delivery will be presented. Armed with an understanding of how and why CNMs undergo enzyme-catalyzed oxidation/biodegradation, researchers can tailor the structure of CNMs to either promote or inhibit these processes. For example, in nanomedical applications such as drug delivery, the incorporation of carboxylate functional groups could facilitate biodegradation of the nanomaterial after delivery of the cargo. Also, the incorporation of CNMs with defect sites in consumer

  6. Thermodynamic limitations on microbially catalyzed reaction rates

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Dale, Andrew W.; Amend, Jan P.; Van Cappellen, Philippe

    2012-08-01

    Quantification of global biogeochemical cycles requires knowledge of the rates at which microorganisms catalyze chemical reactions. In order for models that describe these processes to capture global patterns of change, the underlying formulations in them must account for biogeochemical transformations over seasonal and millennial time scales in environments characterized by different energy levels. Building on existing models, a new thermodynamic limiting function is introduced. With only one adjustable parameter, this function that can be used to model microbial metabolism throughout the range of conditions in which organisms are known to be active. The formulation is based on a comparison of the amount of energy available from any redox reaction to the energy required to maintain a membrane potential, a proxy for the minimum amount of energy required by an active microorganism. This function does not require species- or metabolism-specific parameters, and can be used to model metabolisms that capture any amount of energy. The utility of this new thermodynamic rate limiting term is illustrated by applying it to three low-energy processes: fermentation, methanogenesis and sulfate reduction. The model predicts that the rate of fermentation will be reduced by half once the Gibbs energy of the catalyzed reaction reaches -12 kJ (mol e-)-1, and then slowing exponentially until the energy yield approaches zero. Similarly, the new model predicts that the low energy yield of methanogenesis, -4 to -0.5 kJ (mol e-)-1, for a partial pressure of H2 between 11 and 0.6 Pa decreases the reaction rate by 95-99%. Finally, the new function's utility is illustrated through its ability to accurately model sulfate concentration data in an anoxic marine sediment.

  7. NEW CORDIERITE DIESEL PARTICULATE FILTERS FOR CATALYZED AND NON-CATALYZED APPLICATIONS

    SciTech Connect

    Merkel, G; Cutler, W; Tao, T Chiffey, A; Phillips, P; Twigg, M; Walker, A

    2003-08-24

    Cordierite diesel particulate filters provide an economical approach to diesel emissions control. However, further reduction in the pressure drop of catalyzed and non-catalyzed cordierite filters is desirable. In order to derive a fundamental understanding of the relationship between clean and sootloaded pressure drop and the pore microstructure of the ceramic, and to optimize the microstructure for filter performance, cordierite filters have been fabricated spanning an extended range in porosity, pore size distribution, and pore connectivity. Analysis of the results has been applied to the development of several new cordierite diesel particulate filters that possess a unique combination of high filtration efficiency, high strength, and very low clean and soot-loaded pressure drop. Furthermore, catalyst systems have been developed that result in a minimal pressure drop increase of the catalyzed filter. Optimization of porosity and cell geometry has enabled fabrication o f filters with either high or low thermal mass appropriate to the regeneration strategy employed for a given engine management system.

  8. Thioglycoside hydrolysis catalyzed by {beta}-glucosidase

    SciTech Connect

    Shen Hong; Byers, Larry D.

    2007-10-26

    Sweet almond {beta}-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the K{sub m} values for the S- and O-glycosides are similar, the k{sub cat} values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k{sub cat}/K{sub m} for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pK{sub a} 4.5) and a protonated group (pK{sub a} 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active {beta}-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.

  9. Toluene Monooxygenase-Catalyzed Epoxidation of Alkenes

    PubMed Central

    McClay, Kevin; Fox, Brian G.; Steffan, Robert J.

    2000-01-01

    Several toluene monooxygenase-producing organisms were tested for their ability to oxidize linear alkenes and chloroalkenes three to eight carbons long. Each of the wild-type organisms degraded all of the alkenes that were tested. Epoxides were produced during the oxidation of butene, butadiene, and pentene but not hexene or octadiene. A strain of Escherichia coli expressing the cloned toluene-4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 was able to oxidize butene, butadiene, pentene, and hexene but not octadiene, producing epoxides from all of the substrates that were oxidized. A T4MO-deficient variant of P. mendocina KR1 oxidized alkenes that were five to eight carbons long, but no epoxides were detected, suggesting the presence of multiple alkene-degrading enzymes in this organism. The alkene oxidation rates varied widely (ranging from 0.01 to 0.33 μmol of substrate/min/mg of cell protein) and were specific for each organism-substrate pair. The enantiomeric purity of the epoxide products also varied widely, ranging from 54 to >90% of a single epoxide enantiomer. In the absence of more preferred substrates, such as toluene or alkenes, the epoxides underwent further toluene monooxygenase-catalyzed transformations, forming products that were not identified. PMID:10788354

  10. Biotransformations catalyzed by the genus rhodococcus

    SciTech Connect

    Warhurst, A.M.; Fewson, C.A. . Dept. of Biochemistry)

    1994-01-01

    Rhodococci display a diverse range of metabolic capabilities and they are a ubiquitous feature of many environments. They are able to degrade short-chain, long-chain, and halogenated hydrocarbons, and numerous aromatic compounds, including halogenated and other substituted aromatics, heteroaromatics, hydroaromatics, and polycyclic aromatic hydrocarbons. They possess a wide variety of pathways for degrading and modifying aromatic compounds, including dioxygenase and monooxygenase ring attack, and cleavage of catechol by both ortho- and meta-routes, and some strains posses a modified 3-oxoadipate pathway. Biotransformations catalyzed by rhodococci include steroid modification, enantioselective synthesis, and the transformation of nitriles to amides and acids. Tolerance of rhodococci to starvation, their frequent lack of catabolite repression, and their environmental persistence make them excellent candidates for bioremediation treatments. Some strains can produce poly(3-hydroxyalkanoate)s, others can accumulate cesium, and still others are the source of useful enzymes such as phenylalanine dehydrogenase and endoglycosidases. Other actual or potential applications of rhodococci include desulfurization of coal, bioleaching, use of their surfactants in enhancement of oil recovery and as industrial dispersants, and the construction of biosensors.

  11. Horseradish peroxidase catalyzed hydroxylations: mechanistic studies.

    PubMed

    Dordick, J S; Klibanov, A M; Marletta, M A

    1986-05-20

    The hydroxylation of phenol to hydroquinone and catechol in the presence of dihydroxyfumaric acid and oxygen catalyzed by horseradish peroxidase was studied under conditions where the product yield was high and the side reactions were minimal. The reaction is partially uncoupled with a molar ratio of dihydroxyfumaric acid consumed to hydroxylated products of 12:1. Hydrogen peroxide does not participate in the reaction as evidenced by the lack of effect of catalase and by the direct addition of hydrogen peroxide. Conversely, superoxide and hydroxyl radicals are involved as their scavengers are potent inhibitors. Experiments were all consistent with the involvement of compound III (oxygenated ferrous complex) of peroxidase in the reaction. Compound III is stable in the presence of phenol alone but decomposes rapidly in the presence of both phenol and dihydroxyfumaric acid with the concomitant formation of product. Therefore, phenol and dihydroxyfumaric acid must be present with compound III in order for the hydroxylation reaction to occur. A mechanism consistent with the experimental results is proposed. PMID:3718931

  12. Iodide effects in transition metal catalyzed reactions.

    PubMed

    Maitlis, Peter M; Haynes, Anthony; James, Brian R; Catellani, Marta; Chiusoli, Gian Paolo

    2004-11-01

    The unique properties of I(-) allow it to be involved in several different ways in reactions catalyzed by the late transition metals: in the oxidative addition, the migration, and the coupling/reductive elimination steps, as well as in substrate activation. Most steps are accelerated by I(-)(for example through an increased nucleophilicity of the metal center), but some are retarded, because a coordination site is blocked. The "soft" iodide ligand binds more strongly to soft metals (low oxidation state, electron rich, and polarizable) such as the later and heavier transition metals, than do the other halides, or N- and O-centered ligands. Hence in a catalytic cycle that includes the metal in a formally low oxidation state there will be less tendency for the metal to precipitate (and be removed from the cycle) in the presence of I(-) than most other ligands. Iodide is a good nucleophile and is also easily and reversibly oxidized to I(2). In addition, I(-) can play key roles in purely organic reactions that occur as part of a catalytic cycle. Thus to understand the function of iodide requires careful analysis, since two or sometimes more effects occur in different steps of one single cycle. Each of these topics is illustrated with examples of the influence of iodide from homogeneous catalytic reactions in the literature: methanol carbonylation to acetic acid and related reactions; CO hydrogenation; imine hydrogenation; and C-C and C-N coupling reactions. General features are summarised in the Conclusions. PMID:15510253

  13. Mechanisms of bacterially catalyzed reductive dehalogenation

    SciTech Connect

    Picardal, F.W.

    1992-12-31

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using {sup 14}C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  14. Titanium Catalyzed Perchlorate Reduction and Applications

    SciTech Connect

    Gu, Baohua; Bonnesen, Peter V; Sloop Jr, Frederick {Fred} V; Brown, Gilbert M

    2006-01-01

    This work provides a proof-of-principle demonstration that Ti(III)-catalyzed electrochemical techniques could potentially be used for reduction of ClO{sub 4}{sup -} in small waste streams, such as the regeneration of selective anion-exchange resins that are loaded with ClO{sub 4}{sup -}. The technique may not be directly applied for the treatment of large volumes of ClO{sub 4}{sup -}-contaminated water at relatively low concentrations because of its slow reaction kinetics and the use of chemical reagents. Further studies are needed to optimize the reaction conditions in order to achieve a complete reduction of ClO{sub 4}{sup -} and the regeneration of spent resin beds. Alternative complexing and reducing agents may be used to enhance the reaction completeness of sorbed ClO{sub 4}{sup -} in the resin and to overcome potential clogging of micropores within the resin beads resulting from the precipitation of TiO{sub 2}.

  15. Iridium-Catalyzed Hydrogen Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Saidi, Ourida; Williams, Jonathan M. J.

    This chapter describes the application of iridium complexes to catalytic hydrogen transfer reactions. Transfer hydrogenation reactions provide an alternative to direct hydrogenation for the reduction of a range of substrates. A hydrogen donor, typically an alcohol or formic acid, can be used as the source of hydrogen for the reduction of carbonyl compounds, imines, and alkenes. Heteroaromatic compounds and even carbon dioxide have also been reduced by transfer hydrogenation reactions. In the reverse process, the oxidation of alcohols to carbonyl compounds can be achieved by iridium-catalyzed hydrogen transfer reactions, where a ketone or alkene is used as a suitable hydrogen acceptor. The reversible nature of many hydrogen transfer processes has been exploited for the racemization of alcohols, where temporary removal of hydrogen generates an achiral ketone intermediate. In addition, there is a growing body of work where temporary removal of hydrogen provides an opportunity for using alcohols as alkylating agents. In this chemistry, an iridium catalyst "borrows" hydrogen from an alcohol to give an aldehyde or ketone intermediate, which can be transformed into either an imine or alkene under the reaction conditions. Return of the hydrogen from the catalyst provides methodology for the formation of amines or C-C bonds where the only by-product is typically water.

  16. Pd-catalyzed arylation of chlorotrifluoroethylene using arylboronic acids.

    PubMed

    Yamamoto, Tetsuya; Yamakawa, Tetsu

    2012-07-01

    The palladium-catalyzed cross-coupling of chlorotrifluoroethylene and arylboronic acids proceeds in the presence of a base and H(2)O to provide α,β,β-trifluorostyrene derivatives in satisfactory yields. PMID:22691065

  17. Hydrolase-catalyzed biotransformations in deep eutectic solvents.

    PubMed

    Gorke, Johnathan T; Srienc, Friedrich; Kazlauskas, Romas J

    2008-03-14

    Hydrolases show good catalytic activity in deep eutectic solvents, despite the presence of urea, which can denature enzymes, or alcohols, which can interfere with hydrolase-catalyzed reactions. PMID:18309428

  18. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  19. Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases*

    PubMed Central

    Markolovic, Suzana; Wilkins, Sarah E.; Schofield, Christopher J.

    2015-01-01

    The post-translational hydroxylation of prolyl and lysyl residues, as catalyzed by 2-oxoglutarate (2OG)-dependent oxygenases, was first identified in collagen biosynthesis. 2OG oxygenases also catalyze prolyl and asparaginyl hydroxylation of the hypoxia-inducible factors that play important roles in the adaptive response to hypoxia. Subsequently, they have been shown to catalyze N-demethylation (via hydroxylation) of Nϵ-methylated histone lysyl residues, as well as hydroxylation of multiple other residues. Recent work has identified roles for 2OG oxygenases in the modification of translation-associated proteins, which in some cases appears to be conserved from microorganisms through to humans. Here we give an overview of protein hydroxylation catalyzed by 2OG oxygenases, focusing on recent discoveries. PMID:26152730

  20. Copper-Catalyzed Dimerization/Cyclization of Itaconates.

    PubMed

    Li, Zhiqiang; Li, Ruirui; Jiang, Lan; Li, Zhengning

    2015-01-01

    A copper-catalyzed domino reaction between itaconate esters and diethyl zinc (or silane) is developed, affording itaconate dimerization products, multi-ester-substituted cyclopentanones, in moderate to high yields. PMID:26287154

  1. ENVIRONMENTAL ASSESSMENT OF THE BASE CATALYZED DECOMPOSITION (BCD) PROCESS

    EPA Science Inventory

    This report summarizes laboratory-scale, pilot-scale, and field performance data on BCD (Base Catalyzed Decomposition) and technology, collected to date by various governmental, academic, and private organizations.

  2. Nickel-Catalyzed Coupling of Alkenes, Aldehydes, and Silyl Triflates

    PubMed Central

    Ng, Sze-sze; Ho, Chun-Yu; Jamison, Timothy F.

    2011-01-01

    A full account of two recently developed nickel-catalyzed coupling reactions of alkenes, aldehydes and silyl triflates is presented. These reactions provide either allylic alcohol or homoallylic alcohol derivatives selectively, depending on the ligand employed. These processes are believed to be mechanistically distinct from Lewis acid-catalyzed carbonyl-ene reactions, and several lines of evidence supporting this hypothesis are discussed. PMID:16939275

  3. Surface-catalyzed air oxidation of hydrazines: Environmental chamber studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of fuel hydrazines were studied in a 6500-liter fluorocarbon-film chamber at 80 to 100 ppm concentrations. First-order rate constants for the reactions catalyzed by aluminum, water-damaged aluminum (Al/Al2O3), stainless steel 304L, galvanized steel and titanium plates with surface areas of 2 to 24 sq m were determined. With 23.8 sq m of Al/Al2O3 the surface-catalyzed air oxidation of hydrazine had a half-life of 2 hours, diimide (N2H2) was observed as an intermediate and traces of ammonia were present in the final product mixture. The Al/Al2O3 catalyzed oxidation of monomethylhydrazine yielded methyldiazine (HN = NCH3) as an intermediate and traces of methanol. Unsymmetrical dimethylhydrazine gave no detectable products. The relative reactivities of hydrazine, MMH and UDMH were 130 : 7.3 : 1.0, respectively. The rate constants for Al/Al2O3-catalyzed oxidation of hydrazine and MMH were proportional to the square of the surface area of the plates. Mechanisms for the surface-catalyzed oxidation of hydrazine and diimide and the formation of ammonia are proposed.

  4. Conservation Kickstart- Catalyzing Conservation Initiatives Worldwide

    NASA Astrophysics Data System (ADS)

    Treinish, G.

    2014-12-01

    Adventurers and Scientists for Conservation (ASC) is a nonprofit organization that collects environmental data to catalyze conservation initiatives worldwide. Adventure athletes have the skills and motivation to reach the most remote corners of the world. ASC utilizes those skills to provide the scientific community with data while providing the outdoor community with purpose beyond the personal high of reaching a summit or rowing across an ocean. We carefully select projects, choosing partnerships that will maximize the impact of ASC volunteers. Each project must have a clear path to a tangible conservation outcome and demonstrate a clear need for our brand of volunteers. We partner with government agencies, universities, and independant reseachers to kickstart data collection efforts around the world. Last year, through a partnership with the Olympic National Forest, 20 volunteers from the Seattle area set up and monitored camera traps in an effort to survey for costal Pacific marten. Our work led to the species' listing as "critically imperiled" with NatureServe. A partnership with the inaugural Great Pacific Race, engaging trans-Pacific rowing teams, searched for microplastics in the Pacific Ocean as part of our ongoing microplastics campaign. In a multi-year partnership with the American Prairie Reserve (APR), ASC volunteer crews live and work on the Reserve collecting wildlife data year round. The data we obtain directly informs the Reserve's wildlife management decisions. On this project, our crews have safely and effectively navigated temperature extremes from -30 degrees to 100+ degrees while traveling in a remote location. We are currently scouting projects in the Okavango Delta of Botswana and the rainforest of Suriname where we will be able to cover large amounts of area in a short periord of time. ASC is at the crossroads of the adventure and coservation science communities. Our approach of answering specific questions by using highly skilled and

  5. The RimL transacetylase provides resistance to translation inhibitor microcin C.

    PubMed

    Kazakov, Teymur; Kuznedelov, Konstantin; Semenova, Ekaterina; Mukhamedyarov, Damir; Datsenko, Kirill A; Metlitskaya, Anastasija; Vondenhoff, Gaston H; Tikhonov, Anton; Agarwal, Vinayak; Nair, Satish; Van Aerschot, Arthur; Severinov, Konstantin

    2014-10-01

    Peptide-nucleotide antibiotic microcin C (McC) is produced by some Escherichia coli strains. Inside a sensitive cell, McC is processed, releasing a nonhydrolyzable analog of aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. The product of mccE, a gene from the plasmid-borne McC biosynthetic cluster, acetylates processed McC, converting it into a nontoxic compound. MccE is homologous to chromosomally encoded acetyltransferases RimI, RimJ, and RimL, which acetylate, correspondingly, the N termini of ribosomal proteins S18, S5, and L12. Here, we show that E. coli RimL, but not other Rim acetyltransferases, provides a basal level of resistance to McC and various toxic nonhydrolyzable aminoacyl adenylates. RimL acts by acetylating processed McC, which along with ribosomal protein L12 should be considered a natural RimL substrate. When overproduced, RimL also makes cells resistant to albomycin, an antibiotic that upon intracellular processing gives rise to a seryl-thioribosyl pyrimidine that targets seryl-tRNA synthetase. We further show that E. coli YhhY, a protein related to Rim acetyltransferases but without a known function, is also able to detoxify several nonhydrolyzable aminoacyl adenylates but not processed McC. We propose that RimL and YhhY protect bacteria from various toxic aminoacyl nucleotides, either exogenous or those generated inside the cell during normal metabolism. PMID:25002546

  6. Group V sensitive vapor-liquid-solid growth of Au-catalyzed and self-catalyzed III-V nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, Vladimir G.

    2016-04-01

    We present a new theoretical model that treats the group V sensitive growth rates and structures of Au-catalyzed and self-catalyzed III-V nanowires within a single kinetic picture. It is shown that Au-catalyzed III-V nanowires can grow with a time-independent radius within a wide range of parameters. At high V/III flux ratios, the vapor-liquid-solid growth of Au catalyzed III-V nanowires is controlled by surface diffusion of the group III adatoms, while at low V/III flux ratios it becomes nucleation-limited. Conversely, self-catalyzed III-V nanowires cannot grow with a time-independent droplet size and instead such nanowires may either swell or shrink or converge to a certain stationary radius depending on the V/III flux ratio. Quite importantly, the results are presented in a concise analytical form which is convenient for comparison with experimental data or prior theoretical works. We demonstrate how the model fits the data obtained previously for Au- and Ga-catalyzed GaAs nanowires.

  7. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Sibirev, N. V.; Berdnikov, Y.; Gomes, U. P.; Ercolani, D.; Zannier, V.; Sorba, L.

    2016-09-01

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.

  8. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires.

    PubMed

    Dubrovskii, V G; Sibirev, N V; Berdnikov, Y; Gomes, U P; Ercolani, D; Zannier, V; Sorba, L

    2016-09-16

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires. PMID:27501469

  9. Ag-catalyzed C-H/C-C bond functionalization.

    PubMed

    Zheng, Qing-Zhong; Jiao, Ning

    2016-08-21

    Silver, known and utilized since ancient times, is a coinage metal, which has been widely used for various organic transformations in the past few decades. Currently, the silver-catalyzed reaction is one of the frontier areas in organic chemistry, and the progress of research in this field is very rapid. Compared with other transition metals, silver has long been believed to have low catalytic efficiency, and most commonly, it is used as either a cocatalyst or a Lewis acid. Interestingly, the discovery of Ag-catalysis has been significantly improved in recent years. Especially, Ag(i) has been demonstrated as an important and versatile catalyst for a variety of organic transformations. However, so far, there has been no systematic review on Ag-catalyzed C-H/C-C bond functionalization. In this review, we will focus on the development of Ag-catalyzed C-H/C-C bond functionalization and the corresponding mechanism. PMID:27056573

  10. Highly efficient palladium-catalyzed hydrostannation of ethyl ethynyl ether

    PubMed Central

    Andrews, Ian P.; Kwon, Ohyun

    2008-01-01

    The palladium-catalyzed hydrostannation of acetylenes is widely exploited in organic synthesis as a means of forming vinyl stannanes for use in palladium-catalyzed cross-coupling reactions. Application of this methodology to ethyl ethynyl ether results in an enol ether that is challenging to isolate from the crude reaction mixture because of incompatibility with typical silica gel chromatography. Reported here is a highly efficient procedure for the palladium-catalyzed hydrostannation of ethyl ethynyl ether using 0.1% palladium(0) catalyst and 1.0 equiv of tributyltin hydride. The product obtained is a mixture of regioisomers that can be carried forward with exclusive reaction of the β-isomer. This method is highly reproducible; relative to previously reported procedures, it is more economical and involves a more facile purification procedure. PMID:20011027

  11. Nickel-Catalyzed Aromatic C-H Functionalization.

    PubMed

    Yamaguchi, Junichiro; Muto, Kei; Itami, Kenichiro

    2016-08-01

    Catalytic C-H functionalization using transition metals has received significant interest from organic chemists because it provides a new strategy to construct carbon-carbon bonds and carbon-heteroatom bonds in highly functionalized, complex molecules without pre-functionalization. Recently, inexpensive catalysts based on transition metals such as copper, iron, cobalt, and nickel have seen more use in the laboratory. This review describes recent progress in nickel-catalyzed aromatic C-H functionalization reactions classified by reaction types and reaction partners. Furthermore, some reaction mechanisms are described and cutting-edge syntheses of natural products and pharmaceuticals using nickel-catalyzed aromatic C-H functionalization are presented. PMID:27573407

  12. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    PubMed Central

    Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar

    2014-01-01

    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642

  13. Heterocycle Formation via Palladium-Catalyzed C–H Functionalization

    PubMed Central

    Mei, Tian-Sheng; Kou, Lei; Ma, Sandy; Engle, Keary M.; Yu, Jin-Quan

    2016-01-01

    Heterocyclic compounds are ubiquitous in natural products, pharmaceuticals, and agrochemicals. Therefore, the design of novel protocols to construct heterocycles more efficiently is a major area of focus in the organic chemistry. In the past several years, cyclization reactions based upon palladium-catalyzed C–H activation have received substantial attention due to their capacity for expediting heterocycle synthesis. This review discusses strategies for heterocycle synthesis via palladium-catalyzed C–H bond activation and highlights recent examples from the literature. PMID:27397938

  14. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    SciTech Connect

    Qinhua Huang

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I{sub 2}, ICl, PhSeCl, PhSCl and p-O{sub 2}NC{sub 6}H{sub 4}SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that

  15. Copper-Catalyzed Carbonylative Coupling of Cycloalkanes and Amides.

    PubMed

    Li, Yahui; Dong, Kaiwu; Zhu, Fengxiang; Wang, Zechao; Wu, Xiao-Feng

    2016-06-13

    Carbonylation reactions are a most powerful method for the synthesis of carbonyl-containing compounds. However, most known carbonylation procedures still require noble-metal catalysts and the use of activated compounds and good nucleophiles as substrates. Herein, we developed a copper-catalyzed carbonylative transformation of cycloalkanes and amides. Imides were prepared in good yields by carbonylation of a C(sp(3) )-H bond of the cycloalkane with the amides acting as weak nucleophiles. Notably, this is the first report of copper-catalyzed carbonylative C-H activation. PMID:27167881

  16. Recent advances in copper-catalyzed asymmetric coupling reactions.

    PubMed

    Zhou, Fengtao; Cai, Qian

    2015-01-01

    Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C-C, C-N, C-O and other carbon-heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C-C and carbon-heteroatom bonds. PMID:26734106

  17. Recent advances in copper-catalyzed asymmetric coupling reactions

    PubMed Central

    2015-01-01

    Summary Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds. PMID:26734106

  18. Molecular Mechanism by which One Enzyme Catalyzes Two Reactions

    NASA Astrophysics Data System (ADS)

    Nishimasu, Hiroshi; Fushinobu, Shinya; Wakagi, Takayoshi

    Unlike ordinary enzymes, fructose-1,6-bisphosphate (FBP) aldolase/phosphatase (FBPA/P) catalyzes two distinct reactions : (1) the aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate to FBP, and (2) the dephosphorylation of FBP to fructose-6-phosphate. We solved the crystal structures of FBPA/P in complex with DHAP (its aldolase form) and FBP (its phosphatase form). The crystal structures revealed that FBPA/P exhibits the dual activities through a dramatic conformational change in the active-site architecture. Our findings expand the conventional concept that one enzyme catalyzes one reaction.

  19. Palladium (II/IV) catalyzed cyclopropanation reactions: scope and mechanism

    PubMed Central

    Lyons, Thomas W.

    2009-01-01

    This report describes detailed studies of the scope and mechanism of a new Pd-catalyzed oxidation reaction for the stereospecific conversion of enynes into cyclopropyl ketones. Unlike related PdII/0, Au, and Pt-catalyzed cyclopropane-forming reactions, these transformations proceed with net inversion of geometry with respect to the starting alkene. This result, along with other mechanistic data, is consistent with a PdII/IV mechanism in which the key cyclopropane-forming step involves nucleophilic attack of a tethered olefin onto the PdIV–C bond. PMID:20161134

  20. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions.

    PubMed

    Zhang, Changsheng; Griffith, Byron R; Fu, Qiang; Albermann, Christoph; Fu, Xun; Lee, In-Kyoung; Li, Lingjun; Thorson, Jon S

    2006-09-01

    Glycosyltransferases (GTs), an essential class of ubiquitous enzymes, are generally perceived as unidirectional catalysts. In contrast, we report that four glycosyltransferases from two distinct natural product biosynthetic pathways-calicheamicin and vancomycin-readily catalyze reversible reactions, allowing sugars and aglycons to be exchanged with ease. As proof of the broader applicability of these new reactions, more than 70 differentially glycosylated calicheamicin and vancomycin variants are reported. This study suggests the reversibility of GT-catalyzed reactions may be general and useful for generating exotic nucleotide sugars, establishing in vitro GT activity in complex systems, and enhancing natural product diversity. PMID:16946071

  1. Nickel catalyzed α-arylation of ketones with aryltrimethylammonium triflates.

    PubMed

    Li, Jing; Wang, Zhong-Xia

    2016-08-21

    Nickel-catalyzed α-arylation of ketones involving aromatic C-N cleavage has been accomplished. Intermolecular coupling of aromatic ketones with a variety of aryltrimethylammonium triflates was achieved in the presence of Ni(COD)2, IPr·HCl, and LiOBu(t), giving α-arylated ketones in reasonable to excellent yields. PMID:27443786

  2. Rhodium-Catalyzed Boron Arylation of 1,2-Azaborines**

    PubMed Central

    Rudebusch, Gabriel E.; Zakharov, Lev N.; Liu, Shih-Yuan

    2013-01-01

    A Sn-phony in B! BN isosteres of biphenyl compounds are prepared through Rh-catalyzed cross-coupling between 2-chloro-1,2-azaborines and arylstannanes (see scheme). The synthetic method should enable investigations of structure–activity relationships (SARs) by expanding the chemical space of the pharmaceutically relevant biphenyl structure through BN/CC isosterism. PMID:23832871

  3. Copper-catalyzed N-cyanation of sulfoximines by AIBN.

    PubMed

    Teng, Fan; Yu, Jin-Tao; Zhou, Zhou; Chu, Haoke; Cheng, Jiang

    2015-03-01

    The direct copper-catalyzed N-cyanation of sulfoximines was achieved by using AIBN as a safe cyanide source. It represents a simple and environmentally benign procedure for the construction of the N-CN bond. Furthermore, some sec-amines can also be tolerated well under this procedure. PMID:25668584

  4. Palladium-Catalyzed Synthesis of 9-Fluorenylidenes through Aryne Annulation

    PubMed Central

    Worlikar, Shilpa A.; Larock, Richard C.

    2009-01-01

    The palladium-catalyzed annulation of arynes by substituted ortho-halostyrenes produces substituted 9- fluorenylidenes in good yields. This methodology provides this important carbocyclic ring system in a single step, which involves the generation of two new carbon-carbon bonds, occurs under relatively mild reaction conditions and tolerates a variety of functional groups, including cyano, ester, aldehyde and ketone groups. PMID:19413328

  5. Analysis of enzyme-catalyzed nucleotide modification by aldose reductase

    SciTech Connect

    Grimshaw, C.E.

    1987-05-01

    Homogeneous bovine kidney aldose reductase catalyzes two reactions in addition to the normal aldehyde-dependent oxidation of NADPH. First, adduct formation between the oxidized nucleotide and the oxidized substrate is observed during turnover due to initial formation of a reversible E:NADP/sup +/:R-CHO ternary complex, which subsequently reacts to give the covalent complex (E:NADP/sup +/-R-CHO). The reaction is enzyme-catalyzed with substantial enhancement of both the pseudo-first order rate constant and the overall K/sub eq/ relative to the reaction with free NADP/sup +/ in aqueous buffer. Analysis of the concentration dependence and time-course for reversible dead-end and covalent complex formation are described for several aldehyde and nucleotide substrates. Non-linear time courses for aldehyde reduction and substrate inhibition by the aldehyde substrate in initial velocity studies are completely accounted for by this mechanism, thereby eliminating a simple Dalziel-type explanation for the substrate activation by aldehyde which is also observed. Second, enzyme-catalyzed oxidation of NADPH occurs in the absence of aldehyde substrate with a rate equal to .03% of V/sub max/ for the normal reduction of glyceraldehyde. By 500 MHz /sup 1/H-NMR, the enzyme-catalyzed oxidation of (4-/sup 2/H)NADPH appears to be greater than 95% stereospecific. Spectroscopic evidence for a similar oxidation reaction is observed for the covalent E:NADP/sup +/-R-CHO adduct with glyceraldehyde, but not with glycolaldehyde.

  6. Cu(II) - Catalyzed Hydrazine Reduction of Ferrous Nitrate

    SciTech Connect

    Karraker, D.G.

    2001-10-15

    This report discusses the results of a study of catalyzed hydrazine reduction of ferrous nitrate. It is apparent that there is a substantial reaction between hydrazine and nitrate ion (or nitric acid) to produce HN3 during both the reduction of Fe(III) and during storage at room temperature.

  7. Gold(I)-Catalyzed Hydroarylation of Allenes with Indoles

    PubMed Central

    Toups, Kristina L.; Liu, Gordon T.; Widenhoefer, Ross A.

    2010-01-01

    Reaction of a monosubstituted, 1,3-disubstituted, or tetrasubstituted allene with various indoles catalyzed by a 1:1 mixture of a gold(I) N-heterocyclic carbene complex and AgOTf at room temperature leads to hydroarylation with formation of 3-allyl-indoles in modest to good yield. PMID:20305794

  8. Gold(I)-Catalyzed Hydroarylation of Allenes with Indoles

    PubMed Central

    Toups, Kristina L.; Liu, Gordon T.; Widenhoefer, Ross A.

    2009-01-01

    Reaction of a monosubstituted, 1,3-disubstituted, or tetrasubstituted allene with various indoles catalyzed by a 1:1 mixture of a gold(I) N-heterocyclic carbene complex and AgOTf at room temperature leads to hydroarylation with formation of 3-allyl-indoles in modest to good yield. PMID:17428061

  9. Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.

    ERIC Educational Resources Information Center

    Polichnowski, S. W.

    1986-01-01

    Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)

  10. Oxo-rhenium catalyzed reductive coupling and deoxygenation of alcohols.

    PubMed

    Kasner, Gabrielle R; Boucher-Jacobs, Camille; Michael McClain, J; Nicholas, Kenneth M

    2016-06-01

    Representative benzylic, allylic and α-keto alcohols are deoxygenated to alkanes and/or reductively coupled to alkane dimers by reaction with PPh3 catalyzed by (PPh3)2ReIO2 (1). The newly discovered catalytic reductive coupling reaction is a rare C-C bond-forming transformation of alcohols. PMID:27174412

  11. Silver-catalyzed protodecarboxylation of heteroaromatic carboxylic acids.

    PubMed

    Lu, Pengfei; Sanchez, Carolina; Cornella, Josep; Larrosa, Igor

    2009-12-17

    A simple and highly efficient protodecarboxylation procedure for a variety of heteroaromatic carboxylic acids catalyzed by Ag(2)CO(3) and AcOH in DMSO is described. This methodology can also perform the selective monoprotodecarboxylation of several aromatic dicarboxylic acids. PMID:19924891

  12. Ligand-Controlled Regiodivergent Copper-Catalyzed Alkylboration of Alkenes.

    PubMed

    Su, Wei; Gong, Tian-Jun; Lu, Xi; Xu, Meng-Yu; Yu, Chu-Guo; Xu, Zheng-Yang; Yu, Hai-Zhu; Xiao, Bin; Fu, Yao

    2015-10-26

    A novel copper-catalyzed regiodivergent alkylboration of alkenes with bis(pinacolato)diboron and alkyl halides has been developed. The regioselectivity of the alkylboration was controlled by subtle differences in the ligand structure. The reaction thus enables the practical, regiodivergent synthesis of two different alkyl boronic esters with complex structures from a single alkene. PMID:26338141

  13. Nickel-Catalyzed Reductive Amidation of Unactivated Alkyl Bromides.

    PubMed

    Serrano, Eloisa; Martin, Ruben

    2016-09-01

    A user-friendly, nickel-catalyzed reductive amidation of unactivated primary, secondary, and tertiary alkyl bromides with isocyanates is described. This catalytic strategy offers an efficient synthesis of a wide range of aliphatic amides under mild conditions and with an excellent chemoselectivity profile while avoiding the use of stoichiometric and sensitive organometallic reagents. PMID:27357076

  14. Copper-catalyzed intermolecular asymmetric propargylic dearomatization of indoles.

    PubMed

    Shao, Wen; Li, He; Liu, Chuan; Liu, Chen-Jiang; You, Shu-Li

    2015-06-22

    The first copper-catalyzed intermolecular dearomatization of indoles by an asymmetric propargylic substitution reaction was developed. This method provides a highly efficient synthesis of versatile furoindoline and pyrroloindoline derivatives containing a quaternary carbon stereogenic center and a terminal alkyne moiety with up to 86 % yield and 98 % ee. PMID:25968474

  15. Iron-catalyzed arylation of α-aryl-α-diazoesters.

    PubMed

    Yang, Ji-Min; Cai, Yan; Zhu, Shou-Fei; Zhou, Qi-Lin

    2016-06-28

    An iron-catalyzed arylation of α-aryl-α-diazoesters with electron-rich benzene rings was developed, which provides an efficient method for the preparation of 1,1-diarylacetates with high yields and excellent chemo- and regio-selectivities. PMID:26805776

  16. Palladium(III)-catalyzed fluorination of arylboronic acid derivatives.

    PubMed

    Mazzotti, Anthony R; Campbell, Michael G; Tang, Pingping; Murphy, Jennifer M; Ritter, Tobias

    2013-09-25

    A practical, palladium-catalyzed synthesis of aryl fluorides from arylboronic acid derivatives is presented. The reaction is operationally simple and amenable to multigram-scale synthesis. Evaluation of the reaction mechanism suggests a single-electron-transfer pathway, involving a Pd(III) intermediate that has been isolated and characterized. PMID:24040932

  17. Acid-catalyzed dehydrogenation of amine-boranes

    DOEpatents

    Stephens, Frances Helen; Baker, Ralph Thomas

    2010-01-12

    A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.

  18. Development of a Lewis Base Catalyzed Selenocyclization Reaction

    ERIC Educational Resources Information Center

    Collins, William

    2009-01-01

    The concept of Lewis base activation of selenium Lewis acids has been effectively reduced to practice in the Lewis base catalyzed selenofunctionalization of unactivated olefins. In this reaction, the weakly acidic species, "N"-phenylselenyl succinimide, is cooperatively activated by the addition of a "soft" Lewis base donor (phosphine sulfides,…

  19. Catalyzing Graduate Teaching Assistants' Laboratory Teaching through Design Research

    ERIC Educational Resources Information Center

    Bond-Robinson, Janet; Rodriques, Romola A. Bernard

    2006-01-01

    We report on a study of a laboratory teaching apprenticeship program designed to improve graduate teaching assistant (GTA) performance. To catalyze GTAs as laboratory teachers we constructed learning goals, synthesized previous literature into a design model and a developmental path, and built two instruments to measure 12 strategic pedagogical…

  20. Copper/Guanidine-Catalyzed Asymmetric Alkynylation of Isatins.

    PubMed

    Chen, Quangang; Tang, Yu; Huang, Tianyu; Liu, Xiaohua; Lin, Lili; Feng, Xiaoming

    2016-04-18

    The highly enantioselective alkynylation of isatins, catalyzed by a bifunctional guanidine/CuI catalyst under mild reaction conditions, is described. The reaction is broad in scope with respect to alkyl/aryl-substituted terminal alkynes and substituted isatins, thus affording bioactive propargylic alcohols in excellent yields and enantioselectivities. PMID:26991133

  1. Solvent-free lipase-catalyzed preparation of diacylglycerols.

    PubMed

    Weber, Nikolaus; Mukherjee, Kumar D

    2004-08-25

    Various methods have been applied for the enzymatic preparation of diacylglycerols that are used as dietary oils for weight reduction in obesity and related disorders. Interesterification of rapeseed oil triacylglycerols with commercial preparations of monoacylglycerols, such as Monomuls 90-O18, Mulgaprime 90, and Nutrisoft 55, catalyzed by immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) in vacuo at 60 degrees C led to extensive (from 60 to 75%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with Nutrisoft, catalyzed by Lipozyme RM in vacuo at 60 degrees C, also led to extensive (from 60 to 70%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme RM and lipases from Thermomyces lanuginosus (Lipozyme TL IM) and Candida antarctica (lipase B, Novozym 435), also provided diacylglycerols, however, to a lower extent (40-45%). Glycerolysis of rapeseed oil triacylglycerols with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme TL and Novozym 435, led to diacylglycerols to the extent of

  2. Metal-Catalyzed Cleavage of tRNA[superscript Phe

    ERIC Educational Resources Information Center

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.

    2008-01-01

    This laboratory project is one component of a semester-long advanced biochemistry laboratory course that uses several complementary techniques to study tRNA[superscript Phe] conformational changes induced by ligand binding. In this article we describe a set of experiments in which students assay metal-catalyzed hydrolysis of tRNA[superscript Phe]…

  3. Copper-catalyzed direct C-H fluoroalkenylation of heteroarenes.

    PubMed

    Rousée, Kevin; Schneider, Cédric; Bouillon, Jean-Philippe; Levacher, Vincent; Hoarau, Christophe; Couve-Bonnaire, Samuel; Pannecoucke, Xavier

    2016-01-01

    Copper-catalyzed direct C-H fluoroalkenylation of heterocycles using various gem-bromofluoroalkenes as electrophiles is reported. This efficient method offers step-economical, low-cost and stereocontrolled access to relevant heteroarylated monofluoroalkenes. The synthesis of fluorinated analogues of biomolecules and therapeutic agents for the treatment of Duchenne muscular dystrophy as application is reported. PMID:26603641

  4. Ruthenium-catalyzed C–H activation of thioxanthones

    PubMed Central

    Wagner, Danny

    2015-01-01

    Summary Thioxanthones – being readily available in one step from thiosalicylic acid and arenes – were used in ruthenium-catalyzed C–H-activation reaction to produce 1-mono- or 1,8-disubstituted thioxanthones in good to excellent yields. Scope and limitation of this reaction are presented. PMID:25977717

  5. Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions.

    PubMed

    Tanriver, Gamze; Dedeoglu, Burcu; Catak, Saron; Aviyente, Viktorya

    2016-06-21

    Remarkable progress in the area of asymmetric organocatalysis has been achieved in the last decades. Cinchona alkaloids and their derivatives have emerged as powerful organocatalysts owing to their reactivities leading to high enantioselectivities. The widespread usage of cinchona alkaloids has been attributed to their nontoxicity, ease of use, stability, cost effectiveness, recyclability, and practical utilization in industry. The presence of tunable functional groups enables cinchona alkaloids to catalyze a broad range of reactions. Excellent experimental studies have extensively contributed to this field, and highly selective reactions were catalyzed by cinchona alkaloids and their derivatives. Computational modeling has helped elucidate the mechanistic aspects of cinchona alkaloid catalyzed reactions as well as the origins of the selectivity they induce. These studies have complemented experimental work for the design of more efficient catalysts. This Account presents recent computational studies on cinchona alkaloid catalyzed organic reactions and the theoretical rationalizations behind their effectiveness and ability to induce selectivity. Valuable efforts to investigate the mechanisms of reactions catalyzed by cinchona alkaloids and the key aspects of the catalytic activity of cinchona alkaloids in reactions ranging from pharmaceutical to industrial applications are summarized. Quantum mechanics, particularly density functional theory (DFT), and molecular mechanics, including ONIOM, were used to rationalize experimental findings by providing mechanistic insights into reaction mechanisms. B3LYP with modest basis sets has been used in most of the studies; nonetheless, the energetics have been corrected with higher basis sets as well as functionals parametrized to include dispersion M05-2X, M06-2X, and M06-L and functionals with dispersion corrections. Since cinchona alkaloids catalyze reactions by forming complexes with substrates via hydrogen bonds and long

  6. Copper-Catalyzed Cascade Substitution/Cyclization of N-Isocyanates: A Synthesis of 1-Aminobenzimidazolones.

    PubMed

    An, Jing; Alper, Howard; Beauchemin, André M

    2016-07-15

    A copper-catalyzed cascade reaction of in situ generated nitrogen-substituted isocyanates (N-isocyanates) and 2-iodoanilines has been developed. The cascade relies on the base-catalyzed substitution of masked N-isocyanates, followed by Cu(I)-catalyzed coupling to afford a variety of 1-aminobenzimidazolones in moderate to excellent yields. This is the first example of a transition-metal-catalyzed cascade reaction involving N-isocyanate intermediates. PMID:27341005

  7. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    ERIC Educational Resources Information Center

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  8. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    ERIC Educational Resources Information Center

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)

  9. GaCl3-catalyzed allenyne cycloisomerizations to allenenes.

    PubMed

    Lee, Sang Ick; Sim, So Hee; Kim, Soo Min; Kim, Kwang; Chung, Young Keun

    2006-09-01

    Cycloisomerizations of allenynes to allenenes have been studied in the presence of catalytic amounts of [Au(PPh3)]SbF6 in dichloromethane or GaCl3 in toluene. Both catalytic systems are quite effective for terminal 1,6-allenynes. However, they showed different reactivities toward allenynes with di-substituents at the allenic terminal carbon. For the GaCl3-catalyzed reactions, allenenes were obtained in reasonable to high yields. However, for a Au(I)-catalyzed reaction, a triene was obtained in a poor yield. Thus, GaCl3 serves as an effective catalyst for the cycloisomerization of allenynes bearing a terminal alkyne to give cyclic allenenes in reasonable to high yields. PMID:16930081

  10. Negatively Charged Lipid Membranes Catalyze Supramolecular Hydrogel Formation.

    PubMed

    Versluis, Frank; van Elsland, Daphne M; Mytnyk, Serhii; Perrier, Dayinta L; Trausel, Fanny; Poolman, Jos M; Maity, Chandan; le Sage, Vincent A A; van Kasteren, Sander I; van Esch, Jan H; Eelkema, Rienk

    2016-07-20

    In this contribution we show that biological membranes can catalyze the formation of supramolecular hydrogel networks. Negatively charged lipid membranes can generate a local proton gradient, accelerating the acid-catalyzed formation of hydrazone-based supramolecular gelators near the membrane. Synthetic lipid membranes can be used to tune the physical properties of the resulting multicomponent gels as a function of lipid concentration. Moreover, the catalytic activity of lipid membranes and the formation of gel networks around these supramolecular structures are controlled by the charge and phase behavior of the lipid molecules. Finally, we show that the insights obtained from synthetic membranes can be translated to biological membranes, enabling the formation of gel fibers on living HeLa cells. PMID:27359373

  11. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    SciTech Connect

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  12. Investigation of catalyzed Li/SOCl2 cells

    NASA Astrophysics Data System (ADS)

    Kilroy, W. P.; Alamgir, M.; Perrotti, S. J.; Abraham, K. M.

    The performance of Co-TAA catalyzed, spirally wound, C-size Li/SOCl2 cells was investigated by examining their discharge capacities at current densities in the 2 to 40 mA/sq cm range, by performing discharge at -30 C, and by evaluating their capacity and voltage delay after storage at 70 C. Impressive beneficial effects of the catalyst were found at high rates and low temperatures. At -30 C, Co-TAA-catalyzed cells offered the advantages of higher load voltages and better voltage regulation, resulting in a tripling of the cell's capacity to 2.0 V cutoff. Preliminary results indicate that the catalyst produced no apparent deleterious effects on the storage capability of the cells.

  13. Stereoselectivity in (Acyloxy)borane-Catalyzed Mukaiyama Aldol Reactions.

    PubMed

    Lee, Joshua M; Zhang, Xin; Norrby, Per-Ola; Helquist, Paul; Wiest, Olaf

    2016-07-01

    The origin of diastereo- and enantioselectivity in a Lewis acid-catalyzed Mukaiyama aldol reaction is investigated using a combination of dispersion corrected DFT calculations and transition state force fields (TSFF) developed using the quantum guided molecular mechanics (Q2MM) method. The reaction proceeds via a closed transition structure involving a nontraditional hydrogen bond that is 3.3 kJ/mol lower in energy than the corresponding open transition structure. The correct prediction of the diastereoselectivity of a Mukaiyama aldol reaction catalyzed by the conformationally flexible Yamamoto chiral (acyloxy) borane (CAB) requires extensive conformational sampling at the transition structure, which is achieved using a Q2MM-derived TSFF, followed by DFT calculations of the low energy conformational clusters. Finally, a conceptual model for the rationalization of the observed diastereo- and enantioselectivity of the reaction using a closed transition state model is proposed. PMID:27247023

  14. Copper-catalyzed divergent kinetic resolution of racemic allylic substrates.

    PubMed

    Pineschi, Mauro; Di Bussolo, Valeria; Crotti, Paolo

    2011-10-01

    When a racemic mixture is fully consumed the products may still be enantiomerically enriched. In particular, the regiodivergent kinetic resolution is a process in which a single chiral catalyst or reagent reacts with a racemic substrate to form regioisomers possessing an opposite configuration on the newly-formed stereogenic centers. This review reports the major advances in the field of the copper-catalyzed regiodivergent and stereodivergent kinetic resolution of allylic substrates with organometallic reagents. The chiral recognition matching phenomena found with particular allylic substrates with the absolute configuration of the chiral catalyst allows in some cases an excellent control of the regio- and stereoselectivity, sheding some light on the so-called "black-box" mechanism of a copper-catalyzed asymmetric allylic alkylation. PMID:21837639

  15. Template-directed primer extension catalyzed by the Tetrahymena ribozyme.

    PubMed Central

    Bartel, D P; Doudna, J A; Usman, N; Szostak, J W

    1991-01-01

    The Tetrahymena ribozyme has been shown to catalyze an RNA polymerase-like reaction in which an RNA primer is extended by the sequential addition of pN nucleotides derived from GpN dinucleotides, where N = A, C, or U. Here, we show that this reaction is influenced by the presence of a template; bases that can form Watson-Crick base pairs with a template add as much as 25-fold more efficiently than mismatched bases. A mutant enzyme with an altered guanosine binding site can catalyze template-directed primer extension with all four bases when supplied with dinucleotides of the form 2-aminopurine-pN. Images PMID:2038341

  16. Iron-catalyzed diboration and carboboration of alkynes.

    PubMed

    Nakagawa, Naohisa; Hatakeyama, Takuji; Nakamura, Masaharu

    2015-03-01

    An iron-catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis-1,2-diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron-catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates. PMID:25631242

  17. Cross-ligation and exchange reactions catalyzed by hairpin ribozymes.

    PubMed Central

    Komatsu, Y; Koizumi, M; Sekiguchi, A; Ohtsuka, E

    1993-01-01

    The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site. Images PMID:8441626

  18. Rearrangement Reactions Catalyzed by Cytochrome P450s

    PubMed Central

    Ortiz de Montellano, Paul R.; Nelson, Sidney D.

    2010-01-01

    Cytochrome P450s promote a variety of rearrangement reactions both as a consequence of the nature of the radical and other intermediates generated during catalysis, and of the neighboring structures in the substrate that can interact either with the initial radical intermediates or with further downstream products of the reactions. This article will review several kinds of previously published cytochrome P450-catalyzed rearrangement reactions, including changes in stereochemistry, radical clock reactions, allylic rearrangements, “NIH” and related shifts, ring contractions and expansions, and cyclizations that result from neighboring group interactions. Although most of these reactions can be carried out by many members of the cytochrome P450 superfamily, some have only been observed with select P450s, including some reactions that are catalyzed by specific endoperoxidases and cytochrome P450s found in plants. PMID:20971058

  19. Copper-Catalyzed Intramolecular Oxidative Amination of Unactivated Internal Alkenes.

    PubMed

    Xiong, Peng; Xu, Fan; Qian, Xiang-Yang; Yohannes, Yared; Song, Jinshuai; Lu, Xin; Xu, Hai-Chao

    2016-03-18

    A copper-catalyzed oxidative amination of unactivated internal alkenes has been developed. The Wacker-type oxidative alkene amination reaction is traditionally catalyzed by a palladium through a mechanism involving aminopalladation and β-hydride elimination. Replacing the precious and scarce palladium with a cheap and abundant copper for this transformation has been challenging because of the difficulty associated with the aminocupration of internal alkenes. The combination of a simple copper salt, without additional ligand, as the catalyst and Dess-Martin periodinane as the oxidant, promotes efficiently the oxidative amination of allylic carbamates and ureas bearing di- and trisubstituted alkenes leading to oxazolidinones and imidazolidinones. Preliminary mechanistic studies suggested a hybrid radical-organometallic mechanism involving an amidyl radical cyclization to form the key C-N bond. PMID:26878987

  20. Actinide-Catalyzed Intermolecular Addition of Alcohols to Carbodiimides.

    PubMed

    Batrice, Rami J; Kefalidis, Christos E; Maron, Laurent; Eisen, Moris S

    2016-02-24

    The unprecedented actinide-catalyzed addition of alcohols to carbodiimides is presented. This represents a rare example of thorium-catalyzed transformations of an alcoholic substrate and the first example of uranium complexes showing catalytic reactivity with alcohols. Using the uranium and thorium amides U[N(SiMe3)2]3 and [(Me3Si)2N]2An[κ(2)-(N,C)-CH2Si(CH3)2N(SiMe3)] (An = Th or U), alcohol additions to unsaturated carbon-nitrogen bonds are achieved in short reaction times with excellent selectivities and high to excellent yields. Computational studies, supported by experimental thermodynamic data, suggest plausible models of the profile of the reaction which allow the system to overcome the high barrier of scission of the actinide-oxygen bond. Accompanied by experimentally determined kinetic parameters, a plausible mechanism is proposed for the catalytic cycle. PMID:26844823

  1. Copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols.

    PubMed

    Lei, Jian; Liu, Xiaowu; Zhang, Shaolin; Jiang, Shuang; Huang, Minhao; Wu, Xiaoxing; Zhu, Qiang

    2015-04-27

    An efficient copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols with Togni's reagent has been developed. This strategy, accompanied by a double-bond migration, leads to various branched CF3-substituted alcohols by using readily available trisubstituted cyclic/acyclic alcohols as substrates. Moreover, for alcohols in which β-H elimination is prohibited, CF3-containing oxetanes are isolated as the sole product. PMID:25810003

  2. Rh catalyzed olefination and vinylation of unactivated acetanilides.

    PubMed

    Patureau, Frederic W; Glorius, Frank

    2010-07-28

    In the catalyzed oxidative olefination of acetanilides (oxidative-Heck coupling), Rh offers great advantages over more common Pd catalysts. Lower catalyst loadings, large functional group tolerance (in particular to halides), and higher reactivity of electron-neutral olefins (styrenes) are some of the attractive features. Most interestingly, even ethylene reacts to yield the corresponding acetanilido-styrene. Moreover, the Cu(II) oxidant can also be utilized in catalytic amounts with air serving as the terminal oxidant. PMID:20593901

  3. Sonochemical enzyme-catalyzed regioselective acylation of flavonoid glycosides.

    PubMed

    Ziaullah; Rupasinghe, H P Vasantha

    2016-04-01

    This work compares a highly efficient and alternative method of sonication-assisted lipase catalyzed acylation of quercetin-3-O-glucoside and phloretin-2'-glucoside, using Candida antarctica lipase B (Novozyme 435(®)), with a range of fatty acids. In this study, sonication-assisted irradiation coupled with stirring has been found to be more efficient and economical than conventional reaction conditions. Sonication-assisted acylation accelerated the reactions and reduced the time required by 4-5 folds. PMID:26829593

  4. Enantioselective Sulfoxidation Catalyzed by a Bisguanidinium Diphosphatobisperoxotungstate Ion Pair.

    PubMed

    Ye, Xinyi; Moeljadi, Adhitya Mangala Putra; Chin, Kek Foo; Hirao, Hajime; Zong, Lili; Tan, Choon-Hong

    2016-06-13

    The first enantioselective tungstate-catalyzed oxidation reaction is presented. High enantioselectivities were achieved for a variety of drug-like phenyl and heterocyclic sulfides under mild conditions with H2 O2 , a cheap and environmentally friendly oxidant. Synthetic utility was demonstrated through the preparation of (S)-Lansoprazole, a commercial proton-pump inhibitor. The active ion-pair catalyst was identified to be bisguanidinium diphosphatobisperoxotungstate using Raman spectroscopy and computational studies. PMID:27150978

  5. Gold-catalyzed homogeneous oxidative cross-coupling reactions.

    PubMed

    Zhang, Guozhu; Peng, Yu; Cui, Li; Zhang, Liming

    2009-01-01

    Oxidizing gold? A gold(I)/gold(III) catalytic cycle is essential for the first oxidative cross-coupling reaction in gold catalysis. By using Selectfluor for gold(I) oxidation, this chemistry reveals the synthetic potential of incorporating gold(I)/gold(III) catalytic cycles into contemporary gold chemistry and promises a new area of gold research by merging powerful gold catalysis and oxidative metal-catalyzed cross-coupling reactions. PMID:19322869

  6. Copper-catalyzed olefinic C-H difluoroacetylation of enamides.

    PubMed

    Caillot, Gilles; Dufour, Jérémy; Belhomme, Marie-Charlotte; Poisson, Thomas; Grimaud, Laurence; Pannecoucke, Xavier; Gillaizeau, Isabelle

    2014-06-01

    Copper-catalyzed olefinic difluoroacetylation of enamides via direct C-H bond functionalization using BrCF2CO2Et is reported for the first time. It constitutes an efficient radical-free method for the regioselective synthesis of β-difluoroester substituted enamides which exhibits broad substrate scope, and thus demonstrates its potent application in a late stage fluorination strategy. PMID:24760345

  7. Copper-Catalyzed Oxidative Heck Reactions between Alkyltrifluoroborates and Vinylarenes

    PubMed Central

    Liwosz, Timothy W.; Chemler, Sherry R.

    2013-01-01

    We report herein that potassium alkyltrifluoroborates can be utilized in oxidative Heck-type reactions with vinyl arenes. The reaction is catalyzed by a Cu(OTf)2/1,10-phenanthroline with MnO2 as the stoichiometric oxidant. In addition to the alkyl Heck, amination, esterification and dimerization reactions of alkyltrifluoroborates are demonstrated under analogous reaction conditions. Evidence for an alkyl radical intermediate is presented. PMID:23734764

  8. Rhodium-Catalyzed Enantioselective Arylation of Aliphatic Imines.

    PubMed

    Kato, Naoya; Shirai, Tomohiko; Yamamoto, Yasunori

    2016-06-01

    Chiral rhodium(I)-catalyzed highly enantioselective arylation of aliphatic N-sulfonyl aldimines with arylboronic acids has been developed. This transformation is achieved by the use of a rhodium/bis(phosphoramidite) catalyst to give enantiomerically enriched α-branched amines (up to 99 % ee). In addition, this system enables efficient synthesis of (+)-NPS R-568 and Cinacalcet which are calcimimetic agents. PMID:27119262

  9. Biaryl Phosphine Ligands in Palladium-Catalyzed Amination

    PubMed Central

    Surry, David S.

    2012-01-01

    Palladium-catalyzed amination of aryl halides has undergone rapid development in the last 12 years. This has been largely driven by implementation of new classes of ligands. Biaryl phosphines have proven to provide especially active catalysts in this context. This review discusses the applications that these catalysts have found in C-N cross-coupling in heterocycle synthesis, pharmaceuticals, materials science and natural product synthesis. PMID:18663711

  10. Synthesis of Graphite Encapsulated Metal Nanoparticles and Metal Catalyzed Nanotubes

    NASA Technical Reports Server (NTRS)

    vanderWal, R. L.; Dravid, V. P.

    1999-01-01

    This work focuses on the growth and inception of graphite encapsulated metal nanoparticles and metal catalyzed nanotubes using combustion chemistry. Deciphering the inception and growth mechanism(s) for these unique nanostructures is essential for purposeful synthesis. Detailed knowledge of these mechanism(s) may yield insights into alternative synthesis pathways or provide data on unfavorable conditions. Production of these materials is highly desirable given many promising technological applications.

  11. Cobalt-Catalyzed Enantioselective Vinylation of Activated Ketones and Imines.

    PubMed

    Huang, Yuan; Huang, Rui-Zhi; Zhao, Yu

    2016-05-25

    We present here an unprecedented cobalt-catalyzed enantioselective vinylation of α-ketoesters, isatins, and imines to deliver a range of synthetically useful allylic alcohols and amines in high enantiopurity. This method employs commercially available and easy to handle catalysts and reagents and exhibits a high degree of practicality. The efficiency, selectivity, and operational simplicity of this catalytic system coupled with the substrate generality render this method a valuable tool in organic synthesis. PMID:27139596

  12. Copper-catalyzed stereoselective conjugate addition of alkylboranes to alkynoates

    PubMed Central

    Wakamatsu, Takamichi; Nagao, Kazunori

    2015-01-01

    Summary A copper-catalyzed conjugate addition of alkylboron compounds (alkyl-9-BBN, prepared by hydroboration of alkenes with 9-BBN-H) to alkynoates to form β-disubstituted acrylates is reported. The addition occurred in a formal syn-hydroalkylation mode. The syn stereoselectivity was excellent regardless of the substrate structure. A variety of functional groups were compatible with the conjugate addition. PMID:26734092

  13. Iron-catalyzed electrochemical C-H perfluoroalkylation of arenes.

    PubMed

    Khrizanforov, Mikhail; Strekalova, Sofia; Khrizanforova, Vera; Grinenko, Valeriya; Kholin, Kirill; Kadirov, Marsil; Burganov, Timur; Gubaidullin, Aidar; Gryaznova, Tatyana; Sinyashin, Oleg; Xu, Long; Vicic, David A; Budnikova, Yulia

    2015-12-01

    A new iron-catalyzed reaction for the coupling of perfluoroalkyl iodides (RFI) with aromatic substrates is described. The perfluoroalkylated arene products are obtained in good to excellent yields in the presence of a [(bpy)Fe(ii)] catalyst (10%) electrochemically regenerated or generated from [(bpy)Fe(iii)] at room temperature. The development, scope, and preliminary mechanistic studies of these transformations are reported. PMID:26459803

  14. Synthesis of Aryldifluoroamides by Copper-Catalyzed Cross-Coupling.

    PubMed

    Arlow, Sophie I; Hartwig, John F

    2016-03-24

    A copper-catalyzed coupling of aryl, heteroaryl, and vinyl iodides with α-silyldifluoroamides is reported. The reaction forms α,α-difluoro-α-aryl amides from electron-rich, electron-poor, and sterically hindered aryl iodides in high yield and tolerates a variety of functional groups. The aryldifluoroamide products can be transformed further to provide access to a diverse array of difluoroalkylarenes, including compounds of potential biological interest. PMID:26929068

  15. Copper-Catalyzed Perfluoroalkylthiolation of Alkynes with Perfluoroalkanesulfenamides.

    PubMed

    Tlili, Anis; Alazet, Sébastien; Glenadel, Quentin; Billard, Thierry

    2016-07-11

    Copper-catalyzed direct perfluoroalkylthiolation of alkynes by using the corresponding perfluoroalkanesulfenamide reagent is reported. The selective mono- and bis-perfluoroalkylthiolation of alkynes can be conducted under very mild conditions (no base, room temperature) in very good to excellent yields. This approach, which uses a low toxicity, inexpensive copper catalyst that incorporates a commercially available ligand, is applied in the absence of any additional base. Preliminary mechanistic investigations shed some light on the nature of the unprecedented reactivity observed. PMID:27334703

  16. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions. PMID:26699516

  17. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    PubMed Central

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  18. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents.

    PubMed

    Shrestha, Bijay; Giri, Ramesh

    2015-01-01

    We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N',N'-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  19. Rhodium(II)-catalyzed enantioselective synthesis of troponoids.

    PubMed

    Murarka, Sandip; Jia, Zhi-Jun; Merten, Christian; Daniliuc, Constantin-G; Antonchick, Andrey P; Waldmann, Herbert

    2015-06-22

    We report a rhodium(II)-catalyzed highly enantioselective 1,3-dipolar cycloaddition reaction between the carbonyl moiety of tropone and carbonyl ylides to afford troponoids in good to high yields with excellent enantioselectivity. We demonstrate that α-diazoketone-derived carbonyl ylides, in contrast to carbonyl ylides derived from diazodiketoesters, undergo [6+3] cycloaddition reactions with tropone to yield the corresponding bridged heterocycles with excellent stereoselectivity. PMID:25959033

  20. Palladium-Catalyzed Synthesis of N-Aryl Carbamates

    PubMed Central

    Vinogradova, Ekaterina V.; Park, Nathaniel H.; Fors, Brett P.; Buchwald, Stephen L.

    2013-01-01

    An efficient synthesis of aryl carbamates was achieved by introducing alcohols into the reaction of palladium-catalyzed cross-coupling of ArX (X = Cl, OTf) with sodium cyanate. The use of aryl triflates as electrophilic components in this transformation allowed for an expanded substrate scope for direct synthesis of aryl isocyanates. This methodology provides direct access to major carbamate protecting groups, S-thiocarbamates, and diisocyanate precursors to polyurethane materials. PMID:23441814

  1. The gravitino-stau scenario after catalyzed big bang nucleosynthesis

    SciTech Connect

    Kersten, Joern; Schmidt-Hoberg, Kai E-mail: kai.schmidt-hoberg@ph.tum.de

    2008-01-15

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m{sub 1/2}. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.

  2. Electrophilic phosphonium cations catalyze hydroarylation and hydrothiolation of olefins.

    PubMed

    Pérez, Manuel; Mahdi, Tayseer; Hounjet, Lindsay J; Stephan, Douglas W

    2015-06-30

    Electrophilic phosphonium cations (EPCs) are efficient main group catalysts for the hydroarylation of olefins under mild conditions, providing a facile route to substituted aniline, bis-arylamine, phenol, furan, thiophene, pyrrole, and indole derivatives. Similarly, EPCs catalyze the hydrothiolation of aryl olefins with thiophenol affording a series of alkyl aryl thioethers. Experimental data support a mechanism for these reactions that involves initial activation of the olefin. PMID:26083901

  3. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    PubMed

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer. PMID:27218801

  4. Stau-catalyzed big-bang nucleosynthesis reactions

    SciTech Connect

    Kamimura, Masayasu; Kino, Yasushi; Hiyama, Emiko

    2010-06-01

    We study the new type of big-bang nucleosynthesis (BBN) reactions that are catalyzed by a hypothetical long-lived negatively charged, massive leptonic particle (called X{sup -}) such as the supersymmetric (SUSY) particle stau, the scalar partner of the tau lepton. It is known that if the X{sup -} particle has a lifetime of tau{sub X} > or approx. 10{sup 3} s, it can capture a light element previously synthesized in standard BBN and form a Coulombic bound state and induces various types of reactions in which X{sup -} acts as a catalyst. Some of these X{sup -} catalyzed reactions have significantly large cross sections so that the inclusion of the reactions into the BBN network calculation can markedly change the abundances of some elements. We use a high-accuracy three-body calculation method developed by the authors and provide precise cross sections and rates of these catalyzed BBN reactions for use in the BBN network calculation.

  5. Protection of Wood from Microorganisms by Laccase-Catalyzed Iodination

    PubMed Central

    Engel, J.; Thöny-Meyer, L.; Schwarze, F. W. M. R.; Ihssen, J.

    2012-01-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I−) to iodine (I2) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  6. Protection of wood from microorganisms by laccase-catalyzed iodination.

    PubMed

    Schubert, M; Engel, J; Thöny-Meyer, L; Schwarze, F W M R; Ihssen, J

    2012-10-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I(-)) to iodine (I(2)) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  7. Carrier gas effects on aluminum-catalyzed nanowire growth

    NASA Astrophysics Data System (ADS)

    Ke, Yue; Hainey, Mel, Jr.; Won, Dongjin; Weng, Xiaojun; Eichfeld, Sarah M.; Redwing, Joan M.

    2016-04-01

    Aluminum-catalyzed silicon nanowire growth under low-pressure chemical vapor deposition conditions requires higher reactor pressures than gold-catalyzed growth, but the reasons for this difference are not well understood. In this study, the effects of reactor pressure and hydrogen partial pressure on silicon nanowire growth using an aluminum catalyst were studied by growing nanowires in hydrogen and hydrogen/nitrogen carrier gas mixtures at different total reactor pressures. Nanowires grown in the nitrogen/hydrogen mixture have faceted catalyst droplet tips, minimal evidence of aluminum diffusion from the tip down the nanowire sidewalls, and significant vapor-solid deposition of silicon on the sidewalls. In comparison, wires grown in pure hydrogen show less well-defined tips, evidence of aluminum diffusion down the nanowire sidewalls at increasing reactor pressures and reduced vapor-solid deposition of silicon on the sidewalls. The results are explained in terms of a model wherein the hydrogen partial pressure plays a critical role in aluminum-catalyzed nanowire growth by controlling hydrogen termination of the silicon nanowire sidewalls. For a given reactor pressure, increased hydrogen partial pressures increase the extent of hydrogen termination of the sidewalls which suppresses SiH4 adsorption thereby reducing vapor-solid deposition of silicon but increases the surface diffusion length of aluminum. Conversely, lower hydrogen partial pressures reduce the hydrogen termination and also increase the extent of SiH4 gas phase decomposition, shifting the nanowire growth window to lower growth temperatures and silane partial pressures.

  8. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    NASA Astrophysics Data System (ADS)

    Hainey, Mel F.; Redwing, Joan M.

    2016-12-01

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  9. Carrier gas effects on aluminum-catalyzed nanowire growth.

    PubMed

    Ke, Yue; Hainey, Mel; Won, Dongjin; Weng, Xiaojun; Eichfeld, Sarah M; Redwing, Joan M

    2016-04-01

    Aluminum-catalyzed silicon nanowire growth under low-pressure chemical vapor deposition conditions requires higher reactor pressures than gold-catalyzed growth, but the reasons for this difference are not well understood. In this study, the effects of reactor pressure and hydrogen partial pressure on silicon nanowire growth using an aluminum catalyst were studied by growing nanowires in hydrogen and hydrogen/nitrogen carrier gas mixtures at different total reactor pressures. Nanowires grown in the nitrogen/hydrogen mixture have faceted catalyst droplet tips, minimal evidence of aluminum diffusion from the tip down the nanowire sidewalls, and significant vapor-solid deposition of silicon on the sidewalls. In comparison, wires grown in pure hydrogen show less well-defined tips, evidence of aluminum diffusion down the nanowire sidewalls at increasing reactor pressures and reduced vapor-solid deposition of silicon on the sidewalls. The results are explained in terms of a model wherein the hydrogen partial pressure plays a critical role in aluminum-catalyzed nanowire growth by controlling hydrogen termination of the silicon nanowire sidewalls. For a given reactor pressure, increased hydrogen partial pressures increase the extent of hydrogen termination of the sidewalls which suppresses SiH4 adsorption thereby reducing vapor-solid deposition of silicon but increases the surface diffusion length of aluminum. Conversely, lower hydrogen partial pressures reduce the hydrogen termination and also increase the extent of SiH4 gas phase decomposition, shifting the nanowire growth window to lower growth temperatures and silane partial pressures. PMID:26900836

  10. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  11. Hydrophobic properties of polytetrafluoroethylene thin films fabricated at various catalyzer temperatures through catalytic chemical vapor deposition using a tungsten catalyzer.

    PubMed

    Cha, Jeong Ok; Yeo, Seung Jun; Pode, Ramchandra; Ahn, Jeung Sun

    2011-07-01

    Using the catalytic chemical vapor deposition (Cat-CVD) method, polytetrafluoroethylene (PTFE) thin films were fabricated on Si(100) substrates at various catalyzer temperatures, using a tungsten catalyzer, and Fourier transform infrared (FTIR) spectroscopy and X-ray photoemission spectroscopy (XPS) were used to confirm the fabrication of the films. An atomic-force microscope (AFM) and a scanning electron microscope (SEM) were employed to study the correlation between the wettability and surface morphology of the samples. It was found that the wettability of the PTFE thin films fabricated via Cat-CVD is strongly correlated with the sizes of the film surfaces' nanoprotrusions, and that superhydrophobic PTFE thin-film surfaces can be easily achieved by controlling the sizes of the nanoprotrusions through the catalyzer temperature. The comparison of the wettability values and surface morphologies of the films confirmed that nanoscale surface roughness enhances the hydrophobic properties of PTFE thin films. Further, the detailed analysis of the films' surface morphologies from their AFM images with the use of the Wenzel and Cassie models confirmed that the nanoscale surface roughness enhanced the hydrophobic property of the PTFE films. Further, the variations of the wettability of the PTFE thin films prepared via Cat-CVD are well explained by the Cassie model. It seems that the increase in the trapping air and the reduction of the liquid-solid contact area are responsible for the superhydrophobicity of the PTFE thin films prepared via Cat-CVD. PMID:22121615

  12. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    SciTech Connect

    Bertrand, Guy

    2012-06-29

    high temperatures and long reaction times. To address this issue, we have developed several new families of carbon- and boron-based ligands, which are even better donors. The corresponding metal complexes (particularly gold, rhodium, iridium, and ruthenium) of all these species will be tested in the Markovnikov and anti-Markovnikov hydroamination of alkynes, allenes, and also alkenes with ammonia and hydrazine. We will also develop metal-free catalytic processes for the functionalization of ammonia and hydrazine. By possessing both a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble and can mimic the chemical behavior of transition metals. Our preliminary results demonstrate that specially designed carbenes can split the N–H bond of ammonia by an initial nucleophilic activation that prevents the formation of Lewis acid-base adducts, which is the major hurdle for the transition metal catalyzed functionalization of NH3. The use of purely organic compounds as catalysts will eliminate the major drawbacks of transition-metal-catalysis technology, which are the excessive cost of metal complexes (metal + ligands) and in many cases the toxicity of the metal.

  13. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes

    SciTech Connect

    Zhao, Nan; Ferrer, Jean-Luc; Moon, Hong S; Kapteyn, Jeremy; Zhuang, Xiaofeng; Hasebe, Mitsuyasu; Stewart, Neal C.; Gang, David R.; Chen, Feng

    2012-01-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.

  14. Physio-pathological roles of transglutaminase-catalyzed reactions

    PubMed Central

    Ricotta, Mariangela; Iannuzzi, Maura; Vivo, Giulia De; Gentile, Vittorio

    2010-01-01

    Transglutaminases (TGs) are a large family of related and ubiquitous enzymes that catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted /crosslinked adducts) or -OH groups (to form ester linkages). In the absence of co-substrates, the nucleophile may be water, resulting in the net deamidation of the glutaminyl residue. The TG enzymes are also capable of catalyzing other reactions important for cell viability. The distribution and the physiological roles of TG enzymes have been widely studied in numerous cell types and tissues and their roles in several diseases have begun to be identified. “Tissue” TG (TG2), a member of the TG family of enzymes, has definitely been shown to be involved in the molecular mechanisms responsible for a very widespread human pathology: i.e. celiac disease (CD). TG activity has also been hypothesized to be directly involved in the pathogenetic mechanisms responsible for several other human diseases, including neurodegenerative diseases, which are often associated with CD. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, supranuclear palsy, Huntington’s disease and other recently identified polyglutamine diseases, are characterized, in part, by aberrant cerebral TG activity and by increased cross-linked proteins in affected brains. In this review, we discuss the physio-pathological role of TG-catalyzed reactions, with particular interest in the molecular mechanisms that could involve these enzymes in the physio-pathological processes responsible for human neurodegenerative diseases. PMID:21541002

  15. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    PubMed

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems. PMID:26881922

  16. Model studies on the first enzyme-catalyzed Ugi reaction.

    PubMed

    Kłossowski, Szymon; Wiraszka, Barbara; Berłożecki, Stanisław; Ostaszewski, Ryszard

    2013-02-01

    Multicomponent reactions are powerful tools for organic chemistry, and among them, the Ugi reaction provides remarkable improvement in many fields of organic chemistry such us combinatorial chemistry, medicinal chemistry, and peptide chemistry. A new, enzyme-catalyzed example of the Ugi three-component reaction is presented. The studies include the selection of an enzyme as well as determination of the scope and limitations of the newly described reaction. The presented method combines the enzyme promiscuity and multicomponent reaction advantages in the first one-pot formation of dipeptide 1. PMID:23343100

  17. Asymmetric Propargylation of Ketones using Allenylboronates Catalyzed by Chiral Biphenols

    PubMed Central

    Barnett, David S.; Schaus, Scott E.

    2011-01-01

    Chiral biphenols catalyze the enantioselective asymmetric propargylation of ketones using allenylboronates. The reaction uses 10 mol % of 3,3′-Br2-BINOL as the catalyst and allenyldioxoborolane as the nucleophile, in the absence of solvent, and under microwave irradiation to afford the homopropargylic alcohol. The reaction products are obtained in good yields (60 – 98%) and high enantiomeric ratios (3:1 – 99:1). Diastereoselective propargylations using chiral racemic allenylboronates result in good diastereoselectivities (dr > 86:14) and enantioselectivities (er > 92:8) under the catalytic conditions. PMID:21732609

  18. Asymmetric propargylation of ketones using allenylboronates catalyzed by chiral biphenols.

    PubMed

    Barnett, David S; Schaus, Scott E

    2011-08-01

    Chiral biphenols catalyze the enantioselective asymmetric propargylation of ketones using allenylboronates. The reaction uses 10 mol % of 3,3'-Br(2)-BINOL as the catalyst and allenyldioxoborolane as the nucleophile, in the absence of solvent, and under microwave irradiation to afford the homopropargylic alcohol. The reaction products are obtained in good yields (60-98%) and high enantiomeric ratios (3:1-99:1). Diastereoselective propargylations using chiral racemic allenylboronates result in good diastereoselectivities (dr >86:14) and enantioselectivities (er >92:8) under the catalytic conditions. PMID:21732609

  19. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    PubMed

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  20. Palladium-Catalyzed Regioselective Difluoroalkylation and Carbonylation of Alkynes.

    PubMed

    Wang, Qiang; He, Yu-Tao; Zhao, Jia-Hui; Qiu, Yi-Feng; Zheng, Lan; Hu, Jing-Yuan; Yang, Yu-Chen; Liu, Xue-Yuan; Liang, Yong-Min

    2016-06-01

    A novel, four-component synthetic strategy to synthesize a series of β-difluoroalkyl unsaturated esters/amides with high regioslectivity is described. This Pd-catalyzed difluoroalkylation and carbonylation reaction can be carried out with simple starting materials. Through this protocol, two new C-C bonds (including one C-CF2 bond) and one C-O(N) bond are constructed simultaneously in a single step. The synthetic utility of this reaction system has been certified by the applicability to a wide scope of alkynes and nucleophiles. Preliminary mechanistic studies suggest that the difluoroalkyl radical pathway is involved in this reaction. PMID:27191858

  1. Ruthenium-Catalyzed meta-Selective C—H Bromination

    PubMed Central

    Teskey, Christopher J; Lui, Andrew Y W; Greaney, Michael F

    2015-01-01

    The first example of a transition-metal-catalyzed, meta-selective C–H bromination procedure is reported. In the presence of catalytic [{Ru(p-cymene)Cl2}2], tetrabutylammonium tribromide can be used to functionalize the meta C–H bond of 2-phenylpyridine derivatives, thus affording difficult to access products which are highly predisposed to further derivatization. We demonstrate this utility with one-pot bromination/arylation and bromination/alkenylation procedures to deliver meta-arylated and meta-alkenylated products, respectively, in a single step. PMID:26288217

  2. Palladium-catalyzed coupling reactions of tetrafluoroethylene with arylzinc compounds.

    PubMed

    Ohashi, Masato; Kambara, Tadashi; Hatanaka, Tsubasa; Saijo, Hiroki; Doi, Ryohei; Ogoshi, Sensuke

    2011-03-16

    Organofluorine compounds are widely used in all aspects of the chemical industry. Although tetrafluoroethylene (TFE) is an example of an economical bulk organofluorine feedstock, the use of TFE is mostly limited to the production of poly(tetrafluoroethylene) and copolymers with other alkenes. Furthermore, no catalytic transformation of TFE that involves carbon-fluorine bond activation has been reported to date. We herein report the first example of a palladium-catalyzed coupling reaction of TFE with arylzinc reagents in the presence of lithium iodide, giving α,β,β-trifluorostyrene derivatives in excellent yields. PMID:21322557

  3. Aerobic Copper-Catalyzed O-Methylation with Methylboronic Acid.

    PubMed

    Jacobson, Clare E; Martinez-Muñoz, Noelia; Gorin, David J

    2015-07-17

    The oxidative coupling of alkylboronic acids with oxygen nucleophiles offers a strategy for replacing toxic, electrophilic alkylating reagents. Although the Chan-Lam reaction has been widely applied in the arylation of heteroatom nucleophiles, O-alkylation with boronic acids is rare. We report a Cu-catalyzed nondecarboxylative methylation of carboxylic acids with methylboronic acid that proceeds in air with no additional oxidant. An isotope-labeling study supports an oxidative cross-coupling mechanism, in analogy to that proposed for Chan-Lam arylation. PMID:26111825

  4. Pt-Catalyzed Synthesis of Functionalized Symmetrical and Unsymmetrical Disilazanes.

    PubMed

    Kuciński, Krzysztof; Szudkowska-Frątczak, Justyna; Hreczycho, Grzegorz

    2016-09-01

    In nearly every total synthesis, silylating agents are employed in synthetic steps to protect sensitive functional groups. A Pt-catalyzed hydrosilylation of various unsaturated substrates to prepare novel symmetrical and unsymmetrical disilazanes is described. The developed synthetic methodology is widely applicable and tolerates all manner of functional groups (e.g., amines, ethers, esters, halogens, silanes, etc.). To demonstrate the value of the described method, mono-substituted 1,1,3,3-tetramethyldisilazanes were further selectively converted to completely new unsymmetrical derivatives. PMID:27414042

  5. Copper(I)-Catalyzed Allylic Substitutions with a Hydride Nucleophile.

    PubMed

    Nguyen, T N Thanh; Thiel, Niklas O; Pape, Felix; Teichert, Johannes F

    2016-05-20

    An easily accessible copper(I)/N-heterocyclic carbene (NHC) complex enables a regioselective hydride transfer to allylic bromides, an allylic reduction. The resulting aryl- and alkyl-substituted branched α-olefins, which are valuable building blocks for synthesis, are obtained in good yields and regioselectivity. A commercially available silane, (TMSO)2Si(Me)H, is employed as hydride source. This protocol offers a unified alternative to the established metal-catalyzed allylic substitutions with carbon nucleophiles, as no adaption of the catalyst to the nature of the nucleophile is required. PMID:27151495

  6. Low-Pressure Cobalt-Catalyzed Enantioselective Hydrovinylation of Vinylarenes.

    PubMed

    Movahhed, Sohajl; Westphal, Julia; Dindaroğlu, Mehmet; Falk, Anna; Schmalz, Hans-Günther

    2016-05-23

    An efficient and practical protocol for the enantioselective cobalt-catalyzed hydrovinylation of vinylarenes with ethylene at low (1.2 bar) pressure has been developed. As precatalysts, stable [L2 CoCl2 ] complexes are employed that are activated in situ with Et2 AlCl. A modular chiral TADDOL-derived phosphine-phosphite ligand was identified that allows the conversion of a broad spectrum of substrates, including heterocyclic vinylarenes and vinylferrocene, to smoothly afford the branched products with up to 99 % ee and virtually complete regioselectivity. Even polar functional groups, such as OH, NH2 , CN, and CO2 R, are tolerated. PMID:26998912

  7. Iridium(iii)-catalyzed regioselective C7-sulfonamidation of indoles.

    PubMed

    Song, Zengqiang; Antonchick, Andrey P

    2016-06-01

    Iridium(iii)-catalyzed direct C7-sulfonamidation of indoles with sulfonyl azides is described. The developed method has good compatibility with diverse functional groups, providing various 7-amino-substituted indoles with good to excellent yields in a short time under mild reaction conditions. The key feature of the developed method is the regioselective functionalization at the C7-position of 2,3-unsubstituted indoles. Biologically active compounds can be obtained using this protocol. The application of the iridium(iii) catalyst and directing group plays a crucial role in the regioselectivity of the developed reaction. PMID:27173668

  8. Base-Catalyzed Depolymerization of Lignin: Separation of Monomers

    SciTech Connect

    Vigneault, A.; Johnson, D. K.; Chornet, E.

    2007-12-01

    In our quest for fractionating lignocellulosic biomass and valorizing specific constitutive fractions, we have developed a strategy for the separation of 12 added value monomers generated during the hydrolytic based-catalyzed depolymerization of a Steam Exploded Aspen Lignin. The separation strategy combines liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. LLE, vacuum distillation and flash LC were tested experimentally. Batch vacuum distillation produced up to 4 fractions. Process simulation confirmed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, 3 of which require further chromatography and crystallization for purification.

  9. Can Chlorine Anion Catalyze the Reaction fo HOCl with HCl?

    NASA Technical Reports Server (NTRS)

    Richardson, S. L.; Francisco, J. S.; Mebel, A. M.; Morokuma, K.

    1997-01-01

    The reaction of HOCl + HCl -> Cl2 + H20 in the presence of Cl has been studied using ab initio methods. This reaction has been shown to have a high activation barrier of 46.5 kcal/mol. The chlorine anion, Cl- is found to catalyze the reaction, viz. two mechanisms. The first involves Cl- interacting through the concerted four-center transition state of the neutral reaction. The other mechanism involves the formation of a HCl-HOCl-Cl- intermediate which dissociates into Cl2 + Cl- + H20. The steps are found to have no barriers. The overall exothermicity is 15.5 kcal/mol.

  10. Nickel-Catalyzed Negishi Cross-Coupling of Bromodifluoroacetamides.

    PubMed

    Tarui, Atsushi; Shinohara, Saori; Sato, Kazuyuki; Omote, Masaaki; Ando, Akira

    2016-03-01

    A nickel-catalyzed Negishi coupling of bromodifluoroacetamides with arylzinc reagents has been developed. This reaction allows access to difluoromethylated aromatic compounds containing a variety of aryl groups and amide moieties. Furthermore, highly effective transformation of the functionalized difluoromethyl group (-CF2CONR(1)R(2)) was realized via microwave-assisted reduction under mild conditions. The notable features of this strategy are its generality and its use of a low-cost nickel catalyst and ligand; thus, this reaction provides a facile method for applications in drug discovery and development. PMID:26910536

  11. Coalification by clay-catalyzed oligomerization of plant monomers

    SciTech Connect

    Orchin, M.; Wilson, R.M.

    1991-01-01

    The chemical structure'' of coal, if indeed there is one, remains an enigma. Over the years numerous chemists have integrated a host of experimental observations to generate various average'' structures which differ greatly. Our approach is to regard the structural question of coal as a problem in natural product chemistry. Our model is that of a macromolecular polymer initially synthesized from monomeric naturally-occuring hydroxy and methoxy substituted propenylbenzenes (C{sub 6}-C{sub 3} units), properly aligned to undergo oligomerization reactions via conventional organic reaction mechanisms, specifically Diels-Alder radical cation condensations, phenolic coupling, and proton-catalyzed isomerization and cyclization.

  12. Copper-Catalyzed Azide–Alkyne Click Chemistry for Bioconjugation

    PubMed Central

    Presolski, Stanislav I.; Hong, Vu Phong; Finn, M.G.

    2012-01-01

    The copper-catalyzed azide-alkyne cycloaddition reaction is widely used for the connection of molecular entities of all sizes. A protocol is provided here for the process with biomolecules. Ascorbate is used as reducing agent to maintain the required cuprous oxidation state. Since these convenient conditions produce reactive oxygen species, five equivalents of a copper-binding ligand is used with respect to metal. The ligand both accelerates the reaction and serves as a sacrificial reductant, protecting the biomolecules from oxidation. A procedure is also described for testing the efficiency of the reaction under desired conditions for purposes of optimization, before expensive biological reagents are used. PMID:22844652

  13. Photoredox Catalysis in Nickel-Catalyzed Cross-Coupling.

    PubMed

    Cavalcanti, Livia N; Molander, Gary A

    2016-08-01

    The traditional transition metal-catalyzed cross-coupling reaction, although well suited for C(sp2)-C(sp2) cross-coupling, has proven less amenable toward coupling of C(sp3)-hybridized centers, particularly using functional group tolerant reagents and reaction conditions. The development of photoredox/Ni dual catalytic methods for cross-coupling has opened new vistas for the construction of carbon-carbon bonds at C(sp3)-hybridized centers. In this chapter, a general outline of the features of such processes is detailed. PMID:27573391

  14. Cooperative Catalysis: Calcium and Camphorsulfonic Acid Catalyzed Cycloisomerization of Diynols.

    PubMed

    Rauser, Marian; Schroeder, Sebastian; Niggemann, Meike

    2015-11-01

    The first transition metal-free cycloisomerization of easily accessible diynols is presented as a novel approach to bicyclic 2H-pyrans. As a one-step protocol, the reaction proceeds in a single reaction cascade by intertwining mechanistic fragments borrowed from transition metal-catalyzed Claisen rearrangment of vinyl ethers with our own work on allenyl/propargyl cation rearrangements and a 6π-oxo-electrocylization. It is enabled by a new cooperative catalytic system that combines a simple Ca(2+) catalyst with camphorsulfonic acid. PMID:26403228

  15. Complex Biotransformations Catalyzed by Radical S-Adenosylmethionine Enzymes*

    PubMed Central

    Zhang, Qi; Liu, Wen

    2011-01-01

    The radical S-adenosylmethionine (AdoMet) superfamily currently comprises thousands of proteins that participate in numerous biochemical processes across all kingdoms of life. These proteins share a common mechanism to generate a powerful 5′-deoxyadenosyl radical, which initiates a highly diverse array of biotransformations. Recent studies are beginning to reveal the role of radical AdoMet proteins in the catalysis of highly complex and chemically unusual transformations, e.g. the ThiC-catalyzed complex rearrangement reaction. The unique features and intriguing chemistries of these proteins thus demonstrate the remarkable versatility and sophistication of radical enzymology. PMID:21771780

  16. Iron-Catalyzed Hydroboration: Unlocking Reactivity through Ligand Modulation.

    PubMed

    Espinal-Viguri, Maialen; Woof, Callum R; Webster, Ruth L

    2016-08-01

    Iron-catalyzed hydroboration (HB) of alkenes and alkynes is reported. A simple change in ligand structure leads to an extensive change in catalyst activity. Reactions proceed efficiently over a wide range of challenging substrates including activated, unactivated and sterically encumbered motifs. Conditions are mild and do not require the use of reducing agents or other additives. Large excesses of borating reagent are not required, allowing control of chemo- and regioselectivity in the presence of multiple double bonds. Mechanistic insight reveals that the reaction is likely to proceed via a highly reactive iron hydride intermediate. PMID:27321704

  17. The Palladium-Catalyzed Trifluoromethylation of Vinyl Sulfonates

    PubMed Central

    Cho, Eun Jin; Buchwald, Stephen L.

    2011-01-01

    A method for the palladium-catalyzed trifluoromethylation of cyclohexenyl sulfonates has been developed. Various cyclohexenyl triflates and nonaflates underwent trifluoromethylation under mild reaction conditions using a catalyst system composed of Pd(dba)2 or [(allyl)PdCl]2 and the monodentate biaryl phosphine ligand tBuXPhos. The trifluoromethyl anion (CF3−) or its equivalent for the process was generated in situ from TMSCF3 in combination with KF or TESCF3 in combintion with RbF. PMID:22111687

  18. Iron-Catalyzed C-H Functionalization Processes.

    PubMed

    Cera, Gianpiero; Ackermann, Lutz

    2016-10-01

    Iron-catalyzed C-H activation has recently emerged as an increasingly powerful tool for the step-economical transformation of unreactive C-H bonds. Particularly, the recent development of low-valent iron catalysis has set the stage for novel C-H activation strategies via chelation assistance. The low-cost, natural abundance, and low toxicity of iron prompted its very recent application in organometallic C-H activation catalysis. An overview of the use of iron catalysis in C-H activation processes is summarized herein up to May 2016. PMID:27573499

  19. Urea- and Thiourea-Catalyzed Aminolysis of Carbonates.

    PubMed

    Blain, Marine; Yau, Honman; Jean-Gérard, Ludivine; Auvergne, Rémi; Benazet, Dominique; Schreiner, Peter R; Caillol, Sylvain; Andrioletti, Bruno

    2016-08-23

    The aminolysis of (poly)carbonates by (poly)amines provides access to non-isocyanate polyurethanes (NIPUs) that are toxic-reagent-free analogues of polyurethanes (PUs). Owing to their low reactivity, the ring opening of cyclic carbonates requires the use of a catalyst. Herein, we report that the more available and cheaper ureas could advantageously be used for catalyzing the formation of NIPUs at the expense of the thiourea analogues. In addition, we demonstrate a medium-range pKa of the (thio)urea and an unqeual substitution pattern is critical for controlling the efficiency of the carbonate opening. PMID:27467779

  20. A Lewis Acid Catalyzed Annulation to 2,1-Benzisoxazoles

    PubMed Central

    2015-01-01

    We report here a new, atom economical annulation to 2,1-benzisoxazole scaffolds via the BF3·Et2O-catalyzed reaction of glyoxylate esters and nitrosoarenes. The developed method represents a convergent route to this compound class from previously unexplored inputs and provides a range of 2,1-benzisoxazoles in moderate to high yields under convenient conditions. Along with exploration of substrate scope, initial mechanistic investigation through 18O labeling and the synthesis of a reaction intermediate provides evidence for an unusual umpolung addition of glyoxylates to nitrosobenzenes with high O-selectivity, followed by a new type of Friedel–Crafts cyclization. PMID:25157596

  1. Iridium-Catalyzed Reductive Nitro-Mannich Cyclization

    PubMed Central

    Gregory, Alex W; Chambers, Alan; Hawkins, Alison; Jakubec, Pavol; Dixon, Darren J

    2015-01-01

    A new chemoselective reductive nitro-Mannich cyclization reaction sequence of nitroalkyl-tethered lactams has been developed. Relying on the rapid and chemoselective iridium(I)-catalyzed reduction of lactams to the corresponding enamine, subsequent nitro-Mannich cyclization of tethered nitroalkyl functionality provides direct access to important alkaloid natural-product-like structures in yields up to 81 % and in diastereoselectivities that are typically good to excellent. An in-depth understanding of the reaction mechanism has been gained through NMR studies and characterization of reaction intermediates. The new methodology has been applied to the total synthesis of (±)-epi-epiquinamide in four steps. PMID:25399919

  2. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    SciTech Connect

    Roman Vladimirovich Rozhkov

    2004-12-19

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a {beta}-hydrogen in the vinylic halide results in {beta}-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the {alpha}-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  3. Diversity synthesis using the complimentary reactivity of rhodium(II)- and palladium(II)-catalyzed reactions.

    PubMed

    Ni, Aiwu; France, Jessica E; Davies, Huw M L

    2006-07-21

    Rhodium(II)-catalyzed reactions of aryldiazoacetates can be conducted in the presence of iodide, triflate, organoboron, and organostannane functionality, resulting in the formation of a variety of cyclopropanes or C-H insertion products with high stereoselectivity. The combination of the rhodium(II)-catalyzed reaction with a subsequent palladium(II)-catalyzed Suzuki coupling offers a novel strategy for diversity synthesis. PMID:16839138

  4. Gold-Catalyzed Anti-Markovnikov Selective Hydrothiolation of Unactivated Alkenes.

    PubMed

    Tamai, Taichi; Fujiwara, Keiko; Higashimae, Shinya; Nomoto, Akihiro; Ogawa, Akiya

    2016-05-01

    Despite the widespread use of transition-metal catalysts in organic synthesis, transition-metal-catalyzed reactions of organosulfur compounds, which are known as catalyst poisons, have been difficult. In particular, the transition-metal-catalyzed addition of organosulfur compounds to unactivated alkenes remains a challenge. A novel gold-catalyzed hydrothiolation of unactivated alkenes is presented, which proceeds effectively to give the anti-Markovnikov-selective adducts in good yields and in a regioselective manner. PMID:27057590

  5. Recent Developments in Metal-Catalyzed Additions of Oxygen Nucleophiles to Alkenes and Alkynes

    NASA Astrophysics Data System (ADS)

    Hintermann, Lukas

    Progress in the field of metal-catalyzed redox-neutral additions of oxygen nucleophiles (water, alcohols, carboxylic acids, and others) to alkenes, alkynes, and allenes between 2001 and 2009 is critically reviewed. Major advances in reaction chemistry include development of chiral Lewis acid catalyzed asymmetric oxa-Michael additions and Lewis-acid catalyzed hydro-alkoxylations of nonactivated olefins, as well as further development of Markovnikov-selective cationic gold complex-catalyzed additions of alcohols or water to alkynes and allenes.

  6. CO2 reduction catalyzed by mercaptopteridine on glassy carbon.

    PubMed

    Xiang, Dongmei; Magana, Donny; Dyer, R Brian

    2014-10-01

    The catalytic reduction of CO2 is of great current interest because of its role in climate change and the energy cycle. We report a pterin electrocatalyst, 6,7-dimethyl-4-hydroxy-2-mercaptopteridine (PTE), that catalyzes the reduction of CO2 and formic acid on a glassy carbon electrode. Pterins are natural cofactors for a wide range of enzymes, functioning as redox mediators and C1 carriers, but they have not been exploited as electrocatalysts. Bulk electrolysis of a saturated CO2 solution in the presence of the PTE catalyst produces methanol, as confirmed by gas chromatography and (13)C NMR spectroscopy, with a Faradaic efficiency of 10-23%. FTIR spectroelectrochemistry detected a progression of two-electron reduction products during bulk electrolysis, including formate, aqueous formaldehyde, and methanol. A transient intermediate was also detected by FTIR and tentatively assigned as a PTE carbamate. The results demonstrate that PTE catalyzes the reduction of CO2 at low overpotential and without the involvement of any metal. PMID:25259884

  7. Enzyme catalyzed electricity-driven water softening system.

    PubMed

    Arugula, Mary A; Brastad, Kristen S; Minteer, Shelley D; He, Zhen

    2012-12-10

    Hardness in water, which is caused by divalent cations such as calcium and magnesium ions, presents a major water quality problem. Because hard water must be softened before use in residential applications, there is great interest in the saltless water softening process because, unlike ion exchange softeners, it does not introduce additional ions into water. In this study, a saltless hardness removal driven by bioelectrochemical energy produced through enzymatic oxidation of glucose was proposed and investigated. Glucose dehydrogenase was coated on a carbon electrode to catalyze glucose oxidation in the presence of NAD⁺ as a cofactor/mediator and methylene green as an electrocatalyst. The results showed that electricity generation stimulated hardness removal compared with non-electricity conditions. The enzymatic water softener worked upon a 6h batch operation per day for eight days, and achieved an average hardness removal of 46% at a high initial concentration of 800 mg/L as CaCO₃. More hardness was removed at a lower initial concentration. For instance, at 200mg/L as CaCO₃ the enzymatic water softener removed 76.4±4.6% of total hardness. The presence of magnesium ions decreased hardness removal because of its larger hydrated radius than calcium ions. The enzymatic water softener removed 70-80% of total hardness from three actual hard water samples. These results demonstrated a proof-of-concept that enzyme catalyzed electricity generation can be used to soften hard water. PMID:23040397

  8. RNA catalyzes nuclear pre-mRNA splicing

    PubMed Central

    Fica, Sebastian M.; Tuttle, Nicole; Novak, Thaddeus; Li, Nan-Sheng; Lu, Jun; Koodathingal, Prakash; Dai, Qing; Staley, Jonathan P.; Piccirilli, Joseph A.

    2014-01-01

    SUMMARY In nuclear pre-messenger RNA splicing, introns are excised by the spliceosome, a multi-megadalton machine composed of both proteins and small nuclear RNAs (snRNAs). Over thirty years ago, following the discovery of self-splicing group II intron RNAs, the snRNAs were hypothesized to catalyze splicing. However, no definitive evidence for a role of either RNA or protein in catalysis by the spliceosome has been reported to date. By using metal rescue strategies, here we show that the U6 snRNA catalyzes both splicing reactions by positioning divalent metals that stabilize the leaving groups during each reaction. Strikingly, all of the U6 catalytic metal ligands we identified correspond to the ligands observed to position catalytic, divalent metals in crystal structures of a group II intron RNA. These findings indicate that group II introns and the spliceosome share common catalytic mechanisms, and likely common evolutionary origins. Our results demonstrate that RNA mediates catalysis within the spliceosome. PMID:24196718

  9. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    NASA Astrophysics Data System (ADS)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  10. Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity.

    PubMed

    Kudanga, Tukayi; Prasetyo, Endry Nugroho; Widsten, Petri; Kandelbauer, Andreas; Jury, Sandra; Heathcote, Carol; Sipilä, Jussi; Weber, Hansjoerg; Nyanhongo, Gibson S; Guebitz, Georg M

    2010-04-01

    This work presents for the first time the mechanistic evidence of a laccase-catalyzed method of covalently grafting hydrophobicity enhancing fluorophenols onto Fagus sylvatica veneers. Coupling of fluorophenols onto complex lignin model compounds guaiacylglycerol beta-guaiacyl ether and syringylglycerol beta-guaiacyl ether was demonstrated by LC-MS and NMR. Laccase-mediated coupling increased binding of 4-[4-(trifluoromethyl)phenoxy]phenol (4,4-F3MPP) and 4-(trifluoromethoxy)phenol (4-F3MP) to veneers by 77.1% and 39.2%, respectively. XPS studies showed that laccase-catalyzed grafting of fluorophenols resulted in a fluorine content of 6.39% for 4,4-F3MPP, 3.01% for 4-F3MP and 0.26% for 4-fluoro-2-methylphenol (4,2-FMP). Grafting of the fluorophenols 4,2-FMP, 4-F3MP and 4,4-F3MPP led to a 9.6%, 28.6% and 65.5% increase in hydrophobicity, respectively, when compared to treatments with the respective fluorophenols in the absence of laccase, in good agreement with XPS data. PMID:20044252

  11. The mechanisms of platinum-catalyzed silicon nanowire growth

    NASA Astrophysics Data System (ADS)

    Hibst, N.; Knittel, P.; Biskupek, J.; Kranz, C.; Mizaikoff, B.; Strehle, S.

    2016-02-01

    Platinum (Pt) has been known as a catalyst material for vapor-liquid-solid (VLS) synthesis since the mid 1960s with the potential to grow electronic grade silicon nanowires (SiNWs). In contrast to gold-based growth, Pt-catalyzed SiNW synthesis has rarely been studied, most likely due to higher synthesis temperatures and the formation of multiple Pt silicide phases. Here we present the growth of SiNWs from a Pt catalyst deposited by a focused ion or electron beam, which opens new strategies for the assembly of Pt-catalyzed SiNW-based devices, as well as SiNW growth from Pt nanoparticles and thin films. We show that single-crystalline SiNWs exhibit either the well-known catalyst tip or a polycrystalline silicon tip so far not reported. The local Pt concentration was found to be one key parameter triggering the growth mode. The proposed growth model for both types of SiNWs is based on a solid-state silicide-mediated crystallization rather than VLS. The discussion of the growth modes is supported by a variation of several growth parameters and SiNW synthesis using the substrate materials silicon nitride, single-crystalline silicon, fused silica, and sapphire.

  12. The prosegment catalyzes native folding of Plasmodium falciparum plasmepsin II.

    PubMed

    Jaafar, Ahmad Haniff; Xiao, Huogen; Dee, Derek R; Bryksa, Brian C; Bhaumik, Prasenjit; Yada, Rickey Y

    2016-10-01

    Plasmepsin II is a malarial pepsin-like aspartic protease produced as a zymogen containing an N-terminal prosegment domain that is removed during activation. Despite structural similarities between active plasmepsin II and pepsin, their prosegments adopt different conformations in the respective zymogens. In contrast to pepsinogen, the proplasmepsin II prosegment is 80 residues longer, contains a transmembrane region and is non-essential for recombinant expression in an active form, thus calling into question the prosegment's precise function. The present study examines the role of the prosegment in the folding mechanism of plasmepsin II. Both a shorter (residues 77-124) and a longer (residues 65-124) prosegment catalyze plasmepsin II folding at rates more than four orders of magnitude faster compared to folding without prosegment. Native plasmepsin II is kinetically trapped and requires the prosegment both to catalyze folding and to shift the folding equilibrium towards the native conformation. Thus, despite low sequence identity and distinct zymogen conformations, the folding landscapes of plasmepsin II and pepsin, both with and without prosegment, are qualitatively identical. These results imply a conserved and unusual feature of the pepsin-like protease topology that necessitates prosegment-assisted folding. PMID:27378574

  13. Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth.

    PubMed

    Wang, Junli; Chen, Kangmin; Gong, Ming; Xu, Bin; Yang, Qing

    2013-09-11

    The catalytic mechanism offers an efficient tool to produce crystalline semiconductor nanowires, in which the choice, state, and structure of catalysts are active research issues of much interest. Here we report a novel solution-solid-solid (SSS) mechanism for nanowire growth catalyzed by solid-phase superionic conductor nanocrystals in low-temperature solution. The preparation of Ag2Se-catalyzed ZnSe nanowires at 100-210 °C is exampled to elucidate the SSS model, which can be extendable to grow other II-VI semiconductor (e.g., CdSe, ZnS, and CdS) nanowires by the catalysis of nanoscale superionic-phase silver or copper(I) chalcogenides (Ag2Se, Ag2S, and Cu2S). The exceptional catalytic ability of these superionic conductors originates from their structure characteristics, known for high-density vacancies and fast mobility of silver or copper(I) cations in the rigid sublattice of Se(2-) or S(2-) ions. Insights into the SSS mechanism are provided based on the formation of solid solution and the solid-state ion diffusion/transport at solid-solid interface between catalyst and nanowire. PMID:23919513

  14. Thermally Induced And Base Catalyzed Reactions Of Naphthoquinone Diazides

    NASA Astrophysics Data System (ADS)

    Koshiba, Mitsunobu; Murata, Makoto; Matsui, Mariko; Harita, Yoshiyuki

    1988-01-01

    Thermally induced and base catalyzed reactions of a phenol ester of 1,2-naphthoquinone-diazide-5-sulfonic acid (DAM) with p-cresol were investigated. In total seven reaction products were obtained for the thermally induced reaction. The three major products, TR--F4, TR-F6 and TR-F7, were isolated and their structures were determined by means of several advanced spectroscopic techniques like Fourier transform nuclear magnetic resonance (FTNMR) and field desorption mass spectroscopy (FD-MS). Besides a cresol ester of indenecarboxylic acid (TR-F6) and an azo compound which contains two DAM originated moieties and cresol (TR-F7), the formation of a novel compound was found; a phenol ester of 2-cresyl-l-naphthol-5-sulfonic acid. On the other hand, four reaction products were found in the base (a 2.38wt% tetramethylammonium hydroxide aq. solution) catalyzed reaction products of DAM with p-cresol, and two major products, BC-Fl and BC-F3, which appeared at the initial stage of the reaction were isolated. The structure determination of the two major products was carried out in the same manner as described above. It was discovered that BC-Fl was a cresol ester of 1-naphthol while BC-F3 was an azoxy compound. Brief discussions will be made on those reactions of naphthoquinone diazides with a matrix novolak resin with reference to the results obtained by the present study.

  15. Investigations into Transition Metal Catalyzed Arene Trifluoromethylation Reactions

    PubMed Central

    Ye, Yingda; Sanford, Melanie S.

    2015-01-01

    Trifluoromethyl-substituted arenes and heteroarenes are widely prevalent in pharmaceuticals and agrochemicals. As a result, the development of practical methods for the formation of aryl–CF3 bonds has become an active field of research. Over the past five years, transition metal catalyzed cross-coupling between aryl–X (X = halide, organometallic, or H) and various “CF3” reagents has emerged as a particularly exciting approach for generating aryl–CF3 bonds. Despite many recent advances in this area, current methods generally suffer from limitations such as poor generality, harsh reaction conditions, the requirement for stoichiometric quantities of metals, and/or the use of costly CF3 sources. This Account describes our recent efforts to address some of these challenges by: (1) developing aryl trifluoromethylation reactions involving high oxidation state Pd intermediates, (2) exploiting AgCF3 for C–H trifluoromethylation, and (3) achieving Cu-catalyzed trifluoromethylation with photogenerated CF3•. PMID:25838638

  16. Metal-Catalyzed Oxidation and Photo-oxidation of Glucagon.

    PubMed

    Zhang, Jian

    2016-08-01

    The oxidation of glucagon by the H2O2/Cu(2+) system and by simulated sunlight was studied using HPLC-MS methodologies. It was found that copper ion-catalyzed oxidation is much faster in the residue 1-12 region than in photo-oxidation, but it is slower than photo-oxidation in the residue 18-29 region. This difference is due to the unique feature of the primary sequence of glucagon. The residue 1-12 region contains His-1 and Asp-9 that can bind to Cu(2+) ions and catalyze the oxidation of His-1 and Tyr-10, while the residue 18-29 region lacks these charged residues near the liable Met-27 and Trp-25 and hence no catalysis by the neighboring groups occurs. Fragment (residue 13-17) was more stable than the other regions of the peptide toward photo-oxidation because it contains only one oxidizable residue, Tyr-13. These findings may help explain the mechanism of action of glucagon and provide some hints for the development of effective anti-diabetic drug molecules and stable glucagon formulations. PMID:27435200

  17. Chloride-catalyzed corrosion of plutonium in glovebox atmospheres

    SciTech Connect

    Burgess, M.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M.; Puglisi, C.V.

    1998-04-01

    Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl{sub 3}) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report.

  18. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    PubMed Central

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  19. Titanium-Catalyzed Silicon Nanostructures Grown by APCVD

    NASA Astrophysics Data System (ADS)

    Usman, Mohammad A. U.; Smith, Brady J.; Jackson, Justin B.; De Long, Matthew C.; Miller, Mark S.

    2015-01-01

    We report on growth of Ti-catalyzed silicon nanostructures (SNCs) through atmospheric-pressure chemical vapor deposition. An extensive growth study relating the growth condition parameters, including the partial pressure of SiCl4 gas, reaction temperature, and reaction time, was carried out to obtain insight into the growth regimes for the observed SNCs. Based on phase diagram analysis of Ti-Si alloy and growth rate analysis of the silicon nanowires (SNWs) and silicon nanoplatelets, we believe the growth mechanism to be strongly dependent on the thermodynamics of the system, exhibiting a delicate balance that can easily tip between the growth and etching regimes of the system. Three types of SNCs were observed frequently throughout the study: nanowires, nanoplatelets, and balls. Regimes for highly etched growth were also noted through growth conditions plots. Ti-catalyzed SNWs grown using SiCl4 gas strongly suggest growth occurring through a type of vapor-solid-solid (VSS) mechanism that is limited by diffusion through the solid-catalyst interface. On the other hand, the two-dimensional SNP morphologies suggest growth occurring through the twin-plane mechanism at the edges, at 10 nm to 100 nm scales, also through a similar, VSS mechanism.

  20. Small molecule screening in context: Lipid-catalyzed amyloid formation

    PubMed Central

    Hebda, James A; Magzoub, Mazin; Miranker, Andrew D

    2014-01-01

    Islet Amyloid Polypeptide (IAPP) is a 37-residue hormone cosecreted with insulin by the β-cells of the pancreas. Amyloid fiber aggregation of IAPP has been correlated with the dysfunction and death of these cells in type II diabetics. The likely mechanisms by which IAPP gains toxic function include energy independent cell membrane penetration and induction of membrane depolarization. These processes have been correlated with solution biophysical observations of lipid bilayer catalyzed acceleration of amyloid formation. Although the relationship between amyloid formation and toxicity is poorly understood, the fact that conditions promoting one also favor the other suggests related membrane active structural states. Here, a novel high throughput screening protocol is described that capitalizes on this correlation to identify compounds that target membrane active species. Applied to a small library of 960 known bioactive compounds, we are able to report identification of 37 compounds of which 36 were not previously reported as active toward IAPP fiber formation. Several compounds tested in secondary cell viability assays also demonstrate cytoprotective effects. It is a general observation that peptide induced toxicity in several amyloid diseases (such as Alzhiemer’s and Parkinson’s) involves a membrane bound, preamyloid oligomeric species. Our data here suggest that a screening protocol based on lipid-catalyzed assembly will find mechanistically informative small molecule hits in this subclass of amyloid diseases. PMID:25043951

  1. Porous silicon formation during Au-catalyzed etching

    SciTech Connect

    Algasinger, Michael; Bernt, Maximilian; Koynov, Svetoslav; Stutzmann, Martin

    2014-04-28

    The formation of “black” nano-textured Si during the Au-catalyzed wet-chemical etch process was investigated with respect to photovoltaic applications. Cross-sectional scanning electron microscopy (SEM) images recorded at different stages of the etch process exhibit an evolution of a two-layer structure, consisting of cone-like Si hillocks covered with a nano-porous Si (np-Si) layer. Optical measurements confirm the presence of a np-Si phase which appears after the first ∼10 s of the etch process and continuously increases with the etch time. Furthermore, the etch process was investigated on Si substrates with different doping levels (∼0.01–100 Ω cm). SEM images show a transition from the two-layer morphology to a structure consisting entirely of np-Si for higher doping levels (<0.1 Ω cm). The experimental results are discussed on the basis of the model of a local electrochemical etch process. A better understanding of the metal-catalyzed etch process facilitates the fabrication of “black” Si on various Si substrates, which is of significant interest for photovoltaic applications.

  2. Gold-catalyzed tandem reactions of methylenecyclopropanes and vinylidenecyclopropanes.

    PubMed

    Zhang, Di-Han; Tang, Xiang-Ying; Shi, Min

    2014-03-18

    Gold catalysis is often the key step in the synthesis of natural products, and is a powerful tool for tandem or domino reaction processes. Both gold salts and complexes are among the most powerful soft Lewis acids for electrophilic activation of carbon-carbon multiple bonds toward a variety of nucleophiles. The core of these reactions relies on the interaction between gold catalysts and π-bonds of alkenes, alkynes, and allenes. Activation of functional groups by gold complexes provides a useful and important method for facilitating many different organic transformations with high atom efficiency. Although they are highly strained, methylenecyclopropanes (MCPs) and vinylidenecyclopropanes (VDCPs) are readily accessible molecules that have served as useful building blocks in organic synthesis. Because of their unique structural and electronic properties, significant developments have been made in the presence of transition metal catalysts such as nickel, rhodium, palladium, and ruthenium during the past decades. However, less attention has been paid to the gold-catalyzed chemistry of MCPs and VDCPs. In this Account, we describe gold-catalyzed chemical transformations of MCPs and VDCPs developed both in our laboratory and by other researchers. Chemists have demonstrated that MCPs and VDCPs have amphiphilic properties. When MCPs or VDCPs are activated by a gold catalyst, subsequent nucleophilic attack by other reagents or ring-opening (ring-expansion) of the cyclopropane moiety will occur. However, the C-C double bonds of MCPs and VDCPs can also serve as nucleophilic reagents while more electrophilic reagents are present and activated by gold catalyst, and then further cascade reactions take place as triggered by the release of ring strain of cyclopropane. Based on this strategy, both our group and others have found some interesting gold-catalyzed transformations in recent years. These transformations of MCPs and VDCPs can produce a variety of polycyclic and

  3. Montmorillonite Clay-Catalyzed Synthesis of RNA Oligomers

    NASA Astrophysics Data System (ADS)

    Ferris, J. P.; Miyakawa, S.; Huang, W.; Joshi, P.

    2005-12-01

    It is proposed that catalysis had a central role in the origins of life. This will be illustrated using the montmorillonite clay-catalyzed synthesis of oligomers of RNA from activated monomers, (Ferris and Ertem, 1993) a possible step in the origin of the RNA world (Ferris, 2005). Structural analysis of oligomers formed in the reaction of the activated monomer of 5'-AMP with that of 5'-CMP demonstrated that the oligomers formed were not produced by random synthesis but rather the sequences observed were directed by the montmorillonite catalyst (Miyakawa and Ferris, 2003). RNA oligomers containing up to 40 mers have been synthesized in reactions performed in water at 25 oC in the presence of montmorillonite (Huang and Ferris, 2003). Analysis of the structure elements in these oligomers from the 7 to 39 mers showed that they did not vary. Reaction of D, L-mixtures of the activated monomers of A and U resulted in the formation of greater amounts of the homochiral amounts of dimers and trimers of A than would be expected if there was no selectivity in the reaction. A limited number of the dimers and trimers of U were also formed but here the selectivity was for the formation of an excess of heterochiral products (Joshi et al., 2000). A postulate that explains why homochiral trimers of U are not formed and the significance of catalysis in prebiotic synthesis will be discussed. Ferris, J.P. (2005) Origins of life, molecular basis of. In R.A. Meyers, Ed. Encyclopedia of Molecular Cell Biology and Molecular Medicine, 10. Wiley-VCH Verlag, Weinheim, Germany. Ferris, J.P., and Ertem, G. (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J. Am. Chem. Soc., 115, 12270-12275. Huang, W., and Ferris, J.P. (2003) Synthesis of 35-40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem. Commun., 1458-1459. Joshi, P.C., Pitsch, S., and Ferris, J.P. (2000) Homochiral selection

  4. Pyridine-NHC: effective ligand in Pd-catalyzed cyclopropanation of esters with substituted allyl carbonates.

    PubMed

    Huang, Jian-Qiang; Ding, Chang-Hua; Hou, Xue-Long

    2014-12-19

    By consideration of the mechanism of Pd-catalyzed cyclopropanation and allylation, NHC-pyridine compounds were adopted as the ligand in Pd-catalyzed cyclopropanation of esters and monosubstituted allylic reagents. The corresponding cyclopropanes were afforded as major products in moderate to good yields with high cyclopropane/allylation selectivity. PMID:25284365

  5. Rhodium-Catalyzed ipso-Borylation of Alkylthioarenes via C-S Bond Cleavage.

    PubMed

    Uetake, Yuta; Niwa, Takashi; Hosoya, Takamitsu

    2016-06-01

    Rhodium-catalyzed transformation of alkyl aryl sulfides into arylboronic acid pinacol esters via C-S bond cleavage is reported. In combination with transition-metal-catalyzed sulfanyl group-guided regioselective C-H borylation reactions of alkylthioarenes, this method allows the synthesis of a diverse range of multisubstituted arenes. PMID:27210907

  6. Nickel-Catalyzed Decarboxylative Cross-Coupling of Perfluorobenzoates with Aryl Halides and Sulfonates

    PubMed Central

    2016-01-01

    A Ni-catalyzed method for the coupling of perfluorobenzoates with aryl halides and pseudohalides is described. Aryl iodides, bromides, chlorides, triflates, and tosylates participate in these transformations to afford the products in good yields. Penta-, tetra-, and trifluorinated biaryl compounds are obtained using these newly developed Ni-catalyzed decarboxylative cross-coupling reactions. PMID:25700128

  7. ROLE OF COPPER,ZINC-SUPEROXIDE DISMUTASE IN CATALYZING NITROTYROSINE FORMATION IN MURINE LIVER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solely known function of Cu,Zn-superoxide dismutase (SOD1) is to catalyze the dismutation of superoxide anion into hydrogen peroxide. Our objective was to determine if SOD1 catalyzed murine liver protein nitration induced by acetaminophen (APAP) and lipopolysaccharide (LPS). Liver and plasma ...

  8. Lipase-catalyzed ethanolysis of borage oil: a kinetic study.

    PubMed

    Torres, Carlos F; Hill, Charles G; Otero, Cristina

    2004-01-01

    Ethanolysis of borage oil catalyzed by two commercial lipases (from Pseudomonas cepacia and Candida antarctica) was studied using two different methodologies. Multiresponse models derived from a generalized Michaelis-Menten mechanism were utilized to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. The relative rate constants determined for each of the fatty acid residues indicated that both lipases discriminate against release of gamma-linolenic acid residues under the reaction conditions studied. However, both lipases also released some of the residues located at the sn-2 position, indicating that for the experimental conditions studied, both lipases are nonspecific. Moreover, inactivation of Novozym 435 was rapid. Because the half-life of this enzyme (ca. 2.2 h) is comparable to the half-life of the reaction, the intrinsic reaction rate and enzyme deactivation must both be considered in modeling the kinetics. PMID:15176879

  9. Trypsin-catalyzed oxygen-18 labeling for quantitative proteomics

    SciTech Connect

    Qian, Weijun; Petritis, Brianne O.; Nicora, Carrie D.; Smith, Richard D.

    2011-07-01

    Stable isotope labeling based on relative peptide/protein abundance measurements is commonly applied for quantitative proteomics. Recently, trypsin-catalyzed oxygen-18 labeling has grown in popularity due to its simplicity, cost-effectiveness, and its ability to universally label peptides with high sample recovery. In (18)O labeling, both C-terminal carboxyl group atoms of tryptic peptides can be enzymatically exchanged with (18)O, thus providing the labeled peptide with a 4 Da mass shift from the (16)O-labeled sample. Peptide (18)O labeling is ideally suited for generating a labeled "universal" reference sample used for obtaining accurate and reproducible quantitative measurements across large number of samples in quantitative discovery proteomics.

  10. Platinum-catalyzed hydroformylation of terminal and internal octenes.

    PubMed

    van Duren, Ruben; van der Vlugt, Jarl Ivar; Kooijman, Huub; Spek, Anthony L; Vogt, Dieter

    2007-03-14

    A brief historic overview of Pt/Sn-catalyzed hydroformylation as well as recent advances in the hydroformylation of internal alkenes is provided. This serves as background for the results obtained with the [Pt(Sixantphos)Cl(2)] system, for which the molecular structure and the spectroscopic data are described. Insitu UV/Vis-spectroscopic studies have revealed rapid formation of the corresponding Pt-stannate complex upon reaction with SnCl(2), whereas high-pressure insitu IR-spectroscopy showed formation of a Pt-CO species and a short-lived Pt-H species under syngas, as well as rapid evolution of aldehyde product upon addition of 1-octene to the preformed catalyst in the IR autoclave. The hydroformylation of 1-octene and the i-octenes has been performed. For the internal alkenes, selective tandem isomerization/hydroformylation towards n-nonanal is observed with this catalyst system. PMID:17325781

  11. WILDCAT: a catalyzed D-D tokamak reactor

    SciTech Connect

    Evans, K. Jr.; Baker, C.C.; Brooks, J.N.

    1981-11-01

    WILDCAT is a conceptual design of a catalyzed D-D, tokamak, commercial, fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing D-T designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete, conceptual design.

  12. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    PubMed Central

    Lin, Rihui; Li, He; Long, Han; Su, Jiating; Huang, Wenqin

    2014-01-01

    Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch. PMID:24977156

  13. Ni-Catalyzed C-C Couplings Using Alkyl Electrophiles.

    PubMed

    Iwasaki, Takanori; Kambe, Nobuaki

    2016-10-01

    Much effort has been devoted to developing new methods using Ni catalysts for the cross-coupling reaction of alkyl electrophiles with organometallic reagents, and significant achievements in this area have emerged during the past two decades. Nickel catalysts have enabled the coupling reaction of not only primary alkyl electrophiles, but also sterically hindered secondary and tertiary alkyl electrophiles possessing β-hydrogens with various organometallic reagents to construct carbon skeletons. In addition, Ni catalysts opened a new era of asymmetric cross-coupling reaction using alkyl halides. Recent progress in nickel-catalyzed cross-coupling reaction of alkyl electrophiles with sp(3)-, sp(2)-, and sp-hybridized organometallic reagents including asymmetric variants as well as mechanistic insights of nickel catalysis are reviewed in this chapter. PMID:27580894

  14. Decomposition of peracetic acid catalyzed by vanadium complexes

    SciTech Connect

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-02-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0/sub 2/ and small amounts of CO/sub 2/, the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO/sub 2/ is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V/sup 5 +/ ions and peracetic acid and the slow conversion of this complex into the observed products.

  15. Measurements of Muon Catalyzed dt Fusion in Solid HD

    NASA Astrophysics Data System (ADS)

    Porcelli, Tracy

    1999-05-01

    The first measurement of muon catalyzed dt fusion (dtμ arrow ^4He + n + μ^-) in solid HD at ~ 3 K has been performed. The theory describing the formation of the [(dtμ)pee)] muonic molecule from the resonant reaction tμ + HD arrow [(dtμ)pee], a key process in the dt fusion cycle, can now be tested against experimental results. Using an experimental technique which employs solid layers of hydrogen isotopes, the energy of molecular formation is determined via time of flight, and dt fusion time spectra in solid HD have been measured. The theory describing the resonant formation of the dtμ muonic molecule is compared to the experimental results through Monte Carlo simulations. The energy dependent molecular formation rates calculated for HD at 3 K have been employed in the Monte Carlo with the resultant fusion time spectra in fair agreement with the experimental results.

  16. Measurements of muon-catalyzed dt fusion in solid HD

    NASA Astrophysics Data System (ADS)

    Porcelli, Tracy Ann

    1999-12-01

    The first measurement of muon catalyzed dt fusion ( dtm--> 4He + n + m- ) in solid HD at ~ 3 K has been performed. The theory describing the formation of the [(dtm)pe e] muonic molecule from the resonant reaction tm+HD-->[(dtm) pee] , a key process in the dt fusion cycle, can now be tested against the experimental results. Using an experimental technique which employs solid layers of hydrogen isotopes, the energy of molecular formation is determined via time of flight, and dt fusion time spectra in solid HD have been measured. The theory describing the resonant formation of the dtm muonic molecule is compared to the experimental results through Monte Carlo simulations. The energy dependent molecular formation rates calculated for HD at 3 K have been employed in the Monte Carlo with the resultant simulated fusion time spectra in fair agreement with the experimental results.

  17. Regiospecific base-catalyzed hydrogen exchange of triarylsulfonium salts

    SciTech Connect

    Chung, S.K.; Sasamoto, K.

    1981-10-23

    Solvent isotope labelling method has been used to show that the hydrocarbon products commonly observed in the reaction of triarylsulfonium salts with a number of alkoxide nucleophiles are derived via the radical intermediate rather than the corresponding anions. The results of the determination of the extent and scope of the base-catalyzed hydrogen exchange of the triarylsulfonium salts with the protic solvent medium are reported. No clear explanation for the observed regiospecificity of the hydrogen exchange in the salts is readily available. The enhanced thermodynamic acidity of the ortho hydrogen due to the inductive effect of the electron-withdrawing sulfonium and the dipole stabilization of the corresponding carbanionic species are suggested as explanations for the regiospecific deprotonation of the ortho hydrogen in the triarylsulfonium salts. (BLM)

  18. Homogeneously catalyzed oxidation for the destruction of aqueous organic wastes

    SciTech Connect

    Leavitt, D.D.; Horbath, J.S.; Abraham, M.A. )

    1990-11-01

    Several organic species, specifically atrazine, 2,4-dichlorophenozyacetic acid, and biphenyl, were converted to CO{sub 2} and other non-harmful gases through oxidation catalyzed by inorganic acid. Nearly complete conversion was obtained through homogeneous liquid-phase oxidation with ammonium nitrate. The kinetics of reaction have been investigated and indicate parallel oxidation and thermal degradation of the oxidant. This results in a maximum conversion at an intermediate temperature. Increasing oxidant concentration accelerates the rate of conversion and shifts the location of the optimum temperature. Reaction at varying acid concentration revealed that conversion increased with an approximately linear relationship as the pH of the solution was increased. Conversion was increased to greater than 99% through the addition of small amounts of transition metal salts demonstrating the suitability of a treatment process based on this technology for wastestreams containing small quantities of heavy metals.

  19. Solvent effects in acid-catalyzed biomass conversion reactions.

    PubMed

    Mellmer, Max A; Sener, Canan; Gallo, Jean Marcel R; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A

    2014-10-27

    Reaction kinetics were studied to quantify the effects of polar aprotic organic solvents on the acid-catalyzed conversion of xylose into furfural. A solvent of particular importance is γ-valerolactone (GVL), which leads to significant increases in reaction rates compared to water in addition to increased product selectivity. GVL has similar effects on the kinetics for the dehydration of 1,2-propanediol to propanal and for the hydrolysis of cellobiose to glucose. Based on results obtained for homogeneous Brønsted acid catalysts that span a range of pKa values, we suggest that an aprotic organic solvent affects the reaction kinetics by changing the stabilization of the acidic proton relative to the protonated transition state. This same behavior is displayed by strong solid Brønsted acid catalysts, such as H-mordenite and H-beta. PMID:25214063

  20. Oligonucleotide synthesis catalyzed by the Zn/2+/ ion

    NASA Technical Reports Server (NTRS)

    Sawai, H.; Orgel, L. E.

    1975-01-01

    Results of experiments are reported in which Zn(2+) ion catalyzed the formation of oligonucleotides from nucleoside phosphorimidazolides in aqueous solution, even in the absence of a template. Specifically, the imidazolides (ImpU or ImpA) polymerized to form ImpApA, and pApA, pApApA, and pApApApA, or the analogous uracil compounds. In addition, the expected hydrolysis products of the hydrolysis of ImpA were formed (pA, imidazole). Judging from the ratio of pA(n) over pA (with and without zinc ion), this ion increased the efficiency of phosphodiester-bond formation by up to 10 times. Possible mechanisms for the reaction are tentatively proposed.

  1. Degradation of Akt Using Protein Catalyzed Capture Agents

    PubMed Central

    Das, Samir; Nag, Arundhati; Tang, Grace; Tang, Kevin; Sutherland, Alexander M.; Heath, James R.

    2016-01-01

    Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry we recently developed multiple protein catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein based assay. Here we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare Proteolysis Targeting Chimeric molecules (PROTACs) that are shown to promote the rapid degradation of Akt in live cancer cells. These novel PROTACs demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets. PMID:26880702

  2. Olefin hydroaryloxylation catalyzed by pincer-iridium complexes.

    PubMed

    Haibach, Michael C; Guan, Changjian; Wang, David Y; Li, Bo; Lease, Nicholas; Steffens, Andrew M; Krogh-Jespersen, Karsten; Goldman, Alan S

    2013-10-01

    Aryl alkyl ethers, which are widely used throughout the chemical industry, are typically produced via the Williamson ether synthesis. Olefin hydroaryloxylation potentially offers a much more atom-economical alternative. Known acidic catalysts for hydroaryloxylation, however, afford very poor selectivity. We report the organometallic-catalyzed intermolecular hydroaryloxylation of unactivated olefins by iridium "pincer" complexes. These catalysts do not operate via the hidden Brønsted acid pathway common to previously developed transition-metal-based catalysts. The reaction is proposed to proceed via olefin insertion into an iridium-alkoxide bond, followed by rate-determining C-H reductive elimination to yield the ether product. The reaction is highly chemo- and regioselective and offers a new approach to the atom-economical synthesis of industrially important ethers and, potentially, a wide range of other oxygenates. PMID:24028199

  3. Ruthenium-Catalyzed Regioselective 1,4-Hydroboration of Pyridines.

    PubMed

    Kaithal, Akash; Chatterjee, Basujit; Gunanathan, Chidambaram

    2016-07-15

    Simple ruthenium precursor [Ru(p-cymene)Cl2]2 1 catalyzed regioselective 1,4-dearomatization of pyridine derivatives using pinacolborane is reported. Two catalytic intermediates, [Ru(p-cymene)Cl2Py] 2 and [Ru(p-cymene)Cl2(P(Cy)3)] 3, involved in this process are identified, independently synthesized, characterized, and further used directly as effective catalysts; two more catalytic intermediates [Ru(p-cymene)Cl2(Py)(P(Cy)3)] 4 and [Ru(p-cymene)(H)Cl(Py)(P(Cy)3)] 5 are identified in solution. Complex 5 is the active catalytic intermediate. An intramolecular selective 1,5-hydride transfer in 5 leading to the regioselective 1,4-hydroboration of pyridine compounds is proposed. PMID:27351256

  4. Hemoglobin-catalyzed fluorometric method for the determination of glutathione

    NASA Astrophysics Data System (ADS)

    Wang, Ruiqiang; Tang, Lin; Li, Hua; Wang, Yi; Gou, Rong; Guo, Yuanyuan; Fang, Yudong; Chen, Fengmei

    2016-01-01

    A new spectrofluorometric method for the determination of glutathione based on the reaction catalyzed by hemoglobin was reported. The reaction product gave a highly fluorescent intensity with the excitation and emission wavelengths of 320.0 nm and 413.0 nm, respectively. The optimum experimental conditions were investigated. Results showed that low concentration glutathione enhanced the fluorescence intensity significantly. The line ranges were 1.0 × 10-6-1.0 × 10-5 mol L-1 of glutathione and 6.0 × 10-10 mol L-1-1.0 × 10-8 mol L-1, respectively. The detection limit was calculated to be 1.1 × 10-11 mol L-1. The recovery test by the standard addition method gave values in the range of 90.78%-102.20%. This method was used for the determination of glutathione in synthetic and real samples with satisfactory results.

  5. Enantioselective Rhodium-Catalyzed Atom-Economical Macrolactonization.

    PubMed

    Ganss, Stephanie; Breit, Bernhard

    2016-08-01

    A highly attractive route toward macrolactones, which form the cyclic scaffold of a multitude of diverse natural compounds, is described. Although many chemical approaches to this structural motif have been explored, an asymmetric variant of the cyclization is unprecedented. Herein we present an enantioselective macrolactonization through an intramolecular atom-economical rhodium-catalyzed coupling of ω-allenyl-substituted carboxylic acids. The use of a modified diop ligand, chiral DTBM-diop, led to high enantioselectivity (up to 93 % ee). The reaction tolerated a large variety of functionalities, including α,β-unsaturated carboxylic acids and depsipeptides, and provided the desired macrocycles with very high enantio- and diastereoselectivity. PMID:27383766

  6. Gold‐Catalyzed Intramolecular Cyclizations of Cyclopropenes with Propargylic Esters

    PubMed Central

    Zhu, Peng‐Long

    2015-01-01

    Abstract Homogeneous gold catalysts are interesting as they can act as potent carbophilic Lewis acids to activate the π bonds of alkynes, allenes, and alkenes. Many impressive applications for the formation of C−C or C−heteroatom bonds have been found due to the excellent functional group compatibility of these catalysts and the air and moisture tolerance of their reactions. Here, we have developed gold‐catalyzed novel intramolecular cycloisomerizations of nitrogen or oxygen‐tethered cyclopropenes with propargylic esters. The reaction proceeded through different pathways according to different substituent styles, affording 5‐azaspiro[2.5]oct‐7‐enes and bicyclo[4.1.0]heptanes. PMID:27308208

  7. Quinone-Catalyzed Selective Oxidation of Organic Molecules.

    PubMed

    Wendlandt, Alison E; Stahl, Shannon S

    2015-12-01

    Quinones are common stoichiometric reagents in organic chemistry. Para-quinones with high reduction potentials, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry, or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in copper amine oxidases and mediate the efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed by electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and has important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  8. Asymmetric Allylboration of Acyl Imines Catalyzed by Chiral Diols

    PubMed Central

    Lou, Sha; Moquist, Philip N.; Schaus, Scott E.

    2008-01-01

    Chiral BINOL-derived diols catalyze the enantioselective asymmetric allylboration of acyl imines. The reaction requires 15 mol% of (S)-3,3′-Ph2-BINOL as the catalyst and allyldiisopropoxyborane as the nucleophile. The reaction products are obtained in good yields (75 – 94%) and high enantiomeric ratios (95:5 – 99.5:0.5) for aromatic and aliphatic imines. High diastereoselectivities (dr > 98:2) and enantioselectivities (er > 98:2) are obtained in the reactions of acyl imines with crotyldiisopropoxyboranes. This asymmetric transformation is directly applied to the synthesis of maraviroc, the selective CCR5 antagonist with potent activity against HIV-1 infection. Mechanistic investigations of the allylboration reaction including IR, NMR, and mass spectrometry study indicate that acyclic boronates are activated by chiral diols via exchange of one of the boronate alkoxy groups with activation of the acyl imine via hydrogen bonding. PMID:18020334

  9. Enantioselective hydrolysis of naproxen ethyl ester catalyzed by monoclonal antibodies.

    PubMed

    Shi, Zhen-Dan; Yang, Bing-Hui; Zhao, Jing-Jing; Wu, Yu-Lin; Ji, Yong-Yong; Yeh, Ming

    2002-07-01

    This report described that a hapten of racemic phosphonate 3 designed as the mimic of the transition state of hydrolysis of naproxen ethyl ester was successfully synthesized from easily available 2-acetyl-6-methoxy-naphthalene 5. Then BALB/C mice were immunized and one of the monoclonal catalytic antibodies, N116-27, which enantioselectively accelerated the hydrolysis of the R-(-)-naproxen ethyl ester was given. The Michaelis-Menton parameter for the catalyzed reaction was K(M)=6.67 mM and k(cat)/k(uncat)=5.8 x 10(4). This enantioselective result was explained by the fact that the R-isomer of rac-hapten was more immunogenic than the S-isomer. PMID:11983513

  10. Dirhodium-catalyzed C-H arene amination using hydroxylamines.

    PubMed

    Paudyal, Mahesh P; Adebesin, Adeniyi Michael; Burt, Scott R; Ess, Daniel H; Ma, Zhiwei; Kürti, László; Falck, John R

    2016-09-01

    Primary and N-alkyl arylamine motifs are key functional groups in pharmaceuticals, agrochemicals, and functional materials, as well as in bioactive natural products. However, there is a dearth of generally applicable methods for the direct replacement of aryl hydrogens with NH2/NH(alkyl) moieties. Here, we present a mild dirhodium-catalyzed C-H amination for conversion of structurally diverse monocyclic and fused aromatics to the corresponding primary and N-alkyl arylamines using NH2/NH(alkyl)-O-(sulfonyl)hydroxylamines as aminating agents; the relatively weak RSO2O-N bond functions as an internal oxidant. The methodology is operationally simple, scalable, and fast at or below ambient temperature, furnishing arylamines in moderate-to-good yields and with good regioselectivity. It can be readily extended to the synthesis of fused N-heterocycles. PMID:27609890

  11. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  12. Mechanistic proposal for the zeolite catalyzed methylation of aromatic compounds.

    PubMed

    Svelle, Stian; Bjørgen, Morten

    2010-12-01

    Alkylation and methylation reactions are important reactions in petrochemical production and form part of the reaction mechanism of many hydrocarbon transformation processes. Here, a new reaction mechanism is explored for the zeolite catalyzed methylation of arenes using quantum chemical calculations. It is proposed that the most substituted methylbenzenes, which will reside predominantly on the protonated form when adsorbed in a zeolite, can react directly with a neutral methanol molecule in the vicinity, thereby initiating the methylation reaction without having to return a proton to the zeolite surface. The calculated barriers are quite low, indicating that the suggested mechanism is plausible. This route might explain how the most substituted methylbenzenes can function as efficient reaction intermediates in the methanol to hydrocarbons reaction without themselves acting as catalyst poisons as a consequence of their high proton affinities. PMID:21049891

  13. Rhodium-Catalyzed Regiodivergent Hydrothiolation of Allyl Amines and Imines.

    PubMed

    Kennemur, Jennifer L; Kortman, Gregory D; Hull, Kami L

    2016-09-14

    The regiodivergent Rh-catalyzed hydrothiolation of allyl amines and imines is presented. Bidentate phosphine ligands with larger natural bite angles (βn ≥ 99°), for example, DPEphos, dpph, or L1, promote a Markovnikov-selective hydrothiolation in up to 88% yield and >20:1 regioselectivity. Conversely, when smaller bite angle ligands (βn ≤ 86°), for example, dppbz or dppp, are employed, the anti-Markovnikov product is formed in up to 74% yield and >20:1 regioselectivity. Initial mechanistic investigations are performed and are consistent with an oxidative addition/olefin insertion/reductive elimination mechanism for each regioisomeric pathway. We hypothesize that the change in regioselectivity is an effect of diverging coordination spheres to favor either Rh-S or Rh-H insertion to form the branched or linear isomer, respectively. PMID:27547858

  14. The general base in the thymidylate synthase catalyzed proton abstraction.

    PubMed

    Ghosh, Ananda K; Islam, Zahidul; Krueger, Jonathan; Abeysinghe, Thelma; Kohen, Amnon

    2015-12-14

    The enzyme thymidylate synthase (TSase), an important chemotherapeutic drug target, catalyzes the formation of 2'-deoxythymidine-5'-monophosphate (dTMP), a precursor of one of the DNA building blocks. TSase catalyzes a multi-step mechanism that includes the abstraction of a proton from the C5 of the substrate 2'-deoxyuridine-5'-monophosphate (dUMP). Previous studies on ecTSase proposed that an active-site residue, Y94 serves the role of the general base abstracting this proton. However, since Y94 is neither very basic, nor connected to basic residues, nor located close enough to the pyrimidine proton to be abstracted, the actual identity of this base remains enigmatic. Based on crystal structures, an alternative hypothesis is that the nearest potential proton-acceptor of C5 of dUMP is a water molecule that is part of a hydrogen bond (H-bond) network comprised of several water molecules and several protein residues including H147, E58, N177, and Y94. Here, we examine the role of the residue Y94 in the proton abstraction step by removing its hydroxyl group (Y94F mutant). We investigated the effect of the mutation on the temperature dependence of intrinsic kinetic isotope effects (KIEs) and found that these KIEs are more temperature dependent than those of the wild-type enzyme (WT). These results suggest that the phenolic -OH of Y94 is a component of the transition state for the proton abstraction step. The findings further support the hypothesis that no single functional group is the general base, but a network of bases and hydroxyls (from water molecules and tyrosine) sharing H-bonds across the active site can serve the role of the general base to remove the pyrimidine proton. PMID:25912171

  15. Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation.

    PubMed

    Petrone, David A; Ye, Juntao; Lautens, Mark

    2016-07-27

    The high utility of halogenated organic compounds has prompted the development of a vast number of transformations which install the carbon-halogen motif. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. In this regard, using transition metals to catalyze the synthesis of organohalides has become a mature field in itself, and applying these technologies has allowed for a decrease in the production of waste, higher levels of regio- and stereoselectivity, and the ability to produce enantioenriched target compounds. Furthermore, transition metals offer the distinct advantage of possessing a diverse spectrum of mechanistic possibilities which translate to the capability to apply new substrate classes and afford novel and difficult-to-access structures. This Review provides comprehensive coverage of modern transition metal-catalyzed syntheses of organohalides via a diverse array of mechanisms. Attention is given to the seminal stoichiometric organometallic studies which led to the corresponding catalytic processes being realized. By breaking this field down into the synthesis of aryl, vinyl, and alkyl halides, it becomes clear which methods have surfaced as most favored for each individual class. In general, a pronounced shift toward the use of C-H bonds as key functional groups, in addition to methods which proceed by catalytic, radical-based mechanisms has occurred. Although always evolving, this field appears to be heading in the direction of using starting materials with a significantly lower degree of prefunctionalization in addition to less expensive and abundant metal catalysts. PMID:27341176

  16. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells.

    PubMed

    Rabaey, Korneel; Read, Suzanne T; Clauwaert, Peter; Freguia, Stefano; Bond, Philip L; Blackall, Linda L; Keller, Jurg

    2008-05-01

    Microbial fuel cells (MFCs) have the potential to combine wastewater treatment efficiency with energetic efficiency. One of the major impediments to MFC implementation is the operation of the cathode compartment, as it employs environmentally unfriendly catalysts such as platinum. As recently shown, bacteria can facilitate sustainable and cost-effective cathode catalysis for nitrate and also oxygen. Here we describe a carbon cathode open to the air, on which attached bacteria catalyzed oxygen reduction. The bacteria present were able to reduce oxygen as the ultimate electron acceptor using electrons provided by the solid-phase cathode. Current densities of up to 2.2 A m(-2) cathode projected surface were obtained (0.303+/-0.017 W m(-2), 15 W m(-3) total reactor volume). The cathodic microbial community was dominated by Sphingobacterium, Acinetobacter and Acidovorax sp., according to 16S rRNA gene clone library analysis. Isolates of Sphingobacterium sp. and Acinetobacter sp. were obtained using H(2)/O(2) mixtures. Some of the pure culture isolates obtained from the cathode showed an increase in the power output of up to three-fold compared to a non-inoculated control, that is, from 0.015+/-0.001 to 0.049+/-0.025 W m(-2) cathode projected surface. The strong decrease in activation losses indicates that bacteria function as true catalysts for oxygen reduction. Owing to the high overpotential for non-catalyzed reduction, oxygen is only to a limited extent competitive toward the electron donor, that is, the cathode. Further research to refine the operational parameters and increase the current density by modifying the electrode surface and elucidating the bacterial metabolism is warranted. PMID:18288216

  17. Monooxygenase Substrates Mimic Flavin to Catalyze Cofactorless Oxygenations.

    PubMed

    Machovina, Melodie M; Usselman, Robert J; DuBois, Jennifer L

    2016-08-19

    Members of the antibiotic biosynthesis monooxygenase family catalyze O2-dependent oxidations and oxygenations in the absence of any metallo- or organic cofactor. How these enzymes surmount the kinetic barrier to reactions between singlet substrates and triplet O2 is unclear, but the reactions have been proposed to occur via a flavin-like mechanism, where the substrate acts in lieu of a flavin cofactor. To test this model, we monitored the uncatalyzed and enzymatic reactions of dithranol, a substrate for the nogalamycin monooxygenase (NMO) from Streptomyces nogalater As with flavin, dithranol oxidation was faster at a higher pH, although the reaction did not appear to be base-catalyzed. Rather, conserved asparagines contributed to suppression of the substrate pKa The same residues were critical for enzymatic catalysis that, consistent with the flavoenzyme model, occurred via an O2-dependent slow step. Evidence for a superoxide/substrate radical pair intermediate came from detection of enzyme-bound superoxide during turnover. Small molecule and enzymatic superoxide traps suppressed formation of the oxygenation product under uncatalyzed conditions, whereas only the small molecule trap had an effect in the presence of NMO. This suggested that NMO both accelerated the formation and directed the recombination of a superoxide/dithranyl radical pair. These catalytic strategies are in some ways flavin-like and stand in contrast to the mechanisms of urate oxidase and (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, both cofactor-independent enzymes that surmount the barriers to direct substrate/O2 reactivity via markedly different means. PMID:27307041

  18. Multimethylation of Rickettsia OmpB Catalyzed by Lysine Methyltransferases*

    PubMed Central

    Abeykoon, Amila; Wang, Guanghui; Chao, Chien-Chung; Chock, P. Boon; Gucek, Marjan; Ching, Wei-Mei; Yang, David C. H.

    2014-01-01

    Methylation of rickettsial OmpB (outer membrane protein B) has been implicated in bacterial virulence. Rickettsial methyltransferases RP789 and RP027-028 are the first biochemically characterized methyltransferases to catalyze methylation of outer membrane protein (OMP). Methylation in OMP remains poorly understood. Using semiquantitative integrated liquid chromatography-tandem mass spectroscopy, we characterize methylation of (i) recombinantly expressed fragments of Rickettsia typhi OmpB exposed in vitro to trimethyltransferases of Rickettsia prowazekii RP027-028 and of R. typhi RT0101 and to monomethyltransferases of R. prowazekii RP789 and of R. typhi RT0776, and (ii) native OmpBs purified from R. typhi and R. prowazekii strains Breinl, RP22, and Madrid E. We found that in vitro trimethylation occurs at relatively specific locations in OmpB with consensus motifs, KX(G/A/V/I)N and KT(I/L/F), whereas monomethylation is pervasive throughout OmpB. Native OmpB from virulent R. typhi contains mono- and trimethyllysines at locations well correlated with methylation in recombinant OmpB catalyzed by methyltransferases in vitro. Native OmpBs from highly virulent R. prowazekii strains Breinl and RP22 contain multiple clusters of trimethyllysine in contrast to a single cluster in OmpB from mildly virulent R. typhi. Furthermore, OmpB from the avirulent strain Madrid E contains mostly monomethyllysine and no trimethyllysine. The native OmpB from Madrid E was minimally trimethylated by RT0101 or RP027-028, consistent with a processive mechanism of trimethylation. This study provides the first in-depth characterization of methylation of an OMP at the molecular level and may lead to uncovering the link between OmpB methylation and rickettsial virulence. PMID:24497633

  19. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  20. Rh(I)-Catalyzed Direct Arylation of Pyridines and Quinolines

    SciTech Connect

    Berman, Ashley; Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-07-29

    The pyridine and quinoline nuclei are privileged scaffolds that occupy a central role in many medicinally relevant compounds. Consequently, methods for their expeditious functionalization are of immediate interest. However, despite the immense importance of transition-metal catalyzed cross-coupling for the functionalization of aromatic scaffolds, general solutions for coupling 2-pyridyl organometallics with aryl halides have only recently been presented. Direct arylation at the ortho position of pyridine would constitute an even more efficient approach because it eliminates the need for the stoichiometric preparation and isolation of 2-pyridyl organometallics. Progress towards this goal has been achieved by activation of the pyridine nucleus for arylation via conversion to the corresponding pyridine N-oxide or N-iminopyridinium ylide. However, this approach necessitates two additional steps: activation of the pyridine or quinoline starting material, and then unmasking the arylated product. The use of pyridines directly would clearly represent the ideal situation both in terms of cost and simplicity. We now wish to document our efforts in this vein, culminating in an operationally simple Rh(I)-catalyzed direct arylation of pyridines and quinolines. We recently developed an electron-rich Rh(I) system for catalytic alkylation at the ortho position of pyridines and quinolines with alkenes. Therefore, we initially focused our attention on the use of similarly electron-rich Rh(I) catalysts for the proposed direct arylation. After screening an array of electron-rich phosphine ligands and Rh(I) salts, only marginal yields (<20%) of the desired product were obtained. Much more efficient was an electron-poor Rh(I) system with [RhCl(CO){sub 2}]{sub 2} as precatalyst (Table 1). For the direct arylation of picoline with 3,5-dimethyl-bromobenzene, addition of P(OiPr){sub 3} afforded a promising 40% yield of the cross coupled product 1a (entry 1). The exclusion of phosphite

  1. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    PubMed

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  2. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    DOE PAGESBeta

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; Fountain, Mackenzie; Ralph, John; Hodge, David B.; Hegg, Eric L.

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10more » h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. In conclusion: This study demonstrated that the fed

  3. Bonding by Hydroxide-Catalyzed Hydration and Dehydration

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung

    2008-01-01

    A simple, inexpensive method for bonding solid objects exploits hydroxide-catalyzed hydration and dehydration to form silicate-like networks in thin surface and interfacial layers between the objects. The method can be practiced at room temperature or over a wide range of temperatures. The method was developed especially to enable the formation of precise, reliable bonds between precise optical components. The bonds thus formed exhibit the precision and transparency of bonds formed by the conventional optical-contact method and the strength and reliability of high-temperature frit bonds. The method also lends itself to numerous non-optical applications in which there are requirements for precise bonds and/or requirements for bonds, whether precise or imprecise, that can reliably withstand severe environmental conditions. Categories of such non-optical applications include forming composite materials, coating substrates, forming laminate structures, and preparing objects of defined geometry and composition. The method is applicable to materials that either (1) can form silicate-like networks in the sense that they have silicate-like molecular structures that are extensible into silicate-like networks or (2) can be chemically linked to silicate-like networks by means of hydroxide-catalyzed hydration and dehydration. When hydrated, a material of either type features surface hydroxyl (-OH) groups. In this method, a silicate-like network that bonds two substrates can be formed either by a bonding material alone or by the bonding material together with material from either or both of the substrates. Typically, an aqueous hydroxide bonding solution is dispensed and allowed to flow between the mating surfaces by capillary action. If the surface figures of the substrates do not match precisely, bonding could be improved by including a filling material in the bonding solution. Preferably, the filling material should include at least one ingredient that can be hydrated to

  4. Acid-catalyzed Heterogeneous Reactions in SOA Formation

    NASA Astrophysics Data System (ADS)

    Ng, N.; Keywood, M.; Varutbangkul, V.; Gao, S.; Loewer, E.; Surratt, J.; Richard, F. C.; John, S. H.

    2003-12-01

    The importance of heterogeneous reactions in secondary organic aerosol (SOA) formation has recently excited a great deal of interest in the aerosol community. Jang and Kamens (2001) showed enhanced aerosol yield from aldehydes, which can be produced by atmospheric photochemical reactions, in the presence of acidic seed. They suggest that the carbonyl functional groups of the aldehydes further react in the aerosol phase via hydration, polymerization, and hemiacetal/acetal formation with alcohols at an accelerated rate in the presence of acid. Jang et al. (2003) demonstrated similar results using a flow reactor and Czoschke et al. (in press) qualitatively showed increased yields for isoprene and alpha-pinene ozonolysis in the presence of acidic seed. While these findings are intriguing and important, the conditions under which the experiments were carried out were atmospherically unrealistic. A series of SOA formation experiments have been carried out in the Caltech Indoor Chamber Facility, which is comprised of dual 28 m3 FEP Teflon chambers, with the flexibility to carry out both dark ozonolysis and photochemical OH oxidation reactions. Cycloheptene and alpha-pinene were oxidized in the presence of neutral seed under dry (<10% RH) and humid (50% RH) conditions and in the presence of acidic seed under humid (50% RH) conditions. The SOA yields for these experiments will be presented, and the extent of the influence of acid-catalyzed reactions on SOA yield will be discussed. Reference List 1. Cocker, D. R. III. and R. C. Flagan and J. H. Seinfeld, State-of-the-art chamber facility for studying atmospheric aerosol chemistry, Environmental Science and Technology, 35, 2594-2601, 2001. 2. Czoschke, N. M., M. Jang, and R. M. Kamens, Effect of acid seed on biogenic sceondary organic aerosol growth, Atmospheric Environment, In press. 3. Jang, M., S. Lee, and R. M. Kamens, Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor

  5. Flame Synthesis Used to Create Metal-Catalyzed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2001-01-01

    Metal-catalyzed carbon nanotubes are highly ordered carbon structures of nanoscale dimensions. They may be thought of as hollow cylinders whose walls are formed by single atomic layers of graphite. Such cylinders may be composed of many nested, concentric atomic layers of carbon or only a single layer, the latter forming a single-walled carbon nanotube. This article reports unique results using a flame for their synthesis. Only recently were carbon nanotubes discovered within an arc discharge and recognized as fullerene derivatives. Today metal-catalyzed carbon nanotubes are of great interest for many reasons. They can be used as supports for the metal catalysts like those found in catalytic converters. Open-ended nanotubes are highly desirable because they can be filled by other elements, metals or gases, for battery and fuel cell applications. Because of their highly crystalline structure, they are significantly stronger than the commercial carbon fibers that are currently available (10 times as strong as steel but possessing one-sixth of the weight). This property makes them highly desirable for strengthening polymer and ceramic composite materials. Current methods of synthesizing carbon nanotubes include thermal pyrolysis of organometallics, laser ablation of metal targets within hydrocarbon atmospheres at high temperatures, and arc discharges. Each of these methods is costly, and it is unclear if they can be scaled for the commercial synthesis of carbon nanotubes. In contrast, flame synthesis is an economical means of bulk synthesis of a variety of aerosol materials such as carbon black. Flame synthesis of carbon nanotubes could potentially realize an economy of scale that would enable their use in common structural materials such as car-body panels. The top figure is a transmission electron micrograph of a multiwalled carbon nanotube. The image shows a cross section of the atomic structure of the nanotube. The dark lines are individual atomic layer planes of

  6. Palladium-Catalyzed Intramolecular Carbene Insertion into C(sp(3) )-H Bonds.

    PubMed

    Solé, Daniel; Mariani, Francesco; Bennasar, M-Lluïsa; Fernández, Israel

    2016-05-23

    A palladium-catalyzed carbene insertion into C(sp(3) )-H bonds leading to pyrrolidines was developed. The coupling reaction can be catalyzed by both Pd(0) and Pd(II) , is regioselective, and shows a broad functional group tolerance. This reaction is the first example of palladium-catalyzed C(sp(3) )-C(sp(3) ) bond assembly starting from diazocarbonyl compounds. DFT calculations revealed that this direct C(sp(3) )-H bond functionalization reaction involves an unprecedented concerted metalation-deprotonation step. PMID:27079473

  7. Pd/C catalyzed Suzuki-Miyaura cross coupling reaction: Is it heterogeneous or homogeneous?

    NASA Astrophysics Data System (ADS)

    Hoang, Tony Phuc

    The Suzuki-Miyaura cross-coupling reaction is a popular industrial method of creating covalent bonds between two carbons. This reaction can be catalyzed by a myriad of palladium catalyst including heterogeneous and homogeneous. The objective of this research is to study whether the Suzuki cross coupling reaction catalyzed by solid supported palladium catalysts is truly heterogeneous in nature (i.e. does the reaction occurs on the surface of the catalyst or does palladium leach from the solid support and catalyze the reaction in a homogenous manner).

  8. Evaluating Transition-Metal Catalyzed Transformations for the Synthesis of Laulimalide

    PubMed Central

    Trost, Barry M.; Amans, Dominique; Seganish, W. Michael; Chung, Cheol K.

    2009-01-01

    Laulimalide is a structurally unique 20-membered marine macrolide displaying microtubule stabilizing activity similar to that of paclitaxel and the epothilones. The use of atom economical transformations such as a rhodium-catalyzed cycloisomerization to form the endocyclic dihydropyran, a dinuclear zinc-catalyzed asymmetric glycolate aldol to prepare the syn 1,2-diol and an intramolecular ruthenium-catalyzed alkene-alkyne coupling to build the macrocycle enabled us to synthesize laulimalide via an efficient and convergent pathway. The designed synthetic route also allowed us to prepare an analogue of the natural product that possesses significant cytotoxic activity. PMID:19891433

  9. Reaction Dynamics of ATP Hydrolysis Catalyzed by P-Glycoprotein

    PubMed Central

    2015-01-01

    P-glycoprotein (P-gp) is a member of the ABC transporter family that confers drug resistance to many tumors by catalyzing their efflux, and it is a major component of drug–drug interactions. P-gp couples drug efflux with ATP hydrolysis by coordinating conformational changes in the drug binding sites with the hydrolysis of ATP and release of ADP. To understand the relative rates of the chemical step for hydrolysis and the conformational changes that follow it, we exploited isotope exchange methods to determine the extent to which the ATP hydrolysis step is reversible. With γ18O4-labeled ATP, no positional isotope exchange is detectable at the bridging β-phosphorus–O−γ-phosphorus bond. Furthermore, the phosphate derived from hydrolysis includes a constant ratio of three 18O/two 18O/one 18O that reflects the isotopic composition of the starting ATP in multiple experiments. Thus, H2O-exchange with HPO42– (Pi) was negligible, suggesting that a [P-gp·ADP·Pi] is not long-lived. This further demonstrates that the hydrolysis is essentially irreversible in the active site. These mechanistic details of ATP hydrolysis are consistent with a very fast conformational change immediately following, or concomitant with, hydrolysis of the γ-phosphate linkage that ensures a high commitment to catalysis in both drug-free and drug-bound states. PMID:24506763

  10. Iodide-catalyzed ozonation of terpenes on aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Enami, S.; Hayase, S.; Kawasaki, M.; Hoffmann, M. R.; Colussi, A. J.

    2011-12-01

    Biogenic terpenes are the dominant global source of volatile organic compounds (VOC) and secondary organic aerosols (SOA). Their atmospheric chemistry has therefore major direct and indirect impacts on global climate change. At the same time, it has become apparent that organic and inorganic iodine species of marine origin are ubiquitous in the troposphere. They are found over the open ocean (even in the absence of biogenic sources), the Antarctic coast, in rain, aerosols, ice, and snow, and participate in HOx/NOx cycles in the troposphere. Here we report that iodide catalyzes the ozonation of alpha-pinene on aqueous surfaces. Nebulizer-assisted online electrospray mass spectrometry of alpha-pinene solutions briefly exposed to gaseous ozone reveals that alpha-pinene, which is unreactive during 10 microsecond contact times, is converted into acids (e.g., pinonic acid) and previously unreported iodine-containing species in the presence of millimolar iodide. These newly found products were characterized by MS/MS in conjunction with isotope and kinetic studies, and may account for unidentified organoiodine species observed in recent field measurements.

  11. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    SciTech Connect

    Chakraborty, Soma; Sahoo, Bishwabhusan; Teraoka, Iwao; Miller, Lisa M.; Gross, Richard A.

    2004-12-13

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.

  12. MEMS-Based Satellite Micropropulsion Via Catalyzed Hydrogen Peroxide Decomposition

    NASA Technical Reports Server (NTRS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Micro-electromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of "micro-scale" satellites being designed by NASA and Department of Defense agencies. More commonly referred to as "nanosats", these miniature satellites feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the article focuses the progress being made at NASA Goddard Space Flight Center towards the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a micro-scale converging/diverging supersonic nozzle which produces the thrust vector; the targeted thrust level approximately 500 N with a specific impulse of 140-180 seconds. Macro-scale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on a MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  13. Molecular mechanisms of cobalt-catalyzed hydrogen evolution

    PubMed Central

    Marinescu, Smaranda C.; Winkler, Jay R.; Gray, Harry B.

    2012-01-01

    Several cobalt complexes catalyze the evolution of hydrogen from acidic solutions, both homogeneously and at electrodes. The detailed molecular mechanisms of these transformations remain unresolved, largely owing to the fact that key reactive intermediates have eluded detection. One method of stabilizing reactive intermediates involves minimizing the overall reaction free-energy change. Here, we report a new cobalt(I) complex that reacts with tosylic acid to evolve hydrogen with a driving force of just 30 meV/Co. Protonation of CoI produces a transient CoIII-H complex that was characterized by nuclear magnetic resonance spectroscopy. The CoIII-H intermediate decays by second-order kinetics with an inverse dependence on acid concentration. Analysis of the kinetics suggests that CoIII-H produces hydrogen by two competing pathways: a slower homolytic route involving two CoIII-H species and a dominant heterolytic channel in which a highly reactive CoII-H transient is generated by CoI reduction of CoIII-H. PMID:22949704

  14. Production of chemoenzymatic catalyzed monoepoxide biolubricant: optimization and physicochemical characteristics.

    PubMed

    Salimon, Jumat; Salih, Nadia; Abdullah, Bashar Mudhaffar

    2012-01-01

    Linoleic acid (LA) is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435). This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) was optimized using D-optimal design. At optimum conditions, higher yield% (82.14) and medium oxirane oxygen content (OOC) (4.91%) of MEOA were predicted at 15 μL of H(2)O(2), 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP), flash point (FP), viscosity index (VI), and oxidative stability (OT) were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of -41(°)C. FP of MEOA increased to 128(°)C comparing with 115(°)C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt) more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168(°)C, respectively. PMID:22346338

  15. Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach.

    PubMed

    Castillo, E; Pezzotti, F; Navarro, A; López-Munguía, A

    2003-05-01

    A solvent engineering strategy was applied to the lipase-catalyzed synthesis of xylitol-oleic acid monoesters. The different esterification degrees for this polyhydroxylated molecule were examined in different organic solvent mixtures. In this context, conditions for high selectivity towards monooleoyl xylitol synthesis were enhanced from 6 mol% in pure n-hexane to 73 mol% in 2-methyl-2-propanol/dimethylsulfoxide (DMSO) 80:20 (v/v). On the contrary, the highest production of di- and trioleoyl xylitol, corresponding to 94 mol%, was achieved in n-hexane. Changes in polarity of the reaction medium and in the molecular interactions between solvents and reactants were correlated with the activity coefficients of products. Based on experimental results and calculated thermodynamic activities, the effect of different binary mixtures of solvents on the selective production of xylitol esters is reported. From this analysis, it is concluded that in the more polar conditions (100% dimethylsulfoxide (DMSO)), the synthesis of xylitol monoesters is favored. However, these conditions are unfavorable in terms of enzyme stability. As an alternative, binary mixtures of solvents were proposed. Each mixture of solvents was characterized in terms of the quantitative polarity parameter E(T)(30) and related with the activity coefficients of xylitol esters. To our knowledge, the characterization of solvent mixtures in terms of this polarity parameter and its relationship with the selectivity of the process has not been previously reported. PMID:12730008

  16. Out of the fog: Catalyzing integrative capacity in interdisciplinary research.

    PubMed

    Piso, Zachary; O'Rourke, Michael; Weathers, Kathleen C

    2016-04-01

    Social studies of interdisciplinary science investigate how scientific collaborations approach complex challenges that require multiple disciplinary perspectives. In order for collaborators to meet these complex challenges, interdisciplinary collaborations must develop and maintain integrative capacity, understood as the ability to anticipate and weigh tradeoffs in the employment of different disciplinary approaches. Here we provide an account of how one group of interdisciplinary fog scientists intentionally catalyzed integrative capacity. Through conversation, collaborators negotiated their commitments regarding the ontology of fog systems and the methodologies appropriate to studying fog systems, thereby enhancing capabilities which we take to constitute integrative capacity. On the ontological front, collaborators negotiated their commitments by setting boundaries to and within the system, layering different subsystems, focusing on key intersections of these subsystems, and agreeing on goals that would direct further investigation. On the methodological front, collaborators sequenced various methods, anchored methods at different scales, validated one method with another, standardized the outputs of related methods, and coordinated methods to fit a common model. By observing the process and form of collaborator conversations, this case study demonstrates that social studies of science can bring into critical focus how interdisciplinary collaborators work toward an integrated conceptualization of study systems. PMID:27083087

  17. Electrophoresis-chemiluminescence detection of phenols catalyzed by hemin.

    PubMed

    Shu, Lu; Zhu, Jinkun; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2014-09-01

    Based on the catalytic activity of hemin, an efficient biocatalyst, an indirect capillary electrophoresis-chemiluminescence (CE-CL) detection method for phenols using a hemin-luminol-hydrogen peroxide system was developed. Through a series of static injection experiments, hemin was found to perform best in a neutral solution rather than an acidic or alkaline medium. Although halide ions such as Br(-) and F(-) could further enhance the CL signal catalyzed by hemin, it is difficult to apply these conditions to this CE-CL detection system because of the self-polymerization of hemin, as it hinders the CE process. The addition of concentrated ammonium hydroxide to an aqueous/dimethyl sulfoxide solution of hemin-luminol afforded a stable CE-CL baseline. The indirect CE-CL detection of five phenols using this method gave the following limits of detections: 4.8 × 10(-8) mol/L (o-sec-butylphenol), 4.9 × 10(-8) mol/L (o-cresol), 5.4 × 10(-8) mol/L (m-cresol), 5.3 × 10(-8) mol/L (2,4-dichlorophenol) and 7.1 × 10(-8) mol/L (phenol). PMID:24115262

  18. A Personal Adventure in Muon-Catalyzed Fusion

    NASA Astrophysics Data System (ADS)

    Jackson, John David

    2010-03-01

    Luis Alvarez and colleagues discovered muon-catalyzed fusion of hydrogen isotopes by chance in late 1956. On sabbatical leave at Princeton University during that year, I read the first public announcement of the discovery at the end of December in that well-known scientific journal, The New York Times. A nuclear theorist by prior training, I was intrigued enough in the phenomenon to begin some calculations. I describe my work here, my interaction with Alvarez, and a summary of the surprising developments, both before and after Alvarez’s discovery. The rare proton-deuteron ( p-d) fusion events in Alvarez’s liquid-hydrogen bubble chamber occurred only because of the natural presence of a tiny amount of deuterium (heavy hydrogen). Additionally, the fusion rate, once the proton-deuteron-muon ( pdμ - ) molecular ion has been formed, is sufficiently slow that only rarely does an additional catalytic act occur. A far different situation occurs for muons stopping in pure deuterium or a deuterium-tritium ( d- t) mixture where the fusion rates are many orders of magnitude larger and the molecular-formation rates are large compared to the muon’s decay rate. The intricate interplay of atomic, molecular, and nuclear science, together with highly fortuitous accidents in the molecular dynamics and the hope of practical application, breathed life into a seeming curiosity. A small but vigorous worldwide community has explored these myriad phenomena in the past 50 years.

  19. Broadening the scope of glycosyltransferase-catalyzed sugar nucleotide synthesis

    PubMed Central

    Gantt, Richard W.; Peltier-Pain, Pauline; Singh, Shanteri; Zhou, Maoquan; Thorson, Jon S.

    2013-01-01

    We described the integration of the general reversibility of glycosyltransferase-catalyzed reactions, artificial glycosyl donors, and a high throughput colorimetric screen to enable the engineering of glycosyltransferases for combinatorial sugar nucleotide synthesis. The best engineered catalyst from this study, the OleD Loki variant, contained the mutations P67T/I112P/T113M/S132F/A242I compared with the OleD wild-type sequence. Evaluated against the parental sequence OleD TDP16 variant used for screening, the OleD Loki variant displayed maximum improvements in kcat/Km of >400-fold and >15-fold for formation of NDP–glucoses and UDP–sugars, respectively. This OleD Loki variant also demonstrated efficient turnover with five variant NDP acceptors and six variant 2-chloro-4-nitrophenyl glycoside donors to produce 30 distinct NDP–sugars. This study highlights a convenient strategy to rapidly optimize glycosyltransferase catalysts for the synthesis of complex sugar nucleotides and the practical synthesis of a unique set of sugar nucleotides. PMID:23610417

  20. Feasibility of an antiproton catalyzed fission fragment rocket

    SciTech Connect

    Hdinger, D.S.

    1992-03-01

    The purpose of this project was to investigate the feasibility of an antiproton catalyzed fission fragment rocket (FFR). The FFR is characterized by the extraction of fission fragments from the fissile fuel, and the utilization of their kinetic energy for thrust generation. A significant drawback to previous FFR designs was the requirement to maintain a critical nuclear pile as the fission fragment source. The author examined the possibility of replacing the critical pile with a sub-critical pile driven by antiprotons. Recent experiments have revealed that antiprotons stimulate highly energetic fissions in {sup 238}U, with a neutron multiplicity of 13.7 neutrons per fission. This interaction was used as a throttled neutron source. The pile consisted of layers of fissile coated fibers which are designed to allow fission fragments to escape them, where the fragments collide with a fluid. The heated fluid is then ejected from the rocket to provide thrust. The calculations performed indicate that each antiproton injected into the pile can stimulate 8 or more fissions while maintaining a neutron multiplication of less than 0.4. Based on the results seen, the engine design presented is inadequate. Limitations introduced by the reaction fluid far outweigh the simplicity-of-design gained. Despite this, the basic idea of using the antiproton-U interaction as a source of spacecraft propulsion warrants further study.

  1. Kinetic modeling of Pt-catalyzed glycolaldehyde decomposition to syngas.

    PubMed

    Salciccioli, Michael; Vlachos, Dionisios G

    2012-05-10

    Fundamental knowledge of the elementary reaction mechanisms involved in oxygenate decomposition on transition metal catalysts can facilitate the optimization of future catalyst and reactor systems for biomass upgrade to fuels and chemicals. Pt-catalyzed decomposition of glycolaldehyde, as the smallest oxygenate with alcohol and aldehyde functionality, was studied via a DFT-based microkinetic model. It was found that two decomposition pathways exist. Under conditions of low hydrogen surface coverage, the initial C-H bond breaking reaction to HOCH(2)CO* is prevalent, while under conditions of high hydrogen coverage, the rather unexpected O-H bond forming reaction to HOCH(2)CHOH* is more active (subsequent decomposition is energetically favorable from HOCH(2)CHOH*). Our results indicate the possibility that (de)hydrogenation chemistry is rate-controlling in many small polyoxygenate biomass derivatives, and suitable catalysts are needed. Finally, DFT was used to understand the increased decomposition activity observed on the surface segregated Ni-Pt-Pt bimetallic catalyst. It was found that the initial O-H bond breaking of glycolaldehyde to OCH(2)CHO* has an activation barrier of just 0.21 eV. This barrier is lower than that of any glycolaldehyde consuming reaction on Pt. These computational predictions are in qualitative agreement with experimental results. PMID:22483365

  2. Hydrolysis of cellulose catalyzed by novel acidic ionic liquids.

    PubMed

    Zhuo, Kelei; Du, Quanzhou; Bai, Guangyue; Wang, Congyue; Chen, Yujuan; Wang, Jianji

    2015-01-22

    The conversion of cellulosic biomass directly into valuable chemicals becomes a hot subject. Six novel acidic ionic liquids (ILs) based on 2-phenyl-2-imidazoline were synthesized and characterized by UV-VIS, TGA, and NMR. The novel acidic ionic liquids were investigated as catalysts for the hydrolysis of cellulose in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The acidic ionic liquids with anions HSO4(-) and Cl(-) showed better catalytic performance for the hydrolysis of cellulose than those with H2PO4(-). The temperature and dosage of water affect significantly the yield of total reducing sugar (TRS). When the hydrolysis of cellulose was catalyzed by 1-propyl sulfonic acid-2-phenyl imidazoline hydrogensulfate (IL-1) and the dosage of water was 0.2g, the TRS yield was up to 85.1% within 60 min at 100°C. These new acidic ionic liquids catalysts are expected to have a wide application in the conversion of cellulose into valuable chemicals. PMID:25439867

  3. Selective, nickel-catalyzed hydrogenolysis of aryl ethers.

    PubMed

    Sergeev, Alexey G; Hartwig, John F

    2011-04-22

    Selective hydrogenolysis of the aromatic carbon-oxygen (C-O) bonds in aryl ethers is an unsolved synthetic problem important for the generation of fuels and chemical feedstocks from biomass and for the liquefaction of coal. Currently, the hydrogenolysis of aromatic C-O bonds requires heterogeneous catalysts that operate at high temperature and pressure and lead to a mixture of products from competing hydrogenolysis of aliphatic C-O bonds and hydrogenation of the arene. Here, we report hydrogenolyses of aromatic C-O bonds in alkyl aryl and diaryl ethers that form exclusively arenes and alcohols. This process is catalyzed by a soluble nickel carbene complex under just 1 bar of hydrogen at temperatures of 80 to 120°C; the relative reactivity of ether substrates scale as Ar-OAr>Ar-OMe>ArCH(2)-OMe (Ar, Aryl; Me, Methyl). Hydrogenolysis of lignin model compounds highlights the potential of this approach for the conversion of refractory aryl ether biopolymers to hydrocarbons. PMID:21512027

  4. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures.

    PubMed

    Xi, Guangcheng; Liu, Yankuan; Liu, Xiaoyan; Wang, Xiaoqing; Qian, Yitai

    2006-07-27

    In this article, a novel magnesium-catalyzed co-reduction route was developed for the large-scale synthesis of aligned beta-SiC one-dimensional (1D) nanostructures at relative lower temperature (600 degrees C). By carefully controlling the reagent concentrations, we could synthesize beta-SiC rodlike and needlelike nanostructures. The possible growth mechanism of the as-synthesized beta-SiC 1D nanostructures has been investigated. The structure and morphology of the as-synthesized beta-SiC nanostructures are characterized using X-ray diffraction, Fourier transform infrared absorption, and scanning and transmission electron microscopes. Raman and photoluminescence properties are also investigated at room temperature. The as-synthesized beta-SiC nanostructures exhibit strong shape-dependent field emission properties. Corresponding to their shapes, the as-synthesized nanorods and nanoneedles display the turn-on fields of 12, 8.4, and 1.8 V/microm, respectively. PMID:16854116

  5. Process Intensification in Base-Catalyzed Biodiesel Production

    SciTech Connect

    McFarlane, Joanna; Birdwell Jr, Joseph F; Tsouris, Costas; Jennings, Hal L

    2008-01-01

    Biodiesel is considered a means to diversify our supply of transportation fuel, addressing the goal of reducing our dependence on oil. Recent interest has resulted in biodiesel manufacture becoming more widely undertaken by commercial enterprises that are interested in minimizing the cost of feedstock materials and waste production, as well as maximizing the efficiency of production. Various means to accelerate batch processing have been investigated. Oak Ridge National Laboratory has experience in developing process intensification methods for nuclear separations, and this paper will discuss how technologies developed for very different applications have been modified for continuous reaction/separation of biodiesel. In collaboration with an industrial partner, this work addresses the aspect of base-catalyzed biodiesel production that limits it to a slow batch process. In particular, we have found that interfacial mass transfer and phase separation control the transesterification process and have developed a continuous two-phase reactor for online production of a methyl ester and glycerol. Enhancing the mass transfer has additional benefits such as being able to use an alcohol-to-oil phase ratio closer to stoichiometric than in conventional processing, hence minimizing the amount of solvent that has to be recycled and reducing post-processing clean up costs. Various technical issues associated with the application of process intensification technology will be discussed, including scale-up from the laboratory to a pilot-scale undertaking.

  6. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  7. Ultrasound enhances lipase-catalyzed synthesis of poly (ethylene glutarate).

    PubMed

    Zhao, Xiaoman; Bansode, Sneha Ramrao; Ribeiro, Artur; Abreu, Ana S; Oliveira, César; Parpot, Pier; Gogate, P R; Rathod, V K; Cavaco-Paulo, Artur

    2016-07-01

    The present work explores the best conditions for the enzymatic synthesis of poly (ethylene glutarate) for the first time. The start-up materials are the liquids; diethyl glutarate and ethylene glycol diacetate, without the need of addition of extra solvent. The reactions are catalyzed by lipase B from Candida antarctica immobilized on glycidyl methacrylate-ter-divinylbenzene-ter-ethylene glycol dimethacrylate at 40°C during 18h in water bath with mechanical stirring or 1h in ultrasonic bath followed by 6h in vacuum in both the cases for evaporation of ethyl acetate. The application of ultrasound significantly intensified the polyesterification reaction with reduction of the processing time from 24h to 7h. The same degree of polymerization was obtained for the same enzyme loading in less time of reaction when using the ultrasound treatment. The degree of polymerization for long-term polyesterification was improved approximately 8-fold due to the presence of sonication during the reaction. The highest degree of polymerization achieved was 31, with a monomer conversion of 96.77%. The ultrasound treatment demonstrated to be an effective green approach to intensify the polyesterification reaction with enhanced initial kinetics and high degree of polymerization. PMID:26964978

  8. Carbon-catalyzed gasification of organic feedstocks in supercritical water

    SciTech Connect

    Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr.

    1996-08-01

    Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

  9. Design guidelines for solid-catalyzed reactive distillation systems

    SciTech Connect

    Subawalla, H.; Fair, J.R.

    1999-10-01

    In this paper the authors discuss design guidelines for solid-catalyzed reactive distillation systems. The guidelines are used to generate initial estimates for column pressure, reactive zone location, catalyst mass, reactant feed location, reactant ratio, reflux ratio, column diameter, number of equilibrium stages, and packed height. They form a part of a methodical design procedure that makes extensive use of both nonequilibrium (rate-based) and equilibrium-stage simulation models. Important choices prior to design include selection of reliable thermodynamic and reaction kinetic models. The authors tested the guidelines for two etherification systems and validated them experimentally for a hydration reaction. The results from a case study, the manufacture of tert-amyl methyl ether, are shown here. Superimposing reaction on separation leads to unique design trade-offs. Thus, column diameter depends both on maximum vapor velocity and on packing catalyst density, reactant ratios are a function of conversion and azeotrope formation, the operating pressure affects the relative volatility, chemical equilibrium, and reaction rate (reactive zone temperature), and the reflux ratio impacts both separation and conversion. The guidelines and procedures presented here simplify the detailed reactive column design considerably.

  10. Polysilsesquioxanes through base-catalyzed redistribution of oligohydridosiloxanes

    SciTech Connect

    RAHIMIAN,KAMYAR; ASSINK,ROGER A.; LANG,DAVID P.; LOY,DOUGLAS A.

    2000-05-01

    Organopolysilsesquioxanes have recently gained much interest as materials for low-K dielectrics, ceramic precursors and photoresists. Typical sol-gel synthesis of polysilsesquioxanes involves the hydrolysis of organotricholorosilanes and/or organotrialkoxysilanes in the presence of acid or base catalysts and organic solvents. However, under sol-gel conditions most organotrialkoxysilanes do not afford silsesquioxane gels. This limits the range of organic functionalities that can be introduced into these hybrid organic-inorganic materials. An alternative route to polysilsesquioxanes is through oligohydridosiloxanes. Catalytic disproportionation, by titanium complexes, of linear or cyclic oligomers of methylhydridosiloxanes can lead to polymethylsilsesquioxanes. The authors have shown that disproportionation of oligomethylhydridosiloxanes can also be catalyzed by tetrabutylammonium hydroxide to yield polymethylsilsesquioxanes (scheme 1). This replaces the step-growth sol-gel polymerization process of organotrialkoxysilanes, which requires solvent, stoichiometric water and produces alcohol and water condensation by-products. Tetraalkylammonium hydroxides, as catalysts, are also attractive because they readily decompose by heating above 150 C; thus, they can be easily removed from the final materials. In this paper the authors report on both the catalytic and stoichiometric redistribution of organohydridosiloxanes to produce polysilsesquioxane foams and gels of the formula (RSiO{sub 1.5}){sub n} which otherwise cannot be obtained through traditional sol-gel means.

  11. Remote catalyzation for direct formation of graphene layers on oxides.

    PubMed

    Teng, Po-Yuan; Lu, Chun-Chieh; Akiyama-Hasegawa, Kotone; Lin, Yung-Chang; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2012-03-14

    Direct deposition of high-quality graphene layers on insulating substrates such as SiO(2) paves the way toward the development of graphene-based high-speed electronics. Here, we describe a novel growth technique that enables the direct deposition of graphene layers on SiO(2) with crystalline quality potentially comparable to graphene grown on Cu foils using chemical vapor deposition (CVD). Rather than using Cu foils as substrates, our approach uses them to provide subliming Cu atoms in the CVD process. The prime feature of the proposed technique is remote catalyzation using floating Cu and H atoms for the decomposition of hydrocarbons. This allows for the direct graphitization of carbon radicals on oxide surfaces, forming isolated low-defect graphene layers without the need for postgrowth etching or evaporation of the metal catalyst. The defect density of the resulting graphene layers can be significantly reduced by tuning growth parameters such as the gas ratios, Cu surface areas, and substrate-to-Cu distance. Under optimized conditions, graphene layers with nondiscernible Raman D peaks can be obtained when predeposited graphite flakes are used as seeds for extended growth. PMID:22332771

  12. Critical behavior of a model for catalyzed autoamplification.

    PubMed

    Tchernookov, Martin; Warmflash, Aryeh; Dinner, Aaron R

    2009-04-01

    We examine the critical behavior of a model of catalyzed autoamplification inspired by a common motif in genetic networks. Similar to models in the directed percolation (DP) universality class, a phase transition between an absorbing state with no copies of the autoamplifying species A and an active state with a finite amount of A occurs at the point at which production and removal of A are balanced. A suitable coordinate transformation shows that this model corresponds to one with three fields, one of which relaxes exponentially, one of which displays critical behavior, and one of which has purely diffusive dynamics but exerts an influence on the critical field. Using stochastic simulations that account for discrete molecular copy numbers in one, two, and three dimensions, we show that this model has exponents that are distinct from previously studied reaction-diffusion systems, including the few with more than one field (unidirectionally coupled DP processes and the diffusive epidemic process). Thus the requirement of a catalyst changes the fundamental physics of autoamplification. Estimates for the exponents of the diffusive epidemic process in two dimensions are also presented. PMID:19355779

  13. Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea.

    PubMed

    Huang, Jinming; Sommers, Erin M; Kim-Shapiro, Daniel B; King, S Bruce

    2002-04-01

    Hydroxyurea represents an approved treatment for sickle cell anemia and a number of cancers. Chemiluminescence and electron paramagnetic resonance spectroscopic studies show horseradish peroxidase catalyzes the formation of nitric oxide from hydroxyurea in the presence of hydrogen peroxide. Gas chromatographic headspace analysis and infrared spectroscopy also reveal the production of nitrous oxide in this reaction, which provides evidence for nitroxyl, the one-electron reduced form of nitric oxide. These reactions also generate carbon dioxide, ammonia, nitrite, and nitrate. None of these products form within 1 h in the absence of hydrogen peroxide or horseradish peroxidase. Electron paramagnetic resonance spectroscopy and trapping studies show the intermediacy of a nitroxide radical and a C-nitroso species during this reaction. Absorption spectroscopy indicates that both compounds I and II of horseradish peroxidase act as one-electron oxidants of hydroxyurea. Nitroxyl, generated from Angeli's salt, reacts with ferric horseradish peroxidase to produce a ferrous horseradish peroxidase-nitric oxide complex. Electron paramagnetic resonance experiments with a nitric oxide specific trap reveal that horseradish peroxidase is capable of oxidizing nitroxyl to nitric oxide. A mechanistic model that includes the observed nitroxide radical and C-nitroso compound intermediates has been forwarded to explain the observed product distribution. These studies suggest that direct nitric oxide producing reactions of hydroxyurea and peroxidases may contribute to the overall pharmacological properties of this drug. PMID:11916434

  14. Ceramide Glycosylation Catalyzed by Glucosylceramide Synthase and Cancer Drug Resistance

    PubMed Central

    Liu, Yong-Yu; Li, Yu-Teh

    2014-01-01

    Glucosylceramide synthase (GCS), converting ceramide to glucosylceramide, catalyzes the first reaction of ceramide glycosylation in sphingolipid metabolism. This glycosylation by GCS is a critical step regulating the modulation of cellular activities by controlling ceramide and glycosphingolipids (GSLs). An increase of ceramide in response to stresses, such as chemotherapy, drives cells to proliferation arrest and apoptosis or autophagy; however, ceramide glycosylation promptly eliminates ceramide and consequently, these induced processes, thus protecting cancer cells. Furthermore, persistently enhanced ceramide glycosylation can increase GSLs, participating in selecting cancer cells to drug resistance. GCS is overexpressed in diverse drug-resistant cancer cells and in tumors of breast, colon, and leukemia that display poor response to chemotherapy. As ceramide glycosylation by GCS is a rate-limiting step in GSL synthesis, inhibition of GCS sensitizes cancer cells to anticancer drugs and eradicates cancer stem cells. Mechanistic studies indicate that uncoupling ceramide glycosylation can modulate gene expression, decreasing MDR1 through the cSrc/β-catenin pathway and restoring p53 expression via RNA splicing. These studies not only expand our knowledge in understanding how ceramide glycosylation affects cancer cells, but also provide novel therapeutic approaches for targeting refractory tumors. PMID:23290777

  15. Temperature dependences of rate coefficients for electron catalyzed mutual neutralization

    SciTech Connect

    Shuman, Nicholas S.; Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, Albert A.; Maeda, Satoshi; Morokuma, Keiji

    2011-07-14

    The flowing afterglow technique of variable electron and neutral density attachment mass spectrometry (VENDAMS) has recently yielded evidence for a novel plasma charge loss process, electron catalyzed mutual neutralization (ECMN), i.e., A{sup +}+ B{sup -}+ e{sup -}{yields} A + B + e{sup -}. Here, rate constants for ECMN of two polyatomic species (POCl{sub 3}{sup -} and POCl{sub 2}{sup -}) and one diatomic species (Br{sub 2}{sup -}) each with two monatomic cations (Ar{sup +}and Kr{sup +}) are measured using VENDAMS over the temperature range 300 K-500 K. All rate constants show a steep negative temperature dependence, consistent with that expected for a three body process involving two ions and an electron. No variation in rate constants as a function of the cation type is observed outside of uncertainty; however, rate constants of the polyatomic anions ({approx}1 x 10{sup -18} cm{sup 6} s{sup -1} at 300 K) are measurably higher than that for Br{sub 2}{sup -}[(5.5 {+-} 2) x 10{sup -19} cm{sup 6} s{sup -1} at 300 K].

  16. Deoxycholic acid transformations catalyzed by selected filamentous fungi.

    PubMed

    Kollerov, V V; Lobastova, T G; Monti, D; Deshcherevskaya, N O; Ferrandi, E E; Fronza, G; Riva, S; Donova, M V

    2016-03-01

    More than 100 filamentous fungi strains, mostly ascomycetes and zygomycetes from different phyla, were screened for the ability to convert deoxycholic acid (DCA) to valuable bile acid derivatives. Along with 11 molds which fully degraded DCA, several strains were revealed capable of producing cholic acid, ursocholic acid, 12-keto-lithocholic acid (12-keto-LCA), 3-keto-DCA, 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA as major products from DCA. The last metabolite was found to be a new compound. The ability to catalyze the introduction of a hydroxyl group at the 7(α/β)-positions of the DCA molecule was shown for 32 strains with the highest 7β-hydroxylase activity level for Fusarium merismoides VKM F-2310. Curvularia lunata VKM F-644 exhibited 12α-hydroxysteroid dehydrogenase activity and formed 12-keto-LCA from DCA. Acremonium rutilum VKM F-2853 and Neurospora crassa VKM F-875 produced 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA, respectively, as major products from DCA, as confirmed by MS and NMR analyses. For most of the positive strains, the described DCA-transforming activity was unreported to date. The presented results expand the knowledge on bile acid metabolism by filamentous fungi, and might be suitable for preparative-scale exploitation aimed at the production of marketed bile acids. PMID:26718089

  17. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  18. Predictive modeling of metal-catalyzed polyolefin processes

    NASA Astrophysics Data System (ADS)

    Khare, Neeraj Prasad

    2003-10-01

    This dissertation describes the essential modeling components and techniques for building comprehensive polymer process models for metal-catalyzed polyolefin processes. The significance of this work is that it presents a comprehensive approach to polymer process modeling applied to large-scale commercial processes. Most researchers focus only on polymerization mechanisms and reaction kinetics, and neglect physical properties and phase equilibrium. Both physical properties and phase equilibrium play key roles in the accuracy and robustness of a model. This work presents the fundamental principles and practical guidelines used to develop and validate both steady-state and dynamic simulation models for two large-scale commercial processes involving the Ziegler-Natta polymerization to produce high-density polyethylene (HDPE) and polypropylene (PP). It also provides a model for the solution polymerization of ethylene using a metallocene catalyst. Existing modeling efforts do not include physical properties or phase equilibrium in their calculations. These omissions undermine the accuracy and predictive power of the models. The forward chapters of the dissertation discuss the fundamental concepts we consider in polymer process modeling. These include physical and thermodynamic properties, phase equilibrium, and polymerization kinetics. The later chapters provide the modeling applications described above.

  19. Production of Chemoenzymatic Catalyzed Monoepoxide Biolubricant: Optimization and Physicochemical Characteristics

    PubMed Central

    Salimon, Jumat; Salih, Nadia; Abdullah, Bashar Mudhaffar

    2012-01-01

    Linoleic acid (LA) is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435). This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) was optimized using D-optimal design. At optimum conditions, higher yield% (82.14) and medium oxirane oxygen content (OOC) (4.91%) of MEOA were predicted at 15 μL of H2O2, 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP), flash point (FP), viscosity index (VI), and oxidative stability (OT) were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of −41°C. FP of MEOA increased to 128°C comparing with 115°C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt) more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168°C, respectively. PMID:22346338

  20. Ab initio study of ice catalyzation of HOCl + HCl reaction

    SciTech Connect

    Zhou, Y.F.; Liu, C.B.

    2000-06-15

    The observations by Farman et al. revealed remarkable depletions in the total atmospheric ozone content in Antarctica. The observed total ozone decreased smoothing during the spring season from about 1975. Satellite observations have proved Antarctic ozone depletions over a very extended region, in general agreement with the local ground-based data of Farman et al. It was suggested that heterogeneous reactions occurring on particles in polar stratospheric clouds (PSCs) play a central role in the depletion of stratospheric ozone. Experiments proved that the reaction of HOCl + HCl was very slow in the gas phase, but on ice surface it was rapid. In this work the ice catalysis of HOCl + HCl reaction was investigated by using ab initio molecular orbital theory. The authors applied the Hartree-Fock self-consistent field and the second-order Moeller-Plesset perturbation theory with the basis sets of 6-31G* to the model system. The complexes and transition state were obtained along the reaction with and without the presence of ice surface. By comparing the results, a possible catalyzation mechanism of ice on the reaction is proposed.

  1. Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase

    SciTech Connect

    Atlow, S.C.; Bonadonna-Aparo, L.; Klibanov, A.M.

    1984-01-01

    A new enzymatic method for the removal of phenols from industrial aqueous effluents has been developed. The method uses the enzyme polyphenol oxidase which oxidizes phenols to the corresponding o-quinones; the latter then undergo a nonenzymatic polymerization to form water-insoluble aggregates. Therefore, the enzyme in effect precipitates phenols from water. Polyphenol oxidase has been found to nearly completely dephenolize solutions of phenol in the concentration range from 0.01 to 1.0 g/L. The enzymatic treatment is effective over a wide range of pH and temperature; a crude preparation of polyphenol oxidase (mushroom extract) is as effective as a purified, commercially obtained version. In addition to phenol itself, polyphenol oxidase is capable of precipitating from water a number of substituted phenols (cresols, chlorophenols, naphthol, etc.). Also, even pollutants which are unreactive towards polyphenol oxidase can be enzymatically coprecipitated with phenol. The polyphenol oxidase treatment has been successfully used to dephenolize two different real industrial wastewater samples, from a plant producing triarylphosphates and from a coke plant. The advantage of the polyphenol oxidase dephenolization over the peroxidase-catalyzed one previously elaborated by the authors is that the former enzyme uses molecular oxygen instead of costly hydrogen peroxide (used by peroxidase) as an oxidant.

  2. Feasibility of an antiproton catalyzed fission fragment rocket

    NASA Astrophysics Data System (ADS)

    Hidinger, David S.

    1992-03-01

    The purpose of this project was to investigate the feasibility of an antiproton catalyzed fission fragment rocket (FFR). The FFR is characterized by the extraction of fission fragments from the fuel, and the utilization of their kinetic energy for thrust generation. A significant drawback to previous FFR designs was the required critical nuclear pile as the fission fragment source. The author examined the possibility of replacing the critical pile with a sub-critical pile driven by antiprotons. Recent experiments have revealed that antiprotons stimulate highly energetic fissions in 238U, with a neutron multiplicity of 13.7 neutrons per fissions. This interaction was used as a throttled neutron source. The pile consisted of layers of fissile coated fibers which are designed to allow fission fragments to escape them, where the fragments collide with a fluid. The heated fluid is then ejected from the rocket to provide thrust. The calculations performed indicate that each antiproton injected into the pile can stimulate 8 or more fissions while maintaining a neutron multiplication of less than 0.4. Based on the results, the specific design presented was inadequate. Despite this, the concept of using the antiproton-U interaction as a source of thrust warrants further study.

  3. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  4. GREEN CATALYZED OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II

    EPA Science Inventory

    Green Catalyzed Oxidation of Hydrocarbons in Alternative Solvent Systems Generated by PARIS II

    Michael A. Gonzalez*, Thomas M. Becker, and Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26...

  5. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  6. Synthesis of 2-Cyclopentenone Derivatives via Palladium-Catalyzed Intramolecular Carbonyl α-Alkenylation.

    PubMed

    Chen, Panpan; Meng, Yinggao; Wang, Han; Han, Feipeng; Wang, Yulong; Song, Chuanjun; Chang, Junbiao

    2016-08-01

    2-Cyclopentenone derivatives have been efficiently synthesized from 5-bromo-5-hexen-2-ones via palladium-catalyzed intramolecular carbonyl α-alkenylation followed by double-bond migration under mild reaction conditions. PMID:27463262

  7. Total Synthesis of Enantiopure (+)-γ -Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation

    PubMed Central

    Chapsal, Bruno D.; Ojima, Iwao

    2008-01-01

    Highly efficient short total synthesis of γ -lycorane (>99% ee, 41% overall yield) was achieved by using the asymmetric allylic alkylation in the key step catalyzed by palladium complexes with novel chiral biphenol-based monodentate phosphoramidite ligands. PMID:16562900

  8. Environmental assessment of the base catalyzed decomposition (BCD) process. Research report, June--July 1998

    SciTech Connect

    1998-08-01

    The report summarizes laboratory-scale, pilot-scale, and field performance data on BCD (Base Catalyzed Decomposition) technology, collected to date by various governmental, academic, and private organizations.

  9. Palladium-catalyzed asymmetric 6-endo cyclization of dienamides with substituent-driven activation.

    PubMed

    Tsuchikawa, Hiroshi; Maekawa, Yuya; Katsumura, Shigeo

    2012-05-01

    Chiral 2-piperidinone compounds with various C-6 substituents were successfully synthesized via a Pd-catalyzed asymmetric 6-endo cyclization of dienamides, which were evidently activated by both N-p-toluenesulfonyl and C-3 ester substituents. PMID:22530559

  10. Palladium-catalyzed direct α-arylation of methyl sulfones with aryl bromides.

    PubMed

    Zheng, Bing; Jia, Tiezheng; Walsh, Patrick J

    2013-04-01

    A direct and efficient approach for palladium-catalyzed arylation of aryl and alkyl methyl sulfones with aryl bromides has been developed. The catalytic system affords arylated sulfones in good to excellent yields (73-90%). PMID:23517309

  11. Cp*Co(III)-Catalyzed C-H Alkenylation/Annulation to Afford Spiro Indenyl Benzosultam.

    PubMed

    Liu, Hui; Li, Jie; Xiong, Miao; Jiang, Jijun; Wang, Jun

    2016-07-15

    Cp*Co(III)-catalyzed tandem inert C-H alkenylation/annulation of N-sulfonyl ketimines with alkynes is revealed. A series of spiro indenyl benzosultams were facilely prepared in good yields under mild reaction conditions. PMID:27341208

  12. Pd-Catalyzed C-H Bond Functionalization on the Indole and Pyrrole Nucleus

    NASA Astrophysics Data System (ADS)

    Beck, Elizabeth M.; Gaunt, Matthew J.

    This review details recent developments in the Pd-catalyzed C-H bond arylation and alkenylation of indoles and pyrroles, aromatic heterocycles that are frequently displayed in natural products and medicinal agents.

  13. Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water.

    PubMed

    Deng, Tiansheng; Cui, Xiaojing; Qi, Yongqin; Wang, Yinxiong; Hou, Xianglin; Zhu, Yulei

    2012-06-01

    The incompletely coordinated zinc ions in the concentrated aqueous ZnCl(2) solution catalyze the direct conversion of carbohydrates into 5-hydroxymethylfurfural, and a moderate HMF yield up to 50% can be achieved. PMID:22534980

  14. Regimes of radial growth for Ga-catalyzed GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Berdnikov, Y.; Sibirev, N. V.

    2016-07-01

    We present a non-stationary growth model of Ga-catalyzed GaAs nanowires which is based on the two kinetic equations for the nanowire elongation rate and a time-dependent base radius of the droplet. We show that self-catalyzed nanowire growth is principally different from the Au-catalyzed one because a stationary droplet size cannot be maintained at all times. Close examination of the model enables us to separate different regimes of radial growth in which the droplet shrinks, inflates or converges to a certain stationary size as nanowires grow, depending on the initial droplet radius and the growth conditions. We also discuss some experimental data on the growth modes of Ga-catalyzed GaAs nanowires from the viewpoint of the obtained results.

  15. A Photoinduced Cobalt-Catalyzed Synthesis of Pyrroles through in Situ-Generated Acylazirines.

    PubMed

    Pusch, Stefan; Kowalczyk, Danuta; Opatz, Till

    2016-05-20

    Tetrasubstituted pyrroles can be synthesized in a one-pot procedure from isoxazoles. The process includes the photoinduced in situ formation of acylazirines combined with a subsequent cobalt(II)-catalyzed ring expansion with 1,3-diketones. PMID:27081704

  16. Microwave-mediated selective monotetrahydropyranylation of symmetrical diols catalyzed by iodine.

    PubMed

    Deka, N; Sarma, J C

    2001-03-23

    Selective protection of one hydroxyl group as its tetrahydropyranyl ether in 1,n-symmetrical diol is achieved by iodine-catalyzed reaction of the diol with dihydropyranyl ether under microwave irradiation. PMID:11300886

  17. Synthesis of Aryl Sulfonamides via Palladium-Catalyzed Chlorosulfonylation of Arylboronic Acids

    PubMed Central

    DeBergh, J. Robb; Niljianskul, Nootaree; Buchwald, Stephen L.

    2013-01-01

    A palladium-catalyzed method for the preparation of sulfonamides is described. The process exhibits significant functional group tolerance and allows for the preparation of a number of arylsulfonyl chlorides and sulfonamides under mild conditions. PMID:23837740

  18. Synthesis of (-)-Cannabimovone and Structural Reassignment of Anhydrocannabimovone through Gold(I)-Catalyzed Cycloisomerization.

    PubMed

    Carreras, Javier; Kirillova, Mariia S; Echavarren, Antonio M

    2016-06-13

    The first total synthesis of cannabimovone from Cannabis sativa and anhydrocannabimovone was achieved by means of a highly stereoselective gold(I)-catalyzed cycloisomerization. The results led to reassignment of the structure of anhydrocannabimovone. PMID:27119910

  19. Iridium-Catalyzed Branch-Selective Hydroarylation of Vinyl Ethers via C-H Bond Activation.

    PubMed

    Ebe, Yusuke; Nishimura, Takahiro

    2015-05-13

    Iridium-catalyzed hydroarylation of vinyl ethers via a directed C-H bond activation of aromatic compounds gave high yields of the corresponding addition products with high branch selectivity. PMID:25928127

  20. Rhodium-Catalyzed Asymmetric [2 + 2 + 2] Cycloaddition of 1,6-Enynes with Cyclopropylideneacetamides.

    PubMed

    Yoshizaki, Soichi; Nakamura, Yu; Masutomi, Koji; Yoshida, Tomoka; Noguchi, Keiichi; Shibata, Yu; Tanaka, Ken

    2016-02-01

    It has been established that a cationic rhodium(I)/H8-BINAP complex catalyzes the asymmetric [2 + 2 + 2] cycloaddition of 1,6-enynes with cyclopropylideneacetamides to produce spirocyclohexenes in excellent enantioselectivity with retaining cyclopropane rings. PMID:26756430

  1. Stability and evolution of low-surface-tension metal catalyzed growth of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Yu, Linwei; Fortuna, Franck; O'Donnell, Benedict; Patriache, Gilles; Roca i Cabarrocas, Pere

    2011-03-01

    Low-surface-tension metals were predicted to be insufficient to catalyze the growth of silicon nanowires (SiNWs) in vapor-liquid-solid (VLS) mode while counter examples do exist, for example, in the tin- or indium-catalyzed SiNWs. This puzzle remains largely unresolved. We first examine the local tension-force-balance in a tin-catalyzed SiNW by using a cross-section analysis. We found that the existence of an ultrathin sidewall-spreading catalyst layer helps to stabilize the catalyst drop during growth. The predicted contact-angle evolution, by an energetic balance model, is also supported by the experimental data. These results bring critical understanding on the low-surface-tension catalyzed VLS process.

  2. Anti-Markovnikov hydroimination of terminal alkynes in gold-catalyzed pyridine construction from ammonia.

    PubMed

    Wang, Liliang; Kong, Lingbing; Li, Yongxin; Ganguly, Rakesh; Kinjo, Rei

    2015-08-11

    Gold-catalyzed hydroimination of terminal alkynes, giving rise to anti-Markovnikov adducts concomitant with unstable Markovnikov adducts is described. The elementary step can be applied for the construction of pyridine derivatives from ammonia and alkynes. PMID:26144528

  3. Phosphorus-carbon bond formation by lewis Acid catalyzed/mediated addition of silylphosphines.

    PubMed

    Hayashi, Minoru; Matsuura, Yutaka; Nishimura, Yasunobu; Yamasaki, Toshikazu; Imai, Yoshito; Watanabe, Yutaka

    2007-09-28

    Triethylaluminum-catalyzed/mediated addition of a silylphosphine to aldehydes and epoxides is described. Organophosphines containing a silyloxy group at the alpha- or beta-position on the alkyl substituent are successfully prepared in good yields. PMID:17784776

  4. 53. VIEW LOOKING S.E. AT THE CATALYZER BUILDINGS, COOLING SHEDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW LOOKING S.E. AT THE CATALYZER BUILDINGS, COOLING SHEDS AND ABSORPTION BUILDINGS IN THE BACKGROUND. MAY 29, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  5. Silver-catalyzed PuO sub 2 dissolution with persulfate

    SciTech Connect

    Fisher, F D; Barney, G S; Cooper, T D; Duchsherer, M J

    1991-06-01

    This report consists of 14 slides and associated narrative for a presentation to be given at the 15th Annual Actinide Separations Conference on silver-catalyzed PuO{sub 2} dissolution with persulfate. (JL)

  6. Palladium-catalyzed one-pot synthesis of quinazolinones via tert-butyl isocyanide insertion.

    PubMed

    Jiang, Xiao; Tang, Ting; Wang, Jin-Mei; Chen, Zhong; Zhu, Yong-Ming; Ji, Shun-Jun

    2014-06-01

    A novel palladium-catalyzed three-component reaction for the synthesis of quinazolin-4(3H)-ones from readily available 2-aminobenzamides and aryl halides via a palladium-catalyzed isocyanide insertion/cyclization sequence has been developed. This methodology efficiently constructs quinazolin-4(3H)-ones in moderate to excellent yields with the advantages of operational simplicity. PMID:24810598

  7. Copper-Catalyzed (2+1) Annulation of Acetophenones with Maleimides: Direct Synthesis of Cyclopropanes.

    PubMed

    Manna, Srimanta; Antonchick, Andrey P

    2015-12-01

    A practical copper-catalyzed direct oxidative cyclopropanation of electron-deficient alkenes with acetophenone derivatives is reported. The dehydrogenative annulation involves a double C-H bond functionalization at the α-position of the ketone using di-tert-butyl peroxide as oxidant. The broad scope of the reaction and excellent functional-group tolerance is demonstrated for the stereoselective synthesis of fused cyclopropanes. The developed transformation revealed an unprecedented reactivity for copper-catalyzed processes. PMID:26094848

  8. Transition-Metal-Catalyzed Denitrogenative Transannulation: Converting Triazoles into Other Heterocyclic Systems

    PubMed Central

    Chattopadhyay, Buddhadeb

    2012-01-01

    Transition metal catalyzed denitrogenative transannulation of a triazole ring has recently received considerable attention as a new concept for the construction of diverse nitrogen-containing heterocyclic cores. This method allows a single-step synthesis of complex nitrogen heterocycles from easily available and cheap triazole precursors. In this Minireview, recent progress of the transition metal catalyzed denitrogenative transannulation of a triazole ring, which was discovered in 2007, is discussed. PMID:22121072

  9. Thiolated uridine substrates and templates improve the rate and fidelity of ribozyme-catalyzed RNA copying.

    PubMed

    Prywes, Noam; Michaels, Yale S; Pal, Ayan; Oh, Seung Soo; Szostak, Jack W

    2016-05-01

    Ribozyme-catalyzed RNA polymerization is inefficient and error prone. Here we demonstrate that two alternative bases, 2-thio-uridine (s(2)U) and 2-thio-ribo-thymidine (s(2)T), improve the rate and fidelity of ribozyme catalyzed nucleotide addition as NTP substrates and as template bases. We also demonstrate the functionality of s(2)U and s(2)T-containing ribozymes. PMID:27109314

  10. One-pot gold-catalyzed synthesis of 3-silylethynyl indoles from unprotected o-alkynylanilines

    PubMed Central

    Brand, Jonathan P; Chevalley, Clara

    2011-01-01

    Summary The Au(III)-catalyzed cyclization of 2-alkynylanilines was combined in a one-pot procedure with the Au(I)-catalyzed C3-selective direct alkynylation of indoles using the benziodoxolone reagent TIPS-EBX to give a mild, easy and straightforward entry to 2-substituted-3-alkynylindoles. The reaction can be applied to unprotected anilines, was tolerant to functional groups and easy to carry out (RT, and requires neither an inert atmosphere nor special solvents). PMID:21647264

  11. Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products**

    PubMed Central

    Chan, Louis K M; Poole, Darren L; Shen, Di; Healy, Mark P; Donohoe, Timothy J

    2014-01-01

    The rhodium-catalyzed methylation of ketones has been accomplished using methanol as the methylating agent and the hydrogen-borrowing method. The sequence is notable for the relatively low temperatures that are required and for the ability of the reaction system to form α-branched products with ease. Doubly alkylated ketones can be prepared from methyl ketones and two different alcohols by using a sequential one-pot iridium- and rhodium-catalyzed process. PMID:24288297

  12. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    DOE PAGESBeta

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpinmore » moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.« less

  13. Oxidations of cyclic {beta}-diketones catalyzed by methylrhenium trioxide

    SciTech Connect

    Abu-Omar, M.M.; Espenson, J.H. |

    1996-08-06

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) catalyzes the oxidation of {beta}-diketones by hydrogen peroxide. The kinetics of the initial oxidation step have been investigated in CH{sub 3}CN/H{sub 2}O (1:1 v/v) at 25{degree}C for a group of cyclic {beta}-diketones. The initial oxidation step features the enol form, the majority species, as the reactant. Its rate responds to substituents in the `normal` manner: electron-donating groups accelerate the reaction. We suggest that the double bond of the enol attacks a peroxo oxygen of a peroxorhenium complex A = CH{sub 3}Re(O){sub 2}(O{sub 2}) or B = CH{sub 3}Re(O)(O{sub 2}){sub 2}(H{sub 2}O). This reaction affords a 2-hydroxy-1,3-dicarbonyl intermediate, which in some instances was detected by {sup 1}H NMR. This hydroxy intermediate is susceptible to cleavage via a Baeyer-Villiger oxidation to yield carboxylic acids as final products. In contrast to the first reaction, this step may feature the peroxorhenium complexes A and B as nucleophiles rather than their customary electrophilic behavior; perhaps the trend is reversed by substrate binding to rhenium. Time profiles for the different stages of the reaction were also determined. The mechanistic aspects of these multistep catalytic oxidations are discussed in terms of the electronic nature of the activated rhenium-bound peroxo ligands. 38 refs., 3 figs., 3 tabs.

  14. The mechanism for iron-catalyzed alkene isomerization in solution

    SciTech Connect

    Sawyer, Karma R.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Harris, Charles B.

    2008-05-27

    Here we report nano- through microsecond time-resolved IR experiments of iron-catalyzed alkene isomerization in room-temperature solution. We have monitored the photochemistry of a model system, Fe(CO){sub 4}({eta}{sup 2}-1-hexene), in neat 1-hexene solution. UV-photolysis of the starting material leads to the dissociation of a single CO to form Fe(CO){sub 3}({eta}{sup 2}-1-hexene), in a singlet spin state. This CO loss complex shows a dramatic selectivity to form an allyl hydride, HFe(CO){sub 3}({eta}{sup 3}-C{sub 6}H{sub 11}), via an internal C-H bond-cleavage reaction in 5-25 ns. We find no evidence for the coordination of an alkene molecule from the bath to the CO loss complex, but do observe coordination to the allyl hydride, indicating that it is the key intermediate in the isomerization mechanism. Coordination of the alkene ligand to the allyl hydride leads to the formation of the bis-alkene isomers, Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) and Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2}. Because of the thermodynamic stability of Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) over Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2} (ca. 12 kcal/mol), nearly 100% of the alkene population will be 2-alkene. The results presented herein provide the first direct evidence for this mechanism in solution and suggest modifications to the currently accepted mechanism.

  15. Ammonia synthesis catalyzed by ruthenium supported on basic zeolites

    SciTech Connect

    Fishel, C.T.; Davis, R.J.; Garces, J.M.

    1996-09-15

    Ammonia synthesis was catalyzed by ruthenium metal clusters, promoted by alkali and alkaline earth elements, supported on zeolite X, magnesia, and pure silica MCM-41. At atmospheric total pressure and temperatures ranging from 623 to 723 K, the turnover frequencies of ammonia synthesis on Ru/KX varied significantly with Fu cluster size, demonstrating the known structure sensitivity of the reaction. Therefore, zeolite and magnesia catalysts were prepared with similar Ru cluster sizes, about 1 nm in diameter, in order to properly evaluate the effect of promoters. The same high degree of metal dispersion could not be obtained with Ru/MCM-41 catalysts. The turnover frequency for ammonia synthesis over Ru/CsX exceeded that over Ru/KX, consistent with the rank of promoter basicity. However, alkaline earth metals were more effective promoters than alkali metals for Ru supported on both zeolite X and MCM-41. Since alkaline earth metals are less basic; this promotional effect was unexpected. In addition, the turnover frequency for ammonia synthesis on Ru/BaX exceeded that of Ru/MgO, a nonzeolitic material. Pore volumes for Ru/BaX and Ru/KX measured by N{sub 2} adsorption were essentially identical, suggesting that pore blockage by ions within the zeolites does not account for the differences in reaction rates. The kinetics of ammonia synthesis over ruthenium differed considerably from what has been reported for industrial iron catalysts. Most significantly, the order of reaction in H{sub 2} was negative over Ru but is positive over Fe. A likely cause of this change in reaction order is that dissociated hydrogen atoms cover a greater fraction of the Ru clusters compared to Fe under reaction conditions. 49 refs., 8 figs., 10 tabs.

  16. Target catalyzed hairpin assembly for constructing a ratiometric electrochemical aptasensor.

    PubMed

    Gao, Fenglei; Qian, Yong; Zhang, Lei; Dai, Shizhen; Lan, Yanfei; Zhang, Yu; Du, Lili; Tang, Daoquan

    2015-09-15

    In this paper, we develop a novel dual-signaling amplified aptasensor for protein detection via target-catalyzed hairpin assembly. Thrombin was chosen as a model target. This aptasensor contains two DNA hairpins termed as H1 and H2. H1, which is modified at its 3' ends with a methylene blue (MB), consists of the aptamer sequence of human thrombin. Meanwhile, H2 which is modified at its 3' ends with a ferrocene (Fc), is partially complementary to H1. Upon the addition of target protein, it can facilitate the opening of the hairpin structure of H1 and thus accelerate the hybridization between H1 and H2, the target protein can be displaced from hairpin H1 by hairpin H2 through a process similar to DNA branch migration. The released target found another H1 to trigger the cycle, resulting in the multiplication of the Fc confined near the GE surface and MB away from the GE surface. When IFc/IMB is used as the response signal for quantitative determination of thrombin, the detection limit (41 fM) is much lower than that by using either MB or Fc alone. This new dual-signaling aptasensor is readily regenerated and shows good response toward the target. Furthermore, this amplified aptasensor shows high selectivity toward its target protein. The clever combination of the functional DNA hairpin and the novel device achieved a ratiometric electrochemical aptasensor, which could be used as a simple, sensitive high repeatability and selective platform for target protein detection. PMID:25897885

  17. Metabolism of Monoterpenes: Acetylation of (-)-Menthol by a Soluble Enzyme Preparation from Peppermint (Mentha piperita) Leaves.

    PubMed

    Croteau, R; Hooper, C L

    1978-05-01

    The essential oil from mature leaves of flowering peppermint (Mentha piperita L.) contains up to 15% (-)-menthyl acetate, and leaf discs converted exogenous (-)-[G-(3)H]menthol into this ester in approximately 15% yield of the incorporated precursor. Leaf extracts catalyzed the acetyl coenzyme A-dependent acetylation of (-)-[G-(3)H]menthol and the product of this transacetylase reaction was identified by radiochromatographic techniques. Transacetylase activity was located mainly in the 100,000g supernatant fraction, and the preparation was partially purified by combination of Sephadex G-100 gel filtration and chromatography on O-diethylaminoethyl-cellulose. The transacetylase had a molecular weight of about 37,000 as judged by Sephadex G-150 gel filtration, and a pH optimum near 9. The apparent K(m) and velocity for (-)-menthol were 0.3 mm and 16 nmol/hr. mg of protein, respectively. The saturation curve for acetyl coenzyme A was sigmoidal, showing apparent saturation near 0.1 mm. Dithioerythritol was required for maximum activity and stability of the enzyme, and the enzyme was inhibited by thiol directed reagents such as p-hydroxymercuribenzoate. Diisopropylfluorophosphate also inhibited transacylation suggesting the involvement of a serine residue in catalysis. The transacylase was highly specific for acetyl coenzyme A; propionyl coenzyme A and butyryl coenzyme A were not nearly as efficient as acyl donors (11% and 2%, respectively). However, the enzyme was much less selective with regard to the alcohol substrate, suggesting that the nature of the acetate ester synthesized in mint is more dependent on the type of alcohol available than on the specificity of the transacetylase. This is the first report on an enzyme involved in monoterpenol acetylation in plants. A very similar enzyme, catalyzing this key reaction in the metabolism of menthol, was also isolated from the flowers of peppermint. PMID:16660375

  18. Metabolism of Monoterpenes

    PubMed Central

    Croteau, Rodney; Hooper, Caroline Lee

    1978-01-01

    The essential oil from mature leaves of flowering peppermint (Mentha piperita L.) contains up to 15% (—)-menthyl acetate, and leaf discs converted exogenous (—)-[G-3H]menthol into this ester in approximately 15% yield of the incorporated precursor. Leaf extracts catalyzed the acetyl coenzyme A-dependent acetylation of (—)-[G-3H]menthol and the product of this transacetylase reaction was identified by radiochromatographic techniques. Transacetylase activity was located mainly in the 100,000g supernatant fraction, and the preparation was partially purified by combination of Sephadex G-100 gel filtration and chromatography on O-diethylaminoethyl-cellulose. The transacetylase had a molecular weight of about 37,000 as judged by Sephadex G-150 gel filtration, and a pH optimum near 9. The apparent Km and velocity for (—)-menthol were 0.3 mm and 16 nmol/hr· mg of protein, respectively. The saturation curve for acetyl coenzyme A was sigmoidal, showing apparent saturation near 0.1 mm. Dithioerythritol was required for maximum activity and stability of the enzyme, and the enzyme was inhibited by thiol directed reagents such as p-hydroxymercuribenzoate. Diisopropylfluorophosphate also inhibited transacylation suggesting the involvement of a serine residue in catalysis. The transacylase was highly specific for acetyl coenzyme A; propionyl coenzyme A and butyryl coenzyme A were not nearly as efficient as acyl donors (11% and 2%, respectively). However, the enzyme was much less selective with regard to the alcohol substrate, suggesting that the nature of the acetate ester synthesized in mint is more dependent on the type of alcohol available than on the specificity of the transacetylase. This is the first report on an enzyme involved in monoterpenol acetylation in plants. A very similar enzyme, catalyzing this key reaction in the metabolism of menthol, was also isolated from the flowers of peppermint. PMID:16660375

  19. Copper-catalyzed azide alkyne cycloaddition polymer networks

    NASA Astrophysics Data System (ADS)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo

  20. Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires.

    PubMed

    Potié, Alexis; Baron, Thierry; Dhalluin, Florian; Rosaz, Guillaume; Salem, Bassem; Latu-Romain, Laurence; Kogelschatz, Martin; Gentile, Pascal; Oehler, Fabrice; Montès, Laurent; Kreisel, Jens; Roussel, Hervé

    2011-01-01

    The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement. PMID:21711709

  1. Investigating the mechanism of the selective hydrogenation reaction of cinnamaldehyde catalyzed by Ptn clusters.

    PubMed

    Li, Laicai; Wang, Wei; Wang, Xiaolan; Zhang, Lin

    2016-08-01

    Cinnamaldehyde (CAL) belongs to the group of aromatic α,β-unsaturated aldehydes; the selective hydrogenation of CAL plays an important role in the fine chemical and pharmaceutical industries. Using Ptn clusters as catalytic models, we studied the selective hydrogenation reaction mechanism for CAL catalyzed by Ptn (n = 6, 10, 14, 18) clusters by means of B3LYP in density functional theory at the 6-31+ G(d) level (the LanL2DZ extra basis set was used for the Pt atom). The rationality of the transition state was proved by vibration frequency analysis and intrinsic reaction coordinate computation. Moreover, atoms in molecules theory and nature bond orbital theory were applied to discuss the interaction among orbitals and the bonding characteristics. The results indicate that three kinds of products, namely 3-phenylpropyl aldehyde, 3-phenyl allyl alcohol and cinnamyl alcohol, are produced in the selective hydrogenation reaction catalyzed by Ptn clusters; each pathway possesses two reaction channels. Ptn clusters are more likely to catalyze the activation and hydrogenation of the C = O bond in CAL molecules, eventually producing cinnamic alcohol, which proves that Ptn clusters have a strong reaction selectivity to catalyze CAL. The reaction selectivity of the catalyzer cluster is closely related to the size of the Ptn cluster, with Pt14 clusters having the greatest reaction selectivity. Graphical Abstract The reaction mechanism for the selective hydrogenation reaction ofcinnamaldehyde catalyzed by Ptn clusters was studied by densityfunctional theory. The reactionselectivity of cluster catalyzer was concluded to be closely related to the size of Ptn clusters, with Pt14 clusters having the greatest reaction selectivity. PMID:27444877

  2. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    PubMed

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. PMID:25016299

  3. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

    PubMed Central

    2015-01-01

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product

  4. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes.

    PubMed

    Koschker, Philipp; Breit, Bernhard

    2016-08-16

    We present a new and efficient strategy for the atom-economic transformation of both alkynes and allenes to allylic functionalized structures via a Rh-catalyzed isomerization/addition reaction which has been developed in our working group. Our methodology thus grants access to an important structural class valued in modern organic chemistry for both its versatility for further functionalization and the potential for asymmetric synthesis with the construction of a new stereogenic center. This new methodology, inspired by mechanistic investigations by Werner in the late 1980s and based on preliminary work by Yamamoto and Trost, offers an attractive alternative to other established methods for allylic functionalization such as allylic substitution or allylic oxidation. The main advantage of our methodology consists of the inherent atom economy in comparison to allylic oxidation or substitution, which both produce stoichiometric amounts of waste and, in case of the substitution reaction, require prefunctionalization of the starting material. Starting out with the discovery of a highly branched-selective coupling reaction of carboxylic acids with terminal alkynes using a Rh(I)/DPEphos complex as the catalyst system, over the past 5 years we were able to continuously expand upon this chemistry, introducing various (pro)nucleophiles for the selective C-O, C-S, C-N, and C-C functionalization of both alkynes and the double-bond isomeric allenes by choosing the appropriate rhodium/bidentate phosphine catalyst. Thus, valuable compounds such as branched allylic ethers, sulfones, amines, or γ,δ-unsaturated ketones were successfully synthesized in high yields and with a broad substrate scope. Beyond the branched selectivity inherent to rhodium, many of the presented methodologies display additional degrees of selectivity in regard to regio-, diastereo-, and enantioselective transformations, with one example even proceeding via a dynamic kinetic resolution. Many advances

  5. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.

    PubMed

    Li, Houhua; Mazet, Clément

    2016-06-21

    This Account presents the development of the iridium-catalyzed isomerization of primary allylic alcohols in our laboratory over the past 8 years. Our initial interest was driven by the long-standing challenge associated with the development of a general catalyst even for the nonasymmetric version of this seemingly simple chemical transformation. The added value of the aldehyde products and the possibility to rapidly generate molecular complexity from readily accessible allylic alcohols upon a redox-economical isomerization reaction were additional sources of motivation. Certainly influenced by the success story of the related isomerization of allylic amines, most catalysts developed for the selective isomerization of allylic alcohols were focused on rhodium as a transition metal of choice. Our approach has been based on the commonly accepted precept that hydrogenation and isomerization are often competing processes, with the latter being usually suppressed in favor of the former. The cationic iridium complexes [(Cy3P)(pyridine)Ir(cod)]X developed by Crabtree (X = PF6) and Pfaltz (X = BArF) are usually considered as the most versatile catalysts for the hydrogenation of allylic alcohols. Using molecular hydrogen to generate controlled amounts of the active form of these complexes but performing the reaction in the absence of molecular hydrogen enabled deviation from the typical hydrogenation manifold and favored exclusively the isomerization of allylic alcohols into aldehydes. Isotopic labeling and crossover experiments revealed the intermolecular nature of the process. Systematic variation of the ligand on the iridium center allowed us to identify the structural features beneficial for catalytic activity. Subsequently, three generations of chiral catalysts have been investigated and enabled us to reach excellent levels of enantioselectivity for a wide range of 3,3-disubstituted aryl/alkyl and alkyl/alkyl primary allylic alcohols leading to β-chiral aldehydes. The

  6. Lipase-catalyzed fractionation of conjugated linoleic acid isomers.

    PubMed

    Haas, M J; Kramer, J K; McNeill, G; Scott, K; Foglia, T A; Sehat, N; Fritsche, J; Mossoba, M M; Yurawecz, M P

    1999-09-01

    -18:2 could be obtained in the unreacted free fatty acid fraction. These lipase-catalyzed reactions provide a means for the preparative-scale production of high-purity cis-9,trans-11-18:2, and a corresponding CLA fraction depleted of this isomer. PMID:10574663

  7. Effect of metal catalyzed oxidation in recombinant viral protein assemblies

    PubMed Central

    2014-01-01

    Background Protein assemblies, such as virus-like particles, have increasing importance as vaccines, delivery vehicles and nanomaterials. However, their use requires stable assemblies. An important cause of loss of stability in proteins is oxidation, which can occur during their production, purification and storage. Despite its importance, very few studies have investigated the effect of oxidation in protein assemblies and their structural units. In this work, we investigated the role of in vitro oxidation in the assembly and stability of rotavirus VP6, a polymorphic protein. Results The susceptibility to oxidation of VP6 assembled into nanotubes (VP6NT) and unassembled VP6 (VP6U) was determined and compared to bovine serum albumin (BSA) as control. VP6 was more resistant to oxidation than BSA, as determined by measuring protein degradation and carbonyl content. It was found that assembly protected VP6 from in vitro metal-catalyzed oxidation. Oxidation provoked protein aggregation and VP6NT fragmentation, as evidenced by dynamic light scattering and transmission electron microscopy. Oxidative damage of VP6 correlated with a decrease of its center of fluorescence spectral mass. The in vitro assembly efficiency of VP6U into VP6NT decreased as the oxidant concentration increased. Conclusions Oxidation caused carbonylation, quenching, and destruction of aromatic amino acids and aggregation of VP6 in its assembled and unassembled forms. Such modifications affected protein functionality, including its ability to assemble. That assembly protected VP6 from oxidation shows that exposure of susceptible amino acids to the solvent increases their damage, and therefore the protein surface area that is exposed to the solvent is determinant of its susceptibility to oxidation. The inability of oxidized VP6 to assemble into nanotubes highlights the importance of avoiding this modification during the production of proteins that self-assemble. This is the first time that the role of

  8. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    SciTech Connect

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpin moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.

  9. Products from enzyme-catalyzed oxidations of norcarenes.

    PubMed

    Newcomb, Martin; Lansakara-P, Dharmika S P; Kim, Hye-Yeong; Chandrasena, R Esala P; Lippard, Stephen J; Beauvais, Laurance G; Murray, Leslie J; Izzo, Viviana; Hollenberg, Paul F; Coon, Minor J

    2007-02-16

    Recent studies revealed that norcarane (bicyclo[4.1.0]heptane) is oxidized to 2-norcarene (bicyclo[4.1.0]-hept-2-ene) and 3-norcarene (bicyclo[4.1.0]hept-3-ene) by iron-containing enzymes and that secondary oxidation products from the norcarenes complicate mechanistic probe studies employing norcarane as the substrate (Newcomb, M.; Chandrasena, R. E. P.; Lansakara-P., D. S. P.; Kim, H.-Y.; Lippard, S. J.; Beauvais, L. G.; Murray, L. J.; Izzo, V.; Hollenberg, P. F.; Coon, M. J. J. Org. Chem. 2007, 72, 1121-1127). In the present work, the product profiles from the oxidations of 2-norcarene and 3-norcarene by several enzymes were determined. Most of the products were identified by GC and GC-mass spectral comparison to authentic samples produced independently; in some cases, stereochemical assignments were made or confirmed by 2D NMR analysis of the products. The enzymes studied in this work were four cytochrome P450 enzymes, CYP2B1, CYPDelta2E1, CYPDelta2E1 T303A, and CYPDelta2B4, and three diiron-containing enzymes, soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath), toluene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, and phenol hydroxylase (PH) from Pseudomonas stutzeri OX1. The oxidation products from the norcarenes identified in this work are 2-norcaranone, 3-norcaranone, syn- and anti-2-norcarene oxide, syn- and anti-3-norcarene oxide, syn- and anti-4-hydroxy-2-norcarene, syn- and anti-2-hydroxy-3-norcarene, 2-oxo-3-norcarene, 4-oxo-2-norcarene, and cyclohepta-3,5-dienol. Two additional, unidentified oxidation products were observed in low yields in the oxidations. In matched oxidations, 3-norcarene was a better substrate than 2-norcarene in terms of turnover by factors of 1.5-15 for the enzymes studied here. The oxidation products found in enzyme-catalyzed oxidations of the norcarenes are useful for understanding the complex product mixtures obtained in norcarane oxidations. PMID:17288367

  10. Contaminated Groundwater Remediation by Catalyzed Hydrogen Peroxide and Persulfate Oxidants System

    NASA Astrophysics Data System (ADS)

    Yan, N.; Wang, Y.; Brusseau, M. L.

    2014-12-01

    A binary oxidant system, catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O82-), was investigated for use in in-situ chemical oxidation (ISCO) applications. Trichloroethene (TCE) and 1,4-dioxane were used as target contaminants. Batch experiments were conducted to investigate the catalytic efficiency between ferrous ion (Fe2+) and base (NaOH), oxidant decomposition rates, and contaminant degradation efficiency. For the base-catalyzed H2O2-S2O82- system, oxidant release was moderate and sustained over the entire test period of 96 hours. Conversely, the oxidants were depleted within 24 hours for the Fe2+-catalyzed system. Solution pH decreased slightly for the Fe2+-catalyzed system, whereas the pH increased for the base-catalyzed system. The rates of degradation for TCE and 1,4-dioxane are compared as a function of system conditions. The results of this study indicate that the binary H2O2-S2O82- oxidant system is effective for oxidation of the tested contaminants.

  11. Mechanism of Boron-Catalyzed N-Alkylation of Amines with Carboxylic Acids.

    PubMed

    Zhang, Qi; Fu, Ming-Chen; Yu, Hai-Zhu; Fu, Yao

    2016-08-01

    Mechanistic study has been carried out on the B(C6F5)3-catalyzed amine alkylation with carboxylic acid. The reaction includes acid-amine condensation and amide reduction steps. In condensation step, the catalyst-free mechanism is found to be more favorable than the B(C6F5)3-catalyzed mechanism, because the automatic formation of the stable B(C6F5)3-amine complex deactivates the catalyst in the latter case. Meanwhile, the catalyst-free condensation is constituted by nucleophilic attack and the indirect H2O-elimination (with acid acting as proton shuttle) steps. After that, the amide reduction undergoes a Lewis acid (B(C6F5)3)-catalyzed mechanism rather than a Brønsted acid (B(C6F5)3-coordinated HCOOH)-catalyzed one. The B(C6F5)3)-catalyzed reduction includes twice silyl-hydride transfer steps, while the first silyl transfer is the rate-determining step of the overall alkylation catalytic cycle. The above condensation-reduction mechanism is supported by control experiments (on both temperature and substrates). Meanwhile, the predicted chemoselectivity is consistent with the predominant formation of the alkylation product (over disilyl acetal product). PMID:27441997

  12. Tandem reactions initiated by copper-catalyzed cross-coupling: a new strategy towards heterocycle synthesis.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2011-10-21

    Copper-catalyzed cross-coupling reactions which lead to the formation of C-N, C-O, C-S and C-C bonds have been recognized as one of the most useful strategies in synthetic organic chemistry. During past decades, important breakthroughs in the study of Cu-catalyzed coupling processes demonstrated that Cu-catalyzed reactions are broadly applicable to a variety of research fields related to organic synthesis. Representatively, employing these coupling transformations as key steps, a large number of tandem reactions have been developed for the construction of various heterocyclic compounds. These tactics share the advantages of high atom economics of tandem reactions as well as the broad tolerance of Cu-catalyst systems. Therefore, Cu-catalyzed C-X (X = N, O, S, C) coupling transformation-initiated tandem reactions were quickly recognized as a strategy with great potential for synthesizing heterocyclic compounds and gained worldwide attention. In this review, recent research progress in heterocycle syntheses using tandem reactions initiated by copper-catalyzed coupling transformations, including C-N, C-O, C-S as well as C-C coupling processes are summarized. PMID:21879127

  13. Palladium-catalyzed picolinamide-directed iodination of remote ortho-C-H bonds of arenes: Synthesis of tetrahydroquinolines.

    PubMed

    Nack, William A; Wang, Xinmou; Wang, Bo; He, Gang; Chen, Gong

    2016-01-01

    A new palladium-catalyzed picolinamide (PA)-directed ortho-iodination reaction of ε-C(sp(2))-H bonds of γ-arylpropylamine substrates is reported. This reaction proceeds selectively with a variety of γ-arylpropylamines bearing strongly electron-donating or withdrawing substituents, complementing our previously reported PA-directed electrophilic aromatic substitution approach to this transformation. As demonstrated herein, a three step sequence of Pd-catalyzed γ-C(sp(3))-H arylation, Pd-catalyzed ε-C(sp(2))-H iodination, and Cu-catalyzed C-N cyclization enables a streamlined synthesis of tetrahydroquinolines bearing diverse substitution patterns. PMID:27559375

  14. Cysteine Oxidation Reactions Catalyzed by a Mononuclear Non-heme Iron Enzyme (OvoA) in Ovothiol Biosynthesis

    PubMed Central

    2015-01-01

    OvoA in ovothiol biosynthesis is a mononuclear non-heme iron enzyme catalyzing the oxidative coupling between histidine and cysteine. It can also catalyze the oxidative coupling between hercynine and cysteine, yet with a different regio-selectivity. Due to the potential application of this reaction for industrial ergothioneine production, in this study, we systematically characterized OvoA by a combination of three different assays. Our studies revealed that OvoA can also catalyze the oxidation of cysteine to either cysteine sulfinic acid or cystine. Remarkably, these OvoA-catalyzed reactions can be systematically modulated by a slight modification of one of its substrates, histidine. PMID:24684381

  15. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    SciTech Connect

    Stacey, W.M. Jr. . Fusion Research Center )

    1989-09-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D/sub 2/O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed.

  16. Oxidation of dibenzothiophene catalyzed by hemoglobin and other hemoproteins in various aqueous-organic media

    SciTech Connect

    Klyachko, N.L. Klibanov, A.M. )

    1992-10-01

    Biocatalytic oxidation of dibenzothiophene (a model of organic sulfur in coal) with hydrogen peroxide was investigated. It was found that various hemoproteins, both enzymic (e.g., horseradish peroxidase) and nonenzymic (e.g., bovine blood hemoglobin), readily oxidized dibensothiophene to its S-oxide and, to a minor extent, further to its S-dioxide (sulfone). This process catalyzed by hemoglobin was competent as an oxidation catalyst even in nearly dry organic solvents (with protic, acidic solvents being optimal), the highest conversions were observed in predominantly aqueous media. The hemoglobin-catalyzed oxidation of dibenzothiophene at low concentrations of the protein stopped long before all the substrate was oxidized. This phenomenon was caused by inactivation of hemoglobin by hydrogen peroxide that destroyed the heme moiety. The maximal degree of the hemoglobin-catalyzed dibenzothiophene oxidation was predicted, and found, to be strongly dependent on the reaction medium composition. 24 refs., 7 figs., 3 tabs.

  17. Rhodium and copper-catalyzed asymmetric conjugate addition of alkenyl nucleophiles.

    PubMed

    Müller, Daniel; Alexakis, Alexandre

    2012-12-25

    Since the initial reports in the mid-90s, metal catalyzed asymmetric conjugate addition (ACA) reactions evolved as an important tool for the synthetic chemist. Most of the research efforts have been done in the field of rhodium and copper catalyzed ACA reactions employing aryl and alkyl nucleophiles. Despite the great synthetic value of the double bond, the addition of alkenyl nucleophiles remains insufficiently explored. In this account, an overview of the developments in the field of rhodium and copper catalyzed ACA reactions with organometallic alkenyl reagents (B, Mg, Al, Si, Zr, Sn) will be provided. The account is intended to give a comprehensive overview of all the existing methods. However, in many cases only selected examples are displayed in order to facilitate comparison of different ligands and methodologies. PMID:23096501

  18. Glucosamine condensation catalyzed by 1-ethyl-3-methylimidazolium acetate: mechanistic insight from NMR spectroscopy.

    PubMed

    Jia, Lingyu; Pedersen, Christian Marcus; Qiao, Yan; Deng, Tiansheng; Zuo, Pingping; Ge, Wenzhi; Qin, Zhangfeng; Hou, Xianglin; Wang, Yingxiong

    2015-09-21

    The basic ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) could efficiently catalyze the conversion of 2-amino-2-deoxy-d-glucose (GlcNH2) into deoxyfructosazine (DOF) and fructosazine (FZ). Mechanistic investigation by NMR studies disclosed that [C2C1Im][OAc], exhibiting strong hydrogen bonding basicity, could coordinate with the hydroxyl and amino groups of GlcNH2via the promotion of hydrogen bonding in bifunctional activation of substrates and further catalyzing product formation, based on which a plausible reaction pathway involved in this homogeneous base-catalyzed reaction was proposed. Hydrogen bonding as an activation force, therefore, is responsible for the remarkable selectivity and rate enhancement observed. PMID:26278065

  19. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  20. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase

    PubMed Central

    Yang, Zhi-Yong; Moure, Vivian R.; Dean, Dennis R.; Seefeldt, Lance C.

    2012-01-01

    A doubly substituted form of the nitrogenase MoFe protein (α-70Val→Ala, α-195His→Gln) has the capacity to catalyze the reduction of carbon dioxide (CO2) to yield methane (CH4). Under optimized conditions, 1 nmol of the substituted MoFe protein catalyzes the formation of 21 nmol of CH4 within 20 min. The catalytic rate depends on the partial pressure of CO2 (or concentration of HCO3−) and the electron flux through nitrogenase. The doubly substituted MoFe protein also has the capacity to catalyze the unprecedented formation of propylene (H2C = CH-CH3) through the reductive coupling of CO2 and acetylene (HC≡CH). In light of these observations, we suggest that an emerging understanding of the mechanistic features of nitrogenase could be relevant to the design of synthetic catalysts for CO2 sequestration and formation of olefins. PMID:23150564

  1. Triflic Acid-Catalyzed Enynes Cyclization: A New Strategy beyond Electrophilic π-Activation.

    PubMed

    Yu, Zhunzhun; Liu, Lu; Zhang, Junliang

    2016-06-13

    The cyclization of enynes, catalyzed by a transition metal, represents a powerful tool to construct an array of cyclic compounds through electrophilic π-activation. In this paper, we disclose a new and efficient strategy for enynes cyclization catalyzed by triflic acid. The salient features of this transformation includes a broad substrate scope, metal free synthesis, open flask and mild conditions, good yields, ease of operation, low catalyst loading, and easy scale-up to gram scale. A preliminary mechanism study demonstrated that the activation model of the reaction was σ-activation, which is different from the transition-metal-catalyzed enynes cyclization. Our strategy affords a complementary method to the traditional strategies, which use transition-metal catalysts. PMID:27124814

  2. Iron-Catalyzed C-C Cross-Couplings Using Organometallics.

    PubMed

    Guérinot, Amandine; Cossy, Janine

    2016-08-01

    Over the last decades, iron-catalyzed cross-couplings have emerged as an important tool for the formation of C-C bonds. A wide variety of alkenyl, aryl, and alkyl (pseudo)halides have been coupled to organometallic reagents, the most currently used being Grignard reagents. Particular attention has been devoted to the development of iron catalysts for the functionalization of alkyl halides that are generally challenging substrates in classical cross-couplings. The high functional group tolerance of iron-catalyzed cross-couplings has encouraged organic chemists to use them in the synthesis of bioactive compounds. Even if some points remain obscure, numerous studies have been carried out to investigate the mechanism of iron-catalyzed cross-coupling and several hypotheses have been proposed. PMID:27573401

  3. Bulk Gold-Catalyzed Reactions of Isocyanides, Amines, and Amine N-Oxides

    SciTech Connect

    Klobukowski, Erik; Angelici, Robert; Woo, Keith L.

    2012-01-26

    Bulk gold powder (5–50 μm particles) catalyzes the reactions of isocyanides with amines and amine N-oxides to produce ureas. The reaction of n-butyl isocyanide (nBu–N≡C) with di-n-propylamine and N-methylmorpholine N-oxide in acetonitrile, which was studied in the greatest detail, produced 3-butyl-1,1-dipropylurea (O═C(NHnBu)(NnPr2)) in 99% yield at 60 °C within 2 h. Sterically and electronically different isocyanides, amines, and amine N-oxides react successfully under these conditions. Detailed studies support a two-step mechanism that involves a gold-catalyzed reaction of adsorbed isocyanide with the amine N-oxide to form an isocyanate (RN═C═O), which rapidly reacts with the amine to give the urea product. These investigations show that bulk gold, despite its reputation for poor catalytic activity, is capable of catalyzing these reactions.

  4. Primary product of the horseradish peroxidase-catalyzed oxidation of pentachlorophenol

    SciTech Connect

    Kazunga, C.; Aitken, M.D.; Gold, A.

    1999-05-01

    Peroxidases are a class of enzymes that catalyze the oxidation of various phenolic substrates by hydrogen peroxide. They are common enzymes in soil and are also available commercially, so that they have been proposed as agents of phenolic pollutant transformation both in the environment and in engineered systems. Previous research on the peroxidase-catalyzed oxidation of pentachlorophenol (PCP) has suggested that tetrachloro-p-benzoquinone (chloranil) is the principal product and that a considerable fraction of the PCP added to reaction mixtures appears to be resistant to oxidation. In experiments employing alternative methods of product separation and analysis, the authors found that both of these observations are artifacts of extraction and analytical methods used in previous studies. The major product of the horseradish peroxidase-catalyzed oxidation of pentachlorophenol from pH 4--7 was 2,3,4,5,6-pentachloro-4-pentachlorophenoxy-2,5-cyclohexadienone (PPCHD), which is formed by the coupling of two pentachlorophenoxyl radicals.

  5. Advances in nickel-catalyzed cycloaddition reactions to construct carbocycles and heterocycles.

    PubMed

    Thakur, Ashish; Louie, Janis

    2015-08-18

    Transition-metal catalysis has revolutionized the field of organic synthesis by facilitating the construction of complex organic molecules in a highly efficient manner. Although these catalysts are typically based on precious metals, researchers have made great strides in discovering new base metal catalysts over the past decade. This Account describes our efforts in this area and details the development of versatile Ni complexes that catalyze a variety of cycloaddition reactions to afford interesting carbocycles and heterocycles. First, we describe our early work in investigating the efficacy of N-heterocyclic carbene (NHC) ligands in Ni-catalyzed cycloaddition reactions with carbon dioxide and isocyanate. The use of sterically hindered, electron donating NHC ligands in these reactions significantly improved the substrate scope as well as reaction conditions in the syntheses of a variety of pyrones and pyridones. The high reactivity and versatility of these unique Ni(NHC) catalytic systems allowed us to develop unprecedented Ni-catalyzed cycloadditions that were unexplored due to the inefficacy of early Ni catalysts to promote hetero-oxidative coupling steps. We describe the development and mechanistic analysis of Ni/NHC catalysts that couple diynes and nitriles to form pyridines. Kinetic studies and stoichiometric reactions confirmed a hetero-oxidative coupling pathway associated with this Ni-catalyzed cycloaddition. We then describe a series of new substrates for Ni-catalyzed cycloaddition reactions such as vinylcyclopropanes, aldehydes, ketones, tropones, 3-azetidinones, and 3-oxetanones. In reactions with vinycyclopropanes and tropones, DFT calculations reveal noteworthy mechanistic steps such as a C-C σ-bond activation and an 8π-insertion of vinylcyclopropane and tropone, respectively. Similarly, the cycloaddition of 3-azetidinones and 3-oxetanones also requires Ni-catalyzed C-C σ-bond activation to form N- and O-containing heterocycles. PMID:26200651

  6. Cytochrome P450-like substrate oxidation catalyzed by cytochrome c and immobilized cytochrome c.

    PubMed

    Akasaka, R; Mashino, T; Hirobe, M

    1993-03-01

    Cytochrome c (cyt.c) was shown to catalyze cytochrome P450 (P450)-like oxidative reactions, such as N-, and O-demethylation, S-oxidation, and epoxidation of olefins. A more detailed examination showed that (i) N-methylcarbazole and thioanisole oxidation with H2(18)O2 catalyzed by cyt.c resulted in introduction of 18O into the product, and (ii) during the epoxidation of cis-stilbene catalyzed by cyt.c, the stereochemistry of the substrate was retained and 18O was introduced when H2(18)O2 was used as an oxidant. These results show that cyt.c catalyzed N-demethylation, S-oxidation, and epoxidation in the same manner as P450. To utilize these P450-like reactivities effectively, cyt.c was immobilized on poly-gamma-methyl-L-glutamate. Up to 99% of the cyt.c used was immobilized. This immobilized cyt.c catalyzed N-demethylation, S-oxidation, and epoxidation in the same manner as both P450 and free cyt.c, and the activities of these reactions were increased by the immobilization. In N-demethylation of N,N-dimethylaniline with cumene hydroperoxide (CHP) catalyzed by cyt.c, the Vmax for CHP was increased by 4.4-fold by the immobilization of the enzyme, while the Km remained unchanged. Since P450 is involved in the metabolism of many xenobiotics, the above results suggest that immobilized cyt.c may be useful in drug metabolism research. PMID:7681661

  7. Reaction pathways and free energy profiles for cholinesterase-catalyzed hydrolysis of 6-monoacetylmorphine.

    PubMed

    Qiao, Yan; Han, Keli; Zhan, Chang-Guo

    2014-04-14

    As the most active metabolite of heroin, 6-monoacetylmorphine (6-MAM) can penetrate into the brain for the rapid onset of heroin effects. The primary enzymes responsible for the metabolism of 6-MAM to the less potent morphine in humans are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The detailed reaction pathways for AChE- and BChE-catalyzed hydrolysis of 6-MAM to morphine have been explored, for the first time, in the present study by performing first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the two enzymatic reaction processes follow similar catalytic reaction mechanisms, and the whole catalytic reaction pathway for each enzyme consists of four reaction steps. According to the calculated results, the second reaction step associated with the transition state TS2(a)/TS2(b) should be rate-determining for the AChE/BChE-catalyzed hydrolysis, and the free energy barrier calculated for the AChE-catalyzed hydrolysis (18.3 kcal mol(-1)) is 2.5 kcal mol(-1) lower than that for the BChE-catalyzed hydrolysis (20.8 kcal mol(-1)). The free energy barriers calculated for the AChE- and BChE-catalyzed reactions are in good agreement with the experimentally derived activation free energies (17.5 and 20.7 kcal mol(-1) for the AChE- and BChE-catalyzed reactions, respectively). Further structural analysis reveals that the aromatic residues Phe295 and Phe297 in the acyl pocket of AChE (corresponding to Leu286 and Val288 in BChE) contribute to the lower energy of TS2(a) relative to TS2(b). The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:24595354

  8. Biofuel-Promoted Polychlorinated Dibenzodioxin/furan Formation in an Iron-Catalyzed Diesel Particle Filter.

    PubMed

    Heeb, Norbert V; Rey, Maria Dolores; Zennegg, Markus; Haag, Regula; Wichser, Adrian; Schmid, Peter; Seiler, Cornelia; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Bürki, Samuel; Zimmerli, Yan; Czerwinski, Jan; Mayer, Andreas

    2015-08-01

    Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 μg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels. PMID:26176879

  9. Nickel-Catalyzed Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings

    PubMed Central

    2016-01-01

    The cross-coupling of sp3-hybridized organoboron reagents via photoredox/nickel dual catalysis represents a new paradigm of reactivity for engaging alkylmetallic reagents in transition-metal-catalyzed processes. Reported here is an investigation into the mechanistic details of this important transformation using density functional theory. Calculations bring to light a new reaction pathway involving an alkylnickel(I) complex generated by addition of an alkyl radical to Ni(0) that is likely to operate simultaneously with the previously proposed mechanism. Analysis of the enantioselective variant of the transformation reveals an unexpected manifold for stereoinduction involving dynamic kinetic resolution (DKR) of a Ni(III) intermediate wherein the stereodetermining step is reductive elimination. Furthermore, calculations suggest that the DKR-based stereoinduction manifold may be responsible for stereoselectivity observed in numerous other stereoconvergent Ni-catalyzed cross-couplings and reductive couplings. PMID:25836634

  10. Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5 + 2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions

    PubMed Central

    2015-01-01

    Allenes are important 2π building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d−π* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break π conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes. PMID:25379606

  11. Rhodium-Catalyzed C6-Selective C-H Borylation of 2-Pyridones.

    PubMed

    Miura, Wataru; Hirano, Koji; Miura, Masahiro

    2016-08-01

    A pyridine-directed, rhodium-catalyzed C6-selective C-H borylation of 2-pyridones with bis(pinacolato)diboron (pinB-Bpin) has been developed. The reaction proceeds smoothly under relatively mild conditions, and the corresponding C6-borylated 2-pyridones are obtained with perfect site selectivity. Subsequent palladium-catalyzed Suzuki-Miyaura cross-coupling is followed by the removal of the pyridine directing group to form the C6-arylated NH-pyridone in an acceptable overall yield. PMID:27420925

  12. Palladium-catalyzed synthesis of benzimidazoles and quinazolinones from common precursors.

    PubMed

    Sadig, Jessie E R; Foster, Radleigh; Wakenhut, Florian; Willis, Michael C

    2012-11-01

    N-(o-Halophenyl)imidoyl chlorides and the corresponding imidates are easily prepared and can be utilized as complementary precursors for the synthesis of important heterocycles. The synthesis of N-substituted benzimidazoles was possible from the palladium-catalyzed reaction of both classes of substrate with a variety of N-nucleophiles. The use of the imidate precursor for the synthesis of N-substituted quinazolinones by incorporation of a palladium-catalyzed aminocarbonylation reaction has also been demonstrated. Both processes tolerate a wide range of functional groups. PMID:23030827

  13. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air.

    PubMed

    Hanson, Susan K; Wu, Ruilian; Silks, L A Pete

    2011-04-15

    Transition metal-catalyzed aerobic alcohol oxidation is an attractive method for the synthesis of carbonyl compounds, but most catalytic systems feature precious metals and require pure oxygen. The vanadium complex (HQ)(2)V(V)(O)(O(i)Pr) (2 mol %, HQ = 8-quinolinate) and NEt(3) (10 mol %) catalyze the oxidation of benzylic, allylic, and propargylic alcohols with air. The catalyst can be easily prepared under air using commercially available reagents and is effective for a wide range of primary and secondary alcohols. PMID:21434606

  14. The Enterobactin Synthetase Catalyzed Formation of P1, P3-diadenosine-5′-tetraphosphate

    PubMed Central

    Sikora, Alison L.; Cahill, Sean M.; Blanchard, John S.

    2009-01-01

    The EntE enzyme involved in the synthesis of the iron siderophore enterobactin, catalyzes the adenylation of 2,3-dihydroxybenzoic acid, followed by its transfer to the phosphopantetheine arm of holo-EntB, an aryl carrier protein. In the absence of EntB, EntE catalyzes the formation of Ap4A, a molecule that is implicated in regulating cell division during oxidative stress. We propose that the expression of EntE during iron starvation produces Ap4A to slow growth until intracellular iron stores can be restored. PMID:19852513

  15. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process.

    PubMed

    Zhang, Chun; Tang, Conghui; Jiao, Ning

    2012-05-01

    Copper salts have been developed as versatile catalysts for oxidative coupling reactions in organic synthesis. During these processes, Cu-catalysts are often proposed to serve as a one-electron oxidant to promote the single-electron transfer process. Recently, the transition-metal catalyzed direct dehydrogenative transformation has attracted considerable attention. This tutorial review summarizes the recent advances in the copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process achieving C-C, C-N, C-O, C-halogen atoms, C-P, and N-N bond formation. PMID:22349590

  16. Synthesis of benzofuranyl and indolyl methyl azides by tandem silver-catalyzed cyclization and azidation.

    PubMed

    Ranjith Kumar, Gadi; Kiran Kumar, Yalla; Kant, Ruchir; Sridhar Reddy, Maddi

    2016-04-26

    Ag(i)-catalyzed synthesis of 2-azidomethyl benzofurans/indoles from linear and readily available hydroxyl/amino-phenyl propargyl alcohols is described via a highly regioselective C-O and C-N bond formation. Control experiments reveal that the reaction involves the sequential Ag(i)-catalyzed 5-exo-dig cyclization and a catalyst free γ-allylic azidation. The synthetic utility of this method has been demonstrated by using the azidomethyl unit of the above synthesized heterocycles as the base for a variety of other functionalizations, such as triazole-, tetrazole-, amide-, amine-, and pyrido-derivatives. PMID:27064507

  17. Isotope-labeling of the fibril binding compound FSB via a Pd-catalyzed double alkoxycarbonylation.

    PubMed

    Burhardt, Mia N; Taaning, Rolf; Nielsen, Niels Chr; Skrydstrup, Troels

    2012-06-15

    We have synthesized two isotopically labeled variants of the β-amyloid binding compound FSB possessing (13)C-labels on the two terminal aryl carboxylic acid moieties. One of these was also fully deuterated on the olefinic spacers. The (13)C-isotope labeling was achieved applying a Pd-catalyzed methoxycarbonylation of the corresponding aryl chlorides with externally (ex situ) generated (13)C-labeled CO. Application of the Shirakawa-Hayashi protocol for the Pd-catalyzed reduction of a dialkyne intermediate using D(2)O allowed for the selective deuterium labeling of the two trans-C,C double bonds of FSB. PMID:22612598

  18. Unravelling the Ru-Catalyzed Hydrogenolysis of Biomass-Based Polyols under Neutral and Acidic Conditions.

    PubMed

    Hausoul, Peter J C; Negahdar, Leila; Schute, Kai; Palkovits, Regina

    2015-10-12

    The aqueous Ru/C-catalyzed hydrogenolysis of biomass-based polyols such as erythritol, xylitol, sorbitol, and cellobitol is studied under neutral and acidic conditions. For the first time, the complete product spectrum of C2 C6 polyols is identified and, based on a thorough analysis of the reaction mixtures, a comprehensive reaction mechanism is proposed, which consists of (de)hydrogenation, epimerization, decarbonylation, and deoxygenation reactions. The data reveal that the Ru-catalyzed deoxygenation reaction is highly selective for the cleavage of terminal hydroxyl groups. Changing from neutral to acidic conditions suppresses decarbonylation, consequently increasing the selectivity towards deoxygenation. PMID:26448526

  19. Nickel(0)-catalyzed intramolecular reductive coupling of alkenes and aldehydes or ketones with hydrosilanes.

    PubMed

    Hayashi, Yukari; Hoshimoto, Yoichi; Kumar, Ravindra; Ohashi, Masato; Ogoshi, Sensuke

    2016-05-01

    A nickel(0)-catalyzed reductive coupling of aldehydes and simple alkenes with hydrosilanes has been developed. A variety of silyl-protected 1-indanol derivatives were prepared in a highly diastereoselective manner (up to >99 : 1 dr) by employing a combination of nickel(0)/N-heterocyclic carbene and triethylsilane. The present system was also applied to a reductive coupling with ketones. Preliminary results of a nickel(0)-catalyzed asymmetric three-component coupling reaction of an aldehyde, an alkene, and triethylsilane are also shown. PMID:27077829

  20. Iridium-catalyzed borylation of thiophenes: versatile, synthetic elaboration founded on selective C–H functionalization

    PubMed Central

    Chotana, Ghayoor A.; Kallepalli, Venkata A.; Maleczka, Robert E.; Smith, Milton R.

    2013-01-01

    Iridium-catalyzed borylation has been applied to various substituted thiophenes to synthesize poly-functionalized thiophenes in good to excellent yields. Apart from common functionalities compatible with iridium-catalyzed borylations, additional functional group tolerance to acyl (COMe), and trimethylsilyl (TMS) groups was also observed. High regioselectivities were observed in borylation of 3-and 2,5-di-substituted thiophenes. Electrophilic aromatic C–H/C-Si bromination on thiophene boronate esters is shown to take place without breaking the C–B bond, and one-pot C–H borylation/Suzuki-Miyaura cross-coupling has been accomplished on 2- and 3-borylated thiophenes. PMID:24385669

  1. Pd(II)-Catalyzed Asymmetric Addition of Arylboronic Acids to Isatin-Derived Ketimines.

    PubMed

    He, Qun; Wu, Liang; Kou, Xuezhen; Butt, Nicholas; Yang, Guoqiang; Zhang, Wanbin

    2016-01-15

    A Pd(II)/Pyrox-catalyzed enantioselecitve addition of arylboronic acids to 3-ketimino oxindoles was developed, providing chiral 3-amino-2-oxindoles with a quaternary stereocenter in high yields and with good enantioselectivities. A variety of functionalized 3-ketimino oxindoles can be used, and the method tolerates some variation in arylboronic acid scope. This asymmetric arylation provides an alternative efficient catalytic method for the preparation of chiral 3-aryl-3-amino-2-oxindoles, which also represents the first example of a Pd(II)-catalyzed addition of arylborons to exocyclic ketimines. PMID:26720106

  2. Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation().

    PubMed

    Moran, Joseph; Krische, Michael J

    2012-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C-C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  3. Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation*

    PubMed Central

    Moran, Joseph; Krische, Michael J.

    2013-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C–C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  4. Palladium(0)-catalyzed single and double isonitrile insertion: a facile synthesis of benzofurans, indoles, and isatins.

    PubMed

    Senadi, Gopal Chandru; Hu, Wan-Ping; Boominathan, Siva Senthil Kumar; Wang, Jeh-Jeng

    2015-01-12

    A palladium(0)-catalyzed cascade process consisting of isonitrile insertion and α-Csp(3)-H cross-coupling can be achieved for the synthesis of benzofurans and indoles. The construction of isatins by a Pd-catalyzed cascade reaction incorporating double isonitrile insertion, amination, and hydrolysis has also been achieved. The key features of this work include diverse heterocycle synthesis, phosphine-ligand-free reaction conditions, a one-pot procedure, simple and commercially available starting materials, broad functional-group compatibility, and moderate to good reaction yields. PMID:25447489

  5. Enantioselective TADMAP-Catalyzed Carboxyl Migration Reactions for the Synthesis of Stereogenic Quaternary Carbon

    PubMed Central

    Shaw, Scott A.; Aleman, Pedro; Christy, Justin; Kampf, Jeff W.; Va, Porino

    2008-01-01

    The chiral, nucleophilic catalyst TADMAP (1) has been prepared from 3-lithio-4-dimethylamino-pyridine (5) and triphenylacetaldehyde (3), followed by acylation and resolution. TADMAP catalyzes the carboxyl migration of oxazolyl, furanyl, and benzofuranyl enol carbonates with good to excellent levels of enantioselection. The oxazole reactions are especially efficient, and are used to prepare chiral lactams (23) and lactones (30) containing a quaternary asymmetric carbon. TADMAP-catalyzed carboxyl migrations in the indole series are relatively slow and proceed with inconsistent enantioselectivity. Modeling studies (B3LYP/6-31G*) have been used in qualitative correlations of catalyst conformation, reactivity, and enantioselectivity. PMID:16417383

  6. Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids.

    PubMed

    Hirschmann, R; Smith, A B; Taylor, C M; Benkovic, P A; Taylor, S D; Yager, K M; Sprengeler, P A; Benkovic, S J

    1994-07-01

    Monoclonal antibodies, induced with a phosphonate diester hapten, catalyzed the coupling of p-nitrophenyl esters of N-acetyl valine, leucine, and phenylalanine with tryptophan amide to form the corresponding dipeptides. All possible stereoisomeric combinations of the ester and amide substrates were coupled at comparable rates. The antibodies did not catalyze the hydrolysis of the dipeptide product nor hydrolysis or racemization of the activated esters. The yields of the dipeptides ranged from 44 to 94 percent. The antibodies were capable of multiple turnovers at rates that exceeded the rate of spontaneous ester hydrolysis. This achievement suggests routes toward creating a small number of antibody catalysts for polypeptide syntheses. PMID:8023141

  7. A Convenient Palladium-Catalyzed Reductive Carbonylation of Aryl Iodides with Dual Role of Formic Acid.

    PubMed

    Qi, Xinxin; Li, Chong-Liang; Wu, Xiao-Feng

    2016-04-18

    Palladium-catalyzed reductive carbonylation of aryl halides represents a straightforward pathway for the synthesis of aromatic aldehydes. The known reductive carbonylation procedures either require CO gas or complexed compounds as CO sources. In this communication, we developed a palladium-catalyzed reductive carbonylation of aryl iodides with formic acid as the formyl source. As a convenient, practical, and environmental friendly methodology, no additional silane or H2 was required. A variety of aromatic aldehydes were isolated in moderate to excellent yields under mild reaction conditions. Notably, this is the first procedure on using formic acid as the formyl source. PMID:26934464

  8. Mechanism of maltal hydration catalyzed by. beta. -amylase: Role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase

    SciTech Connect

    Kitahata, Sumio ); Chiba, S. ); Brewer, C.F.; Hehre, E.J. )

    1991-07-09

    Crystalline (monomeric) soybean and (tetrameric) sweet potato {beta}-amylase were shown to catalyze the cis hydration of maltal ({alpha}-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form {beta}-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D{sub 2}O by soybean {beta}-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (V{sub H}/V{sub D}=6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-(2(a)-{sup 2}H)maltose as product. These results indicate (for each {beta}-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that {beta}-amylase protonates maltal from a direction opposite that assumed for protonating strach, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures is dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center.

  9. Acetyl xylan esterase of Aspergillus ficcum catalyzed the synthesis of peracetic acid from ethyl acetate and hydrogen peroxide.

    PubMed

    Park, Seung-Moon

    2011-11-01

    Recombinant acetyl xylan esterase (rAXE) of Aspergillus ficcum catalyzed the synthesis of peracetic acid (PAA) from ethyl acetate and hydrogen peroxide. Ten micrograms of rAXE catalyzed the synthesis of 1.34 mM of PAA, which can be used for the pretreatment of cellulosic biomass in situ. PMID:21824816

  10. Nickel-catalyzed synthesis of (E)-olefins from benzylic alcohol derivatives and arylacetonitriles via C-O activation.

    PubMed

    Xiao, Jing; Yang, Jia; Chen, Tieqiao; Han, Li-Biao

    2016-02-01

    An efficient Ni-catalyzed synthesis of (E)-olefins using the readily available benzylic alcohol derivatives and arylacetonitriles is described. This transformation should proceed via a tandem process involving nickel-catalyzed cross coupling via C-O activation and subsequent stereoselective E2 elimination. PMID:26699396

  11. Kinetic Parameters for the Noncatalyzed and Enzyme-Catalyzed Mutarotation of Glucose Using a Blood Glucometer

    ERIC Educational Resources Information Center

    Hardee, John R.; Delgado, Bryan; Jones, Wray

    2011-01-01

    The kinetic parameters for the conversion of alpha-D-glucose to beta-D-glucose were measured using a blood glucometer. The reaction order, rate constant, and Arrhenius activation energy are reported for the noncatalyzed reaction and turnover number and Michaelis constant are reported for the reaction catalyzed by porcine kidney mutarotase. The…

  12. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of “hunger hormone” ghrelin

    PubMed Central

    Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2016-01-01

    Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway. PMID:26922910

  13. Silver(I)-catalyzed novel cascade cyclization reactions: incorporation of allenes into the isochromenes.

    PubMed

    Patil, Nitin T; Pahadi, Nirmal K; Yamamoto, Yoshinori

    2005-11-25

    [reaction: see text] The silver(I)-catalyzed reaction of alkynones with alcohols represents a general tool for the synthesis of 1-allenyl isochromenes. The reaction most probably proceeds via the formation of benzopyrylium cation, which subsequently undergoes nucleophilic attack of an alcohol to give the annulation products. PMID:16292845

  14. Influence of an internal trifluoromethyl group on the rhodium(II)-catalyzed reactions of vinyldiazocarbonyl compounds.

    PubMed

    Nikolaev, Valerij A; Supurgibekov, Murat B; Davies, Huw M L; Sieler, Joachim; Zakharova, Valerija M

    2013-05-01

    Incorporation of a trifluoromethyl group into the structure of 4-(alkoxycarbonyl)vinyldiazocarbonyl compounds greatly decreases the tendency of the carbenoid intermediates formed during Rh(II)-catalyzed reactions to undergo intermolecular processes. Instead, they are prone to experience intramolecular [1,5]- and [1,3]-electrocyclizations to produce reactive cyclopropenes and furans, and these are capable of further transformations. PMID:23614681

  15. Copper-Catalyzed Trifluoromethylazidation of Alkynes: Efficient Access to CF3-Substituted Azirines and Aziridines.

    PubMed

    Wang, Fei; Zhu, Na; Chen, Pinhong; Ye, Jinxing; Liu, Guosheng

    2015-08-01

    A novel method for convenient access to CF3-containing azirines has been developed, and involves a copper-catalyzed trifluoromethylazidation of alkynes and a photocatalyzed rearrangement. Both terminal and internal alkynes are compatible with the mild reaction conditions, thus delivering the CF3-containing azirines in moderate to good yields. The azirines can be converted into various CF3-substituted aziridines. PMID:26088360

  16. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  17. The Lewis-acid-catalyzed synthesis of hyperbranched poly(glycerol-diacid)s in toluene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first examples of monomeric glycerol-derived hyperbranched polyesters produced in a non-polar solvent system are reported here. The polymers were made by the Lewis acid (dibutyltin(IV)oxide)-catalyzed polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutari...

  18. Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitrile

    PubMed Central

    Zhang, Wandi; Haskins, Christopher W.; Yang, Yang; Dai, Mingji

    2014-01-01

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield. PMID:25316145

  19. Optimizing the Acid Catalyzed Synthesis of Hyperbranched Poly(Glycerol-diacids) Oligomers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oligomeric pre-polymers were synthesized by the acid-catalyzed condensation of glycerol with succinic acid, glutaric acid and azelaic acid in dimethylsulfoxide (DMSO) or dimethylformamide (DMF). The prepolymers were obtained, on average in 84% yield, and were characterized by proton NMR, MALDI-TOF ...

  20. Palladium-Catalyzed Intermolecular Aerobic Annulation of o-Alkenylanilines and Alkynes for Quinoline Synthesis.

    PubMed

    Zheng, Jia; Li, Zun; Huang, Liangbin; Wu, Wanqing; Li, Jianxiao; Jiang, Huanfeng

    2016-08-01

    A new approach to construct 2,3-disubstituted quinolines is described via Pd-catalyzed oxidative cyclization of o-vinylanilines and alkynes with molecular oxygen. This transformation is supposed to undergo intermolecular amination of alkyne, insertion of the olefin, and oxidative cleavage of C-C bond sequence. PMID:27418021