Science.gov

Sample records for calreticulin transacetylase catalyzed

  1. Diverging functions among calreticulin isoforms in higher plants

    PubMed Central

    Thelin, Lisa; Mutwil, Marek; Sommarin, Marianne

    2011-01-01

    The ER chaperone calreticulin plays vital roles in numerous cellular processes, including Ca2+-homeostasis, apoptosis and cell adhesion, in animal cells. Although calreticulin has been systematically characterized in animal cells, the focus has been on one of the isoforms. However, recent advances in the plant calreticulin field have revealed functional divergence of calreticulin isoforms. While two of the plant isoforms appear to work within a general ER chaperone framework, the third isoform is associated with folding of receptors for brassinosteroids and bacterial peptides. Hence, the discovery of functional specialization of plant calreticulins opens up new vistas for calreticulins also in the animal field. PMID:21586899

  2. Diverging functions among calreticulin isoforms in higher plants.

    PubMed

    Thelin, Lisa; Mutwil, Marek; Sommarin, Marianne; Persson, Staffan

    2011-06-01

    The ER chaperone calreticulin plays vital roles in numerous cellular processes, including Ca2+-homeostasis, apoptosis, and cell adhesion, in animal cells. Although calreticulin has been systematically characterized in animal cells, the focus has been on one of the isoforms. However, recent advances in the plant calreticulin field have revealed functional divergence of calreticulin isoforms. While two of the plant isoforms appear to work within a general ER chaperone framework, the third isoform is associated with folding of receptors for brassinosteroids and bacterial peptides. Hence, the discovery of functional specialization of plant calreticulins opens up new vistas for calreticulins also in the animal field. PMID:21586899

  3. Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations

    PubMed Central

    Andrikovics, Hajnalka; Krahling, Tunde; Balassa, Katalin; Halm, Gabriella; Bors, Andras; Koszarska, Magdalena; Batai, Arpad; Dolgos, Janos; Csomor, Judit; Egyed, Miklos; Sipos, Andrea; Remenyi, Peter; Tordai, Attila; Masszi, Tamas

    2014-01-01

    Somatic insertions/deletions in the calreticulin gene have recently been discovered to be causative alterations in myeloproliferative neoplasms. A combination of qualitative and quantitative allele-specific polymerase chain reaction, fragment-sizing, high resolution melting and Sanger-sequencing was applied for the detection of three driver mutations (in Janus kinase 2, calreticulin and myeloproliferative leukemia virus oncogene genes) in 289 cases of essential thrombocythemia and 99 cases of primary myelofibrosis. In essential thrombocythemia, 154 (53%) Janus kinase 2 V617F, 96 (33%) calreticulin, 9 (3%) myeloproliferative leukemia virus oncogene gene mutation-positive and 30 triple-negative (11%) cases were identified, while in primary myelofibrosis 56 (57%) Janus kinase 2 V617F, 25 (25%) calreticulin, 7 (7%) myeloproliferative leukemia virus oncogene gene mutation-positive and 11 (11%) triple-negative cases were identified. Patients positive for the calreticulin mutation were younger and had higher platelet counts compared to Janus kinase 2 mutation-positive counterparts. Calreticulin mutation-positive patients with essential thrombocythemia showed a lower risk of developing venous thrombosis, but no difference in overall survival. Calreticulin mutation-positive patients with primary myelofibrosis had a better overall survival compared to that of the Janus kinase 2 mutation-positive (P=0.04) or triple-negative cases (P=0.01). Type 2 calreticulin mutation occurred more frequently in essential thrombocythemia than in primary myelofibrosis (P=0.049). In essential thrombocythemia, the calreticulin mutational load was higher than the Janus kinase 2 mutational load (P<0.001), and increased gradually in advanced stages. Calreticulin mutational load influenced blood counts even at the time point of diagnosis in essential thrombocythemia. We confirm that calreticulin mutation is associated with distinct clinical characteristics and explored relationships between mutation type, load and clinical outcome. PMID:24895336

  4. Lipoyl content and other properties of the protein X and the transacetylase components of the pyruvate dehydrogenase complex

    SciTech Connect

    Radke, G.A.; Rahmatullah, M.; Jilka, J.M; Roche, T.E.

    1986-05-01

    Previous work demonstrated by structural and immunological techniques that protein X (X) was distinct from the transacetylase (E2) but that regions of X and E2 (specifically including the portions acetylated) were similar. Trypsin cleaved X and E2 into large domains giving acetylated portions with apparent M/sub r/ values of approx.20 kdal and approx.38 kdal, respectively. Purified (denatured) E2 and X subunits were prepared and amino acid compositions determined. Reduced subunits were reacted with FDNB and acid hydrolyzed. Bis(DNP)dihydrolipoic was extracted into ethylacetate and quantitated by HPLC (epsilon = 25 O.D.mM/sup -1/cm/sup -1/ at 340 nm) and the levels normalized based on the amino acid analysis of the acid hydrolysates. E2 and X were estimated to contain about 1 lipoyl moiety per subunit. Following dihydrolipoyl dehydrogenase-dependent NADH reduction of E2-X, 1.5-2 /sup 14/C-NEM per subunit were incorporated into E2 and X consistent with reduction of one lipoyl moiety per subunit. Incorporation into E2-X subcomplex of > 90 acetyl groups per molecule of subcomplex led to > 1.5 acetyl group incorporated per X and per E2 subunit and nearly eliminated NADH-dependent incorporation of /sup 14/C-NEM into these subunits suggesting diacetyl moieties were formed. Consistent with that possibility, acetylation to high levels yielded rapid and slowly exchanging acetyl groups on both E2 and X.

  5. Release of calreticulin from neutrophils may alter C1q-mediated immune functions.

    PubMed Central

    Kishore, U; Sontheimer, R D; Sastry, K N; Zaner, K S; Zappi, E G; Hughes, G R; Khamashta, M A; Strong, P; Reid, K B; Eggleton, P

    1997-01-01

    Calreticulin is an abundant intracellular protein which is involved in a number of cellular functions. During cytomegalovirus infection, as well as inflammatory episodes in autoimmune disease, calreticulin can be released from cells and detected in the circulation, where it may act as an immunodominant autoantigen in diseases such as systemic lupus erythematosus. Calreticulin is known to bind to the molecules of innate immunity, such as C1q, the first subcomponent of complement. However, the functional implications of C1q-calreticulin interactions are unknown. In the present study we sought to investigate, in greater detail, the interaction between these two proteins following the release of calreticulin from neutrophils upon stimulation. In order to pinpoint the regions of interaction, recombinant calreticulin and its discrete domains (N-, P- and C-domains) were produced in Escherichia coli. Both the N- and P-domains of calreticulin were shown to bind to the globular head regions of C1q. Calreticulin also appeared to alter C1q-mediated immune functions. Binding of calreticulin to C1q inhibited haemolysis of IgM-sensitized erythrocytes. Both the N- and P-domains of calreticulin were found to contain sites involved in the inhibition of C1q-induced haemolysis. Full-length calreticulin, and its N- and P-domains, were also able to reduce the C1q-dependent binding of immune complexes to neutrophils. We conclude that calreticulin, once released from neutrophils during inflammation, may not only induce an antigenic reaction, but, under defined conditions, may also interfere with C1q-mediated inflammatory processes. PMID:9065775

  6. lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA.

    PubMed

    Marbach, Anja; Bettenbrock, Katja

    2012-01-01

    Most commonly used expression systems in bacteria are based on the Escherichia coli lac promoter. Furthermore, lac operon elements are used today in systems and synthetic biology. In the majority of the cases the gratuitous inducers IPTG or TMG are used. Here we report a systematic comparison of lac promoter induction by TMG and IPTG which focuses on the aspects inducer uptake, population heterogeneity and a potential influence of the transacetylase, LacA. We provide induction curves in E. coli LJ110 and in isogenic lacY and lacA mutant strains and we show that both inducers are substrates of the lactose permease at low inducer concentrations but can also enter cells independently of lactose permease if present at higher concentrations. Using a gfp reporter strain we compared TMG and IPTG induction at single cell level and showed that bimodal induction with IPTG occurred at approximately ten-fold lower concentrations than with TMG. Furthermore, we observed that lac operon induction is influenced by the transacetylase, LacA. By comparing two Plac-gfp reporter strains with and without a lacA deletion we could show that in the lacA(+) strain the fluorescence level decreased after few hours while the fluorescence further increased in the lacA(-) strain. The results indicate that through the activity of LacA the IPTG concentration can be reduced below an inducing threshold concentration-an influence that should be considered if low inducer amounts are used. PMID:22079752

  7. Molecular cloning and characterization of a calreticulin cDNA from the pinewood nematode Bursaphelenchus xylophilus.

    PubMed

    Li, Xundong; Zhuo, Kan; Luo, Mei; Sun, Longhua; Liao, Jinling

    2011-06-01

    The cloning and characterization of a cDNA encoding a calreticulin from the pinewood nematode Bursaphelenchus xylophilus is described herein. The full-length cDNA (Bx-crt-1) contained a 1200 bp open reading frame that could be translated to a 399 amino acid polypeptide. The deduced protein contained highly conserved regions of a calreticulin gene and had 66.2-70.1% amino acid sequence identity to other calreticulin sequences from nematodes. RNAi, RT-PCR amplification, and southern blot suggest that Bx-crt-1 may be important for the development of B. xylophilus. PMID:21371475

  8. Calreticulin: non-endoplasmic reticulum functions in physiology and disease

    PubMed Central

    Gold, Leslie I.; Eggleton, Paul; Sweetwyne, Mariya T.; Van Duyn, Lauren B.; Greives, Matthew R.; Naylor, Sara-Megumi; Michalak, Marek; Murphy-Ullrich, Joanne E.

    2010-01-01

    Calreticulin (CRT), when localized to the endoplasmic reticulum (ER), has important functions in directing proper conformation of proteins and glycoproteins, as well as in homeostatic control of cytosolic and ER calcium levels. There is also steadily accumulating evidence for diverse roles for CRT localized outside the ER, including data suggesting important roles for CRT localized to the outer cell surface of a variety of cell types, in the cytosol, and in the extracellular matrix (ECM). Furthermore, the addition of exogenous CRT rescues numerous CRT-driven functions, such as adhesion, migration, phagocytosis, and immunoregulatory functions of CRT-null cells. Recent studies show that topically applied CRT has diverse and profound biological effects that enhance cutaneous wound healing in animal models. This evidence for extracellular bioactivities of CRT has provided new insights into this classically ER-resident protein, despite a lack of knowledge of how CRT exits from the ER to the cell surface or how it is released into the extracellular milieu. Nonetheless, it has become clear that CRT is a multicompartmental protein that regulates a wide array of cellular responses important in physiological and pathological processes, such as wound healing, the immune response, fibrosis, and cancer.—Gold, L. I., Eggleton, P., Sweetwyne, M. T., Van Duyn, L. B., Greives, M. R., Naylor, S.-M., Michalak, M., Murphy-Ullrich, J. E. Calreticulin: non-endoplamic reticulum functions in physiology and disease. PMID:19940256

  9. The Structure of Calreticulin C-terminal Domain Is Modulated by Physiological Variations of Calcium Concentration*

    PubMed Central

    Giraldo, Ana María Villamil; Medus, Máximo Lopez; Lebrero, Mariano Gonzalez; Pagano, Rodrigo S.; Labriola, Carlos A.; Landolfo, Lucas; Delfino, José M.; Parodi, Armando J.; Caramelo, Julio J.

    2010-01-01

    Calreticulin is an abundant endoplasmic reticulum resident protein that fulfills at least two basic functions. Firstly, due to its ability to bind monoglucosylated high mannose oligosaccharides, calreticulin is a central component of the folding quality control system of glycoproteins. On the other hand, thanks to its capacity to bind high amounts of calcium, calreticulin is one of the main calcium buffers in the endoplasmic reticulum. This last activity resides on a highly negatively charged domain located at the C terminus. Interestingly, this domain has been proposed to regulate the intracellular localization of calreticulin. Structural information for this domain is currently scarce. Here we address this issue by employing a combination of biophysical techniques and molecular dynamics simulation. We found that calreticulin C-terminal domain at low calcium concentration displays a disordered structure, whereas calcium addition induces a more rigid and compact conformation. Remarkably, this change develops when calcium concentration varies within a range similar to that taking place in the endoplasmic reticulum upon physiological fluctuations. In addition, a much higher calcium concentration is necessary to attain similar responses in a peptide displaying a randomized sequence of calreticulin C-terminal domain, illustrating the sequence specificity of this effect. Molecular dynamics simulation reveals that this ordering effect is a consequence of the ability of calcium to bring into close proximity residues that lie apart in the primary structure. These results place calreticulin in a new setting in which the protein behaves not only as a calcium-binding protein but as a finely tuned calcium sensor. PMID:20018892

  10. Calreticulin Enhances Porcine Wound Repair by Diverse Biological Effects

    PubMed Central

    Nanney, Lillian B.; Woodrell, Christopher D.; Greives, Mathew R.; Cardwell, Nancy L.; Pollins, Alonda C.; Bancroft, Tara A.; Chesser, Adrianne; Michalak, Marek; Rahman, Mohammad; Siebert, John W.; Gold, Leslie I.

    2008-01-01

    Extracellular functions of the endoplasmic reticulum chaperone protein calreticulin (CRT) are emerging. Here we show novel roles for exogenous CRT in both cutaneous wound healing and diverse processes associated with repair. Compared with platelet-derived growth factor-BB-treated controls, topical application of CRT to porcine excisional wounds enhanced the rate of wound re-epithelialization. In both normal and steroid-impaired pigs, CRT increased granulation tissue formation. Immunohistochemical analyses of the wounds 5 and 10 days after injury revealed marked up-regulation of transforming growth factor-?3 (a key regulator of wound healing), a threefold increase in macrophage influx, and an increase in the cellular proliferation of basal keratinocytes of the new epidermis and of cells of the neodermis. In vitro studies confirmed that CRT induced a greater than twofold increase in the cellular proliferation of primary human keratinocytes, fibroblasts, and microvascular endothelial cells (with 100 pg/ml, 100 ng/ml, and 1.0 pg/ml, respectively). Moreover, using a scratch plate assay, CRT maximally induced the cellular migration of keratinocytes and fibroblasts (with 10 pg/ml and 1 ng/ml, respectively). In addition, CRT induced concentration-dependent migration of keratinocytes, fibroblasts macrophages, and monocytes in chamber assays. These in vitro bioactivities provide mechanistic support for the positive biological effects of CRT observed on both the epidermis and dermis of wounds in vivo, underscoring a significant role for CRT in the repair of cutaneous wounds. PMID:18753412

  11. Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.

    PubMed

    Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito

    2005-04-22

    Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease. PMID:15766574

  12. NMR structures of 36 and 73-residue fragments of the calreticulin P-domain.

    PubMed

    Ellgaard, Lars; Bettendorff, Pascal; Braun, Daniel; Herrmann, Torsten; Fiorito, Francesco; Jelesarov, Ilian; Güntert, Peter; Helenius, Ari; Wüthrich, Kurt

    2002-09-27

    Calreticulin (CRT) is an abundant, soluble molecular chaperone of the endoplasmic reticulum. Similar to its membrane-bound homolog calnexin (CNX), it is a lectin that promotes the folding of proteins carrying N-linked glycans. Both proteins cooperate with an associated co-chaperone, the thiol-disulfide oxidoreductase ERp57. This enzyme catalyzes the formation of disulfide bonds in CNX and CRT-bound glycoprotein substrates. Previously, we solved the NMR structure of the central proline-rich P-domain of CRT comprising residues 189-288. This structure shows an extended hairpin topology, with three short anti-parallel beta-sheets, three small hydrophobic clusters, and one helical turn at the tip of the hairpin. We further demonstrated that the residues 225-251 at the tip of the CRT P-domain are involved in direct contacts with ERp57. Here, we show that the CRT P-domain fragment CRT(221-256) constitutes an autonomous folding unit, and has a structure highly similar to that of the corresponding region in CRT(189-288). Of the 36 residues present in CRT(221-256), 32 form a well-structured core, making this fragment one of the smallest known natural sequences to form a stable non-helical fold in the absence of disulfide bonds or tightly bound metal ions. CRT(221-256) comprises all the residues of the intact P-domain that were shown to interact with ERp57. Isothermal titration microcalorimetry (ITC) now showed affinity of this fragment for ERp57 similar to that of the intact P-domain, demonstrating that CRT(221-256) may be used as a low molecular mass mimic of CRT for further investigations of the interaction with ERp57. We also solved the NMR structure of the 73-residue fragment CRT(189-261), in which the tip of the hairpin and the first beta-sheet are well structured, but the residues 189-213 are disordered, presumably due to lack of stabilizing interactions across the hairpin. PMID:12270713

  13. Calreticulin Mutations in Myeloproliferative Neoplasms: Comparison of Three Diagnostic Methods.

    PubMed

    Park, Ji-Hye; Sevin, Margaux; Ramla, Selim; Truffot, Aurélie; Verrier, Tiffany; Bouchot, Dominique; Courtois, Martine; Bas, Mathilde; Benali, Sonia; Bailly, François; Favre, Bernardine; Guy, Julien; Martin, Laurent; Maynadié, Marc; Carillo, Serge; Girodon, François

    2015-01-01

    Calreticulin (CALR) mutations have recently been reported in 70-84% of JAK2V617F-negative myeloproliferative neoplasms (MPN), and this detection has become necessary to improve the diagnosis of MPN. In a large single-centre cohort of 298 patients suffering from Essential Thrombocythemia (ET), the JAK2V617F, CALR and MPL mutations were noted in 179 (60%), 56 (18.5%) and 13 (4.5%) respectively. For the detection of the CALR mutations, three methods were compared in parallel: high-resolution melting-curve analysis (HRM), product-sizing analysis and Sanger sequencing. The sensitivity for the HRM, product-sizing analysis and Sanger sequencing was 96.4%, 98.2% and 89.3% respectively, whereas the specificity was 96.3%, 100% and 100%. In our cohort, the product-sizing analysis was the most sensitive method and was the easiest to interpret, while the HRM was sometimes difficult to interpret. In contrast, when large series of samples were tested, HRM provided results more quickly than did the other methods, which required more time. Finally, the sequencing method, which is the reference method, had the lowest sensitivity but can be used to describe the type of mutation precisely. Altogether, our results suggest that in routine laboratory practice, product-sizing analysis is globally similar to HRM for the detection of CALR mutations, and that both may be used as first-line screening tests. If the results are positive, Sanger sequencing can be used to confirm the mutation and to determine its type. Product-sizing analysis provides sensitive and specific results, moreover, with the quantitative measurement of CALR, which might be useful to monitor specific treatments. PMID:26501981

  14. Higher Plant Calreticulins Have Acquired Specialized Functions in Arabidopsis

    PubMed Central

    Zhang, Wenjing; Tintor, Nico; Prins, Daniel; Funke, Norma; Michalak, Marek; Schulze-Lefert, Paul; Saijo, Yusuke; Sommarin, Marianne; Widell, Susanne; Persson, Staffan

    2010-01-01

    Background Calreticulin (CRT) is a ubiquitous ER protein involved in multiple cellular processes in animals, such as protein folding and calcium homeostasis. Like in animals, plants have evolved divergent CRTs, but their physiological functions are less understood. Arabidopsis contains three CRT proteins, where the two CRTs AtCRT1a and CRT1b represent one subgroup, and AtCRT3 a divergent member. Methodology/Principal Findings Through expression of single Arabidopsis family members in CRT-deficient mouse fibroblasts we show that both subgroups have retained basic CRT functions, including ER Ca2+-holding potential and putative chaperone capabilities. However, other more general cellular defects due to the absence of CRT in the fibroblasts, such as cell adhesion deficiencies, were not fully restored. Furthermore, in planta expression, protein localization and mutant analyses revealed that the three Arabidopsis CRTs have acquired specialized functions. The AtCRT1a and CRT1b family members appear to be components of a general ER chaperone network. In contrast, and as recently shown, AtCRT3 is associated with immune responses, and is essential for responsiveness to the bacterial Pathogen-Associated Molecular Pattern (PAMP) elf18, derived from elongation factor (EF)-Tu. Whereas constitutively expressed AtCRT1a fully complemented Atcrt1b mutants, AtCRT3 did not. Conclusions/Significance We conclude that the physiological functions of the two CRT subgroups in Arabidopsis have diverged, resulting in a role for AtCRT3 in PAMP associated responses, and possibly more general chaperone functions for AtCRT1a and CRT1b. PMID:20596537

  15. Calreticulin Mutations in Myeloproliferative Neoplasms: Comparison of Three Diagnostic Methods

    PubMed Central

    Park, Ji-Hye; Sevin, Margaux; Ramla, Selim; Truffot, Aurélie; Verrier, Tiffany; Bouchot, Dominique; Courtois, Martine; Bas, Mathilde; Benali, Sonia; Bailly, François; Favre, Bernardine; Guy, Julien; Martin, Laurent; Maynadié, Marc; Carillo, Serge; Girodon, François

    2015-01-01

    Calreticulin (CALR) mutations have recently been reported in 70–84% of JAK2V617F-negative myeloproliferative neoplasms (MPN), and this detection has become necessary to improve the diagnosis of MPN. In a large single-centre cohort of 298 patients suffering from Essential Thrombocythemia (ET), the JAK2V617F, CALR and MPL mutations were noted in 179 (60%), 56 (18.5%) and 13 (4.5%) respectively. For the detection of the CALR mutations, three methods were compared in parallel: high-resolution melting-curve analysis (HRM), product-sizing analysis and Sanger sequencing. The sensitivity for the HRM, product-sizing analysis and Sanger sequencing was 96.4%, 98.2% and 89.3% respectively, whereas the specificity was 96.3%, 100% and 100%. In our cohort, the product-sizing analysis was the most sensitive method and was the easiest to interpret, while the HRM was sometimes difficult to interpret. In contrast, when large series of samples were tested, HRM provided results more quickly than did the other methods, which required more time. Finally, the sequencing method, which is the reference method, had the lowest sensitivity but can be used to describe the type of mutation precisely. Altogether, our results suggest that in routine laboratory practice, product-sizing analysis is globally similar to HRM for the detection of CALR mutations, and that both may be used as first-line screening tests. If the results are positive, Sanger sequencing can be used to confirm the mutation and to determine its type. Product-sizing analysis provides sensitive and specific results, moreover, with the quantitative measurement of CALR, which might be useful to monitor specific treatments. PMID:26501981

  16. Fine specificity of autoantibodies to calreticulin: epitope mapping and characterization

    PubMed Central

    Eggleton, P; Ward, F J; Johnson, S; Khamashta, M A; Hughes, G R V; Hajela, V A; Michalak, M; Corbett, E F; Staines, N A; Reid, K B M

    2000-01-01

    Extracellular calreticulin (CRT) as well as anti-CRT antibodies have been reported in patients with various autoimmune disorders and CRT has been implicated in ‘epitope spreading’ to other autoantigens such as the Ro/SS-A complex. In addition, antibodies against parasite forms of the endoplasmic reticulum chaperone, CRT, have been found in patients suffering from onchocerciasis and schistosomiasis. In this study, we screened sera for anti-CRT antibodies from patients with active and inactive systemic lupus ertythematosus (SLE) and primary or secondary Sjögren's syndrome. Approximately 40% of all SLE patients were positive for anti-CRT antibodies. The antigenic regions of CRT were determined using full length CRT and fragments of CRT prepared in yeast and Escherichia coli, respectively. Synthetic 15mer peptides corresponding to the major autoantigenic region of CRT (amino acids 1–289), each one overlapping by 12 amino acids, were used to map the B cell epitopes on the CRT protein recognized by autoimmune sera. Major antigenic epitopes were found to be associated with the N-terminal half of the protein in 69% of the SLE sera from active disease patients, while the C-domain was not antigenic. Major epitopes were found to be reactive with antibodies in sera from SLE patients with both active and inactive disease, spanning different regions of the N and P-domains. Sera from both healthy and disease controls and primary Sjögren's syndrome patients were non-reactive to these sequences. Limited proteolysis of CRT with two major leucocyte serine proteases, elastase and cathepsin G, demonstrated that an N-terminal region of CRT is resistant to digestion. Interestingly, some of the epitopes with the highest reactivity belong to the fragments of the protein which bind to C1q and inhibit complement activation. Whether C1q association with CRT is a pathological or protective interaction between these two proteins is currently under investigation. PMID:10792392

  17. Comparative immunogenicity of Haemaphysalis longicornis and Rhipicephalus (Boophilus) microplus calreticulins.

    PubMed

    Parizi, Luís Fernando; Rech, Herbert; Ferreira, Carlos Alexandre Sanchez; Imamura, Saiki; Ohashi, Kazuhiko; Onuma, Misao; Masuda, Aoi; Vaz, Itabajara da Silva

    2009-10-14

    The ticks Rhipicephalus (Boophilus) microplus and Haemaphysalis longicornis are blood-sucking ectoparasites of bovines, causing serious damages to the livestock production. The main control method for these ticks is based on acaricides. However, the use of vaccines has been studied as a promising control strategy. Calreticulin (CRT) is a multifunctional, predominantly intracellular protein present in almost all cells of animals. The secretion of CRT during feeding might be linked to the modulation of the parasite-host interaction. In the present study, recombinant CRTs of R. microplus (rBmCRT) and H. longicornis (rHlCRT) were expressed in Escherichia coli and purified by ion exchange chromatography and used for the immunization of bovines and mouse. ELISA demonstrated that both rCRTs are recognized by the sera of immunized bovines. In silico, despite the difference in amino acid sequences, antigenic index analysis of HlCRT and BmCRT using the Jameson-Wolf algorithm indicated that both proteins were very similar in antigenicity index, although six different epitopes between the tick CRTs have been inferred. These data were corroborated by competitive ELISA analyses, which suggest the presence of different epitopes within the proteins. Western blot analyses showed that anti-rBmCRT and anti-rHlCRT bovine sera also recognized the native proteins in larvae extracts and, moreover, sera of bovines immunized with saliva and extract of salivary glands recognized both recombinant CRTs. Thus, mouse and bovine immune system recognized rCRTs, resulting in the production of antibodies with similar specificity for both recombinant proteins, although different epitopes could be distinguished between rBmCRT and rHlCRT. PMID:19560273

  18. Confirmation of tick bite by detection of antibody to Ixodes calreticulin salivary protein.

    PubMed

    Alarcon-Chaidez, Francisco; Ryan, Raymond; Wikel, Stephen; Dardick, Kenneth; Lawler, Caroline; Foppa, Ivo M; Tomas, Patricio; Cushman, Alexis; Hsieh, Ann; Spielman, Andrew; Bouchard, Keith R; Dias, Filiciano; Aslanzadeh, Jaber; Krause, Peter J

    2006-11-01

    Ticks introduce a variety of pharmacologically active molecules into their host during attachment and feeding in order to obtain a blood meal. People who are repeatedly exposed to ticks may develop an immune response to tick salivary proteins. Despite this response, people usually are unaware of having been bitten, especially if they are not repeatedly exposed to ticks. In order to develop a laboratory marker of tick exposure that would be useful in understanding the epidemiology of tick-borne infection and the immune response to tick bite, we developed an enzyme-linked immunosorbent assay (ELISA) to detect antibody to a recombinant form of calreticulin protein found in the salivary glands of Ixodes scapularis, a member of a complex of Ixodes ticks that serve as the vectors for Lyme disease, human babesiosis, and human granulocytic anaplasmosis. Using this assay, we tested sera obtained from C3H/HeN and BALB/c mice before and after experimental deer tick infestation. These mice developed antibody to Ixodes calreticulin antigen after infestation. We then used the same assay to test sera obtained from people before and after they experienced deer tick bite(s). People experiencing deer tick bite(s) developed Ixodes calreticulin-specific antibody responses that persisted for up to 17 months. This Ixodes recombinant calreticulin ELISA provides objective evidence of deer tick exposure in people. PMID:16928887

  19. Transient dissociation of polyribosomes and concurrent recruitment of calreticulin and calmodulin transcripts in gravistimulated maize pulvini

    NASA Technical Reports Server (NTRS)

    Heilmann, I.; Shin, J.; Huang, J.; Perera, I. Y.; Davies, E.

    2001-01-01

    The dynamics of polyribosome abundance were studied in gravistimulated maize (Zea mays) stem pulvini. During the initial 15 min of gravistimulation, the amount of large polyribosomes transiently decreased. The transient decrease in polyribosome levels was accompanied by a transient decrease in polyribosome-associated mRNA. After 30 min of gravistimulation, the levels of polyribosomes and the amount of polyribosome-associated mRNA gradually increased over 24 h up to 3- to 4-fold of the initial value. Within 15 min of gravistimulation, total levels of transcripts coding for calreticulin and calmodulin were elevated 5-fold in maize pulvinus total RNA. Transcripts coding for calreticulin and calmodulin were recruited into polyribosomes within 15 min of gravistimulation. Over 4 h of gravistimulation, a gradual increase in the association of calreticulin and calmodulin transcripts with polyribosomes was seen predominantly in the lower one-half of the maize pulvinus; the association of transcripts for vacuolar invertase with polyribosomes did not change over this period. Our results suggest that within 15 min of gravistimulation, the translation of the majority of transcripts associated with polyribosomes decreased, resembling a general stress response. Recruitment of calreticulin and calmodulin transcripts into polyribosomes occurred predominantly in the lower pulvinus one-half during the first 4 h when the presentation time for gravistimulation in the maize pulvinus is not yet complete.

  20. Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium berghei ookinetes.

    PubMed

    Borhani Dizaji, Nahid; Basseri, Hamid Reza; Naddaf, Saied Reza; Heidari, Mansour

    2014-10-25

    Transmission blocking vaccines (TBVs) that target the antigens on the midgut epithelium of Anopheles mosquitoes are among the promising tools for the elimination of the malaria parasite. Characterization and analysis of effective antigens is the first step to design TBVs. Calreticulin (CRT), a lectin-like protein, from Anopheles albimanus midgut, has shown antigenic features, suggesting a promising and novel TBV target. CRT is a highly conserved protein with similar features in vertebrates and invertebrates including anopheline. We cloned the full-length crt gene from malaria vector, Anopheles stephensi (AsCrt) and explored the interaction of recombinant AsCrt protein, expressed in a prokaryotic system (pGEX-6p-1), with surface proteins of Plasmodium berghei ookinetes by immunofluorescence assay. The cellular localization of AsCrt was determined using the baculovirus expression system. Sequence analysis of the whole cDNA of AsCrt revealed that AsCrt contains an ORF of 1221 bp. The amino acid sequence of AsCrt protein obtained in this study showed 64% homology with similar protein in human. The AsCrt shares the most common features of CRTs from other species. This gene encodes a 406 amino-acid protein with a molecular mass of 46 kDa, which contains a predicted 16 amino-acid signal peptides, conserved cysteine residues, a proline-rich region, and highly acidic C-terminal domain with endoplasmic reticulum retrieval sequence HDEL. The production of GST-AsCrt recombinant protein was confirmed by Western blot analysis using an antibody against the GST protein. The FITC-labeled GST-AsCrt exhibited a significant interaction with P. berghei ookinete surface proteins. Purified recombinant GST-AsCrt, labeled with FITC, displayed specific binding to the surface of P. berghei ookinetes in comparison with control. Moreover, the expression of AsCrt in baculovirus expression system indicated that AsCrt was localized on the surface of Sf9 cells. Our results suggest that AsCrt could be utilized as a potential target for future studies in TBV area for malaria control. PMID:25150160

  1. Agarose gel shift assay reveals that calreticulin favors substrates with a quaternary structure in solution.

    PubMed

    Boelt, Sanne Grundvad; Houen, Gunnar; Højrup, Peter

    2015-07-15

    Here we present an agarose gel shift assay that, in contrast to other electrophoresis approaches, is loaded in the center of the gel. This allows proteins to migrate in either direction according to their isoelectric points. Therefore, the presented assay enables a direct visualization, separation, and prefractionation of protein interactions in solution independent of isoelectric point. We demonstrate that this assay is compatible with immunochemical methods and mass spectrometry. The assay was used to investigate interactions with several potential substrates for calreticulin, a chaperone that is involved in different biological aspects through interaction with other proteins. The current analytical assays used to investigate these interactions are mainly spectroscopic aggregation assays or solid phase assays that do not provide a direct visualization of the stable protein complex but rather provide an indirect measure of interactions. Therefore, no interaction studies between calreticulin and substrates in solution have been investigated previously. The results presented here indicate that calreticulin has a preference for substrates with a quaternary structure and primarily ?-sheets in their secondary structure. It is also demonstrated that the agarose gel shift assay is useful in the study of other protein interactions and can be used as an alternative method to native polyacrylamide gel electrophoresis. PMID:25908558

  2. Interaction of HTLV-1 Tax protein with calreticulin: implications for Tax nuclear export and secretion.

    PubMed

    Alefantis, Timothy; Flaig, Katherine E; Wigdahl, Brian; Jain, Pooja

    2007-05-01

    Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 transcriptional transactivator protein Tax plays an integral role in virus replication and disease progression. Traditionally, Tax is described as a nuclear protein where it performs its primary role as a transcriptional transactivator. However, recent studies have clearly shown that Tax can also be localized to the cytoplasm where it has been shown to interact with a number of host transcription factors most notably NF-kappaB, constitutive expression of which is directly related to the T cell transforming properties of Tax in ATL patients. The presence of a functional nuclear export signal (NES) within Tax and the secretion of full-length Tax have also been demonstrated previously. Additionally, release of Tax from HTLV-1-infected cells and the presence of cell-free Tax was demonstrated in the CSF of HAM/TSP patients suggesting that the progression to HAM/TSP might be mediated by the ability of Tax to function as an extracellular cytokine. Therefore, in both ATL and HAM/TSP Tax nuclear export and nucleocytoplasmic shuttling may play a critical role, the mechanism of which remains unknown. In this study, we have demonstrated that the calcium binding protein calreticulin interacts with Tax by co-immunoprecipitation. This interaction was found to localize to a region at or near the nuclear membrane. In addition, differential expression of calreticulin was demonstrated in various cell types that correlated with their ability to retain cytoplasmic Tax, particularly in astrocytes. Finally, a comparison of a number of HTLV-1-infected T cell lines to non-infected T cells revealed higher expression of calreticulin in infected cells implicating a direct role for this protein in HTLV-1 infection. PMID:17395420

  3. Proteomic identification of calcium-binding chaperone calreticulin as a potential mediator for the neuroprotective and neuritogenic activities of fruit-derived glycoside amygdalin.

    PubMed

    Cheng, Yuanyuan; Yang, Chuanbin; Zhao, Jia; Tse, Hung Fat; Rong, Jianhui

    2015-02-01

    Amygdalin is a fruit-derived glycoside with the potential for treating neurodegenerative diseases. This study was designed to identify the neuroprotective and neuritogenic activities of amygdalin. We initially demonstrated that amygdalin enhanced nerve growth factor (NGF)-induced neuritogenesis and attenuated 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat dopaminergic PC12 cells. To define protein targets for amygdalin, we selected a total of 11 mostly regulated protein spots from two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels for protein identification by matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry. We verified the effect of amygdalin on six representative proteins (i.e., calreticulin, Hsp90?, Grp94, 14-3-3?, 14-3-3?/? and Rab GDI-?) for biological relevance to neuronal survival and differentiation. Calcium-binding chaperone calreticulin is of special interest for its activities to promote folding, oligomeric assembly and quality control of proteins that modulate cell survival and differentiation. We transiently knocked down calreticulin expression by specific siRNA and studied its effect on the neuroprotective and neuritogenic activities of amygdalin. We found that amygdalin failed to enhance NGF-induced neuritogenesis in calreticulin-siRNA transfected cells. On the other hand, amygdalin rescued 6-OHDA-induced loss of calreticulin expression. We also found that amygdalin increased the intracellular calcium concentration possibly via inducing calreticulin. Collectively, our results demonstrated the role of calreticulin in mediating the neuroprotective and neuritogenic activities of amygdalin. PMID:25465157

  4. Calreticulin mRNA expression and clinicopathological characteristics in acute myeloid leukemia.

    PubMed

    Park, Sholhui; Huh, Hee Jin; Mun, Yeung Chul; Seong, Chu-Myong; Chung, Wha Soon; Chung, Hae-Sun; Huh, Jungwon

    2015-12-01

    Calreticulin, encoded by CALR, is a multifunctional protein with roles in calcium homeostasis and chaperoning molecular processes. This study aimed to evaluate calreticulin mRNA expression levels in acute myeloid leukemia (AML) compared with other hematologic malignancies, and to investigate the clinicopathological characteristics associated with expression in AML patients. The study group included 43 patients diagnosed with AML, 57 with other hematologic malignancies, and 21 benign hematologic conditions. CALR mRNA quantification using real-time polymerase chain reaction revealed it to be significantly higher in AML compared with other hematologic malignancies (P?

  5. Oncogenic Drivers in Myeloproliferative Neoplasms: From JAK2 to Calreticulin Mutations.

    PubMed

    Cahu, Xavier; Constantinescu, Stefan N

    2015-12-01

    During the past 10 years, major progress has been accomplished with the discovery of activating mutations that are associated with the vast majority of BCR-ABL negative human myeloproliferative neoplasms (MPNs). The identification in 2005 of JAK2 V617F triggered great interest in the JAK2-STAT5/STAT3 pathway. Discovery in 2006 of mutants of thrombopoietin receptor (TPO-R/MPL) and later on of mutants in negative regulators of JAK-STAT pathway led to the notion that persistent JAK2 activation is a hallmark of MPNs. In 2013, mutations in the gene coding for the chaperone calreticulin were reported in 20-30 % of essential thrombocythemia and primary myelofibrosis patients. Here, we will address the question: what do we know about calreticulin that could help us understand its role in MPNs? In addition to oncogenic driver mutations, certain MPNs also exhibit epigenetic mutations. Targeting of both oncogenic drivers and epigenetic defects could be required for effective therapy. PMID:26370832

  6. Calreticulin mutation burden - Is it a stable clone in patients with essential thrombocythemia and myelofibrosis?

    PubMed

    Shuly, Yulia; Nagar, Meital; Ben-Asaf, Lior; Kneller, Abraham; Steinberg, David M; Amariglio, Ninette; Salomon, Ophira

    2015-12-01

    Calreticulin mutation represents the second most frequent mutation after JAK2 V617F in myeloproliferative disorder and is considered to be a driving mutation. Herein the mutation burden was evaluated in patients with essential thrombocythemia or myelofibrosis and found to increase by 5.7% over time unrelated to the time elapsed from the initial to the final positive test. The longer the course of the disease when first tested (range 0-30years, mean 7.9years) the lower mutation burden was observed. The mutated clone was larger in type II in comparison with type I mutation when first tested but the difference in mutation burden from the final to the first positive test was significantly higher in those with type I. Similarly, the difference in mutation burden was higher in patients with essential thrombocythemia reaching almost 8% in comparison to 1.3% in post-essential thrombocythemia myelofibrosis. Thus a repeat calreticulin quantitative test is not warranted. PMID:26460248

  7. Cytokine, Antibody and Proliferative Cellular Responses Elicited by Taenia solium Calreticulin upon Experimental Infection in Hamsters

    PubMed Central

    Mendlovic, Fela; Cruz-Rivera, Mayra; Ávila, Guillermina; Vaughan, Gilberto; Flisser, Ana

    2015-01-01

    Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT) on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus). Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA) were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN) cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis. PMID:25811778

  8. Cytokine, antibody and proliferative cellular responses elicited by Taenia solium calreticulin upon experimental infection in hamsters.

    PubMed

    Mendlovic, Fela; Cruz-Rivera, Mayra; Ávila, Guillermina; Vaughan, Gilberto; Flisser, Ana

    2015-01-01

    Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT) on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus). Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA) were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN) cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis. PMID:25811778

  9. Entamoeba histolytica calreticulin: an endoplasmic reticulum protein expressed by trophozoites into experimentally induced amoebic liver abscesses.

    PubMed

    González, Enrique; de Leon, Maria del Carmen García; Meza, Isaura; Ocadiz-Delgado, Rodolfo; Gariglio, Patricio; Silva-Olivares, Angelica; Galindo-Gómez, Silvia; Shibayama, Mineko; Morán, Patricia; Valadez, Alicia; Limón, Angelica; Rojas, Liliana; Hernández, Eric G; Cerritos, René; Ximenez, Cecilia

    2011-02-01

    Entamoeba histolytica calreticulin (EhCRT) is remarkably immunogenic in humans (90-100% of invasive amoebiasis patients). Nevertheless, the study of calreticulin in this protozoan is still in its early stages. The exact location, biological functions, and its role in pathogenesis are yet to be fully understood. The aim of the present work is to determine the location of EhCRT in virulent trophozoites in vivo and the expression of the Ehcrt gene during the development of experimentally induced amoebic liver abscesses (ALA) in hamsters. Antibodies against recombinant EhCRT were used for the immunolocalization of EhCRT in trophozoites through confocal microscopy; immunohistochemical assays were also performed on tissue sections of ALAs at different times after intrahepatic inoculation. The expression of the Ehcrt gene during the development of ALA was estimated through both in situ RT-PCR and real-time RT-PCR. Confocal assays of virulent trophozoites showed a distribution of EhCRT in the cytoplasmic vesicles of different sizes. Apparently, EhCRT is not exported into the hepatic tissue. Real-time RT-PCR demonstrated an over-expression of the Ehcrt gene at 30 min after trophozoite inoculation, reaching a peak at 1-2 h; thereafter, the expression fell sharply to its original levels. These results demonstrate for the first time in an in vivo model of ALA, the expression of Ehcrt gene in E. histolytica trophozoites and add evidence that support CRT as a resident protein of the ER in E. histolytica species. The in vivo experiments suggest that CRT may play an important role during the early stages of the host-parasite relationship, when the parasite is adapting to a new environment, although the protein seems to be constitutively synthesized. Moreover, trophozoites apparently do not export EhCRT into the hepatic tissue in ALA. PMID:20922421

  10. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  11. Calreticulin contributes to C1q-dependent recruitment of microglia in the leech Hirudo medicinalis following a CNS injury

    PubMed Central

    Le Marrec-Croq, Françoise; Bocquet-Garcon, Annelise; Vizioli, Jacopo; Vancamp, Christelle; Drago, Francesco; Franck, Julien; Wisztorski, Maxence; Salzet, Michel; Sautiere, Pierre-Eric; Lefebvre, Christophe

    2014-01-01

    Background The medicinal leech is considered as a complementary and appropriate model to study immune functions in the central nervous system (CNS). In a context in which an injured leech’s CNS can naturally restore normal synaptic connections, the accumulation of microglia (immune cells of the CNS that are exclusively resident in leeches) has been shown to be essential at the lesion to engage the axonal sprouting. HmC1q (Hm for Hirudo medicinalis) possesses chemotactic properties that are important in the microglial cell recruitment by recognizing at least a C1q binding protein (HmC1qBP alias gC1qR). Material/Methods Recombinant forms of C1q were used in affinity purification and in vitro chemotaxis assays. Anti-calreticulin antibodies were used to neutralize C1q-mediated chemotaxis and locate the production of calreticulin in leech CNS. Results A newly characterized leech calreticulin (HmCalR) has been shown to interact with C1q and participate to the HmC1q-dependent microglia accumulation. HmCalR, which has been detected in only some microglial cells, is consequently a second binding protein for HmC1q, allowing the chemoattraction of resident microglia in the nerve repair process. Conclusions These data give new insight into calreticulin/C1q interaction in an immune function of neuroprotection, suggesting another molecular target to use in investigation of microglia reactivity in a model of CNS injury. PMID:24747831

  12. Plasmodesmata without callose and calreticulin in higher plants – open channels for fast symplastic transport?

    PubMed Central

    Demchenko, Kirill N.; Voitsekhovskaja, Olga V.; Pawlowski, Katharina

    2014-01-01

    Plasmodesmata (PD) represent membrane-lined channels that link adjacent plant cells across the cell wall. PD of higher plants contain a central tube of endoplasmic reticulum (ER) called desmotubule. Membrane and lumen proteins seem to be able to move through the desmotubule, but most transport processes through PD occur through the cytoplasmic annulus (Brunkard etal., 2013). Calreticulin (CRT), a highly conserved Ca2+-binding protein found in all multicellular eukaryotes, predominantly located in the ER, was shown to localize to PD, though not all PD accumulate CRT. In nitrogen-fixing actinorhizal root nodules of the Australian tree Casuarina glauca, the primary walls of infected cells containing the microsymbiont become lignified upon infection. TEM analysis of these nodules showed that during the differentiation of infected cells, PD connecting infected cells, and connecting infected and adjacent uninfected cells, were reduced in number as well as diameter (Schubert etal., 2013). In contrast with PD connecting young infected cells, and most PD connecting mature infected and adjacent uninfected cells, PD connecting mature infected cells did not accumulate CRT. Furthermore, as shown here, these PD were not associated with callose, and based on their diameter, they probably had lost their desmotubules. We speculate that either this is a slow path to PD degradation, or that the loss of callose accumulation and presumably also desmotubules leads to the PD becoming open channels and improves metabolite exchange between cells. PMID:24634671

  13. Calreticulin Binds to Fas Ligand and Inhibits Neuronal Cell Apoptosis Induced by Ischemia-Reperfusion Injury

    PubMed Central

    Chen, Beilei; Wu, Zhengzheng; Xu, Jun; Xu, Yun

    2015-01-01

    Background. Calreticulin (CRT) can bind to Fas ligand (FasL) and inhibit Fas/FasL-mediated apoptosis of Jurkat T cells. However, its effect on neuronal cell apoptosis has not been investigated. Purpose. We aimed to evaluate the neuroprotective effect of CRT following ischemia-reperfusion injury (IRI). Methods. Mice underwent middle cerebral artery occlusion (MCAO) and SH-SY5Y cells subjected to oxygen glucose deprivation (OGD) were used as models for IRI. The CRT protein level was detected by Western blotting, and mRNA expression of CRT, caspase-3, and caspase-8 was measured by real-time PCR. Immunofluorescence was used to assess the localization of CRT and FasL. The interaction of CRT with FasL was verified by coimmunoprecipitation. SH-SY5Y cell viability was determined by MTT assay, and cell apoptosis was assessed by flow cytometry. The measurement of caspase-8 and caspase-3 activity was carried out using caspase activity assay kits. Results. After IRI, CRT was upregulated on the neuron surface and bound to FasL, leading to increased viability of OGD-exposed SH-SY5Y cells and decreased activity of caspase-8 and caspase-3. Conclusions. This study for the first time revealed that increased CRT inhibited Fas/FasL-mediated neuronal cell apoptosis during the early stage of ischemic stroke, suggesting it to be a potential protector activated soon after IRI. PMID:26583143

  14. Overexpression of a Triticum aestivum Calreticulin gene (TaCRT1) Improves Salinity Tolerance in Tobacco

    PubMed Central

    Song, Min; Wang, Yun; Xu, Wenqi; Wu, Lintao; Wang, Hancheng; Ma, Zhengqiang

    2015-01-01

    Calreticulin (CRT) is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum) remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants. PMID:26469859

  15. Dendritic cell activation and maturation induced by recombinant calreticulin fragment 39-272

    PubMed Central

    Li, Yue; Zeng, Xiaoli; He, Lijuan; Yuan, Hui

    2015-01-01

    Dendritic cells (DC) are the most potent antigen-presenting cells for initiating immune responses. DC maturation can be induced by exposing of immature DC to pathogen products or pro-inflammatory factor, which dramatically enhances the ability of DC to activate Ag-specific T cells. In this study, a recombinant calreticulin fragment 39-272 (rCRT/39-272) covering the lectin-like N domain and partial P domain of murine CRT has been expressed and purified in Escherichia coli. Functional analysis studies revealed that rCRT/39-272 has potent immunostimulatory activities in both activating human monocytes and B cells to secrete cytokines. rCRT/39-272 can drive the activation of bone marrow derived DC in TLR4/CD14 dependent way, as indicated by secretion of cytokines IL-12/IL-23 (p40) and IL-1?. Exposure of DC to rCRT/39-272 induces P-Akt, suggesting that rCRT/39-272 induces maturation of DC through PI3K/Akt signaling pathway. The results suggest that soluble rCRT/39-272 is a potent stimulatory agent to DC maturation in TLR4/CD14 and PI3K/Akt dependent pathway. It may play important roles in initiating cellular immunity in vivo and the T cell response in vitro. Thus it could be used for study of DC-based tumor vaccines. PMID:26221268

  16. Primary phagocytosis of viable neurons by microglia activated with LPS or Abeta is dependent on calreticulin/LRP phagocytic signalling.

    E-print Network

    Fricker, Michael; Oliva-Martín, María J.; Brown, Guy C.

    2012-08-13

    , Invitrogen, Carlsbad, CA, USA)) supplemented with 10% fetal bovine serum (FBS, PAA Laboratories, Colbe, Germany). PC12 neuronal cells were grown in Roswell Park Memorial Institute medium (RPMI, Invitro- gen) supplemented with 10% FBS and 20% horse serum... to promote cell death in Caenorhabditis elegans. Nature 2001, 412:202–206. 30. Rauch F, Prud’homme J, Arabian A, Dedhar S, St-Arnaud R: Heart, brain, and body wall defects in mice lacking calreticulin. Exp Cell Res 2000, 256:105–111. 31. Weil M, Jacobson MD...

  17. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8.

    PubMed

    Sukkurwala, A Q; Martins, I; Wang, Y; Schlemmer, F; Ruckenstuhl, C; Durchschlag, M; Michaud, M; Senovilla, L; Sistigu, A; Ma, Y; Vacchelli, E; Sulpice, E; Gidrol, X; Zitvogel, L; Madeo, F; Galluzzi, L; Kepp, O; Kroemer, G

    2014-01-01

    The exposure of calreticulin (CRT) on the surface of stressed and dying cancer cells facilitates their uptake by dendritic cells and the subsequent presentation of tumor-associated antigens to T lymphocytes, hence stimulating an anticancer immune response. The chemotherapeutic agent mitoxantrone (MTX) can stimulate the peripheral relocation of CRT in both human and yeast cells, suggesting that the CRT exposure pathway is phylogenetically conserved. Here, we show that pheromones can act as physiological inducers of CRT exposure in yeast cells, thereby facilitating the formation of mating conjugates, and that a large-spectrum inhibitor of G protein-coupled receptors (which resemble the yeast pheromone receptor) prevents CRT exposure in human cancer cells exposed to MTX. An RNA interference screen as well as transcriptome analyses revealed that chemokines, in particular human CXCL8 (best known as interleukin-8) and its mouse ortholog Cxcl2, are involved in the immunogenic translocation of CRT to the outer leaflet of the plasma membrane. MTX stimulated the production of CXCL8 by human cancer cells in vitro and that of Cxcl2 by murine tumors in vivo. The knockdown of CXCL8/Cxcl2 receptors (CXCR1/Cxcr1 and Cxcr2) reduced MTX-induced CRT exposure in both human and murine cancer cells, as well as the capacity of the latter-on exposure to MTX-to elicit an anticancer immune response in vivo. Conversely, the addition of exogenous Cxcl2 increased the immunogenicity of dying cells in a CRT-dependent manner. Altogether, these results identify autocrine and paracrine chemokine signaling circuitries that modulate CRT exposure and the immunogenicity of cell death. PMID:23787997

  18. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8

    PubMed Central

    Sukkurwala, A Q; Martins, I; Wang, Y; Schlemmer, F; Ruckenstuhl, C; Durchschlag, M; Michaud, M; Senovilla, L; Sistigu, A; Ma, Y; Vacchelli, E; Sulpice, E; Gidrol, X; Zitvogel, L; Madeo, F; Galluzzi, L; Kepp, O; Kroemer, G

    2014-01-01

    The exposure of calreticulin (CRT) on the surface of stressed and dying cancer cells facilitates their uptake by dendritic cells and the subsequent presentation of tumor-associated antigens to T lymphocytes, hence stimulating an anticancer immune response. The chemotherapeutic agent mitoxantrone (MTX) can stimulate the peripheral relocation of CRT in both human and yeast cells, suggesting that the CRT exposure pathway is phylogenetically conserved. Here, we show that pheromones can act as physiological inducers of CRT exposure in yeast cells, thereby facilitating the formation of mating conjugates, and that a large-spectrum inhibitor of G protein-coupled receptors (which resemble the yeast pheromone receptor) prevents CRT exposure in human cancer cells exposed to MTX. An RNA interference screen as well as transcriptome analyses revealed that chemokines, in particular human CXCL8 (best known as interleukin-8) and its mouse ortholog Cxcl2, are involved in the immunogenic translocation of CRT to the outer leaflet of the plasma membrane. MTX stimulated the production of CXCL8 by human cancer cells in vitro and that of Cxcl2 by murine tumors in vivo. The knockdown of CXCL8/Cxcl2 receptors (CXCR1/Cxcr1 and Cxcr2) reduced MTX-induced CRT exposure in both human and murine cancer cells, as well as the capacity of the latter-on exposure to MTX-to elicit an anticancer immune response in vivo. Conversely, the addition of exogenous Cxcl2 increased the immunogenicity of dying cells in a CRT-dependent manner. Altogether, these results identify autocrine and paracrine chemokine signaling circuitries that modulate CRT exposure and the immunogenicity of cell death. PMID:23787997

  19. C/EBP? mediates the transcriptional suppression of human calreticulin gene expression by TNF?.

    PubMed

    Vig, Saurabh; Pandey, Amit K; Verma, Gaurav; Datta, Malabika

    2012-01-01

    Calreticulin (CRT), a 46 kDa endoplasmic reticulum chaperone, is critical in the folding and quality control of proteins. However, the mechanisms of its regulation are not fully understood. Our previous study had demonstrated that elevated TNF? levels that are hallmarks of diverse metabolic diseases negatively regulate cellular CRT levels. Here, we attempted to study the mode of this regulation of CRT by TNF?. Using luciferase reporter deletion constructs of the CRT promoter, we demonstrate that while the -2 kb and -1 kb promoter constructs depict comparable activities, the activity of the -0.5 kb region was greatly reduced suggesting the significance of the region between -1.0 kb and -0.5 kb during CRT promoter activity. Of the transcription factors that possess binding elements within this region, C/EBP? was prioritized since it was shown to be inhibited by TNF? in an earlier report from our laboratory. TNF? significantly inhibited the wild-type CRT promoter activity that was attenuated in a C/EBP?-deleted construct. C/EBP? mRNA levels and its nuclear content was also reduced in the presence of TNF?. This led to reduced C/EBP? occupancy on the CRT promoter and a decreased binding of the nuclear protein to the C/EBP?-consensus sequence. TNF? also reduced the nuclear content of C/EBP? but it did not bind to the CRT promoter suggesting that it does not contribute to the inhibitory effect of TNF?. To conclude, our results suggest that C/EBP? is critical in mediating the inhibitory effect of TNF? on CRT expression that might be crucial in determining the deleterious cellular effects of TNF?. PMID:22024156

  20. Transcriptome profiling identifies p53 as a key player during calreticulin deficiency: Implications in lipid accumulation.

    PubMed

    Vig, Saurabh; Talwar, Puneet; Kaur, Kirandeep; Srivastava, Rohit; Srivastava, Arvind K; Datta, Malabika

    2015-01-01

    Calreticulin (CRT) is an endoplasmic reticulum (ER) resident calcium binding protein that is involved in several cellular activities. Transcriptome analyses in CRT knockdown HepG2 cells revealed 253 altered unique genes and subsequent in silico protein-protein interaction network and MCODE clustering identified 34 significant clusters, of which p53 occupied the central hub node in the highest node-rich cluster. Toward validation, we show that CRT knockdown leads to inhibition of p53 protein levels. Both, CRT and p53 siRNA promote hepatic lipid accumulation and this was accompanied by elevated SREBP-1c and FAS levels. p53 was identified to bind at -219 bp on the SREBP-1c promoter and in the presence of CRT siRNA, there was decreased occupancy of p53 on this binding element. This was associated with increased SREBP-1c promoter activity and both, mutation in this binding site or p53 over-expression antagonised the effects of CRT knockdown. We, therefore, identify a negatively regulating p53 binding site on the SREBP-1c promoter that is critical during hepatic lipid accumulation. These results were validated in mouse primary hepatocytes and toward a physiological relevance, we report that while the levels of CRT and p53 are reduced in the fatty livers of diabetic db/db mice, SREBP-1c levels are significantly elevated. Our results suggest that decreased CRT levels might be involved in the development of a fatty liver by preventing p53 occupancy on the SREBP-1c promoter and thereby facilitating SREBP-1c up-regulation and consequently, lipid accumulation. PMID:25946468

  1. Overexpression of calreticulin contributes to the development and progression of pancreatic cancer.

    PubMed

    Sheng, Weiwei; Chen, Chuanping; Dong, Ming; Zhou, Jianping; Liu, Qingfeng; Dong, Qi; Li, Feng

    2014-07-01

    We studied the clinicopathological significance for Calreticulin (CRT) expression in pancreatic cancer (PC), and its functional relationship with other signaling genes (especially with p53) in regulating the biological behavior of PC cells. IHC, IF, IB, and real-time PCR were used to detect CRT expression in PC, while transfection and drug intervention were used to investigate the functional relationship of CRT with other signaling genes. IHC showed both CRT and p53 expression was significantly increased in PC, compared to that in paired non-cancerous pancreatic tissues (P?

  2. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing

    PubMed Central

    Gameiro, Sofia R.; Jammed, Momodou L.; Wattenberg, Max M.; Tsang, Kwong Y.; Ferrone, Soldano; Hodge, James W.

    2014-01-01

    Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated killing. Little is known about the mechanism(s) underlying IM elicited by sub-lethal radiation dosing. We have examined the molecular and immunogenic consequences of radiation exposure in breast, lung, and prostate human carcinoma cells. Radiation induced secretion of ATP and HMGB1 in both dying and surviving tumor cells. In vitro and in vivo tumor irradiation induced significant upregulation of multiple components of the antigen-processing machinery and calreticulin cell-surface expression. Augmented CTL lysis specific for several tumor-associated antigens was largely dictated by the presence of calreticulin on the surface of tumor cells and constituted an adaptive response to endoplasmic reticulum stress, mediated by activation of the unfolded protein response. This study provides evidence that radiation induces a continuum of immunogenic alterations in tumor biology, from immunogenic modulation to immunogenic cell death. We also expand the concept of immunogenic modulation, where surviving tumor cells recovering from radiation-induced endoplasmic reticulum stress become more sensitive to CTL killing. These observations offer a rationale for the combined use of radiation with immunotherapy, including for patients failing RT alone. PMID:24480782

  3. Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in "sCAX1"-expressing tobacco and tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deregulated expression of an Arabidopsis H(+)/Ca(2+) antiporter (sCAX1) in agricultural crops increases total calcium (Ca(2+)) but may result in yield losses due to Ca(2+) deficiency-like symptoms. Here we demonstrate that co-expression of a maize calreticulin (CRT, a Ca(2+) binding protein located ...

  4. Epitopes of the Onchocerca volvulus RAL1 antigen, a member of the calreticulin family of proteins, recognized by sera from patients with onchocerciasis.

    PubMed Central

    Rokeach, L A; Zimmerman, P A; Unnasch, T R

    1994-01-01

    RAL1 is an antigen (Ag) encoded by the filarial nematode Onchocerca volvulus, the parasite causing onchocerciasis (river blindness). RAL1 shares 64.4% identity with the autoantigen calreticulin. The striking similarity of the parasite Ag and the human autoantigen has led to the hypothesis that RAL1 may induce a cross-reactive immune response to calreticulin, which in turn may be involved in the pathogenesis of onchocerciasis. To test this hypothesis, we explored the immune response to RAL1 recombinant Ag (RAL1 rAg) and human calreticulin in patients with O. volvulus infection. A total of 86% of the O. volvulus-infected individuals produced antibodies recognizing RAL1 rAg. Antibody reactivity to RAL1 rAg in patient sera was confined primarily to the central and carboxyl-terminal parts of the molecule. No significant correlations were found to associate recognition of RAL1 rAg, or any particular portion thereof, with a particular disease state. Antibodies against RAL1 thus appear to be produced as a general immune reaction to O. volvulus infection and do not necessarily lead to a cross-reacting response with the host protein. In contrast, 33% of the patient sera tested bound recombinant human calreticulin. All of these sera also recognized a polypeptide encompassing the carboxyl-terminal portion of the RAL1 rAg. These results suggest that recognition of an epitope encoded in the carboxyl-terminal portion of RAL1 is at least in part responsible for inducing a cross-reacting immune response to the host protein. Images PMID:7520419

  5. The Interaction of Classical Complement Component C1 with Parasite and Host Calreticulin Mediates Trypanosoma cruzi Infection of Human Placenta

    PubMed Central

    Castillo, Christian; Ramírez, Galia; Valck, Carolina; Aguilar, Lorena; Maldonado, Ismael; Rosas, Carlos; Galanti, Norbel; Kemmerling, Ulrike; Ferreira, Arturo

    2013-01-01

    Background 9 million people are infected with Trypanosoma cruzi in Latin America, plus more than 300,000 in the United States, Canada, Europe, Australia, and Japan. Approximately 30% of infected individuals develop circulatory or digestive pathology. While in underdeveloped countries transmission is mainly through hematophagous arthropods, transplacental infection prevails in developed ones. Methodology/Principal Findings During infection, T. cruzi calreticulin (TcCRT) translocates from the endoplasmic reticulum to the area of flagellum emergence. There, TcCRT acts as virulence factor since it binds maternal classical complement component C1q that recognizes human calreticulin (HuCRT) in placenta, with increased parasite infectivity. As measured ex vivo by quantitative PCR in human placenta chorionic villi explants (HPCVE) (the closest available correlate of human congenital T. cruzi infection), C1q mediated up to a 3–5-fold increase in parasite load. Because anti-TcCRT and anti-HuCRT F(ab?)2 antibody fragments are devoid of their Fc-dependent capacity to recruit C1q, they reverted the C1q-mediated increase in parasite load by respectively preventing its interaction with cell-bound CRTs from both parasite and HPCVE origins. The use of competing fluid-phase recombinant HuCRT and F(ab?)2 antibody fragments anti-TcCRT corroborated this. These results are consistent with a high expression of fetal CRT on placental free chorionic villi. Increased C1q-mediated infection is paralleled by placental tissue damage, as evidenced by histopathology, a damage that is ameliorated by anti-TcCRT F(ab?)2 antibody fragments or fluid-phase HuCRT. Conclusions/Significance T. cruzi infection of HPCVE is importantly mediated by human and parasite CRTs and C1q. Most likely, C1q bridges CRT on the parasite surface with its receptor orthologue on human placental cells, thus facilitating the first encounter between the parasite and the fetal derived placental tissue. The results presented here have several potential translational medicine aspects, specifically related with the capacity of antibody fragments to inhibit the C1q/CRT interactions and thus T. cruzi infectivity. PMID:23991234

  6. Pd-Catalyzed Wacker Cyclizations Palladium-Catalyzed Oxidative Wacker

    E-print Network

    Stoltz, Brian M.

    Pd-Catalyzed Wacker Cyclizations Palladium-Catalyzed Oxidative Wacker Cyclizations in Nonpolar stoichiometric oxidant. Palladium-catalyzed bond-forming constructions have become indispensable in organic chemistry.[4] A favorable property of palladium is that it can serve as both a nucleophile (i.e., Pd0

  7. Calreticulin is required for responding to stress, foraging, and fertility in the white-tip nematode, Aphelenchoides besseyi.

    PubMed

    Feng, Hui; Wei, Lihui; Chen, Huaigu; Zhou, Yijun

    2015-08-01

    Calreticulin (CRT) regulates a wide array of cellular responses in physiological and pathological processes. A full-length cDNA-encoding CRT protein, namely AbCRT-1, was isolated from Aphelenchoides besseyi, an ectoparasitic plant nematode and the agent of white tip disease of rice. The deduced amino acid sequence of AbCRT-1 was highly homologous with other nematode CRTs, and showed the closest evolutionary relationship with BxCRT-1. In-situ hybridization showed that AbCRT-1 is specifically located in the oesophageal gland and gonads of A. besseyi, suggesting its potential role in parasitism and reproduction. Quantity real-time PCR analysis showed that AbCRT-1 is highly expressed in female nematodes but poorly expressed in eggs, juveniles, and male nematodes. Exposing the nematode to relatively low osmotic stress promotes the transcription of AbCRT-1 whereas extreme desiccation suppresses the transcription significantly. Nematodes in which AbCRT-1 mRNA level had been knocked down by soaking them in AbCRT-1 dsRNA solution distributed randomly and did not aggregate temporally, with a decreased capacity of food discernment. Thus the affected nematodes were markedly less fecund. These results demonstrate that AbCRT-1 is required in A. besseyi for responding to stress, foraging, and fertility. PMID:25999293

  8. Occurrence of calreticulin during the exchange of nucleohistones into protamine-type proteins in Chara vulgaris spermiogenesis.

    PubMed

    Pop?o?ska, Katarzyna

    2013-02-01

    During spermiogenesis of an alga Chara vulgaris, which resembles that of animals, nucleohistones are replaced by protamine-type proteins. This exchange takes place in a spermatid nucleus during the key V spermiogenesis stage, in which rough endoplasmic reticulum is the site of protamine-type protein synthesis and is also the pathway guiding the proteins to their destination, nucleus. In the present work, it was shown that a chaperon protein, calreticulin (CRT), abundantly present at this significant V stage of spermiogenesis in a few cellular compartments, i.e., a nucleus, lumen of cisternae, and vesicles of significantly swollen ER as well as outside these structures, e.g., in Golgi apparatus, could have taken part in the process of exchange of nuclear proteins. Colocalization of two proteins, protamine-type proteins, crucial for reproduction, and CRT, was especially visible in a nucleus, mainly on its peripheries where condensed chromatin was present. Localization of protamine-type proteins and CRT in nucleus is in agreement with our previous results showing that protamine-type proteins were twofold more labelled in the peripheral area in comparison to the nucleus center occupied by noncondensed chromatin. The role of CRT in the reproduction of both plants and animals is also discussed. PMID:22198493

  9. A long non-coding RNA links calreticulin-mediated immunogenic cell removal to RB1 transcription.

    PubMed

    Musahl, A-S; Huang, X; Rusakiewicz, S; Ntini, E; Marsico, A; Kroemer, G; Kepp, O; Ørom, U A

    2015-09-24

    A subset of promoters bidirectionally expresses long non-coding RNAs (ncRNAs) of unknown function and protein-coding genes (PCGs) in parallel. Here, we define a set of 1107 highly conserved human bidirectional promoters that mediate the linked expression of long ncRNAs and PCGs. Depletion of the long ncRNA expressed from the RB1 promoter, ncRNA-RB1, reveals regulatory effects different from the RB1-controlled transcriptional program. ncRNA-RB1 positively regulates the expression of calreticulin (CALR) that in response to certain therapeutic interventions can translocate from the endoplasmic reticulum to the cell surface, hence activating anticancer immune responses. Knockdown of ncRNA-RB1 in tumor cells reduced expression of CALR, impaired the translocation of the protein to the cell surface upon treatment with anthracylines and consequently inhibited the cellular uptake by macrophages. In conclusion, co-transcription of ncRNA-RB1 and RB1 provides a positive link between the expression of the two tumor suppressors RB1 and the immune-relevant CALR protein. This regulatory interplay exemplifies disease-relevant co-regulation of two distinct gene products, in which loss of expression of one oncosuppressor protein entails the abolition of additional tumor-inhibitory mechanisms. PMID:25579178

  10. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  11. A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis.

    PubMed

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Yan-Tao; Wang, Dong-Wei; Xu, Chun-Lin; Huang, Xin; Wang, De-Sen

    2015-01-01

    Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT) is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt), which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis. PMID:26061142

  12. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells.

    PubMed

    Liu, H; Bowes, R C; van de Water, B; Sillence, C; Nagelkerke, J F; Stevens, J L

    1997-08-29

    Activation of stress response genes can impart cellular tolerance to environmental stress. Iodoacetamide (IDAM) is an alkylating toxicant that up-regulates expression of hsp70 (Liu, H., Lightfoot, D. L., and Stevens, J. L. (1996) J. Biol. Chem. 271, 4805-4812) and grp78 in LLC-PK1 renal epithelial cells. Therefore, we used IDAM to determine the role of these genes in tolerance to toxic chemicals. Prior heat shock did not protect cells from IDAM but pretreatment with trans-4,5-dihydroxy-1,2-dithiane (DTTox), thapsigargin, or tunicamycin enhanced expression of the endoplasmic reticulum (ER) chaperones GRP78 and GRP94 and rendered cells tolerant to IDAM. Cells expressing a 524-base pair antisense grp78 fragment (pkASgrp78) had a diminished capacity to up-regulate grp78 and grp94 expression after ER stress. Protection against IDAM due to prior ER stress was also attenuated in pkASgrp78 cells suggesting that ER chaperones of the GRP family are critical for tolerance. Covalent binding of IDAM to cellular macromolecules and depletion of cellular thiols was similar in tolerant and naïve cells. However, DTTox pretreatment blocked the increases in cellular Ca2+ and lipid peroxidation observed after IDAM treatment. Overexpressing the ER Ca2+-binding protein calreticulin prevented IDAM-induced cell death, the rise in cytosolic Ca2+, and oxidative stress. Although activation of the ER stress response did not prevent toxicity due to Ca2+ influx, EGTA-AM and ruthenium red both blocked cell death suggesting that redistribution of intracellular Ca2+ to the mitochondria may be important in toxicity. The data support a model in which induction of ER stress proteins prevents disturbances of intracellular Ca2+ homeostasis, thus uncoupling toxicant exposure from oxidative stress and cell death. Multiple ER stress proteins are likely to be involved in this tolerance response. PMID:9268304

  13. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition.

    PubMed

    Liu, Shing-Hwa; Lee, Wen-Jane; Lai, De-Wei; Wu, Sheng-Mao; Liu, Chia-Yu; Tien, Hsing-Ru; Chiu, Chien-Shan; Peng, Yen-Chun; Jan, Yee-Jee; Chao, Te-Hsin; Pan, Hung-Chuan; Sheu, Meei-Ling

    2015-04-01

    Peritoneal dissemination is a major clinical obstacle in gastrointestinal cancer therapy, and it accounts for the majority of cancer-related mortality. Calreticulin (CRT) is over-expressed in gastric tumors and has been linked to poor prognosis. In this study, immunohistochemistry studies revealed that the up-regulation of CRT was associated with lymph node and distant metastasis in patients with gastric cancer specimens. CRT was significantly down-regulated in highly metastatic gastric cancer cell lines and metastatic animal by Honokiol-treated. Small RNA interference blocking CRT by siRNA-CRT was translocated to the cells in the early immunogenic response to Honokiol. Honokiol activated endoplasmic reticulum (ER) stress and down-regulated peroxisome proliferator-activated receptor-? (PPAR?) activity resulting in PPAR? and CRT degradation through calpain-II activity, which could be reversed by siRNA-calpain-II. The Calpain-II/PPAR?/CRT axis and interaction evoked by Honokiol could be blocked by gene silencing or pharmacological agents. Both transforming growth factor (TGF)-?1 and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced cell migration, invasion and reciprocal down-regulation of epithelial marker E-cadherin, which could be abrogated by siRNA-CRT. Moreover, Honokiol significantly suppressed MNNG-induced gastrointestinal tumor growth and over-expression of CRT in mice. Knockdown CRT in gastric cancer cells was found to effectively reduce growth ability and metastasis in vivo. The present study provides insight into the specific biological behavior of CRT in epithelial-to-mesenchymal transition (EMT) and metastasis. Taken together, our results suggest that the therapeutic inhibition of CRT by Honokiol suppresses both gastric tumor growth and peritoneal dissemination by dictating early translocation of CRT in immunogenic cell death, activating ER stress, and blocking EMT. PMID:25619450

  14. Artificial feeding of Rhipicephalus microplus female ticks with anti calreticulin serum do not influence tick and Babesia bigemina acquisition.

    PubMed

    Antunes, Sandra; Merino, Octávio; Lérias, Joana; Domingues, Nuno; Mosqueda, Juan; de la Fuente, José; Domingos, Ana

    2015-02-01

    Ticks are obligate haematophagous ectoparasites considered the principal vectors of disease among animals. Rhipicephalus microplus and R. annulatus ticks are the most important vectors for Babesia bigemina and B. bovis, two of the most important intraerythrocytic protozoan parasites species in cattle, responsible for babesiosis which together with anaplasmosis account for substantial economic losses in the livestock industry worldwide. Anti-tick vaccines are a proved alternative to traditional tick and tick borne diseases control methods but are still limited primarily due to the lack of effective antigens. Subsequently to the identification of antigens the validation is a laborious work often expensive. Tick artificial feeding, is a low cost alternative to test antigens allowing achieving critical data. Herein, R. microplus females were successfully artificially fed using capillary tubes. Calreticulin (CRT) protein, which in a previous study has been identified as being involved in B. bigemina infection in R. annulatus ticks, was expressed as recombinant protein (rCRT) in an E. coli expression system and antibodies raised against rCRT. Anti-rCRT serum was supplemented to a blood meal, offered to partially engorged R. microplus females and their effect in feeding process as well as infection by B. bigemina was analyzed. No significant reductions in tick and egg weight were observed when ticks fed with anti-rCRT serum. Furthermore, B. bigemina infection levels did not show a statistically significant decrease when ticks fed with anti-rCRT antibodies. Results suggest that CRT is not a suitable candidate for cattle vaccination trials. PMID:25262467

  15. Role of calreticulin in the sensitivity of myocardiac H9c2 cells to oxidative stress caused by hydrogen peroxide.

    PubMed

    Ihara, Yoshito; Urata, Yoshishige; Goto, Shinji; Kondo, Takahito

    2006-01-01

    Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells. PMID:16135540

  16. The Ca(2+) status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants

    NASA Technical Reports Server (NTRS)

    Persson, S.; Wyatt, S. E.; Love, J.; Thompson, W. F.; Robertson, D.; Boss, W. F.; Brown, C. S. (Principal Investigator)

    2001-01-01

    To investigate the endoplasmic reticulum (ER) Ca(2+) stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca(2+)-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca(2+) uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent (45)Ca(2+) accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca(2+) ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of (45)Ca(2+) released, and a 2- to 3-fold increase in the amount of (45)Ca(2+) retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca(2+) pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca(2+)-containing medium to Ca(2+)-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca(2+) stores and thereby enhances the survival of plants grown in low Ca(2+) medium.

  17. A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis

    PubMed Central

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Yan-Tao; Wang, Dong-Wei; Xu, Chun-Lin; Huang, Xin; Wang, De-Sen

    2015-01-01

    Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT) is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt), which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis. PMID:26061142

  18. Entamoeba histolytica and E. dispar Calreticulin: inhibition of classical complement pathway and differences in the level of expression in amoebic liver abscess.

    PubMed

    Ximénez, Cecilia; González, Enrique; Nieves, Miriam E; Silva-Olivares, Angélica; Shibayama, Mineko; Galindo-Gómez, Silvia; Escobar-Herrera, Jaime; García de León, Ma Del Carmen; Morán, Patricia; Valadez, Alicia; Rojas, Liliana; Hernández, Eric G; Partida, Oswaldo; Cerritos, René

    2014-01-01

    The role of calreticulin (CRT) in host-parasite interactions has recently become an important area of research. Information about the functions of calreticulin and its relevance to the physiology of Entamoeba parasites is limited. The present work demonstrates that CRT of both pathogenic E. histolytica and nonpathogenic E. dispar species specifically interacted with human C1q inhibiting the activation of the classical complement pathway. Using recombinant EhCRT protein, we demonstrate that CRT interaction site and human C1q is located at the N-terminal region of EhCRT. The immunofluorescence and confocal microscopy experiments show that CRT and human C1q colocalize in the cytoplasmic vesicles and near to the surface membrane of previously permeabilized trophozoites or are incubated with normal human serum which is known to destroy trophozoites. In the presence of peripheral mononuclear blood cells, the distribution of EhCRT and C1q is clearly over the surface membrane of trophozoites. Nevertheless, the level of expression of CRT in situ in lesions of amoebic liver abscess (ALA) in the hamster model is different in both Entamoeba species; this molecule is expressed in higher levels in E. histolytica than in E. dispar. This result suggests that EhCRT may modulate some functions during the early moments of the host-parasite relationship. PMID:24860808

  19. Catalyzed Ceramic Burner Material

    SciTech Connect

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  20. Rhenium-Catalyzed Aromatic Propargylation

    E-print Network

    Toste, Dean

    Rhenium-Catalyzed Aromatic Propargylation Joshua J. Kennedy-Smith, Lauren A. Young, and F. Dean propargylation reaction, employing an air- and moisture-tolerant rhenium-oxo complex ((dppm)ReOCl3) as a catalyst. The potential of this rhenium(V)-catalyzed reaction is exemplified by application of the propargylation

  1. Primary phagocytosis of viable neurons by microglia activated with LPS or A? is dependent on calreticulin/LRP phagocytic signalling

    PubMed Central

    2012-01-01

    Background Microglia are resident brain macrophages that can phagocytose dead, dying or viable neurons, which may be beneficial or detrimental in inflammatory, ischaemic and neurodegenerative brain pathologies. Cell death caused by phagocytosis of an otherwise viable cell is called ‘primary phagocytosis’ or ‘phagoptosis’. Calreticulin (CRT) exposure on the surface of cancer cells can promote their phagocytosis via LRP (low-density lipoprotein receptor-related protein) on macrophages, but it is not known whether this occurs with neurons and microglia. Methods We used primary cultures of cerebellar neurons, astrocytes and microglia to investigate the potential role of CRT/LRP phagocytic signalling in the phagocytosis of viable neurons by microglia stimulated with lipopolysaccharide (LPS) or nanomolar concentrations of amyloid-? peptide1-42 (A?). Exposure of CRT on the neuronal surface was investigated using surface biotinylation and western blotting. A phagocytosis assay was also developed using BV2 and PC12 cell lines to investigate CRT/LRP signalling in microglial phagocytosis of apoptotic cells. Results We found that BV2 microglia readily phagocytosed apoptotic PC12 cells, but this was inhibited by a CRT-blocking antibody or LRP-blocking protein (receptor-associated protein: RAP). Activation of primary rat microglia with LPS or A? resulted in loss of co-cultured cerebellar granule neurons, and this was blocked by RAP or antibodies against CRT or against LRP, preventing all neuronal loss and death. CRT was present on the surface of viable neurons, and this exposure did not change in inflammatory conditions. CRT antibodies prevented microglia-induced neuronal loss when added to neurons, while LRP antibodies prevented neuronal loss when added to the microglia. Pre-binding of CRT to neurons promoted neuronal loss if activated microglia were added, but pre-binding of CRT to microglia or both cell types prevented microglia-induced neuronal loss. Conclusions CRT exposure on the surface of viable or apoptotic neurons appears to be required for their phagocytosis via LRP receptors on activated microglia, but free CRT can block microglial phagocytosis of neurons by acting on microglia. Phagocytosis of CRT-exposing neurons by microglia can be a direct cause of neuronal death during inflammation, and might therefore contribute to neurodegeneration and be prevented by blocking the CRT/LRP pathway. PMID:22889139

  2. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  3. Highly Enantioselective Rhodium-Catalyzed Hydrogenation of

    E-print Network

    Zhang, Xumu

    Highly Enantioselective Rhodium-Catalyzed Hydrogenation of Dehydroamino Acids with New Chiral(diphenylphosphino)-(1R,1R)-dicyclopentane (1) [(1R,1R,2R,2R)-BICP] (Figure 1) for the effective rhodium- catalyzedS,2S)-diol. Highly enantioselective hydrogenation of dehydroamino acids catalyzed by rhodium

  4. Enantioselective nucleophile-catalyzed cycloadditions

    E-print Network

    Wilson, Jonathan E., Ph. D. Massachusetts Institute of Technology

    2007-01-01

    Chapter 1 describes the development of an asymmetric nucleophile-catalyzed [2+2] cycloaddition of ketenes with aldehydes. This is the first report of a catalytic enantioselective synthesis of trisubstituted [beta]-lactones. ...

  5. Performance of catalyzed hydrazine in field applications

    SciTech Connect

    Allgood, T.B.

    1987-01-01

    The performance of newly developed oxygen scavengers for boilers is often compared to sulfite and hydrazine. Catalyzed hydrazine out-performs hydrazine and might be preferred when catalyzed sulfite cannot be used. Data from a Midwest Utility confirms that, under field conditions, catalyzed hydrazine out-performance hydrazine and carbohydrazine when feedwater oxygen and iron levels were critical. Catalyzed hydrazine might be preferred when high performance and economics are the primary concerns.

  6. Iodine-Catalyzed Polysaccharide Esterification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  7. Gold-Catalyzed Synthesis of Heterocycles

    NASA Astrophysics Data System (ADS)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via ?-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  8. Is it all That Bad When Living with an Intracellular Protozoan? The Role of Trypanosoma cruzi Calreticulin in Angiogenesis and Tumor Growth

    PubMed Central

    Ramírez-Toloza, Galia; Aguilar-Guzmán, Lorena; Valck, Carolina; Abello, Paula; Ferreira, Arturo

    2014-01-01

    The immune system protects against disease, but may aberrantly silence immunity against “altered self,” with consequent development of malignancies. Among the components of the endoplasmic reticulum (ER), important in immunity, is calreticulin (CRT) that, in spite of its residence in the ER, can be translocated to the exterior. Trypanosoma cruzi is the agent of Chagas disease, one of the most important global neglected infections, affecting several hundred thousand people. The syndrome, mainly digestive and circulatory, affects only one-third of those infected. The anti-tumor effects of the infection are known for several decades, but advances in the identification of responsible T. cruzi molecules are scarce. We have shown that T. cruzi CRT (TcCRT) better executes the antiangiogenic and anti-tumor effects of mammal CRT and its N-terminus vasostatin. In this regard, recombinant TcCRT (rTcCRT) and/or its N-terminus inhibit angiogenesis in vitro, ex vivo, and in vivo. TcCRT also inhibits the growth of murine adenocarcinomas and melanomas. Finally, rTcCRT fully reproduces the anti-tumor effect of T. cruzi infection in mice. Thus, we hypothesize that, the long reported anti-tumor effect of T. cruzi infection is mediated at least in part by TcCRT. PMID:25629005

  9. Calreticulin promotes tumor lymphocyte infiltration and enhances the antitumor effects of immunotherapy by up-regulating the endothelial expression of adhesion molecules.

    PubMed

    Wang, Hao-Tien; Lee, Hsin-I; Guo, Jih-Huong; Chen, Shih-Hui; Liao, Zhe-Kang; Huang, Kai-Wen; Torng, Pao-Ling; Hwang, Lih-Hwa

    2012-06-15

    Tumor-induced angiogenesis has been shown to suppress immune responses. One mechanism is to suppress leukocyte-endothelial cell interaction by down-regulating the expression of adhesion molecules, such as intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1 and E-selectin on the tumor endothelium, which enables tumor cells to escape immune surveillance. Calreticulin (CRT), a chaperone protein mainly located in the endoplasmic reticulum, has been shown to exert anti-angiogenic activity and inhibit tumor growth. Here, we demonstrate that in addition to inhibiting angiogenesis, CRT also enhances the expression of both ICAM-1 and VCAM-1 on tumor endothelial cells. This expression results in enhanced leukocyte-endothelial cell interactions and increased lymphocyte infiltration into tumors. Therefore, combining intramuscular CRT gene transfer with intratumoral cytokine gene therapies significantly improves the antitumor effects of immunotherapy by markedly increasing the levels of tumor-infiltrating lymphocytes. This combined treatment increased the levels of infiltrating lymphocytes to those achieved using four times the cytokine dosage. The combined therapy also resulted in lower levels of immunosuppressive molecules and higher levels of activated T-cells in the tumor microenvironment than immunotherapy alone. In conclusion, this study describes a new antitumor mechanism of CRT that involves the up-regulation of tumor endothelial adhesion molecules and the enhanced infiltration of tumor-specific lymphocytes. Thus, CRT treatment can make tumor cells more vulnerable to immunotherapy and improve the therapeutic efficacy of immunotherapy. PMID:21805477

  10. Catalyzed oxidation for nanowire growth

    NASA Astrophysics Data System (ADS)

    Tai, Kaiping; Sun, Ke; Huang, Bo; Dillon, Shen J.

    2014-04-01

    A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600?°C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.

  11. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  12. BEND3 is involved in the human-specific repression of calreticulin: Implication for the evolution of higher brain functions in human.

    PubMed

    Aghajanirefah, A; Nguyen, L N; Ohadi, M

    2016-01-15

    Recent emerging evidence indicates that changes in gene expression levels are linked to human evolution. We have previously reported a human-specific nucleotide in the promoter sequence of the calreticulin (CALR) gene at position -220C, which is the site of action of valproic acid. Reversion of this nucleotide to the ancestral A-allele has been detected in patients with degrees of deficit in higher brain cognitive functions. This mutation has since been reported in the 1000 genomes database at an approximate frequency of <0.0004 in humans (rs138452745). In the study reported here, we present update on the status of rs138452745 across evolution, based on the Ensembl and NCBI databases. The DNA pulldown assay was also used to identify the proteins binding to the C- and A-alleles, using two cell lines, SK-N-BE and HeLa. Consistent with our previous findings, the C-allele is human-specific, and the A-allele is the rule across all other species (N=38). This nucleotide resides in a block of 12-nucleotides that is strictly conserved across evolution. The DNA pulldown experiments revealed that in both SK-N-BE and HeLa cells, the transcription repressor BEN domain containing 3 (BEND3) binds to the human-specific C-allele, whereas the nuclear factor I (NFI) family members, NF1A, B, C, and X, specifically bind to the ancestral A-allele. This binding pattern is consistent with a previously reported decreased promoter activity of the C-allele vs. the A-allele. We propose that there is a link between binding of BEND3 to the CALR rs138452745 C-allele and removal of NFI binding site from this nucleotide, and the evolution of human-specific higher brain functions. To our knowledge, CALR rs138452745 is the first instance of enormous nucleotide conservation across evolution, except in the human species. PMID:26481236

  13. Stau-catalyzed Nuclear Fusion

    E-print Network

    K. Hamaguchi; T. Hatsuda; T. T. Yanagida

    2006-10-06

    We point out that the stau may play a role of a catalyst for nuclear fusions if the stau is a long-lived particle as in the scenario of gravitino dark matter. In this letter, we consider d d fusion under the influence of stau where the fusion is enhanced because of a short distance between the two deuterons. We find that one chain of the d d fusion may release an energy of O(10) GeV per stau. We discuss problems of making the stau-catalyzed nuclear fusion of practical use with the present technology of producing stau.

  14. Iridium-Catalyzed Allylic Substitution

    NASA Astrophysics Data System (ADS)

    Hartwig, John F.; Pouy, Mark J.

    Iridium-catalyzed asymmetric allylic substitution has become a valuable method to prepare products from the addition of nucleophiles at the more substituted carbon of an allyl unit. The most active and selective catalysts contain a phosphoramidite ligand possessing at least one arylethyl substituent on the nitrogen atom of the ligand. In these systems, the active catalyst is generated by a base-induced cyclometalation at the methyl group of this substituent to generate an iridium metalacycle bound by the COD ligand of the [Ir(COD)Cl]2 precursor and one additional labile dative ligand. Such complexes catalyze the reactions of linear allylic esters with alkylamines, arylamines, phenols, alcohols, imides, carbamates, ammonia, enolates and enolate equivalents, as well as typical stabilized carbon nucleophiles generated from malonates and cyanoesters. Iridium catalysts for enantioselective allylic substitution have also been generated from phosphorus ligands with substituents bound by heteroatoms, and an account of the studies of such systems, along with a description of the development of iridium catalysts is included.

  15. In Silico and In Vitro Studies on the Protein-Protein Interactions between Brugia malayi Immunomodulatory Protein Calreticulin and Human C1q

    PubMed Central

    Yadav, Sunita; Gupta, Smita; Selvaraj, Chandrabose; Doharey, Pawan Kumar; Verma, Anita; Singh, Sanjeev Kumar; Saxena, Jitendra Kumar

    2014-01-01

    Filarial parasites modulate effective immune response of their host by releasing a variety of immunomodulatory molecules, which help in the long persistence of the parasite within the host. The present study was aimed to characterize an immunomodulatory protein of Brugia malayi and its interaction with the host immune component at the structural and functional level. Our findings showed that Brugia malayi Calreticulin (BmCRT) is responsible for the prevention of classical complement pathway activation via its interaction with the first component C1q of the human host. This was confirmed by inhibition of C1q dependent lysis of immunoglobulin-sensitized Red Blood Cells (S-RBCs). This is possibly the first report which predicts CRT-C1q interaction on the structural content of proteins to explain how BmCRT inhibits this pathway. The molecular docking of BmCRT-C1q complex indicated that C1qB chain (IgG/M and CRP binding sites on C1q) played a major role in the interaction with conserved and non-conserved regions of N and P domain of BmCRT. Out of 37 amino acids of BmCRT involved in the interaction, nine amino acids (Pro126, Glu132, His147, Arg151, His153, Met154, Lys156, Ala196 and Lys212) are absent in human CRT. Both ELISA and in silico analysis showed the significant role of Ca+2 in BmCRT-HuC1q complex formation and deactivation of C1r2–C1s2. Molecular dynamics studies of BmCRT-HuC1q complex showed a deviation from ?0.4 nm to ?1.0 nm. CD analyses indicated that BmCRT is composed of 49.6% ? helix, 9.6% ? sheet and 43.6% random coil. These findings provided valuable information on the architecture and chemistry of BmCRT-C1q interaction and supported the hypothesis that BmCRT binds with huC1q at their targets (IgG/M, CRP) binding sites. This interaction enables the parasite to interfere with the initial stage of host complement activation, which might be helpful in parasites establishment. These results might be utilized for help in blocking the C1q/CRT interaction and preventing parasite infection. PMID:25184227

  16. Manganese-catalyzed carbonylation of alkyl iodides

    E-print Network

    Westerhaus, Felix Alexander

    2009-01-01

    The palladium-catalyzed cross-coupling of aryl bromides with zirconocene-benzyne complexes has been investigated by S.L. Buchwald and coworkers. This method allows the formation of substituted biphenyls and terphenyls, ...

  17. Kinetic Resolution Palladium-Catalyzed Oxidative Kinetic

    E-print Network

    Stoltz, Brian M.

    Kinetic Resolution Palladium-Catalyzed Oxidative Kinetic Resolution with Ambient Air toward developing enantioselective oxidation reactions in the presence of catalytic palladium, we of secondary alcohols.[1­3] Our system employed a simple protocol involving a commercially available palladium

  18. Copper-Catalyzed Trifluoromethylation of Unactivated Olefins

    E-print Network

    Parsons, Andrew T.

    Activating the inactive: A copper-catalyzed allylic trifluoromethylation of unactivated terminal olefins proceeds under mild conditions to produce linear allylic trifluoromethylated products with high E/Z selectivity (see ...

  19. Palladium(0)-Catalyzed Arylative Dearomatization of Phenols

    E-print Network

    Rousseaux, Sophie

    The palladium-catalyzed arylative dearomatization of phenols to yield spirocyclohexadienone products in good to excellent yields has been developed. Preliminary results demonstrate that the formation of the spirocyclic ...

  20. One-substrate transketolase-catalyzed reaction.

    PubMed

    Bykova, I A; Solovjeva, O N; Meshalkina, L E; Kovina, M V; Kochetov, G A

    2001-01-26

    Apart from catalyzing the common two-substrate reaction with ketose as donor substrate and aldose as acceptor substrate, transketolase is also able to catalyze a one-substrate reaction utilizing only ketose (xylulose 5-phosphate) as substrate. The products of this one-substrate reaction were glyceraldehyde 3-phosphate and erythrulose. No free glycolaldehyde (a product of xylulose 5-phosphate splitting in the transketolase reaction) was revealed. PMID:11162599

  1. Rh-catalyzed linear hydroformylation of styrene.

    PubMed

    Boymans, Evert; Janssen, Michèle; Müller, Christian; Lutz, Martin; Vogt, Dieter

    2013-01-01

    Usually the Rh-catalyzed hydroformylation of styrene predominantly yields the branched, chiral aldehyde. An inversion of regioselectivity can be achieved using strong ?-acceptor ligands. Binaphthol-based diphosphite and bis(dipyrrolyl-phosphorodiamidite) ligands were applied in the Rh-catalyzed hydroformylation of styrene. High selectivities up to 83% of 3-phenylpropanal were obtained with 1,1-bi-2-naphthol-based bis(dipyrrolyl-phosphorodiamidite) with virtually no hydrogenation to ethyl benzene. The coordination chemistry of those ligands towards Rh(I) was investigated spectroscopically and structurally. PMID:23104326

  2. Attractor Explosions and Catalyzed Vacuum Decay

    SciTech Connect

    Green, Daniel; Silverstein, Eva; Starr, David

    2006-05-05

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new endpoint for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  3. Attractor Explosions and Catalyzed Vacuum Decay

    E-print Network

    Daniel Green; Eva Silverstein; David Starr

    2006-05-04

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new endpoint for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  4. Oligonucleotide formation catalyzed by mononucleotide matrices

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.

    1982-01-01

    Pb(2+)-containing precipitates of mononucleotides form matrices which catalyze the self-condensation of nucleotide 5-prime-phosphorimidazolides and their condensation with nucleosides. The reactions exhibit base-pairing specificity between matrix nucleotide and substrate, and usually follow the Watson-Crick pairing rules. Although purine polynucleotides do not facilitate the oligomerization of pyrimidine nucleotide monomers in solution, it is interesting that purine-containing matrices do catalyze such a reaction. The significance of the results in the context of the prebiotic evolution of polynucleotides is discussed.

  5. Attractor Explosions and Catalyzed Vacuum Decay

    E-print Network

    Green, D; Starr, D; Green, Daniel; Silverstein, Eva; Starr, David

    2006-01-01

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new endpoint for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  6. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  7. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C. (Richland, WA); Hu, Jianli (Kennewick, WA); Hart, Todd R. (Kennewick, WA); Neuenschwander, Gary G. (Burbank, WA)

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  8. Stochastic Simulation of Enzyme-Catalyzed Reactions with Disparate Timescales

    E-print Network

    Paul, Mark

    Stochastic Simulation of Enzyme-Catalyzed Reactions with Disparate Timescales Debashis Barik-steady-state approximation'' for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme

  9. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  10. Highly regioselective osmium-catalyzed hydroformylation.

    PubMed

    Wu, Lipeng; Liu, Qiang; Spannenberg, Anke; Jackstell, Ralf; Beller, Matthias

    2015-02-21

    The first highly regioselective and general osmium-catalyzed hydroformylation of olefins to aldehydes is reported. The combination of Os3(CO)12 and imidazoyl-substituted phosphine ligands allows n-selective (up to 99%) hydroformylation of bulk aliphatic as well as functional alkenes in good yields (64-87%). PMID:25620413

  11. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  12. RNA-Catalyzed RNA Polymerization: Accurate and

    E-print Network

    Bartel, David

    for general polymerization (7). De- rivatives of self-splicing introns are able to join oligonucleotidesRNA-Catalyzed RNA Polymerization: Accurate and General RNA-Templated Primer Extension Wendy K. Johnston, Peter J. Unrau,* Michael S. Lawrence, Margaret E. Glasner, David P. Bartel The RNA world

  13. Mechanochemical ruthenium-catalyzed olefin metathesis.

    PubMed

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friš?i?, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid. PMID:25668586

  14. Enantioselective iridium-catalyzed allylic arylation.

    PubMed

    Polet, Damien; Rathgeb, Xavier; Falciola, Caroline A; Langlois, Jean-Baptiste; El Hajjaji, Samir; Alexakis, Alexandre

    2009-01-01

    We describe herein the development of the first iridium-catalyzed allylic substitution using arylzinc nucleophiles. High enantioselectivities were obtained from the reactions, which used commercially available Grignard reagents as the starting materials. This methodology was also shown to be compatible with halogen/metal exchange reactions. Its synthetic potential is demonstrated by its application towards the formal synthesis of (+)-sertraline. PMID:19072966

  15. Iridium-catalyzed enantioselective polyene cyclization.

    PubMed

    Schafroth, Michael A; Sarlah, David; Krautwald, Simon; Carreira, Erick M

    2012-12-19

    A highly enantioselective polycyclization method has been developed using the combination of Lewis acid activation with iridium-catalyzed allylic substitution. This strategy relies on direct use of branched, racemic allylic alcohols and furnishes a diverse and unique set of carbo- and heteropolycyclic ring systems in good yields and ?99% ee. PMID:23193947

  16. CHAPTER 1 --Expanding Insight into Asymmetric Palladium-Catalyzed Allylic Alkylation 1 Expanding Insight into the Asymmetric Palladium-Catalyzed

    E-print Network

    Stoltz, Brian M.

    CHAPTER 1 -- Expanding Insight into Asymmetric Palladium-Catalyzed Allylic Alkylation 1 CHAPTER 1 Expanding Insight into the Asymmetric Palladium-Catalyzed Allylic Alkylation of N-Heterocyclic Molecules this motif,1 palladium-catalyzed decarboxylative allylic alkylation2,3 has proven particularly effective and

  17. Analytical rheology of metallocene-catalyzed polyethylenes

    NASA Astrophysics Data System (ADS)

    Shanbhag, Sachin; Takeh, Arsia

    2011-03-01

    A computational algorithm that seeks to invert the linear viscoelastic spectrum of single-site metallocene-catalyzed polyethylenes is presented. The algorithm uses a general linear rheological model of branched polymers as its underlying engine, and is based on a Bayesian formulation that transforms the inverse problem into a sampling problem. Given experimental rheological data on unknown single-site metallocene- catalyzed polyethylenes, it is able to quantitatively describe the range of values of weight-averaged molecular molecular weight, MW , and average branching density, bm , consistent with the data. The algorithm uses a Markov-chain Monte Carlo method to simulate the sampling problem. If, and when information about the molecular weight is available through supplementary experiments, such as chromatography or light scattering, it can easily be incorporated into the algorithm, as demonstrated. Financial support from NSF DMR 0953002.

  18. A hitherto unknown transketolase-catalyzed reaction.

    PubMed

    Sevostyanova, Irina A; Solovjeva, Olga N; Kochetov, German A

    2004-01-16

    Yeast transketolase, in addition to catalyzing the transferase reaction through utilization of two substrates--the donor substrate (ketose) and the acceptor substrate (aldose)--is also able to catalyze a one-substrate reaction with only aldose (glycolaldehyde) as substrate. The interaction of glycolaldehyde with holotransketolase results in formation of the transketolase reaction intermediate, dihydroxyethyl-thiamin diphosphate. Then the glycolaldehyde residue is transferred from dihydroxyethyl-thiamin diphosphate to free glycolaldehyde. As a result, the one-substrate transketolase reaction product, erythrulose, is formed. The specific activity of transketolase was found to be 0.23 U/mg and the apparent Km for glycolaldehyde was estimated as 140 mM. PMID:14697258

  19. Stop-catalyzed baryogenesis beyond the MSSM

    NASA Astrophysics Data System (ADS)

    Katz, Andrey; Perelstein, Maxim; Ramsey-Musolf, Michael J.; Winslow, Peter

    2015-11-01

    Nonminimal supersymmetric models that predict a tree-level Higgs mass above the minimal supersymmetric standard model (MSSM) bound are well motivated by naturalness considerations. Indirect constraints on the stop sector parameters of such models are significantly relaxed compared to the MSSM; in particular, both stops can have weak-scale masses. We revisit the stop-catalyzed electroweak baryogenesis (EWB) scenario in this context. We find that the LHC measurements of the Higgs boson production and decay rates already rule out the possibility of stop-catalyzed EWB. We also introduce a gauge-invariant analysis framework that may generalize to other scenarios in which interactions outside the gauge sector drive the electroweak phase transition.

  20. Gold(I)-catalyzed enantioselective cycloaddition reactions

    PubMed Central

    2013-01-01

    Summary In recent years there have been extraordinary developments of gold(I)-catalyzed enantioselective processes. This includes progress in the area of cycloaddition reactions, which are of particular interest due to their potential for the rapid construction of optically active cyclic products. In this article we will summarize some of the most remarkable examples, emphasizing reaction mechanisms and key intermediates involved in the processes. PMID:24204438

  1. Antiproton catalyzed microfission/fusion propulsion

    NASA Technical Reports Server (NTRS)

    Chiang, Pi-Ren; Lewis, Raymond A.; Smith, Gerald A.; Newton, Richard; Dailey, James; Werthman, W. Lance; Chakrabarti, Suman

    1994-01-01

    Inertial confinement fusion (ICF) utilizing an antiproton catalyzed hybrid fission/fusion target is discussed as a potential energy source for interplanetary propulsion. A proof-of-principle experiment underway at Phillips Laboratory, Kirtland AFB and antiproton trapping experiments at CERN, Geneva, Switzerland, are presented. The ICAN propulsion concept is described and results of performance analyses are reviewed. Future work to further define the ICAN concept is outlined.

  2. Palladium-catalyzed oxidative carbonylation reactions.

    PubMed

    Wu, Xiao-Feng; Neumann, Helfried; Beller, Matthias

    2013-02-01

    Palladium-catalyzed coupling reactions have become a powerful tool for advanced organic synthesis. This type of reaction is of significant value for the preparation of pharmaceuticals, agrochemicals, as well as advanced materials. Both, academic as well as industrial laboratories continuously investigate new applications of the different methodologies. Clearly, this area constitutes one of the major topics in homogeneous catalysis and organic synthesis. Among the different palladium-catalyzed coupling reactions, several carbonylations have been developed and widely used in organic syntheses and are even applied in the pharmaceutical industry on ton-scale. Furthermore, methodologies such as the carbonylative Suzuki and Sonogashira reactions allow for the preparation of interesting building blocks, which can be easily refined further on. Although carbonylative coupling reactions of aryl halides have been well established, palladium-catalyzed oxidative carbonylation reactions are also interesting. Compared with the reactions of aryl halides, oxidative carbonylation reactions offer an interesting pathway. The oxidative addition step could be potentially avoided in oxidative reactions, but only few reviews exist in this area. In this Minireview, we summarize the recent development in the oxidative carbonylation reactions. PMID:23307763

  3. Interactive Muon Catalyzed and Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Cripps, Gregory Ronald

    Energetic viability calculations of nuclear fusion energy systems based on two distinct approaches to a symbiotic combination of Muon Catalyzed Fusion (mu CF) and Inertial Confinement Fusion (ICF) have been performed. The first approach involves a deuterium-tritium ICF pellet ignited by muon catalyzed fusion heating; the second approach is based on the energy generated by muCF reactions in deuterium-tritium compressed to high density. Viability evaluations rely upon modelling of identified critical energy gain parameters for energy systems based upon each of the muCF-ICF approaches. Analysis leading to viability evaluation consists of outlining the general technological requirements of an interactive muCF-ICF system and developing muon catalyzed reaction models in conditions found in high density compressions. An energy system based on muCF in compressed deuterium-tritium was found to be non-viable due primarily to the sharp decrease in the muon induced fusion rate for temperatures greater than 40 eV. The viability of a fusion energy system based on the mu CF triggered spark ignition is favourable provided that technology can be developed which allows for the deposition of sufficient quantities of muons into a very small volume within a very short duration.

  4. Imidazole catalyzes chlorination by unreactive primary chloramines.

    PubMed

    Roemeling, Margo D; Williams, Jared; Beckman, Joseph S; Hurst, James K

    2015-05-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated--loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case N-?-acetylhistidine chloramine (NAHCl) did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl(+)) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl(+)). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second-order reaction to give 3'-monochloro and 3',5'-dichloro products. Equilibrium constants for the transchlorination reactions HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants on [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl(+); consistent with this interpretation, MeIm markedly catalyzed fluorescein chlorination by HOCl. Time-dependent imidazole-catalyzed HPA chlorination by NH2Cl was also demonstrated by product analyses. Quantitative assessment of the data suggests that physiological levels of histidyl groups will react with primary chloramines to generate a flux of imidazole chloramine sufficient to catalyze biological chlorination via HImCl(+), particularly in environments that generate high concentrations of HOCl such as the neutrophil phagosome. PMID:25660996

  5. The Palladium-Catalyzed Trifluoromethylation of Vinyl Sulfonates

    E-print Network

    Cho, Eun Jin

    A method for the palladium-catalyzed trifluoromethylation of cyclohexenyl sulfonates has been developed. Various cyclohexenyl triflates and nonaflates underwent trifluoromethylation under mild reaction conditions using a ...

  6. Palladium-Catalyzed Asymmetric Dearomatization of Naphthalene Derivatives

    E-print Network

    Kessler, Florian

    An intramolecular enantioselective metal-catalyzed dearomatization reaction is described. This procedure allows the dearomatization of naphthalene derivatives through an electrophilic aromatic substitution-type reaction ...

  7. Stereospecificity of acetylene reduction catalyzed by nitrogenase.

    PubMed

    Benton, P M; Christiansen, J; Dean, D R; Seefeldt, L C

    2001-03-01

    In addition to catalyzing the reduction of dinitrogen to ammonia, the metalloenzyme nitrogenase catalyzes the reduction of a number of alternative substrates, including acetylene (C(2)H(2)) to ethylene (C(2)H(4)) and, in certain cases, to ethane (C(2)H(6)). The stereochemistry of proton addition for C(2)D(2) reduction to C(2)D(2)H(2) catalyzed by the Mo-dependent nitrogenase has been used to probe substrate binding and proton addition mechanisms. In the present work, the C(2)D(2) reduction stereospecificity of altered MoFe proteins having amino acid substitutions within the active site FeMo-cofactor environment was examined by Fourier transform infrared (FTIR) spectroscopy. Altered MoFe proteins examined included those having the alpha-subunit 96(Arg) residue substituted by Gln, Leu, or Ala, the alpha-subunit 69(Gly) residue substituted by Ser, and the alpha-subunit 195(His) residue substituted by Asn. The stereochemistry of proton addition to C(2)D(2) does not correlate with the measured K(m) values for C(2)H(2) reduction, or with the ability of the enzyme to reduce C(2)H(2) by four electrons to yield C(2)H(6). Instead, the electron flux through nitrogenase was observed to significantly influence the ratio of cis- to trans-1,2-C(2)H(2)D(2) formed. Finally, the product distribution observed for reduction of C(2)H(2) in D(2)O is not consistent with an earlier proposed enzyme-bound intermediate. An alternative model that accounts for the stereochemistry of C(2)H(2) reduction by nitrogenase based on a branched reaction pathway and an enzyme-bound eta(2)-vinyl intermediate is proposed. PMID:11456800

  8. Ligand Intermediates in Metal-Catalyzed Reactions

    SciTech Connect

    Gladysz, John A.

    1999-07-31

    The longest-running goal of this project has been the synthesis, isolation, and physical chemical characterization of homogeneous transition metal complexes containing ligand types believed to be intermediates in the metal-catalyzed conversion of CO/H{sub 2}, CO{sub 2}, CH{sub 4}, and similar raw materials to organic fuels, feedstocks, etc. In the current project period, complexes that contain unusual new types of C{sub x}(carbide) and C{sub x}O{sub y} (carbon oxide) ligands have been emphasized. A new program in homogeneous fluorous phase catalysis has been launched as described in the final report.

  9. Ir-Catalyzed enantioselective group transfer reactions.

    PubMed

    Schafer, Andrew G; Blakey, Simon B

    2015-10-01

    Recently, several novel iridium complexes have been shown to catalyse group transfer reactions in a highly selective fashion. Rhodium complexes, and in particular dirhodium tetracarboxylate salts, have proven to be a remarkably useful class of catalysts for these reactions through several decades of development. Recent results suggest that iridium may offer opportunities to address challenges in this chemistry and provide complementary reactivity patterns. This tutorial review outlines the recent developments in Ir-catalyzed enantioselective group transfer chemistry with highlights on examples which display this unique reactivity. PMID:26051004

  10. Tax Posttranslational Modifications and Interaction with Calreticulin in MT-2 Cells and Human Peripheral Blood Mononuclear Cells of Human T Cell Lymphotropic Virus Type-I-Associated Myelopathy/Tropical Spastic Paraparesis Patients

    PubMed Central

    Medina, Fernando; Quintremil, Sebastian; Alberti, Carolina; Barriga, Andres; Cartier, Luis; Puente, Javier; Ramírez, Eugenio; Ferreira, Arturo; Tanaka, Yuetsu

    2014-01-01

    Abstract The human retrovirus human T cell lymphotropic virus type-I (HTLV-1) is the etiologic agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Axonal degeneration in HAM/TSP patients occurs without neuron infection, with the secreted viral Tax protein proposed to be involved. We previously found that Tax secreted into the culture medium of MT-2 cells (HTLV-1-infected cell line) produced neurite retraction in neuroblastoma cells differentiated to neuronal type. To assess the relevance of Tax posttranslational modifications on this effect, we addressed the question of whether Tax secreted by MT-2 cells and peripheral blood mononuclear cells (PBMCs) of HTLV-1-infected subjects is modified. The interaction of Tax with calreticulin (CRT) that modulates intracellular Tax localization and secretion has been described. We studied Tax localization and modifications in MT-2 cells and its interaction with CRT. Intracellular Tax in MT-2 cells was assessed by flow cytometry, corresponding mainly to a 71-kDa protein followed by western blot. This protein reported as a chimera with gp21 viral protein—confirmed by mass spectrometry—showed no ubiquitination or SUMOylation. The Tax–CRT interaction was determined by confocal microscopy and coimmunoprecipitation. Extracellular Tax from HAM/TSP PBMCs is ubiquitinated according to western blot, and its interaction with CRT was shown by coimmunoprecipitation. A positive correlation between Tax and CRT secretion was observed in HAM/TSP PBMCs and asymptomatic carriers. For both proteins inhibitors and activators of secretion showed secretion through the endoplasmic reticulum–Golgi complex. Tax, present in PBMC culture medium, produced neurite retraction in differentiated neuroblastoma cells. These results suggest that Tax, whether ubiquitinated or not, is active for neurite retraction. PMID:24321043

  11. Antibody-catalyzed anaerobic destruction of methamphetamine

    PubMed Central

    Xu, Yang; Hixon, Mark S.; Yamamoto, Noboru; McAllister, Laura A.; Wentworth, Anita D.; Wentworth, Paul; Janda, Kim D.

    2007-01-01

    Methamphetamine [(+)-2] abuse has emerged as a fast-rising global epidemic, with immunopharmacotherapeutic approaches being sought for its treatment. Herein, we report the generation and characterization of a monoclonal antibody, YX1-40H10, that catalyzes the photooxidation of (+)-2 into the nonpsychoactive compound benzaldehyde (14) under anaerobic conditions in the presence of riboflavin (6). Studies have revealed that the antibody facilitates the conversion of (+)-2 into 14 by binding the triplet photoexcited state of 6 in proximity to (+)-2. The antibody binds riboflavin (Kd = 180 ?M), although this was not programmed into hapten design, and the YX1-40H10-catalyzed reaction is inhibited by molecular oxygen via the presumed quenching of the photoexcited triplet state of 6. Given that this reaction is another highlight in the processing of reactive intermediates by antibodies, we speculate that this process may have future significance in vivo with programmed immunoglobulins that use flavins as cofactors to destroy selectable molecular targets under hypoxic or even anoxic conditions. PMID:17360412

  12. Acid-Catalyzed Isomerization of Carvone to Carvacrol

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Mattingly, Shawn P.

    2005-01-01

    The acid-catalyzed isomerization of carvone to carvacrol, first reported by Ritter and Ginsburg, is especially well suited with a permanent-magnet FT instrument. The acid-catalyzed isomerization of carvone to carvacrol produced a 61% yield after a three hour reflux with 30% aqueous sulfuric acid.

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  14. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  15. Palladium-Catalyzed Homocoupling Reactions between Two Csp3

    E-print Network

    Zhang, Xumu

    Palladium-Catalyzed Homocoupling Reactions between Two Csp3 -Csp3 Centers Aiwen Lei and Xumu Zhang A novel palladium-catalyzed coupling reaction between two Csp3-Csp3 centers has been investigated. This protocol is initiated by the oxidative addition of an r-halo carbonyl compound to a palladium(0) species

  16. Palladium-Catalyzed Enantioselective Oxidation of Alcohols: A Dramatic Rate

    E-print Network

    Stoltz, Brian M.

    Palladium-Catalyzed Enantioselective Oxidation of Alcohols: A Dramatic Rate Acceleration by Cs2CO3 of Cs2CO3 and t-BuOH provides a dramatic rate acceleration in the palladium-catalyzed aerobic oxidative- mercially available palladium complex, sparteine, and mo- lecular oxygen (Scheme 1).1-3 Although our

  17. Palladium-Catalyzed Hydrogenation DOI: 10.1002/anie.200600263

    E-print Network

    Zhang, Xumu

    Palladium-Catalyzed Hydrogenation DOI: 10.1002/anie.200600263 A Highly Enantioselective, Pd transition-metal-containing catalysts, in particular Rh, Ru, Ir, and Pd complexes. Palladium complexes have to fluoro-substituted compounds. Raja and Thomas have reported a heterogeneous palladium- catalyzed

  18. Enantioselective Addition of Diethylzinc to Aldehydes Catalyzed by a Titanate

    E-print Network

    Zhang, Xumu

    Enantioselective Addition of Diethylzinc to Aldehydes Catalyzed by a Titanate Complex with a Chiral of this alkylation reaction can also be catalyzed by chiral titanate complexes2-4 (e.g., TAD- DOLs2 and chiral sulfonamides3 ). We have recently studied a titanate complex with tetradentate helical ligand 1 ((1R,2R)-(+)-1

  19. Helium Catalyzed D-D Fusion in a Levitated Dipole

    E-print Network

    Helium Catalyzed D-D Fusion in a Levitated Dipole Jay Kesner, L. Bromberg, MIT D.T. Garnier, A and can reduce the flux of energetic neutrons that cause material damage. We propose a fusion power source based on the levitated dipole fusion concept that uses a "helium catalyzed D-D" fuel cycle, where rapid

  20. RNA-Catalyzed RNA Ligation on an External RNA Template

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Joyce, Gerald F.

    2002-01-01

    Variants of the hc ligase ribozyme, which catalyzes ligation of the 3' end of an RNA substrate to the 5' end of the ribozyme, were utilized to evolve a ribozyme that catalyzes ligation reactions on an external RNA template. The evolved ribozyme catalyzes the joining of an oligonucleotide 3'-hydroxyl to the 5'-triphosphate of an RNA hairpin molecule. The ribozyme can also utilize various substrate sequences, demonstrating a largely sequence-independent mechanism for substrate recognition. The ribozyme also carries out the ligation of two oligonucleotides that are bound at adjacent positions on a complementary template. Finally, it catalyzes addition of mononucleoside '5-triphosphates onto the '3 end of an oligonucleotide primer in a template-dependent manner. The development of ribozymes that catalyze polymerase-type reactions contributes to the notion that an RNA world could have existed during the early history of life on Earth.

  1. Alternative metals for homogeneous catalyzed hydroformylation reactions.

    PubMed

    Pospech, Jola; Fleischer, Ivana; Franke, Robert; Buchholz, Stefan; Beller, Matthias

    2013-03-01

    Transition-metal-catalyzed hydroformylation reactions constitute one of the most powerful tools for C-C bond formation in organic synthesis and represent an outstanding example of the application of homogeneous catalysis on an industrial scale. This process allows for the straightforward conversion of inexpensive chemical feedstock into broadly applicable aldehydes, which serve as major building blocks for numerous chemical products. These products are highly valuable for the chemical industry and used as plasticizers, detergents, and surfactants on a million ton scale. Moreover, aldehydes serve as versatile chemical intermediates for the production of fine chemicals and pharmaceuticals. Currently, most of the bulk hydroformylation processes rely on rhodium-based catalysts. The increasing demand and resulting high cost of this precious metal has resulted in alternative transition-metal catalysts becoming highly desirable. The following Review summarizes the progress achieved utilizing Ru, Ir, Pd, Pt, and Fe catalysts in hydroformylation reactions. PMID:23436281

  2. Fabrication of catalyzed ion transport membrane systems

    SciTech Connect

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  3. Porphyrin-catalyzed oxidation of trichlorophenol

    SciTech Connect

    Hasan, S.; Sublette, K.L.

    1997-12-31

    Porphyrin-metal complexes are potentially useful to catalyze redox reactions, which convert toxic and biologically recalcitrant compounds to compounds that are less toxic and more amenable to biotreatment. Porphyrins, in the absence of proteins as in ligninases, peroxidases, and oxidases, are potentially more robust than enzymes and microbial cultures in the treatment of inhibitory substances. 2,4,6-Trichlorophenol was used as a model compound for chlorinated phenols and as a substrate for various porphyrin-metal complexes acting as oxidation catalysts. t-Butyl hydroperoxide was the oxidizing agent. TCP was shown to be at least partially dechlorinated and the aromatic ring broken in reaction products. All porphyrins exhibited saturation kinetics with regard to the initial TCP concentration in reaction mixtures. Electron-withdrawing substituents on the porphyrins were observed to increase stability of the catalysts to inactivating ring-centered oxidation. 16 refs., 3 figs., 2 tabs.

  4. Thermodynamic limitations on microbially catalyzed reaction rates

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Dale, Andrew W.; Amend, Jan P.; Van Cappellen, Philippe

    2012-08-01

    Quantification of global biogeochemical cycles requires knowledge of the rates at which microorganisms catalyze chemical reactions. In order for models that describe these processes to capture global patterns of change, the underlying formulations in them must account for biogeochemical transformations over seasonal and millennial time scales in environments characterized by different energy levels. Building on existing models, a new thermodynamic limiting function is introduced. With only one adjustable parameter, this function that can be used to model microbial metabolism throughout the range of conditions in which organisms are known to be active. The formulation is based on a comparison of the amount of energy available from any redox reaction to the energy required to maintain a membrane potential, a proxy for the minimum amount of energy required by an active microorganism. This function does not require species- or metabolism-specific parameters, and can be used to model metabolisms that capture any amount of energy. The utility of this new thermodynamic rate limiting term is illustrated by applying it to three low-energy processes: fermentation, methanogenesis and sulfate reduction. The model predicts that the rate of fermentation will be reduced by half once the Gibbs energy of the catalyzed reaction reaches -12 kJ (mol e-)-1, and then slowing exponentially until the energy yield approaches zero. Similarly, the new model predicts that the low energy yield of methanogenesis, -4 to -0.5 kJ (mol e-)-1, for a partial pressure of H2 between 11 and 0.6 Pa decreases the reaction rate by 95-99%. Finally, the new function's utility is illustrated through its ability to accurately model sulfate concentration data in an anoxic marine sediment.

  5. Enzyme-catalyzed degradation of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Kotchey, Gregg P.

    Carbon nanotubes and graphene, the nanoscale sp 2 allotropes of carbon, have garnered widespread attention as a result of their remarkable electrical, mechanical, and optical properties and the promise of new technologies that harness these properties. Consequently, these carbon nanomaterials (CNMs) have been employed for diverse applications such as electronics, sensors, composite materials, energy conversion devices, and nanomedicine. The manufacture and eventual disposal of these products may result in the release of CNMs into the environment and subsequent exposure to humans, animals, and vegetation. Given the possible pro-inflammatory and toxic effects of CNMs, much attention has been focused on the distribution, toxicity, and persistence of CNMs both in living systems and the environment. This dissertation will guide the reader though recent studies aimed at elucidating fundamental insight into the persistence of CNMs such as carbon nanotubes (CNTs) and graphene derivatives (i.e., graphene oxide and reduced graphene oxide). In particular, in-testtube oxidation/degradation of CNMs catalyzed by peroxidase enzymes will be examined, and the current understanding of the mechanisms underlying these processes will be discussed. Finally, an outlook of the current field including in vitro and in vivo biodegradation experiments, which have benefits in terms of human health and environmental safety, and future directions that could have implications for nanomedical applications such as imaging and drug delivery will be presented. Armed with an understanding of how and why CNMs undergo enzyme-catalyzed oxidation/biodegradation, researchers can tailor the structure of CNMs to either promote or inhibit these processes. For example, in nanomedical applications such as drug delivery, the incorporation of carboxylate functional groups could facilitate biodegradation of the nanomaterial after delivery of the cargo. Also, the incorporation of CNMs with defect sites in consumer goods could provide a mechanism that promotes the degradation of these materials once these products reach landfills.

  6. NEW CORDIERITE DIESEL PARTICULATE FILTERS FOR CATALYZED AND NON-CATALYZED APPLICATIONS

    SciTech Connect

    Merkel, G; Cutler, W; Tao, T Chiffey, A; Phillips, P; Twigg, M; Walker, A

    2003-08-24

    Cordierite diesel particulate filters provide an economical approach to diesel emissions control. However, further reduction in the pressure drop of catalyzed and non-catalyzed cordierite filters is desirable. In order to derive a fundamental understanding of the relationship between clean and sootloaded pressure drop and the pore microstructure of the ceramic, and to optimize the microstructure for filter performance, cordierite filters have been fabricated spanning an extended range in porosity, pore size distribution, and pore connectivity. Analysis of the results has been applied to the development of several new cordierite diesel particulate filters that possess a unique combination of high filtration efficiency, high strength, and very low clean and soot-loaded pressure drop. Furthermore, catalyst systems have been developed that result in a minimal pressure drop increase of the catalyzed filter. Optimization of porosity and cell geometry has enabled fabrication o f filters with either high or low thermal mass appropriate to the regeneration strategy employed for a given engine management system.

  7. The Structural Basis of Ribozyme-Catalyzed RNA Assembly

    SciTech Connect

    Robertson, M.P.; Scott, W.G.; /UC, Santa Cruz

    2007-07-12

    Life originated, according to the RNA World hypothesis, from self-replicating ribozymes that catalyzed ligation of RNA fragments. We have solved the 2.6 angstrom crystal structure of a ligase ribozyme that catalyzes regiospecific formation of a 5' to 3' phosphodiester bond between the 5'-triphosphate and the 3'-hydroxyl termini of two RNA fragments. Invariant residues form tertiary contacts that stabilize a flexible stem of the ribozyme at the ligation site, where an essential magnesium ion coordinates three phosphates. The structure of the active site permits us to suggest how transition-state stabilization and a general base may catalyze the ligation reaction required for prebiotic RNA assembly.

  8. Zinc-catalyzed copolymerization of carbon dioxide and propylene oxide 

    E-print Network

    Katsurao, Takumi

    1994-01-01

    The zinc-catalyzed copolymerization of carbon dioxide and propylene oxide, which is one of the promising reactions for the utilization of carbon dioxide, has been investigated from various aspects. Above all, considering that supercritical carbon...

  9. Efficient Pd-Catalyzed Amination Reactions for Heterocycle Functionalization

    E-print Network

    Henderson, Jaclyn L.

    The Pd-catalyzed amination of unprotected benzo-fused heterocycles is reported, which allows for greater flexibility and efficiency in the modification of this important class of molecules. The generality of these simple ...

  10. Nickel-Catalyzed Allylic Substitution of Simple Alkenes

    E-print Network

    Matsubara, Ryosuke

    This report describes a nickel-catalyzed allylic substitution process of simple alkenes whereby an important structural motif, a 1,4-diene, was prepared. The key to success is the use of an appropriate nickel–phosphine ...

  11. Mechanisms of transition-metal catalyzed additions to olefins 

    E-print Network

    Nowlan, Daniel Thomas

    2005-08-29

    Transition metal catalyzed reactions have an important place in synthetic chemistry, but the mechanistic details for many of these reactions remain undetermined. Through a combination of experimentally determined 13C kinetic ...

  12. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  13. Rhodium-Catalyzed Asymmetric Intramolecular Hydroamination of Unactivated Alkenes

    E-print Network

    Shen, Xiaoqiang

    One for the Rh(oad): The first rhodium-catalyzed asymmetric intramolecular hydroamination of unactivated olefins was developed by using dialkylbiaryl phosphine ligands (see scheme; cod=1,5-cyclooctadiene, Cy=cyclohexyl). ...

  14. Rhodium-catalyzed dehydrogenative borylation of cyclic alkenes

    E-print Network

    Kondoh, Azusa

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki–Miyaura ...

  15. Rh-Catalyzed Asymmetric Hydrogenation of Cyclic ?-Dehydroamino Ketones.

    PubMed

    Zhang, Zhenfeng; Hu, Qiupeng; Wang, Yingjie; Chen, Jianzhong; Zhang, Wanbin

    2015-11-01

    Catalyzed by a rhodium complex of P-stereogenic diphosphine trichickenfootphos, five-membered cyclic ?-dehydroamino ketones bearing endocyclic acyl and endocyclic vinyl groups were hydrogenated to give chiral ?-amino ketones with quantitative conversions and excellent enantioselectivities. PMID:26497221

  16. Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases*

    PubMed Central

    Markolovic, Suzana; Wilkins, Sarah E.; Schofield, Christopher J.

    2015-01-01

    The post-translational hydroxylation of prolyl and lysyl residues, as catalyzed by 2-oxoglutarate (2OG)-dependent oxygenases, was first identified in collagen biosynthesis. 2OG oxygenases also catalyze prolyl and asparaginyl hydroxylation of the hypoxia-inducible factors that play important roles in the adaptive response to hypoxia. Subsequently, they have been shown to catalyze N-demethylation (via hydroxylation) of N?-methylated histone lysyl residues, as well as hydroxylation of multiple other residues. Recent work has identified roles for 2OG oxygenases in the modification of translation-associated proteins, which in some cases appears to be conserved from microorganisms through to humans. Here we give an overview of protein hydroxylation catalyzed by 2OG oxygenases, focusing on recent discoveries. PMID:26152730

  17. Palladium-Catalyzed Synthesis of N-Aryl Carbamates

    E-print Network

    Fors, Brett P.

    An efficient synthesis of aryl carbamates was achieved by introducing alcohols into the reaction of palladium-catalyzed cross-coupling of ArX (X = Cl, OTf) with sodium cyanate. The use of aryl triflates as electrophilic ...

  18. Palladium-Catalyzed Amination of Unprotected Halo-7- azaindoles

    E-print Network

    Henderson, Jaclyn L.

    Simple and efficient procedures for the Pd-catalyzed cross-coupling of primary and secondary amines with halo-7-azaindoles(pyrrolo[2,3-b]pyridine) are presented. Previously, no general method was available to ensure the ...

  19. Maa-Bara : catalyzing change in Nigeria's Niger delta

    E-print Network

    Okiomah, Ogheneruno E. (Ogheneruno Elo)

    2011-01-01

    Can architecture catalyze economic growth? This thesis serves as a design contribution to the war against poverty by proving that small-scale architectural interventions can propagate large-scale economic growth. It ...

  20. Modeling Catalyzed Growth of Single-Walled Carbon Nanotubes 

    E-print Network

    Beetge, Jenni Mignon

    2013-02-27

    ABSTRACT Modeling Catalyzed Growth of Single-Walled Carbon Nanotubes. (May 2013) Jenni M. Beetge Artie McFerrin Department of Chemical Engineering Texas A&M University Research Advisor: Dr. Perla B. Balbuena Artie McFerrin Department...

  1. Ru-catalyzed cyclization of terminal alkynals to cycloalkenes.

    PubMed

    Varela, Jesús A; González-Rodríguez, Carlos; Rubín, Silvia G; Castedo, Luis; Saá, Carlos

    2006-08-01

    Cycloalkenes can be efficiently prepared by a new Ru-catalyzed cyclization of terminal alkynals. Under appropriate conditions, cycloisomerizations to conjugated aldehydes may be observed. Both processes involve catalytic Ru vinylidenes. PMID:16866480

  2. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide

    E-print Network

    Surry, David S.

    Dialkylbiaryl phosphines are a valuable class of ligand for Pd-catalyzed amination reactions and have been applied in a range of contexts. This perspective attempts to aid the reader in the selection of the best choice of ...

  3. Copper-Catalyzed Trifluoromethylation of Polysubstituted Alkenes Assisted by Decarboxylation.

    PubMed

    He, Zhengbiao; Tan, Ping; Hu, Jinbo

    2016-01-01

    An efficient copper-catalyzed trifluoromethylation of polysubstituted alkenes assisted by decarboxylation of ?,?-unsaturated carboxylic acids has been achieved. The reaction provides a general method to construct allylic and vinylic CF3-substituted compounds under mild conditions. PMID:26651277

  4. ENVIRONMENTAL ASSESSMENT OF THE BASE CATALYZED DECOMPOSITION (BCD) PROCESS

    EPA Science Inventory

    This report summarizes laboratory-scale, pilot-scale, and field performance data on BCD (Base Catalyzed Decomposition) and technology, collected to date by various governmental, academic, and private organizations.

  5. A general copper-catalyzed sulfonylation of arylboronic acids.

    PubMed

    Kar, Anirban; Sayyed, Iliyas Ali; Lo, Wei Fun; Kaiser, Hanns Martin; Beller, Matthias; Tse, Man Kin

    2007-08-16

    A general copper-catalyzed method for the sulfonylation of arylboronic acids with sulfinate salts is described. A variety of alkyl-aryl, diaryl, and alkyl-heteroaryl sulfones were synthesized in good yield. PMID:17655315

  6. The structural basis of RNA-catalyzed RNA polymerization

    E-print Network

    Shechner, David M

    2010-01-01

    The Class I ligase is an artificial ribozyme that catalyzes a reaction chemically identical to a single turnover of RNA-dependent RNA polymerization. Such an activity would have been requisite for the emergence of a ...

  7. Nickel-Catalyzed Coupling of Alkenes, Aldehydes, and Silyl Triflates

    PubMed Central

    Ng, Sze-sze; Ho, Chun-Yu; Jamison, Timothy F.

    2011-01-01

    A full account of two recently developed nickel-catalyzed coupling reactions of alkenes, aldehydes and silyl triflates is presented. These reactions provide either allylic alcohol or homoallylic alcohol derivatives selectively, depending on the ligand employed. These processes are believed to be mechanistically distinct from Lewis acid-catalyzed carbonyl-ene reactions, and several lines of evidence supporting this hypothesis are discussed. PMID:16939275

  8. Vanadium-Catalyzed C(sp3 )H Fluorination Reactions

    E-print Network

    Chen, Chuo

    S1 Vanadium-Catalyzed C(sp3 )­H Fluorination Reactions Ji-Bao Xia, Yuyong Ma, and Chuo Chen. Vanadium(III) Oxide (95%) was purchased from Strem Chemicals Inc. Fluorobenzene (99.5%) was purchased from procedure for the V2O3-catalyzed C(sp3 )­H fluorination reaction. To a 4 mL clear vial charged with vanadium

  9. Ni-catalyzed reductive addition of alkyl halides to isocyanides.

    PubMed

    Wang, Bo; Dai, Yijing; Tong, Weiqi; Gong, Hegui

    2015-12-21

    This paper highlights Ni-catalyzed reductive trapping of secondary and tertiary alkyl radicals with both electron-rich and electron-deficient aryl isocyanides using zinc as the terminal reductant, affording 6-alkylated phenanthridine in good yields. The employment of carbene ligands necessitates the alkyl radical process, and represents the first utility in the Ni-catalyzed reductive conditions for the generation of unactivated alkyl radicals from the halide precursors. PMID:26524544

  10. Thioglycoside hydrolysis catalyzed by {beta}-glucosidase

    SciTech Connect

    Shen Hong; Byers, Larry D.

    2007-10-26

    Sweet almond {beta}-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the K{sub m} values for the S- and O-glycosides are similar, the k{sub cat} values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k{sub cat}/K{sub m} for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pK{sub a} 4.5) and a protonated group (pK{sub a} 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active {beta}-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.

  11. Iridium-Catalyzed Hydrogen Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Saidi, Ourida; Williams, Jonathan M. J.

    This chapter describes the application of iridium complexes to catalytic hydrogen transfer reactions. Transfer hydrogenation reactions provide an alternative to direct hydrogenation for the reduction of a range of substrates. A hydrogen donor, typically an alcohol or formic acid, can be used as the source of hydrogen for the reduction of carbonyl compounds, imines, and alkenes. Heteroaromatic compounds and even carbon dioxide have also been reduced by transfer hydrogenation reactions. In the reverse process, the oxidation of alcohols to carbonyl compounds can be achieved by iridium-catalyzed hydrogen transfer reactions, where a ketone or alkene is used as a suitable hydrogen acceptor. The reversible nature of many hydrogen transfer processes has been exploited for the racemization of alcohols, where temporary removal of hydrogen generates an achiral ketone intermediate. In addition, there is a growing body of work where temporary removal of hydrogen provides an opportunity for using alcohols as alkylating agents. In this chemistry, an iridium catalyst "borrows" hydrogen from an alcohol to give an aldehyde or ketone intermediate, which can be transformed into either an imine or alkene under the reaction conditions. Return of the hydrogen from the catalyst provides methodology for the formation of amines or C-C bonds where the only by-product is typically water.

  12. Mechanisms of bacterially catalyzed reductive dehalogenation

    SciTech Connect

    Picardal, F.W.

    1992-12-31

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using {sup 14}C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  13. Mechanism of enzyme-catalyzed phospho group transfer

    SciTech Connect

    Hansen, D.E.

    1986-01-01

    To understand more fully the mechanism of enzyme-catalyzed phospho group transfer, the stereochemical course at phosphorus of four enzymes has been determined. First, using adenosine (..gamma..-(S)-/sup 16/O, /sup 17/O, /sup 18/O)triphosphate as the substrate, the reaction catalyzed by creatine kinase has been found to proceed with overall inversion of configuration at phosphorus. Second, using adenosine (..beta..-(S)-/sup 16/O, /sup 17/O, /sup 18/O)diphosphate as the substrate, the reaction catalyzed by adenylate kinase has been found also to proceed with overall inversion. Third, the reaction catalyzed by phosphoenolpyruvate carboxylase has been studied using ((S/sub p/)-/sup 16/O, /sup 17/O)thiophospoenolpyruvate as the substrate in H/sub 2/ /sup 18/O. Fourth, using adenosine 5'-O-((..gamma..S/sub p/)-..beta gamma..-/sup 17/O,..gamma..-/sup 17/O,/sup 18/O)(3-thiotriphosphate) as the substrate, the reaction catalyzed by pyruvate carboxylase has been shown to proceed with inversion at phosphorus. This results rules out the chemically and enzymatically precendented composite mechanism that had been proposed for this enzyme and supports a stepwise pathway again involving the intermediacy of carboxyphosphate. The first pair of results supports the growing body of evidence that enzyme-catalyzed phospho group transfer proceeds by an in-line associative mechanism. The second pair of results eliminate mechanistic suggestions of concerted electrocyclic processes in bicarbonate dependent carboxylation reactions.

  14. Surface-catalyzed air oxidation of hydrazines: Environmental chamber studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of fuel hydrazines were studied in a 6500-liter fluorocarbon-film chamber at 80 to 100 ppm concentrations. First-order rate constants for the reactions catalyzed by aluminum, water-damaged aluminum (Al/Al2O3), stainless steel 304L, galvanized steel and titanium plates with surface areas of 2 to 24 sq m were determined. With 23.8 sq m of Al/Al2O3 the surface-catalyzed air oxidation of hydrazine had a half-life of 2 hours, diimide (N2H2) was observed as an intermediate and traces of ammonia were present in the final product mixture. The Al/Al2O3 catalyzed oxidation of monomethylhydrazine yielded methyldiazine (HN = NCH3) as an intermediate and traces of methanol. Unsymmetrical dimethylhydrazine gave no detectable products. The relative reactivities of hydrazine, MMH and UDMH were 130 : 7.3 : 1.0, respectively. The rate constants for Al/Al2O3-catalyzed oxidation of hydrazine and MMH were proportional to the square of the surface area of the plates. Mechanisms for the surface-catalyzed oxidation of hydrazine and diimide and the formation of ammonia are proposed.

  15. The RimL Transacetylase Provides Resistance to Translation Inhibitor Microcin C

    PubMed Central

    Kazakov, Teymur; Kuznedelov, Konstantin; Semenova, Ekaterina; Mukhamedyarov, Damir; Datsenko, Kirill A.; Metlitskaya, Anastasija; Vondenhoff, Gaston H.; Tikhonov, Anton; Agarwal, Vinayak; Nair, Satish; Van Aerschot, Arthur

    2014-01-01

    Peptide-nucleotide antibiotic microcin C (McC) is produced by some Escherichia coli strains. Inside a sensitive cell, McC is processed, releasing a nonhydrolyzable analog of aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. The product of mccE, a gene from the plasmid-borne McC biosynthetic cluster, acetylates processed McC, converting it into a nontoxic compound. MccE is homologous to chromosomally encoded acetyltransferases RimI, RimJ, and RimL, which acetylate, correspondingly, the N termini of ribosomal proteins S18, S5, and L12. Here, we show that E. coli RimL, but not other Rim acetyltransferases, provides a basal level of resistance to McC and various toxic nonhydrolyzable aminoacyl adenylates. RimL acts by acetylating processed McC, which along with ribosomal protein L12 should be considered a natural RimL substrate. When overproduced, RimL also makes cells resistant to albomycin, an antibiotic that upon intracellular processing gives rise to a seryl-thioribosyl pyrimidine that targets seryl-tRNA synthetase. We further show that E. coli YhhY, a protein related to Rim acetyltransferases but without a known function, is also able to detoxify several nonhydrolyzable aminoacyl adenylates but not processed McC. We propose that RimL and YhhY protect bacteria from various toxic aminoacyl nucleotides, either exogenous or those generated inside the cell during normal metabolism. PMID:25002546

  16. Nickel-catalyzed asymmetric cross-couplings of secondary alkyl electrophiles and photoinduced, copper-catalyzed C-N couplings

    E-print Network

    Choi, Junwon, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    Chapter 1 describes the development of three nickel-catalyzed asymmetric Negishi cross-couplings of secondary alkyl electrophiles via a stereoconvergent process. In Section 1.1, asymmetric Negishi arylations and alkenylations ...

  17. Conservation Kickstart- Catalyzing Conservation Initiatives Worldwide

    NASA Astrophysics Data System (ADS)

    Treinish, G.

    2014-12-01

    Adventurers and Scientists for Conservation (ASC) is a nonprofit organization that collects environmental data to catalyze conservation initiatives worldwide. Adventure athletes have the skills and motivation to reach the most remote corners of the world. ASC utilizes those skills to provide the scientific community with data while providing the outdoor community with purpose beyond the personal high of reaching a summit or rowing across an ocean. We carefully select projects, choosing partnerships that will maximize the impact of ASC volunteers. Each project must have a clear path to a tangible conservation outcome and demonstrate a clear need for our brand of volunteers. We partner with government agencies, universities, and independant reseachers to kickstart data collection efforts around the world. Last year, through a partnership with the Olympic National Forest, 20 volunteers from the Seattle area set up and monitored camera traps in an effort to survey for costal Pacific marten. Our work led to the species' listing as "critically imperiled" with NatureServe. A partnership with the inaugural Great Pacific Race, engaging trans-Pacific rowing teams, searched for microplastics in the Pacific Ocean as part of our ongoing microplastics campaign. In a multi-year partnership with the American Prairie Reserve (APR), ASC volunteer crews live and work on the Reserve collecting wildlife data year round. The data we obtain directly informs the Reserve's wildlife management decisions. On this project, our crews have safely and effectively navigated temperature extremes from -30 degrees to 100+ degrees while traveling in a remote location. We are currently scouting projects in the Okavango Delta of Botswana and the rainforest of Suriname where we will be able to cover large amounts of area in a short periord of time. ASC is at the crossroads of the adventure and coservation science communities. Our approach of answering specific questions by using highly skilled and motivate volunteers ensures that we are able to collect quality data, cost effectively, and in a fraction of the traditional timeframe.

  18. I. Studies on the Metal-Catalyzed Cycloadditions of Isocyanates and Unsaturated Systems and II. Chromium-Catalyzed Synthesis of 1,3-Butadienes via (Silylmethyl)allenes 

    E-print Network

    Duran Galvan, Maria

    2011-10-21

    -1 I. STUDIES ON THE METAL-CATALYZED CYCLOADDITIONS OF ISOCYANATES AND UNSATURATED SYSTEMS AND II. CHROMIUM-CATALYZED SYNTHESIS OF 1,3-BUTADIENES VIA (SILYLMETHYL)ALLENES A Dissertation by MARIA DURAN GALVAN Submitted to the Office...-Catalyzed Cycloadditions of Isocyanates and Unsaturated Systems and II. Chromium-Catalyzed Synthesis of 1,3-Butadienes via (Silylmethyl)allenes Copyright 2011 Mar?a Dur?n Galv?n I. STUDIES ON THE METAL-CATALYZED CYCLOADDITIONS OF ISOCYANATES AND UNSATURATED...

  19. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides.

    PubMed

    Shaughnessy, Kevin H

    2015-01-01

    Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides. PMID:26007192

  20. Nickel-catalyzed coupling reactions and synthetic studies toward ent-dioxepandehydrothyrsiferol via an epoxide-opening cascade

    E-print Network

    Ng, Sze-Sze

    2008-01-01

    Nickel-Catalyzed Coupling Reactions. Nickel-catalyzed allene--aldehyde coupling and alkene--aldehyde coupling represent two methods of preparing allylic alcohols. Most asymmetric transition metal-catalyzed methods of ...

  1. Amino acid catalyzed neogenesis of carbohydrates: a plausible ancient transformation.

    PubMed

    Córdova, Armando; Ibrahem, Ismail; Casas, Jesús; Sundén, Henrik; Engqvist, Magnus; Reyes, Efraim

    2005-08-01

    Hexose sugars play a fundamental role in vital biochemical processes and their biosynthesis is achieved through enzyme-catalyzed pathways. Herein we disclose the ability of amino acids to catalyze the asymmetric neogenesis of carbohydrates by sequential cross-aldol reactions. The amino acids mediate the asymmetric de novo synthesis of natural L- and D-hexoses and their analogues with excellent stereoselectivity in organic solvents. In some cases, the four new stereocenters are assembled with almost absolute stereocontrol. The unique feature of these results is that, when an amino acid is employed as the catalyst, a single reaction sequence can convert a protected glycol aldehyde into a hexose in one step. For example, proline and its derivatives catalyze the asymmetric neogenesis of allose with >99 % ee in one chemical manipulation. Furthermore, all amino acids tested catalyzed the asymmetric formation of natural sugars under prebiotic conditions, with alanine being the smallest catalyst. The inherent simplicity of this catalytic process suggests that a catalytic prebiotic "gluconeogenesis" may occur, in which amino acids transfer their stereochemical information to sugars. In addition, the amino acid catalyzed stereoselective sequential cross-aldol reactions were performed as a two-step procedure with different aldehydes as acceptors and nucleophiles. The employment of two different amino acids as catalysts for the iterative direct aldol reactions enabled the asymmetric synthesis of deoxysugars with >99 % ee. In addition, the direct amino acid catalyzed C(2)+C(2)+C(2) methodology is a new entry for the short, highly enantioselective de novo synthesis of carbohydrate derivatives, isotope-labeled sugars, and polyketide natural products. The one-pot asymmetric de novo syntheses of deoxy and polyketide carbohydrates involved a novel dynamic kinetic asymmetric transformation (DYKAT) mediated by an amino acid. PMID:15929141

  2. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    PubMed Central

    Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar

    2014-01-01

    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642

  3. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    SciTech Connect

    Qinhua Huang

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I{sub 2}, ICl, PhSeCl, PhSCl and p-O{sub 2}NC{sub 6}H{sub 4}SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that these palladium-catalyzed C-H activation reactions parallel electrophilic aromatic substitution. A relatively efficient synthesis of cyclopropanes has been developed using palladium-catalyzed C-H activation chemistry, in which two new carbon-carbon bonds are formed in a single step. This method involves the palladium-catalyzed activation of relatively unreactive C-H bonds, and provides a very efficient way to synthesize cyclopropapyrrolo[1,2-a]indoles, analogues of the mitomycin antibiotics.

  4. Recent advances in copper-catalyzed asymmetric coupling reactions

    PubMed Central

    2015-01-01

    Summary Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds.

  5. Molecular Mechanism by which One Enzyme Catalyzes Two Reactions

    NASA Astrophysics Data System (ADS)

    Nishimasu, Hiroshi; Fushinobu, Shinya; Wakagi, Takayoshi

    Unlike ordinary enzymes, fructose-1,6-bisphosphate (FBP) aldolase/phosphatase (FBPA/P) catalyzes two distinct reactions : (1) the aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate to FBP, and (2) the dephosphorylation of FBP to fructose-6-phosphate. We solved the crystal structures of FBPA/P in complex with DHAP (its aldolase form) and FBP (its phosphatase form). The crystal structures revealed that FBPA/P exhibits the dual activities through a dramatic conformational change in the active-site architecture. Our findings expand the conventional concept that one enzyme catalyzes one reaction.

  6. Palladium Catalyzed Aerobic Dehydrogenation: From Alcohols to Indoles and Asymmetric Catalysis

    E-print Network

    Stoltz, Brian M.

    Palladium Catalyzed Aerobic Dehydrogenation: From Alcohols to Indoles and Asymmetric Catalysis Brian M. Stoltz (Received February 12, 2004; CL-048001) Abstract Catalytic aerobic dehydrogenation- posed to asymmetric induction). Recently, increasing interest in the use of palladium catalyzed aerobic

  7. The Resolution of Important Pharmaceutical Building Blocks by Palladium-Catalyzed Aerobic Oxidation of Secondary Alcohols

    E-print Network

    Stoltz, Brian M.

    The Resolution of Important Pharmaceutical Building Blocks by Palladium-Catalyzed Aerobic Oxidation. Abstract: The palladium-catalyzed aerobic oxidative kinetic resolution of key pharmaceutical building selective aerobic oxidative kinetic resolu- tion yet described. Keywords: asymmetric catalysis; kinetic

  8. Diastereoselective Intermolecular Rhodium-Catalyzed [4 + 2 + 2] Carbocyclization Reactions: Computational and Experimental Evidence for

    E-print Network

    Baik, Mu-Hyun

    Diastereoselective Intermolecular Rhodium-Catalyzed [4 + 2 + 2] Carbocyclization Reactions@indiana.edu (M.-H.B.); paevans@indiana.edu (P.A.E.) Intermolecular rhodium-catalyzed [m + n + o] reactions of 1-directed synthesis.1 We recently reported a diastereoselective intermolecular rhodium-catalyzed [4 + 2 + 2

  9. Au-catalyzed isomerization of cyclopropenes: a novel approach to indene derivatives

    E-print Network

    Wang, Jianbo

    Au-catalyzed isomerization of cyclopropenes: a novel approach to indene derivatives Changkun Li, Yi online 5 April 2009 Keywords: Cyclopropene Au-catalyzed reaction Isomerization Indene a b s t r a c t Au demonstrated that Rh(II) car- bene species can be generated by Rh(II)-catalyzed isomerization of cyclopropenes

  10. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    ERIC Educational Resources Information Center

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  11. Palladium-Catalyzed Cross-Coupling of r-Diazocarbonyl Compounds with Arylboronic Acids

    E-print Network

    Wang, Jianbo

    Palladium-Catalyzed Cross-Coupling of r-Diazocarbonyl Compounds with Arylboronic Acids Cheng Peng interest is focused on the development of new methodology based on palladium-catalyzed reactions of R the palladium-catalyzed reaction has received only limited attentions.5-7 We have conceived that the combination

  12. Palladium-catalyzed reaction of allyl halides with a-diazocarbonyl Shufeng Chen and Jianbo Wang*

    E-print Network

    Wang, Jianbo

    Palladium-catalyzed reaction of allyl halides with a-diazocarbonyl compoundsw Shufeng Chen-Allylic palladium complexes are important intermediates in palladium-catalyzed reactions.1 The p-allylic palladium,3-dicarbonyl compounds.2 In connection to our recent interest in the palladium-catalyzed reaction of diazo

  13. Reduction of Intrinsic Kinetic and Thermodynamic Barriers for Enzyme-catalyzed Proton Transfers from

    E-print Network

    Spiteri, Raymond J.

    1 Reduction of Intrinsic Kinetic and Thermodynamic Barriers for Enzyme-catalyzed Proton Transfers. Phone: (902) 494-1974; fax: (902) 494-1355; e-mail: sbearne@dal.ca Running Title: Enzyme-catalyzed Proton Transfers #12;2 Abstract Many enzymes catalyze the heterolytic abstraction of the -proton from

  14. Gold-Catalyzed Cross-Coupling DOI: 10.1002/anie.201402924

    E-print Network

    Toste, Dean

    Gold-Catalyzed Cross-Coupling DOI: 10.1002/anie.201402924 Gold-Catalyzed Allylation of Aryl Boronic Acids: Accessing Cross- Coupling Reactivity with Gold** Mark D. Levin and F. Dean Toste* Abstract: A sp3 ­sp2 CÀC cross-coupling reaction catalyzed by gold in the absence of a sacrificial oxidant

  15. FOCUS REVIEW N-Heterocyclic carbene-catalyzed dimerization,

    E-print Network

    Cai, Long

    FOCUS REVIEW N-Heterocyclic carbene-catalyzed dimerization, cyclotetramerization and polymerization of Michael acceptors Shin-ichi Matsuoka N-Heterocyclic carbenes (NHCs), which were first isolated, however, Arduengo et al. made a major breakthrough in isolating the first crystalline nucleophilic N-heterocyclic

  16. Copper-catalyzed direct C-H fluoroalkenylation of heteroarenes.

    PubMed

    Rousée, Kevin; Schneider, Cédric; Bouillon, Jean-Philippe; Levacher, Vincent; Hoarau, Christophe; Couve-Bonnaire, Samuel; Pannecoucke, Xavier

    2016-01-01

    Copper-catalyzed direct C-H fluoroalkenylation of heterocycles using various gem-bromofluoroalkenes as electrophiles is reported. This efficient method offers step-economical, low-cost and stereocontrolled access to relevant heteroarylated monofluoroalkenes. The synthesis of fluorinated analogues of biomolecules and therapeutic agents for the treatment of Duchenne muscular dystrophy as application is reported. PMID:26603641

  17. Metal-Catalyzed Cleavage of tRNA[superscript Phe

    ERIC Educational Resources Information Center

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.

    2008-01-01

    This laboratory project is one component of a semester-long advanced biochemistry laboratory course that uses several complementary techniques to study tRNA[superscript Phe] conformational changes induced by ligand binding. In this article we describe a set of experiments in which students assay metal-catalyzed hydrolysis of tRNA[superscript Phe]…

  18. Ruthenium-catalyzed C–H activation of thioxanthones

    PubMed Central

    Wagner, Danny

    2015-01-01

    Summary Thioxanthones – being readily available in one step from thiosalicylic acid and arenes – were used in ruthenium-catalyzed C–H-activation reaction to produce 1-mono- or 1,8-disubstituted thioxanthones in good to excellent yields. Scope and limitation of this reaction are presented. PMID:25977717

  19. Highly Enantioselective Cyclocarbonylation of Allylic Alcohols Catalyzed by Novel

    E-print Network

    Zhang, Xumu

    alcohols with dialkyl substitution at the R position (geminal dialkyl effect) (1 to 2, Scheme 1). Herein weHighly Enantioselective Cyclocarbonylation of Allylic Alcohols Catalyzed by Novel Pd-1 are funda- mentally important organic transformations.1,3 Despite the great potential of asymmetric

  20. Gold-catalyzed cyclopropanation reactions using a carbenoid precursor toolbox.

    PubMed

    Qian, Deyun; Zhang, Junliang

    2015-02-01

    Homogeneous gold-catalyzed cyclopropanation has emerged as a powerful method in organic synthesis due to its rich chemistry and fascinating reactivity. This thriving strategy is remarkable for its mild conditions, good selectivity, and high efficiency, which provides complementarity and orthogonality to traditional metal-catalyzed cyclopropanation. This review summarizes recent advances in gold-catalyzed cyclopropanation divided by the type of carbenoid precursors. Besides the commonly used diazo compounds, current approaches enable readily available enynes, propargyl esters, cyclopropenes, cycloheptatrienes, alkynes, and sulfonium ylides as safer surrogates in the realm of gold carbenoid chemistry. Meanwhile, these reactions allow for the rapid building of molecular complexity including synthetically useful and intricate cyclic, heterocyclic, and polycyclic skeletons. The combination of the new reactivity of gold complexes with their capability to catalyze cyclopropanations may lead to myriad opportunities for the design of new reactions. Furthermore, the synthetic utilities of such superior methods have also been illustrated by the total syntheses of selected natural and biologically interesting products and the asymmetric formation of challenging target molecules. PMID:25522173

  1. Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.

    ERIC Educational Resources Information Center

    Polichnowski, S. W.

    1986-01-01

    Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)

  2. ACID CATALYZED SYNTHESIS OF HYPERBRANCHED POLY(GLYCEROL-DIACID) OLIGOMERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel oligomeric prepolymers were synthesized by acid-catalyzed condensation of glycerol with iminodiacetic, azelaic, or succinic acid. The prepolymers were obtained, on average in 62% yield and were characterized by 13C NMR, 1H NMR, MALDI-TOF mass spectrometry, and GPC. The synthesized oligomers ...

  3. Iron-Catalyzed Heterocycle and Arene Deprotonative Alkylation

    PubMed Central

    Tran, Ly Dieu; Daugulis, Olafs

    2010-01-01

    A method for iron-catalyzed deprotonative alkylation of arene C-H bonds by alkyl iodides and bromides has been developed. In the presence of an amide base, both primary and secondary alkyl halides can be coupled with furans, thiophenes, pyridine derivatives, and some electron-withdrawing-group containing arenes. PMID:20825168

  4. Peptide-catalyzed kinetic resolution of planar-chiral metallocenes.

    PubMed

    Akiyama, Midori; Akagawa, Kengo; Seino, Hidetake; Kudo, Kazuaki

    2014-07-25

    Kinetic resolution of racemic planar-chiral metallocenes was performed through the conjugate addition of a nucleophile to the enal part of substrates. While no enantiomeric discrimination was found with low-molecular-weight organocatalysts, a properly designed resin-supported peptide catalyzed the reaction in a highly selective manner. PMID:24911997

  5. Surface-Catalyzed Chromium(VI) Reduction: The

    E-print Network

    Deng, Baolin

    Surface-Catalyzed Chromium(VI) Reduction: The TiO2-CrVI-Mandelic Acid System B A O L I N D E N G on chromium solid/solution partitioning and subsurface mi- gration rates. The oxidation of CrIII by molecular

  6. Palladium-Catalyzed Direct Functionalization of Imidazolinone: Synthesis of Dibromophakellstatin

    E-print Network

    Chen, Chuo

    Palladium-Catalyzed Direct Functionalization of Imidazolinone: Synthesis of Dibromophakellstatin arylation of imidazolinone (1) with 6 different palladium sources, 15 different phosphine ligands, 12 of palladium(0) to aryl bromide in these cases. For the synthesis of dibromophakellstatin, phthalimide 11 can

  7. ?-Alumina Nanoparticle Catalyzed Efficient Synthesis of Highly Substituted Imidazoles.

    PubMed

    Reddy, Bandapalli Palakshi; Vijayakumar, Vijayaparthasarathi; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah

    2015-01-01

    ?-Alumina nano particle catalyzed multi component reaction of benzil, arylaldehyde and aryl amines afforded the highly substituted 1,2,4,5-tetraaryl imidazoles with good to excellent yield in less reaction time under the sonication as well as the conventional methods. Convenient operational simplicity, mild conditions and the reusability of catalyst were the other advantages of this developed protocol. PMID:26506334

  8. Cu(II) - Catalyzed Hydrazine Reduction of Ferrous Nitrate

    SciTech Connect

    Karraker, D.G.

    2001-10-15

    This report discusses the results of a study of catalyzed hydrazine reduction of ferrous nitrate. It is apparent that there is a substantial reaction between hydrazine and nitrate ion (or nitric acid) to produce HN3 during both the reduction of Fe(III) and during storage at room temperature.

  9. Palladium-Catalyzed Direct C=H Functionalization of Benzoquinone**

    PubMed Central

    Walker, Sarah E; Jordan-Hore, James A; Johnson, David G; Macgregor, Stuart A; Lee, Ai-Lan

    2014-01-01

    A direct Pd-catalyzed C=H functionalization of benzoquinone (BQ) can be controlled to give either mono- or disubstituted BQ, including the installation of two different groups in a one-pot procedure. BQ can now be directly functionalized with aryl, heteroaryl, cycloalkyl, and cycloalkene groups and, moreover, the reaction is conducted in environmentally benign water or acetone as solvents. PMID:25302965

  10. Asymmetric gold-catalyzed lactonizations in water at room temperature**

    PubMed Central

    Handa, Sachin; Lippincott, Daniel J.; Slack, Eric D.; Aue, Donald H.

    2014-01-01

    Asymmetric gold-catalyzed hydrocarboxylations are reported that show broad substrate scope. The hydrophobic effect associated with in situ-formed aqueous nanomicelles leads to good-to-excellent ee’s of product lactones. In-flask product isolation, along with recycling of the catalyst and reaction medium, combine to arrive at an especially environmentally friendly process. PMID:25124085

  11. Synthesis of Indolizine Derivatives by Pd-Catalyzed Oxidative Carbonylation.

    PubMed

    Xu, Tongyu; Alper, Howard

    2015-09-18

    An efficient synthesis of indolizine derivatives by palladium-catalyzed oxidative carbonylation of propargylic pyridines has been developed. The reaction can be conducted at room temperature and under 3 bar of CO in the presence of Pd2(dba)3 or Pd/C. The catalyst Pd/C could be easily removed from the reaction and recycled. PMID:26331787

  12. Electrooxidation of Alcohols Catalyzed by Amino Alcohol Ligated Ruthenium Complexes

    E-print Network

    Zare, Richard N.

    Electrooxidation of Alcohols Catalyzed by Amino Alcohol Ligated Ruthenium Complexes Kristen R-plane graphite electrodes are active electrocatalysts for the oxidation of alcohols. Electrooxidation of CH3OH (1 Alcohols are attractive chemical fuels for fuel cells due to their high energy densities, established

  13. Acid-catalyzed dehydrogenation of amine-boranes

    DOEpatents

    Stephens, Frances Helen (Santa Fe, NM); Baker, Ralph Thomas (Los Alamos, NM)

    2010-01-12

    A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.

  14. Silver-catalyzed protodecarboxylation of heteroaromatic carboxylic acids.

    PubMed

    Lu, Pengfei; Sanchez, Carolina; Cornella, Josep; Larrosa, Igor

    2009-12-17

    A simple and highly efficient protodecarboxylation procedure for a variety of heteroaromatic carboxylic acids catalyzed by Ag(2)CO(3) and AcOH in DMSO is described. This methodology can also perform the selective monoprotodecarboxylation of several aromatic dicarboxylic acids. PMID:19924891

  15. Palladium-catalyzed synthesis of functionalized tetraarylphosphonium salts.

    PubMed

    Marcoux, David; Charette, André B

    2008-01-18

    An efficient method to synthesize functionalized tetraarylphosphonium salts is described. This palladium-catalyzed coupling reaction between aryl iodides, bromides, or triflates and triphenylphosphine generates phosphonium salts in high yields. The coupling is compatible with a variety of functional groups such as alcohols, ketones, aldehydes, phenols, and amides. PMID:18154356

  16. Development of a Lewis Base Catalyzed Selenocyclization Reaction

    ERIC Educational Resources Information Center

    Collins, William

    2009-01-01

    The concept of Lewis base activation of selenium Lewis acids has been effectively reduced to practice in the Lewis base catalyzed selenofunctionalization of unactivated olefins. In this reaction, the weakly acidic species, "N"-phenylselenyl succinimide, is cooperatively activated by the addition of a "soft" Lewis base donor (phosphine sulfides,…

  17. Helium Catalyzed D-D Fusion in a Levitated Dipole

    E-print Network

    Helium Catalyzed D-D Fusion in a Levitated Dipole Jay Kesner, P.J. Catto, N. Krasheninnikova MIT M are satisfied the two modes may be present or absent in a closed-field line magnetic confinement geometry. The radial eigenmode is seen to effect the saturation level of the mode. In the Levitated Dipole Experiment

  18. Asymmetric Rh-Catalyzed Hydrogenation of Enamides with a Chiral

    E-print Network

    Zhang, Xumu

    Asymmetric Rh-Catalyzed Hydrogenation of Enamides with a Chiral 1,4-Bisphosphine Bearing- workers have reported that Rh complexes bearing the electron-rich DuPhos- and BPE-type ligands were ef that analogous Rh-chiral bisphosphines bearing diphenylphosphino groups (e.g., BINAP, DIOP, and CHIRAPHOS) led

  19. Palladium(III)-Catalyzed Fluorination of Arylboronic Acid Derivatives

    PubMed Central

    Tang, Pingping; Murphy, Jennifer M.; Ritter, Tobias

    2013-01-01

    A practical, palladium-catalyzed synthesis of aryl fluorides from arylboronic acid derivatives is presented. The reaction is operationally simple and amenable to multi-gram-scale synthesis. Evaluation of the reaction mechanism suggests a single-electron-transfer pathway, involving a Pd(III) intermediate that has been isolated and characterized. PMID:24040932

  20. Aerobic Nickel-Catalyzed Hydroxysulfonylation of Alkenes Using Sodium Sulfinates.

    PubMed

    Taniguchi, Nobukazu

    2015-08-01

    Nickel-catalyzed hydroxysulfonylation of alkenes was achieved using sodium sulfinates under air atmosphere. The procedure enabled the selective synthesis of ?-hydroxysulfones in good yields and suppressed the formation of ?-ketosulfones. On the contrary, sulfonylation of alkynes with sodium sulfonates afforded only ?-ketosulfones. PMID:26154403

  1. Copper-catalyzed stereoselective conjugate addition of alkylboranes to alkynoates

    PubMed Central

    Wakamatsu, Takamichi; Nagao, Kazunori

    2015-01-01

    Summary A copper-catalyzed conjugate addition of alkylboron compounds (alkyl-9-BBN, prepared by hydroboration of alkenes with 9-BBN-H) to alkynoates to form ?-disubstituted acrylates is reported. The addition occurred in a formal syn-hydroalkylation mode. The syn stereoselectivity was excellent regardless of the substrate structure. A variety of functional groups were compatible with the conjugate addition.

  2. Ligand-Controlled Regiodivergent Copper-Catalyzed Alkylboration of Alkenes.

    PubMed

    Su, Wei; Gong, Tian-Jun; Lu, Xi; Xu, Meng-Yu; Yu, Chu-Guo; Xu, Zheng-Yang; Yu, Hai-Zhu; Xiao, Bin; Fu, Yao

    2015-10-26

    A novel copper-catalyzed regiodivergent alkylboration of alkenes with bis(pinacolato)diboron and alkyl halides has been developed. The regioselectivity of the alkylboration was controlled by subtle differences in the ligand structure. The reaction thus enables the practical, regiodivergent synthesis of two different alkyl boronic esters with complex structures from a single alkene. PMID:26338141

  3. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    ERIC Educational Resources Information Center

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)

  4. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  5. Ruthenium-Catalyzed Cascade C—H Functionalization of Phenylacetophenones**

    PubMed Central

    Mehta, Vaibhav P; García-López, José-Antonio; Greaney, Michael F

    2014-01-01

    Three orthogonal cascade C—H functionalization processes are described, based on ruthenium-catalyzed C—H alkenylation. 1-Indanones, indeno indenes, and indeno furanones were accessed through cascade pathways by using arylacetophenones as substrates under conditions of catalytic [{Ru(p-cymene)Cl2}2] and stoichiometric Cu(OAc)2. Each transformation uses C—H functionalization methods to form C—C bonds sequentially, with the indeno furanone synthesis featuring a C—O bond formation as the terminating step. This work demonstrates the power of ruthenium-catalyzed alkenylation as a platform reaction to develop more complex transformations, with multiple C—H functionalization steps taking place in a single operation to access novel carbocyclic structures. PMID:24453063

  6. Iron-catalyzed diboration and carboboration of alkynes.

    PubMed

    Nakagawa, Naohisa; Hatakeyama, Takuji; Nakamura, Masaharu

    2015-03-01

    An iron-catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis-1,2-diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron-catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates. PMID:25631242

  7. Chiral ?-Lactams by Enantioselective Palladium(0)-Catalyzed Cyclopropane Functionalizations.

    PubMed

    Pedroni, Julia; Cramer, Nicolai

    2015-09-28

    Cyclopropanes fused to pyrrolidines are important structural features found in a number of marketed drugs and development candidates. Typically, their synthesis involves the cyclopropanation of a dihydropyrrole precursor. Reported herein is a complementary approach which employs a palladium(0)-catalyzed C?H functionalization of an achiral cyclopropane to close the pyrrolidine ring in an enantioselective manner. In contrast to aryl-aryl couplings, palladium(0)-catalyzed C?H functionalizations involving the formation of C(sp(3) )?C(sp(3) ) bonds of saturated heterocycles are very scarce. The presented strategy yields cyclopropane-fused ?-lactams from chloroacetamide substrates. A bulky Taddol phosphonite ligand in combination with adamantane-1-carboxylic acid as a cocatalyst provides the ?-lactams in excellent yields and enantioselectivities. PMID:26271618

  8. Phospholipase D-catalyzed transphosphatidylation in anhydrous organic solvents.

    PubMed

    Rich, J O; Khmelnitsky, Y L

    2001-02-01

    A new reaction system suitable for phospholipase D (PLD)-catalyzed transphosphatidylation of alcohols with phosphatidylcholine under anhydrous conditions is reported. The key innovation of the reaction system is a cation-exchange resin serving as a scavenger for choline that forms as a byproduct in the transphosphatidylation reaction. Due to the absence of water in this system, the reaction path dramatically shifts in favor of the target transphosphatidylated product, whereas the undesirable side hydrolysis of phosphatidylcholine is completely suppressed, in contrast to commonly used biphasic water-organic systems. In addition, a salt activation technique is successfully applied to increase the catalytic activity of PLD in this anhydrous system. The new reaction system is successfully used for transphosphatidylation of a wide range of primary, secondary, and aromatic alcohols catalyzed by PLD from Streptomyces sp. PMID:11135209

  9. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    SciTech Connect

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  10. Iron-catalyzed electrochemical C-H perfluoroalkylation of arenes.

    PubMed

    Khrizanforov, Mikhail; Strekalova, Sofia; Khrizanforova, Vera; Grinenko, Valeriya; Kholin, Kirill; Kadirov, Marsil; Burganov, Timur; Gubaidullin, Aidar; Gryaznova, Tatyana; Sinyashin, Oleg; Xu, Long; Vicic, David A; Budnikova, Yulia

    2015-12-01

    A new iron-catalyzed reaction for the coupling of perfluoroalkyl iodides (RFI) with aromatic substrates is described. The perfluoroalkylated arene products are obtained in good to excellent yields in the presence of a [(bpy)Fe(ii)] catalyst (10%) electrochemically regenerated or generated from [(bpy)Fe(iii)] at room temperature. The development, scope, and preliminary mechanistic studies of these transformations are reported. PMID:26459803

  11. Computational kinetics of cobalt-catalyzed alkene hydroformylation.

    PubMed

    Rush, Laura E; Pringle, Paul G; Harvey, Jeremy N

    2014-08-11

    Density functional theory, coupled-cluster theory, and transition state theory are used to build a computational model of the kinetics of phosphine-free cobalt-catalyzed hydroformylation and hydrogenation of alkenes. The model provides very good agreement with experiment, and enables the factors that determine the selectivity and rate of catalysis to be determined. The turnover rate is mainly determined by the alkene coordination step. PMID:24700408

  12. Electrophilic phosphonium cations catalyze hydroarylation and hydrothiolation of olefins.

    PubMed

    Pérez, Manuel; Mahdi, Tayseer; Hounjet, Lindsay J; Stephan, Douglas W

    2015-06-30

    Electrophilic phosphonium cations (EPCs) are efficient main group catalysts for the hydroarylation of olefins under mild conditions, providing a facile route to substituted aniline, bis-arylamine, phenol, furan, thiophene, pyrrole, and indole derivatives. Similarly, EPCs catalyze the hydrothiolation of aryl olefins with thiophenol affording a series of alkyl aryl thioethers. Experimental data support a mechanism for these reactions that involves initial activation of the olefin. PMID:26083901

  13. Comparing Ru and Fe-catalyzed olefin metathesis.

    PubMed

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (? 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. PMID:24821502

  14. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    PubMed Central

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields.

  15. Palladium-catalyzed decarboxylative trifluoroethylation of aryl alkynyl carboxylic acids.

    PubMed

    Hwang, Jinil; Park, Kyungho; Choe, Juseok; Min, Hongkeun; Song, Kwang Ho; Lee, Sunwoo

    2014-04-01

    A trifluoroethylation of alkynes through a palladium-catalyzed decarboxylative coupling reaction was developed. When alkynyl carboxylic acids and ICH2CF3 were allowed to react with [Pd(?(3)-allyl)Cl]2/XantPhos and Cs2CO3 in N,N-dimethylformamide (DMF) at 80 °C for 1 h, the desired products were formed in good yields. This catalytic system showed high functional group tolerance. PMID:24628537

  16. Biaryl Phosphine Ligands in Palladium-Catalyzed Amination

    PubMed Central

    Surry, David S.

    2012-01-01

    Palladium-catalyzed amination of aryl halides has undergone rapid development in the last 12 years. This has been largely driven by implementation of new classes of ligands. Biaryl phosphines have proven to provide especially active catalysts in this context. This review discusses the applications that these catalysts have found in C-N cross-coupling in heterocycle synthesis, pharmaceuticals, materials science and natural product synthesis. PMID:18663711

  17. [Synthesis of carbohydrate related compounds by using aldolase catalyzed reaction].

    PubMed

    Kajimoto, T

    2000-01-01

    Enzymes proceed the reaction with high regio- and stereoselectivity under mild conditions, i.e. in an aqueous medium at room temperature. However, enzymatic reactions that catalyze carbon-carbon bond formation have not been utilized in organic synthesis until recently. We had an interest in an aldolase-catalyzed reaction which proceed carbon-carbon bond formation referred to aldol condensation, by which many bioactive compounds have been rationally synthesized. On the other hand, recent biological studies on cell recognition (cell adhesion) have disclosed the important roles of oligosaccharides on cell surfaces, especially which include glucuronic acid, 3-deoxy-D-manno-oct-2-ulosonic acid (KDO), and sialic acid in the structures e.g., sialyl Lewis X and endotoxins, in differentiation, induction, viral and bacterial infections, and immune response. As well as acidic oligosaccharides, basic ones have been utilized as practical medicines in the clinical level, like acarbose that acts as an amylase inhibitor. Based on these background, we embarked the synthesis of carbohydrate related compounds which can control the interaction between carbohydrates and carbohydrate recognition protein by the use of several aldolases. Azasugars, potent inhibitors toward glycosidases, were synthesized using fructose-1,6-diphosphate (FDP)-aldolase and other dihdroxyacetonephosphate (DHAP)-dependent aldolases in the key step. Sialyl Lewis X mimetic, peptidic mimetic of RNA having anti-Vero toxin activity, mycestericin D, and aza-idulonic acid were prepared by taking advantage of L-threonine aldolase catalyzed reaction, which afford beta-hydroxy-alpha-L-amino acids. A precursor of KDO, featured acidic sugar of endotoxins was provided by the reaction catalyzed with kynureninase, which generates beta-anion of L-alanine in its active site during the metabolic reaction from kynurenine to anthranilic acid. PMID:10655781

  18. The gravitino-stau scenario after catalyzed big bang nucleosynthesis

    SciTech Connect

    Kersten, Joern; Schmidt-Hoberg, Kai E-mail: kai.schmidt-hoberg@ph.tum.de

    2008-01-15

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m{sub 1/2}. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.

  19. Rhodium(II)-catalyzed enantioselective synthesis of troponoids.

    PubMed

    Murarka, Sandip; Jia, Zhi-Jun; Merten, Christian; Daniliuc, Constantin-G; Antonchick, Andrey P; Waldmann, Herbert

    2015-06-22

    We report a rhodium(II)-catalyzed highly enantioselective 1,3-dipolar cycloaddition reaction between the carbonyl moiety of tropone and carbonyl ylides to afford troponoids in good to high yields with excellent enantioselectivity. We demonstrate that ?-diazoketone-derived carbonyl ylides, in contrast to carbonyl ylides derived from diazodiketoesters, undergo [6+3] cycloaddition reactions with tropone to yield the corresponding bridged heterocycles with excellent stereoselectivity. PMID:25959033

  20. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase.

    PubMed

    Godber, B L; Doel, J J; Sapkota, G P; Blake, D R; Stevens, C R; Eisenthal, R; Harrison, R

    2000-03-17

    Xanthine oxidase (XO) was shown to catalyze the reduction of nitrite to nitric oxide (NO), under anaerobic conditions, in the presence of either NADH or xanthine as reducing substrate. NO production was directly demonstrated by ozone chemiluminescence and showed stoichiometry of approximately 2:1 versus NADH depletion. With xanthine as reducing substrate, the kinetics of NO production were complicated by enzyme inactivation, resulting from NO-induced conversion of XO to its relatively inactive desulfo-form. Steady-state kinetic parameters were determined spectrophotometrically for urate production and NADH oxidation catalyzed by XO and xanthine dehydrogenase in the presence of nitrite under anaerobic conditions. pH optima for anaerobic NO production catalyzed by XO in the presence of nitrite were 7.0 for NADH and

  1. Stau-catalyzed big-bang nucleosynthesis reactions

    SciTech Connect

    Kamimura, Masayasu; Kino, Yasushi; Hiyama, Emiko

    2010-06-01

    We study the new type of big-bang nucleosynthesis (BBN) reactions that are catalyzed by a hypothetical long-lived negatively charged, massive leptonic particle (called X{sup -}) such as the supersymmetric (SUSY) particle stau, the scalar partner of the tau lepton. It is known that if the X{sup -} particle has a lifetime of tau{sub X} > or approx. 10{sup 3} s, it can capture a light element previously synthesized in standard BBN and form a Coulombic bound state and induces various types of reactions in which X{sup -} acts as a catalyst. Some of these X{sup -} catalyzed reactions have significantly large cross sections so that the inclusion of the reactions into the BBN network calculation can markedly change the abundances of some elements. We use a high-accuracy three-body calculation method developed by the authors and provide precise cross sections and rates of these catalyzed BBN reactions for use in the BBN network calculation.

  2. Aspergillus parasiticus Cyclase Catalyzes Two Dehydration Steps in Aflatoxin Biosynthesis

    PubMed Central

    Sakuno, Emi; Wen, Ying; Hatabayashi, Hidemi; Arai, Hatsue; Aoki, Chiemi; Yabe, Kimiko; Nakajima, Hiromitsu

    2005-01-01

    In the aflatoxin biosynthetic pathway, 5?-oxoaverantin (OAVN) cyclase, the cytosolic enzyme, catalyzes the reaction from OAVN to (2?S,5?S)-averufin (AVR) (E. Sakuno, K. Yabe, and H. Nakajima, Appl. Environ. Microbiol. 69:6418-6426, 2003). Interestingly, the N-terminal 25-amino-acid sequence of OAVN cyclase completely matched an internal sequence of the versiconal (VHOH) cyclase that was deduced from its gene (vbs). The purified OAVN cyclase also catalyzed the reaction from VHOH to versicolorin B (VB). In a competition experiment using the cytosol fraction of Aspergillus parasiticus, a high concentration of VHOH inhibited the enzyme reaction from OAVN to AVR, and instead VB was newly formed. The recombinant Vbs protein, which was expressed in Pichia pastoris, showed OAVN cyclase activity, as well as VHOH cyclase activity. A mutant of A. parasiticus SYS-4 (= NRRL 2999) with vbs deleted accumulated large amounts of OAVN, 5?-hydroxyaverantin, averantin, AVR, and averufanin in the mycelium. These results indicated that the cyclase encoded by the vbs gene is also involved in the reaction from OAVN to AVR in aflatoxin biosynthesis. Small amounts of VHOH, VB, and aflatoxins also accumulated in the same mutant, and this accumulation may have been due to an unknown enzyme(s) not involved in aflatoxin biosynthesis. This is the first report of one enzyme catalyzing two different reactions in a pathway of secondary metabolism. PMID:15932995

  3. Enantioselective Total Syntheses of (?)-Taiwaniaquinone H and (?)-Taiwaniaquinol B by Iridium-Catalyzed Borylation and Palladium-Catalyzed Asymmetric ?-Arylation

    PubMed Central

    Liao, Xuebin; Stanley, Levi M.; Hartwig, John F.

    2011-01-01

    We report a concise, enantioselective total synthesis of (?)-taiwaniaquinone H and the first enantioselective total synthesis of (?)-taiwaniaquinol B by a route that includes enantioselective, palladium-catalyzed ?-arylation of a ketone with an aryl bromide that was generated by sterically controlled halogenation via iridium-catalyzed C–H borylation. This asymmetric ?-arylation creates the benzylic, quaternary stereogenic center present in the taiwaniaquinoids. The synthesis was completed efficiently by developing a Lewis acid-promoted cascade to construct the [6,5,6] tricyclic core of an intermediate common to the synthesis of a number of taiwaniaquinoids. Through the preparation of these compounds, we demonstrate the utility of constructing benzylic, quaternary, stereogenic centers, even those lacking a carbonyl group in the ?-position, by asymmetric ?-arylation. PMID:21268578

  4. PALLADIUM-CATALYZED DECARBOXYLATIVE ALLYLATIONS OF ESTER ENOLATE EQUIVALENTS AND PALLADIUM-CATALYZED CYCLIZATIONS VIA CO2 AND SILYL ACTIVATION

    E-print Network

    Ariyarathna, Yamuna Kumari

    2014-08-31

    oxide xiii List of Tables Chapter 1 Table 1.1 Catalyst screening .................................................................................................................... 13 Table 1.2 Attempted asymmetric DcA of acyl pyrroles... that palladium-catalyzed allylic alkylation of allyl carbonates could take place under neutral conditions.27 Use of allyl carbonate strategically obviated the need of a base to deprotonate the pro-nucleophile, by producing an alkoxide after oxidative addition...

  5. Gold-catalyzed cyclization reactions of allenol and alkynol derivatives.

    PubMed

    Alcaide, Benito; Almendros, Pedro

    2014-03-18

    Although gold is chemically inert as a bulk metal, the landmark discovery that gold nanoparticles can be effective catalysts has opened up new and exciting research opportunities in the field. In recent years, there has been growth in the number of reactions catalyzed by gold complexes [gold(I) and gold(III)], usually as homogeneous catalysts, because they are soft Lewis acids. In addition, alkynes and allenes have interesting reactivities and selectivities, notably their ability to produce complex structures in very few steps. In this Account, we describe our work in gold catalysis with a focus on the formation of C-C and C-O bonds using allenes and alkynes as starting materials. Of these, oxa- and carbo-cyclizations are perhaps the best known and most frequently studied. We have divided those contributions into sections arranged according to the nature of the starting material (allene versus alkyne). Gold-catalyzed carbocyclizations in allenyl C2-linked indoles, allenyl-?-lactams, and allenyl sugars follow different mechanistic pathways. The cyclization of indole-tethered allenols results in the efficient synthesis of carbazole derivatives, for example. However, the compound produced from gold-catalyzed 9-endo carbocyclization of (aryloxy)allenyl-tethered 2-azetidinones is in noticeable contrast to the 5-exo hydroalkylation product that results from allenyl sugars. We have illustrated the unusual preference for the 4-exo-dig cyclization in allene chemistry, as well as the rare ?-hydride elimination reaction, in gold catalysis from readily available ?-allenols. We have also observed in ?-allenols that a (methoxymethyl)oxy protecting group not only masks a hydroxyl functionality but also exerts directing effects as a controlling unit in a gold-catalyzed regioselectivity reversal. Our recent work has also led to a combined experimental and computational study on regioselective gold-catalyzed synthetic routes to 1,3-oxazinan-2-ones (kinetically controlled products) and 1,3-oxazin-2-one derivatives (thermodynamically favored) from easily accessible allenic carbamates. In addition, we discuss the direct gold-catalyzed cycloketalization of alkynyldioxolanes, as well as aminoketalization of alkynyloxazolidines. We performed labeling studies and density functional calculations to gain insight into the mechanisms of the bis-heterocyclization reactions. We also describe the controlled gold-catalyzed reactions of primary and secondary propargylic hydroperoxides with a variety of nucleophiles including alcohols and phenols, allowing the direct synthesis of ?-functionalized ketones. Through computations and (18)O-labeling experiments, we discovered various aspects of the controlled reactivity of propargylic hydroperoxides with external nucleophiles under gold catalysis. The mechanism resembles a Meyer-Schuster rearrangement, but notably, the presence and geometry characteristics of the OOH functional group allow a new pathway to happen, which cannot apply to propargylic alcohols. PMID:24428670

  6. Enantioselective Rhodium-Catalyzed Allylation of Cyclic Imines with Potassium Allyltrifluoroborates 

    E-print Network

    Hepburn, Hamish B.; Chotsaeng, Nawasit; Luo, Yunfei; Lam, Hon Wai

    2013-01-01

    This Article presents further examples of the enantioselective rhodium-catalyzed addition of potassium allyltrifluoroborates to cyclic imines. A wide range of substituted allyltrifluoroborates are compatible with this ...

  7. Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods

    DOEpatents

    Liu, Di-Jia; Guan, Jie; Minh, Nguyen

    2010-06-08

    A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.

  8. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes

    SciTech Connect

    Zhao, Nan; Ferrer, Jean-Luc; Moon, Hong S; Kapteyn, Jeremy; Zhuang, Xiaofeng; Hasebe, Mitsuyasu; Stewart, Neal C.; Gang, David R.; Chen, Feng

    2012-01-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.

  9. Palladium-Catalyzed Enantioselective Decarboxylative Allylic Alkylation of Cyclopentanones.

    PubMed

    Craig, Robert A; Loskot, Steven A; Mohr, Justin T; Behenna, Douglas C; Harned, Andrew M; Stoltz, Brian M

    2015-11-01

    The first general method for the enantioselective construction of all-carbon quaternary centers on cyclopentanones by enantioselective palladium-catalyzed decarboxylative allylic alkylation is described. Employing the electronically modified (S)-(p-CF3)3-t-BuPHOX ligand, ?-quaternary cyclopentanones were isolated in yields up to >99% with ee's up to 94%. Additionally, in order to facilitate large-scale application of this method, a low catalyst loading protocol was employed, using as little as 0.15 mol % Pd, furnishing the product without any loss in ee. PMID:26501770

  10. Nickel-Catalyzed Allylic Substitution of Simple Alkenes

    PubMed Central

    Matsubara, Ryosuke; Jamison, Timothy F.

    2011-01-01

    This report describes a nickel-catalyzed allylic substitution process of simple alkenes whereby an important structural motif, a 1,4-diene, was prepared. A key for this success is the use of an appropriate Ni-phosphine complex and a stoichiometric amount of silyl triflate. Reactions of 1-alkyl-substituted alkenes consistently provided 1,1-disubstituted alkenes with high selectivity. Insight into the reaction mechanism as well as miscellaneous application of the developed catalytic process is also documented. PMID:21387565

  11. Ruthenium-Catalyzed meta-Selective C—H Bromination

    PubMed Central

    Teskey, Christopher J; Lui, Andrew Y W; Greaney, Michael F

    2015-01-01

    The first example of a transition-metal-catalyzed, meta-selective C–H bromination procedure is reported. In the presence of catalytic [{Ru(p-cymene)Cl2}2], tetrabutylammonium tribromide can be used to functionalize the meta C–H bond of 2-phenylpyridine derivatives, thus affording difficult to access products which are highly predisposed to further derivatization. We demonstrate this utility with one-pot bromination/arylation and bromination/alkenylation procedures to deliver meta-arylated and meta-alkenylated products, respectively, in a single step. PMID:26288217

  12. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    SciTech Connect

    Roman Vladimirovich Rozhkov

    2004-12-19

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a {beta}-hydrogen in the vinylic halide results in {beta}-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the {alpha}-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  13. Disulfonimide-Catalyzed Asymmetric Reduction of N-Alkyl Imines.

    PubMed

    Wakchaure, Vijay N; Kaib, Philip S J; Leutzsch, Markus; List, Benjamin

    2015-09-28

    A chiral disulfonimide (DSI)-catalyzed asymmetric reduction of N-alkyl imines with Hantzsch esters as a hydrogen source in the presence of Boc2 O has been developed. The reaction delivers Boc-protected N-alkyl amines with excellent yields and enantioselectivity. The method tolerates a large variety of alkyl amines, thus illustrating potential for a general reductive cross-coupling of ketones with diverse amines, and it was applied in the synthesis of the pharmaceuticals (S)-Rivastigmine, NPS R-568 Hydrochloride, and (R)-Fendiline. PMID:26382289

  14. Can Chlorine Anion Catalyze the Reaction fo HOCl with HCl?

    NASA Technical Reports Server (NTRS)

    Richardson, S. L.; Francisco, J. S.; Mebel, A. M.; Morokuma, K.

    1997-01-01

    The reaction of HOCl + HCl -> Cl2 + H20 in the presence of Cl has been studied using ab initio methods. This reaction has been shown to have a high activation barrier of 46.5 kcal/mol. The chlorine anion, Cl- is found to catalyze the reaction, viz. two mechanisms. The first involves Cl- interacting through the concerted four-center transition state of the neutral reaction. The other mechanism involves the formation of a HCl-HOCl-Cl- intermediate which dissociates into Cl2 + Cl- + H20. The steps are found to have no barriers. The overall exothermicity is 15.5 kcal/mol.

  15. Ruthenium-Catalyzed meta-Selective C?H Bromination.

    PubMed

    Teskey, Christopher J; Lui, Andrew Y W; Greaney, Michael F

    2015-09-28

    The first example of a transition-metal-catalyzed, meta-selective C?H bromination procedure is reported. In the presence of catalytic [{Ru(p-cymene)Cl2 }2 ], tetrabutylammonium tribromide can be used to functionalize the meta C?H bond of 2-phenylpyridine derivatives, thus affording difficult to access products which are highly predisposed to further derivatization. We demonstrate this utility with one-pot bromination/arylation and bromination/alkenylation procedures to deliver meta-arylated and meta-alkenylated products, respectively, in a single step. PMID:26288217

  16. Kinetics of liquefaction of coal catalyzed by coal minerals

    SciTech Connect

    Singh, C.P.P.; Carr, N.L.

    1987-03-01

    This work describes the development of a fundamental engineering understanding of the kinetics of coal liquefaction using a semiempirical kinetic model for SRC-II coal liquefaction, and experimental data for liquefaction of several bituminous, subbituminous, and lignite coals in the presence of iron pyrite catalysts. The study establishes the applicability of one kinetic model to the liquefaction of widely different coals catalyzed by iron-sulfur catalysts in the coal minerals and/or iron pyrite catalysts. The source of the iron-sulfur catalyst has no effect, whereas H/sub 2/S has a strong inhibitive effect on the rate of hydrogenation reactions.

  17. Coalification by clay-catalyzed oligomerization of plant monomers

    SciTech Connect

    Orchin, M.; Wilson, R.M.

    1991-01-01

    The chemical structure'' of coal, if indeed there is one, remains an enigma. Over the years numerous chemists have integrated a host of experimental observations to generate various average'' structures which differ greatly. Our approach is to regard the structural question of coal as a problem in natural product chemistry. Our model is that of a macromolecular polymer initially synthesized from monomeric naturally-occuring hydroxy and methoxy substituted propenylbenzenes (C{sub 6}-C{sub 3} units), properly aligned to undergo oligomerization reactions via conventional organic reaction mechanisms, specifically Diels-Alder radical cation condensations, phenolic coupling, and proton-catalyzed isomerization and cyclization.

  18. Copper-catalyzed decarboxylative sulfonylation of ?,?-unsaturated carboxylic acids.

    PubMed

    Rokade, Balaji V; Prabhu, Kandikere Ramaiah

    2014-09-01

    Copper-catalyzed, ligand-promoted decarboxylative coupling of readily available ?,?-unsaturated acids with sodium aryl sulfinates is presented. This method provides a new avenue for the synthesis of vinyl sulfones via a decarboxylative radical coupling strategy by employing a catalytic amount of Cu(ClO4)2·6H2O, TBHP in decane as an oxidant, and 1,10-phenanthroline as a ligand. The salient feature of this method is that it furnishes exclusively the (E)-isomer. PMID:25098975

  19. Stau-catalyzed d-t Nuclear Fusion

    E-print Network

    Koichi Hamaguchi; Tetsuo Hatsuda; Masayasu Kamimura; Tsutomu T. Yanagida

    2012-02-13

    The gravitino of mass 10-100 GeV is a well motivated scenario in supergravity. If the stau is the next lightest supersymmetry particle, its life-time becomes order of $10^{6-8}$ sec. If it is the case the stau makes a big impact on the nuclear fusion, since it is a charged particle. In this paper we perform a detailed calculation of a stau-catalyzed d-t fusion. We find that if certain technical conditions are satisfied, it is not hopeless to use the nuclear fusion as a source of energy.

  20. Base-Catalyzed Depolymerization of Lignin: Separation of Monomers

    SciTech Connect

    Vigneault, A.; Johnson, D. K.; Chornet, E.

    2007-12-01

    In our quest for fractionating lignocellulosic biomass and valorizing specific constitutive fractions, we have developed a strategy for the separation of 12 added value monomers generated during the hydrolytic based-catalyzed depolymerization of a Steam Exploded Aspen Lignin. The separation strategy combines liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. LLE, vacuum distillation and flash LC were tested experimentally. Batch vacuum distillation produced up to 4 fractions. Process simulation confirmed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, 3 of which require further chromatography and crystallization for purification.

  1. Criteria for identifying homogeneous transition metal cluster-catalyzed reactions

    SciTech Connect

    Laine, R.M.

    1980-01-01

    Four criteria were developed for distinguishing homogeneous cluster from mononuclear catalysis. A criterion based on reaction kinetics, which distinguishes catalysis by clusters from catalysis by mononuclear complexes in equilibrium with the clusters, is illustrated with the hydroformylation of 1-pentene by Ru/sub 3/(CO)/sub 12/ clusters in equilibrium with 3Ru(CO)/sub 5/ complexes in the presence of CO. A criterion based on selectivity is illustrated by the water gas shift and deuterium-exchange reactions catalyzed by ruthenium and rhodium carbonyl clusters in methanol and triethylamine; the scope of this criterion is limited to deuterium exchange reactions. A criterion based on mixed-metal catalysis, in which a mixed-metal system has higher catalytic activity than each transition metal cluster alone, is illustrated with hydroformylation of 1-pentene and the water gas shift reaction catalyzed by Ru/sub 3/(CO)/sub 12//Fe/sub 3/(CO)/sub 2/ and Rh/sub 6/(CO)/sub 16//Fe/sub 3/(CO)/sub 12/. A criterion based on changes in asymmetric induction is a special case of the selectivity criterion, in which specific starting metal complexes may produce either of two enantiomers. Catalysis by metal clusters is an analytical tool for modeling heterogeneous catalytic mechanisms.

  2. Small molecule screening in context: Lipid-catalyzed amyloid formation

    PubMed Central

    Hebda, James A; Magzoub, Mazin; Miranker, Andrew D

    2014-01-01

    Islet Amyloid Polypeptide (IAPP) is a 37-residue hormone cosecreted with insulin by the ?-cells of the pancreas. Amyloid fiber aggregation of IAPP has been correlated with the dysfunction and death of these cells in type II diabetics. The likely mechanisms by which IAPP gains toxic function include energy independent cell membrane penetration and induction of membrane depolarization. These processes have been correlated with solution biophysical observations of lipid bilayer catalyzed acceleration of amyloid formation. Although the relationship between amyloid formation and toxicity is poorly understood, the fact that conditions promoting one also favor the other suggests related membrane active structural states. Here, a novel high throughput screening protocol is described that capitalizes on this correlation to identify compounds that target membrane active species. Applied to a small library of 960 known bioactive compounds, we are able to report identification of 37 compounds of which 36 were not previously reported as active toward IAPP fiber formation. Several compounds tested in secondary cell viability assays also demonstrate cytoprotective effects. It is a general observation that peptide induced toxicity in several amyloid diseases (such as Alzhiemer’s and Parkinson’s) involves a membrane bound, preamyloid oligomeric species. Our data here suggest that a screening protocol based on lipid-catalyzed assembly will find mechanistically informative small molecule hits in this subclass of amyloid diseases. PMID:25043951

  3. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    PubMed Central

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  4. Hydrogen sensing by enzyme-catalyzed electrochemical detection.

    PubMed

    Lutz, Brent J; Fan, Z Hugh; Burgdorf, Tanja; Friedrich, Bärbel

    2005-08-01

    Hydrogen (H2) is a possible future alternative to current fossil-based transportation fuels; however, its lower explosive limit in air requires a reliable sensor to detect leaks wherever H2 is produced, stored, or used. Most current H2 sensors employ palladium or its alloy as the sensing element, featuring high operating temperature and limited selectivity. In this study, we report using soluble hydrogenase (SH) of aerobic beta-proteobacterium Ralstonia eutropha strain H16 to accomplish ambient, electrochemical detection of H2. Gas samples were collected in a solution containing SH that catalyzed the oxidation of H2. The electrons released during the H2 oxidation reaction were accepted by benzyl viologen (BV2+). The product of the redox reaction, BV+, was then detected using chronoamperometry. Using this sensing scheme, we demonstrate detection of H2 ranging from 1 to 100%. In addition, enzyme kinetics and the effect of oxygen on signal response were studied. Our results indicate that it is feasible to develop a sensor to detect H2 in the atmosphere that is based on enzyme-catalyzed electrochemical detection. PMID:16053311

  5. AID from bony fish catalyzes class switch recombination

    PubMed Central

    Barreto, Vasco M.; Pan-Hammarstrom, Qiang; Zhao, Yaofeng; Hammarstrom, Lennart; Misulovin, Ziva; Nussenzweig, Michel C.

    2005-01-01

    Class switch recombination was the last of the lymphocyte-specific DNA modification reactions to appear in the evolution of the adaptive immune system. It is absent in cartilaginous and bony fish, and it is common to all tetrapods. Class switching is initiated by activation-induced cytidine deaminase (AID), an enzyme expressed in cartilaginous and bony fish that is also required for somatic hypermutation. Fish AID differs from orthologs found in tetrapods in several respects, including its catalytic domain and carboxy-terminal region, both of which are essential for the switching reaction. To determine whether evolution of class switch recombination required alterations in AID, we assayed AID from Japanese puffer and zebra fish for class-switching activity in mouse B cells. We find that fish AID catalyzes class switch recombination in mammalian B cells. Thus, AID had the potential to catalyze this reaction before the teleost and tetrapod lineages diverged, suggesting that the later appearance of a class-switching reaction was dependent on the evolution of switch regions and multiple constant regions in the IgH locus. PMID:16157688

  6. Titanium-Catalyzed Silicon Nanostructures Grown by APCVD

    NASA Astrophysics Data System (ADS)

    Usman, Mohammad A. U.; Smith, Brady J.; Jackson, Justin B.; De Long, Matthew C.; Miller, Mark S.

    2015-01-01

    We report on growth of Ti-catalyzed silicon nanostructures (SNCs) through atmospheric-pressure chemical vapor deposition. An extensive growth study relating the growth condition parameters, including the partial pressure of SiCl4 gas, reaction temperature, and reaction time, was carried out to obtain insight into the growth regimes for the observed SNCs. Based on phase diagram analysis of Ti-Si alloy and growth rate analysis of the silicon nanowires (SNWs) and silicon nanoplatelets, we believe the growth mechanism to be strongly dependent on the thermodynamics of the system, exhibiting a delicate balance that can easily tip between the growth and etching regimes of the system. Three types of SNCs were observed frequently throughout the study: nanowires, nanoplatelets, and balls. Regimes for highly etched growth were also noted through growth conditions plots. Ti-catalyzed SNWs grown using SiCl4 gas strongly suggest growth occurring through a type of vapor-solid-solid (VSS) mechanism that is limited by diffusion through the solid-catalyst interface. On the other hand, the two-dimensional SNP morphologies suggest growth occurring through the twin-plane mechanism at the edges, at 10 nm to 100 nm scales, also through a similar, VSS mechanism.

  7. RNA catalyzes nuclear pre-mRNA splicing

    PubMed Central

    Fica, Sebastian M.; Tuttle, Nicole; Novak, Thaddeus; Li, Nan-Sheng; Lu, Jun; Koodathingal, Prakash; Dai, Qing; Staley, Jonathan P.; Piccirilli, Joseph A.

    2014-01-01

    SUMMARY In nuclear pre-messenger RNA splicing, introns are excised by the spliceosome, a multi-megadalton machine composed of both proteins and small nuclear RNAs (snRNAs). Over thirty years ago, following the discovery of self-splicing group II intron RNAs, the snRNAs were hypothesized to catalyze splicing. However, no definitive evidence for a role of either RNA or protein in catalysis by the spliceosome has been reported to date. By using metal rescue strategies, here we show that the U6 snRNA catalyzes both splicing reactions by positioning divalent metals that stabilize the leaving groups during each reaction. Strikingly, all of the U6 catalytic metal ligands we identified correspond to the ligands observed to position catalytic, divalent metals in crystal structures of a group II intron RNA. These findings indicate that group II introns and the spliceosome share common catalytic mechanisms, and likely common evolutionary origins. Our results demonstrate that RNA mediates catalysis within the spliceosome. PMID:24196718

  8. Study of microwave effects on the lipase-catalyzed hydrolysis.

    PubMed

    Chen, Chia-Chen; Reddy, P Muralidhar; Devi, C Shobha; Chang, Po-Chi; Ho, Yen-Peng

    2016-01-01

    The effect of microwave heating on lipase-catalyzed reaction remains controversial. It is not clear whether the reaction rate enhancements are purely due to thermal/heating effects or to non-thermal effects. Therefore, quantitative mass spectrometry was used to conduct accurate kinetic analysis of lipase-catalyzed hydrolysis of triolein by microwave and conventional heating. Commercial lipases from Candida rugosa (CRL), Porcine Pancreas (PPL), and Burkholderia cepacia (BCL) were used. Hydrolysis reactions were performed at various temperatures and pH levels, along with various amounts of buffer and enzymes. Hydrolysis product yields at each time point using an internal-standard method showed no significant difference between microwave and conventional heating conditions when the reaction was carried out at the same temperature. CRL showed optimum catalytic activity at 37°C, while PPL and BCL had better activities at 50°C. The phosphate buffer was found to give a better hydrolysis yield than the Tris-HCl buffer. Overall results prove that a non-thermal effect does not exist in microwave-assisted lipase hydrolysis of triolein. Therefore, conventional heating at high temperatures (e.g., 50°C) can be also used to accelerate hydrolysis reactions. PMID:26672464

  9. Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth.

    PubMed

    Wang, Junli; Chen, Kangmin; Gong, Ming; Xu, Bin; Yang, Qing

    2013-09-11

    The catalytic mechanism offers an efficient tool to produce crystalline semiconductor nanowires, in which the choice, state, and structure of catalysts are active research issues of much interest. Here we report a novel solution-solid-solid (SSS) mechanism for nanowire growth catalyzed by solid-phase superionic conductor nanocrystals in low-temperature solution. The preparation of Ag2Se-catalyzed ZnSe nanowires at 100-210 °C is exampled to elucidate the SSS model, which can be extendable to grow other II-VI semiconductor (e.g., CdSe, ZnS, and CdS) nanowires by the catalysis of nanoscale superionic-phase silver or copper(I) chalcogenides (Ag2Se, Ag2S, and Cu2S). The exceptional catalytic ability of these superionic conductors originates from their structure characteristics, known for high-density vacancies and fast mobility of silver or copper(I) cations in the rigid sublattice of Se(2-) or S(2-) ions. Insights into the SSS mechanism are provided based on the formation of solid solution and the solid-state ion diffusion/transport at solid-solid interface between catalyst and nanowire. PMID:23919513

  10. Porous silicon formation during Au-catalyzed etching

    SciTech Connect

    Algasinger, Michael; Bernt, Maximilian; Koynov, Svetoslav; Stutzmann, Martin

    2014-04-28

    The formation of “black” nano-textured Si during the Au-catalyzed wet-chemical etch process was investigated with respect to photovoltaic applications. Cross-sectional scanning electron microscopy (SEM) images recorded at different stages of the etch process exhibit an evolution of a two-layer structure, consisting of cone-like Si hillocks covered with a nano-porous Si (np-Si) layer. Optical measurements confirm the presence of a np-Si phase which appears after the first ?10?s of the etch process and continuously increases with the etch time. Furthermore, the etch process was investigated on Si substrates with different doping levels (?0.01–100 ? cm). SEM images show a transition from the two-layer morphology to a structure consisting entirely of np-Si for higher doping levels (<0.1 ? cm). The experimental results are discussed on the basis of the model of a local electrochemical etch process. A better understanding of the metal-catalyzed etch process facilitates the fabrication of “black” Si on various Si substrates, which is of significant interest for photovoltaic applications.

  11. Enzyme catalyzed electricity-driven water softening system.

    PubMed

    Arugula, Mary A; Brastad, Kristen S; Minteer, Shelley D; He, Zhen

    2012-12-10

    Hardness in water, which is caused by divalent cations such as calcium and magnesium ions, presents a major water quality problem. Because hard water must be softened before use in residential applications, there is great interest in the saltless water softening process because, unlike ion exchange softeners, it does not introduce additional ions into water. In this study, a saltless hardness removal driven by bioelectrochemical energy produced through enzymatic oxidation of glucose was proposed and investigated. Glucose dehydrogenase was coated on a carbon electrode to catalyze glucose oxidation in the presence of NAD? as a cofactor/mediator and methylene green as an electrocatalyst. The results showed that electricity generation stimulated hardness removal compared with non-electricity conditions. The enzymatic water softener worked upon a 6h batch operation per day for eight days, and achieved an average hardness removal of 46% at a high initial concentration of 800 mg/L as CaCO?. More hardness was removed at a lower initial concentration. For instance, at 200mg/L as CaCO? the enzymatic water softener removed 76.4±4.6% of total hardness. The presence of magnesium ions decreased hardness removal because of its larger hydrated radius than calcium ions. The enzymatic water softener removed 70-80% of total hardness from three actual hard water samples. These results demonstrated a proof-of-concept that enzyme catalyzed electricity generation can be used to soften hard water. PMID:23040397

  12. Renalase does not catalyze the oxidation of catecholamines.

    PubMed

    Beaupre, Brett A; Hoag, Matthew R; Moran, Graham R

    2015-08-01

    It is widely accepted that the function of human renalase is to oxidize catecholamines in blood. However, this belief is based on experiments that did not account for slow, facile catecholamine autoxidation reactions. Recent evidence has shown that renalase has substrates with which it reacts rapidly. The reaction catalyzed defines renalase as an oxidase, one that harvests two electrons from either 2-dihydroNAD(P) or 6-dihydroNAD(P) to form ?-NAD(P)(+) and hydrogen peroxide. The apparent metabolic purpose of such a reaction is to avoid inhibition of primary dehydrogenase enzymes by these ?-NAD(P)H isomers. This article demonstrates that renalase does not catalyze the oxidation of neurotransmitter catecholamines. Using high-performance liquid chromatography we show that there is no evidence of consumption of epinephrine by renalase. Using time-dependent spectrophotometry we show that the renalase FAD cofactor spectrum is unresponsive to added catecholamines, that adrenochromes are not observed to accumulate in the presence of renalase and that the kinetics of single turnover reactions with 6-dihydroNAD are unaltered by the addition of catecholamines. Lastly we show using an oxygen electrode assay that plasma renalase activity is below the level of detection and only when exogenous renalase and 6-dihydroNAD are added can dioxygen be observed to be consumed. PMID:26049000

  13. Phage Selection Assisted by Sfp Phosphopantetheinyl Transferase Catalyzed Site-Specific Protein Labeling

    PubMed Central

    Zhao, Bo; Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Zhou, Han; Zhang, Mengnan; Yin, Jun

    2015-01-01

    Summary Phosphopantetheinyl transferases (PPTase) Sfp and AcpS catalyze a highly efficient reaction that conjugates chemical probes of diverse structures to proteins. PPTases have been widely used for site-specific protein labeling and live cell imaging of the target proteins. Here we describe the use of PPTase catalyzed protein labeling in protein engineering by facilitating high throughput phage selection. PMID:25560074

  14. Phage selection assisted by Sfp phosphopantetheinyl transferase-catalyzed site-specific protein labeling.

    PubMed

    Zhao, Bo; Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Zhou, Han; Zhang, Mengnan; Yin, Jun

    2015-01-01

    Phosphopantetheinyl transferases (PPTase) Sfp and AcpS catalyze a highly efficient reaction that conjugates chemical probes of diverse structures to proteins. PPTases have been widely used for site-specific protein labeling and live cell imaging of the target proteins. Here we describe the use of PPTase-catalyzed protein labeling in protein engineering by facilitating high-throughput phage selection. PMID:25560074

  15. 4844 Biochemistry 1991, 30, 4844-4854 Ribozyme-Catalyzed and Nonenzymatic Reactions of Phosphate

    E-print Network

    Herschlag, Dan

    the stereochemicalcourse of these reactions (for review see Knowles (1980), Eckstein (1985), and Frey (1989)). In addition4844 Biochemistry 1991, 30, 4844-4854 Ribozyme-Catalyzed and Nonenzymatic Reactions of Phosphate of Tetrahymena thermophila pre-rRNA catalyzes a guanosine-dependent endonuclease reaction that is analogous

  16. Mechanistic analysis of an asymmetric palladium-catalyzed conjugate addition of arylboronic acids

    E-print Network

    Zare, Richard N.

    ,c Brian M. Stoltzb and Richard N. Zare*a An asymmetric palladium-catalyzed conjugate addition reaction because many established conjugate addition reactions rely on high-cost catalysts and require anhydrous conditions. Palladium-catalyzed conjugate addition reactions are an ongoing eld of research.6­8 The Stoltz

  17. Novel Rhodium-Catalyzed Cycloisomerization of 1,6-Enynes with an Intramolecular Halogen Shift

    E-print Network

    Zhang, Xumu

    Novel Rhodium-Catalyzed Cycloisomerization of 1,6-Enynes with an Intramolecular Halogen Shift involving a -allyl rhodium complex has not been reported. Herein, we report a new Rh-catalyzed 1,6-enyne cyclization process with a -allyl rhodium as the key intermediate. It is noteworthy that a halogen shift

  18. Copper-catalyzed cascade reactions of ?,?-unsaturated esters with keto esters

    PubMed Central

    Wang, Chongnian; Li, Zengchang

    2015-01-01

    Summary A copper-catalyzed cascade reaction of ?,?-unsaturated esters with keto esters is reported. It features a copper-catalyzed reductive aldolization followed by a lactonization. This method provides a facile approach to prepare ?-carboxymethyl-?-lactones and ?-carboxymethyl-?-lactones under mild reaction conditions. PMID:25815072

  19. Hydrochloric Acid-Catalyzed Levulinic Acid Formation from Cellulose: Data and Kinetic

    E-print Network

    California at Riverside, University of

    Hydrochloric Acid-Catalyzed Levulinic Acid Formation from Cellulose: Data and Kinetic Model.com). In this study, the kinetics of the acid catalyzed hydrolysis of microcrystalline cellulose (Avicel PH101) to levulinic (LA) and formic (FA) acids was investigated in a batch reactor over the following range

  20. Atmospheric Environment 40 (2006) 68636878 Acid-catalyzed reactions of hexanal on sulfuric acid particles

    E-print Network

    Elrod, Matthew J.

    2006-01-01

    Atmospheric Environment 40 (2006) 6863­6878 Acid-catalyzed reactions of hexanal on sulfuric acid are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe

  1. Fronts and pulses in an enzymatic reaction catalyzed by glucose oxidase

    E-print Network

    Epstein, Irving R.

    Fronts and pulses in an enzymatic reaction catalyzed by glucose oxidase David G. Míguez* , Vladimir as catalysts and regulators. We present a reaction­diffusion system catalyzed by the enzyme glucose oxidase previously studied the temporal dynamics of the enzymatic autocatalytic reaction between glucose and ferricya

  2. Palladium-Catalyzed Coupling Reactions of Biphenylene with Olefins, Arylboronic Acids, and Ketones Involving

    E-print Network

    Jones, William D.

    Palladium-Catalyzed Coupling Reactions of Biphenylene with Olefins, Arylboronic Acids, and Ketones the catalytic C-C bond activation and functionalization of biphenylene under nickel, palladium, or platinum, palladium-catalyzed cross-coupling of biphenylene with olefins, arylboronic acids, and ketones occurred

  3. Palladium-catalyzed cyclopropanation of electron-deficient olefins with aryldiazocarbonyl compounds

    E-print Network

    Wang, Jianbo

    Palladium-catalyzed cyclopropanation of electron-deficient olefins with aryldiazocarbonyl compounds our recent research in palladium-catalyzed reaction of diazo compounds,8 we found that Pd(OAc)2 could and stereoselectivity (Scheme 1). Although palladium salts are already found as catalysts in cyclo- propanation

  4. Transmetalation of Palladium Enolate and Its Application in Palladium-Catalyzed

    E-print Network

    Zhang, Xumu

    Transmetalation of Palladium Enolate and Its Application in Palladium-Catalyzed Homocoupling synthesis.1 The palladium-catalyzed coupling reaction has proved to be an extremely powerful tool via a metal reagent to displace the halide or triflate anion on the palladium center followed

  5. Regioselectivity in the Palladium-Catalyzed Addition of Carbon Nucleophiles to Carbocyclic Derivatives

    E-print Network

    Articles Regioselectivity in the Palladium-Catalyzed Addition of Carbon Nucleophiles to Carbocyclic reagents were compared. Introduction Palladium-catalyzed allylic substitution is an efficient and highly. Palladium Reagents and Catalysts. Innovations in Organic Synthesis; John Wiley & Sons: New York, 1995; pp

  6. Metal Catalyzed Formation of Aliphatic Polycarbonates Involving Oxetanes and Carbon Dioxide as Monomers 

    E-print Network

    Moncada, Adriana I.

    2011-08-08

    OF THE COPOLYMERIZATION REACTION OF OXETANE AND CARBON DIOXIDE TO PROVIDE ALIPHATIC POLYCARBONATES CATALYZED BY (SALEN)CrX COMPLEXES ............................................................... 27 Introduction... OF OXETANE OR EPOXIDES AND CO2 CATALYZED BY (SALEN)CrX COMPLEXES .............. 66 Introduction .................................................................................... 66 Experimental Section...

  7. Enantioselective Total Synthesis of (?)-Nardoaristolone B via a Gold(I)-Catalyzed Oxidative Cyclization

    PubMed Central

    2015-01-01

    The first enantioselective total synthesis of (?)-nardoaristolone B is accomplished by the implementation of an enantio- and diastereoselective copper(I)-catalyzed conjugate addition/enolate trapping sequence and a gold(I)-catalyzed oxidative cyclization (intermolecular oxidant), employed for the first time in total synthesis. PMID:25563976

  8. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of

    E-print Network

    California at Riverside, University of

    4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants) that catalyzes 4-O-methylation of the glucuronic acid substituents of this polysaccharide. AtGXMT1, which

  9. Exploration Into Copper Catalyzed and Copper-less Click Reactions with Re(CO)3 Complexes

    E-print Network

    Collins, Gary S.

    Exploration Into Copper Catalyzed and Copper-less Click Reactions with Re(CO)3 Complexes Nicholas that combines a alkyne and an oxime to generate a isoxazole cycloaddtion product. Compared to the copper and then proceeding with the typical copper(I) catalyzed "click" reaction procedure, while the other approach involves

  10. Dihydrobiphenylenes through ruthenium-catalyzed [2+2+2] cycloadditions of ortho-alkenylarylacetylenes with alkynes.

    PubMed

    García-Rubín, Silvia; González-Rodríguez, Carlos; García-Yebra, Cristina; Varela, Jesús A; Esteruelas, Miguel A; Saá, Carlos

    2014-02-10

    A new synthetic route to dihydrobiphenylenes has been developed. The process involves a mild Ru(II) -catalyzed [2+2+2] dimerization of ortho-alkenylarylacetylenes or its more versatile variant, the Ru-catalyzed [2+2+2] cycloaddition of ortho-ethynylstyrenes with alkynes. Mechanistic aspects of this [2+2+2] cycloaddition are discussed. PMID:24442724

  11. Kinetic Resolutions of Azomethine Imines via Copper-Catalyzed [3 + 2] Cycloadditions

    E-print Network

    Fu, Gregory C.

    Kinetic Resolutions of Azomethine Imines via Copper-Catalyzed [3 + 2] Cycloadditions Andre´s Sua mixtures is a powerful method for preparing enantiomerically enriched compounds,1,2 complement- ing described the development of a new copper- catalyzed reaction, the asymmetric [3 + 2] cycloaddition

  12. Highly enantioselective copper-catalyzed conjugate addition of diethylzinc to cyclic enones with spirocyclic phosphoramidite ligands

    E-print Network

    Zhang, Xumu

    Highly enantioselective copper-catalyzed conjugate addition of diethylzinc to cyclic enones spirocyclic diol (R)-5. These monodentate ligands have been applied in copper-catalyzed conjugate addition to a,b-unsaturated compounds is an important synthetic method for the construction of carbon

  13. Monitoring Enzyme-catalyzed Reactions in Micromachined Nanoliter Wells using a Conventional Microscope based

    E-print Network

    van Vliet, Lucas J.

    Monitoring Enzyme-catalyzed Reactions in Micromachined Nanoliter Wells using a Conventional to ethanol and carbon dioxide. This pathway consists of 12 enzyme-catalyzed reactions. With the approach × 300µm2 . The depth varies from 20 to 50µm. Enzyme activity levels can be derived by monitoring

  14. 9422 Stratospheric ice catalyzes chlorine reactions 9428 Fusing silk and silica

    E-print Network

    McFadden, Geoff

    deteriorates with age CHEMISTRY Stratospheric ice catalyzes chlorine reactions To explain how ice crystals can9422 Stratospheric ice catalyzes chlorine reactions 9428 Fusing silk and silica 9482 Identifying of hydrochloric acid form a quasiliquid layer on the surface of stratospheric ice crystals. The quasiliquid layer

  15. Gold(I)-catalyzed enantioselective [32] and [33] cycloaddition reactions of propargyl acetals/ketals

    E-print Network

    Toste, Dean

    Gold(I)-catalyzed enantioselective [3þ2] and [3þ3] cycloaddition reactions of propargyl acetals May 2015 Keywords: Gold Homogeneous catalysis Enantioselective catalysis Cycloaddition Propargyl acetals/ketals a b s t r a c t An asymmetric gold(I)-catalyzed [3þ2] cycloaddition of propargyl acetals

  16. Rh-Catalyzed Enyne Cycloisomerization Ping Cao, Bin Wang, and Xumu Zhang*

    E-print Network

    Zhang, Xumu

    Rh-Catalyzed Enyne Cycloisomerization Ping Cao, Bin Wang, and Xumu Zhang* Department of Chemistry, activity, and selectivity. To the best of our knowledge, no Rh-based catalyst systems have been reported for facilitating Alder-ene type reactions. Herein we report a highly effective and selective Rh-catalyzed cyclo

  17. Combined Experimental and Computational Investigation of the Mechanism of Nickel-Catalyzed

    E-print Network

    Schlegel, H. Bernhard

    Combined Experimental and Computational Investigation of the Mechanism of Nickel-Catalyzed Three University, Detroit, Michigan 48202-3489 Received July 14, 2004 The mechanism of nickel-catalyzed couplings of an enone, alkyne, and organozinc has been studied. Adducts of the substrates with nickel(0) have been

  18. Palladium-Catalyzed Enantioselective Cyclization of Silyloxy-1,6-Enynes Britton K. Corkey and F. Dean Toste*

    E-print Network

    Toste, Dean

    Palladium-Catalyzed Enantioselective Cyclization of Silyloxy-1,6-Enynes Britton K. Corkey and F silyloxy-substituted olefins. On the basis of our recent report on palladium-catalyzed enantio- selective 5

  19. Nickel-catalyzed reductive coupling reactions of 1,6-enynes and the total synthesis of (+)-acutiphycin

    E-print Network

    Moslin, Ryan Thomas McLeod

    2007-01-01

    Nickel-Catalyzed Reductive Coupling Reactions of Aldehydes and Chiral 1,6-Enynes. A study of nickel-catalyzed reductive coupling reactions of aldehydes and chiral 1,6-enynes has provided evidence for stereospecific ligand ...

  20. Gold-catalyzed tandem reactions of methylenecyclopropanes and vinylidenecyclopropanes.

    PubMed

    Zhang, Di-Han; Tang, Xiang-Ying; Shi, Min

    2014-03-18

    Gold catalysis is often the key step in the synthesis of natural products, and is a powerful tool for tandem or domino reaction processes. Both gold salts and complexes are among the most powerful soft Lewis acids for electrophilic activation of carbon-carbon multiple bonds toward a variety of nucleophiles. The core of these reactions relies on the interaction between gold catalysts and ?-bonds of alkenes, alkynes, and allenes. Activation of functional groups by gold complexes provides a useful and important method for facilitating many different organic transformations with high atom efficiency. Although they are highly strained, methylenecyclopropanes (MCPs) and vinylidenecyclopropanes (VDCPs) are readily accessible molecules that have served as useful building blocks in organic synthesis. Because of their unique structural and electronic properties, significant developments have been made in the presence of transition metal catalysts such as nickel, rhodium, palladium, and ruthenium during the past decades. However, less attention has been paid to the gold-catalyzed chemistry of MCPs and VDCPs. In this Account, we describe gold-catalyzed chemical transformations of MCPs and VDCPs developed both in our laboratory and by other researchers. Chemists have demonstrated that MCPs and VDCPs have amphiphilic properties. When MCPs or VDCPs are activated by a gold catalyst, subsequent nucleophilic attack by other reagents or ring-opening (ring-expansion) of the cyclopropane moiety will occur. However, the C-C double bonds of MCPs and VDCPs can also serve as nucleophilic reagents while more electrophilic reagents are present and activated by gold catalyst, and then further cascade reactions take place as triggered by the release of ring strain of cyclopropane. Based on this strategy, both our group and others have found some interesting gold-catalyzed transformations in recent years. These transformations of MCPs and VDCPs can produce a variety of polycyclic and heterocyclic structures, containing different sized skeletons. Moreover, we have carried out some isotopic labeling experiments and computational studies for mechanistic investigation. These reactions always give the desired products with high level control of chemo-, regio-, and diastereoselectivities, making them highly valuable for the synthesis of natural products and to the pharmaceutical industry and medicine in general. PMID:24168021

  1. Biochemistry 1993, 32, 2111-21 15 2111 Ribozyme-Catalyzed Primer Extension by Trinucleotides: A Model for the

    E-print Network

    Doudna, Jennifer A.

    . Indeed, it has been shown that the Tetrahymena and sunY self-splicing introns will catalyze the template. Toward this end, we have chosen the group I self-splicing introns for study because they catalyze: A Model for the RNA-Catalyzed Replication of RNA+ Jennifer A. Doudna,t Nassim Usman,$ and Jack W. Szostak

  2. The Mechanism of the Rhodium(I)-Catalyzed [2 + 2 + 1] Carbocyclization Reaction of Dienes and CO: A

    E-print Network

    Baik, Mu-Hyun

    The Mechanism of the Rhodium(I)-Catalyzed [2 + 2 + 1] Carbocyclization Reaction of Dienes and CO-mail: mbaik@indiana.edu Abstract: The rhodium(I) catalyzed [2 + 2 + 1] carbocyclization of tethered diene rhodium(I)-catalyzed [2 + 2 + 1] carbocyclization. One of the apparent requirements for the [2 + 2 + 1

  3. Rhodium-catalyzed hydroformylation in fused azapolycycles synthesis.

    PubMed

    Settambolo, Roberta

    2013-01-01

    N-Heterocycles, including fused ones, have proven to be an important class of compounds since they possess biological and pharmacological activities themselves and serve as valuable intermediates for synthetic drug discovery. My interest in the synthesis of these compounds stems from studies dealing with the hydroformylation (oxo) of olefins. The dihydroindolizines and benzofused ones are easily generated via rhodium-catalyzed hydroformylation of N-allylpyrroles and indoles: the butanal intermediate undergoes an intramolecular cyclodehydration giving the final polycyclic compound. This chapter reports my results in the area of the conversions of oxo aldehydes with additional C,C-bond-forming reactions together with relevant work from other laboratories on additional C,N-bond-forming reactions, encountered in the field of Azapolycycles synthesis over the last 5 years or so. The intramolecular sequences for polycylization will be especially emphasized using rhodium complexes to effect these transformations, under both conventional and microwave heating. PMID:23609320

  4. Platinum-catalyzed hydroformylation of terminal and internal octenes.

    PubMed

    van Duren, Ruben; van der Vlugt, Jarl Ivar; Kooijman, Huub; Spek, Anthony L; Vogt, Dieter

    2007-03-14

    A brief historic overview of Pt/Sn-catalyzed hydroformylation as well as recent advances in the hydroformylation of internal alkenes is provided. This serves as background for the results obtained with the [Pt(Sixantphos)Cl(2)] system, for which the molecular structure and the spectroscopic data are described. Insitu UV/Vis-spectroscopic studies have revealed rapid formation of the corresponding Pt-stannate complex upon reaction with SnCl(2), whereas high-pressure insitu IR-spectroscopy showed formation of a Pt-CO species and a short-lived Pt-H species under syngas, as well as rapid evolution of aldehyde product upon addition of 1-octene to the preformed catalyst in the IR autoclave. The hydroformylation of 1-octene and the i-octenes has been performed. For the internal alkenes, selective tandem isomerization/hydroformylation towards n-nonanal is observed with this catalyst system. PMID:17325781

  5. Palladium-catalyzed isomerization and hydroformylation of olefins.

    PubMed

    Jennerjahn, Reiko; Piras, Irene; Jackstell, Ralf; Franke, Robert; Wiese, Klaus-Diether; Beller, Matthias

    2009-06-22

    A novel selective palladium catalyst system based on bidentate 2,2'-heteroarylarylphosphines and p-TsOH has been developed for hydroformylation reactions (see scheme). By applying optimal conditions good to excellent regioselectivity is obtained for the hydroformylation of aliphatic and aromatic olefins. It is shown that a low acid concentration is crucial for obtaining high degrees of the linear isomer.The palladium-catalyzed hydroformylation of 1-octene has been studied in the presence of different phosphines and acid cocatalysts. The best results are achieved in the presence of in situ-generated palladium complexes with bidentate phosphines. It is demonstrated that the acid concentration is a crucial factor for obtaining high linear selectivity. A novel optimized catalyst based on an arylheteroarylphosphine has been applied for hydroformylation of different aliphatic and aromatic olefins. Good activity and excellent selectivity towards the linear aldehydes is achieved. PMID:19466732

  6. Guide to Enantioselective Dirhodium(II)-Catalyzed Cyclopropanation with Aryldiazoacetates

    PubMed Central

    Chepiga, Kathryn M.; Qin, Changming; Alford, Joshua S.; Chennamadhavuni, Spandan; Gregg, Timothy M.; Olson, Jeremy P.

    2013-01-01

    Catalytic enantioselective methods for the generation of cyclopropanes has been of longstanding pharmaceutical interest. Chiral dirhodium(II) catalysts prove to be an effective means for the generation of diverse cyclopropane libraries. Rh2(R-DOSP)4 is generaally the most effective catalyst for asymmetric intermolecular cyclopropanation of methyl aryldiazoacetates with styrene. Rh2(S-PTAD)4 provides high levels of enantioinduction with ortho-substituted aryldiazoacetates. The less-established Rh2(R-BNP)4 plays a complementary role to Rh2(R-DOSP)4 and Rh2(S-PTAD)4 in catalyzing highly enantioselective cyclopropanation of 3- methoxy-substituted aryldiazoacetates. Substitution on the styrene has only moderate influence on the asymmetric induction of the cyclopropanation. PMID:24273349

  7. Decomposition of peracetic acid catalyzed by vanadium complexes

    SciTech Connect

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-02-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0/sub 2/ and small amounts of CO/sub 2/, the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO/sub 2/ is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V/sup 5 +/ ions and peracetic acid and the slow conversion of this complex into the observed products.

  8. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  9. The pyrite iron cycle catalyzed by Acidithiobacillus ferrooxidans.

    PubMed

    Dumett, Miguel A; Keener, James P

    2014-08-01

    In this paper, we study a model of the biotic pyrite iron cycle catalyzed by bacteria Acidithiobacillus ferrooxidans, in mining activity sites waste dumps. Chemical reactions, reaction rates and the population growth model are mostly taken from the existing literature. Analysis of the corresponding dynamical system shows the existence of up to four non-trivial steady state solutions. The stability of the equilibria solutions is determined, finding up to two coexisting stable solutions. Two Hopf bifurcations and a region of parameter space in which there are stable periodic solutions are found. In addition, we find a homoclinic bifurcation which gives rise to a stable periodic orbit of large period. The existence of these stable oscillatory solutions gives a possible explanation for the oscillations of bacteria concentration and pH for the iron cycle, described in Jaynes et al. (Water Resour Res 20:233-242, 1984). PMID:23852143

  10. Transmembrane electron transfer catalyzed by phospholipid-linked manganese porphyrins

    SciTech Connect

    Nango, Mamoru; Mizusawa, Atsushi; Miyake, Takenori; Yoshinaga, Junji )

    1990-02-14

    Synthetic models can be very helpful in studying the effect of distance and orientation in electron transfer reactions in biological membrane processes such as occur in photosynthesis and mitochondria. To provide a model for the electron transfer where porphyrin pigments play the key role, the preparation of porphyrin derivatives that are capable of light-induced intra- or intermolecular electron transfer was reported. However, there has been little study of ground-state electron transfer between porphyrin complexes to provide insight into the effect of distance and orientation in the electron transfer so that a vectorial electron transfer system may be constructed in the biological membrane. We now report transmembrane electron transfer catalyzed by manganese complexes of bilayer-active phospholipid-linked porphyrins 1, PE-C{sub n}-MnTTP (n = 0, 5, 11) (Scheme I), which can be easily immersed into the lipid bilayer. The synthetic procedures leading are described.

  11. Trypsin-catalyzed oxygen-18 labeling for quantitative proteomics

    SciTech Connect

    Qian, Weijun; Petritis, Brianne O.; Nicora, Carrie D.; Smith, Richard D.

    2011-07-01

    Stable isotope labeling based on relative peptide/protein abundance measurements is commonly applied for quantitative proteomics. Recently, trypsin-catalyzed oxygen-18 labeling has grown in popularity due to its simplicity, cost-effectiveness, and its ability to universally label peptides with high sample recovery. In (18)O labeling, both C-terminal carboxyl group atoms of tryptic peptides can be enzymatically exchanged with (18)O, thus providing the labeled peptide with a 4 Da mass shift from the (16)O-labeled sample. Peptide (18)O labeling is ideally suited for generating a labeled "universal" reference sample used for obtaining accurate and reproducible quantitative measurements across large number of samples in quantitative discovery proteomics.

  12. Ligand-controlled regiodivergent nickel-catalyzed annulation of pyridones.

    PubMed

    Donets, Pavel A; Cramer, Nicolai

    2015-01-01

    The 1,6-annulated 2-pyridone motif is found in many biologically active compounds and its close relation to the indolizidine and quinolizidine alkaloid core makes it an attractive building block. A nickel-catalyzed C-H functionalization of 2-pyridones and subsequent cyclization affords 1,6-annulated 2-pyridones by selective intramolecular olefin hydroarylation. The switch between the exo- and endo-cyclization modes is controlled by two complementary sets of ligands. Irrespective of the ring size, the regioselectivity during the cyclization is under full catalyst control. Simple cyclooctadiene promotes an exo-selective cyclization, whereas a bulky N-heterocyclic carbene ligand results in an endo-selective mode. The method was further applied in the synthesis of the lupin alkaloid cytisine. PMID:25378295

  13. WILDCAT: a catalyzed D-D tokamak reactor

    SciTech Connect

    Evans, K. Jr.; Baker, C.C.; Brooks, J.N.

    1981-11-01

    WILDCAT is a conceptual design of a catalyzed D-D, tokamak, commercial, fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing D-T designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete, conceptual design.

  14. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    PubMed Central

    Lin, Rihui; Li, He; Long, Han; Su, Jiating; Huang, Wenqin

    2014-01-01

    Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2?:?1, reaction time 4?h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch. PMID:24977156

  15. Site-specific DNA transesterification catalyzed by a restriction enzyme

    PubMed Central

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5? terminus of the cleaved DNA. Under certain conditions, the terminal 3?-OH of one DNA strand can attack the target phosphodiester bond in the other strand to create a DNA hairpin. Transesterification reactions on DNA with phosphorothioate linkages at the target bond proceed with retention of stereoconfiguration at the phosphorus, indicating, uniquely for a restriction enzyme, a two-step mechanism. We propose that BfiI first makes a covalent enzyme–DNA intermediate, and then it resolves it by a nucleophilic attack of water or an alcohol, to yield hydrolysis or transesterification products, respectively. PMID:17267608

  16. Electrochemical Investigations into Kinase-Catalyzed Transformations of Tau Protein

    PubMed Central

    2013-01-01

    The formation of neurofibrillary tangles by hyperphosphorylated tau is a well-recognized hallmark of Alzheimer’s disease. Resulting from malfunctioning protein kinases, hyperphosphorylated tau is unable to bind microtubules properly, causing it to self-associate and aggregate. The effects of tau phosphorylation on tau conformation and aggregation are still largely unexplored. The conformational analysis of tau and its hyperphosphorylated forms is usually performed by a variety of spectroscopic techniques, all of which require ample sample concentrations and/or volumes. Here we report on the use of surface based electrochemical techniques that allow for detection of conformational changes and orientation of tau protein as a function of tau phosphorylation by tyrosine and serine/threonine kinases. The electrochemical methods utilize 5?-?-ferrocenyl adenosine triphosphate (Fc-ATP) derivative as a cosubstrate and tau immobilized on gold surface to probe the role of the following protein kinases: Sarcoma related kinase (Src), Abelson tyrosine kinase (Abl), tau-tubulin kinase (TTBK), proto-oncogene tyrosine protein kinase Fyn (Fyn), and glycogen synthase kinase 3-? (Gsk-3?). The single kinase and sequential kinase-catalyzed Fc-phosphorylations modulate the electrochemical signal, pointing to the dramatic changes around the Fc group in the Fc-phosphorylated tau films. The location and orientation of the Fc-group in Fc-tau film was investigated by the surface plasmon resonance based on antiferrocene antibodies. Additional surface characterization of the Fc-tau films by time-of-flight secondary ion-mass spectrometry and X-ray photoelectron spectroscopy revealed that Fc-phosphorylations influence the tau orientation and conformation on surfaces. When Fc-phosphorylations were performed in solution, the subsequently immobilized Fc-tau exhibited similar trends. This study illustrates the validity and the utility of the labeled electrochemical approach for probing the changes in protein film properties, conformation, and orientation as a function of the enzymatically catalyzed modifications. PMID:23687953

  17. The general base in the thymidylate synthase catalyzed proton abstraction.

    PubMed

    Ghosh, Ananda K; Islam, Zahidul; Krueger, Jonathan; Abeysinghe, Thelma; Kohen, Amnon

    2015-11-18

    The enzyme thymidylate synthase (TSase), an important chemotherapeutic drug target, catalyzes the formation of 2'-deoxythymidine-5'-monophosphate (dTMP), a precursor of one of the DNA building blocks. TSase catalyzes a multi-step mechanism that includes the abstraction of a proton from the C5 of the substrate 2'-deoxyuridine-5'-monophosphate (dUMP). Previous studies on ecTSase proposed that an active-site residue, Y94 serves the role of the general base abstracting this proton. However, since Y94 is neither very basic, nor connected to basic residues, nor located close enough to the pyrimidine proton to be abstracted, the actual identity of this base remains enigmatic. Based on crystal structures, an alternative hypothesis is that the nearest potential proton-acceptor of C5 of dUMP is a water molecule that is part of a hydrogen bond (H-bond) network comprised of several water molecules and several protein residues including H147, E58, N177, and Y94. Here, we examine the role of the residue Y94 in the proton abstraction step by removing its hydroxyl group (Y94F mutant). We investigated the effect of the mutation on the temperature dependence of intrinsic kinetic isotope effects (KIEs) and found that these KIEs are more temperature dependent than those of the wild-type enzyme (WT). These results suggest that the phenolic -OH of Y94 is a component of the transition state for the proton abstraction step. The findings further support the hypothesis that no single functional group is the general base, but a network of bases and hydroxyls (from water molecules and tyrosine) sharing H-bonds across the active site can serve the role of the general base to remove the pyrimidine proton. PMID:25912171

  18. Multimethylation of Rickettsia OmpB Catalyzed by Lysine Methyltransferases*

    PubMed Central

    Abeykoon, Amila; Wang, Guanghui; Chao, Chien-Chung; Chock, P. Boon; Gucek, Marjan; Ching, Wei-Mei; Yang, David C. H.

    2014-01-01

    Methylation of rickettsial OmpB (outer membrane protein B) has been implicated in bacterial virulence. Rickettsial methyltransferases RP789 and RP027-028 are the first biochemically characterized methyltransferases to catalyze methylation of outer membrane protein (OMP). Methylation in OMP remains poorly understood. Using semiquantitative integrated liquid chromatography-tandem mass spectroscopy, we characterize methylation of (i) recombinantly expressed fragments of Rickettsia typhi OmpB exposed in vitro to trimethyltransferases of Rickettsia prowazekii RP027-028 and of R. typhi RT0101 and to monomethyltransferases of R. prowazekii RP789 and of R. typhi RT0776, and (ii) native OmpBs purified from R. typhi and R. prowazekii strains Breinl, RP22, and Madrid E. We found that in vitro trimethylation occurs at relatively specific locations in OmpB with consensus motifs, KX(G/A/V/I)N and KT(I/L/F), whereas monomethylation is pervasive throughout OmpB. Native OmpB from virulent R. typhi contains mono- and trimethyllysines at locations well correlated with methylation in recombinant OmpB catalyzed by methyltransferases in vitro. Native OmpBs from highly virulent R. prowazekii strains Breinl and RP22 contain multiple clusters of trimethyllysine in contrast to a single cluster in OmpB from mildly virulent R. typhi. Furthermore, OmpB from the avirulent strain Madrid E contains mostly monomethyllysine and no trimethyllysine. The native OmpB from Madrid E was minimally trimethylated by RT0101 or RP027-028, consistent with a processive mechanism of trimethylation. This study provides the first in-depth characterization of methylation of an OMP at the molecular level and may lead to uncovering the link between OmpB methylation and rickettsial virulence. PMID:24497633

  19. New metal catalyzed syntheses of nanostructured boron nitride and alkenyldecaboranes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shahana

    The goals of the research described in this dissertation were two-fold. The first goal was to develop new methods, employing metal-catalyzed chemical vapor deposition reactions of molecular polyborane precursors, for the production of boron nitride nanostructured materials, including both boron nitride nanotubes (BNNTs) and boron nitride nanosheets (BNNS). The second goal was to develop new systematic metal-catalyzed reactions for polyboranes that would facilitate their functionalization for possible biomedical and/or materials applications. The syntheses of multi- and double-walled BNNTs were achieved with the aid of a floating nickel catalyst via the catalytic chemical vapor deposition (CCVD) of borazine (B3N3H6) or decaborane (B10H14) molecular precursors in ammonia atmospheres, with each precursor having its own advantages. While borazine is a single-source precursor containing both boron and nitrogen, the decaborane-based syntheses required the additional step of reaction with ammonia. However, the higher observed BNNT yields and the ease of handling and commercial availability of decaborane are distinct advantages. The BNNTs derived from both precursors were crystalline with highly ordered structures. The BNNTs grown at 1200 ºC from borazine were mainly double walled, with lengths up to 0.2 µm and ˜2 nm diameters. The BNNTs grown at 1200-1300 ºC from decaborane were double- and multi-walled, with the double-walled nanotubes having ˜2 nm inner diameters and the multi-walled nanotubes (˜10 walls) having ˜4-5 nm inner diameters and ˜12-14 nm outer diameters. BNNTs grown from decaborane at 1300 ºC were longer, averaging ˜0.6 µm, whereas those grown at 1200 ºC had average lengths of ˜0.2 µm. The BNNTs were characterized using scanning and transmission electron microscopies (SEM and TEM), and electron energy loss spectroscopy (EELS). This floating catalyst method now provides a catalytic and potentially scalable route to BNNTs with low defect density from safe and commercially available precursor compounds. A catalytic CVD method, employing the thermally induced reactions of ammonia with decaborane on polycrystalline nickel and copper foils, was also successfully developed for the production of BNNS. The metals were readily etched and the BNNS transferred to other substrates. The EELS and Raman spectra and the electron diffraction patterns of the BNNS confirmed the formation of h-BN and their optical, AFM and TEM characterizations showed BNNS with large micron-scale areas with some crumpling and folding. Most of the BNNS deposited on Ni were two- or three-layered; however, some regions were thicker containing up to six BN sheets. The films on Cu also contained two- and three-layered BNNS, but had large amorphous BN regions. Many of the BNNS grown on Ni exhibited well-defined angular edges, with near regular angles of 30º, 60º or 90º, suggesting that with a fine-tuning of the decaborane/ammonia pressure and growth conditions, controlled growth of regular polygonal BNNS structures can be achieved. To achieve the second goal, transition-metal-catalyzed decaborane-alkyne hydroboration reactions were developed that provide high-yield routes to the previously unknown di- and monoalkenyldecaboranes. An unusual catalyst product selectivity was observed, with the reactions catalyzed by the [RuCl2 (p-cymene)]2 and [Cp*IrCl2]2 complexes giving the ?-E alkenyldecaboranes and the corresponding reactions with the [RuI2(p-cymene)]2 complex giving the ?-alkenyldecaborane isomers. These product selectivities coupled with the differences observed in NMR studies of catalyzed reactions in progress, suggest quite distinct mechanistic steps for the different catalysts. It was further demonstrated that the new alkenyldecaboranes could be easily modified with the aid of metal-catalyzed hydroborations and homo and cross metathesis reactions to yield both linked cage and chemically active derivatives. These results demonstrate that the alkenyldecaboranes could serve as important materials for many potential polyborane biomedica

  20. Rh(I)-Catalyzed Direct Arylation of Pyridines and Quinolines

    SciTech Connect

    Berman, Ashley; Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-07-29

    The pyridine and quinoline nuclei are privileged scaffolds that occupy a central role in many medicinally relevant compounds. Consequently, methods for their expeditious functionalization are of immediate interest. However, despite the immense importance of transition-metal catalyzed cross-coupling for the functionalization of aromatic scaffolds, general solutions for coupling 2-pyridyl organometallics with aryl halides have only recently been presented. Direct arylation at the ortho position of pyridine would constitute an even more efficient approach because it eliminates the need for the stoichiometric preparation and isolation of 2-pyridyl organometallics. Progress towards this goal has been achieved by activation of the pyridine nucleus for arylation via conversion to the corresponding pyridine N-oxide or N-iminopyridinium ylide. However, this approach necessitates two additional steps: activation of the pyridine or quinoline starting material, and then unmasking the arylated product. The use of pyridines directly would clearly represent the ideal situation both in terms of cost and simplicity. We now wish to document our efforts in this vein, culminating in an operationally simple Rh(I)-catalyzed direct arylation of pyridines and quinolines. We recently developed an electron-rich Rh(I) system for catalytic alkylation at the ortho position of pyridines and quinolines with alkenes. Therefore, we initially focused our attention on the use of similarly electron-rich Rh(I) catalysts for the proposed direct arylation. After screening an array of electron-rich phosphine ligands and Rh(I) salts, only marginal yields (<20%) of the desired product were obtained. Much more efficient was an electron-poor Rh(I) system with [RhCl(CO){sub 2}]{sub 2} as precatalyst (Table 1). For the direct arylation of picoline with 3,5-dimethyl-bromobenzene, addition of P(OiPr){sub 3} afforded a promising 40% yield of the cross coupled product 1a (entry 1). The exclusion of phosphite additive proved even more effective, with the yield of 1a improving to 61% (entry 2). Further enhancement in yield was not observed upon the inclusion of other additives such as MgO (entry 3), various organic bases (entries 4, 5), or a protic acid source (entry 6). Absolute concentration proved very important, with the best results being obtained at relatively high concentrations of the aryl bromide (compare entries 7 and 8). A marginal improvement was observed upon running the reaction with 6 equivalents of 2-methyl pyridine (entry 9). The reaction temperature could also be increased to 175 or 190 C while maintaining reaction yield, to enable the reaction time to be reduced to 24 h (entries 10 and 11). In summary, we have developed a Rh(I)-catalyzed strategy for the direct arylation of pyridines and quinolines. The heterocycle is used without the need for prefunctionalization, and all reaction components are inexpensive and readily available. The strategy represents an expeditious route to an important class of bis(hetero)aryls and should be of broad utility.

  1. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    PubMed

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C?X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a pyridine ring, led to a new family of [OsCl2(PP)(NN)] (NN = diamine, 2-aminomethylpyridine; PP = diphosphine) and pincer [OsCl(CNN)(PP)] (HCNN = 6-aryl-2-aminomethylpyridine, 2-aminomethylbenzo[h]quinoline) complexes, which are outstanding catalysts for (asymmetric) HY and TH of carbonyl compounds and DHY of alcohols with turnover numbers and turnover frequencies up to 10(5) and 10(6) h(-1), respectively. In addition, PNN osmium complexes containing the 2-aminomethylpyridine motif have been found to be among the most active catalysts for HY of esters. These complexes have shown catalytic activities that are comparable and in some cases superior to those reported for analogous ruthenium systems. These results give an idea of the potential of Os complexes for the design of new highly productive and robust catalysts for the synthesis of chiral and nonchiral alcohols and amines as well as ketones from alcohols. Thus, we hope that this report will promote increased interest in the chemistry of these metal complexes, opening novel opportunities for new catalytic processes as well as the improvement of existing ones. PMID:25650714

  2. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density increase was shown to quickly saturate with cell mass attached on the electrode. Based on recent modelling data that suggested that the electrode currents might be limited by the poor electrical conductivity of the anode, the power density versus electrical conductivity of a yeast-immobilized anode was investigated. Introduction of high aspect ratio carbon fiber filaments to the immobilization matrix increased the electrical conductivity of the anode. Although a higher electrical conductivity clearly led to an increase in power densities, it was shown that the principal limitation to power density increase was coming from proton transfer limitations in the immobilized anode. Partial overcoming of the gradients lead a power density of ca. 250 microW cm-2, which is the highest reported for yeast powered MFCs. A yeast-catalyzed microbial fuel cell was investigated as a power source for low power sensors using raw tree sap. It was shown that yeast can efficiently utilize the sucrose present in the raw tree sap to produce electricity when excess salt is added to the medium. Therefore the salinity of a potential energy source is an important consideration when MFCs are being considered for energy harvesting from natural sources.

  3. Fundamentals of heterogeneously catalyzed reactions of environmental importance

    NASA Astrophysics Data System (ADS)

    Deshmukh, Subodh Shrinivas

    Reaction kinetics and spectroscopic characterization are valuable tools for understanding heterogeneously catalyzed chemical reactions. The objective of this work was to apply the tools of catalysis and reaction kinetics to understand the fundamentals of chemical surface phenomena for environmentally important reactions. This thesis presents our work in two areas of catalytic reactions for pollution abatement---"chlorofluorocarbon (CFC) treatment chemistry" and "sulfur-tolerant auto exhaust catalysts." The ozone depletion potential of CFCs has resulted in a great interest in the academic and industrial communities to find replacements for these chemicals. Hydrofluorocarbons (HFCs) are amongst the best "environmentally benign" candidates for CFC replacement. One selective pathway for the synthesis of HFCs is via the hydrodechlorination of CFCs. This route has the added benefit of destroying harmful CFC stockpiles and converting them into more useful chemicals. The work in Chapter 3 shows that parallel hydrogenation pathways starting from a common CF2 species can explain the formation of the products CH2F2 and CH4 for the hydrodechlorination of CF2Cl2 over Pd/AlF3. Transient kinetics experiments using C2H4 as a trapping agent for surface carbenes have provided evidence for the presence of CH2 species on the catalyst surface during this reaction. The absence of either coupling products or trapped products containing F suggests that the rate of hydrogenation of surface CF2 species is faster than that of surface CH2 species. Another important class of CFC reactions is oxide-catalyzed disproportionations to control the number and position of halogen atoms in the CFC/HFC molecule. Chapter 4 combines the use of reaction kinetics tools and spectroscopic characterization techniques to understand the adsorption and reaction of CF3CFCl 2 over gamma-Al2O3. The CF3CFCl 2 reaction over gamma-Al2O3 lead to a modification of the gamma-Al2O3 surface due to fluorination and the modified surface possessed sites that readily catalyzed the disproportionation of CF3CFCl2 at 353 K. FTIR spectroscopy was used to monitor the remarkable transformations taking place on the surface of Al 2O3. The identity and reactivity of surface fluoroacetate intermediates was determined and correlated to the changes in the oxide surface properties. One of the biggest challenges for automotive exhaust catalysts is the deactivation caused by sulfur present in the exhaust gas. There is enormous interest in developing new materials and catalysts that can destroy tailpipe pollutants in the presence of SO2. Work presented in Chapter 5 shows the promise of formulating new molecularly-mixed oxide materials with improved tolerance to sulfur than conventional CeO2. Characterization of the CeO2 and CeO2-ZrO2 mixed oxides after using different sulfur-treatment protocols showed that crystallite growth was the dominant phenomenon, which lead to activity loss in CeO2, on exposure to SO2. The incorporation of ZrO2 into the CeO2 lattice provided stability against sintering and helped maintain the activity of CeO2-ZrO2 over short times on stream.

  4. Bonding by Hydroxide-Catalyzed Hydration and Dehydration

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung

    2008-01-01

    A simple, inexpensive method for bonding solid objects exploits hydroxide-catalyzed hydration and dehydration to form silicate-like networks in thin surface and interfacial layers between the objects. The method can be practiced at room temperature or over a wide range of temperatures. The method was developed especially to enable the formation of precise, reliable bonds between precise optical components. The bonds thus formed exhibit the precision and transparency of bonds formed by the conventional optical-contact method and the strength and reliability of high-temperature frit bonds. The method also lends itself to numerous non-optical applications in which there are requirements for precise bonds and/or requirements for bonds, whether precise or imprecise, that can reliably withstand severe environmental conditions. Categories of such non-optical applications include forming composite materials, coating substrates, forming laminate structures, and preparing objects of defined geometry and composition. The method is applicable to materials that either (1) can form silicate-like networks in the sense that they have silicate-like molecular structures that are extensible into silicate-like networks or (2) can be chemically linked to silicate-like networks by means of hydroxide-catalyzed hydration and dehydration. When hydrated, a material of either type features surface hydroxyl (-OH) groups. In this method, a silicate-like network that bonds two substrates can be formed either by a bonding material alone or by the bonding material together with material from either or both of the substrates. Typically, an aqueous hydroxide bonding solution is dispensed and allowed to flow between the mating surfaces by capillary action. If the surface figures of the substrates do not match precisely, bonding could be improved by including a filling material in the bonding solution. Preferably, the filling material should include at least one ingredient that can be hydrated to have exposed hydroxyl groups and that can be chemically linked, by hydroxide catalysis, to a silicate-like network. The silicate-like network could be generated in situ from the filling material and/or substrate material, or could be originally present in the bonding material.

  5. Flame Synthesis Used to Create Metal-Catalyzed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2001-01-01

    Metal-catalyzed carbon nanotubes are highly ordered carbon structures of nanoscale dimensions. They may be thought of as hollow cylinders whose walls are formed by single atomic layers of graphite. Such cylinders may be composed of many nested, concentric atomic layers of carbon or only a single layer, the latter forming a single-walled carbon nanotube. This article reports unique results using a flame for their synthesis. Only recently were carbon nanotubes discovered within an arc discharge and recognized as fullerene derivatives. Today metal-catalyzed carbon nanotubes are of great interest for many reasons. They can be used as supports for the metal catalysts like those found in catalytic converters. Open-ended nanotubes are highly desirable because they can be filled by other elements, metals or gases, for battery and fuel cell applications. Because of their highly crystalline structure, they are significantly stronger than the commercial carbon fibers that are currently available (10 times as strong as steel but possessing one-sixth of the weight). This property makes them highly desirable for strengthening polymer and ceramic composite materials. Current methods of synthesizing carbon nanotubes include thermal pyrolysis of organometallics, laser ablation of metal targets within hydrocarbon atmospheres at high temperatures, and arc discharges. Each of these methods is costly, and it is unclear if they can be scaled for the commercial synthesis of carbon nanotubes. In contrast, flame synthesis is an economical means of bulk synthesis of a variety of aerosol materials such as carbon black. Flame synthesis of carbon nanotubes could potentially realize an economy of scale that would enable their use in common structural materials such as car-body panels. The top figure is a transmission electron micrograph of a multiwalled carbon nanotube. The image shows a cross section of the atomic structure of the nanotube. The dark lines are individual atomic layer planes of carbon, seen here in cross section. They form a nested series of concentric cylinders, much like the growth rings on a tree. This sample was obtained by the supported catalyst method, whereby the nanoscale catalysts are dispersed on a substrate providing their support. The substrate with catalyst particles was immersed within an acetylene diffusion flame to which nitrogen had been added to eliminate soot formation. Upon removal from the flame, the nanotubes were dispersed on a holder suitable for electron microscopy. Although not seen in the figure, the tube diameter reflects that of the catalyst particle.

  6. The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction 

    E-print Network

    Gourley, David G; Shrive, Annette K; Polikarpov, Igor; Krell, Tino; Coggins, John R; Hawkins, Alastair R; Isaacs, Neil W; Sawyer, Lindsay

    The structures of enzymes catalyzing the reactions in central metabolic pathways are generally well conserved as are their catalytic mechanisms. The two types of 3-dehydroquinate dehydratase (DHQase) are therefore most ...

  7. One-Flow, Multi-Step Synthesis of Nucleosides via Brønsted Acid- Catalyzed Glycosylation

    E-print Network

    Sniady, Adam

    Nucleosides in flow: A general, scalable method of Brønsted acid-catalyzed nucleoside formation is described. Because of the high reaction temperatures readily available to the flow reaction format, mild Brønsted acids, ...

  8. Palladium-Catalyzed Amination of Unprotected Five-Membered Heterocyclic Bromides

    E-print Network

    Su, Mingjuan

    An efficient method for the palladium-catalyzed amination of unprotected bromoimidazoles and bromopyrazoles is presented. The transformation is facilitated by the use of our newly developed Pd precatalyst based on the bulky ...

  9. Decarboxylative substitution of ?-keto acids to benzylic alcohols catalyzed by molecular iodine.

    PubMed

    Han, Fuzhong; Zhang, Xinxin; Hu, Minggang; Jia, Lina

    2015-12-21

    An efficient method for molecular iodine catalyzed decarboxylative substitution of ?-keto acids with benzylic alcohols under mild conditions has been described and valuable ?-functionalized ketones were obtained in good to excellent yields. PMID:26451897

  10. Combined Oxypalladation/C-H Functionalization: Palladium(II)-Catalyzed Intramolecular Oxidative Oxyarylation of Hydroxyalkenes

    E-print Network

    Zhu, Rong

    An efficient protocol has been developed for the intramolecular oxidative oxyarylation using a Pd[superscript II]-catalyzed tandem oxypalladation/C-H functionalization strategy. This methodology allows rapid access to ...

  11. Hydroaminomethylation Beyond Carbonylation: Allene-Imine Reductive Coupling by Ruthenium-Catalyzed Transfer Hydrogenation.

    PubMed

    Oda, Susumu; Sam, Brannon; Krische, Michael J

    2015-07-13

    Ruthenium(II)-catalyzed hydrogen transfer from 2-propanol mediates reductive coupling of 1,1-disubstituted allenes with formaldimines with complete branch-regioselectivity, thus representing a new method for hydroaminomethylation beyond classical hydroformylation/reductive amination. PMID:26031224

  12. Esterification kinetics of triglycerides in n-hexane catalyzed by an immobilized lipase 

    E-print Network

    Gomez Ruiz, Alejandro

    1998-01-01

    The kinetics of enzyme-catalyzed esterification of triglycerides over immobilized lipase in n-hexane was investigated. The reaction kinetics were described in terms of a mechanism developed following the Langmuir-Hinshelwood-Hougen-Watson (LHHW...

  13. Nickel-catalyzed preparation of acrylamides from alpha olefins and isocyanates ; Synthetic studies toward ripostatin A

    E-print Network

    Schleicher, Kristin D. (Kristin Diann)

    2010-01-01

    Chapter I. In the presence of the N-heterocyclic carbene ligand IPr, the nickel(0)-catalyzed coupling reaction of a-olefins and branched aliphatic isocyanates provides c,-unsaturated amides arising from preferential C-C ...

  14. The development and synthetic applications of Ti- and Pd-catalyzed processes

    E-print Network

    Hyde, Alan M. (Alan Michael)

    2009-01-01

    Chapter 1. Ti-Catalyzed Asymmetric Reduction of Aromatic Heterocycles A method for the highly selective asymmetric reduction of quinoxalines and quinazolines was developed. This complements technologies developed by others ...

  15. Rhodium-catalyzed epoxide-opening cascades toward brevisin and hemibrevetoxin B

    E-print Network

    Armbrust, Kurt W. (Kurt Willes)

    2014-01-01

    CHAPTER I. Rhodium-Catalyzed Epoxide-Opening Cascades: Formal Synthesis of (-)-Brevisin [chemical formula inserted] [Rh(CO)?Cl]? was found to be an effective catalyst for endo-selective cyclizations and cascades of ...

  16. Enantioselective Rhodium-Catalyzed Nucleophilic Allylation of Cyclic Imines with Allylboron Reagents 

    E-print Network

    Luo, Yunfei; Hepburn, Hamish B.; Chotsaeng, Nawasit; Lam, Hon Wai

    The highly diastereo- and enantioselective title reaction of a range of cyclic imines with various potassium allyltrifluoroborates most likely proceeds via allylrhodium(I) intermediates, and represents the first rhodium-catalyzed enantioselective...

  17. Enantioselective Rhodium-Catalyzed Addition of Potassium Alkenyltrifluoroborates to Cyclic Imines 

    E-print Network

    Luo, Yunfei; Carnell, Andrew J.; Lam, Hon Wai

    2012-07-02

    Cyclic imines, in which the C[DOUBLE BOND]N bond is constrained in the Z?geometry, have been identified as highly effective substrates for enantioselective rhodium-catalyzed additions of potassium alkenyltrifluoroborates. Not only is the alkene...

  18. GREEN CATALYZED OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II

    EPA Science Inventory

    Green Catalyzed Oxidation of Hydrocarbons in Alternative Solvent Systems Generated by PARIS II

    Michael A. Gonzalez*, Thomas M. Becker, and Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26...

  19. Synthesis of indoles via palladium-catalyzed annulation of aryl chlorides and internal alkynes

    E-print Network

    Dussault, Daemian David, 1973-

    2005-01-01

    A palladium-catalyzed preparation of 2,3-disubstituted indoles from commercially available and relatively inexpensive reagents, o-chloroacetanilide and internal alkynes, is reported. The system is efficient in delivering ...

  20. The development and application of metal-catalyzed processes for organic synthesis

    E-print Network

    Hennessy, Edward J. (Edward John), 1977-

    2005-01-01

    Chapter 1. Copper-Catalyzed Arylation of Stabilized Carbanions A mild, general catalytic system for the synthesis of [alpha]-aryl malonates has been developed. Aryl iodides bearing a variety of functional groups can be ...

  1. Synthesis of Unsymmetrical Diarylureas via Pd-Catalyzed C–N Cross-Coupling Reactions

    E-print Network

    Breitler, Simon

    A facile synthesis of unsymmetrical N,N?-diarylureas is described. The utilization of the Pd-catalyzed arylation of ureas enables the synthesis of an array of diarylureas in good to excellent yields from benzylurea via a ...

  2. Gold-catalyzed reactions of 2-alkynyl-phenylamines with alpha,beta-enones.

    PubMed

    Alfonsi, Maria; Arcadi, Antonio; Aschi, Massimiliano; Bianchi, Gabriele; Marinelli, Fabio

    2005-03-18

    [reaction: see text] The gold-catalyzed reaction of 2-alkynyl-phenylamines with alpha,beta-enones represents a new general one-pot entry into C-3-alkyl-indoles by sequential reactions. Gold-catalyzed sequential cyclization/alkylation, N-alkylation/cyclization, or N-alkylation/cyclization/alkylation reactions leading to different indoles can be directed by changing the 2-alkynyl-phenylamine 1/alpha,beta-enone 3 ratio and the reaction temperature. Unusual gold-catalyzed rearrangement reaction of indoles are observed at 140 degrees C. New gold-catalyzed formation of propargyl-alkyl ether under mild conditions and the hydration reaction of N-acetyl-2-ethynyl-phenylamine are reported. PMID:15760214

  3. Palladium-Catalyzed Conversion of Aryl and Vinyl Triflates to Bromides and Chlorides

    E-print Network

    Shen, Xiaoqiang

    2010-01-01

    The palladium-catalyzed conversion of aryl and vinyl triflates to aryl and vinyl halides (bromides and chlorides) has been developed using dialkylbiaryl phosphine ligands. A variety of aryl, heteroaryl, and vinyl halides ...

  4. Palladium-catalyzed substitution of (coumarinyl)methyl acetates with C-, N-, and S-nucleophiles

    E-print Network

    Chattopadhyay, Kalicharan; Fenster, Erik; Grenning, Alexander James; Tunge, Jon A.

    2012-07-27

    The palladium-catalyzed nucleophilic substitution of (coumarinyl)methyl acetates is described. The reaction proceeds though a palladium ?-benzyl-like complex and allows for many different types of C-, N-, and S-nucleophiles to be regioselectively...

  5. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  6. Palladium-Catalyzed Conversion of Aryl and Vinyl Triflates to Bromides and Chlorides

    E-print Network

    Pan, Jun

    A facile Pd-catalyzed conversion of aryl and vinyl triflates to aryl and vinyl halides (bromides and chlorides) is described. This method allows convenient access to a variety of aryl, heteroaryl, and vinyl halides in good ...

  7. Highly Selective Palladium-Catalyzed Cross-Coupling of Secondary Alkylzinc Reagents with Heteroaryl Halides

    E-print Network

    Yang, Yang

    The highly selective palladium-catalyzed Negishi coupling of secondary alkylzinc reagents with heteroaryl halides is described. The development of a series of biarylphosphine ligands has led to the identification of an ...

  8. A Mild, Palladium-Catalyzed Method for the Dehydrohalogenation of Alkyl Bromides: Synthetic and Mechanistic Studies

    E-print Network

    Bissember, Alex C.

    We have exploited a typically undesired elementary step in cross-coupling reactions, ?-hydride elimination, to accomplish palladium-catalyzed dehydrohalogenations of alkyl bromides to form terminal olefins. We have applied ...

  9. Development of novel transition metal-catalyzed cross-coupling reactions and applications thereof

    E-print Network

    Teverovskiy, Georgiy

    2013-01-01

    Chapter 1 The first example of Pd(0)/(II) catalyzed fluorination of aryl bromides is reported herein. Based on these data, an analogous method was developed for the fluorination of aryl triflates. The reaction proceeds ...

  10. Rh(III)-Catalyzed C-H Amidation of Indoles with Isocyanates.

    PubMed

    Jeong, Taejoo; Han, Sangil; Mishra, Neeraj Kumar; Sharma, Satyasheel; Lee, Seok-Yong; Oh, Joa Sub; Kwak, Jong Hwan; Jung, Young Hoon; Kim, In Su

    2015-07-17

    The rhodium(III)-catalyzed direct amidation of indoles and pyrroles with aryl and alkyl isocyanates is described. These transformations provide a facile and efficient construction of C2-amidated N-heterocyclic scaffolds. PMID:26107613

  11. Progress in nucleophilic catalysis and development of nickel-catalyzed cross-couplings of propargylic halides

    E-print Network

    Smith, Sean W. (Sean Wesley)

    2009-01-01

    Chapter 1 describes the development of two organocatalytic processes. The first is a 13-alkylation reaction of Michael acceptors, and represents a novel umpolung process catalyzed by N-heterocyclic carbenes. The second ...

  12. Phosphine-Catalyzed Enantioselective Intramolecular [3+2] Annulations To Generate Fused Ring Systems

    E-print Network

    Lee, Sarah Yunmi

    Substantial progress has been described in the development of asymmetric variants of the phosphine-catalyzed intermolecular [3+2] annulation of allenes with alkenes; however, there have not been corresponding advances for ...

  13. Mechanistic studies on metal-catalyzed carbon-nitrogen bond forming reactions

    E-print Network

    Strieter, Eric R

    2005-01-01

    Mechanistic studies on copper and palladium-catalyzed C-N bond forming reactions are described. To understand the mechanistic details of these processes, several principles of physical organic chemistry have been employed. ...

  14. OXIDATIVE 4-DECHLORINATION OF POLYCHLORINATED PHENOLS IS CATALYZED BY EXTRACELLULAR FUNGAL LIGNIN PEROXIDASES (JOURNAL VERSION)

    EPA Science Inventory

    The extracellular lignin peroxidases (ligninases) of Phanerochaete chrysosporium catalyzed H2O2-dependent spectral changes in several environmentally significant polychlorinated phenols: 2,4-dichloro-,2,4,5-trichloro-, and pentachlorophenol. Gas chromatography/mass spectrometry s...

  15. DOI: 10.1002/adsc.200700546 Iridium-Catalyzed Asymmetric Hydrogenation of Vinyl Ethers

    E-print Network

    Burgess, Kevin

    DOI: 10.1002/adsc.200700546 Iridium-Catalyzed Asymmetric Hydrogenation of Vinyl Ethers Ye Zhua,P-ligated iridium complexes in asymmetric hydrogenations of the silyl and methyl enol ethers D and E, but complex

  16. Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation

    PubMed Central

    Serganov, Alexander; Keiper, Sonja; Malinina, Lucy; Tereshko, Valentina; Skripkin, Eugene; Höbartner, Claudia; Polonskaia, Anna; Phan, Anh Tuân; Wombacher, Richard; Micura, Ronald; Dauter, Zbigniew; Jäschke, Andres; Patel, Dinshaw J

    2015-01-01

    The majority of structural efforts addressing RNA’s catalytic function have focused on natural ribozymes, which catalyze phosphodiester transfer reactions. By contrast, little is known about how RNA catalyzes other types of chemical reactions. We report here the crystal structures of a ribozyme that catalyzes enantioselective carbon-carbon bond formation by the Diels-Alder reaction in the unbound state and in complex with a reaction product. The RNA adopts a ?-shaped nested pseudoknot architecture whose preformed hydrophobic pocket is precisely complementary in shape to the reaction product. RNA folding and product binding are dictated by extensive stacking and hydrogen bonding, whereas stereoselection is governed by the shape of the catalytic pocket. Catalysis is apparently achieved by a combination of proximity, complementarity and electronic effects. We observe structural parallels in the independently evolved catalytic pocket architectures for ribozyme- and antibody-catalyzed Diels-Alder carbon-carbon bond-forming reactions. PMID:15723077

  17. Palladium-catalyzed C-C, C-N and C-O bond formation

    E-print Network

    Huang, Xiaohua, 1973-

    2003-01-01

    New methods for Pd-catalyzed cross-coupling reactions of aryl halides or arenesulfonates are described. Key to the success of these transformations is the proper choice of ligand and reaction conditions. Palladium catalysts ...

  18. A New Biarylphosphine Ligand for the Pd-Catalyzed Synthesis of Diaryl Ethers under Mild Conditions

    E-print Network

    Salvi, Luca

    A new bulky biarylphosphine ligand (L8) has been developed that allows the Pd-catalyzed C–O cross-coupling of a wide range of aryl halides and phenols under milder conditions than previously possible. A direct correlation ...

  19. Pd-Catalyzed C-H Bond Functionalization on the Indole and Pyrrole Nucleus

    NASA Astrophysics Data System (ADS)

    Beck, Elizabeth M.; Gaunt, Matthew J.

    This review details recent developments in the Pd-catalyzed C-H bond arylation and alkenylation of indoles and pyrroles, aromatic heterocycles that are frequently displayed in natural products and medicinal agents.

  20. Development of copper-catalyzed enantioselective alkene difunctionalization reactions via radical intermediates

    E-print Network

    Zhu, Rong, Ph. D. Massachusetts Institute of Technology

    2015-01-01

    Chapter 1 A mild, versatile, and convenient method for the efficient oxytrifluoromethylation of unactivated alkenes based on a copper-catalyzed ligand-assisted difunctionalization strategy has been developed. This method ...

  1. Palladium-catalyzed direct ?-arylation of methyl sulfones with aryl bromides.

    PubMed

    Zheng, Bing; Jia, Tiezheng; Walsh, Patrick J

    2013-04-01

    A direct and efficient approach for palladium-catalyzed arylation of aryl and alkyl methyl sulfones with aryl bromides has been developed. The catalytic system affords arylated sulfones in good to excellent yields (73-90%). PMID:23517309

  2. 53. VIEW LOOKING S.E. AT THE CATALYZER BUILDINGS, COOLING SHEDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW LOOKING S.E. AT THE CATALYZER BUILDINGS, COOLING SHEDS AND ABSORPTION BUILDINGS IN THE BACKGROUND. MAY 29, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  3. Synthesis of Aryl Sulfonamides via Palladium-Catalyzed Chlorosulfonylation of Arylboronic Acids

    PubMed Central

    DeBergh, J. Robb; Niljianskul, Nootaree; Buchwald, Stephen L.

    2013-01-01

    A palladium-catalyzed method for the preparation of sulfonamides is described. The process exhibits significant functional group tolerance and allows for the preparation of a number of arylsulfonyl chlorides and sulfonamides under mild conditions. PMID:23837740

  4. Iodine-catalyzed regioselective 2-sulfonylation of indoles with sodium sulfinates.

    PubMed

    Xiao, Fuhong; Chen, Hui; Xie, Hao; Chen, Shuqing; Yang, Luo; Deng, Guo-Jun

    2014-01-01

    Iodine-catalyzed selective 2-arylsulfonyl indole formation from indoles and sodium sulfinates is disclosed. Various substituted 2-arylsulfonyl indoles were obtained in one pot in the absence of metal catalyst at room temperature under air. PMID:24328422

  5. Nickel-Catalyzed Heck-Type Reactions of Benzyl Chlorides and Simple Olefins

    E-print Network

    Matsubara, Ryosuke

    Nickel-catalyzed intermolecular benzylation and heterobenzylation of unactivated alkenes to provide functionalized allylbenzene derivatives are described. A wide range of both the benzyl chloride and alkene coupling partners ...

  6. Synthesis of Aryl Sulfonamides via Palladium-Catalyzed Chlorosulfonylation of Arylboronic Acids

    E-print Network

    Niljianskul, Nootaree

    A palladium-catalyzed method for the preparation of sulfonamides is described. The process exhibits significant functional group tolerance and allows for the preparation of a number of arylsulfonyl chlorides and sulfonamides ...

  7. Cp*Rh(III) -Catalyzed Arylation of C(sp(3) )-H Bonds.

    PubMed

    Wang, Xiaoming; Yu, Da-Gang; Glorius, Frank

    2015-08-24

    The first Cp*Rh(III) -catalyzed arylation of unactivated C(sp(3) )-H bonds is presented. The unactivated primary C(sp(3) )-H bond of 2-alkylpyridines can be activated by Rh(III) and further reacts with triarylboroxines to efficiently build new C(sp(3) )-aryl bonds. The methodology also provides a facile and efficient synthesis of unsymmetrical triarylmethanes by Rh(III) -catalyzed C(sp(3) )-H arylation of diarylmethanes. PMID:26095347

  8. The Biginelli Reaction Is a Urea-Catalyzed Organocatalytic Multicomponent Reaction.

    PubMed

    Puripat, Maneeporn; Ramozzi, Romain; Hatanaka, Miho; Parasuk, Waraporn; Parasuk, Vudhichai; Morokuma, Keiji

    2015-07-17

    The recently developed artificial force induced reaction (AFIR) method was applied to search systematically all possible multicomponent pathways for the Biginelli reaction mechanism. The most favorable pathway starts with the condensation of the urea and benzaldehyde, followed by the addition of ethyl acetoacetate. Remarkably, a second urea molecule catalyzes nearly every step of the reaction. Thus, the Biginelli reaction is a urea-catalyzed multicomponent reaction. The reaction mechanism was found to be identical in both protic and aprotic solvents. PMID:26066623

  9. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    PubMed Central

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  10. Cobalt-Catalyzed Carbonylative Cyclization of Pyridinyl Diazoacetates for the Synthesis of Pyridoisoquinolinones.

    PubMed

    Baek, Yonghyeon; Kim, Sunghwa; Jeon, Bongkeun; Lee, Phil Ho

    2016-01-01

    Dicobalt octacarbonyl-catalyzed carbonylative cyclization of pyridinyl diazoacetates is developed for the synthesis of pyridoisoquinolinones under mild conditions (room temperature) in a carbon monoxide atmosphere. Moreover, a synthetic method for various pyridoisoquinolinones from ethylpyridinyl aryl acetates is demonstrated through diazotization using TsN3 and DBU followed by Co-catalyzed carbonylation to generate ketene intermediates, which can subsequently undergo intramolecular cyclization under mild conditions in a carbon monoxide atmosphere in a semi-one-pot fashion. PMID:26653102

  11. Iridium-catalyzed enantioselective allylation of silyl enol ethers derived from ketones and ?,?-unsaturated ketones.

    PubMed

    Liang, Xiao; Wei, Kun; Yang, Yu-Rong

    2015-12-21

    The unified Ir-catalyzed enantioselective allylic substitution reactions of silyl enol ethers derived from ketones and ?,?-unsaturated ketones with branched, racemic allylic alcohols are described. This transformation is catalyzed by the Carreira system and proceeds without fluoride, and with high ee and b?:?l ratio. The synthetic utility of this method was illustrated by the concise enantioselective total synthesis of marine natural products calyxolane A, B and by the assignment of the absolute configuration of calyxolane A. PMID:26477399

  12. Iron/Copper co-catalyzed synthesis of vinyl sulfones from sulfonyl hydrazides and alkyne derivatives.

    PubMed

    Rong, Guangwei; Mao, Jincheng; Yan, Hong; Zheng, Yang; Zhang, Guoqi

    2015-05-01

    A new approach to the selective synthesis of (E)-vinyl sulfones has been developed via a Fe/Cu co-catalyzed sulfonylation of arylpropiolic acid or phenylacetylene with sulfonyl hydrazides. A variety of vinyl sulfones have been obtained in moderate to good yields, comparable to the best results reported so far. The inexpensive Fe/Cu co-catalyzed method features a simple experimental procedure and good tolerance of substrate. PMID:25876519

  13. Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays.

    PubMed

    Xianyu, Yunlei; Chen, Yiping; Jiang, Xingyu

    2015-11-01

    This report outlines an enzymatic cascade reaction for signal transduction and amplification for plasmonic immunoassays by using horseradish peroxidase (HRP)-mediated aggregation of gold nanoparticles (AuNPs). HRP-catalyzed oxidation of iodide and iodide-catalyzed oxidation of cysteine is employed to modulate the plasmonic signals of AuNPs. It agrees well with the current immunoassay platforms and allows naked-eye readout with enhanced sensitivity, which holds great promise for applications in resource-constrained settings. PMID:26460152

  14. Primordial Lithium Abundance in Catalyzed Big Bang Nucleosynthesis

    E-print Network

    Chris Bird; Kristen Koopmans; Maxim Pospelov

    2008-05-19

    There exists a well known problem with the Li7+Be7 abundance predicted by standard big bang nucleosynthesis being larger than the value observed in population II stars. The catalysis of big bang nucleosynthesis by metastable, \\tau_X \\ge 10^3 sec, charged particles X^- is capable of suppressing the primordial Li7+Be7, abundance and making it consistent with the observations. We show that to produce the correct abundance, this mechanism of suppression places a requirement on the initial abundance of X^- at temperatures of 4\\times 10^8 K to be on the order of or larger than 0.02 per baryon, which is within the natural range of abundances in models with metastable electroweak-scale particles. The suppression of Li7+Be7, is triggered by the formation of (Be7X^-), compound nuclei, with fast depletion of their abundances by catalyzed proton reactions, and in some models by direct capture of X^- on Be7. The combination of Li7+Be7 and Li6 constraints favours the window of lifetimes, 1000s \\la tau_X \\leq 2000 s.

  15. A Personal Adventure in Muon-Catalyzed Fusion

    NASA Astrophysics Data System (ADS)

    Jackson, John David

    2010-03-01

    Luis Alvarez and colleagues discovered muon-catalyzed fusion of hydrogen isotopes by chance in late 1956. On sabbatical leave at Princeton University during that year, I read the first public announcement of the discovery at the end of December in that well-known scientific journal, The New York Times. A nuclear theorist by prior training, I was intrigued enough in the phenomenon to begin some calculations. I describe my work here, my interaction with Alvarez, and a summary of the surprising developments, both before and after Alvarez’s discovery. The rare proton-deuteron ( p-d) fusion events in Alvarez’s liquid-hydrogen bubble chamber occurred only because of the natural presence of a tiny amount of deuterium (heavy hydrogen). Additionally, the fusion rate, once the proton-deuteron-muon ( pd? - ) molecular ion has been formed, is sufficiently slow that only rarely does an additional catalytic act occur. A far different situation occurs for muons stopping in pure deuterium or a deuterium-tritium ( d- t) mixture where the fusion rates are many orders of magnitude larger and the molecular-formation rates are large compared to the muon’s decay rate. The intricate interplay of atomic, molecular, and nuclear science, together with highly fortuitous accidents in the molecular dynamics and the hope of practical application, breathed life into a seeming curiosity. A small but vigorous worldwide community has explored these myriad phenomena in the past 50 years.

  16. Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance.

    PubMed

    Liu, Yong-Yu; Hill, Ronald A; Li, Yu-Teh

    2013-01-01

    Glucosylceramide synthase (GCS), converting ceramide to glucosylceramide, catalyzes the first reaction of ceramide glycosylation in sphingolipid metabolism. This glycosylation by GCS is a critical step regulating the modulation of cellular activities by controlling ceramide and glycosphingolipids (GSLs). An increase of ceramide in response to stresses, such as chemotherapy, drives cells to proliferation arrest and apoptosis or autophagy; however, ceramide glycosylation promptly eliminates ceramide and consequently, these induced processes, thus protecting cancer cells. Further, persistently enhanced ceramide glycosylation can increase GSLs, participating in selecting cancer cells to drug resistance. GCS is overexpressed in diverse drug-resistant cancer cells and in tumors of breast, colon, and leukemia that display poor response to chemotherapy. As ceramide glycosylation by GCS is a rate-limiting step in GSL synthesis, inhibition of GCS sensitizes cancer cells to anticancer drugs and eradicates cancer stem cells. Mechanistic studies indicate that uncoupling ceramide glycosylation can modulate gene expression, decreasing MDR1 through the cSrc/?-catenin pathway and restoring p53 expression via RNA splicing. These studies not only expand our knowledge in understanding how ceramide glycosylation affects cancer cells but also provide novel therapeutic approaches for targeting refractory tumors. PMID:23290777

  17. Hydroformylation of 1-heptene catalyzed by ruthenium cluster

    SciTech Connect

    Li, Z.; Zhang, J.; Wang, C.

    1994-12-31

    Hydroformylation of 1-heptane catalyzed by homogeneous and heterogeneous Ru{sub 3}(CO){sub 12} catalyst has been investigated. Ru{sub 3}(CO){sub 12} has almost no activity when reaction temperature is below 60 C, and nearly stable activity when over 100 C. The maximum selectivity to aldehyde is obtained at 120 C and N/I values of aldehyde and alcohol decrease rapidly with temperature increase. Supported Ru{sub 3}(CO){sub 12} catalyst modified with NaBH{sub 4} or KOH has higher catalytic activity and selectivity to aldehyde in heterogeneous catalysis. Compared with supported Ru{sub 3}(CO){sub 12} catalyst modified with NaBH{sub 4} or KOH has higher catalytic activity and selectivity to aldehyde in heterogeneous catalysis. Compared with supported Ru{sub 3}(CO){sub 12} catalysts, Ru{sub 3}(CO){sub 12}/Co{sub 2}(CO){sub 8}/{gamma}-Al{sub 2}O{sub 3} has high activity and selectivity. When PPh{sub 3} or (NEt{sub 4}) Cl is added to the reaction system, the selectivity to aldehyde and N/I increase. The FTIR spectra of catalysts after reaction show that Ru{sub 3}(CO){sub 12} and Co{sub 2}(CO){sub 8} are changed to new carbonyl complexes which may have catalytic activity.

  18. Reaction dynamics of ATP hydrolysis catalyzed by P-glycoprotein.

    PubMed

    Scian, Michele; Acchione, Mauro; Li, Mavis; Atkins, William M

    2014-02-18

    P-glycoprotein (P-gp) is a member of the ABC transporter family that confers drug resistance to many tumors by catalyzing their efflux, and it is a major component of drug-drug interactions. P-gp couples drug efflux with ATP hydrolysis by coordinating conformational changes in the drug binding sites with the hydrolysis of ATP and release of ADP. To understand the relative rates of the chemical step for hydrolysis and the conformational changes that follow it, we exploited isotope exchange methods to determine the extent to which the ATP hydrolysis step is reversible. With ?(18)O4-labeled ATP, no positional isotope exchange is detectable at the bridging ?-phosphorus-O-?-phosphorus bond. Furthermore, the phosphate derived from hydrolysis includes a constant ratio of three (18)O/two (18)O/one (18)O that reflects the isotopic composition of the starting ATP in multiple experiments. Thus, H2O-exchange with HPO4(2-) (Pi) was negligible, suggesting that a [P-gp·ADP·Pi] is not long-lived. This further demonstrates that the hydrolysis is essentially irreversible in the active site. These mechanistic details of ATP hydrolysis are consistent with a very fast conformational change immediately following, or concomitant with, hydrolysis of the ?-phosphate linkage that ensures a high commitment to catalysis in both drug-free and drug-bound states. PMID:24506763

  19. Predictive modeling of metal-catalyzed polyolefin processes

    NASA Astrophysics Data System (ADS)

    Khare, Neeraj Prasad

    2003-10-01

    This dissertation describes the essential modeling components and techniques for building comprehensive polymer process models for metal-catalyzed polyolefin processes. The significance of this work is that it presents a comprehensive approach to polymer process modeling applied to large-scale commercial processes. Most researchers focus only on polymerization mechanisms and reaction kinetics, and neglect physical properties and phase equilibrium. Both physical properties and phase equilibrium play key roles in the accuracy and robustness of a model. This work presents the fundamental principles and practical guidelines used to develop and validate both steady-state and dynamic simulation models for two large-scale commercial processes involving the Ziegler-Natta polymerization to produce high-density polyethylene (HDPE) and polypropylene (PP). It also provides a model for the solution polymerization of ethylene using a metallocene catalyst. Existing modeling efforts do not include physical properties or phase equilibrium in their calculations. These omissions undermine the accuracy and predictive power of the models. The forward chapters of the dissertation discuss the fundamental concepts we consider in polymer process modeling. These include physical and thermodynamic properties, phase equilibrium, and polymerization kinetics. The later chapters provide the modeling applications described above.

  20. Broadening the scope of glycosyltransferase-catalyzed sugar nucleotide synthesis

    PubMed Central

    Gantt, Richard W.; Peltier-Pain, Pauline; Singh, Shanteri; Zhou, Maoquan; Thorson, Jon S.

    2013-01-01

    We described the integration of the general reversibility of glycosyltransferase-catalyzed reactions, artificial glycosyl donors, and a high throughput colorimetric screen to enable the engineering of glycosyltransferases for combinatorial sugar nucleotide synthesis. The best engineered catalyst from this study, the OleD Loki variant, contained the mutations P67T/I112P/T113M/S132F/A242I compared with the OleD wild-type sequence. Evaluated against the parental sequence OleD TDP16 variant used for screening, the OleD Loki variant displayed maximum improvements in kcat/Km of >400-fold and >15-fold for formation of NDP–glucoses and UDP–sugars, respectively. This OleD Loki variant also demonstrated efficient turnover with five variant NDP acceptors and six variant 2-chloro-4-nitrophenyl glycoside donors to produce 30 distinct NDP–sugars. This study highlights a convenient strategy to rapidly optimize glycosyltransferase catalysts for the synthesis of complex sugar nucleotides and the practical synthesis of a unique set of sugar nucleotides. PMID:23610417

  1. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  2. Kinetics of phenolic polymerization catalyzed by peroxidase in organic media

    SciTech Connect

    Xu, Y.P.; Huang, G.L; Yu, Y.T.

    1995-07-05

    Phenolic polymerization was carried out by enzymatic catalysis in organic media, and its kinetics was studied by using high-pressure liquid chromatography (HPLC). Phenols and aromatic amines with electron-withdrawing groups could hardly be polymerized by HRP catalysis, but phenols and aromatic amines with electron-donating groups could easily by polymerized. The reaction rate of either the para-substituted substrate or meta-substituted substrate was higher than that of ortho-substituted substrate. When ortho-position of hydroxy group of phenols was occupied by an electron-donating group and if another electron-donating group occupied para-position of hydroxy group, the reaction rate increased. Horseradish peroxidase and lactoperoxidase could easily catalyze the polymerization, but chloroperoxidase and laccase failed to yield polymers. Metallic ions such as Mn{sup 2+}, Fe{sup 2+}, or Fe{sup 3+}, and Cu{sup 2+} could poison horseradish peroxidase to various extents, but ions such as Co{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, and K{sup +} were not found to inhibit the reaction.

  3. Carbon-catalyzed gasification of organic feedstocks in supercritical water

    SciTech Connect

    Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr.

    1996-08-01

    Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

  4. Temperature dependences of rate coefficients for electron catalyzed mutual neutralization

    SciTech Connect

    Shuman, Nicholas S.; Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, Albert A.; Maeda, Satoshi; Morokuma, Keiji

    2011-07-14

    The flowing afterglow technique of variable electron and neutral density attachment mass spectrometry (VENDAMS) has recently yielded evidence for a novel plasma charge loss process, electron catalyzed mutual neutralization (ECMN), i.e., A{sup +}+ B{sup -}+ e{sup -}{yields} A + B + e{sup -}. Here, rate constants for ECMN of two polyatomic species (POCl{sub 3}{sup -} and POCl{sub 2}{sup -}) and one diatomic species (Br{sub 2}{sup -}) each with two monatomic cations (Ar{sup +}and Kr{sup +}) are measured using VENDAMS over the temperature range 300 K-500 K. All rate constants show a steep negative temperature dependence, consistent with that expected for a three body process involving two ions and an electron. No variation in rate constants as a function of the cation type is observed outside of uncertainty; however, rate constants of the polyatomic anions ({approx}1 x 10{sup -18} cm{sup 6} s{sup -1} at 300 K) are measurably higher than that for Br{sub 2}{sup -}[(5.5 {+-} 2) x 10{sup -19} cm{sup 6} s{sup -1} at 300 K].

  5. Stable Self-Catalyzed Growth of III-V Nanowires.

    PubMed

    Tersoff, J

    2015-10-14

    Nanowire growth has generally relied on an initial particle of a catalyst such as Au to define the wire diameter and stabilize the growth. Self-catalyzed growth of III-V nanowires avoids the need for a foreign element, with the nanowire growing from the vapor via a droplet of the native group-III liquid. However, as suggested by Gibbs' phase rule, the absence of third element has a destabilizing effect. Here we analyze this system theoretically, finding that growth can be dynamically stable at pressures far above the equilibrium vapor pressure. Steady-state growth occurs via kinetic self-regulation of the droplet volume and wire diameter. In particular, for a given temperature and source-gas pressures there is a unique stable wire diameter and droplet volume, both of which decrease with increasing V/III ratio. We also examine the evolution of the droplet size and wire diameter toward the steady state as the wire grows and discuss implications for structural control. PMID:26389697

  6. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  7. Process Intensification in Base-Catalyzed Biodiesel Production

    SciTech Connect

    McFarlane, Joanna; Birdwell Jr, Joseph F; Tsouris, Costas; Jennings, Hal L

    2008-01-01

    Biodiesel is considered a means to diversify our supply of transportation fuel, addressing the goal of reducing our dependence on oil. Recent interest has resulted in biodiesel manufacture becoming more widely undertaken by commercial enterprises that are interested in minimizing the cost of feedstock materials and waste production, as well as maximizing the efficiency of production. Various means to accelerate batch processing have been investigated. Oak Ridge National Laboratory has experience in developing process intensification methods for nuclear separations, and this paper will discuss how technologies developed for very different applications have been modified for continuous reaction/separation of biodiesel. In collaboration with an industrial partner, this work addresses the aspect of base-catalyzed biodiesel production that limits it to a slow batch process. In particular, we have found that interfacial mass transfer and phase separation control the transesterification process and have developed a continuous two-phase reactor for online production of a methyl ester and glycerol. Enhancing the mass transfer has additional benefits such as being able to use an alcohol-to-oil phase ratio closer to stoichiometric than in conventional processing, hence minimizing the amount of solvent that has to be recycled and reducing post-processing clean up costs. Various technical issues associated with the application of process intensification technology will be discussed, including scale-up from the laboratory to a pilot-scale undertaking.

  8. Primordial lithium abundance in catalyzed big bang nucleosynthesis

    SciTech Connect

    Bird, Chris; Koopmans, Kristen; Pospelov, Maxim

    2008-10-15

    There exists a well-known problem with the {sup 7}Li+{sup 7}Be abundance predicted by standard big bang nucleosynthesis being larger than the value observed in population II stars. The catalysis of big bang nucleosynthesis by metastable, {tau}{sub X} > or approx. 10{sup 3} sec, charged particles X{sup -} is capable of suppressing the primordial {sup 7}Li+{sup 7}Be abundance and making it consistent with the observations. We show that to produce the correct abundance, this mechanism of suppression places a requirement on the initial abundance of X{sup -} at temperatures of 4x10{sup 8} K to be on the order of or larger than 0.02 per baryon, which is within the natural range of abundances in models with metastable electroweak-scale particles. The suppression of {sup 7}Li+{sup 7}Be is triggered by the formation of ({sup 7}BeX{sup -}) compound nuclei, with fast depletion of their abundances by catalyzed proton reactions, and in some models by direct capture of X{sup -} on {sup 7}Be. The combination of {sup 7}Li+{sup 7}Be and {sup 6}Li constraints favors the window of lifetimes, 1000 s < or approx. {tau}{sub X}{<=}2000 s.

  9. Production of Chemoenzymatic Catalyzed Monoepoxide Biolubricant: Optimization and Physicochemical Characteristics

    PubMed Central

    Salimon, Jumat; Salih, Nadia; Abdullah, Bashar Mudhaffar

    2012-01-01

    Linoleic acid (LA) is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435). This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) was optimized using D-optimal design. At optimum conditions, higher yield% (82.14) and medium oxirane oxygen content (OOC) (4.91%) of MEOA were predicted at 15??L of H2O2, 120?mg of Novozym 435, and 7?h of reaction time. In order to develop better-quality biolubricants, pour point (PP), flash point (FP), viscosity index (VI), and oxidative stability (OT) were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of ?41°C. FP of MEOA increased to 128°C comparing with 115°C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt) more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168°C, respectively. PMID:22346338

  10. Nanocrystalline TiO?-catalyzed photoreversible color switching.

    PubMed

    Wang, Wenshou; Ye, Miaomiao; He, Le; Yin, Yadong

    2014-03-12

    We report a novel photoreversible color switching system based on the photocatalytic activity of TiO2 nanocrystals and the redox-driven color switching property of methylene blue (MB). This system rapidly changes from blue to colorless under UV irradiation and recovers its original blue color under visible light irradiation. We have identified four major competing reactions that contribute to the photoreversible switching, among which two are dominant: the decoloration process is mainly driven by the reduction of MB to leuco MB by photogenerated electrons from TiO2 nanocrystals under UV irradiation, and the recoloration process operates by the TiO2-induced self-catalyzed oxidation of LMB under visible irradiation. Compared with the conventional color switching systems based on photoisomerization of chromophores, our system has not only low toxicity but also significantly improved switching rate and cycling performance. It is envisioned that this photoreversible system may promise unique opportunities for many light-driven actuating or color switching applications. PMID:24555513

  11. Ab initio study of ice catalyzation of HOCl + HCl reaction

    SciTech Connect

    Zhou, Y.F.; Liu, C.B.

    2000-06-15

    The observations by Farman et al. revealed remarkable depletions in the total atmospheric ozone content in Antarctica. The observed total ozone decreased smoothing during the spring season from about 1975. Satellite observations have proved Antarctic ozone depletions over a very extended region, in general agreement with the local ground-based data of Farman et al. It was suggested that heterogeneous reactions occurring on particles in polar stratospheric clouds (PSCs) play a central role in the depletion of stratospheric ozone. Experiments proved that the reaction of HOCl + HCl was very slow in the gas phase, but on ice surface it was rapid. In this work the ice catalysis of HOCl + HCl reaction was investigated by using ab initio molecular orbital theory. The authors applied the Hartree-Fock self-consistent field and the second-order Moeller-Plesset perturbation theory with the basis sets of 6-31G* to the model system. The complexes and transition state were obtained along the reaction with and without the presence of ice surface. By comparing the results, a possible catalyzation mechanism of ice on the reaction is proposed.

  12. Feasibility of an antiproton catalyzed fission fragment rocket

    SciTech Connect

    Hdinger, D.S.

    1992-03-01

    The purpose of this project was to investigate the feasibility of an antiproton catalyzed fission fragment rocket (FFR). The FFR is characterized by the extraction of fission fragments from the fissile fuel, and the utilization of their kinetic energy for thrust generation. A significant drawback to previous FFR designs was the requirement to maintain a critical nuclear pile as the fission fragment source. The author examined the possibility of replacing the critical pile with a sub-critical pile driven by antiprotons. Recent experiments have revealed that antiprotons stimulate highly energetic fissions in {sup 238}U, with a neutron multiplicity of 13.7 neutrons per fission. This interaction was used as a throttled neutron source. The pile consisted of layers of fissile coated fibers which are designed to allow fission fragments to escape them, where the fragments collide with a fluid. The heated fluid is then ejected from the rocket to provide thrust. The calculations performed indicate that each antiproton injected into the pile can stimulate 8 or more fissions while maintaining a neutron multiplication of less than 0.4. Based on the results seen, the engine design presented is inadequate. Limitations introduced by the reaction fluid far outweigh the simplicity-of-design gained. Despite this, the basic idea of using the antiproton-U interaction as a source of spacecraft propulsion warrants further study.

  13. Kinetic modeling of Pt-catalyzed glycolaldehyde decomposition to syngas.

    PubMed

    Salciccioli, Michael; Vlachos, Dionisios G

    2012-05-10

    Fundamental knowledge of the elementary reaction mechanisms involved in oxygenate decomposition on transition metal catalysts can facilitate the optimization of future catalyst and reactor systems for biomass upgrade to fuels and chemicals. Pt-catalyzed decomposition of glycolaldehyde, as the smallest oxygenate with alcohol and aldehyde functionality, was studied via a DFT-based microkinetic model. It was found that two decomposition pathways exist. Under conditions of low hydrogen surface coverage, the initial C-H bond breaking reaction to HOCH(2)CO* is prevalent, while under conditions of high hydrogen coverage, the rather unexpected O-H bond forming reaction to HOCH(2)CHOH* is more active (subsequent decomposition is energetically favorable from HOCH(2)CHOH*). Our results indicate the possibility that (de)hydrogenation chemistry is rate-controlling in many small polyoxygenate biomass derivatives, and suitable catalysts are needed. Finally, DFT was used to understand the increased decomposition activity observed on the surface segregated Ni-Pt-Pt bimetallic catalyst. It was found that the initial O-H bond breaking of glycolaldehyde to OCH(2)CHO* has an activation barrier of just 0.21 eV. This barrier is lower than that of any glycolaldehyde consuming reaction on Pt. These computational predictions are in qualitative agreement with experimental results. PMID:22483365

  14. Enzymatic polymerization catalyzed by immobilized endoglucanase on gold.

    PubMed

    Nakamura, Itsuko; Horikawa, Yoshiki; Makino, Akira; Sugiyama, Junji; Kimura, Shunsaku

    2011-03-14

    Enzymatic polymerization was carried out on gold by immobilized genetically engineered endoglucanase II (EGII) from Trichoderma viride , and the polymerization behavior and the produced cellulose were analyzed in comparison with those by free enzymes. Mutant EGIIs were EGII(core2) and EGII(core2H), which consist of two sequential catalytic core domains with one His-tag (His6) on N-terminal and with totally two His-tags on both terminals, respectively. His-tagged EGIIs were immobilized via Ni chelators of nitrilotriacetic acid (NTA) introduced on gold surface. From SPR measurements, the affinity of EGII(core2H) to the surface was higher than that of EGII(core2), and the molecular occupation area of EGII(core2H) was larger than that of EGII(core2), indicating that EGII(core2H) was immobilized with utilizing two His-tags introduced on both terminals. The hydrolytic activity of the immobilized EGII(core2H) using cellohexaose as substrate was slightly lower than that of free EGII(core2H) when they were compared at the same amount in the hydrolytic system. Enzymatic polymerization catalyzed by both immobilized EGII(core2) and EGII(core2H) proceeded with producing highly crystalline cellulose in comparison with free enzyme. Immobilization of the endoglucanase is thus effective to obtain crystalline cellulose due to the high density of the catalytic domain on gold. PMID:21261301

  15. MEMS-Based Satellite Micropropulsion Via Catalyzed Hydrogen Peroxide Decomposition

    NASA Technical Reports Server (NTRS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Micro-electromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of "micro-scale" satellites being designed by NASA and Department of Defense agencies. More commonly referred to as "nanosats", these miniature satellites feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the article focuses the progress being made at NASA Goddard Space Flight Center towards the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a micro-scale converging/diverging supersonic nozzle which produces the thrust vector; the targeted thrust level approximately 500 N with a specific impulse of 140-180 seconds. Macro-scale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on a MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  16. Mechanism of base-catalyzed Schiff base deprotonation in halorhodopsin

    SciTech Connect

    Lanyi, J.K.

    1986-10-21

    It has been shown earlier that the deprotonation of the Schiff base of illuminated halorhodopsin proceeds with a much lower pK/sub a/ than that of the unilluminated pigment and the reversible protonation change is catalyzed by azide and cyanate. The authors have studied the kinetics of the proton-transfer events with flash spectroscopy and compared a variety of anionic bases with different pK/sub a/ with regard to the apparent binding constants and the catalytic activities. The results suggest a general base catalysis mechanism in which the anionic bases bind with apparently low affinity to halorhodopsin, although with some degree of size- and/or shape-dependent specificity. The locus of the catalysis is accessible from the cytoplasmic side of the membrane and is not at site I, where various anions bind and shift the pK/sub a/ of the deprotonation. Neither is it at site II, where a few specific anions (like chloride) bind to the all-trans pigment. It may be concluded that while the all-trans pigment loses its Schiff base proton very rapidly at its pK/sub a/, there is a kinetic barrier to this deprotonation in the 13-cis photointermediate that can be partially overcome by the reversible protonation of an extrinsic anionic base, which shuttles protons between the interior of the protein and the aqueous medium. The need for an extrinsic proton acceptor for efficient deprotonation of the Schiff base of halorhodopsin is one of the main differences between this pigment and the analogous retinal protein, bacteriorhodopsin.

  17. Computational biotransformation profile of paracetamol catalyzed by cytochrome P450.

    PubMed

    Ji, Li; Schüürmann, Gerrit

    2015-04-20

    The P450-catalyzed biotransformation of the analgesic drug paracetamol (PAR) is a long-debated topic, involving different mechanistic hypotheses as well as experimental evidence for the metabolites N-acetyl-p-benzoquinone imine (NAPQI), p-benzoquinone, acetamide, and 3-hydroxy-PAR. During the catalytic cycle of P450, a high-valent iron(IV)-oxo species known as Compound I (Cpd I) is formed as the ultimate oxidant, featuring two energetically close-lying ground states in the doublet (low-spin) and quartet (high-spin) spin states, respectively. In order to clarify the catalytic mechanism, a computational chemistry analysis has been undertaken for both the high- and low-spin routes, employing density functional theory (DFT) including PCM (polarized continuum-solvation model) that yields an approximate simulation of the bulk polarization exerted through the protein. The results demonstrate that hydrogen abstraction transfer (HAT) by the P450 oxidant Cpd I (FeO) is kinetically strongly preferred over the alternative pathways of an oxygen addition reaction (OAR) or two consecutive single-electron transfers (SET). Moreover, only the respective high-spin route yields N-acetyl-p-semiquinone imine (NAPSQI) as an intermediate that is converted to the electrophile N-acetyl-p-benzoquinone imine (NAPQI). By contrast, 3-hydroxy-PAR, acetamide, and p-benzoquinone as electrophilic and redox-active agent are formed predominantly in the low-spin state through reactions that do not involve NAPSQI. Thus, all experimentally observed PAR metabolites are in accord with an initial HAT from the phenolic oxygen, and NAPSQI should indeed be the precursor of NAPQI, both of which are generated only via the high-spin pathway. PMID:25548954

  18. The mechanism for iron-catalyzed alkene isomerization in solution

    SciTech Connect

    Sawyer, Karma R.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Harris, Charles B.

    2008-05-27

    Here we report nano- through microsecond time-resolved IR experiments of iron-catalyzed alkene isomerization in room-temperature solution. We have monitored the photochemistry of a model system, Fe(CO){sub 4}({eta}{sup 2}-1-hexene), in neat 1-hexene solution. UV-photolysis of the starting material leads to the dissociation of a single CO to form Fe(CO){sub 3}({eta}{sup 2}-1-hexene), in a singlet spin state. This CO loss complex shows a dramatic selectivity to form an allyl hydride, HFe(CO){sub 3}({eta}{sup 3}-C{sub 6}H{sub 11}), via an internal C-H bond-cleavage reaction in 5-25 ns. We find no evidence for the coordination of an alkene molecule from the bath to the CO loss complex, but do observe coordination to the allyl hydride, indicating that it is the key intermediate in the isomerization mechanism. Coordination of the alkene ligand to the allyl hydride leads to the formation of the bis-alkene isomers, Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) and Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2}. Because of the thermodynamic stability of Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) over Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2} (ca. 12 kcal/mol), nearly 100% of the alkene population will be 2-alkene. The results presented herein provide the first direct evidence for this mechanism in solution and suggest modifications to the currently accepted mechanism.

  19. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    DOE PAGESBeta

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ?SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ?SiOBpinmore »moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.« less

  20. Copper-catalyzed azide alkyne cycloaddition polymer networks

    NASA Astrophysics Data System (ADS)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo-CuAAC reaction and a chain-growth acrylate homopolymerization were demonstrated and used to form branched polymer structures. A bulk, organic soluble initiation system consisting of a Cu(II) salt and a primary amine was also examined in both model reactions and in bulk polymerizations. The system was shown to be highly efficient, leading to nearly complete CuAAC polymerization at ambient temperature. Increasing the ratio of amine to copper from 1 to 4 increases the CuAAC reaction rate significantly from 4 mM/min for 1:1 ratio of Cu(II):hexyalmine to 14mM/min for 1:4 ratio. The concentration dependence of the amine on the reaction rate enables the polymerization rate to be controlled simply by manipulating the hexylamine concentration. Sequential thiol--acrylate and photo-CuAAC click reactions were utilized to form two-stage reactive polymer networks capable of generating wrinkles in a facile manner. The click thiol-Michael addition reaction was utilized to form a cross-linked polymer with residual, reactive alkyne sites that remained tethered throughout the network. The latent, unreacted alkyne sites are subsequently reacted with diazide monomers via a photoinduced Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to increase the cross-link density. Increased cross-linking raised the modulus and glass transition temperature from 1.6 MPa and 2 °C after the thiol-acrylate reaction to 4.4 MPa and 22 °C after the CuAAC reaction, respectively. The double click reaction approach led to micro-wrinkles with well-controlled wavelength and amplitude of 8.50 +/- 1.6 and 1.4 ?m, respectively, for a polymer with a 1280 ?m total film thickness. Additionally, this approach further enables spatial selectivity of wrinkle formation by photo-patterning. The CuAAC-based polymerization was also used to design smart, responsive porous materials from well-defined CuAAC networks, which possesses a high glass transition temperature (Tg= 115°C) due to the formation of the triazole linkages. The toughness, recovery, fixity, and shape memory attributes of this mater

  1. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    PubMed

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 ?M) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 ?M) underestimated those obtained at EPs concentration of ?g L(-1) level (0.050 ?M). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at ?g L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. PMID:25016299

  2. Which one is faster? A kinetic investigation of Pd and Ni catalyzed Negishi-type oxidative coupling reactions.

    PubMed

    Xin, Jie; Zhang, Guanghui; Deng, Yi; Zhang, Heng; Lei, Aiwen

    2015-11-18

    The difference between Pd and Ni has been investigated based on the Negishi-type oxidative coupling reactions in which reductive elimination was proved to be the rate determining step. Although DFT calculations illustrate that the Pd catalyzed reaction should be faster than the Ni catalyzed reaction under these conditions, kinetic experiments indicate that the reaction rate of Pd and Ni is dependent on the concentration of the catalyst precursor. The Pd catalyzed reaction is faster than the Ni catalyzed reaction only when the precursor concentration is as low as 1 × 10(-7) M. PMID:26536236

  3. Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires

    NASA Astrophysics Data System (ADS)

    Potié, Alexis; Baron, Thierry; Dhalluin, Florian; Rosaz, Guillaume; Salem, Bassem; Latu-Romain, Laurence; Kogelschatz, Martin; Gentile, Pascal; Oehler, Fabrice; Montès, Laurent; Kreisel, Jens; Roussel, Hervé

    2011-12-01

    The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration ( x) in Si1- x Ge x NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

  4. Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires

    PubMed Central

    2011-01-01

    The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement. PMID:21711709

  5. Contaminated Groundwater Remediation by Catalyzed Hydrogen Peroxide and Persulfate Oxidants System

    NASA Astrophysics Data System (ADS)

    Yan, N.; Wang, Y.; Brusseau, M. L.

    2014-12-01

    A binary oxidant system, catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O82-), was investigated for use in in-situ chemical oxidation (ISCO) applications. Trichloroethene (TCE) and 1,4-dioxane were used as target contaminants. Batch experiments were conducted to investigate the catalytic efficiency between ferrous ion (Fe2+) and base (NaOH), oxidant decomposition rates, and contaminant degradation efficiency. For the base-catalyzed H2O2-S2O82- system, oxidant release was moderate and sustained over the entire test period of 96 hours. Conversely, the oxidants were depleted within 24 hours for the Fe2+-catalyzed system. Solution pH decreased slightly for the Fe2+-catalyzed system, whereas the pH increased for the base-catalyzed system. The rates of degradation for TCE and 1,4-dioxane are compared as a function of system conditions. The results of this study indicate that the binary H2O2-S2O82- oxidant system is effective for oxidation of the tested contaminants.

  6. Metabolism of Monoterpenes

    PubMed Central

    Croteau, Rodney; Hooper, Caroline Lee

    1978-01-01

    The essential oil from mature leaves of flowering peppermint (Mentha piperita L.) contains up to 15% (—)-menthyl acetate, and leaf discs converted exogenous (—)-[G-3H]menthol into this ester in approximately 15% yield of the incorporated precursor. Leaf extracts catalyzed the acetyl coenzyme A-dependent acetylation of (—)-[G-3H]menthol and the product of this transacetylase reaction was identified by radiochromatographic techniques. Transacetylase activity was located mainly in the 100,000g supernatant fraction, and the preparation was partially purified by combination of Sephadex G-100 gel filtration and chromatography on O-diethylaminoethyl-cellulose. The transacetylase had a molecular weight of about 37,000 as judged by Sephadex G-150 gel filtration, and a pH optimum near 9. The apparent Km and velocity for (—)-menthol were 0.3 mm and 16 nmol/hr· mg of protein, respectively. The saturation curve for acetyl coenzyme A was sigmoidal, showing apparent saturation near 0.1 mm. Dithioerythritol was required for maximum activity and stability of the enzyme, and the enzyme was inhibited by thiol directed reagents such as p-hydroxymercuribenzoate. Diisopropylfluorophosphate also inhibited transacylation suggesting the involvement of a serine residue in catalysis. The transacylase was highly specific for acetyl coenzyme A; propionyl coenzyme A and butyryl coenzyme A were not nearly as efficient as acyl donors (11% and 2%, respectively). However, the enzyme was much less selective with regard to the alcohol substrate, suggesting that the nature of the acetate ester synthesized in mint is more dependent on the type of alcohol available than on the specificity of the transacetylase. This is the first report on an enzyme involved in monoterpenol acetylation in plants. A very similar enzyme, catalyzing this key reaction in the metabolism of menthol, was also isolated from the flowers of peppermint. PMID:16660375

  7. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    SciTech Connect

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ?SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ?SiOBpin moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.

  8. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

    PubMed Central

    2015-01-01

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from ?-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product. PMID:24405209

  9. Copper-catalyzed intermolecular amidation and imidation of unactivated alkanes.

    PubMed

    Tran, Ba L; Li, Bijie; Driess, Matthias; Hartwig, John F

    2014-02-12

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C-H bonds over tertiary C-H bonds and even occur at primary C-H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from ?-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C-H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C-H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product. PMID:24405209

  10. Oxidation of dibenzothiophene catalyzed by hemoglobin and other hemoproteins in various aqueous-organic media

    SciTech Connect

    Klyachko, N.L. Klibanov, A.M. )

    1992-10-01

    Biocatalytic oxidation of dibenzothiophene (a model of organic sulfur in coal) with hydrogen peroxide was investigated. It was found that various hemoproteins, both enzymic (e.g., horseradish peroxidase) and nonenzymic (e.g., bovine blood hemoglobin), readily oxidized dibensothiophene to its S-oxide and, to a minor extent, further to its S-dioxide (sulfone). This process catalyzed by hemoglobin was competent as an oxidation catalyst even in nearly dry organic solvents (with protic, acidic solvents being optimal), the highest conversions were observed in predominantly aqueous media. The hemoglobin-catalyzed oxidation of dibenzothiophene at low concentrations of the protein stopped long before all the substrate was oxidized. This phenomenon was caused by inactivation of hemoglobin by hydrogen peroxide that destroyed the heme moiety. The maximal degree of the hemoglobin-catalyzed dibenzothiophene oxidation was predicted, and found, to be strongly dependent on the reaction medium composition. 24 refs., 7 figs., 3 tabs.

  11. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  12. Pseudoglycosyltransferase Catalyzes Non-Glycosidic C-N Coupling in Validamycin A Biosynthesis

    PubMed Central

    Asamizu, Shumpei; Yang, Jongtae; Almabruk, Khaled H.; Mahmud, Taifo

    2011-01-01

    Glycosyltransferases are ubiquitous in nature. They catalyze a glycosidic bond formation between sugar donors and sugar or non-sugar acceptors to produce oligo/polysaccharides, glycoproteins, glycolipids, glycosylated natural products, and other sugar-containing entities. However, a trehalose 6-phosphate synthase-like protein has been found to catalyze an unprecedented non-glycosidic C-N bond formation in the biosynthesis of the aminocyclitol antibiotic validamycin A. This dedicated ‘pseudoglycosyltransferase’ catalyzes a condensation between GDP-valienol and validamine 7-phosphate to give validoxylamine A 7?-phosphate with net retention of the ‘anomeric’ configuration of the donor cyclitol in the product. The enzyme operates in sequence with a phosphatase, which dephosphorylates validoxylamine A 7?-phosphate to validoxylamine A. PMID:21766819

  13. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase

    PubMed Central

    Yang, Zhi-Yong; Moure, Vivian R.; Dean, Dennis R.; Seefeldt, Lance C.

    2012-01-01

    A doubly substituted form of the nitrogenase MoFe protein (?-70Val?Ala, ?-195His?Gln) has the capacity to catalyze the reduction of carbon dioxide (CO2) to yield methane (CH4). Under optimized conditions, 1 nmol of the substituted MoFe protein catalyzes the formation of 21 nmol of CH4 within 20 min. The catalytic rate depends on the partial pressure of CO2 (or concentration of HCO3?) and the electron flux through nitrogenase. The doubly substituted MoFe protein also has the capacity to catalyze the unprecedented formation of propylene (H2C = CH-CH3) through the reductive coupling of CO2 and acetylene (HC?CH). In light of these observations, we suggest that an emerging understanding of the mechanistic features of nitrogenase could be relevant to the design of synthetic catalysts for CO2 sequestration and formation of olefins. PMID:23150564

  14. Rhodium-Catalyzed Acyloxy Migration of Propargylic Esters in Cycloadditions, Inspiration from Recent “Gold Rush”

    PubMed Central

    Shu, Xing-Zhong; Shu, Dongxu; Schienebeck, Casi M.

    2012-01-01

    Transition metal-catalyzed acyloxy migration of propargylic esters offers versatile entries to allene and vinyl carbene intermediates for various fascinating subsequent transformations. Most ?-acidic metals (e.g. gold and platinum) are capable of facilitating these acyloxy migration events. However, very few of these processes involve redox chemistry, which are well-known for most other transition metals such as rhodium. The coupling of acyloxy migration of propargylic esters with oxidative addition, migratory insertion, and reductive elimination may lead to ample new opportunities for the design of new reactions. This tutorial review summarizes recent developments in Rh-catalyzed 1,3- and 1,2-acyloxy migration of propargylic esters in a number of cycloaddition reactions. Related Au- and Pt-catalyzed cycloadditions involving acyloxy migration are also discussed. PMID:22895533

  15. RNA as an RNA Polymerase: Net Elongation of an RNA Primer Catalyzed by the Tetrahymena Ribozyme

    NASA Astrophysics Data System (ADS)

    Been, Michael D.; Cech, Thomas R.

    1988-03-01

    A catalytic RNA (ribozyme) derived from an intervening sequence (IVS) RNA of Tetrahymena thermophila will catalyze an RNA polymerization reaction in which pentacytidylic acid (C5) is extended by the successive addition of mononucleotides derived from a guanylyl-(3', 5')-nucleotide (GpN). Cytidines or uridines are added to C5 to generate chain lengths of 10 to 11 nucleotides, with longer products being generated at greatly reduced efficiency. The reaction is analogous to that catalyzed by a replicase with C5 acting as the primer, GpNs as the nucleoside triphosphates, and a sequence in the ribozyme providing a template. The demonstration that an RNA enzyme can catalyze net elongation of an RNA primer supports theories of prebiotic RNA self-replication.

  16. Biofuel-Promoted Polychlorinated Dibenzodioxin/furan Formation in an Iron-Catalyzed Diesel Particle Filter.

    PubMed

    Heeb, Norbert V; Rey, Maria Dolores; Zennegg, Markus; Haag, Regula; Wichser, Adrian; Schmid, Peter; Seiler, Cornelia; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Bürki, Samuel; Zimmerli, Yan; Czerwinski, Jan; Mayer, Andreas

    2015-08-01

    Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 ?g/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels. PMID:26176879

  17. Advances in nickel-catalyzed cycloaddition reactions to construct carbocycles and heterocycles.

    PubMed

    Thakur, Ashish; Louie, Janis

    2015-08-18

    Transition-metal catalysis has revolutionized the field of organic synthesis by facilitating the construction of complex organic molecules in a highly efficient manner. Although these catalysts are typically based on precious metals, researchers have made great strides in discovering new base metal catalysts over the past decade. This Account describes our efforts in this area and details the development of versatile Ni complexes that catalyze a variety of cycloaddition reactions to afford interesting carbocycles and heterocycles. First, we describe our early work in investigating the efficacy of N-heterocyclic carbene (NHC) ligands in Ni-catalyzed cycloaddition reactions with carbon dioxide and isocyanate. The use of sterically hindered, electron donating NHC ligands in these reactions significantly improved the substrate scope as well as reaction conditions in the syntheses of a variety of pyrones and pyridones. The high reactivity and versatility of these unique Ni(NHC) catalytic systems allowed us to develop unprecedented Ni-catalyzed cycloadditions that were unexplored due to the inefficacy of early Ni catalysts to promote hetero-oxidative coupling steps. We describe the development and mechanistic analysis of Ni/NHC catalysts that couple diynes and nitriles to form pyridines. Kinetic studies and stoichiometric reactions confirmed a hetero-oxidative coupling pathway associated with this Ni-catalyzed cycloaddition. We then describe a series of new substrates for Ni-catalyzed cycloaddition reactions such as vinylcyclopropanes, aldehydes, ketones, tropones, 3-azetidinones, and 3-oxetanones. In reactions with vinycyclopropanes and tropones, DFT calculations reveal noteworthy mechanistic steps such as a C-C ?-bond activation and an 8?-insertion of vinylcyclopropane and tropone, respectively. Similarly, the cycloaddition of 3-azetidinones and 3-oxetanones also requires Ni-catalyzed C-C ?-bond activation to form N- and O-containing heterocycles. PMID:26200651

  18. Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation*

    PubMed Central

    Moran, Joseph; Krische, Michael J.

    2013-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse ?-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same ?-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C–C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  19. Rhodium(III)-Catalyzed Amidation of Unactivated C(sp(3) )?H Bonds.

    PubMed

    Wang, He; Tang, Guodong; Li, Xingwei

    2015-10-26

    Nitrogenation by direct functionalization of C?H bonds represents an important strategy for constructing C?N bonds. Rhodium(III)-catalyzed direct amidation of unactivated C(sp(3) )?H bonds is rare, especially under mild reaction conditions. Herein, a broad scope of C(sp(3) )?H bonds are amidated under rhodium catalysis in high efficiency using 3-substituted 1,4,2-dioxazol-5-ones as the amide source. The protocol broadens the scope of rhodium(III)-catalyzed C(sp(3) )?H activation chemistry, and is applicable to the late-stage functionalization of natural products. PMID:26480337

  20. Unravelling the Ru-Catalyzed Hydrogenolysis of Biomass-Based Polyols under Neutral and Acidic Conditions.

    PubMed

    Hausoul, Peter J C; Negahdar, Leila; Schute, Kai; Palkovits, Regina

    2015-10-01

    The aqueous Ru/C-catalyzed hydrogenolysis of biomass-based polyols such as erythritol, xylitol, sorbitol, and cellobitol is studied under neutral and acidic conditions. For the first time, the complete product spectrum of C2 -C6 polyols is identified and, based on a thorough analysis of the reaction mixtures, a comprehensive reaction mechanism is proposed, which consists of (de)hydrogenation, epimerization, decarbonylation, and deoxygenation reactions. The data reveal that the Ru-catalyzed deoxygenation reaction is highly selective for the cleavage of terminal hydroxyl groups. Changing from neutral to acidic conditions suppresses decarbonylation, consequently increasing the selectivity towards deoxygenation. PMID:26448526

  1. Ni(II)/BINOL-catalyzed alkenylation of unactivated C(sp(3))-H bonds.

    PubMed

    Liu, Yue-Jin; Zhang, Zhuo-Zhuo; Yan, Sheng-Yi; Liu, Yan-Hua; Shi, Bing-Feng

    2015-05-01

    The first nickel-catalyzed alkenylation of unactivated C(sp(3))-H bonds with vinyl iodides is described. The catalytic system comprises an inexpensive and air-stable Ni(acac)2 as the catalyst and BINOL as the ligand, which is highly efficient for the alkenylation of ?-methyl C(sp(3))-H bonds of a broad range of aliphatic carboxamides. The resulting olefins can serve as versatile handles for further preparation. Additionally, we also demonstrated the synthesis of functionalized carboxamides bearing ?-quaternary carbon centers from simple pivalamide via nickel-catalyzed sequential C(sp(3))-H bond functionalization. PMID:25857332

  2. Growth behaviors of ultrathin ZnSe nanowires by Au-catalyzed molecular-beam epitaxy

    SciTech Connect

    Cai, Y.; Wong, T. L.; Chan, S. K.; Sou, I. K.; Wang, N.; Su, D. S.

    2008-12-08

    Ultrathin ZnSe nanowires grown by Au-catalyzed molecular-beam epitaxy show an interesting growth behavior of diameter dependence of growth rates. The smaller the nanowire diameter, the faster is its growth rate. This growth behavior is totally different from that of the nanowires with diameters greater than 60 nm and cannot be interpreted by the classical theories of the vapor-liquid-solid mechanism. For the Au-catalyzed nanowire growth at low temperatures, we found that the surface and interface incorporation and diffusion of the source atoms at the nanowire tips controlled the growth of ultrathin ZnSe nanowires.

  3. Copper-catalyzed aerobic radical C–C bond cleavage of N–H ketimines

    PubMed Central

    Tnay, Ya Lin; Ang, Gim Yean

    2015-01-01

    Summary We report herein studies on copper-catalyzed aerobic radical C–C bond cleavage of N–H ketimines. Treatment of N–H ketimines having an ?-sp3 hybridized carbon under Cu-catalyzed aerobic reaction conditions resulted in a radical fragmentation with C–C bond cleavage to give the corresponding carbonitrile and carbon radical intermediate. This radical process has been applied for the construction of oxaspirocyclohexadienones as well as in the electrophilic cyanation of Grignard reagents with pivalonitrile as a CN source. PMID:26664613

  4. Synthesis of Fluoroalkoxy Substituted Arylboronic Esters by Iridium-Catalyzed Aromatic C-H Borylation.

    PubMed

    Batool, Farhat; Parveen, Shehla; Emwas, Abdul-Hamid; Sioud, Salim; Gao, Xin; Munawar, Munawar A; Chotana, Ghayoor A

    2015-09-01

    The preparation of fluoroalkoxy arylboronic esters by iridium-catalyzed aromatic C-H borylation is described. The fluoroalkoxy groups employed include trifluoromethoxy, difluoromethoxy, 1,1,2,2-tetrafluoroethoxy, and 2,2-difluoro-1,3-benzodioxole. The borylation reactions were carried out neat without the use of a glovebox or Schlenk line. The regioselectivities available through the iridium-catalyzed C-H borylation are complementary to those obtained by the electrophilic aromatic substitution reactions of fluoroalkoxy arenes. Fluoroalkoxy arylboronic esters can serve as versatile building blocks. PMID:26278016

  5. Recent advances in transition metal-catalyzed N -atom transfer reactions of azides

    PubMed Central

    Driver, Tom G.

    2011-01-01

    Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243

  6. Rhodium(III)- and iridium(III)-catalyzed C7 alkylation of indolines with diazo compounds.

    PubMed

    Ai, Wen; Yang, Xueyan; Wu, Yunxiang; Wang, Xuan; Li, Yuanchao; Yang, Yaxi; Zhou, Bing

    2014-12-22

    A Rh(III)-catalyzed procedure for the C7-selective C-H alkylation of various indolines with ?-diazo compounds at room temperature is reported. The advantages of this process are: 1)?simple, mild, and pH-neutral reaction conditions, 2)?broad substrate scope, 3)?complete regioselectivity, 4)?no need for an external oxidant, and 5)?N2 as the sole byproduct. Furthermore, alkylation and bis-alkylation of carbazoles at the C1 and C8 positions have also been developed. More significantly, for the first time, a successful Ir(III)-catalyzed intermolecular insertion of arene C-H bonds into ?-diazo compounds is reported. PMID:25359110

  7. No evidence for acid-catalyzed secondary organic aerosol formation in power plant plumes over metropolitan Atlanta, Georgia

    E-print Network

    Weber, Rodney

    No evidence for acid-catalyzed secondary organic aerosol formation in power plant plumes over that secondary organic aerosol formation via heterogeneous acid-catalyzed reactions within power plant plumes conducted in the summer of 2004. Five notable plumes of SO2, apparently from coal-fired power plants, were

  8. Rhenium-Catalyzed Coupling of Propargyl Alcohols and Allyl Silanes Michael R. Luzung and F. Dean Toste*

    E-print Network

    Toste, Dean

    Rhenium-Catalyzed Coupling of Propargyl Alcohols and Allyl Silanes Michael R. Luzung and F. Dean by stoichiometric transition metal complexes.5,6 We have recently reported that rhenium(V)-oxo complex 1 serves attempts at rhenium-catalyzed coupling of propargyl alcohols and allyl trimethylsilane were complicated

  9. 14306 Biochemistry 1994, 33, 14306-14316 Single-Turnover Kinetics of Helicase-Catalyzed DNA Unwinding Monitored

    E-print Network

    Lohman, Timothy M.

    14306 Biochemistry 1994, 33, 14306- 14316 Single-Turnover Kinetics of Helicase-Catalyzed DNA turnover studies of duplex DNA unwinding catalyzed by the Escherichia coli Rep helicase, monitored turnover kinetic studies performed at 1 nM DNA as a function of excess Rep concentration show that Rep

  10. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae

    E-print Network

    Clarke, Steven

    Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc

  11. Gold(I)-Catalyzed Synthesis of Dihydropyrans Benjamin D. Sherry, Lisa Maus, Brian Ngo Laforteza, and F. Dean Toste*

    E-print Network

    Toste, Dean

    Gold(I)-Catalyzed Synthesis of Dihydropyrans Benjamin D. Sherry, Lisa Maus, Brian Ngo Laforteza of multiple stereocenters, offer a particularly attractive approach.2,3 Our recent finding of a gold with the Au(I) catalyst. While terminal alkynes are viable substrates for the gold(I)-catalyzed Claisen

  12. Gold(I)-Catalyzed [2 + 2]-Cycloaddition of Allenenes Michael R. Luzung, Pablo Mauleon, and F. Dean Toste*

    E-print Network

    Toste, Dean

    Gold(I)-Catalyzed [2 + 2]-Cycloaddition of Allenenes Michael R. Luzung, Pablo Mauleo´n, and F. Dean, 2007; E-mail: fdtoste@berkeley.edu Stabilization of cationic intermediates as gold(I)-carbenoids is proposed to be essential in a variety of gold(I)-catalyzed cycloi- somerization reactions.1,2 In an effort

  13. Gold(I)-Catalyzed Ring Expansion of Cyclopropanols and Cyclobutanols Jordan P. Markham, Steven T. Staben, and F. Dean Toste*

    E-print Network

    Toste, Dean

    Gold(I)-Catalyzed Ring Expansion of Cyclopropanols and Cyclobutanols Jordan P. Markham, Steven T of heteroatom4 nucleophiles or -bonds5 to gold(I)-activated alkynes have recently been described. We hy- pothesized that related cationic gold(I) complexes might be capable of catalyzing ring expansion6 reactions

  14. Electronic Effects in Asymmetric Catalysis: Structural Studies of Precatalysts and Intermediates in Rh-Catalyzed Hydrogenation of

    E-print Network

    RajanBabu, T. V. "Babu"

    in Rh-Catalyzed Hydrogenation of Dimethyl Itaconate and Acetamidocinnamic Acid Derivatives Using C2, Delaware 19880 Received January 22, 1999 Enantioselectivity of Rh(I)-catalyzed asymmetric hydrogenation at two levels. First, crystal structures of a number of precatalysts ([phosphinite]2Rh+ [diolefin

  15. DNA-Catalyzed Hydrolysis of Esters and Aromatic Amides Benjamin M. Brandsen, Anthony R. Hesser, Marissa A. Castner, Madhavaiah Chandra,

    E-print Network

    Silverman, Scott K.

    DNA-Catalyzed Hydrolysis of Esters and Aromatic Amides Benjamin M. Brandsen, Anthony R. Hesser phosphodiester linkages, but DNA-catalyzed amide bond hydrolysis has been elusive. Here we used in vitro-hydrolyzing deoxyribozymes were examined using linear free energy relationship analysis. The hydrolysis reaction

  16. Acetyl xylan esterase of Aspergillus ficcum catalyzed the synthesis of peracetic acid from ethyl acetate and hydrogen peroxide.

    PubMed

    Park, Seung-Moon

    2011-11-01

    Recombinant acetyl xylan esterase (rAXE) of Aspergillus ficcum catalyzed the synthesis of peracetic acid (PAA) from ethyl acetate and hydrogen peroxide. Ten micrograms of rAXE catalyzed the synthesis of 1.34 mM of PAA, which can be used for the pretreatment of cellulosic biomass in situ. PMID:21824816

  17. Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5 + 2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions

    PubMed Central

    2015-01-01

    Allenes are important 2? building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d??* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break ? conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes. PMID:25379606

  18. Chemoselective Functionalization of Carboxylic Acid and Phenol Containing Natural Products and the Development and Use of a Nucleophile Catalyzed Michael Aldol Lactonization Process 

    E-print Network

    McFarlin, Rae

    2013-05-02

    catalyzed aldol lactonization (NCAL) reaction for synthesizing highly substituted cyclopentane fused beta-lactones, we developed a nucleophile catalyzed, tandem Michael aldol lactonization (NCMAL) reaction. Herein, we show the synthetic utility...

  19. Enantioselective nickel-catalyzed reductive coupling reactions of alkynes and aldehydes. Synthesis of amphidinolides T1 and T4 via catalytic, stereoselective macrocyclizations

    E-print Network

    Colby Davie, Elizabeth A. (Elizabeth Anne)

    2005-01-01

    I. Enantioselective Nickel-Catalyzed Reductive Couplings of Alkynes and Aldehydes Allylic alcohol synthesis via a nickel-catalyzed reductive coupling reaction of alkylsubstituted alkynes and aldehydes was studied for ligand ...

  20. Mechanism of maltal hydration catalyzed by. beta. -amylase: Role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase

    SciTech Connect

    Kitahata, Sumio ); Chiba, S. ); Brewer, C.F.; Hehre, E.J. )

    1991-07-09

    Crystalline (monomeric) soybean and (tetrameric) sweet potato {beta}-amylase were shown to catalyze the cis hydration of maltal ({alpha}-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form {beta}-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D{sub 2}O by soybean {beta}-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (V{sub H}/V{sub D}=6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-(2(a)-{sup 2}H)maltose as product. These results indicate (for each {beta}-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that {beta}-amylase protonates maltal from a direction opposite that assumed for protonating strach, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures is dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center.

  1. A New Copper-Catalyzed [3 + 2] Cycloaddition: Enantioselective Coupling of Terminal Alkynes with Azomethine Imines To Generate Five-Membered

    E-print Network

    Fu, Gregory C.

    A New Copper-Catalyzed [3 + 2] Cycloaddition: Enantioselective Coupling of Terminal Alkynes(I)-catalyzed 1,3-dipolar cycloadditions to terminal alkyness presumably proceeding via a copper acetylideshave, copper-catalyzed processes can overcome the poor regioselectivity observed in some of the corresponding

  2. Pd-Catalyzed CdC Double-Bond Formation by Coupling of

    E-print Network

    Wang, Jianbo

    reagents, see: (a) Crawforth, C. M.; Burling, S.; Fairlamb, I. J. S.; Taylor, R. J. K.; Whitwood, A. C, C. M.; Fairlamb, I. J. S.; Kapdi, A. R.; Serrano, J. L.; Taylor, R. J. K.; Sanchez, G. AdV. SynthPd-Catalyzed CdC Double-Bond Formation by Coupling of N-Tosylhydrazones with Benzyl Halides Qing

  3. Influence of an internal trifluoromethyl group on the rhodium(II)-catalyzed reactions of vinyldiazocarbonyl compounds.

    PubMed

    Nikolaev, Valerij A; Supurgibekov, Murat B; Davies, Huw M L; Sieler, Joachim; Zakharova, Valerija M

    2013-05-01

    Incorporation of a trifluoromethyl group into the structure of 4-(alkoxycarbonyl)vinyldiazocarbonyl compounds greatly decreases the tendency of the carbenoid intermediates formed during Rh(II)-catalyzed reactions to undergo intermolecular processes. Instead, they are prone to experience intramolecular [1,5]- and [1,3]-electrocyclizations to produce reactive cyclopropenes and furans, and these are capable of further transformations. PMID:23614681

  4. Hydroamination of terminal alkynes with secondary amines catalyzed by copper: regioselective access to amines.

    PubMed

    Bahri, Janet; Blieck, Rémi; Jamoussi, Bassem; Taillefer, Marc; Monnier, Florian

    2015-06-30

    A simple and convenient copper-catalyzed hydroamination of arylacetylenes with secondary amines has been performed giving a simple access to aliphatic amines after reduction of the hydroaminated products (E-enamines). Here we described a mild catalytic system utilizing CuCN precatalyst without any additive ligands in a solvent-free system. PMID:26077650

  5. EVALUATION OF THE FULL-SCALE BASE CATALYZED DECOMPOSITION PROCESS (BCDP) UNIT LOCATED IN GUAM

    EPA Science Inventory

    This report summarizes performance data collected in February 1997 on the removal of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) from soil fed to a first-stage rotary kiln reactor of the Base Catalyzed Dec...

  6. Efficient chromium(II)-catalyzed cross-coupling reactions between Csp2 centers.

    PubMed

    Steib, Andreas K; Kuzmina, Olesya M; Fernandez, Sarah; Flubacher, Dietmar; Knochel, Paul

    2013-10-16

    Low-toxicity chromium(II) chloride catalyzes at 25 °C within minutes the coupling reactions of various (hetero)arylmagnesium reagents with N-heterocyclic halides, aromatic halogenated ketones or imines, and alkenyl iodides. Remarkably, much lower amounts of homo-coupling side products are obtained compared to related iron, cobalt, or manganese cross-couplings. PMID:24053764

  7. Copper-Catalyzed ?-Selective and Stereospecific Allylic Cross-Coupling with Secondary Alkylboranes.

    PubMed

    Yasuda, Yuto; Nagao, Kazunori; Shido, Yoshinori; Mori, Seiji; Ohmiya, Hirohisa; Sawamura, Masaya

    2015-06-26

    The scope of the copper-catalyzed coupling reactions between organoboron compounds and allylic phosphates is expanded significantly by employing triphenylphosphine as a ligand for copper, allowing the use of secondary alkylboron compounds. The reaction proceeds with complete ?-E-selectivity and preferential 1,3-syn stereoselectivity. The reaction of ?-silicon-substituted allylic phosphates affords enantioenriched ?-stereogenic allylsilanes. PMID:26013036

  8. DOI: 10.1002/adsc.200800249 Sequential Copper(I)-Catalyzed Reaction of Amines with

    E-print Network

    Wang, Jianbo

    - lectivity are the major concerns in these metal-cata- lyzed reactions, an emerging area of research/Pauson­Khand reaction,[3] Pd-catalyzed aryl alkylation/cyanation re- action,[4] have been developed. CÀN bond formation 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2359 FULL PAPERS #12;Results and Discussion o

  9. Advances in palladium-catalyzed carbon-nitrogen bond forming processes

    E-print Network

    Tundel, Rachel E. (Rachel Elizabeth)

    2006-01-01

    Chapter 1. Microwave-assisted, palladium-catalyzed C-N bond-forming reactions with aryl/heteroaryl nonaflates/halides and amines using the soluble amine bases DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or MTBD (7-methyl-1, ...

  10. Copper-catalyzed arylation of biguanide derivatives via C-N cross-coupling reactions.

    PubMed

    Zhang, Chen; Huang, Bo; Bao, Ai-Qing; Li, Xiao; Guo, Shunna; Zhang, Jin-Quan; Xu, Jun-Zhi; Zhang, Rihao; Cui, Dong-Mei

    2015-12-21

    An efficient copper-catalyzed cross-coupling reaction of biguanide hydrochloride derivatives with both aryl iodides and bromides under mild conditions has been developed. The reaction occurred in good yields and tolerated aryl halides containing functionalities such as nitriles, sulfonamides, ethers, and halogens. Alkyl and cyclic substituted biguanidines were also well tolerated. PMID:26444146

  11. Palladium-Catalyzed Difluoroalkylation of Isocyanides: Access to Difluoroalkylated Phenanthridine Derivatives.

    PubMed

    Gu, Ji-Wei; Zhang, Xingang

    2015-11-01

    An efficient and general method for the synthesis of difluoroalkylated phenanthridine derivatives through palladium-catalyzed reaction of difluoroalkyl bromides with isocyanides is described. The reaction can also be extended to perfluoroalkyl iodides. Mechanistic studies reveal that a difluoroalkyl radical via a single-electron-transfer pathway is involved in the reaction. PMID:26502264

  12. Substituent Effects of Ligands on Asymmetric Induction in a Prototypical Palladium-Catalyzed Allylation Reaction: Making

    E-print Network

    RajanBabu, T. V. "Babu"

    Substituent Effects of Ligands on Asymmetric Induction in a Prototypical Palladium in the palladium-catalyzed asymmetric allylation reaction between 1,3-diphe- nylprop-2-en-1-yl acetate associated with studying the catalytically relevant intermediates.6 In contrast, for the palladium

  13. Ga(OTf)3-catalyzed direct substitution of alcohols with sulfur nucleophiles.

    PubMed

    Han, Xinping; Wu, Jimmy

    2010-12-17

    It is reported that Ga(OTf)(3) catalyzes the direct displacement of alcohols with sulfur nucleophiles. The products are versatile intermediates that can be utilized in carbon-carbon, carbon-sulfur bond formation or used in modified Julia olefination reactions. The only byproduct generated is water. PMID:21090672

  14. Kinetic Parameters for the Noncatalyzed and Enzyme-Catalyzed Mutarotation of Glucose Using a Blood Glucometer

    ERIC Educational Resources Information Center

    Hardee, John R.; Delgado, Bryan; Jones, Wray

    2011-01-01

    The kinetic parameters for the conversion of alpha-D-glucose to beta-D-glucose were measured using a blood glucometer. The reaction order, rate constant, and Arrhenius activation energy are reported for the noncatalyzed reaction and turnover number and Michaelis constant are reported for the reaction catalyzed by porcine kidney mutarotase. The…

  15. Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions

    DOEpatents

    Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA

    2003-12-30

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  16. Towards the development of a selective ruthenium-catalyzed hydroformylation of olefins.

    PubMed

    Fleischer, Ivana; Wu, Lipeng; Profir, Irina; Jackstell, Ralf; Franke, Robert; Beller, Matthias

    2013-08-01

    The ruthenium-catalyzed hydroformylation of 1- and 2-octene to give preferentially the corresponding linear aldehyde is reported. The catalyst system comprising of Ru3 (CO)12 and an imidazole-substituted monophosphine ligand allows for high chemo- and regioselectivity. The hydroformylation proceeds with unprecedented rates for a ruthenium-based catalyst. PMID:23828402

  17. Selective metal-catalyzed transfer of H2 and CO from polyols to alkenes.

    PubMed

    Verendel, J Johan; Nordlund, Michael; Andersson, Pher G

    2013-03-01

    Transmission of alcohols achieved: A method for the direct transfer of the CHOH function from simple polyols to alkenes has been developed. In a dual-reactor system, successive iridium-catalyzed dehydrogenations and decarbonylations of polyols such as glycerol and sorbitol generates a low pressure of syngas, which is directly used in ex?situ alkene hydroformylation. PMID:23303703

  18. Regioselective Ruthenium Catalyzed Hydrohydroxyalkylation of Dienes with 3-Hydroxy-2-oxindoles: Prenylation, Geranylation and Beyond

    PubMed Central

    Chen, Te-Yu; Krische, Michael J.

    2013-01-01

    The direct conversion of secondary to tertiary alcohols via ruthenium(0) catalyzed C-C coupling of substituted 3-hydroxy-2-oxindoles with various dienes is described. Coupling occurs in a completely regioselective manner in the absence of stoichiometric byproducts. PMID:23721207

  19. Nickel-catalyzed direct thiolation of C(sp(3))-H bonds in aliphatic amides.

    PubMed

    Wang, Xie; Qiu, Renhua; Yan, Chunyang; Reddy, Vutukuri Prakash; Zhu, Longzhi; Xu, Xinhua; Yin, Shuang-Feng

    2015-04-17

    Nickel-catalyzed thiolation of the inactivated methyl C(sp(3))-H bonds of aliphatic amides with disulfide is described. It is a novel strategy for the synthesis of thioethers with the ultimate goal of generating thioether carboxylic acids with various functional groups. PMID:25822847

  20. Catalyzed ring-opening polymerization of epoxidized soybean oil by hydrated and anhydrous fluoroantimonic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by the super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), and the anhydrous form (HSbF6) in ethyl acetate was conducted in an effort to develop useful biodegradable polymers. The resulting polymerized ESO (SA-RPESO and SAA-...

  1. OXIDATION OF CYCLOHEXANE WITH AIR CATALYZED BY A STERICALLY HINDERED IRON (II) COMPLEX

    EPA Science Inventory

    Oxidation of Cyclohexane with Air Catalyzed by a Sterically Hindered Iron(II) Complex.


    Thomas M. Becker, Michael A. Gonzalez*

    United States Environmental Protection Agency; National Risk Management Research Laboratory; Sustainable Technology Division; Clean Pr...

  2. Direct Synthesis of Thioethers from Carboxylates and Thiols Catalyzed by FeCl3.

    PubMed

    Venkatesham, Kunuru; Bhujanga Rao, Chitturi; Dokuburra, Chanti Babu; Bunce, Richard A; Venkateswarlu, Yenamandra

    2015-11-20

    A new and efficient method has been developed for the synthesis of thioethers from carboxylates and thiols. The reaction proceeds via a Fe(III)-catalyzed direct displacement of carboxylates from benzylic or allylic esters by heterocyclic thiols. Short reaction times, good to excellent yields of products, and few side reactions are the significant features of the new protocol. PMID:26497695

  3. Enzyme-catalyzed Oxidation Facilitates the Return of Fluorescence for Single-Walled Carbon Nanotubes

    PubMed Central

    Chiu, Cheuk Fai; Barth, Brian A.; Kotchey, Gregg P.; Zhao, Yong; Gogick, Kristy A.; Saidi, Wissam A.; Petoud, Stéphane; Star, Alexander

    2013-01-01

    In this work, we studied enzyme-catalyzed oxidation of single-walled carbon nanotubes (SWCNTs) produced by the high-pressure carbon monoxide (HiPco) method. While oxidation via strong acids introduced defects sites on SWCNTs and suppressed their near-infrared (NIR) fluorescence, our results indicated that the fluorescence of SWCNTs was restored upon enzymatic oxidation, which provided new evidence that the reaction catalyzed by horseradish peroxidase (HRP) in the presence of H2O2 is mainly a defect-consuming step. These results were further supported by both UV-vis-NIR and Raman spectroscopy. Therefore, employing acid oxidation followed by HRP-catalyzed enzyme oxidation, shortened (< 300 nm in length) and NIR-fluorescent SWCNTs were produced. In contrast, when treated with myeloperoxidase (MPO), H2O2, and NaCl, the oxidized HiPco SWCNTs underwent complete oxidation (i.e. degradation). The shortened, NIR-fluorescent SWCNTs resulting from HRP-catalyzed oxidation of acid cut HiPco SWCNTs may find applications in cellular NIR imaging and drug delivery systems. PMID:23672715

  4. Rhodium-Catalyzed Activation and Functionalization of the C-C Bond of Biphenylene

    E-print Network

    Jones, William D.

    Rhodium-Catalyzed Activation and Functionalization of the C-C Bond of Biphenylene Carl N. Iverson August 29, 2001 Biphenylene reacts with the rhodium(I) dimer [(dtbpm)RhCl]2 (1) (dtbpm ) bis have been stoichiometric, although catalytic reactions are known.2 Rhodium complexes in particular have

  5. Back to Exploration 2008 CSPG CSEG CWLS Convention 1 A Computational Model of Catalyzed Carbon Sequestration

    E-print Network

    Spiteri, Raymond J.

    , store carbon dioxide in geologic structures such as caverns and porous rock. Primary concerns regardingBack to Exploration ­ 2008 CSPG CSEG CWLS Convention 1 A Computational Model of Catalyzed Carbon explores the feasibility of catalysis-based carbon sequestration by efficiently and accurately modeling

  6. The Lewis acid catalyzed synthesis of hyperbranched Oligo(glycerol-diacid)s in aprotic polar media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lewis-acid, titanium (IV) butoxide (15% (w/w; catalyst/reactants)), was used to catalyze the condensation of 0.05 mol glycerol with 0.10 mol of either succinic acid, glutaric acid, or azelaic acid to produce oligomers. The reactions were refluxed in dilute solutions of dimethylsulfoxide (DMSO) o...

  7. Copper-Catalyzed Direct C2-Benzylation of Indoles with Alkylarenes.

    PubMed

    Zhang, Hui-Jun; Su, Feng; Wen, Ting-Bin

    2015-11-20

    The copper-catalyzed regioselective cross-dehydrogenative coupling of N-pyrimidylindoles with benzylic C(sp(3))-H bonds has been developed. Di-tert-butyl peroxide was employed as a mild oxidant, and benzaldehyde proved to be an effective additive. This reaction provides a direct and pratical route to a variety of 2-benzylindoles. PMID:26555790

  8. Tyrosinase-Catalyzed Synthesis of a Universal Coil-Chitosan Bioconjugate for Protein Immobilization

    E-print Network

    Buschmann, Michael

    Tyrosinase-Catalyzed Synthesis of a Universal Coil-Chitosan Bioconjugate for Protein Immobilization June 16, 2008 Chitosan has been reported as a promising material for gene and drug delivery as well peptide (Kcoil) to chitosan (Mn ) 200 kDa) to achieve a universal Kcoil-chitosan scaffold for subsequent

  9. La2O3 Catalyzed C–C Coupling of Aryl Iodides and Boronic Acids

    PubMed Central

    Malik, Payal; Chakraborty, Debashis

    2012-01-01

    An efficient La2O3-catalyzed new route for the carbon-carbon bond formation in particular, symmetrical and unsymmetrical biphenyls has been developed, which proceeds through carbon-carbon coupling reaction of aryl iodides with boronic acids. The reaction provided the desired products in moderate-to-good yields with a wide range of functional group tolerance. PMID:24052852

  10. A new manganese-mediated, cobalt-catalyzed three-component synthesis of (diarylmethyl)sulfonamides

    PubMed Central

    Pignon, Antoine; Martens, Thierry

    2014-01-01

    Summary The synthesis of (diarylmethyl)sulfonamides and related compounds by a new manganese-mediated, cobalt-catalyzed three-component reaction between sulfonamides, carbonyl compounds and organic bromides is described. This organometallic Mannich-like process allows the formation of the coupling products within minutes at room temperature. A possible mechanism, emphasizing the crucial role of manganese is proposed. PMID:24605162

  11. A new manganese-mediated, cobalt-catalyzed three-component synthesis of (diarylmethyl)sulfonamides.

    PubMed

    Pignon, Antoine; Le Gall, Erwan; Martens, Thierry

    2014-01-01

    The synthesis of (diarylmethyl)sulfonamides and related compounds by a new manganese-mediated, cobalt-catalyzed three-component reaction between sulfonamides, carbonyl compounds and organic bromides is described. This organometallic Mannich-like process allows the formation of the coupling products within minutes at room temperature. A possible mechanism, emphasizing the crucial role of manganese is proposed. PMID:24605162

  12. Cobalt-catalyzed preparation of arylindium reagents from aryl and heteroaryl bromides.

    PubMed

    Adak, Laksmikanta; Yoshikai, Naohiko

    2011-09-16

    A cobalt-bathophenanthroline catalyst has been developed for the direct preparation of a variety of arylindium reagents from the corresponding aryl and heteroaryl bromides in the presence of indium metal and lithium chloride. The thus-formed arylindium reagents undergo efficient palladium-catalyzed cross-coupling reactions with aryl iodides, tolerating various functional groups including hydroxy and free amino groups. PMID:21838263

  13. Mesoionic Carbene-Gold(I) Catalyzed Bis-Hydrohydrazination of Alkynes with Parent Hydrazine.

    PubMed

    Tolentino, Daniel R; Jin, Liqun; Melaimi, Mohand; Bertrand, Guy

    2015-10-01

    A novel synthetic route gives access to mesoionic carbene and cyclopropenylidene supported gold chloride complexes. The corresponding cationic MIC-gold complex obtained by chloride abstraction allows for the first transition metal-catalyzed functionalization of both nitrogens of parent hydrazine. PMID:25597889

  14. Enantioselective and Regiodivergent Copper-Catalyzed Electrophilic Arylation of Allylic Amides with Diaryliodonium Salts.

    PubMed

    Cahard, Elise; Male, Henry P J; Tissot, Matthieu; Gaunt, Matthew J

    2015-07-01

    A catalytic enantioselective and regiodivergent arylation of alkenes is described. Chiral copper(II)bisoxazoline complexes catalyze the addition of diaryliodonium salts to allylic amides in excellent ee. Moreover, the arylation can be controlled by the electronic nature of the diaryliodonium salt enabling the preparation of nonracemic diaryloxazines or ?,?'-diaryl enamides. PMID:26090564

  15. Enantioselective and regiodivergent copper-­catalyzed electrophilic arylation of allylic amides with diaryliodonium salts - SI

    E-print Network

    Cahard, Elise; Male, Henry P. J.; Tissot, Matthieu; Gaunt, Matthew J.

    2015-08-07

    ,and,regiodivergent,copper1catalyzed,electrophilic,arylation,of,allylic,amides,with,diaryliodonium,salts,,Elise!Cahard,!Henry!P.!J.!Male,!Matthieu!Tissot!and!Matthew!J.!Gaunt*!Department)of)Chemistry,)University)of)Cambridge,)Lensfield)Road,)Cambridge,)United)Kingdom.)CB2)1EW...

  16. Enantioselective and Regiodivergent Copper-Catalyzed Electrophilic Arylation of Allylic Amides with Diaryliodonium Salts

    PubMed Central

    2015-01-01

    A catalytic enantioselective and regiodivergent arylation of alkenes is described. Chiral copper(II)bisoxazoline complexes catalyze the addition of diaryliodonium salts to allylic amides in excellent ee. Moreover, the arylation can be controlled by the electronic nature of the diaryliodonium salt enabling the preparation of nonracemic diaryloxazines or ?,??-diaryl enamides. PMID:26090564

  17. TfOH-catalyzed domino cycloisomerization/hydrolytic defluorination of 2,3-allenyl perfluoroalkyl ketones.

    PubMed

    Xue, Can; Huang, Xin; Wu, Shangze; Zhou, Jing; Dai, Jianxin; Fu, Chunling; Ma, Shengming

    2015-11-19

    A unique TfOH-catalyzed domino cycloisomerization/hydrolytic defluorination reaction of easily available n-perfluoroalkyl allenones in the presence of H2O providing furanyl perfluoroalkyl ketones has been developed. The (18)O-labelling experiments confirmed that the oxygen atom of the carbonyl group in the final products originates from water. PMID:26451660

  18. Visible light promoted hydration of alkynes catalyzed by rhodium(III) porphyrins.

    PubMed

    Liu, Xu; Liu, Lianghui; Wang, Zikuan; Fu, Xuefeng

    2015-07-28

    Visible light promoted hydration of a wide scope of alkynes to ketones catalyzed by rhodium(III) porphyrin complexes was described. The key intermediate ?-carbonyl alkyl was observed and independently synthesized. The rate of photolysis is over two orders of magnitude faster than that of the thermal process. PMID:26111988

  19. Gold-catalyzed oxidation of arylallenes: Synthesis of quinoxalines and benzimidazoles

    PubMed Central

    Zhuang, Dan-Wen; Chen, Ying; Zhang, Chen

    2011-01-01

    Summary A gold-catalyzed oxidation of arylallenes to form ?-diketones and aldehydes in good yields is presented. Further directed synthesis of quinoxalines and benzimidazoles, via the condensation of the resulting ?-diketones and aldehydes with benzene-1,2-diamine, was achieved in high yields. PMID:21804882

  20. Palladium-catalyzed direct coupling of 2-vinylanilines and isocyanides: an efficient synthesis of 2-aminoquinolines.

    PubMed

    Wang, Lijie; Ferguson, Jamie; Zeng, Fanlong

    2015-12-21

    Palladium-catalyzed oxidative coupling of 2-vinylanilines and isocyanides constitutes a direct, facile, and efficient approach to 2-aminoquinolines. The procedure, employing palladium acetate and silver carbonate, is attractive in terms of assembly efficiency, functional group tolerance, and operational simplicity. A variety of 2-aminoquinolines were prepared in good to excellent yields. PMID:26455948

  1. Acid-catalyzed transformation of ionophore veterinary antibiotics: reaction mechanism and product implications.

    PubMed

    Sun, Peizhe; Yao, Hong; Minakata, Daisuke; Crittenden, John C; Pavlostathis, Spyros G; Huang, Ching-Hua

    2013-07-01

    Ionophore antibiotics (IPAs) are polyether antimicrobials widely used in the livestock industry and may enter the environment via land application of animal waste and agricultural runoff. Information is scarce regarding potential transformation of IPAs under environmental conditions. This study is among the first to identify the propensity of IPAs to undergo acid-catalyzed transformation in mildly acidic aquatic systems and characterize the reactions in depth. The study focused on the most widely used monensin (MON) and salinomycin (SAL), and also included narasin (NAR) in the investigation. All three IPAs are susceptible to acid-catalyzed transformation. MON reacts much more slowly than SAL and NAR and exhibits a different kinetic behavior that is further evaluated by a reversible reaction kinetic model. Extensive product characterization identifies that the spiro-ketal group of IPAs is the reactive site for the acid-catalyzed hydrolytic transformation, yielding predominantly isomeric and other products. Toxicity evaluation of the transformation products shows that the products retain some antimicrobial properties. The occurrence of IPAs and isomeric transformation products is also observed in poultry litter and agricultural runoff samples. Considering the common presence of mildly acidic environments (pH 4-7) in soils and waters, the acid-catalyzed transformation identified in this study likely plays an important role in the environmental fate of IPAs. PMID:23373828

  2. Rhodium Catalyzed Annulation of N-Benzoylsulfonamide with Isocyanide via C-H Activation

    PubMed Central

    Zhu, Chen; Xie, Weiqing; Falck, John R.

    2012-01-01

    Isocyanide insertion: the first rhodium-catalyzed annulation of N-benzoylsulfonamide incorporating with isocyanide via C-H activation is described. The transformation is broadly compatible with N-benzoylsulfonamides bearing various electron-properties as well as isocyanides. From practical point of view, this methodology provides the most straightforward approach to a series of 3-(imino)isoindolinones. PMID:21972033

  3. Facile Pd(II)-and Ni(II)-Catalyzed Isomerization of Terminal Alkenes into 2-Alkenes

    E-print Network

    RajanBabu, T. V. "Babu"

    Facile Pd(II)- and Ni(II)-Catalyzed Isomerization of Terminal Alkenes into 2-Alkenes Hwan Jung Lim terminal alkenes can be isomerized into the more stable internal (Z)- and (E)-alkenes by treating them temperature. The isomeric ratio (E:Z) depends on the alkenes, the E-isomer being the major one. The reaction

  4. MINERALIZATION OF A SORBED POLYCYCLIC AROMATIC HYDROCARBON IN TWO SOILS USING CATALYZED HYDROGEN PEROXIDE. (R826163)

    EPA Science Inventory

    Hydrogen peroxide (H2O2) catalyzed by soluble iron or naturally occurring soil minerals, (i.e., modified Fenton's reagent) was investigated as a basis for mineralizing sorbed and NAPL-phase benzo[a]pyrene (BaP), a hydrophobic and toxic polycyclic a...

  5. Horseradish peroxidase-catalyzed polymerization of cardanol in the presence of redox mediators.

    PubMed

    Won, Keehoon; Kim, Yong Hwan; An, Eun Suk; Lee, Yeon Soo; Song, Bong Keun

    2004-01-01

    Horseradish peroxidase-catalyzed polymerization of cardanol in aqueous organic solvent was investigated in the presence of a redox mediator. Cardanol is a phenol derivative from a renewable resource mainly having a C15 unsaturated hydrocarbon chain with mostly 1-3 double bonds at a meta position. Unlike soybean peroxidase (SBP), it has been shown that horseradish peroxidase (HRP) is not able to perform oxidative polymerization of phenol derivatives having a bulky meta substituent such as cardanol. For the first time, redox mediators have been applied to enable horseradish peroxidase to polymerize cardanol. Veratryl alcohol, N-ethyl phenothiazine, and phenothiazine-10-propionic acid were tested as a mediator. It is surprising that the horseradish peroxidase-catalyzed polymerization of cardanol took place in the presence of N-ethyl phenothiazine or phenothiazine-10-propionic acid. However, veratryl alcohol showed no effect. FT-IR and GPC analysis of the product revealed that the structure and properties of polycardanol formed by HRP with a mediator were similar to those by SBP. This is the first work to apply a redox mediator to enzyme-catalyzed oxidative polymerization. Our new finding that oxidative polymerization of a poor substrate, which the enzyme is not active with, can take place in the presence of an appropriate mediator will present more opportunities for the application of enzyme-catalyzed polymerization. PMID:14715000

  6. Palladium/copper-catalyzed oxidative C-H alkenylation/N-dealkylative carbonylation of tertiary anilines.

    PubMed

    Shi, Renyi; Lu, Lijun; Zhang, Hua; Chen, Borui; Sha, Yuchen; Liu, Chao; Lei, Aiwen

    2013-09-27

    C-H/C-N activation: The first palladium/copper-catalyzed aerobic oxidative C-H alkenylation/N-dealkylative carbonylation of tertiary anilines has been developed. Various functional groups were tolerated and acrylic ester could also be suitable substrates. This transformation provided efficient and straightforward synthesis of biologically active 3-methyleneindolin-2-one derivatives from cheap and simple substrates. PMID:23946242

  7. Meeting the Challenge of Intermolecular Gold(I)-Catalyzed Cycloadditions of Alkynes and Allenes

    PubMed Central

    Muratore, Michael E; Homs, Anna; Obradors, Carla; Echavarren, Antonio M

    2014-01-01

    The development of gold(I)-catalyzed intermolecular carbo- and hetero-cycloadditions of alkynes and allenes has been more challenging than their intramolecular counterparts. Here we review, with a mechanistic perspective, the most fundamental intermolecular cycloadditions of alkynes and allenes with alkenes. PMID:25048645

  8. Stereoselective Synthesis of Vinylsilanes by a Gold(I)-Catalyzed Acetylenic Sila-Cope Rearrangement

    E-print Network

    Toste, Dean

    - coupling reactions.1 The application of these reactions to stereo- selective olefin synthesis is contingent reactions to the stereoselective synthesis of olefins substituted with the allyl group cis to siliconStereoselective Synthesis of Vinylsilanes by a Gold(I)-Catalyzed Acetylenic Sila-Cope Rearrangement

  9. Total synthesis of calothrixin B via sequential Sonogashira coupling/copper-catalyzed oxidative cyclization.

    PubMed

    Ramkumar, Nagarajan; Nagarajan, Rajagopal

    2015-12-01

    A total synthesis of the antimalarial indolo[3,2-j]phenanthridine alkaloid calothrixin B is reported. The key intermediate, ketoester 11, was assembled using sequential Sonogashira coupling and intra/intermolecular fashioned copper-catalyzed oxidative cyclization reactions. PMID:26395099

  10. Triazole-Based Monophosphine Ligands for Palladium-Catalyzed Cross-Coupling Reactions of Aryl Chlorides

    E-print Network

    Zhang, Xumu

    reactions.6 More recently, Beller and co-workers reported the synthesis of ligand 4 for the couplingTriazole-Based Monophosphine Ligands for Palladium-Catalyzed Cross-Coupling Reactions of Aryl excellent yields in the amination reactions and Suzuki-Miyaura coupling reactions of unactivated aryl

  11. On the Mechanism of the Palladium(II)-Catalyzed Decarboxylative Olefination of Arene Carboxylic Acids.

    E-print Network

    On the Mechanism of the Palladium(II)-Catalyzed Decarboxylative Olefination of Arene Carboxylic Acids. Crystallographic Characterization of Non-Phosphine Palladium(II) Intermediates and Observation of a palladium-mediated decarboxylative olefination of arene carboxylic acids are presented, providing

  12. Elucidating Reactivity Differences in Palladium-Catalyzed Coupling Processes: The Chemistry of Palladium Hydrides

    E-print Network

    Fu, Gregory C.

    Elucidating Reactivity Differences in Palladium-Catalyzed Coupling Processes: The Chemistry of Palladium Hydrides Ivory D. Hills and Gregory C. Fu* Department of Chemistry, Massachusetts Institute recently been described in the develop- ment of highly active palladium-based catalysts for cross

  13. Palladium-catalyzed dearomative cyclization by a norbornene-mediated sequence: a route to spiroindolenine derivatives.

    PubMed

    Wu, Xin-Xing; Shen, Yi; Chen, Wen-Long; Chen, Si; Xu, Peng-Fei; Liang, Yong-Min

    2015-11-12

    The first palladium-catalyzed dearomative cyclization via a modified Catellani-type C-H functionalization has been realized. The new strategy led to a series of spiroindolenine derivatives bearing an all-carbon quaternary spirocenter from simple aryl halides and substituted indoles. PMID:26434539

  14. Lewis Acid Catalyzed Ring-opening Polymerization of Epoxidized Soybean Oil in Liquid Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by boron trifluoride diethyl etherate (BF3•OEt2), in liquid carbon dioxide, was conducted in an effort to develop useful biobased biodegradable polymers. The resulting polymers (RPESO) were characterized by FTIR spectroscopy, diff...

  15. Characterization of fatty amides produced by lipase-catalyzed amidation of multihydroxylated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel multi-hydroxylated primary fatty amides produced by direct amidation of 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were characterized by GC-MS and NMR. The amidation reactions were catalyzed by immobilized Pseudozyma (Candida) antarctica li...

  16. Indium-Catalyzed [2 + 2] Cycloaddition of Allylsilanes to Internal Alkynones.

    PubMed

    Okamoto, Kazuhiro; Shimbayashi, Takuya; Tamura, Eisuke; Ohe, Kouichi

    2015-12-01

    We have developed an indium-catalyzed [2 + 2] cycloaddition of allylsilanes to alkynones leading to selective cyclobutenone formation. The resulting cyclobutenones were readily converted to the oxidized products by Tamao-Fleming oxidation or the ring-opened products by an electrocyclic reaction. PMID:26584237

  17. A Novel Methyltransferase Catalyzes the Methyl Esterification of trans-Aconitate in Escherichia coli*

    E-print Network

    Clarke, Steven

    -adenosyl-L-methi- onine-dependent methyltransferase in the cytosol of Escherichia coli that is expressed in early). In the bacterium Escherichia coli, this enzyme is required for optimal survival of stationary phase cells againstA Novel Methyltransferase Catalyzes the Methyl Esterification of trans-Aconitate in Escherichia

  18. I?-catalyzed synthesis of substituted imidazoles from vinyl azides and benzylamines.

    PubMed

    Xiang, Likui; Niu, Yanning; Pang, Xiaobo; Yang, Xiaodong; Yan, Rulong

    2015-04-18

    A novel and efficient I2-catalyzed oxidative tandem cyclization of simple vinyl azides and benzylamines has been developed for the synthesis of substituted imidazoles. In this reaction, various substituted groups on vinyl azides and benzylamines proceed smoothly and the desired imidazoles are obtained in moderate to good yields. PMID:25775109

  19. An efficient synthesis of quinolines via copper-catalyzed C-N cleavage.

    PubMed

    Xi, Long-Yi; Zhang, Ruo-Yi; Zhang, Lei; Chen, Shan-Yong; Yu, Xiao-Qi

    2015-04-01

    An efficient method to synthesize substituted quinolines from ketones and 2-amino benzylamines is described. Copper-catalyzed C-N cleavage of amines followed by condensation with ketones deliver quinolines in moderate to high yields. The broad scope of substrates and the use of air as the sole oxidant make this transformation very attractive. PMID:25712024

  20. Copper-Catalyzed Regioselective ortho C–H Cyanation of Vinylarenes**

    PubMed Central

    Yang, Yang

    2014-01-01

    A copper-based catalytic technique for the regioselective ortho C–H cyanation of vinylarenes has been developed. This method provides an effective means for the selective functionalization of vinylarene derivatives. A copper-catalyzed cyanative dearomatization mechanism is proposed to account for the regiochemical course of this reaction. PMID:24801708

  1. Palladium(II)/Brønsted Acid-Catalyzed Enantioselective Oxidative Carbocyclization–Borylation of Enallenes**

    PubMed Central

    Jiang, Tuo; Bartholomeyzik, Teresa; Mazuela, Javier; Willersinn, Jochen; Bäckvall, Jan-E

    2015-01-01

    An enantioselective oxidative carbocyclization–borylation of enallenes that is catalyzed by palladium(II) and a Brønsted acid was developed. Biphenol-type chiral phosphoric acids were superior co-catalysts for inducing the enantioselective cyclization. A number of chiral borylated carbocycles were synthesized in high enantiomeric excess. PMID:25808996

  2. Ruthenium-catalyzed cyclization of ketoxime acetates with DMF for synthesis of symmetrical pyridines.

    PubMed

    Zhao, Mi-Na; Hui, Rong-Rong; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2014-06-01

    A novel ruthenium-catalyzed cyclization of ketoxime carboxylates with N,N-dimethylformamide (DMF) for the synthesis of tetrasubstituted symmetrical pyridines has been developed. A methyl carbon on DMF performed as a source of a one carbon synthon. And NaHSO3 plays a role in the reaction. PMID:24824200

  3. Nickel/zinc-catalyzed decarbonylative addition of anhydrides to alkynes: a DFT study.

    PubMed

    Meng, Qingxi; Li, Ming

    2013-10-01

    Density functional theory (DFT) was used to investigate the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. All intermediates and transition states were optimized completely at the B3LYP/6-31+G(d,p) level. Calculated results indicated that the decarbonylative addition of phthalic anhydrides to alkynes was exergonic, and the total free energy released was -87.6 kJ mol(-1). In the five-coordinated complexes M4a and M4b, the insertion reaction of alkynes into the Ni-C bond occurred prior to that into the Ni-O bond. The nickel(0)/zinc-catalyzed decarbonylative addition was much more dominant than the nickel-catalyzed one in whole catalytic decarbonylative addition. The reaction channel CA?M1'?T1'?M2'?T2'?M3a'?M4a'?T3a1'?M5a1' ?T4a1'?M6a'?P was the most favorable among all reaction pathways of the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. And the alkyne insertion reaction was the rate-determining step for this channel. The additive ZnCl2 had a significant effect, and it might change greatly the electron and geometry structures of those intermediates and transition states. On the whole, the solvent effect decreased the free energy barriers. PMID:23955705

  4. Indium-catalyzed, novel route to ?,?-disubstituted indanones via tandem Nakamura addition-hydroarylation-decarboxylation sequence.

    PubMed

    Rajesh, Nimmakuri; Prajapati, Dipak

    2015-02-25

    A novel method for the construction of ?,?-disubstituted indanones has been developed via tandem Nakamura addition-hydroarylation-decarboxylation process. Indium(III) triflate was demonstrated as a versatile multitasking catalyst, which catalyzes three different chemical transformations under one-pot conditions. PMID:25619532

  5. EFFECT OF A BASE-CATALYZED DECHLORINATION PROCESS ON THE GENOTOXICITY OF PCB-CONTAMINATED SOIL

    EPA Science Inventory

    We evaluated the genotoxicity of dichloromethane (DCM) extracts of PCB-contaminated soil before and after the soil had been treated by a base-catalyzed dechlorination process, which involved heating a mixture of the soil, polyethylene glycol, and sodium hydroxide to 250-350 degre...

  6. Cu-catalyzed transannulation reaction of pyridotriazoles: general access to fused polycyclic indolizines.

    PubMed

    Shi, Yi; Gevorgyan, Vladimir

    2015-12-14

    An efficient intramolecular transannulation reaction of pyridotriazoles using internal alkynes en route to various fused polycyclic indolizines has been developed. For the first time it is shown that in addition to the well-established Rh- or Cu-catalyzed carbene mechanism, the transannulation reaction could also follow a Lewis acid-mediated electrophilic pathway. PMID:26456098

  7. Copper-catalyzed silylation of p-quinone methides: new entry to dibenzylic silanes.

    PubMed

    López, Aurora; Parra, Alejandro; Jarava-Barrera, Carlos; Tortosa, Mariola

    2015-12-01

    An efficient and general copper(i)-catalyzed silylation of p-quinone-methides is described. Non-symmetric dibenzylic silanes are obtained in high yields under mild reaction conditions. These compounds can be used as bench-stable benzylic carbanion precursors. PMID:26490453

  8. Treatment Of Polychlorinated Biphenyls In Two Surface Soils Using Catalyzed H2O2 Propagations

    EPA Science Inventory

    Two surface soils contaminated with polychlorinated biphenyls (PCBs) collected from Superfund sites in the New England region of the United States, Fletcher Paints and Merrimack Industrial Metals, were evaluated for field treatment at the bench level using catalyzed H2...

  9. Enantioselective Synthesis of Carbo- and Heterocycles through a CuH-Catalyzed Hydroalkylation Approach.

    PubMed

    Wang, Yi-Ming; Bruno, Nicholas C; Placeres, Ángel L; Zhu, Shaolin; Buchwald, Stephen L

    2015-08-26

    The enantioselective, intramolecular hydroalkylation of halide-tethered styrenes has been achieved through a copper hydride-catalyzed process. This approach allowed for the synthesis of enantioenriched cyclobutanes, cyclopentanes, indanes, and six-membered N- and O-heterocycles. This protocol was applied to the synthesis of the commercial serotonin reuptake inhibitor (-)-paroxetine. PMID:26256576

  10. Palladium-Catalyzed Decarbonylative Dehydration of Fatty Acids for the Production of Linear Alpha Olefins

    PubMed Central

    Liu, Yiyang; Kim, Kelly E.; Herbert, Myles B.; Fedorov, Alexey; Grubbs, Robert H.; Stoltz, Brian M.

    2014-01-01

    A highly efficient palladium-catalyzed decarbonylative dehydration reaction of carboxylic acids is reported. This method transforms abundant and renewable even-numbered natural fatty acids into valuable and expensive odd-numbered alpha olefins. Additionally, the chemistry displays a high functional group tolerance. The process employs low loading of palladium catalyst and proceeds under solvent-free and relatively mild conditions. PMID:24772061

  11. Iron-catalyzed cascade carbochloromethylation of activated alkenes: highly efficient access to chloro-containing oxindoles.

    PubMed

    Lu, Ming-Zhu; Loh, Teck-Peng

    2014-09-19

    An iron-catalyzed carbodi- and trichloromethylation of activated alkenes with readily available dichloro- and tetrachloromethane has been developed. A diaryliodonium salt is used as an efficient oxidant in this transformation. This reaction tolerates a variety of functional groups and allows for a highly efficient synthesis of various chloro-containing oxindoles. PMID:25203302

  12. Mechanistic Study of Gold(I)-Catalyzed Intermolecular Hydroamination of Allenes

    E-print Network

    Goddard III, William A.

    for the reaction does not involve the nucleophile and that the active catalyst is monomeric in gold(I)-catalyzed addition of carbon, oxygen, and nitrogen based nucleophiles to allenes has emerged as a powerful synthetic transformation in recent years.1 The stability of gold(I) complexes to air and moisture renders gold catalysis

  13. Synthesis of Terminal Allenes via a Copper-Catalyzed Decarboxylative Coupling Reaction of Alkynyl Carboxylic Acids.

    PubMed

    Lim, Jeongah; Choi, Jinseop; Kim, Han-Sung; Kim, In Seon; Nam, Kye Chun; Kim, Jimin; Lee, Sunwoo

    2016-01-01

    Synthesis of terminal allenes via a copper-catalyzed decarboxylative coupling reaction was developed. Aryl alkynyl carboxylic acid, paraformaldehyde, and dicyclohexylamine were reacted with CuI (20 mol %) in diglyme at 100 °C for 2 h to produce the terminal allene in moderate to good yields. The method showed good functional group tolerance. PMID:26618610

  14. The effect of Mg/2+/ and Ca/2+/ on urea-catalyzed phosphorylation reactions

    NASA Technical Reports Server (NTRS)

    Handschuk, G. J.; Lohrmann, R.; Orgel, L. E.

    1973-01-01

    The effect of Mg(2+) and Ca(2+) on phosphorylation reactions catalyzed by urea is investigated, showing that Mg(2+) improves markedly the yield of products containing pyrophosphate bonds. Yields of up to 25% of uridine diphosphate can be obtained with struvite at temperatures as low as 65 C.

  15. The Isomerization of (-)-Menthone to (+)-Isomenthone Catalyzed by an Ion-Exchange Resin

    ERIC Educational Resources Information Center

    Ginzburg, Aurora L.; Baca, Nicholas A.; Hampton, Philip D.

    2014-01-01

    A traditional organic chemistry laboratory experiment involves the acid-catalyzed isomerization of (-)-menthone to (+)-isomenthone. This experiment generates large quantities of organic and aqueous waste, and only allows the final ratio of isomers to be determined. A "green" modification has been developed that replaces the mineral acid…

  16. BASE-CATALYZED DESTRUCTION OF PCBS-NEW DONORS, NEW TRANSFER AGENTS/CATALYSTS

    EPA Science Inventory

    The use of hydrogen transfer agents and catalysts to improve the base-catalyzed decomposition of polychlorinated biphenyls (PCBs) was investigated. The reaction proceeded only in the presence of base, but the rate of PCB disappearance increased with increasing amount of hydrogen ...

  17. Tetra-n-butylammonium Iodide Catalyzed C-H Azidation of Aldehydes with Thermally Stable Azidobenziodoxolone.

    PubMed

    Shinomoto, Yukino; Yoshimura, Akira; Shimizu, Hisato; Yamazaki, Mutsumi; Zhdankin, Viktor V; Saito, Akio

    2015-11-01

    Tetra-n-butylammonium iodide can efficiently catalyze direct azidation of aldehyde C-H bonds with thermally stable azidobenziodoxolone at room temperature. Compared to conventional methods, which require excessive amounts of highly explosive azide sources, this is a safe and convenient procedure. PMID:26492530

  18. Enantioselective Boronate Additions to N-Acyl Quinoliniums Catalyzed by Tartaric Acid

    PubMed Central

    Kodama, Tomohiro; Moquist, Philip N.; Schaus, Scott E.

    2014-01-01

    Tartaric acid catalyzes the asymmetric addition of vinylboronates to N-acyl quinoliniums, affording highly enantioenriched dihydroquinolines. The catalyst serves to activate the boronate through a ligand-exchange reaction and generates the N-acyl quinolinium in situ from the stable quinoline-derived N,O-acetal. PMID:22067040

  19. Compensation effect and volcano curve in toluene hydrogenation catalyzed by transition metal sulfides.

    PubMed

    Guernalec, N; Geantet, C; Cseri, T; Vrinat, M; Toulhoat, H; Raybaud, P

    2010-09-28

    Within the framework of volcano curves, a kinetic study of toluene hydrogenation catalyzed by transition metal sulfides highlights the variation of the apparent kinetic parameters as a function of the ab initio sulfur-metal bond energy descriptor and sulfo-reductive reaction conditions. PMID:20424734

  20. Ruthenium pincer-catalyzed synthesis of substituted ?-butyrolactones using hydrogen autotransfer methodology.

    PubMed

    Peña-López, Miguel; Neumann, Helfried; Beller, Matthias

    2015-08-25

    The ruthenium pincer-catalyzed synthesis of ?-butyrolactones from 1,2-diols and malonates using borrowing-hydrogen methodology is reported. This regioselective domino-process takes place through catalytic C-C bond formation, followed by intramolecular transesterification. Herein, we show the Ru-MACHO-BH complex as a valuable catalyst in hydrogen autotransfer reactions. PMID:26086048