Science.gov

Sample records for camelid anti-prp antibody

  1. Modification of a bovine ELISA to detect camelid antibodies to Mycobacterium paratuberculosis.

    PubMed

    Kramsky, J A; Miller, D S; Hope, A; Collins, M T

    2000-12-20

    Mycobacterium avium subsp. paratuberculosis infection, or Johne's disease, reportedly has a low prevalence in South American camelid populations. Recently, however, single cases in the United States as well as an outbreak of the disease in Australian alpacas (Lama pacos) have been described. To provide a rapid and cost-effective method of diagnosing Johne's disease in this species, the bovine Parachek((R)) Johne's Absorbed EIA (CSL, Vic., Australia) was modified to create a camelid-specific serum antibody assay. An anti-llama IgG conjugated to horseradish peroxidase replaced the anti-bovine immunoglobulin. Checkerboard titration of principal reagents was performed using serum from nine tissue and/or fecal culture-positive camelids. Optimal dilutions of key components were determined in order to provide clear discrimination between positive and negative controls. Completion of a kinetic assay determined the optical density at which the enzyme-substrate reaction should be stopped. A herd of 100 camelids with no history of disease or exposure to M. a. paratuberculosis, a subset of which were tissue and/or fecal culture-negative, was tested to establish a cut-off value. Sample results were expressed as a percentage of the results for control sera by transforming optical density values to ELISA values (EV%). A preliminary EV% cut-off of 20 was established. Using this prototype assay, culture-positive animals showed significantly different antibody responses from culture-negative animals. These results indicate that this camelid-specific ELISA, once refined, may be a useful tool for screening camelid herds for M. a. paratuberculosis infection. PMID:11118718

  2. Fully Human VH Single Domains That Rival the Stability and Cleft Recognition of Camelid Antibodies*

    PubMed Central

    Rouet, Romain; Dudgeon, Kip; Christie, Mary; Langley, David; Christ, Daniel

    2015-01-01

    Human VH single domains represent a promising class of antibody fragments with applications as therapeutic modalities. Unfortunately, isolated human VH domains also generally display poor biophysical properties and a propensity to aggregate. This has encouraged the development of non-human antibody domains as alternative means of antigen recognition and, in particular, camelid (VHH) domains. Naturally devoid of light chain partners, these domains are characterized by favorable biophysical properties and propensity for cleft binding, a highly desirable characteristic, allowing the targeting of cryptic epitopes. In contrast, previously reported structures of human VH single domains had failed to recapitulate this property. Here we report the engineering and characterization of phage display libraries of stable human VH domains and the selection of binders against a diverse set of antigens. Unlike “camelized” human domains, the domains do not rely on potentially immunogenic framework mutations and maintain the structure of the VH/VL interface. Structure determination in complex with hen egg white lysozyme revealed an extended VH binding interface, with complementarity-determining region 3 deeply penetrating into the active site cleft, highly reminiscent of what has been observed for camelid domains. Taken together, our results demonstrate that fully human VH domains can be constructed that are not only stable and well expressed but also rival the cleft binding properties of camelid antibodies. PMID:25737448

  3. Potential of mean force for human lysozyme camelid vhh hl6 antibody interaction studies

    NASA Astrophysics Data System (ADS)

    Wang, Yeng-Tseng; Liao, Jun-Min; Chen, Cheng-Lung; Su, Zhi-Yuan; Chen, Chang-Hung; Hu, Jeu-Jiun

    2008-04-01

    Calculating antigen-antibody interaction energies is crucial for understanding antigen-antibody associations in immunology. To shed further light into this equation, we study a separation of human lysozyme-camelid vhh hl6 antibody (cAb-HuL6) complex. The c-terminal end-to-end stretching of the lysozyme-antibody complex structures have been studied using potential of mean force (PMF) calculations based on molecular dynamics (MD) and explicit water model. For the lysozyme-antibody complex, there are six important intermediates in the c-terminal extensions process. Inclusion of our simulations may help to understand the binding mechanics of lysozyme-cAb-HuL6 antibody complex.

  4. Mechanisms of Ricin Toxin Neutralization Revealed through Engineered Homodimeric and Heterodimeric Camelid Antibodies.

    PubMed

    Herrera, Cristina; Tremblay, Jacqueline M; Shoemaker, Charles B; Mantis, Nicholas J

    2015-11-13

    Novel antibody constructs consisting of two or more different camelid heavy-chain only antibodies (VHHs) joined via peptide linkers have proven to have potent toxin-neutralizing activity in vivo against Shiga, botulinum, Clostridium difficile, anthrax, and ricin toxins. However, the mechanisms by which these so-called bispecific VHH heterodimers promote toxin neutralization remain poorly understood. In the current study we produced a new collection of ricin-specific VHH heterodimers, as well as VHH homodimers, and characterized them for their ability neutralize ricin in vitro and in vivo. We demonstrate that the VHH heterodimers, but not homodimers were able to completely protect mice against ricin challenge, even though the two classes of antibodies (heterodimers and homodimers) had virtually identical affinities for ricin holotoxin and similar IC50 values in a Vero cell cytotoxicity assay. The VHH heterodimers did differ from the homodimers in their ability to promote toxin aggregation in solution, as revealed through analytical ultracentrifugation. Moreover, the VHH heterodimers that were most effective at promoting ricin aggregation in solution were also the most effective at blocking ricin attachment to cell surfaces. Collectively, these data suggest that heterodimeric VHH-based neutralizing agents may function through the formation of antibody-toxin complexes that are impaired in their ability to access host cell receptors. PMID:26396190

  5. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs).

    PubMed

    Maass, David R; Sepulveda, Jorge; Pernthaner, Anton; Shoemaker, Charles B

    2007-07-31

    Recombinant single domain antibody fragments (VHHs) that derive from the unusual camelid heavy chain only IgG class (HCAbs) have many favourable properties compared with single-chain antibodies prepared from conventional IgG. As a result, VHHs have become widely used as binding reagents and are beginning to show potential as therapeutic agents. To date, the source of VHH genetic material has been camels and llamas despite their large size and limited availability. Here we demonstrate that the smaller, more tractable and widely available alpaca is an excellent source of VHH coding DNA. Alpaca sera IgG consists of about 50% HCAbs, mostly of the short-hinge variety. Sequencing of DNA encoding more than 50 random VHH and hinge domains permitted the design of PCR primers that will amplify virtually all alpaca VHH coding DNAs for phage display library construction. Alpacas were immunized with ovine tumour necrosis factor alpha (TNFalpha) and a VHH phage display library was prepared from a lymph node that drains the sites of immunizations and successfully employed in the isolation of VHHs that bind and neutralize ovine TNFalpha. PMID:17568607

  6. Heterologous Antigen Selection of Camelid Heavy Chain Single Domain Antibodies against Tetrabromobisphenol A

    PubMed Central

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is a ubiquitous flame retardant. A high-throughput immunoassay would allow for monitoring of human and environmental exposures as a part of risk assessment. Naturally occurring antibodies in camelids that are devoid of light chain, show great promise as an efficient tool in monitoring environmental contaminants, but they have been rarely used for small molecules. An alpaca was immunized with a TBBPA hapten coupled to thyroglobulin and a variable domain of heavy chain antibody (VHH) T3–15 highly selective for TBBPA was isolated from a phage displayed VHH library using heterologous coating antigens. Compared to the VHHs isolated using homologous antigens, VHH T3–15 had about a 10-fold improvement in sensitivity in an immunoassay. This assay, under the optimized conditions of 10% methanol in the assay buffer (pH 7.4), had an IC50 for TBBPA of 0.40 ng mL–1 and negligible cross reactivity (<0.1%) with other tested analogues. After heating the VHH at 90 °C for 90 min about 20% of the affinity for coating antigen T3-BSA remained. The recoveries of TBBPA from spiked soil and fetal bovine serum samples ranged from 90.3% to 110.7% by ELISA and agreed well with a liquid chromatography–tandem mass spectrometry method. We conclude the many advantages of VHH make them attractive for the development of immunoassays to small molecules. PMID:25068372

  7. Isolation of Camelid Single-Domain Antibodies Against Native Proteins Using Recombinant Multivalent Peptide Ligands.

    PubMed

    Alturki, Norah A; Henry, Kevin A; MacKenzie, C Roger; Arbabi-Ghahroudi, Mehdi

    2015-01-01

    Generation of antibodies against desired epitopes on folded proteins may be hampered by various characteristics of the target protein, including antigenic and immunogenic dominance of irrelevant epitopes and/or steric occlusion of the desired epitope. In such cases, peptides encompassing linear epitopes of the native protein represent attractive alternative reagents for immunization and screening. Peptide antigens are typically prepared by fusing or conjugating the peptide of interest to a carrier protein. The utility of such antigens depends on many factors including the peptide's amino acid sequence, display valency, display format (synthetic conjugate vs. recombinant fusion) and characteristics of the carrier. Here we provide detailed protocols for: (1) preparation of DNA constructs encoding peptides fused to verotoxin (VT) multimerization domain; (2) expression, purification, and characterization of the multivalent peptide-VT ligands; (3) concurrent panning of a non-immune phage-displayed camelid VHH library against the peptide-VT ligands and native protein; and (4) identification of VHHs enriched via panning using next-generation sequencing techniques. These methods are simple, rapid and can be easily adapted to yield custom peptide-VT ligands that appear to maintain the antigenic structures of the peptide. However, we caution that peptide sequences should be chosen with great care, taking into account structural, immunological, and biophysical information on the protein of interest. PMID:26424272

  8. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform

    PubMed Central

    Klarenbeek, Alex; Mazouari, Khalil El; Desmyter, Aline; Blanchetot, Christophe; Hultberg, Anna; de Jonge, Natalie; Roovers, Rob C; Cambillau, Christian; Spinelli, Sylvia; Del-Favero, Jurgen; Verrips, Theo; de Haard, Hans J; Achour, Ikbel

    2015-01-01

    Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform. PMID:26018625

  9. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform.

    PubMed

    Klarenbeek, Alex; El Mazouari, Khalil; Desmyter, Aline; Blanchetot, Christophe; Hultberg, Anna; de Jonge, Natalie; Roovers, Rob C; Cambillau, Christian; Spinelli, Sylvia; Del-Favero, Jurgen; Verrips, Theo; de Haard, Hans J; Achour, Ikbel

    2015-01-01

    Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform. PMID:26018625

  10. Retargeted oncolytic adenovirus displaying a single variable domain of camelid heavy-chain-only antibody in a fiber protein

    PubMed Central

    van Erp, Elisabeth A; Kaliberova, Lyudmila N; Kaliberov, Sergey A; Curiel, David T

    2015-01-01

    Conditionally replicative adenoviruses are promising agents for oncolytic virotherapy. Various approaches have been attempted to retarget adenoviruses to tumor-specific antigens to circumvent deficiency of receptor for adenoviral binding and to provide an additional level of tumor specificity. Functional incorporation of highly specific targeting molecules into the viral capsid can potentially retarget adenoviral infection. However, conventional antibodies are not compatible with the cytoplasmic adenovirus capsid synthesis. The goal of this study was to evaluate the utility of single variable domains derived from heavy chain camelid antibodies for retargeting of adenovirus infection. We have combined transcriptional targeting using a tumor-specific promoter with transductional targeting through viral capsid incorporation of antihuman carcinoembryonic antigen single variable domains. Obtained data demonstrated that employment of a single variable domain genetically incorporated into an adenovirus fiber increased specificity of infection and efficacy of replication of single variable domain-targeted oncolytic adenovirus. The double targeting, both transcriptional through the C-X-C chemokine receptor type 4 promoter and transductional using the single variable domain, is a promising means to improve the therapeutic index for these advanced generation conditionally replicative adenoviruses. A successful strategy to transductional retargeting of oncolytic adenovirus infection has not been shown before and therefore we believe this is the first employment of transductional targeting using single variable domains derived from heavy chain camelid antibodies to enhance specificity of conditionally replicative adenoviruses. PMID:27119101

  11. Development and utilization of camelid VHH antibodies from alpaca for 2,2',4,4'-tetrabrominated diphenyl ether detection.

    PubMed

    Bever, Candace R S; Majkova, Zuzana; Radhakrishnan, Rajeswaran; Suni, Ian; McCoy, Mark; Wang, Yanru; Dechant, Julie; Gee, Shirley; Hammock, Bruce D

    2014-08-01

    An antibody-based analytical method for the detection of a chemical flame retardant using antibody fragments isolated from an alpaca has been developed. One specific chemical flame retardant congener, 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47), is often the major poly-BDE (PBDE) congener present in human and environmental samples and that which is the most frequently detected. An alpaca was immunized with a surrogate of BDE-47 covalently attached to a carrier protein. The resulting mRNA coding for the variable domain of heavy-chain antibodies (VHH) were isolated, transcribed to cDNA, and cloned into a phagemid vector for phage display library construction. Selection of VHHs recognizing BDE-47 was achieved by panning under carefully modified conditions. The assay sensitivity for detecting BDE-47 was down to the part-per-billion (microgram per liter) level. Cross-reactivity analyses confirmed that this method was highly selective for BDE-47 and selected hydroxylated metabolites. When exposed to elevated temperatures, the camelid VHH antibodies retained more reactivity than a polyclonal antibody developed to the same target analyte. The use of this VHH antibody reagent immobilized onto a Au electrode for impedance biosensing demonstrates the increased versatility of VHH antibodies. PMID:25005746

  12. Camelid wellness.

    PubMed

    Bennett, Marty McGee; Richards, Nanci L M

    2015-05-01

    Wellness management and environmental enrichment of New World camelids is multifaceted and should include everything from how they are fed and housed to how they are interacted with and handled. Camelid feeding regimens should be based on sound nutritional concepts, designed for specific animal groups, and begin with an appropriate forage base. Provide housing, shelter, substrate, and feeders designed for the needs and behaviors of camelids. Herd management should include regularly obtaining weights and body condition scores. Handling and training should be of a positive nature, in keeping with the natural history and temperament of the animal. PMID:25902272

  13. Heat-induced Irreversible Denaturation of the Camelid Single Domain VHH Antibody Is Governed by Chemical Modifications

    PubMed Central

    Akazawa-Ogawa, Yoko; Takashima, Mizuki; Lee, Young-Ho; Ikegami, Takahisa; Goto, Yuji; Uegaki, Koichi; Hagihara, Yoshihisa

    2014-01-01

    The variable domain of camelid heavy chain antibody (VHH) is highly heat-resistant and is therefore ideal for many applications. Although understanding the process of heat-induced irreversible denaturation is essential to improve the efficacy of VHH, its inactivation mechanism remains unclear. Here, we showed that chemical modifications predominantly governed the irreversible denaturation of VHH at high temperatures. After heat treatment, the activity of VHH was dependent only on the incubation time at 90 °C and was insensitive to the number of heating (90 °C)-cooling (20 °C) cycles, indicating a negligible role for folding/unfolding intermediates on permanent denaturation. The residual activity was independent of concentration; therefore, VHH lost its activity in a unimolecular manner, not by aggregation. A VHH mutant lacking Asn, which is susceptible to chemical modifications, had significantly higher heat resistance than did the wild-type protein, indicating the importance of chemical modifications to VHH denaturation. PMID:24739391

  14. Novel Camelid Antibody Fragments Targeting Recombinant Nucleoprotein of Araucaria hantavirus: A Prototype for an Early Diagnosis of Hantavirus Pulmonary Syndrome

    PubMed Central

    Pereira, Soraya S.; Moreira-Dill, Leandro S.; Morais, Michelle S. S.; Prado, Nidiane D. R.; Barros, Marcos L.; Koishi, Andrea C.; Mazarrotto, Giovanny A. C. A.; Gonçalves, Giselle M.; Zuliani, Juliana P.; Calderon, Leonardo A.; Soares, Andreimar M.; Pereira da Silva, Luiz H.; Duarte dos Santos, Claudia N.; Fernandes, Carla F. C.; Stabeli, Rodrigo G.

    2014-01-01

    In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS) is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS) is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N) to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ85) of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ85. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB), surface plasmon resonance (SPR) device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ85 in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with hantavirus infections. PMID

  15. Analysis of camelid antibodies for antivenom development: Neutralisation of venom-induced pathology.

    PubMed

    Cook, Darren A N; Owen, Timothy; Wagstaff, Simon C; Kinne, Joerg; Wernery, Ulrich; Harrison, Robert A

    2010-09-01

    Camelid IgG has been reported to be less immunogenic, less able to activate the complement cascade and more thermostable than IgG from other mammals, and has the ability to bind antigens that are unreactive with other mammalian IgGs. We are investigating whether these attributes of camelid IgG translate into antivenom with immunological and venom-neutralising efficacy advantages over conventional equine and ovine antivenoms. The objective of this study was to determine the preclinical venom-neutralising effectiveness of IgG from camels immunised with venoms, individually or in combination, of the saw-scaled viper, Echis ocellatus, the puff adder, Bitis arietans and the spitting cobra, Naja nigricollis - the most medically-important snake species in West Africa. Neutralisation of the pathological effects of venoms from E. ocellatus, B. arietans and N. nigricollis by IgG from the venom-immunised camels, or commercial antivenom, was compared using assays of venom lethality (ED(50)), haemorrhage (MHD) and coagulopathy (MCD). The E. ocellatus venom ED(50), MHD and MCD results of the E. ocellatus monospecific camel IgG antivenom were broadly equivalent to comparable ovine (EchiTAbG, MicroPharm Ltd, Wales) and equine (SAIMR Echis, South African Vaccine Producer, South Africa) antivenoms, although the equine antivenom required half the amount of IgG. The B. arietans monospecific camel IgG neutralised the lethal effects of B. arietans venom at one fourth the concentration of the SAIMR polyspecific antivenom (a monospecific B. arietans antivenom is not available). The N. nigricollis camel IgG antivenom was ineffective (at the maximum permitted dose, 100 mul) against the lethal effects of N. nigricollis venom. All the equine polyspecific antivenoms required more than 100 microl to be effective against this venom. The polyspecific camel IgG antivenom, prepared from five camels, was effective against the venom-induced effects of E. ocellatus but not against that of B. arietans

  16. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop

    SciTech Connect

    Fanning, Sean W.; Horn, James R.

    2014-03-05

    Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while the crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.

  17. Intracellular Expression of Camelid Single-Domain Antibodies Specific for Influenza Virus Nucleoprotein Uncovers Distinct Features of Its Nuclear Localization

    PubMed Central

    Ashour, Joseph; Schmidt, Florian I.; Hanke, Leo; Cragnolini, Juanjo; Cavallari, Marco; Altenburg, Arwen; Brewer, Rebeccah; Ingram, Jessica; Shoemaker, Charles

    2014-01-01

    ABSTRACT Perturbation of protein-protein interactions relies mostly on genetic approaches or on chemical inhibition. Small RNA viruses, such as influenza A virus, do not easily lend themselves to the former approach, while chemical inhibition requires that the target protein be druggable. A lack of tools thus constrains the functional analysis of influenza virus-encoded proteins. We generated a panel of camelid-derived single-domain antibody fragments (VHHs) against influenza virus nucleoprotein (NP), a viral protein essential for nuclear trafficking and packaging of the influenza virus genome. We show that these VHHs can target NP in living cells and perturb NP's function during infection. Cytosolic expression of NP-specific VHHs (αNP-VHHs) disrupts virus replication at an early stage of the life cycle. Based on their specificity, these VHHs fall into two distinct groups. Both prevent nuclear import of the viral ribonucleoprotein (vRNP) complex without disrupting nuclear import of NP alone. Different stages of the virus life cycle thus rely on distinct nuclear localization motifs of NP. Their molecular characterization may afford new means of intervention in the virus life cycle. IMPORTANCE Many proteins encoded by RNA viruses are refractory to manipulation due to their essential role in replication. Thus, studying their function and determining how to disrupt said function through pharmaceutical intervention are difficult. We present a novel method based on single-domain-antibody technology that permits specific targeting and disruption of an essential influenza virus protein in the absence of genetic manipulation of influenza virus itself. Characterization of such interactions may help identify new targets for pharmaceutical intervention. This approach can be extended to study proteins encoded by other viral pathogens. PMID:25540369

  18. One-step Immunoassay for Tetrabromobisphenol A Using a Camelid Single Domain Antibody-Alkaline Phosphatase Fusion Protein

    PubMed Central

    Wang, Jia; Majkova, Zuzana; Bever, Candace R. S.; Yang, Jun; Gee, Shirley J.; Li, Ji; Xu, Ting; Hammock, Bruce D.

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant, showing widespread environment and human exposures. A variable domain of the heavy chain antibody (VHH), naturally occurring in camelids, approaches the lower size limit of functional antigen-binding entities. Ease of genetic manipulation makes such VHHs a superior choice to use as an immunoreagent. In this study, a highly selective anti-TBBPA VHH T3-15 fused with alkaline phosphatase (AP) from E. coli was expressed, showing both an integrated TBBPA-binding capacity and enzymatic activity. A one-step immunoassay based on the fusion protein T3-15-AP was developed for TBBPA in 5% dimethyl sulfoxide (DMSO)/phosphate buffered saline (PBS, pH 7.4), with a half-maximum signal inhibition concentration (IC50) of 0.20 ng mL−1. Compared to the parental VHH T3-15, T3-15-AP was able to bind to a wider variety of coating antigens and the assay sensitivity was slightly improved. Cross-reactivity of T3-15-AP with a set of important brominated analogs was negligible (<0.1%). Although T3-15-AP was susceptible to extreme heat (90 °C), much higher binding stability at ambient temperature was observed in the T3-15-AP based assay for at least 70 days. A simple pretreatment method of diluting urine samples with DMSO was developed for a one-step assay. The recoveries of TBBPA from urine samples by this one-step assay ranged from 96.7–109.9% and correlated well with an HPLC-MS/MS method. It is expected that the dimerized fusion protein, VHH-AP, will show promising applications in human exposure and environmental monitoring. PMID:25849972

  19. Preparation and characterization of novel IgG affinity resin coupling anti-Fc camelid single-domain antibodies.

    PubMed

    Tu, Zhui; Xu, Yang; Fu, Jinheng; Huang, Zhibing; Wang, Yao; Liu, Bin; Tao, Yong

    2015-03-01

    This work aimed to evaluate novel affinity resin used to purify immunoglobulin G (IgG) with a variable domain of the heavy chain of the heavy-chain antibody (VHH) as an affinity ligand. The VHH, isolated from a naïve camelid single-domain phage display library, exhibits not only affinity to the fragment crystallizable (Fc) region of IgG but also high thermal stability. This anti-Fc VHH (AFV) was expressed as a soluble protein in Escherichia coli and purified using a simple heat treatment procedure. The effects of pH and NaCl concentrations on the capacity of AFV resin were also investigated. Results showed a robust property of the AFV resin. It could bind IgGs at various pH conditions (from 6.0 to 9.0) and NaCl concentrations. The static binding capacities of AFV resin ranged from 3.40±0.53mg/ml to 15.04±0.37mg/ml measured using rabbit, mouse, and human IgGs. The bound IgGs can be efficiently eluted at pH 5.0, which is conducive to acid-sensitive IgGs and prevents the aggregation of IgGs. After 10 purification cycles or a 7-day period of storage at 37°C, recovery did not decrease. These findings suggested that VHHs from non-immunized library could also be robust and functional reagent as an affinity purification ligand. PMID:25614967

  20. A camelid antibody candidate for development of a therapeutic agent against Hemiscorpius lepturus envenomation.

    PubMed

    Yardehnavi, Najmeh; Behdani, Mahdi; Bagheri, Kamran Pooshang; Mahmoodzadeh, Amir; Khanahmad, Hossein; Shahbazzadeh, Delavar; Habibi-Anbouhi, Mahdi; Hassanzadeh Ghassabeh, Gholamreza; Muyldermans, Serge

    2014-09-01

    Hemiscorpius lepturus scorpionism poses one of the most dangerous health problems in many parts of the world. The common therapy consists of using antivenom antibody fragments derived from a polyclonal immune response raised in horses. However, this immunotherapy creates serious side effects, including anaphylactic shock sometimes even leading to death. Thus, many efforts have been made to introduce new replacement therapeutics that cause less adverse reactions. One of the most attractive approaches to replacing the available therapy is offered by single-domain antibody fragments, or nanobodies (Nbs). We immunized dromedaries with H. lepturus toxin and identified a functional recombinant Nb (referred to as F7Nb) against heminecrolysin (HNc), the major known hemolytic and dermonecrotic fraction of H. lepturus venom. This Nb was retrieved from the immune library by phage display selection. The in vitro neutralization tests indicated that 17.5 nmol of the F7Nb can inhibit 45% of the hemolytic activity of 1 EC100 (7.5 μg/ml) of HNc. The in vivo neutralization tests demonstrated that F7Nb had good antihemolytic and antidermonecrotic effects against HNc in all tested mice. Surprisingly, F7Nb (8.75 nmol) neutralized 1 LD100 of HNc (10 μg) via an intracerebroventricular route or 1 LD100 (80 μg) via a subcutaneous route. All of the control mice died. Hence, this Nb is a potential leading novel candidate for treating H. lepturus scorpionism in the near future. PMID:24891523

  1. Development of protective agent against Hottentotta saulcyi venom using camelid single-domain antibody.

    PubMed

    Darvish, Maryam; Behdani, Mahdi; Shokrgozar, Mohammad Ali; Pooshang-Bagheri, Kamran; Shahbazzadeh, Delavar

    2015-12-01

    Hottentotta saulcyi, medically important scorpion species, causes some of harmful toxic exposure in Iran. Administrated, conventional antivenom-based immunotherapy is still limited and hardly meet ideal characteristic of effective treatment for scorpion envenomation. In this study we aimed to develop a neutralizing agent directed against scorpion venom based on VHH, variable domain of the Camelidae heavy chain antibody or Nanobody. This promising biomolecule is well-established as an advantageous tool for therapeutic purposes due to its small size, stability, monomeric performance and less immunogenicity. In this study, a large Nb library was constructed and phage displayed after successful camel immunization using H. saulcyi scorpion crude venom. After a series of biopanning rounds on Sephadex G50 purified venom fraction and screening by monoclonal phage ELISA, the best reactive Nb was retrieved and designated Nb12. The selected Nb was then expressed as soluble protein in Escherichia coli, purified and confirmed by SDS-PAGE analysis and western blotting. The lead candidate Nb12 bound scorpion venom with Kaff value of 5×10(7)M(-1). Nb12 was shown to be capable of neutralizing 2 LD50 of whole venom of scorpion toxin when injected in the ratio of the Nb/toxin of 1.4:1 into C57BL/6 mice. In challenge experiment, Nb succeeded to rescue all i.p. lethal dose injected mice even when administrated i.v., 20min after envenoming. These results with ease of production and superior neutralizing activity make Nb a suitable anti-toxin candidate for treatment of scorpion envenoming. PMID:26468036

  2. Development and Utilization of Camelid VHH Antibodies from Alpaca for 2,2′,4,4′-Tetrabrominated Diphenyl Ether Detection

    PubMed Central

    2015-01-01

    An antibody-based analytical method for the detection of a chemical flame retardant using antibody fragments isolated from an alpaca has been developed. One specific chemical flame retardant congener, 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47), is often the major poly-BDE (PBDE) congener present in human and environmental samples and that which is the most frequently detected. An alpaca was immunized with a surrogate of BDE-47 covalently attached to a carrier protein. The resulting mRNA coding for the variable domain of heavy-chain antibodies (VHH) were isolated, transcribed to cDNA, and cloned into a phagemid vector for phage display library construction. Selection of VHHs recognizing BDE-47 was achieved by panning under carefully modified conditions. The assay sensitivity for detecting BDE-47 was down to the part-per-billion (microgram per liter) level. Cross-reactivity analyses confirmed that this method was highly selective for BDE-47 and selected hydroxylated metabolites. When exposed to elevated temperatures, the camelid VHH antibodies retained more reactivity than a polyclonal antibody developed to the same target analyte. The use of this VHH antibody reagent immobilized onto a Au electrode for impedance biosensing demonstrates the increased versatility of VHH antibodies. PMID:25005746

  3. Inhibition of the Myotoxicity Induced by Bothrops jararacussu Venom and Isolated Phospholipases A2 by Specific Camelid Single-Domain Antibody Fragments

    PubMed Central

    Prado, Nidiane D. R.; Pereira, Soraya S.; da Silva, Michele P.; Morais, Michelle S. S.; Kayano, Anderson M.; Moreira-Dill, Leandro S.; Luiz, Marcos B.; Zanchi, Fernando B.; Fuly, André L.; E. F. Huacca, Maribel; Fernandes, Cleberson F.; Calderon, Leonardo A.; Zuliani, Juliana P.; Soares, Andreimar M.; Stabeli, Rodrigo G.; F. C. Fernandes, Carla

    2016-01-01

    Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem. PMID:27028872

  4. Inhibition of the Myotoxicity Induced by Bothrops jararacussu Venom and Isolated Phospholipases A2 by Specific Camelid Single-Domain Antibody Fragments.

    PubMed

    Prado, Nidiane D R; Pereira, Soraya S; da Silva, Michele P; Morais, Michelle S S; Kayano, Anderson M; Moreira-Dill, Leandro S; Luiz, Marcos B; Zanchi, Fernando B; Fuly, André L; Huacca, Maribel E F; Fernandes, Cleberson F; Calderon, Leonardo A; Zuliani, Juliana P; Pereira da Silva, Luiz H; Soares, Andreimar M; Stabeli, Rodrigo G; Fernandes, Carla F C

    2016-01-01

    Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem. PMID:27028872

  5. Translational fusion and redirection to thylakoid lumen as strategies to improve the accumulation of a camelid antibody fragment in transplastomic tobacco.

    PubMed

    Lentz, Ezequiel M; Garaicoechea, Lorena; Alfano, E Federico; Parreño, Viviana; Wigdorovitz, Andrés; Bravo-Almonacid, Fernando F

    2012-08-01

    Fragments from camelid single-chain antibodies known as VHHs or nanobodies represent a valuable tool in diagnostics, investigation and passive immunity therapy. Here, we explored different strategies to improve the accumulation of a neutralizing VHH antibody against rotavirus in tobacco transplastomic plants. First, we attempted to express the VHH in the chloroplast stroma and then two alternative strategies were carried out to improve the expression levels: expression as a translational fusion to the β-glucuronidase enzyme (GUS-E-VHH), and redirection of the VHH into the thylakoid lumen (pep-VHH). Every attempt to produce transplastomic plants expressing the VHH in the stroma was futile. The transgene turned out to be unstable and the presence of the VHH protein was almost undetectable. Although pep-VHH plants also presented some of the aforementioned problems, higher accumulation of the nanobody was observed (2-3% of the total soluble proteins). The use of β-glucuronidase as a partner protein turned out to be a successful strategy and expression levels reached 3% of the total soluble proteins. The functionality of the VHHs produced by pep-VHH and GUS-E-VHH plants was studied and compared with that of the antibody produced in Escherichia coli. This work contributes to optimizing the expression of VHH in transplastomic plants. Recombinant proteins could be obtained either by accumulation in the thylakoid lumen or as a fusion protein with β-glucuronidase, and both strategies allow for further optimization. PMID:22526499

  6. Development of camelid single chain antibodies against Shiga toxin type 2 (Stx2) with therapeutic potential against Hemolytic Uremic Syndrome (HUS).

    PubMed

    Mejías, Maria P; Hiriart, Yanina; Lauché, Constanza; Fernández-Brando, Romina J; Pardo, Romina; Bruballa, Andrea; Ramos, María V; Goldbaum, Fernando A; Palermo, Marina S; Zylberman, Vanesa

    2016-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening Hemolytic Uremic Syndrome (HUS). Despite the magnitude of the social and economic problems caused by STEC infections, no licensed vaccine or effective therapy is presently available for human use. Single chain antibodies (VHH) produced by camelids exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis and therapy. In the present work, the properties of a recently developed immunogen, which induces high affinity and protective antibodies against Stx type 2 (Stx2), were exploited to develop VHHs with therapeutic potential against HUS. We identified a family of VHHs against the B subunit of Stx2 (Stx2B) that neutralize Stx2 in vitro at subnanomolar concentrations. One VHH was selected and was engineered into a trivalent molecule (two copies of anti-Stx2B VHH and one anti-seroalbumin VHH). The resulting molecule presented extended in vivo half-life and high therapeutic activity, as demonstrated in three different mouse models of Stx2-toxicity: a single i.v. lethal dose of Stx2, several i.v. incremental doses of Stx2 and intragastrical STEC infection. This simple antitoxin agent should offer new therapeutic options for treating STEC infections to prevent or ameliorate HUS outcome. PMID:27118524

  7. Development of camelid single chain antibodies against Shiga toxin type 2 (Stx2) with therapeutic potential against Hemolytic Uremic Syndrome (HUS)

    PubMed Central

    Mejías, Maria P.; Hiriart, Yanina; Lauché, Constanza; Fernández-Brando, Romina J.; Pardo, Romina; Bruballa, Andrea; Ramos, María V.; Goldbaum, Fernando A.; Palermo, Marina S.; Zylberman, Vanesa

    2016-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening Hemolytic Uremic Syndrome (HUS). Despite the magnitude of the social and economic problems caused by STEC infections, no licensed vaccine or effective therapy is presently available for human use. Single chain antibodies (VHH) produced by camelids exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis and therapy. In the present work, the properties of a recently developed immunogen, which induces high affinity and protective antibodies against Stx type 2 (Stx2), were exploited to develop VHHs with therapeutic potential against HUS. We identified a family of VHHs against the B subunit of Stx2 (Stx2B) that neutralize Stx2 in vitro at subnanomolar concentrations. One VHH was selected and was engineered into a trivalent molecule (two copies of anti-Stx2B VHH and one anti-seroalbumin VHH). The resulting molecule presented extended in vivo half-life and high therapeutic activity, as demonstrated in three different mouse models of Stx2-toxicity: a single i.v. lethal dose of Stx2, several i.v. incremental doses of Stx2 and intragastrical STEC infection. This simple antitoxin agent should offer new therapeutic options for treating STEC infections to prevent or ameliorate HUS outcome. PMID:27118524

  8. Camelid single-domain antibody fragments: Uses and prospects to investigate protein misfolding and aggregation, and to treat diseases associated with these phenomena.

    PubMed

    Pain, Coralie; Dumont, Janice; Dumoulin, Mireille

    2015-04-01

    The deposition of misfolded peptides and proteins in the form of amyloid fibrils is the hallmark of nearly fifty medical disorders, including Alzheimer's disease, Parkinson's disease, prion diseases and type II diabetes. These disorders, referred to as amyloidoses, generally become apparent late in life. Their psycho-sociological and economic incidence in western societies will be therefore considerable in the coming decades due to the ageing of the population. Neither preventing nor curative treatments are available yet. These disorders constitute therefore a medical challenge of great importance. Thus, an extensive research is being carried out to understand, at the molecular level, (i) how amyloidogenic proteins misfold and convert from their soluble form into amyloid fibrils, and (ii) how these aggregates or some of their oligomeric precursor species are toxic. The formation of amyloid fibrils proceeds through a complex nucleation/polymerisation mechanism with the formation of various species, including small oligomers. In this review, we focus on how VHHs or nanobodies, the antigen-binding domains of camelid heavy-chain antibodies, are being increasingly used to characterise each of the species formed on the pathway of fibril formation in terms of structure, stability, kinetics of formation and toxicity. We first introduce the characteristic features of nanobodies compared to those of conventional antibody fragments. Thereafter, we discuss how nanobodies, due to their unique properties, are used as probes to dissect the molecular mechanisms of misfolding and aggregation of six proteins associated with diseases, i.e. human lysozyme, β2-microglobulin, α-synuclein, prion, polyadenylate binding protein nuclear 1 and amyloid β-peptide. A brief general presentation of each disease and the associated peptide/protein is also provided. In addition, we discuss how nanobodies could be used as early diagnostic tools and as novel strategies to treat diseases associated

  9. Methane Emission by Camelids

    PubMed Central

    Dittmann, Marie T.; Runge, Ullrich; Lang, Richard A.; Moser, Dario; Galeffi, Cordula; Kreuzer, Michael; Clauss, Marcus

    2014-01-01

    Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n = 16 in total), all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg−1 d−1) when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg−1 d−1). However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg−1 in camelids vs. 86.2±12.1 L kg−1 in ruminants). This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels. PMID:24718604

  10. Methane emission by camelids.

    PubMed

    Dittmann, Marie T; Runge, Ullrich; Lang, Richard A; Moser, Dario; Galeffi, Cordula; Kreuzer, Michael; Clauss, Marcus

    2014-01-01

    Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n = 16 in total), all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg⁻¹ d⁻¹) when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg⁻¹ d⁻¹). However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg⁻¹ in camelids vs. 86.2±12.1 L kg⁻¹ in ruminants). This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels. PMID:24718604

  11. Production and characterization of a camelid single domain antibody-urease enzyme conjugate for the treatment of cancer.

    PubMed

    Tian, Baomin; Wong, Wah Yau; Hegmann, Elda; Gaspar, Kim; Kumar, Praveen; Chao, Heman

    2015-06-17

    A novel immunoconjugate (L-DOS47) was developed and characterized as a therapeutic agent for tumors expressing CEACAM6. The single domain antibody AFAIKL2, which targets CEACAM6, was expressed in the Escherichia coli BL21 (DE3) pT7-7 system. High purity urease (HPU) was extracted and purified from Jack bean meal. AFAIKL2 was activated using N-succinimidyl [4-iodoacetyl] aminobenzoate (SIAB) as the cross-linker and then conjugated to urease. The activation and conjugation reactions were controlled by altering pH. Under these conditions, the material ratio achieved conjugation ratios of 8-11 antibodies per urease molecule, the residual free urease content was practically negligible (<2%), and high purity (>95%) L-DOS47 conjugate was produced using only ultradiafiltration to remove unreacted antibody and hydrolyzed cross-linker. L-DOS47 was characterized by a panel of analytical techniques including SEC, IEC, Western blot, ELISA, and LC-MS(E) peptide mapping. As the antibody-urease conjugate ratio increased, a higher binding signal was observed. The specificity and cytotoxicity of L-DOS47 was confirmed by screening in four cell lines (BxPC-3, A549, MCF7, and CEACAM6-transfected H23). BxPC-3, a CEACAM6-expressing cell line was found to be most susceptible to L-DOS47. L-DOS47 is being investigated as a potential therapeutic agent in human phase I clinical studies for nonsmall cell lung cancer. PMID:25938892

  12. A heterodimer of a VHH (variable domains of camelid heavy chain-only) antibody that inhibits anthrax toxin cell binding linked to a VHH antibody that blocks oligomer formation is highly protective in an anthrax spore challenge model.

    PubMed

    Moayeri, Mahtab; Leysath, Clinton E; Tremblay, Jacqueline M; Vrentas, Catherine; Crown, Devorah; Leppla, Stephen H; Shoemaker, Charles B

    2015-03-01

    Anthrax disease is caused by a toxin consisting of protective antigen (PA), lethal factor, and edema factor. Antibodies against PA have been shown to be protective against the disease. Variable domains of camelid heavy chain-only antibodies (VHHs) with affinity for PA were obtained from immunized alpacas and screened for anthrax neutralizing activity in macrophage toxicity assays. Two classes of neutralizing VHHs were identified recognizing distinct, non-overlapping epitopes. One class recognizes domain 4 of PA at a well characterized neutralizing site through which PA binds to its cellular receptor. A second neutralizing VHH (JKH-C7) recognizes a novel epitope. This antibody inhibits conversion of the PA oligomer from "pre-pore" to its SDS and heat-resistant "pore" conformation while not preventing cleavage of full-length 83-kDa PA (PA83) by cell surface proteases to its oligomer-competent 63-kDa form (PA63). The antibody prevents endocytosis of the cell surface-generated PA63 subunit but not preformed PA63 oligomers formed in solution. JKH-C7 and the receptor-blocking VHH class (JIK-B8) were expressed as a heterodimeric VHH-based neutralizing agent (VNA2-PA). This VNA displayed improved neutralizing potency in cell assays and protected mice from anthrax toxin challenge with much better efficacy than the separate component VHHs. The VNA protected virtually all mice when separately administered at a 1:1 ratio to toxin and protected mice against Bacillus anthracis spore infection. Thus, our studies show the potential of VNAs as anthrax therapeutics. Due to their simple and stable nature, VNAs should be amenable to genetic delivery or administration via respiratory routes. PMID:25564615

  13. A Heterodimer of a VHH (Variable Domains of Camelid Heavy Chain-only) Antibody That Inhibits Anthrax Toxin Cell Binding Linked to a VHH Antibody That Blocks Oligomer Formation Is Highly Protective in an Anthrax Spore Challenge Model*

    PubMed Central

    Moayeri, Mahtab; Leysath, Clinton E.; Tremblay, Jacqueline M.; Vrentas, Catherine; Crown, Devorah; Leppla, Stephen H.; Shoemaker, Charles B.

    2015-01-01

    Anthrax disease is caused by a toxin consisting of protective antigen (PA), lethal factor, and edema factor. Antibodies against PA have been shown to be protective against the disease. Variable domains of camelid heavy chain-only antibodies (VHHs) with affinity for PA were obtained from immunized alpacas and screened for anthrax neutralizing activity in macrophage toxicity assays. Two classes of neutralizing VHHs were identified recognizing distinct, non-overlapping epitopes. One class recognizes domain 4 of PA at a well characterized neutralizing site through which PA binds to its cellular receptor. A second neutralizing VHH (JKH-C7) recognizes a novel epitope. This antibody inhibits conversion of the PA oligomer from “pre-pore” to its SDS and heat-resistant “pore” conformation while not preventing cleavage of full-length 83-kDa PA (PA83) by cell surface proteases to its oligomer-competent 63-kDa form (PA63). The antibody prevents endocytosis of the cell surface-generated PA63 subunit but not preformed PA63 oligomers formed in solution. JKH-C7 and the receptor-blocking VHH class (JIK-B8) were expressed as a heterodimeric VHH-based neutralizing agent (VNA2-PA). This VNA displayed improved neutralizing potency in cell assays and protected mice from anthrax toxin challenge with much better efficacy than the separate component VHHs. The VNA protected virtually all mice when separately administered at a 1:1 ratio to toxin and protected mice against Bacillus anthracis spore infection. Thus, our studies show the potential of VNAs as anthrax therapeutics. Due to their simple and stable nature, VNAs should be amenable to genetic delivery or administration via respiratory routes. PMID:25564615

  14. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    PubMed

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  15. Design and selection of a camelid single-chain antibody yeast two-hybrid library produced de novo for the cap protein of porcine circovirus type 2 (PCV2).

    PubMed

    Fu, Xiangjing; Gao, Xiaolong; He, Shengfang; Huang, Di; Zhang, Peng; Wang, Xinglong; Zhang, Shuxia; Dang, Ruyi; Yin, Shuanghui; Du, Enqi; Yang, Zengqi

    2013-01-01

    Nanobodies (or variable domain of the heavy chain of the heavy-chain antibodies, VHHs) are single-domain antigen-binding fragments derived from camelid heavy chain antibodies. Their comparatively small size, monomeric behavior, high stability, high solubility, and ability to bind epitopes inaccessible to conventional antibodies make them especially suitable for many therapeutic and biotechnological applications. In this paper, for the first time, we created the immunized Camelus Bactrianus VHH yeast two-hybrid (Y2H) library according to the Clontech Mate & Plate library construction system. The transformation efficiency and titer of the VHH Y2H library were 7.26×10(6) cfu/3 µg and 2×10(9) cfu/ml, which met the demand for Y2H library screening. Using as an example the porcine circovirus type 2 (PCV2) Cap protein as bait, we screened 21 positive Cap-specific VHH sequences. Among these sequences, 7 of 9 randomly selected clones were strongly positive as indicated by enzyme-linked immunosorbent assay, either using PCV2 viral lysis or purified Cap protein as coated antigen. Additionally, the immunocytochemistry results further indicated that the screened VHHs could specifically detected PCV2 in the infected cells. All this suggests the feasibility of in vivo VHH throughput screening based on Y2H strategy. PMID:23469171

  16. Algal chloroplast produced camelid VHH antitoxins are capable of neutralizing botulinum neurotoxin

    PubMed Central

    Barrera, Daniel J.; Rosenberg, Julian N.; Chiu, Joanna G.; Chang, Yung-Nien; Debatis, Michelle; Ngoi, Soo-Mun; Chang, John T.; Shoemaker, Charles B.; Oyler, George A.; Mayfield, Stephen P.

    2015-01-01

    We have produced three antitoxins consisting of the variable domains of camelid heavy chain-only antibodies (VHH) by expressing the genes in the chloroplast of green algae. These antitoxins accumulate as soluble proteins capable of binding and neutralizing botulinum neurotoxin. Furthermore, they accumulate at up to 5% total soluble protein, sufficient expression to easily produce these antitoxins at scale from algae. The genes for the three different antitoxins were transformed into Chlamydomonas reinhardtii chloroplasts and their products purified from algae lysates and assayed for in vitro biological activity using toxin protection assays. The produced antibody domains bind to botulinum neurotoxin serotype A (BoNT/A) with similar affinities as camelid antibodies produced in Escherichia coli, and they are similarly able to protect primary rat neurons from intoxication by BoNT/A. Furthermore, the camelid antibodies were produced in algae without the use of solubilization tags commonly employed in E. coli. These camelid antibody domains are potent antigen binding proteins and the heterodimer fusion protein containing two VHH domains was capable of neutralizing BoNT/A at near equimolar concentrations with the toxin. Intact antibody domains were detected in the gastrointestinal (GI) tract of mice treated orally with antitoxin producing microalgae. These findings support the use of orally delivered antitoxins produced in green algae as a novel treatment for botulism. PMID:25229405

  17. Algal chloroplast produced camelid VH H antitoxins are capable of neutralizing botulinum neurotoxin.

    PubMed

    Barrera, Daniel J; Rosenberg, Julian N; Chiu, Joanna G; Chang, Yung-Nien; Debatis, Michelle; Ngoi, Soo-Mun; Chang, John T; Shoemaker, Charles B; Oyler, George A; Mayfield, Stephen P

    2015-01-01

    We have produced three antitoxins consisting of the variable domains of camelid heavy chain-only antibodies (VH H) by expressing the genes in the chloroplast of green algae. These antitoxins accumulate as soluble proteins capable of binding and neutralizing botulinum neurotoxin. Furthermore, they accumulate at up to 5% total soluble protein, sufficient expression to easily produce these antitoxins at scale from algae. The genes for the three different antitoxins were transformed into Chlamydomonas reinhardtii chloroplasts and their products purified from algae lysates and assayed for in vitro biological activity using toxin protection assays. The produced antibody domains bind to botulinum neurotoxin serotype A (BoNT/A) with similar affinities as camelid antibodies produced in Escherichia coli, and they are similarly able to protect primary rat neurons from intoxication by BoNT/A. Furthermore, the camelid antibodies were produced in algae without the use of solubilization tags commonly employed in E. coli. These camelid antibody domains are potent antigen-binding proteins and the heterodimer fusion protein containing two VH H domains was capable of neutralizing BoNT/A at near equimolar concentrations with the toxin. Intact antibody domains were detected in the gastrointestinal (GI) tract of mice treated orally with antitoxin-producing microalgae. These findings support the use of orally delivered antitoxins produced in green algae as a novel treatment for botulism. PMID:25229405

  18. Construction of naïve camelids VHH repertoire in phage display-based library.

    PubMed

    Sabir, Jamal S M; Atef, Ahmed; El-Domyati, Fotouh M; Edris, Sherif; Hajrah, Nahid; Alzohairy, Ahmed M; Bahieldin, Ahmed

    2014-04-01

    Camelids have unique antibodies, namely HCAbs (VHH) or commercially named Nanobodies(®) (Nb) that are composed only of a heavy-chain homodimer. As libraries based on immunized camelids are time-consuming, costly and likely redundant for certain antigens, we describe the construction of a naïve camelid VHHs library from blood serum of non-immunized camelids with affinity in the subnanomolar range and suitable for standard immune applications. This approach is rapid and recovers VHH repertoire with the advantages of being more diverse, non-specific and devoid of subpopulations of specific antibodies, which allows the identification of binders for any potential antigen (or pathogen). RNAs from a number of camelids from Saudi Arabia were isolated and cDNAs of the diverse vhh gene were amplified; the resulting amplicons were cloned in the phage display pSEX81 vector. The size of the library was found to be within the required range (10(7)) suitable for subsequent applications in disease diagnosis and treatment. Two hundred clones were randomly selected and the inserted gene library was either estimated for redundancy or sequenced and aligned to the reference camelid vhh gene (acc. No. ADE99145). Results indicated complete non-specificity of this small library in which no single event of redundancy was detected. These results indicate the efficacy of following this approach in order to yield a large and diverse enough gene library to secure the presence of the required version encoding the required antibodies for any target antigen. This work is a first step towards the construction of phage display-based biosensors useful in disease (e.g., TB or tuberculosis) diagnosis and treatment. PMID:24702893

  19. [Testing for BTV, BVDV and BHV-1 in blood samples of new world camelids kept in middle Germany].

    PubMed

    Locher, Lena; Nieper, Hermann; Volkery, Janine; Fürll, Manfred; Wittek, Thomas

    2010-01-01

    The susceptibility of camelids for infectious agents which may result in severe economic losses or which are strictly regulated for epidemiological reasons in farm animals potentially causes a mutual risk of transmission. This study aimed to investigate the presence of antibodies against bovine herpesvirus 1 (BHV-1), bluetongue virus (BTV) and bovine viral diarrhoea virus (BVDV) as well as the presence of pestivirus antigen in new world camelids in Central Germany. Therefore 107 serum samples from 93 alpacas and lamas from this region which had been obtained from 2007 to 2009 were examined using ELISA, serum neutralisation test, RT-PCR and a pestivirus specific gene probe. All sample were negative for BHV-1 antibodies. Antibodies against BVDV-1 could be detected in four animals, titres reaching from 1:64 to > 1:256. One animal was positive for BTV antibodies in the year 2008. This animal had been tested negative for BTV antibodies in 2007. It can be concluded that up to now, these viruses seem to be of minor importance as pathogens in new world camelids in Central Germany. Therefore the risk of infection originating from new world camelids for production animals could be considered to be rather low in this region at the moment. However, it must be taken into consideration that these animals due to lack of antibodies are fully susceptible in case of occurrence of one of these viruses. For maintenance and improvement of the present status, general hygienic precautions should be applied; direct and indirect contact between animals from different herds must be avoided and virological diagnostic and quarantine should be required trading these animals. PMID:21141278

  20. Seminal plasma components in camelids and comparisons with other species.

    PubMed

    Kershaw-Young, C M; Maxwell, W M C

    2012-08-01

    Camelid semen is characterized by a highly viscous, low-volume ejaculate with a low concentration of spermatozoa that exhibit low progressive motility. The viscous seminal plasma is currently the major impediment to the development of assisted reproductive technologies (ARTs) in camelids. To advance ARTs such as sperm cryopreservation and artificial insemination in camelids, it is necessary to identify the cause of the viscosity and gain an understanding of the role of seminal plasma components on sperm function and fertility. Numerous compounds and proteins have been identified as mediators of sperm function and predictors of fertility in other livestock species, and understanding the importance of specific proteins has progressed the success of ARTs in these species. Current knowledge on the components of camelid seminal plasma is outlined, together with the implications of these components for the development of ARTs in camelids. The cause of semen viscosity, as well as proteins that are present in camelid seminal plasma, is described for the first time. Seminal plasma components are compared with those of other species to hypothesize their role in sperm function and fertility. PMID:22827394

  1. Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses.

    PubMed

    Ghannam, Ahmed; Kumari, Safa; Muyldermans, Serge; Abbady, Abdul Qader

    2015-03-01

    Worldwide, plant viral infections decrease seriously the crop production yield, boosting the demand to develop new strategies to control viral diseases. One of these strategies to prevent viral infections, based on the immunomodulation faces many problems related to the ectopic expression of specific antibodies in planta. Camelid nanobodies, expressed in plants, may offer a solution as they are an attractive tool to bind efficiently to viral epitopes, cryptic or not accessible to conventional antibodies. Here, we report a novel, generic approach that might lead to virus resistance based on the expression of camelid specific nanobodies against Broad bean mottle virus (BBMV). Eight nanobodies, recognizing BBMV with high specificity and affinity, were retrieved after phage display from a large 'immune' library constructed from an immunized Arabic camel. By an in vitro assay we demonstrate how three nanobodies attenuate the BBMV spreading in inoculated Vicia faba plants. Furthermore, the in planta transient expression of these three selected nanobodies confirms their virus neutralizing capacity. In conclusion, this report supports that plant resistance against viral infections can be achieved by the in vivo expression of camelid nanobodies. PMID:25648551

  2. Camelid antivenom development and potential in vivo neutralization of Hottentotta saulcyi scorpion venom.

    PubMed

    Darvish, Maryam; Ebrahimi, Soltan Ahmad; Shahbazzadeh, Delavar; Bagheri, Kamran-Pooshang; Behdani, Mahdi; Shokrgozar, Mohammad Ali

    2016-04-01

    Scorpion envenoming is a serious health problem which can cause a variety of clinical toxic effects. Of the many scorpion species native to Iran, Hottentotta saulcyi is important because its venom can produce toxic effects in man. Nowadays, antivenom derived from hyper immune horses is the only effective treatment for sever scorpion stings. Current limitations of immunotherapy urgently require an efficient alternative with high safety, target affinity and more promising venom neutralizing capability. Recently, heavy chain-only antibodies (HC-Abs) found naturally in camelid serum met the above mentioned advantages. In this study, immuno-reactivities of polyclonal antibodies were tested after successful immunization of camel using H. saulcyi scorpion crude venom. The lethal potency of scorpion venom in C57BL/6 mice injected intraperitoneally was determined to be 2.7 mg/kg. These results were followed by the efficient neutralization of lethal activity of H. saulcyi scorpion venom by injection of antivenom and purified IgG fractions into mice intraperitonelly or intravenously, respectively. HC-Ab camelid antivenom could be considered as a useful serotherapeutics instead of present treatment for scorpion envenomation. PMID:26809016

  3. Synthetic trimer and tetramer of 3-beta-D-ribose-(1-1)-D-ribitol-5-phosphate conjugated to protein induce antibody responses to Haemophilus influenzae type b capsular polysaccharide in mice and monkeys.

    PubMed Central

    Peeters, C C; Evenberg, D; Hoogerhout, P; Käyhty, H; Saarinen, L; van Boeckel, C A; van der Marel, G A; van Boom, J H; Poolman, J T

    1992-01-01

    Synthetic oligosaccharides derived from the capsular polysaccharide (PRP) of Haemophilus influenzae type b were conjugated to carrier proteins via a thioether linkage. Conjugates were made of trimeric and tetrameric ribose-ribitol-phosphate and tetanus toxoid or diphtheria toxin. All conjugates elicited anti-PRP antibody responses with an increasing immunoglobulin G/immunoglobulin M ratio in adult mice and monkeys. Trimer conjugates elicited lower anti-PRP antibody responses compared with tetramer conjugates. Adult monkeys responded equally well to the tetrameric oligosaccharide-tetanus toxoid conjugate as to the oligosaccharide-CRM197 conjugate (HbOC), which elicits protective levels of serum antibodies in human infants after two or three injections. PMID:1563770

  4. Parasitic diversity found in coprolites of camelids during the Holocene.

    PubMed

    Taglioretti, Verónica; Fugassa, Martín Horacio; Sardella, Norma Haydée

    2015-07-01

    Knowledge of parasitic infections to which fauna was exposed in the past provides information on the geographical origin of some parasites, on the possible dispersal routes and for archaeological fauna on the potential zoonotic risk that human and animal populations could be exposed. The aim of the present study was to examine the gastrointestinal parasite present in camelid coprolites collected from the archaeological site Cerro Casa de Piedra, cave 7 (CCP7), Patagonia, Argentina. Coprolites were collected from different stratified sequences dating from the Pleistocene-Holocene transition to the late Holocene. Paleoparasitological examination revealed the presence of eggs of Trichostrongylidae attributed to Lamanema chavezi or Nematodirus lamae, eggs of three unidentified capillariids, Strongylus-type eggs and oocysts of Eimeria macusaniensis. These parasites affected camelids living in the studied area since the Pleistocene-Holocene transition, about 10,000 years ago. Gastrointestinal parasite fauna of patagonian camelids did not vary significatively from Pleistocene-Holocene transition to late Holocene, although environmental conditions fluctuated greatly throughout this period, as indicative of the strength and the stability of these associations over time. In this study, the zoonotic and biogeography importance of parasites of camelids are also discussed. PMID:25859925

  5. Distinct antibody species: structural differences creating therapeutic opportunities.

    PubMed

    Muyldermans, Serge; Smider, Vaughn V

    2016-06-01

    Antibodies have been a remarkably successful class of molecules for binding a large number of antigens in therapeutic, diagnostic, and research applications. Typical antibodies derived from mouse or human sources use the surface formed by complementarity determining regions (CDRs) on the variable regions of the heavy chain/light chain heterodimer, which typically forms a relatively flat binding surface. Alternative species, particularly camelids and bovines, provide a unique paradigm for antigen recognition through novel domains which form the antigen binding paratope. For camelids, heavy chain antibodies bind antigen with only a single heavy chain variable region, in the absence of light chains. In bovines, ultralong CDR-H3 regions form an independently folding minidomain, which protrudes from the surface of the antibody and is diverse in both its sequence and disulfide patterns. The atypical paratopes of camelids and bovines potentially provide the ability to interact with different epitopes, particularly recessed or concave surfaces, compared to traditional antibodies. PMID:26922135

  6. Thermal stability and refolding capability of shark derived single domain antibodies.

    PubMed

    Liu, Jinny L; Zabetakis, Dan; Brown, Jazmine C; Anderson, George P; Goldman, Ellen R

    2014-06-01

    Single-domain antibodies (sdAb) from camelids and sharks represent the smallest immunoglobulin-based functional binding domains, and are known for their thermal stability and ability to refold after denaturation. Whereas target-binding sdAb have been derived from both immunized and naïve sharks and camelids, the stability of camelid-derived sdAb have been evaluated much more extensively. To address this disparity we characterized 20 sdAb derived from spiny dogfish shark and smooth dogfish shark in terms of their protein production, melting temperature and ability to refold after heat denaturation. Using the same expression system and protocol as we follow to produce camelid sdAb, production of the shark sdAb was quite poor, often resulting in less than a tenth of the typical yield for camelid sdAb. We measured the melting temperature of each of the sdAb. Similar to camelid sdAb, the shark-derived sdAb, showed a range of melting temperature values from 42°C to 77°C. Also similar to what has been observed in camelids, the sdAb from both shark species showed a range of ability to refold after heat denaturation. This work demonstrated that although shark sdAb can possess high melting temperatures and refolding ability, no clear advantage over sdAb derived from camelids in terms of thermostability and renaturation was obtained. PMID:24667069

  7. Elevated levels of maternal anti-tetanus toxin antibodies do not suppress the immune response to a Haemophilus influenzae type b polyribosylphosphate-tetanus toxoid conjugate vaccine.

    PubMed Central

    Panpitpat, C.; Thisyakorn, U.; Chotpitayasunondh, T.; Fürer, E.; Que, J. U.; Hasler, T.; Cryz, S. J.

    2000-01-01

    Reported are the effects of elevated levels of anti-tetanus antibodies on the safety and immune response to a Haemophilus influenzae type b polyribosylphosphate (PRP)-tetanus toxoid conjugate (PRP-T) vaccine. A group of Thai infants (n = 177) born to women immunized against tetanus during pregnancy were vaccinated with either a combined diphtheria-tetanus-pertussis (DTP) PRP-T vaccine or DTP and a PRP-conjugate vaccine using Neisseria meningitidis group B outer-membrane proteins as a carrier (PedVax HIB). Although most infants possessed high titres (> 1 IU/ml) of anti-tetanus antibodies, the DTP-PRP-T combined vaccine engendered an excellent antibody response to all vaccine components. In both vaccine groups > 98% of infants attained anti-PRP antibody titres > or = 0.15 microgram/ml. The geometric mean anti-PRP antibody titres were 5.41 micrograms/ml and 2.1 micrograms/ml for infants immunized with three doses of PRP-T versus two doses of PedVax HIB vaccines, respectively (P < 0.005). Similarly, the proportion of infants who achieved titres > or = 1 microgram/ml was higher in the PRP-T group (87.8%) than in the group immunized with PedVax HIB (74.2%) (P = 0.036). A subgroup analysis showed that there was no significant difference in the anti-PRP antibody response for infants exhibiting either < 1 IU of anti-tetanus antibody per millilitre or > or = 1 IU/ml at baseline. These finding indicate that pre-existing anti-carrier antibody does not diminish the immune response to the PRP moiety. All infants possessed protective levels of anti-D and anti-T antibody levels after immunization. PMID:10812736

  8. Camelid-derived heavy-chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris.

    PubMed

    Baghban, Roghayyeh; Gargari, Seyed Latif Mousavi; Rajabibazl, Masoumeh; Nazarian, Shahram; Bakherad, Hamid

    2016-01-01

    Botulinum neurotoxins (BoNTs) result in severe and often fatal disease, botulism. Common remedial measures such as equine antitoxin and human botulism immunoglobulin in turn are problematic and time-consuming. Therefore, diagnosis and therapy of BoNTs are vital. The variable domain of heavy-chain antibodies (VHH) has unique features, such as the ability to identify and bind specifically to target epitopes and ease of production in bacteria and yeast. The Pichia pastoris is suitable for expression of recombinant antibody fragments. Disulfide bond formation and correct folds of protein with a high yield are some of the advantages of this eukaryotic host. In this study, we have expressed and purified the camelid VHH against BoNT/E in P. pastoris. The final yield of P. pastoris-expressed antibody was estimated to be 16 mg/l, which is higher than that expressed by Escherichia coli. The nanobody expressed in P. pastoris neutralized 4LD50 of the BoNT/E upon i.p. injection in 25% of mice. The nanobody expressed in E. coli extended the mice's survival to 1.5-fold compared to the control. This experiment indicated that the quality of expressed protein in the yeast is superior to that of the bacterial expression. Favorable protein folding by P. pastoris seems to play a role in its better toxin-binding property. PMID:24673401

  9. Antibody

    MedlinePlus

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  10. Development and application of camelid molecular cytogenetic tools.

    PubMed

    Avila, Felipe; Das, Pranab J; Kutzler, Michelle; Owens, Elaine; Perelman, Polina; Rubes, Jiri; Hornak, Miroslav; Johnson, Warren E; Raudsepp, Terje

    2014-01-01

    Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human-camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly. PMID:23109720

  11. Camelid nanobodies: killing two birds with one stone.

    PubMed

    Desmyter, Aline; Spinelli, Silvia; Roussel, Alain; Cambillau, Christian

    2015-06-01

    In recent years, the use of single-domain camelid immunoglobulins, termed vHHs or nanobodies, has seen increasing growth in biotechnology, pharmaceutical applications and structure/function research. The usefulness of nanobodies in structural biology is now firmly established, as they provide access to new epitopes in concave and hinge regions - and stabilize them. These sites are often associated with enzyme inhibition or receptor neutralization, and, at the same time, provide favorable surfaces for crystal packing. Remarkable results have been achieved by using nanobodies with flexible multi-domain proteins, large complexes and, last but not least, membrane proteins. While generating nanobodies is still a rather long and expensive procedure, the advent of naive libraries might be expected to facilitate the whole process. PMID:25614146

  12. Camelid genomes reveal evolution and adaptation to desert environments.

    PubMed

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-01-01

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments. PMID:25333821

  13. The elliptocyte: a study of the relationship between cell shape and membrane structure using the camelid erythrocyte as a model.

    PubMed

    Omorphos, S A; Hawkey, C M; Rice-Evans, C

    1989-01-01

    1. The elliptocytic shape of the camelid erythrocyte is very stable and has a high resistance to modification by drugs and treatment which alter the shape of the discocytic erythrocytes of scimitar-horned oryx and man. 2. Differences in the erythrocyte membrane proteins have been found which indicate that proteins play an important role in stabilisation of the camelid elliptocyte. 3. The organisation of the cytoskeletal network in camelid elliptocytes differs from that established for human discocytes. PMID:2605918

  14. Single-domain antibodies for biomedical applications.

    PubMed

    Krah, Simon; Schröter, Christian; Zielonka, Stefan; Empting, Martin; Valldorf, Bernhard; Kolmar, Harald

    2016-01-01

    Single-domain antibodies are the smallest antigen-binding units of antibodies, consisting either only of one variable domain or one engineered constant domain that solely facilitates target binding. This class of antibody derivatives comprises naturally occurring variable domains derived from camelids and sharks as well as engineered human variable or constant antibody domains of the heavy or light chain. Because of their high affinity and specificity as well as stability, small size and benefit of multiple re-formatting opportunities, those molecules emerged as promising candidates for biomedical applications and some of these entities have already proven to be successful in clinical development. PMID:26551147

  15. ["Candidatus Mycoplasma haemolamae" infections in clinically asymptomatic Austrian South American Camelids].

    PubMed

    Franz, Sonja; Spergser, Joachim; Schwendenwein, Ilse; Stanitznig, Anna; Lambacher, Bianca; Tichy, Alexander; Wittek, Thomas

    2016-01-01

    Reports of CMhl infections in South American Camelids in Europe are only available from the United Kingdom and Switzerland. Knowing that CMhl infections can lead to severe disease resulting in death if combined with other diseases or stress, it was the aim of this study to assess prevalence data from camelids in Austria. In comparison to the previous studies a representative number of camelids was investigated nationwide. Data were assessed due to differences in geographical region, age, sex, species, and origin. A relatively high prevalence of 25.8% was recorded. CMhl was detected significantly more often in alpacas (Vicunja pacos) than in llamas (Lama glama) and more frequently in animals younger than 2 years. Additionally regional differences have been observed, which might be due to climatic differences and/or variations in insect vectors. In this study apperantly clinical healthy animals were shown to be infected with CMhl. Camelids infected with CMhl are a pathogen reservoir. The results of this study indicate different risk levels of infection between llamas and alpacas and between younger and older animals. The data presented underline the necessity of further studies on CMhlI infections in South American Camelids. PMID:27529994

  16. Semen preservation and artificial insemination in domesticated South American camelids.

    PubMed

    Bravo, P Walter; Alarcon, V; Baca, L; Cuba, Y; Ordoñez, C; Salinas, J; Tito, F

    2013-01-10

    Semen preservation and artificial insemination in South American camelids are reviewed giving emphasis to work done in Peru and by the authors. Reports on semen evaluation and the preservation process indicate that semen of alpacas and llamas can be manipulated by making it liquid first. Collagenase appears to be the best enzyme to eliminate viscosity. Tris buffer solution maintains a higher motility than egg-yolk citrate, phosphate buffered saline (PBS), Triladyl, and Merck-I extenders. Cooling of semen took 1h after collected, and equilibrated with 7% glycerol presented a better motility and spermatozoa survival at 1, 7, 15 and 30days after being slowly frozen in 0.25mL plastic straws. Trials of artificial insemination with freshly diluted semen and frozen-thawed semen are encouraging and needs to be tested extensively under field conditions. Recently, fertility rates varied from 3 to 67%. Semen preservation and most important, artificial insemination appear to be a reality, and could be used to improve the genetic quality of alpacas and llamas. PMID:23153624

  17. South American camelid illegal traffic detection by means of molecular markers.

    PubMed

    Di Rocco, F; Posik, D M; Ripoli, M V; Díaz, S; Maté, M L; Giovambattista, G; Vidal-Rioja, L

    2011-11-01

    South American camelids comprise the wild species guanaco and vicuña and their respective domestic relatives llama and alpaca. The aim of the present study was to determine by DNA analysis to which of these species belong a herd of camelids confiscated from a llama breeder but alleged to be alpacas by the prosecution, and to evaluate the usefulness of mitochondrial and autosomal DNA markers to solve judicial cases involving camelid taxa. Cytochrome b and cytochrome oxidase I mitochondrial genes and 7 STR were analyzed in 25 confiscated samples. Mitochondrial results were inconclusive because 18 of the sequestered samples presented haplotypes that corresponded to the guanaco haplogroup and the remaining seven belonged to a vicuña linage. Microsatellite data of casework samples and llama reference samples revealed different genetic profiles by the presence of private alleles at two microsatellites suggesting that the confiscated animals could be alpaca, or at least alpaca hybrids instead of pure llama. PMID:21982877

  18. Digesta retention patterns of solute and different-sized particles in camelids compared with ruminants and other foregut fermenters.

    PubMed

    Dittmann, Marie T; Runge, Ullrich; Ortmann, Sylvia; Lang, Richard A; Moser, Dario; Galeffi, Cordula; Schwarm, Angela; Kreuzer, Michael; Clauss, Marcus

    2015-07-01

    The mean retention times (MRT) of solute or particles in the gastrointestinal tract and the forestomach (FS) are crucial determinants of digestive physiology in herbivores. Besides ruminants, camelids are the only herbivores that have evolved rumination as an obligatory physiological process consisting of repeated mastication of large food particles, which requires a particle sorting mechanism in the FS. Differences between camelids and ruminants have hardly been investigated so far. In this study we measured MRTs of solute and differently sized particles (2, 10, and 20 mm) and the ratio of large-to-small particle MRT, i.e. the selectivity factors (SF(10/2mm), SF(20/2mm), SF(20/10mm)), in three camelid species: alpacas (Vicugna pacos), llamas (Llama glama), and Bactrian camels (Camelus bactrianus). The camelid data were compared with literature data from ruminants and non-ruminant foregut fermenters (NRFF). Camelids and ruminants both had higher SF(10/2mm)FS than NRFF, suggesting convergence in the function of the FS sorting mechanism in contrast to NRFF, in which such a sorting mechanism is absent. The SF(20/10mm)FS did not differ between ruminants and camelids, indicating that there is a particle size threshold of about 1 cm in both suborders above which particle retention is not increased. Camelids did not differ from ruminants in MRT(2mm)FS, MRTsoluteFS, and the ratio MRT(2mm)FS/MRTsoluteFS, but they were more similar to 'cattle-' than to 'moose-type' ruminants. Camelids had higher SF(10/2mm)FS and higher SF(20/2mm)FS than ruminants, indicating a potentially slower particle sorting in camelids than in ruminants, with larger particles being retained longer in relation to small particles. PMID:25921796

  19. BOVINE VIRAL DIARRHEA VIRUS IN CAMELIDS: AN EMERGING PATHOGEN AND WAYS TO MONITOR HERD INFECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The subject of this report will attempt to tie in several aspects of bovine viral diarrhea virus (BVDV) and its most recent incursion into the camelid family, namely llamas and alpacas. We have known that both llamas and alpacas are susceptible to BVDV infections for over 20 years. In some cases, ...

  20. A cytogenetic and comparative map of camelid chromosome 36 and the minute in alpacas.

    PubMed

    Avila, Felipe; Baily, Malorie P; Merriwether, David A; Trifonov, Vladimir A; Rubes, Jiři; Kutzler, Michelle A; Chowdhary, Renuka; Janečka, Jan; Raudsepp, Terje

    2015-06-01

    Recent advances in camelid genomics have provided draft sequence assemblies and the first comparative and gene maps for the dromedary (CDR) and the alpaca (LPA). However, no map information is currently available for the smallest camelid autosome-chr36. The chromosome is also of clinical interest because of its involvement in the minute chromosome syndrome (MCS) in infertile alpacas. Here, we developed molecular markers for camelid chr36 by direct sequencing CDR36 and LPA minute and by bioinformatics analysis of alpaca unplaced sequence scaffolds. We constructed a cytogenetic map for chr36 in the alpaca, llama, and dromedary and showed its homology to human chromosome 7 (HSA7) at 49.8-55.5 Mb. The chr36 map comprised seven markers, including two genes-ZPBP and WVC2. Comparative status of HSA7 was further refined by cytogenetic mapping of 16 HSA7 orthologs in camelid chromosomes 7 and 18 and by the analysis of HSA7-conserved synteny blocks across 11 vertebrate species. Finally, mapping chr36 markers in infertile alpacas confirmed that the minute chromosome was a derivative of chr36, but the small size was not a result of a large deletion or a translocation. Instead, cytogenetic mapping of 5.8S, 18S, and 28S rRNA genes (nucleolus organizer region (NOR)) revealed that the size difference between chr36 homologs in infertile alpacas was due to a heterozygous presence of NOR, whereas chr36 in fertile alpacas had no NOR. We theorized that the heterozygous NOR might affect chr36 pairing, recombination, and segregation in meiosis and, thus fertility. PMID:25634498

  1. Low habitat overlap at landscape scale between wild camelids and feral donkeys in the Chilean desert

    NASA Astrophysics Data System (ADS)

    Malo, Juan E.; González, Benito A.; Mata, Cristina; Vielma, André; Donoso, Denise S.; Fuentes, Nicolás; Estades, Cristián F.

    2016-01-01

    Feral domestic ungulates may compete with the populations of wild herbivores with which they coexist, particularly so in arid regions. The potential competition between wild camelids and feral donkeys at the eastern sector of the Atacama Desert is evaluated in terms of their coincidence or segregation in habitat use and complemented with a comparison of reproductive output (yearling/adult ratio) of vicuña family groups in the proximity vs. distant from donkey observations. Habitat use of wild camelids and donkeys was sampled driving some 1250 km of roads and tracks at the dry and wet seasons. There were 221 vicuñas (Vicugna vicugna) sightings, 77 for donkeys (Equus asinus), 25 for guanacos (Lama guanicoe) and 8 for hybrids between guanacos and domestic llamas (Lama glama), as well as 174 randomly selected control locations. By means of Generalised Discriminant Analysis and Analysis of Variance we show that all ungulates actively select their habitat, with significant differences between use and availability in the area. Donkeys are relatively abundant in comparison with camelids and coincide broadly with both of them across the altitudinal gradient, but they fall between them in local scale habitat selection and do not seem to force their displacement from their preferred habitats. Thus donkeys occur preferentially on slopes with a high cover of tall shrubs, whereas vicuñas use valley bottoms with grass and guanacos the upper slope zones with grass. The potential for competition between donkeys and wild camelids is thus limited and it does not affect the reproductive output of vicuña in this region. Therefore, with the present knowledge we suggest that population control is not currently merited for feral donkeys.

  2. [First detection of "Candidatus Mycoplasma haemolamae" in South American Camelids of Switzerland and evaluation of prevalence].

    PubMed

    Kaufmann, Christine; Meli, Marina L; Hofmann-Lehmann, Regina; Zanolari, Patrik

    2010-01-01

    Haemotrophic mycoplasmas (also known as haemoplasmas), small bacterias which parasite the surface of erythrocytes, have been described in several species. Recently, molecular methods were developed for the diagnosis of haemoplasma infection. The presented study describes the first detection and the investigation of prevalence of "Candidatus Mycoplasma haemolamae" in South American Camelids in Switzerland. A random sample of the latter population was tested for haemoplasma infections using real-time PCR. The infection was detected in 18.6% of the animals and was found both in indigenous and in imported camelids. Of the tested herds 39,1% harboured at least one animal positive for haemoplasmas in PCR. There was no difference in prevalence between male and female animals and llamas and alpacas, respectively. Furthermore, the prevalence of infection was not significantly different in diseased animals compared to healthy camelids. From the latter observation and the fact that the high prevalence was accompanied by an undetectable incidence, we concluded that the pathogenicity of "Candidatus Mycoplasma haemolamae" may be low. PMID:21141277

  3. Pathology of Haemonchus contortus in New World camelids in the southeastern United States: a retrospective review.

    PubMed

    Edwards, Erin E; Garner, Bridget C; Williamson, Lisa H; Storey, Bob E; Sakamoto, Kaori

    2016-03-01

    Most small ruminant farms in tropical climates are plagued by Haemonchus contortus, a hematophagous, abomasal parasite. Heavy burdens of this parasite can cause anemia, hypoproteinemia, weight loss, and mortality in susceptible animals. Haemonchus contortus is becoming a major health concern in New World camelids as well, namely llamas (Llama glama) and alpacas (Vicugna pacos), yet little research has been conducted regarding its prevalence or pathology in these species. Herein, we present a retrospective review of llamas and alpacas that were admitted to The University of Georgia Veterinary Teaching Hospital and Athens Diagnostic Laboratory between the years 2002 and 2013. Antemortem fecal egg count (FEC) estimates performed on 30 alpacas were negatively correlated with hematocrit, hemoglobin, and red blood cell count. Total protein was not significantly correlated with FEC. On postmortem examination, 55 of 198 camelids, including 2 from the aforementioned antemortem review, were infected with H. contortus, with llamas (42.6%) having a significantly higher infection rate than alpacas (22.2%). In 15.7% of the total cases, the parasite was the major cause of death. Common gross lesions included peritoneal, thoracic, and pericardial effusions, visceral pallor, subcutaneous edema, and serous atrophy of fat. Histologic lesions included centrilobular hepatic necrosis, hepatic atrophy, lymphoplasmacytic inflammation of the mucosa of the third gastric compartment (C3), extramedullary hematopoiesis in both the liver and spleen, and the presence of nematodes in C3. Our study emphasizes the importance of H. contortus diagnosis and herd monitoring in New World camelids, particularly llamas. PMID:26965230

  4. Expression Cloning of Camelid Nanobodies Specific for Xenopus Embryonic Antigens

    PubMed Central

    Itoh, Keiji; Sokol, Sergei Y.

    2014-01-01

    Developmental biology relies heavily on the use of conventional antibodies, but their production and maintenance involves significant effort. Here we use an expression cloning approach to identify variable regions of llama single domain antibodies (known as nanobodies), which recognize specific embryonic antigens. A nanobody cDNA library was prepared from lymphocytes of a llama immunized with Xenopus embryo lysates. Pools of bacterially expressed cDNAs were sib-selected for the ability to produce specific staining patterns in gastrula embryos. Three different nanobodies were isolated: NbP1 and NbP3 stained yolk granules, while the reactivity of NbP7 was predominantly restricted to the cytoplasm and the cortex. The isolated nanobodies recognized specific protein bands in immunoblot analysis. A reverse proteomic approach identified NbP1 target antigen as EP45/Seryp, a serine protease inhibitor. Given the unique stability of nanobodies and the ease of their expression in diverse systems, we propose that nanobody cDNA libraries represent a promising resource for molecular markers for developmental biology. PMID:25285446

  5. Determination of Testicular Blood Flow in Camelids Using Vascular Casting and Color Pulsed-Wave Doppler Ultrasonography

    PubMed Central

    Kutzler, Michelle; Tyson, Reid; Grimes, Monica; Timm, Karen

    2011-01-01

    We describe the vasculature of the camelid testis using plastic casting. We also use color pulsed-wave Doppler ultrasonography to measure testicular blood flow and compare the differences between testicular blood flow in fertile and infertile camelids. The testicular artery originates from the ventral surface of the aorta, gives rise to an epididymal branch, and becomes very tortuous as it approaches the testis. Within the supratesticular arteries, peak systolic velocity (PSV) was higher in fertile males compared to infertile males (P = 0.0004). In addition, end diastolic velocity (EDV) within the supratesticular arteries was higher for fertile males when compared to infertile males (P = 0.0325). Within the marginal arteries, PSV was also higher in fertile males compared to infertile males (P = 0.0104). However, EDV within the marginal arteries was not significantly different between fertile and infertile males (P = 0.121). In addition, the resistance index was not significantly different between fertile and infertile males within the supratesticular (P = 0.486) and marginal arteries (P = 0.144). The significance of this research is that in addition to information obtained from a complete reproductive evaluation, a male camelid's fertility can be determined using testicular blood flow measured by Doppler ultrasonography. PMID:21941690

  6. A proof of concept study to assess the potential of PCR testing to detect natural Mycobacterium bovis infection in South American camelids

    PubMed Central

    2014-01-01

    Background Cases of Mycobacterium bovis infection South American camelids have been increasing in Great Britain. Current antemortem immunological tests have some limitations. Cases at post mortem examination frequently show extensive pathology. The feasibility of detecting Mycobacterium bovis DNA in clinical samples was investigated. Findings A sensitive extraction methodology was developed and used on nasal swabs and faeces taken post-mortem to assess the potential for a PCR test to detect Mycobacterium bovis in clinical samples. The gross pathology of the studied South American camelids was scored and a significantly greater proportion of South American camelids with more severe pathology were positive in both the nasal swab and faecal PCR tests. A combination of the nasal swab and faecal PCR tests detected 63.9% of all the South American camelids with pathology that were tested. Conclusions The results suggest that antemortem diagnosis of Mycobacterium bovis in South American camelids may be possible using a PCR test on clinical samples, however more work is required to determine sensitivity and specificity, and the practicalities of applying the test in the field. PMID:24507471

  7. Bluetongue disease and seroprevalence in South American camelids from the northwestern region of the United States.

    PubMed

    Allen, Andrew J; Stanton, James B; Evermann, James F; Fry, Lindsay M; Ackerman, Melissa G; Barrington, George M

    2015-03-01

    In late summer/early fall of 2013, 2 South American camelids from central Washington were diagnosed with fatal bluetongue viral disease, an event which is rarely reported. A 9-year-old intact male llama (Lama glama), with a 1-day history of anorexia, recumbency, and dyspnea before death. Abundant foam discharged from the mouth and nostrils, and the lungs were severely edematous on postmortem examination. Histologically, there was abundant intra-alveolar edema with fibrin. Hemorrhage and edema disrupted several other organs. Bluetongue viral RNA was detected by reverse transcription polymerase chain reaction (RT-PCR), and serotype 11 was identified by sequencing a segment of the VP2 outer capsid gene. Approximately 1 month later, at a site 150 miles north of the index case, a 2-year-old female alpaca with similar, acutely progressive clinical signs was reported. A postmortem examination was performed, and histologic lesions from the alpaca were similar to those of the llama, and again serotype 11 was detected by PCR. The occurrence of bluetongue viral infection and disease is described in the context of seasonal Bluetongue virus activity within the northwestern United States and southwestern Canada. PMID:25680921

  8. The history of Old World camelids in the light of molecular genetics.

    PubMed

    Burger, Pamela Anna

    2016-06-01

    Old World camels have come into the focus as sustainable livestock species, unique in their morphological and physiological characteristics and capable of providing vital products even under extreme environmental conditions. The evolutionary history of dromedary and Bactrian camels traces back to the middle Eocene (around 40 million years ago, mya), when the ancestors of Camelus emerged on the North American continent. While the genetic status of the two domestic species has long been established, the wild two-humped camel has only recently been recognized as a separate species, Camelus ferus, based on molecular genetic data. The demographic history established from genome drafts of Old World camels shows the independent development of the three species over the last 100,000 years with severe bottlenecks occurring during the last glacial period and in the recent past. Ongoing studies involve the immune system, relevant production traits, and the global population structure and domestication of Old World camels. Based on the now available whole genome drafts, specific metabolic pathways have been described shedding new light on the camels' ability to adapt to desert environments. These new data will also be at the origin for genome-wide association studies to link economically relevant phenotypes to genotypes and to conserve the diverse genetic resources in Old World camelids. PMID:27048619

  9. Single-domain antibodies and their utility.

    PubMed

    Baral, Toya Nath; MacKenzie, Roger; Arbabi Ghahroudi, Mehdi

    2013-01-01

    Engineered monoclonal antibody fragments have gained market attention due to their versatility and tailor-made potential and are now considered to be an important part of future immunobiotherapeutics. Single-domain antibodies (sdAbs), also known as nanobodies, are derived from VHHs [variable domains (V) of heavy-chain-only antibodies (HCAb)] of camelid heavy-chain antibodies. These nature-made sdAbs are well suited for various applications due to their favorable characteristics such as small size, ease of genetic manipulation, high affinity and solubility, overall stability, resistance to harsh conditions (e.g., low pH, high temperature), and low immunogenicity. Most importantly, sdAbs have the feature of penetrating into cavities and recognizing hidden epitopes normally inaccessible to conventional antibodies, mainly due to their protruding CDR3/H3 loops. In this unit, we will present and discuss comprehensive and step-by-step protocols routinely practiced in our laboratory for isolating sdAbs from immunized llamas (or other members of the Camelidae family) against target antigens using phage-display technology. Expression, purification, and characterization of the isolated sdAbs will then be described, followed by presentation of several examples of applications of sdAbs previously characterized in our laboratory and elsewhere. PMID:24510545

  10. Optimizing selection of large animals for antibody production by screening immune response to standard vaccines.

    PubMed

    Thompson, Mary K; Fridy, Peter C; Keegan, Sarah; Chait, Brian T; Fenyö, David; Rout, Michael P

    2016-03-01

    Antibodies made in large animals are integral to many biomedical research endeavors. Domesticated herd animals like goats, sheep, donkeys, horses and camelids all offer distinct advantages in antibody production. However, their cost of use is often prohibitive, especially where poor antigen response is commonplace; choosing a non-responsive animal can set a research program back or even prevent experiments from moving forward entirely. Over the course of production of antibodies from llamas, we found that some animals consistently produced a higher humoral antibody response than others, even to highly divergent antigens, as well as to their standard vaccines. Based on our initial data, we propose that these "high level responders" could be pre-selected by checking antibody titers against common vaccines given to domestic farm animals. Thus, time and money can be saved by reducing the chances of getting poor responding animals and minimizing the use of superfluous animals. PMID:26775851

  11. Pulmonary Arterial Lesions in New World Camelids in Association With Dicrocoelium dendriticum and Fasciola hepatica Infection.

    PubMed

    Hilbe, M; Robert, N; Pospischil, A; Gerspach, C

    2015-11-01

    In Switzerland, dicrocoeliasis is regarded as the most significant parasitic infection of llamas and alpacas. Fasciola hepatica infestation is also a problem but less common. The aim of the present retrospective study was to evaluate the lungs of New World camelids (NWCs) for evidence of arterial hypertension in association with liver changes due to liver fluke infestation. The lungs of 20 llamas and 20 alpacas with liver fluke infestation were histologically evaluated. The hematoxylin and eosin and van Gieson (VG)-elastica stains as well as immunohistology for the expression of α-smooth muscle actin (α-SMA) were used to visualize the structures of arterial walls. Parasitology of fecal matter (11 llamas and 17 alpacas) confirmed that most of these animals were infested with both Dicrocoelium dendriticum and other gastrointestinal parasites. In most cases (10/12 llamas, 4/6 alpacas), liver enzyme activity in serum was elevated. Histologically, arteries in the lungs of 9 of 20 llamas (45%) and 3 of 20 alpacas (15%) showed severe intimal and adventitial and slight to moderate medial thickening, which was confirmed with α-SMA and VG-elastica staining. All animals exhibited typical liver changes, such as fibrosis and biliary hyperplasia, in association with the presence of liver flukes. This study shows that liver flukes can induce proliferative changes in lung arteries in NWCs that resemble those seen with pulmonary arterial hypertension due to liver parasites in humans. However, the degree of liver fluke infestation was not correlated with the extent of liver damage, or with the amount of thoracic or abdominal effusion or pulmonary arterial changes. PMID:25637085

  12. Schmallenberg virus infection in South American camelids: Field and experimental investigations.

    PubMed

    Schulz, Claudia; Beer, Martin; Hoffmann, Bernd

    2015-11-18

    During the first epizootic wave of the novel, teratogenic Schmallenberg virus (SBV, Orthobunyavirus) in ruminants in Northern Europe, serological evidence of a previous SBV-infection demonstrated that South American camelids (SAC) are also susceptible to SBV. However, their potential role in SBV spread remains unknown. To investigate the prevalence and course of SBV-infection in SAC, a German field study and an animal trial with three llamas and three alpacas were conducted. From September 2012 to December 2013, 313 of 502 SAC (62.35%) were found SBV seropositive, but negative for SBV-RNA. The estimated between-district (94.23% of 52) and median within-district (71.43%) and herd (73.13%) SBV seroprevalence in German SAC was similar to the seroprevalence reported in cattle herds and sheep flocks at the time. An age of >1 year was found a statistically significant risk factor for SBV-infection, which could be explained by the spatio-temporal spread of SBV in Germany during the study period. No clinical signs or an increase of abortion and congenital malformation associated with SBV-infection in SAC were reported by the study participants. Similar to SBV-infected ruminants, SBV-RNAemia in experimentally SBV-infected SAC was detected for a short time between days 3 and 7 after infection (dpi), and seroconversion occurred between 9 and 21 dpi. Despite the similar virological and serological results, the lack of clinical signs and congenital malformation associated with SBV-infection suggests that SBV causes subclinical infection in SAC. However, their role as reservoirs in the spread of SBV has to be further investigated. PMID:26361966

  13. Molecular characterization and antibiotic resistance of Enterococcus species from gut microbiota of Chilean Altiplano camelids

    PubMed Central

    Guerrero-Olmos, Katheryne; Báez, John; Valenzuela, Nicomédes; Gahona, Joselyne; del Campo, Rosa; Silva, Juan

    2014-01-01

    Background Enterococcus is one of the major human pathogens able to acquire multiple antibiotic-resistant markers as well as virulence factors which also colonize remote ecosystems, including wild animals. In this work, we characterized the Enterococcus population colonizing the gut of Chilean Altiplano camelids without foreign human contact. Material and methods Rectal swabs from 40 llamas and 10 alpacas were seeded in M-Enterococcus agar, and we selected a total of 57 isolates. Species identification was performed by biochemical classical tests, semi-automated WIDER system, mass spectrometry analysis by MALDI-TOF (matrix-assisted laser desorption/ionization with a time-of-flight mass spectrometer), and, finally, nucleotide sequence of internal fragments of the 16S rRNA, rpoB, pheS, and aac(6)-I genes. Genetic diversity was measured by pulsed field gel electrophoresis (PFGE)-SmaI, whereas the antibiotic susceptibility was determined by the WIDER system. Carriage of virulence factors was explored by polymerase chain reaction (PCR). Results Our results demonstrated that the most prevalent specie was Enterococcus hirae (82%), followed by other non–Enterococcus faecalis and non–Enterococcus faecium species. Some discrepancies were detected among the identification methods used, and the most reliable were the rpoB, pheS, and aac(6)-I nucleotide sequencing. Selected isolates exhibited susceptibility to almost all studied antibiotics, and virulence factors were not detected by PCR. Finally, some predominant clones were characterized by PFGE into a diverse genetic background. Conclusion Enterococcus species from the Chilean camelids’ gut microbiota were different from those adapted to humans, and they remained free of antibiotic resistance mechanisms as well as virulence factors. PMID:25405007

  14. Computed tomographic and radiographic examination of dental structures in South American camelid specimen of different ages

    PubMed Central

    2014-01-01

    Background Tooth root problems and periodontal diseases are common in South American camelids (SAC). The objective was to evaluate and optimize the imaging technique for dental radiography in SAC and to describe the radiographic and computed tomographic (CT) anatomy of normal teeth at different ages. In this study, the heads of 20 healthy SAC slaughtered for meat production or euthanized for reasons not related to dental problems included 7 female and 10 male llamas and 3 male alpacas. Using a standardized protocol, radiographs and CT scans of the 20 specimen were performed. Results The most useful radiographic projections for mandibular and maxillary cheek teeth evaluation turned out to be lateral30°ventral - laterodorsal and lateral30°dorsal - lateroventral with slight separation of the dental arcades respectively. Digital radiographic and CT appearance of the mandibular and maxillary teeth were described from the beginning of mineralization till maturity. In addition the normal range of the CT radio density of different cheek teeth and different dental tissues were measured. Hounsfield units of different dental tissues of SAC turned out to be similar to equids. Deviation, shortening and partial destruction of the distal tooth root of mandibular 09′s and 10′s and of maxillary 09′s was observed and the existence of a common pulp chamber in younger teeth was revealed. Conclusions The present study provides information about the dental imaging morphology in clinically healthy SAC. This basic information provides fundamental knowledge for evaluating images and planning treatments in clinically affected animals. PMID:24393365

  15. Efficacy of anthelmintics on South American camelid (llama and alpaca) farms in Georgia.

    PubMed

    Gillespie, Rose-Ann M; Williamson, Lisa H; Terrill, Thomas H; Kaplan, Ray M

    2010-08-27

    The number of South American camelid (SAC; llama and alpaca) farms is growing in the southeastern United States, and infection with gastrointestinal nematodes (GIN) is a major health concern in this region. There is widespread resistance to anthelmintic remedies in small ruminants (sheep and goats), but a paucity of information on llamas and alpacas. Anthelmintic resistance was evaluated on three SAC farms (two llama; one alpaca) in Georgia in the southern United States using fecal egg count reduction (FECR) tests. For each farm, animals were randomly assigned to 1 of 5 treatment groups based on initial fecal egg count (FEC) and number of animals available (2-5 groups, n=9-11 per treatment). Ivermectin (IVM, subcutaneous injection; 0.3mg/kg body weight (BW)) and a control group were tested on an alpaca farm, and fenbendazole (FBZ, oral; 10mg/kg BW; two farms), moxidectin (MOX oral; 0.2mg/kg BW; two farms), and levamisole (LEV, oral; 8 mg/kg BW; one farm) were added for the llama farms. Anthelmintic efficacy was determined by comparing FEC of treatment and control animals 14 days post-treatment, with resistance evaluated using the World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines. Based upon these guidelines, there was GIN resistance to IVM in both llamas and alpacas in Georgia and to FBZ on both llama farms where this drug was tested. There was MOX resistance on one llama farm using the FECR test, while there was no resistance to LEV detected in this study. These data demonstrate a serious emerging problem in the United States of llama and alpaca GIN resistant to drugs from two of the three major anthelmintic classes. PMID:20462700

  16. Antibody Persistence in Young Children 5 Years after Vaccination with a Combined Haemophilus influenzae Type b-Neisseria meningitidis Serogroup C Conjugate Vaccine Coadministered with Diphtheria-Tetanus-Acellular Pertussis-Based and Pneumococcal Conjugate Vaccines

    PubMed Central

    Tejedor, Juan Carlos; Brzostek, Jerzy; Konior, Ryszard; Grunert, Detlef; Kolhe, Devayani; Baine, Yaela

    2016-01-01

    We evaluated antibody persistence in children up to 5 years after administration of a combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine coadministered with a pneumococcal conjugate vaccine. This is the follow-up study of a randomized trial (ClinicalTrials.gov registration no. NCT00334334/00463437) in which healthy children were vaccinated (primary vaccinations at 2, 4, and 6 months of age and booster vaccination at 11 to 18 months of age) with Hib-MenC-TT or a control MenC conjugate vaccine, coadministered with diphtheria-tetanus-acellular pertussis (DTPa)-based combination vaccines (DTPa/Hib for control groups) and a pneumococcal conjugate vaccine (10-valent pneumococcal nontypeable H. influenzae protein D conjugate vaccine [PHiD-CV] or 7-valent cross-reacting material 197 [CRM197] conjugate vaccine [7vCRM]). MenC antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (i.e., rabbit SBA [rSBA]), and antibodies against Hib polyribosylribitol phosphate (PRP) were measured with an enzyme-linked immunosorbent assay. Antibody persistence up to 5 years after booster vaccination is reported for 530 children ∼6 years of age. The percentages of children with seroprotective rSBA-MenC titers were between 24.2% and 40.1% in all groups approximately 5 years after booster vaccination. More than 98.5% of children in each group retained seroprotective anti-PRP concentrations. No vaccine-related serious adverse events and no events related to a lack of vaccine efficacy were reported. Approximately 5 years after booster vaccination, the majority of children retained seroprotective anti-PRP antibody concentrations. The percentage of children retaining seroprotective rSBA-MenC titers was low (≤40%), suggesting that a significant proportion of children may be unprotected against MenC disease. (This study has been registered at ClinicalTrials.gov under

  17. Antibody Persistence in Young Children 5 Years after Vaccination with a Combined Haemophilus influenzae Type b-Neisseria meningitidis Serogroup C Conjugate Vaccine Coadministered with Diphtheria-Tetanus-Acellular Pertussis-Based and Pneumococcal Conjugate Vaccines.

    PubMed

    Tejedor, Juan Carlos; Brzostek, Jerzy; Konior, Ryszard; Grunert, Detlef; Kolhe, Devayani; Baine, Yaela; Van Der Wielen, Marie

    2016-07-01

    We evaluated antibody persistence in children up to 5 years after administration of a combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine coadministered with a pneumococcal conjugate vaccine. This is the follow-up study of a randomized trial (ClinicalTrials.gov registration no. NCT00334334/00463437) in which healthy children were vaccinated (primary vaccinations at 2, 4, and 6 months of age and booster vaccination at 11 to 18 months of age) with Hib-MenC-TT or a control MenC conjugate vaccine, coadministered with diphtheria-tetanus-acellular pertussis (DTPa)-based combination vaccines (DTPa/Hib for control groups) and a pneumococcal conjugate vaccine (10-valent pneumococcal nontypeable H. influenzae protein D conjugate vaccine [PHiD-CV] or 7-valent cross-reacting material 197 [CRM197] conjugate vaccine [7vCRM]). MenC antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (i.e., rabbit SBA [rSBA]), and antibodies against Hib polyribosylribitol phosphate (PRP) were measured with an enzyme-linked immunosorbent assay. Antibody persistence up to 5 years after booster vaccination is reported for 530 children ∼6 years of age. The percentages of children with seroprotective rSBA-MenC titers were between 24.2% and 40.1% in all groups approximately 5 years after booster vaccination. More than 98.5% of children in each group retained seroprotective anti-PRP concentrations. No vaccine-related serious adverse events and no events related to a lack of vaccine efficacy were reported. Approximately 5 years after booster vaccination, the majority of children retained seroprotective anti-PRP antibody concentrations. The percentage of children retaining seroprotective rSBA-MenC titers was low (≤40%), suggesting that a significant proportion of children may be unprotected against MenC disease. (This study has been registered at ClinicalTrials.gov under

  18. Morphofunctional structure of the lingual papillae in three species of South American Camelids: Alpaca, guanaco, and llama.

    PubMed

    Erdoğan, Serkan; Villar Arias, Silvia; Pérez, William

    2016-02-01

    The aim of this study was to compare the anatomical and functional characteristics of the lingual papilla among the Camelidae. For this purpose, tongues of alpaca, guanaco, and llama were used. Numerous long and thin filiform papillae were located in the median groove and none were detected on the rest of the dorsal surface of the lingual apex in alpaca. Secondary papillae originated from the base of some filiform papillae on the ventral surface of alpaca tongue. The bases of some filiform papillae of the lateral surface of the lingual apex were inserted into conspicuous grooves in guanaco and tips of filiform papillae on the dorsal surface of the lingual body were ended by bifurcated apex. On the dorsal surface of the lingual apex of llama, there were no filiform papillae but there were numerous filiform papillae on both the lateral margins of the ventral surface of the lingual apex. Fungiform papillae were distributed randomly on dorsal lingual surface and ventral margins of the tongues of all camelid species. Lenticular papillae were located on the lingual torus and varied in size and topographical distribution for each species. Circumvallate papillae had irregular surfaces in llama and alpaca, and smooth surface in guanaco. In conclusion, llama and alpaca tongues were more similar to each other, and tongues of all camelid species displayed more similarities to those of Bactrian and dromedary camels in comparison with other herbivores and ruminants. PMID:26572928

  19. Palynological analysis of camelid coprolites: seasonality in the use of the site Cerro Casa de Piedra 7 (Santa Cruz, Argentina)

    NASA Astrophysics Data System (ADS)

    Velázquez, Nadia Jimena; Burry, Lidia Susana; Fugassa, Martín Horacio; Civalero, María Teresa; Aschero, Carlos Alberto

    2014-01-01

    Palynological, palaeoparasitological and paleobotanical studies of coprolites found in archaeological sites from Perito Moreno National Park (47°57‧S72°05‧W) yielded information on diet, palaeoenvironment and health. These studies allowed adding evidence to the reconstruction of life history of the hunter-gatherers that inhabited Patagonia during the Holocene. We examined the season of the year when camelid Lama guanicoe coprolites (5400 ± 64 yr 14C BP to 9640 ± 190 yr 14C BP) were deposited at Cerro Casa de Piedra 7 (site CCP7). The study used palynological evidence and comparison with pollen spectra of modern feces collected during summer, fall, winter and spring of 2010. The dominant types were: pollen of Nothofagus, Empetrum rubrum, Asteraceae subfam. Asteroideae, Nassauvia, Caryophyllaceae and Poaceae; fern spores; remains of Eimeria macusaniensis; and plant remains of Poaceae, Festuca pallescens, Stipa speciosa, Armeria maritima, Gaultheria mucronata and E. rubrum. Pollen spectra of modern and fossil feces were used for multivariate analysis. Coprolites associated to fall and winter modern feces. These results and those obtained from pollen concentration values and the presence of pollen types indicators of seasonality, allowed the determination of summer, fall and winter coprolites. However, caution must be taken with the seasonality results of coprolites dated earlier than 9000 years BP since the environmental conditions differed from now. The site was probably a camelid shelter during the unfavorable seasons.

  20. Pastoralism in Northern Peru during Pre-Hispanic Times: Insights from the Mochica Period (100–800 AD) Based on Stable Isotopic Analysis of Domestic Camelids

    PubMed Central

    Dufour, Elise; Goepfert, Nicolas; Gutiérrez Léon, Belkys; Chauchat, Claude; Franco Jordán, Régulo; Sánchez, Segundo Vásquez

    2014-01-01

    Llama (Lama glama) and alpaca (Vicugna pacos) are the only large domesticated animals indigenous to the Americas. Pastoralism occupies a fundamental economic, social and religious role in Andean life. Today, camelid livestock are confined to the ecozone of the puna (above 3,500 masl), while their presence on the Pacific coast during pre-Hispanic times is attested by archaeological skeletal remains. This study aims to document herding practices on the northern Peruvian coast during the Early Intermediate Period (200 BC-600 AD) by gaining insights into diet, location of breeding and mobility of archaeological camelids from the funerary and ritual contexts of two Mochica sites, Uhle Platform in Huacas de Moche and El Brujo. The three first early years and the long-term life histories of the animals were documented by the combined bulk analysis of bone collagen (δ13Ccol and δ15Ncol) and bone structural carbonate (δ13Cbone and δ18Obone) and the serial analysis of structural carbonate of molar tooth enamel (δ13Cenamel and δ18Oenamel). Mochica camelids were bred in the low and/or middle valleys, unlike their modern counterparts, who are restricted to highland puna C3 pastures. Archaeological camelids had diverse and complex life histories, usually with substantial maize foddering. An ontogenetic switch in diet and possible residential mobility during the course of life were identified for some specimens. Although the inference of geographic origin from δ18Obone and δ18Oenamel values was limited because of the lack of understanding of the influence of environmental and biological factors, tooth enamel analysis has great potential for exploring camelid herding practices and Andean pastoralism. Our study suggested that Mochica herders adapted their practices to the difficult lowland environment and that herding practices were varied and not restricted to breeding at higher altitudes. The role of maize in different aspects of the economic life of the Mochicas is also

  1. High affinity anti-Internalin B VHH antibody fragments isolated from naturally and artificially immunized repertoires.

    PubMed

    Gene, Robert W; Kumaran, Jyothi; Aroche, Cristina; van Faassen, Henk; Hall, J Christopher; MacKenzie, C Roger; Arbabi-Ghahroudi, Mehdi

    2015-01-01

    The need for rapid and easy technologies for the detection of food-borne and environmental pathogens is essential for safeguarding the health of populations. Furthermore, distribution of tainted food and water can have consequences which can affect whole economies. Antibodies and antibody fragments have been historically used in detection platforms due to their antigen specificity and robust physicochemical properties. In this study, we report the isolation and characterization of antibody fragments from the heavy chain antibody repertoire (VHH) of Camelidae which bind with specificity and high affinity to the Listeria monocytogenes invasin, Internalin B (InlB). To the best of our knowledge, this is the first report of anti-InlB VHHs from camelids. These anti-InlB VHHs were not cross-reactive to the structurally related Listeria invasin Internalin A (InlA) and are potential reagents to be used in the development of detection and medical technologies. PMID:25450000

  2. Persistent Bovine Viral Diarrhea Virus Infection in Domestic and Wild Small Ruminants and Camelids Including the Mountain Goat (Oreamnos americanus)

    PubMed Central

    Nelson, Danielle D.; Duprau, Jennifer L.; Wolff, Peregrine L.; Evermann, James F.

    2016-01-01

    Bovine viral diarrhea virus (BVDV) is a pestivirus best known for causing a variety of disease syndromes in cattle, including gastrointestinal disease, reproductive insufficiency, immunosuppression, mucosal disease, and hemorrhagic syndrome. The virus can be spread by transiently infected individuals and by persistently infected animals that may be asymptomatic while shedding large amounts of virus throughout their lifetime. BVDV has been reported in over 40 domestic and free-ranging species, and persistent infection has been described in eight of those species: white-tailed deer, mule deer, eland, mousedeer, mountain goats, alpacas, sheep, and domestic swine. This paper reviews the various aspects of BVDV transmission, disease syndromes, diagnosis, control, and prevention, as well as examines BVDV infection in domestic and wild small ruminants and camelids including mountain goats (Oreamnos americanus). PMID:26779126

  3. Naturally Acquired and Conjugate Vaccine-Induced Antibody to Haemophilus influenzae Type b (Hib) Polysaccharide in Malian Children: Serological Assessment of the Hib Immunization Program in Mali

    PubMed Central

    Hutter, Julia; Pasetti, Marcela F.; Sanogo, Doh; Tapia, Milagritos D.; Sow, Samba O.; Levine, Myron M.

    2012-01-01

    Haemophilus influenzae type b (Hib) conjugate vaccine for infants (6, 10, and 14 weeks of age) was introduced into the Malian Expanded Program on Immunization in July 2005, to diminish invasive Hib disease in young children. Antibodies to Hib capsular polysaccharide (PRP) were measured in infants and toddlers from an area already served by the Hib immunization program (Bamako) and in unimmunized children of the same age in a district (Kangaba) where Hib immunization had not yet begun. Among vaccinated Bamako children 6–23 months of age, 77–93% exhibited PRP titers ≥ 1.0 μg/mL, indicating long-term protection, versus only 10–23% of Kangaba children of that age. High PRP antibody titers in immunized children persisted through 2 years of age. Moreover, ∼50% of Bamako children exhibited anti-PRP titers ≥ 5.0 μg/mL; a level that impedes Hib upper respiratory carriage, and may thereby diminish the Hib transmission to the unimmunized susceptible population (i.e., providing indirect protection). PMID:22665612

  4. Strong and oriented immobilization of single domain antibodies from crude bacterial lysates for high-throughput compatible cost-effective antibody array generation

    PubMed Central

    Even-Desrumeaux, Klervi; Baty, Daniel; Chames, Patrick

    2010-01-01

    Antibodies microarrays are among the novel class of rapidly emerging proteomic technologies that will allow us to efficiently perform specific diagnosis and proteome analysis. Recombinant antibody fragments are especially suited for this approach but their stability is often a limiting factor. Camelids produce functional antibodies devoid of light chains (HCAbs) of which the single N-terminal domain is fully capable of antigen binding. When produced as an independent domain, these so-called single domain antibody fragments (sdAbs) have several advantages for biotechnological applications thanks to their unique properties of size (15 kDa), stability, solubility, and expression yield. These features should allow sdAbs to outperform other antibody formats in a number of applications, notably as capture molecule for antibody arrays. In this study, we have produced antibody microarrays using direct and oriented immobilization of sdAbs produced in crude bacterial lysates to generate proof-of-principle of a high-throughput compatible array design. Several sdAb immobilization strategies have been explored. Immobilization of in vivo biotinylated sdAbs by direct spotting of bacterial lysate on streptavidin and sandwich detection was developed to achieve high sensitivity and specificity, whereas immobilization of “multi-tagged” sdAbs via anti-tag antibodies and direct labeled sample detection strategy was optimized for the design of high-density antibody arrays for high-throughput proteomics and identification of potential biomarkers. PMID:20859568

  5. Single Domain Antibodies as a Powerful Tool for High Quality Surface Plasmon Resonance Studies

    PubMed Central

    Della Pia, Eduardo Antonio; Martinez, Karen L.

    2015-01-01

    Single domain antibodies are recombinantly expressed functional antibodies devoid of light chains. These binding elements are derived from heavy chain antibodies found in camelids and offer several distinctive properties for applications in biotechnology such as small size, stability, solubility, and expression in high yields. In this study we demonstrated the potential of using single domain antibodies as capturing molecules in biosensing applications. Single domain antibodies raised against green fluorescent protein were anchored onto biosensor surfaces by using several immobilization strategies based on Ni2+:nitrilotriacetic acid-polyhistidine tag, antibody-antigen, biotin-streptavidin interactions and amine-coupling chemistry. The interaction with the specific target of the single domain antibodies was characterized by surface plasmon resonance. The immobilized single domain antibodies show high affinities for their antigens with KD = 3–6 nM and outperform other antibody partners as capturing molecules facilitating also the data analysis. Furthermore they offer high resistance and stability to a wide range of denaturing agents. These unique biophysical properties and the production of novel single domain antibodies against affinity tags make them particularly attractive for use in biosensing and diagnostic assays. PMID:25822527

  6. Chronic Infection With Camelid Hepatitis E Virus in a Liver Transplant Recipient Who Regularly Consumes Camel Meat and Milk.

    PubMed

    Lee, Guan-Huei; Tan, Boon-Huan; Chi-Yuan Teo, Esmeralda; Lim, Seng-Gee; Dan, Yock-Young; Wee, Aileen; Aw, Pauline Poh Kim; Zhu, Yuan; Hibberd, Martin Lloyd; Tan, Chee-Kiat; Purdy, Michael A; Teo, Chong-Gee

    2016-02-01

    There have been increasing reports of food-borne zoonotic transmission of hepatitis E virus (HEV) genotype 3, which causes chronic infections in immunosuppressed patients. We performed phylogenetic analyses of the HEV sequence (partial and full-length) from 1 patient from the Middle East who underwent liver transplantation, and compared it with other orthohepevirus A sequences. We found the patient to be infected by camelid HEV. This patient regularly consumed camel meat and milk, therefore camelid HEV, which is genotype 7, might infect human beings. Our finding links consumption of camel-derived food products to post-transplantation hepatitis E, which, if detected at early stages, can be cured with antiviral therapy and reduced administration of immunosuppressive agents. PMID:26551551

  7. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein

    PubMed Central

    Anderson, George P.; Teichler, Daniel D.; Zabetakis, Dan; Shriver-Lake, Lisa C.; Liu, Jinny L.; Lonsdale, Stephen G.; Goodchild, Sarah A.; Goldman, Ellen R.

    2016-01-01

    Single-domain antibodies derived from the unique New Antigen Receptor found in sharks have numerous potential applications, ranging from diagnostic reagents to therapeutics. Shark-derived single-domain antibodies possess the same characteristic ability to refold after heat denaturation found in single-domain antibodies derived from camelid heavy-chain-only antibodies. Recently, two shark derived single-domain antibodies specific for the nucleoprotein of Ebola virus were described. Our evaluation confirmed their high affinity for the nucleoprotein, but found their melting temperatures to be low relative to most single-domain antibodies. Our first approach towards improving their stability was grafting antigen-binding regions (complementarity determining regions) of one of these single-domain antibodies onto a high melting temperature shark single-domain antibody. This resulted in two variants: one that displayed excellent affinity with a low melting temperature, while the other had poor affinity but a higher melting temperature. These new proteins, however, differed in only 3 amino acids within the complementarity determining region 2 sequence. In shark single-domain antibodies, the complementarity determining region 2 is often referred to as hypervariable region 2, as this segment of the antibody domain is truncated compared to the sequence in camelid single-domain antibodies and conventional heavy chain variable domains. To elucidate which of the three amino acids or combinations thereof were responsible for the affinity and stability we made the 6 double and single point mutants that covered the intermediates between these two clones. We found a single amino acid change that achieved a 10°C higher melting temperature while maintaining sub nM affinity. This research gives insights into the impact of the shark sdAb hypervariable 2 region on both stability and affinity. PMID:27494523

  8. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein.

    PubMed

    Anderson, George P; Teichler, Daniel D; Zabetakis, Dan; Shriver-Lake, Lisa C; Liu, Jinny L; Lonsdale, Stephen G; Goodchild, Sarah A; Goldman, Ellen R

    2016-01-01

    Single-domain antibodies derived from the unique New Antigen Receptor found in sharks have numerous potential applications, ranging from diagnostic reagents to therapeutics. Shark-derived single-domain antibodies possess the same characteristic ability to refold after heat denaturation found in single-domain antibodies derived from camelid heavy-chain-only antibodies. Recently, two shark derived single-domain antibodies specific for the nucleoprotein of Ebola virus were described. Our evaluation confirmed their high affinity for the nucleoprotein, but found their melting temperatures to be low relative to most single-domain antibodies. Our first approach towards improving their stability was grafting antigen-binding regions (complementarity determining regions) of one of these single-domain antibodies onto a high melting temperature shark single-domain antibody. This resulted in two variants: one that displayed excellent affinity with a low melting temperature, while the other had poor affinity but a higher melting temperature. These new proteins, however, differed in only 3 amino acids within the complementarity determining region 2 sequence. In shark single-domain antibodies, the complementarity determining region 2 is often referred to as hypervariable region 2, as this segment of the antibody domain is truncated compared to the sequence in camelid single-domain antibodies and conventional heavy chain variable domains. To elucidate which of the three amino acids or combinations thereof were responsible for the affinity and stability we made the 6 double and single point mutants that covered the intermediates between these two clones. We found a single amino acid change that achieved a 10°C higher melting temperature while maintaining sub nM affinity. This research gives insights into the impact of the shark sdAb hypervariable 2 region on both stability and affinity. PMID:27494523

  9. Phenotypic lentivirus screens to identify functional single domain antibodies.

    PubMed

    Schmidt, Florian I; Hanke, Leo; Morin, Benjamin; Brewer, Rebeccah; Brusic, Vesna; Whelan, Sean P J; Ploegh, Hidde L

    2016-01-01

    Manipulation of proteins is key in assessing their in vivo function. Although genetic ablation is straightforward, reversible and specific perturbation of protein function remains a challenge. Single domain antibody fragments, such as camelid-derived VHHs, can serve as inhibitors or activators of intracellular protein function, but functional testing of identified VHHs is laborious. To address this challenge, we have developed a lentiviral screening approach to identify VHHs that elicit a phenotype when expressed intracellularly. We identified 19 antiviral VHHs that protect human A549 cells from lethal infection with influenza A virus (IAV) or vesicular stomatitis virus (VSV), respectively. Both negative-sense RNA viruses are vulnerable to VHHs uniquely specific for their respective nucleoproteins. Antiviral VHHs prevented nuclear import of viral ribonucleoproteins or mRNA transcription, respectively, and may provide clues for novel antiviral reagents. In principle, the screening approach described here should be applicable to identify inhibitors of any pathogen or biological pathway. PMID:27573105

  10. Evaluation of gamma interferon and antibody tuberculosis tests in alpacas.

    PubMed

    Rhodes, Shelley; Holder, Tom; Clifford, Derek; Dexter, Ian; Brewer, Jacky; Smith, Noel; Waring, Laura; Crawshaw, Tim; Gillgan, Steve; Lyashchenko, Konstantin; Lawrence, John; Clarke, John; de la Rua-Domenech, Ricardo; Vordermeier, Martin

    2012-10-01

    We describe the performance of cell-based and antibody blood tests for the antemortem diagnosis of tuberculosis (TB) in South American camelids (SAC). The sensitivity and specificity of the gamma interferon (IFN-γ) release assay, two lateral flow rapid antibody tests (Stat-Pak and Dual Path Platform [DPP]), and two enzyme-linked immunosorbent assay (ELISA)-based antibody tests (Idexx and Enferplex) were determined using diseased alpacas from Mycobacterium bovis culture-confirmed breakdown herds and TB-free alpacas from geographical areas with no history of bovine TB, respectively. Our results show that while the sensitivities of the IFN-γ and antibody tests were similar (range of 57.7% to 66.7%), the specificity of the IFN-γ test (89.1%) was lower than those of any of the antibody tests (range of 96.4% to 97.4%). This lower specificity of the IFN-γ test was at least in part due to undisclosed Mycobacterium microti infection in the TB-free cohort, which stimulates a positive purified protein derivative (PPD) response. The sensitivity of infection detection could be increased by combining two antibody tests, but even the use of all four antibody tests failed to detect all diseased alpacas. These antibody-negative alpacas were IFN-γ positive. We found that the maximum sensitivity could be achieved only by the combination of the IFN-γ test with two antibody tests in a "test package," although this resulted in decreased specificity. The data from this evaluation of tests with defined sensitivity and specificity provide potential options for antemortem screening of SAC for TB in herd breakdown situations and could also find application in movement testing and tracing investigations. PMID:22914362

  11. Evaluation of Gamma Interferon and Antibody Tuberculosis Tests in Alpacas

    PubMed Central

    Holder, Tom; Clifford, Derek; Dexter, Ian; Brewer, Jacky; Smith, Noel; Waring, Laura; Crawshaw, Tim; Gillgan, Steve; Lyashchenko, Konstantin; Lawrence, John; Clarke, John; de la Rua-Domenech, Ricardo; Vordermeier, Martin

    2012-01-01

    We describe the performance of cell-based and antibody blood tests for the antemortem diagnosis of tuberculosis (TB) in South American camelids (SAC). The sensitivity and specificity of the gamma interferon (IFN-γ) release assay, two lateral flow rapid antibody tests (Stat-Pak and Dual Path Platform [DPP]), and two enzyme-linked immunosorbent assay (ELISA)-based antibody tests (Idexx and Enferplex) were determined using diseased alpacas from Mycobacterium bovis culture-confirmed breakdown herds and TB-free alpacas from geographical areas with no history of bovine TB, respectively. Our results show that while the sensitivities of the IFN-γ and antibody tests were similar (range of 57.7% to 66.7%), the specificity of the IFN-γ test (89.1%) was lower than those of any of the antibody tests (range of 96.4% to 97.4%). This lower specificity of the IFN-γ test was at least in part due to undisclosed Mycobacterium microti infection in the TB-free cohort, which stimulates a positive purified protein derivative (PPD) response. The sensitivity of infection detection could be increased by combining two antibody tests, but even the use of all four antibody tests failed to detect all diseased alpacas. These antibody-negative alpacas were IFN-γ positive. We found that the maximum sensitivity could be achieved only by the combination of the IFN-γ test with two antibody tests in a “test package,” although this resulted in decreased specificity. The data from this evaluation of tests with defined sensitivity and specificity provide potential options for antemortem screening of SAC for TB in herd breakdown situations and could also find application in movement testing and tracing investigations. PMID:22914362

  12. Successful use of camelid (alpaca) antivenom to treat a potentially lethal tiger snake (Notechis scutatus) envenomation in a dog.

    PubMed

    Padula, Andrew M; Winkel, Kenneth D

    2016-05-01

    This report describes a confirmed clinical case of tiger snake (Notechis scutatus) envenomation in a domestic dog that was successfully treated with a novel polyvalent camelid (alpaca; Llama pacos) antivenom. Samples collected from the dog were assayed for tiger snake venom (TSV) using a highly sensitive and specific ELISA. The TSV concentration in serum and urine at initial presentation was 365 ng/mL and 11,640 ng/mL respectively. At the time of initial presentation whole blood collected from the dog did not clot and the Prothrombin Time was abnormally increased (>300 s). Serum was also visibly hemolysed. The dog was administered antihistamine, dexamethasone and 4000 Units (sufficient to neutralise 40 mg of TSV) of a novel polyvalent alpaca antivenom diluted in 0.9% NaCl. At 4 h post-antivenom treatment the dog's clinical condition had improved markedly with serum TSV concentrations below the limit of detection (<0.015 ng/mL), consistent with complete binding of venom antigens by the alpaca antivenom. Coagulation parameters had begun to improve by 4 h and had fully normalised by 16 h post-antivenom. Venom concentrations in both serum and urine remained undetectable at 16 h post-antivenom. The dog made a complete recovery, without complications, suggesting that the alpaca-based antivenom is both clinically safe and effective. PMID:26930223

  13. Crystal Structures of the Human Doublecortin C- and N-terminal Domains in Complex with Specific Antibodies.

    PubMed

    Burger, Dominique; Stihle, Martine; Sharma, Ashwani; Di Lello, Paola; Benz, Jörg; D'Arcy, Brigitte; Debulpaep, Maja; Fry, David; Huber, Walter; Kremer, Thomas; Laeremans, Toon; Matile, Hugues; Ross, Alfred; Rufer, Arne C; Schoch, Guillaume; Steinmetz, Michel O; Steyaert, Jan; Rudolph, Markus G; Thoma, Ralf; Ruf, Armin

    2016-07-29

    Doublecortin is a microtubule-associated protein produced during neurogenesis. The protein stabilizes microtubules and stimulates their polymerization, which allows migration of immature neurons to their designated location in the brain. Mutations in the gene that impair doublecortin function and cause severe brain formation disorders are located on a tandem repeat of two doublecortin domains. The molecular mechanism of action of doublecortin is only incompletely understood. Anti-doublecortin antibodies, such as the rabbit polyclonal Abcam 18732, are widely used as neurogenesis markers. Here, we report the generation and characterization of antibodies that bind to single doublecortin domains. The antibodies were used as tools to obtain structures of both domains. Four independent crystal structures of the N-terminal domain reveal several distinct open and closed conformations of the peptide linking N- and C-terminal domains, which can be related to doublecortin function. An NMR assignment and a crystal structure in complex with a camelid antibody fragment show that the doublecortin C-terminal domain adopts the same well defined ubiquitin-like fold as the N-terminal domain, despite its reported aggregation and molten globule-like properties. The antibodies' unique domain specificity also renders them ideal research tools to better understand the role of individual domains in doublecortin function. A single chain camelid antibody fragment specific for the C-terminal doublecortin domain affected microtubule binding, whereas a monoclonal mouse antibody specific for the N-terminal domain did not. Together with steric considerations, this suggests that the microtubule-interacting doublecortin domain observed in cryo-electron micrographs is the C-terminal domain rather than the N-terminal one. PMID:27226599

  14. Llama-Derived Single Domain Antibodies Specific for Abrus Agglutinin

    PubMed Central

    Goldman, Ellen R.; Anderson, George P.; Zabetakis, Dan; Walper, Scott; Liu, Jinny L.; Bernstein, Rachael; Calm, Alena; Carney, James P.; O’Brien, Thomas W.; Walker, Jennifer L.; Garber, Eric A. E.

    2011-01-01

    Llama derived single domain antibodies (sdAb), the recombinantly expressed variable heavy domains from the unique heavy-chain only antibodies of camelids, were isolated from a library derived from llamas immunized with a commercial abrin toxoid preparation. Abrin is a potent toxin similar to ricin in structure, sequence and mechanism of action. The selected sdAb were evaluated for their ability to bind to commercial abrin as well as abrax (a recombinant abrin A-chain), purified abrin fractions, Abrus agglutinin (a protein related to abrin but with lower toxicity), ricin, and unrelated proteins. Isolated sdAb were also evaluated for their ability to refold after heat denaturation and ability to be used in sandwich assays as both capture and reporter elements. The best binders were specific for the Abrus agglutinin, showing minimal binding to purified abrin fractions or unrelated proteins. These binders had sub nM affinities and regained most of their secondary structure after heating to 95 °C. They functioned well in sandwich assays. Through gel analysis and the behavior of anti-abrin monoclonal antibodies, we determined that the commercial toxoid preparation used for the original immunizations contained a high percentage of Abrus agglutinin, explaining the selection of Abrus agglutinin binders. Used in conjunction with anti-abrin monoclonal and polyclonal antibodies, these reagents can fill a role to discriminate between the highly toxic abrin and the related, but much less toxic, Abrus agglutinin and distinguish between different crude preparations. PMID:22174977

  15. Monoclonal Antibodies.

    ERIC Educational Resources Information Center

    Killington, R. A.; Powell, K. L.

    1984-01-01

    Monoclonal antibodies have provided an exciting addition to the "armory" of the molecular biologist and immunologist. This article discusses briefly the concept of, techniques available for, production of, and possible uses of monoclonal antibodies. (Author)

  16. Antimitochondrial antibody

    MedlinePlus

    ... antibodies (AMA) are substances ( antibodies ) that form against mitochondria. The mitochondria are an important part of cells. They are ... often, in people with other kinds of liver disease and some autoimmune diseases. Risks Risks for having ...

  17. Structural Mimicry of Receptor Interaction by Antagonistic Interleukin-6 (IL-6) Antibodies*

    PubMed Central

    Blanchetot, Christophe; De Jonge, Natalie; Desmyter, Aline; Ongenae, Nico; Hofman, Erik; Klarenbeek, Alex; Sadi, Ava; Hultberg, Anna; Kretz-Rommel, Anke; Spinelli, Silvia; Loris, Remy; Cambillau, Christian; de Haard, Hans

    2016-01-01

    Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe229 and Phe279 of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe279. Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe279. In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe279, whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe229. PMID:27129274

  18. Structural Mimicry of Receptor Interaction by Antagonistic Interleukin-6 (IL-6) Antibodies.

    PubMed

    Blanchetot, Christophe; De Jonge, Natalie; Desmyter, Aline; Ongenae, Nico; Hofman, Erik; Klarenbeek, Alex; Sadi, Ava; Hultberg, Anna; Kretz-Rommel, Anke; Spinelli, Silvia; Loris, Remy; Cambillau, Christian; de Haard, Hans

    2016-06-24

    Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe(229) and Phe(279) of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe(279) Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe(279) In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe(279), whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe(229). PMID:27129274

  19. Antithyroid microsomal antibody

    MedlinePlus

    Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb ... test is done to confirm the cause of thyroid problems, including Hashimoto thyroiditis . The test is also ...

  20. Dual anti-idiotypic purification of a novel, native-format biparatopic anti-MET antibody with improved in vitro and in vivo efficacy

    PubMed Central

    Godar, Marie; Morello, Virginia; Sadi, Ava; Hultberg, Anna; De Jonge, Natalie; Basilico, Cristina; Hanssens, Valérie; Saunders, Michael; Lambrecht, Bart N.; El Khattabi, Mohamed; de Haard, Hans; Michieli, Paolo; Blanchetot, Christophe

    2016-01-01

    Bispecific antibodies are of great interest due to their ability to simultaneously bind and engage different antigens or epitopes. Nevertheless, it remains a challenge to assemble, produce and/or purify them. Here we present an innovative dual anti-idiotypic purification process, which provides pure bispecific antibodies with native immunoglobulin format. Using this approach, a biparatopic IgG1 antibody targeting two distinct, HGF-competing, non-overlapping epitopes on the extracellular region of the MET receptor, was purified with camelid single-domain antibody fragments that bind specifically to the correct heavy chain/light chain pairings of each arm. The purity and functionality of the anti-MET biparatopic antibody was then confirmed by mass spectrometry and binding experiments, demonstrating its ability to simultaneously target the two epitopes recognized by the parental monoclonal antibodies. The improved MET-inhibitory activity of the biparatopic antibody compared to the parental monoclonal antibodies, was finally corroborated in cell-based assays and more importantly in a tumor xenograft mouse model. In conclusion, this approach is fast and specific, broadly applicable and results in the isolation of a pure, novel and native-format anti-MET biparatopic antibody that shows superior biological activity over the parental monospecific antibodies both in vitro and in vivo. PMID:27546726

  1. Culicoides vector species on three South American camelid farms seropositive for bluetongue virus serotype 8 in Germany 2008/2009.

    PubMed

    Schulz, Claudia; Ziller, Mario; Kampen, Helge; Gauly, Matthias; Beer, Martin; Grevelding, Christoph G; Hoffmann, Bernd; Bauer, Christian; Werner, Doreen

    2015-12-15

    Palearctic species of Culicoides (Diptera, Ceratopogonidae), in particular of the Obsoletus and Pulicaris complexes, were identified as putative vectors of bluetongue virus serotype 8 (BTV-8) on ruminant farms during the epizootic in Germany from 2006 to 2009. BTV may cause severe morbidity and mortality in ruminants and sporadically in South American camelids (SAC). However, the fauna of Culicoides spp. on SAC farms has not been investigated. Therefore, the ceratopogonid fauna was monitored on three farms with BTV-seropositive SAC in Germany. Black-light traps were set up on pastures and in stables from summer 2008 to autumn 2009. Additionally, ceratopogonids were caught in emergence traps mounted on llama dung and dung-free pasture from spring to autumn 2009. After morphological identification, selected Culicoides samples were analysed for BTV-RNA by real-time RT-PCR. The effects of the variables 'location', 'temperature' and 'humidity' on the number of Culicoides caught in black-light traps were modelled using multivariable Poisson regression. In total, 26 species of Culicoides and six other genera of biting midges were identified. The most abundant Culicoides spp. collected both outdoors and indoors with black-light traps belonged to the Obsoletus (77.4%) and Pulicaris (16.0%) complexes. The number of Culicoides peaked in summer, while no biting midges were caught during the winter months. Daily collections of Culicoides were mainly influenced by the location and depended on the interaction of temperature and humidity. In the emergence traps, species of the Obsoletus complex predominated the collections. In summary, the absence of BTV-RNA in any of the analysed Culicoides midges and in the BTV-seropositive SAC on the three farms together with the differences in the pathogenesis of BTV-8 in SAC compared to ruminants suggests a negligible role of SAC in the spread of the virus. Although SAC farms may provide similar suitable habitats for putative Culicoides

  2. Antithyroglobulin antibody

    MedlinePlus

    ... may be due to: Graves disease Hashimoto thyroiditis Hypothyroidism Systemic lupus erythematosus (SLE) Thyrotoxicosis Type 1 diabetes ... Antibody Chronic thyroiditis (Hashimoto disease) Graves disease Hyperthyroidism Hypothyroidism Systemic lupus erythematosus T3 test Update Date 5/ ...

  3. Bispecific antibodies.

    PubMed

    Kontermann, Roland E; Brinkmann, Ulrich

    2015-07-01

    Bispecific antibodies (bsAbs) combine specificities of two antibodies and simultaneously address different antigens or epitopes. BsAbs with 'two-target' functionality can interfere with multiple surface receptors or ligands associated, for example with cancer, proliferation or inflammatory processes. BsAbs can also place targets into close proximity, either to support protein complex formation on one cell, or to trigger contacts between cells. Examples of 'forced-connection' functionalities are bsAbs that support protein complexation in the clotting cascade, or tumor-targeted immune cell recruiters and/or activators. Following years of research and development (R&D), the first bsAb was approved in 2009. Another bsAb entered the market in December 2014 and several more are in clinical trials. Here, we describe the potentials of bsAbs to become the next wave of antibody-based therapies, focusing on molecules in clinical development. PMID:25728220

  4. Antithyroid microsomal antibody

    MedlinePlus

    ... Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb Images Blood test References Guber HA, Faraq AF. Evaluation of endocrine function. In: McPherson RA, Pincus MR, eds. Henry's Clinical ...

  5. Antibody Engineering and Therapeutics

    PubMed Central

    Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul WHI; Xu, Kai Y

    2014-01-01

    The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates. PMID:24589717

  6. Monoclonal antibodies.

    PubMed

    2009-01-01

    The ability to produce and exploit monoclonal antibodies (mAbs) has revolutionized many areas of biological sciences. The unique property of an mAb is that it is a single species of immunoglobulin (IG) molecule. This means that the specificity of the interaction of the paratopes on the IG, with the epitopes on an antigenic target, is the same on every molecule. This property can be used to great benefit in immunoassays to provide tests of defined specificity and sensitivity, which improve the possibilities of standardization. The performance of assays can often be determined relating the actual weight of antibody (hence the number of molecules) to the activity. Often the production of an mAb against a specific epitope is the only way that biological entities can be differentiated. This chapter outlines the areas involving the development of assays based on mAbs. The problems involved address include the physical aspects of mAbs and how they may affect assay design and also the implications of results based on monospecific reagents. Often these are not fully understood, leading to assays that are less than satisfactory, which does not justify the relatively high cost of preparing and screening of mAbs. There are many textbooks and reviews dealing with the preparation of mAbs, the principles involved, and various purification and manipulative methods for the preparation of fragments and conjugation. There has been little general information attempting to summarize the best approaches to assay design using mAbs. Much time can be wasted through bad planning, and this is particularly relevant to mAbs. A proper understanding of some basic principles is essential. It is beyond the scope of this chapter to discuss all aspects, but major areas are highlighted. PMID:19219589

  7. Serum herpes simplex antibodies

    MedlinePlus

    ... gov/ency/article/003352.htm Serum herpes simplex antibodies To use the sharing features on this page, please enable JavaScript. Serum herpes simplex antibodies is a blood test that looks for antibodies ...

  8. Selection of antibodies from synthetic antibody libraries.

    PubMed

    Harel Inbar, Noa; Benhar, Itai

    2012-10-15

    More than 2 dozen years had passed since the field of antibody engineering was established, with the first reports of bacterial [1-3] and mammalian cells [4] expression of recombinant antibody fragments, and in that time a lot of effort was dedicated to the development of efficient technological means, intended to assist in the creation of therapeutic monoclonal antibodies (mAbs). Research focus was given to two intertwined technological aspects: the selection platform and the recombinant antibody repertoires. In accordance with these areas of interest, it is the goal of this chapter to describe the various selection tools and antibody libraries existing, with emphasis on the later, and their applications. This chapter gives a far from exhaustive, subjective "historic account" of the field, describing the selection platforms, the different formats of antibody repertoires and the applications of both for selecting recombinant antibodies. Several excellent books provide detailed protocols for constructing antibody libraries and selecting antibodies from those libraries [5-13]. Such books may guide a newcomer to the field in the fine details of antibody engineering. We would like to offer advice to the novice: although seemingly simple, effective library construction and antibody isolation provide best benefits in the hands of professionals. It is an art as much as it is science. PMID:22244834

  9. Diagnostic Value of Animal-Side Antibody Assays for Rapid Detection of Mycobacterium bovis or Mycobacterium microti Infection in South American Camelids▿

    PubMed Central

    Lyashchenko, Konstantin P.; Greenwald, Rena; Esfandiari, Javan; Rhodes, Shelley; Dean, Gillian; de la Rua-Domenech, Ricardo; Meylan, Mireille; Vordermeier, HMartin; Zanolari, Patrik

    2011-01-01

    Tuberculosis (TB) in South American camelids (SAC) is caused by Mycobacterium bovis or Mycobacterium microti. Two serological methods, rapid testing (RT) and the dual-path platform (DPP) assay, were evaluated using naturally infected SAC. The study population included 156 alpacas and 175 llamas in Great Britain, Switzerland, and the United States. TB due to M. bovis (n = 44) or M. microti (n = 8) in 35 alpacas and 17 llamas was diagnosed by gross pathology examination and culture. Control animals were from herds with no TB history. The RT and the DPP assay showed sensitivities of 71% and 74%, respectively, for alpacas, while the sensitivity for llamas was 77% for both assays. The specificity of the DPP assay (98%) was higher than that of RT (94%) for llamas; the specificities of the two assays were identical (98%) for alpacas. When the two antibody tests were combined, the parallel-testing interpretation (applied when either assay produced a positive result) enhanced the sensitivities of antibody detection to 89% for alpacas and 88% for llamas but at the cost of lower specificities (97% and 93%, respectively), whereas the serial-testing interpretation (applied when both assays produced a positive result) maximized the specificity to 100% for both SAC species, although the sensitivities were 57% for alpacas and 65% for llamas. Over 95% of the animals with evidence of TB failed to produce skin test reactions, thus confirming concerns about the validity of this method for testing SAC. The findings suggest that serological assays may offer a more accurate and practical alternative for antemortem detection of camelid TB. PMID:22012976

  10. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains.

    PubMed

    Alvarez-Cienfuegos, Ana; Nuñez-Prado, Natalia; Compte, Marta; Cuesta, Angel M; Blanco-Toribio, Ana; Harwood, Seandean Lykke; Villate, Maider; Merino, Nekane; Bonet, Jaume; Navarro, Rocio; Muñoz-Briones, Clara; Sørensen, Karen Marie Juul; Mølgaard, Kasper; Oliva, Baldo; Sanz, Laura; Blanco, Francisco J; Alvarez-Vallina, Luis

    2016-01-01

    Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIE(XVIII)) we produced monospecific trimerbodies that were efficiently secreted as soluble functional proteins by mammalian cells. The purified VHH-TIE(XVIII) trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Furthermore, by connecting with two additional glycine-serine-based linkers three VHH-TIE(XVIII) modules on a single polypeptide chain, we present an approach for the rational design of multispecific tandem trimerbodies with defined stoichiometry and controlled orientation. Using this technology we report here the construction and characterization of a tandem VHH-based trimerbody capable of simultaneously binding to three different antigens: carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR) and green fluorescence protein (GFP). Multispecific tandem VHH-based trimerbodies were well expressed in mammalian cells, had good biophysical properties and were capable of simultaneously binding their targeted antigens. Importantly, these antibodies were very effective in inhibiting the proliferation of human epidermoid carcinoma A431 cells. Multispecific VHH-based trimerbodies are therefore ideal candidates for future applications in various therapeutic areas. PMID:27345490

  11. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains

    PubMed Central

    Alvarez-Cienfuegos, Ana; Nuñez-Prado, Natalia; Compte, Marta; Cuesta, Angel M.; Blanco-Toribio, Ana; Harwood, Seandean Lykke; Villate, Maider; Merino, Nekane; Bonet, Jaume; Navarro, Rocio; Muñoz-Briones, Clara; Sørensen, Karen Marie Juul; Mølgaard, Kasper; Oliva, Baldo; Sanz, Laura; Blanco, Francisco J.; Alvarez-Vallina, Luis

    2016-01-01

    Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIEXVIII) we produced monospecific trimerbodies that were efficiently secreted as soluble functional proteins by mammalian cells. The purified VHH-TIEXVIII trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Furthermore, by connecting with two additional glycine-serine-based linkers three VHH-TIEXVIII modules on a single polypeptide chain, we present an approach for the rational design of multispecific tandem trimerbodies with defined stoichiometry and controlled orientation. Using this technology we report here the construction and characterization of a tandem VHH-based trimerbody capable of simultaneously binding to three different antigens: carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR) and green fluorescence protein (GFP). Multispecific tandem VHH-based trimerbodies were well expressed in mammalian cells, had good biophysical properties and were capable of simultaneously binding their targeted antigens. Importantly, these antibodies were very effective in inhibiting the proliferation of human epidermoid carcinoma A431 cells. Multispecific VHH-based trimerbodies are therefore ideal candidates for future applications in various therapeutic areas. PMID:27345490

  12. Isolation of a Highly Thermal Stable Lama Single Domain Antibody Specific for Staphylococcus aureus Enterotoxin B

    PubMed Central

    2011-01-01

    Background Camelids and sharks possess a unique subclass of antibodies comprised of only heavy chains. The antigen binding fragments of these unique antibodies can be cloned and expressed as single domain antibodies (sdAbs). The ability of these small antigen-binding molecules to refold after heating to achieve their original structure, as well as their diminutive size, makes them attractive candidates for diagnostic assays. Results Here we describe the isolation of an sdAb against Staphyloccocus aureus enterotoxin B (SEB). The clone, A3, was found to have high affinity (Kd = 75 pM) and good specificity for SEB, showing no cross reactivity to related molecules such as Staphylococcal enterotoxin A (SEA), Staphylococcal enterotoxin D (SED), and Shiga toxin. Most remarkably, this anti-SEB sdAb had an extremely high Tm of 85°C and an ability to refold after heating to 95°C. The sharp Tm determined by circular dichroism, was found to contrast with the gradual decrease observed in intrinsic fluorescence. We demonstrated the utility of this sdAb as a capture and detector molecule in Luminex based assays providing limits of detection (LODs) of at least 64 pg/mL. Conclusion The anti-SEB sdAb A3 was found to have a high affinity and an extraordinarily high Tm and could still refold to recover activity after heat denaturation. This combination of heat resilience and strong, specific binding make this sdAb a good candidate for use in antibody-based toxin detection technologies. PMID:21933444

  13. Antibodies and Selection of Monoclonal Antibodies.

    PubMed

    Hanack, Katja; Messerschmidt, Katrin; Listek, Martin

    2016-01-01

    Monoclonal antibodies are universal binding molecules with a high specificity for their target and are indispensable tools in research, diagnostics and therapy. The biotechnological generation of monoclonal antibodies was enabled by the hybridoma technology published in 1975 by Köhler and Milstein. Today monoclonal antibodies are used in a variety of applications as flow cytometry, magnetic cell sorting, immunoassays or therapeutic approaches. First step of the generation process is the immunization of the organism with appropriate antigen. After a positive immune response the spleen cells are isolated and fused with myeloma cells in order to generate stable, long-living antibody-producing cell lines - hybridoma cells. In the subsequent identification step the culture supernatants of all hybridoma cells are screened weekly for the production of the antibody of interest. Hybridoma cells producing the antibody of interest are cloned by limited dilution till a monoclonal hybridoma is found. This is a very time-consuming and laborious process and therefore different selection strategies were developed since 1975 in order to facilitate the generation of monoclonal antibodies. Apart from common automation of pipetting processes and ELISA testing there are some promising approaches to select the right monoclonal antibody very early in the process to reduce time and effort of the generation. In this chapter different selection strategies for antibody-producing hybridoma cells are presented and analysed regarding to their benefits compared to conventional limited dilution technology. PMID:27236550

  14. Antibodies and antibody-derived analytical biosensors.

    PubMed

    Sharma, Shikha; Byrne, Hannah; O'Kennedy, Richard J

    2016-06-30

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  15. Antibodies and antibody-derived analytical biosensors

    PubMed Central

    Sharma, Shikha; Byrne, Hannah

    2016-01-01

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  16. Antibody Blood Tests

    MedlinePlus

    ... discovered that people with celiac disease who eat gluten have higher than normal levels of certain antibodies ... rye and barley that are generically known as “gluten.” Antibody Testing: Only A First Step To help ...

  17. RBC Antibody Screen

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? RBC Antibody Screen Share this page: Was this page ... Screen Related tests: Direct Antiglobulin Test ; Blood Typing ; RBC Antibody Identification ; Type and Screen; Crossmatch All content ...

  18. Antiparietal cell antibody test

    MedlinePlus

    ... Gastric ulcer - anti-gastric parietal cell antibody; Pernicious anemia - anti-gastric parietal cell antibody; Vitamin B12 - anti- ... may use this test to help diagnose pernicious anemia. Pernicious anemia is a decrease in red blood ...

  19. Lyme disease antibody

    MedlinePlus

    ... JavaScript. The Lyme disease blood test looks for antibodies in the blood to the bacteria that causes ... needed. A laboratory specialist looks for Lyme disease antibodies in the blood sample using the ELISA test . ...

  20. Modeling Antibody Diversity.

    ERIC Educational Resources Information Center

    Baker, William P.; Moore, Cathy Ronstadt

    1998-01-01

    Understanding antibody structure and function is difficult for many students. The rearrangement of constant and variable regions during antibody differentiation can be effectively simulated using a paper model. Describes a hands-on laboratory exercise which allows students to model antibody diversity using readily available resources. (PVD)

  1. Isolation and Epitope Mapping of Staphylococcal Enterotoxin B Single-Domain Antibodies

    PubMed Central

    Turner, Kendrick B.; Zabetakis, Dan; Legler, Patricia; Goldman, Ellen R.; Anderson, George P.

    2014-01-01

    Single-domain antibodies (sdAbs), derived from the heavy chain only antibodies found in camelids such as llamas have the potential to provide rugged detection reagents with high affinities, and the ability to refold after denaturation. We have isolated and characterized sdAbs specific to staphylococcal enterotoxin B (SEB) which bind to two distinct epitopes and are able to function in a sandwich immunoassay for toxin detection. Characterization of these sdAbs revealed that each exhibited nanomolar binding affinities or better. Melting temperatures for the sdAbs ranged from approximately 60 °C to over 70 °C, with each demonstrating at least partial refolding after denaturation and several were able to completely refold. A first set of sdAbs was isolated by panning the library using adsorbed antigen, all of which recognized the same epitope on SEB. Epitope mapping suggested that these sdAbs bind to a particular fragment of SEB (VKSIDQFLYFDLIYSI) containing position L45 (underlined), which is involved in binding to the major histocompatibility complex (MHC). Differences in the binding affinities of the sdAbs to SEB and a less-toxic vaccine immunogen, SEBv (L45R/Y89A/Y94A) were also consistent with binding to this epitope. A sandwich panning strategy was utilized to isolate sdAbs which bind a second epitope. This epitope differed from the initial one obtained or from that recognized by previously isolated anti-SEB sdAb A3. Using SEB-toxin spiked milk we demonstrated that these newly isolated sdAbs could be utilized in sandwich-assays with each other, A3, and with various monoclonal antibodies. PMID:24949641

  2. Isolation and characterization of antigen-specific alpaca (Lama pacos) VHH antibodies by biopanning followed by high-throughput sequencing.

    PubMed

    Miyazaki, Nobuo; Kiyose, Norihiko; Akazawa, Yoko; Takashima, Mizuki; Hagihara, Yosihisa; Inoue, Naokazu; Matsuda, Tomonari; Ogawa, Ryu; Inoue, Seiya; Ito, Yuji

    2015-09-01

    The antigen-binding domain of camelid dimeric heavy chain antibodies, known as VHH or Nanobody, has much potential in pharmaceutical and industrial applications. To establish the isolation process of antigen-specific VHH, a VHH phage library was constructed with a diversity of 8.4 × 10(7) from cDNA of peripheral blood mononuclear cells of an alpaca (Lama pacos) immunized with a fragment of IZUMO1 (IZUMO1PFF) as a model antigen. By conventional biopanning, 13 antigen-specific VHHs were isolated. The amino acid sequences of these VHHs, designated as N-group VHHs, were very similar to each other (>93% identity). To find more diverse antibodies, we performed high-throughput sequencing (HTS) of VHH genes. By comparing the frequencies of each sequence between before and after biopanning, we found the sequences whose frequencies were increased by biopanning. The top 100 sequences of them were supplied for phylogenic tree analysis. In total 75% of them belonged to N-group VHHs, but the other were phylogenically apart from N-group VHHs (Non N-group). Two of three VHHs selected from non N-group VHHs showed sufficient antigen binding ability. These results suggested that biopanning followed by HTS provided a useful method for finding minor and diverse antigen-specific clones that could not be identified by conventional biopanning. PMID:25888581

  3. Generation and characterization of CD1d-specific single-domain antibodies with distinct functional features.

    PubMed

    Lameris, Roeland; de Bruin, Renée C G; van Bergen En Henegouwen, Paul M P; Verheul, Henk M; Zweegman, Sonja; de Gruijl, Tanja D; van der Vliet, Hans J

    2016-09-01

    Ligation of the CD1d antigen-presenting molecule by monoclonal antibodies (mAbs) can trigger important biological functions. For therapeutic purposes camelid-derived variable domain of heavy-chain-only antibodies (VHH) have multiple advantages over mAbs because they are small, stable and have low immunogenicity. Here, we generated 21 human CD1d-specific VHH by immunizing Lama glama and subsequent phage display. Two clones induced maturation of dendritic cells, one clone induced early apoptosis in CD1d-expressing B lymphoblasts and multiple myeloma cells, and another clone blocked recognition of glycolipid-loaded CD1d by CD1d-restricted invariant natural killer T (iNKT) cells. In contrast to reported CD1d-specific mAbs, these CD1d-specific VHH have the unique characteristic that they induce specific and well-defined biological effects. This feature, combined with the above-indicated general advantages of VHH, make the CD1d-specific VHH generated here unique and useful tools to exploit both CD1d ligation as well as disruption of CD1d-iNKT interactions in the treatment of cancer or inflammatory disorders. PMID:27312006

  4. Structural basis for the inhibition of HIV-1 Nef by a high-affinity binding single-domain antibody

    PubMed Central

    2014-01-01

    Background The HIV-1 Nef protein is essential for AIDS pathogenesis by its interaction with host cell surface receptors and signaling factors. Despite its critical role as a virulence factor Nef is not targeted by current antiviral strategies. Results We have determined the crystal structure of the complex formed by a camelid single-domain antibody fragment, termed sdAb19, bound to HIV-1 Nef together with a stabilizing SH3 domain. sdAb19 forms a stoichiometric 1:1 complex with Nef and binds to a conformationally conserved surface at the C-terminus of Nef that overlaps with functionally important interaction sites involved in Nef-induced perturbations of signaling and trafficking pathways. The antibody fragment binds Nef with low nanomolar affinity, which could be attenuated to micromolar affinity range by site-directed mutagenesis of key interaction residues in sdAb19. Fusion of the SH3 domain to sdAb19, termed Neffin, leads to a significantly increased affinity for Nef and formation of a stoichiometric 2:2 Nef–Neffin complex. The 19 kDa Neffin protein inhibits all functions of Nef as CD4 and MHC-I downregulation, association with Pak2, and the increase in virus infectivity and replication. Conclusions Together, sdAb19 and Neffin thus represent efficient tools for the rational development of antiviral strategies against HIV-1 Nef. PMID:24620746

  5. Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells

    PubMed Central

    Rossotti, Martín; Tabares, Sofía; Alfaya, Lucía; Leizagoyen, Carmen; Moron, Gabriel; González-Sapienza, Gualberto

    2015-01-01

    BACKGROUND Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domain (nanobody) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle. METHODS Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct used for pull-down/MS target identification. RESULTS The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells. CONCLUSIONS This strategy streamline the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents. GENERAL SIGNIFICANCE This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets. PMID:25819371

  6. Controlling Rotavirus-associated diarrhea: Could single-domain antibody fragments make the difference?

    PubMed

    Maffey, Lucia; Vega, Celina G; Parreño, Viviana; Garaicoechea, Lorena

    2015-01-01

    Group A Rotavirus (RVA) remains a leading cause of severe diarrhea and child mortality. The variable domain of camelid heavy chain antibodies (VHH) display potent antigen-binding capacity, have low production costs and are suitable for oral therapies. Two sets of anti-RVA VHHs have been developed: ARP1-ARP3; 2KD1-3B2. Here, we explore the potential of both sets as a prevention strategy complementary to vaccination and a treatment option against RVA-associated diarrhea in endangered populations. Both sets have been expressed in multiple production systems, showing extensive neutralizing capacity against strains of RVA in vitro. They were also tested in the neonatal mouse model with various degrees of success in preventing or treating RVA-induced diarrhea. Interestingly, mitigation of the symptoms was also achieved with freeze-dried ARP1, so that it could be applied in areas where cold chains are difficult to maintain. 3B2 was tested in a pre-clinical trial involving gnotobiotic piglets where it conferred complete protection against RVA-induced diarrhea. ARP1 was used in the first clinical trial for anti-RVA VHHs, successfully reducing stool output in infants with RVA diarrhea, with no detected side effects. PMID:26654700

  7. Antibody Therapeutics in Oncology

    PubMed Central

    Wold, Erik D; Smider, Vaughn V; Felding, Brunhilde H

    2016-01-01

    One of the newer classes of targeted cancer therapeutics is monoclonal antibodies. Monoclonal antibody therapeutics are a successful and rapidly expanding drug class due to their high specificity, activity, favourable pharmacokinetics, and standardized manufacturing processes. Antibodies are capable of recruiting the immune system to attack cancer cells through complement-dependent cytotoxicity or antibody dependent cellular cytotoxicity. In an ideal scenario the initial tumor cell destruction induced by administration of a therapeutic antibody can result in uptake of tumor associated antigens by antigen-presenting cells, establishing a prolonged memory effect. Mechanisms of direct tumor cell killing by antibodies include antibody recognition of cell surface bound enzymes to neutralize enzyme activity and signaling, or induction of receptor agonist or antagonist activity. Both approaches result in cellular apoptosis. In another and very direct approach, antibodies are used to deliver drugs to target cells and cause cell death. Such antibody drug conjugates (ADCs) direct cytotoxic compounds to tumor cells, after selective binding to cell surface antigens, internalization, and intracellular drug release. Efficacy and safety of ADCs for cancer therapy has recently been greatly advanced based on innovative approaches for site-specific drug conjugation to the antibody structure. This technology enabled rational optimization of function and pharmacokinetics of the resulting conjugates, and is now beginning to yield therapeutics with defined, uniform molecular characteristics, and unprecedented promise to advance cancer treatment. PMID:27081677

  8. Competitive Selection from Single Domain Antibody Libraries Allows Isolation of High-Affinity Antihapten Antibodies That Are Not Favored in the llama Immune Response

    PubMed Central

    Rosa, Sofia Tabares-da; Rossotti, Martin; Carleiza, Carmen; Carrión, Federico; Pritsch, Otto; Ahn, Ki Chang; Last, Jerold A.; Hammock, Bruce D; González-Sapienza, Gualberto

    2011-01-01

    Single-domain antibodies (sdAbs) found in camelids, lack a light chain and their antigen-binding site sits completely in the heavy-chain variable domain (VHH). Their simplicity, thermostability, and ease in expression have made VHHs highly attractive. While this has been successfully exploited for macromolecular antigens, their application to the detection of small molecules is still limited to a very few reports, mostly describing low affinity VHHs. Using triclocarban (TCC) as a model hapten, we found that conventional antibodies, IgG1 fraction, reacted with free TCC with a higher relative affinity (IC50 51.0 ng/mL) than did the sdAbs (IgG2 and IgG3, 497 and 370 ng/mL, respectively). A VHH library was prepared, and by elution of phage with limiting concentrations of TCC and competitive selection of binders, we were able to isolate high-affinity clones, KD 0.98–1.37 nM (SPR) which allowed development of a competitive assay for TCC with an IC50 = 3.5 ng/mL (11 nM). This represents a 100-fold improvement with regard to the performance of the sdAb serum fraction, and it is 100-fold better than the IC50 attained with other anti-hapten VHHs reported thus far. Despite the modest overall anti-hapten sdAbs response in llamas, a small subpopulation of high affinity VHHs are generated that can be isolated by carefully design of the selection process. PMID:21827167

  9. Engineering antibody therapeutics.

    PubMed

    Chiu, Mark L; Gilliland, Gary L

    2016-06-01

    The successful introduction of antibody-based protein therapeutics into the arsenal of treatments for patients has within a few decades fostered intense innovation in the production and engineering of antibodies. Reviewed here are the methods currently used to produce antibodies along with how our knowledge of the structural and functional characterization of immunoglobulins has resulted in the engineering of antibodies to produce protein therapeutics with unique properties, both biological and biophysical, that are leading to novel therapeutic approaches. Antibody engineering includes the introduction of the antibody combining site (variable regions) into a host of architectures including bi and multi-specific formats that further impact the therapeutic properties leading to further advantages and successes in patient treatment. PMID:27525816

  10. Recombinant renewable polyclonal antibodies

    PubMed Central

    Ferrara, Fortunato; D’Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew RM

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products. PMID:25530082

  11. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  12. Antibodies as effectors.

    PubMed

    Corbeil, L B

    2002-09-10

    Antibodies are critical in protection against extracellular microbial pathogens. Although antibodies also play a role in transplant/tumor rejection and in autoimmune disease, this paper focuses on defense against bovine infections. Effector mechanisms of different bovine isotypes, subisotypes and allotypes are discussed. The importance of antigen specificity is also stressed. PMID:12072231

  13. Production Of Human Antibodies

    NASA Technical Reports Server (NTRS)

    Sammons, David W.; Neil, Garry A.

    1993-01-01

    Process for making human monoclonal antibodies based on combination of techniques. Antibodies made active against specific antigen. Process involves in vivo immunization of human B lymphocyte cells in mice. B cells of interest enriched in vitro before fusion. Method potentially applicable to any antigen. Does not rely on use of Epstein-Barr virus at any step. Human lymphocytes taken from any source.

  14. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  15. Affinity purification of antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibodies are provided in a variety of formats that includes antiserum, hybridoma culture supernatant or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facil...

  16. Antibodies in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The expression of antibodies in plants has several promising applications that are currently being developed. Plants are being considered for the large scale production of antibodies needed for medical purposes. The benefit of using plants is that they are able to perform post-translational modifi...

  17. [Recombinant antibodies against bioweapons].

    PubMed

    Thullier, Philippe; Pelat, Thibaut; Vidal, Dominique

    2009-12-01

    The threat posed by bioweapons (BW) could lead to the re-emergence of such deadly diseases as plague or smallpox, now eradicated from industrialized countries. The development of recombinant antibodies allows tackling this risk because these recombinant molecules are generally well tolerated in human medicine, may be utilized for prophylaxis and treatment, and because antibodies neutralize many BW. Recombinant antibodies neutralizing the lethal toxin of anthrax, botulinum toxins and the smallpox virus have in particular been isolated recently, with different technologies. Our approach, which uses phage-displayed immune libraries built from non-human primates (M. fascicularis) to obtain recombinant antibodies, which may later be super-humanized (germlinized), has allowed us to obtain such BWs-neutralizing antibodies. PMID:20035695

  18. [Antiphospholipid antibodies in practice].

    PubMed

    Miyara, M; Diemert, M-C; Amoura, Z; Musset, L

    2012-04-01

    Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by the occurrence of thrombotic or obstetrical events associated with the presence in the serum of patients of antibodies that are associated with thrombosis. For the diagnosis of APS, the presence of either lupus anticoagulant, anticardiolipin or anti-β2-glycoprotein1 antibodies of IgG or IgM isotype is required through laboratory testing. Other autoantibodies such as antiphosphatidylethanolamin or antiphosphatidylserin/prothrombin complex antibodies may be interesting in the diagnosis of APS when common antiphospholipid antibodies are missing. These autoantibodies are still under evaluation for their diagnostic contribution. Despite numerous attempts, the assays that are available for the identification of antiphospholipid antibodies have not been standardized yet, which leads to high variability between reagents and laboratories. Thus, to optimize the biological monitoring of APS syndromes, it is mandatory to have consecutive samples analyzed in the same laboratory. PMID:22100197

  19. Affinity Purification of Antibodies.

    PubMed

    Hnasko, Robert M; McGarvey, Jeffery A

    2015-01-01

    Antibodies are provided in a variety of formats that include antiserum, hybridoma culture supernatant, or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facilitate assay reproducibility, economy, and reduced interference of nonspecific components as well as improved storage, stability, and bio-conjugation. Although not always necessary, the relative simplicity of antibody purification using commercially available protein-A, protein-G, or protein-L resins with basic chromatographic principles warrants purification when antibody source material is available in sufficient quantity. Here, we define three simple methods using immobilized (1) protein-A, (2) protein-G, and (3) protein-L agarose beads to yield highly purified antibody. PMID:26160561

  20. Selection of Recombinant Human Antibodies.

    PubMed

    Tomszak, Florian; Weber, Susanne; Zantow, Jonas; Schirrmann, Thomas; Hust, Michael; Frenzel, André

    2016-01-01

    Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies. PMID:27236551

  1. Intracellular expression of a single domain antibody reduces cytotoxicity of 15-acetyldeoxynivalenol in yeast.

    PubMed

    Doyle, Patrick J; Saeed, Hanaa; Hermans, Anne; Gleddie, Steve C; Hussack, Greg; Arbabi-Ghahroudi, Mehdi; Seguin, Charles; Savard, Marc E; Mackenzie, C Roger; Hall, J Christopher

    2009-12-11

    15-Acetyldeoxynivalenol (15-AcDON) is a low molecular weight sesquiterpenoid trichothecene mycotoxin associated with Fusarium ear rot of maize and Fusarium head blight of small grain cereals. The accumulation of mycotoxins such as deoxynivalenol (DON) and 15-AcDON within harvested grain is subject to stringent regulation as both toxins pose dietary health risks to humans and animals. These toxins inhibit peptidyltransferase activity, which in turn limits eukaryotic protein synthesis. To assess the ability of intracellular antibodies (intrabodies) to modulate mycotoxin-specific cytotoxocity, a gene encoding a camelid single domain antibody fragment (V(H)H) with specificity and affinity for 15-AcDON was expressed in the methylotropic yeast Pichia pastoris. Cytotoxicity and V(H)H immunomodulation were assessed by continuous measurement of cellular growth. At equivalent doses, 15-AcDON was significantly more toxic to wild-type P. pastoris than was DON. In turn, DON was orders of magnitude more toxic than 3-acetyldeoxynivalenol. Intracellular expression of a mycotoxin-specific V(H)H within P. pastoris conveyed significant (p = 0.01) resistance to 15-AcDON cytotoxicity at doses ranging from 20 to 100 mug.ml(-1). We also documented a biochemical transformation of DON to 15-AcDON to account for the attenuation of DON cytotoxicity at 100 and 200 mug.ml(-1). The proof of concept established within this eukaryotic system suggests that in planta V(H)H expression may lead to enhanced tolerance to mycotoxins and thereby limit Fusarium infection of commercial agricultural crops. PMID:19783651

  2. NMDA receptor antibodies

    PubMed Central

    Ramberger, Melanie; Bsteh, Gabriel; Schanda, Kathrin; Höftberger, Romana; Rostásy, Kevin; Baumann, Matthias; Aboulenein-Djamshidian, Fahmy; Lutterotti, Andreas; Deisenhammer, Florian; Berger, Thomas

    2015-01-01

    Objectives: To analyze the frequency of NMDA receptor (NMDAR) antibodies in patients with various inflammatory demyelinating diseases of the CNS and to determine their clinical correlates. Methods: Retrospective case-control study from 2005 to 2014 with the detection of serum IgG antibodies to NMDAR, aquaporin-4, and myelin oligodendrocyte glycoprotein by recombinant live cell-based immunofluorescence assays. Fifty-one patients with acute disseminated encephalomyelitis, 41 with neuromyelitis optica spectrum disorders, 34 with clinically isolated syndrome, and 89 with multiple sclerosis (MS) were included. Due to a known association of NMDAR antibodies with seizures and behavioral symptoms, patients with those clinical manifestations were preferentially included and are therefore overrepresented in our cohort. Nine patients with NMDAR encephalitis, 94 patients with other neurologic diseases, and 48 healthy individuals were used as controls. Results: NMDAR antibodies were found in all 9 patients with NMDAR encephalitis but in only 1 of 215 (0.5%) patients with inflammatory demyelination and in none of the controls. This patient had relapsing-remitting MS with NMDAR antibodies present at disease onset, with an increase in NMDAR antibody titer with the onset of psychiatric symptoms and cognitive deficits. Conclusion: In demyelinating disorders, NMDAR antibodies are uncommon, even in those with symptoms seen in NMDAR encephalitis. PMID:26309901

  3. Monoclonal antibody "gold rush".

    PubMed

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush. PMID:17691940

  4. Heart antibodies in cardiomyopathies.

    PubMed Central

    Trueman, T; Thompson, R A; Cummins, P; Littler, W A

    1981-01-01

    The reported frequency of circulating heart reactive antibodies in cardiomyopathies has varied and their significance is unknown. In this study such antibodies were sought in patients with primary congestive and hypertrophic cardiomyopathies and other heart diseases. Standard "single sandwich" and the more sensitive "double sandwich" indirect immunofluorescence techniques failed to disclose a significant difference between any cardiomyopathic group and controls in repeated experiments. With both techniques results were subject to considerable method-specific artefacts and observer variation. No published work associating heart antibodies detected by immunofluorescence methods with cariomyopathies adequately takes these into account. PMID:7028058

  5. Anti-sulfotyrosine antibodies

    DOEpatents

    Bertozzi, Carolyn R.; Kehoe, John; Bradbury, Andrew M.

    2009-09-15

    The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.

  6. HIV Antibody Test

    MedlinePlus

    ... despite the fact that the person is infected ( false negative ). If an HIV antibody test is negative ... infection (around 28 days) and may give a false-negative result. ^ Back to top Is there anything ...

  7. Platelet associated antibodies

    MedlinePlus

    ... of the following: For unknown reasons (idiopathic thrombocytopenic purpura, or ITP ) Side effect of certain drugs such ... 2012:chap 134. Read More Antibody Idiopathic thrombocytopenic purpura (ITP) Platelet count Serum globulin electrophoresis Thrombocytopenia Update ...

  8. Monoclonal antibodies and cancer therapy

    SciTech Connect

    Reisfeld, R.A.; Sell, S.

    1985-01-01

    These proceedings collect papers on the subject of monoclonal antibodies. Topics include: Monoclonal antibody, biochemical effects and cancer therapeutic potential of tunicamycin, use of monoclonal antibodies for detection of lymph node metastases, active specific immunotherapy, and applications of monoclonal antibodies to investigations of growth factors.

  9. Antinuclear antibodies in mice

    PubMed Central

    Teague, P. O.; Friou, G. J.

    1969-01-01

    Seven-week-old and 16-week-old A/Jax mice were injected with viable spleen cells or homogenates of spleen cells obtained from older syngeneic mice which either had autoimmune anti-deoxyribonucleoprotein (DNP) antibody in their sera or lacked this activity. None of the 7-week-old recipients developed detectable anti-DNP antibody. However, most of the animals in the 16-week-old group developed this autoantibody. The viability of the cells and the presence of or absence of anti-DNP antibody in the donor's sera did not appear to influence the autoimmune response of these recipients. When viable thymus cells which were obtained from young A/Jax mice were transferred to groups of older syngeneic animals that had developed anti-DNP antibody spontaneously, the anti-DNP decreased or disappeared from the sera of most recipients. Untreated controls did not show this variation. When 36-week-old A/Jax mice which lacked anti-DNP antibody were injected with thymus or spleen cells obtained from young donors, none of the recipients or untreated controls developed anti-DNP antibody. After specific immunization with DNP, however, the control animals began to produce autoimmune anti-DNP antibody while the animals treated with thymus or spleen cells remained unresponsive. These observations support the hypothesis that in A/Jax mice: (1) autoimmunity to DNP may result from failure of normal homeostasis mechanisms which allow proliferation of autoimmune cells; (2) the number of cells with autoimmune potential may increase during ageing; (3) the efficiency of the homeostasis system may decrease during ageing as the result of microbial or genetic factors; and (4) cells which participate in homeostasis are found in the thymus and spleen of young mice and may be the thymus dependent lymphocytes. PMID:5307745

  10. Polyreactive Antibodies: Function and Quantification

    PubMed Central

    Gunti, Sreenivasulu; Notkins, Abner Louis

    2015-01-01

    Polyreactive antibodies, a major component of the natural antibody repertoire, bind with low affinity to a variety of structurally unrelated antigens. Many of these antibodies are germline or near germline in sequence. Little is known, however, about the function of these antibodies. In the present mini-review we show: (1) that the broad antibacterial activity of the natural antibody repertoire is largely due to polyreactive antibodies, which in the presence of complement lyse bacteria and enhance phagocytosis; (2) that polyreactive antibodies bind to UV- or human immunodeficiency virus-induced apoptotic cells and with complement enhance the phagocytosis of these cells by macrophages; and (3) that dinitrophenol can be used as a surrogate for quantitating the level of polyreactive antibodies in serum. We conclude that polyreactive antibodies protect the host against both foreign invaders and its own damaged/apoptotic cells. PMID:26116731

  11. Accommodation and antibodies.

    PubMed

    Dehoux, Jean-Paul; Gianello, Pierre

    2009-06-01

    Accommodation refers to the condition in which an organ transplant functions normally by acquiring resistance to immune-mediated injury (especially), despite the presence of anti-transplant antibodies in the recipient. This status is associated with several modifications in the recipient as well as in the graft, such as previous depletion of anti-graft antibodies and their slow return once the graft is placed; expression of several protective genes in the graft; a Th2 immune response in the recipient; and inhibition of the membrane attack complex of complement. PMID:18973811

  12. Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies

    NASA Astrophysics Data System (ADS)

    Zarschler, K.; Prapainop, K.; Mahon, E.; Rocks, L.; Bramini, M.; Kelly, P. M.; Stephan, H.; Dawson, K. A.

    2014-05-01

    For effective localization of functionalized nanoparticles at diseased tissues such as solid tumours or metastases through biorecognition, appropriate targeting vectors directed against selected tumour biomarkers are a key prerequisite. The diversity of such vector molecules ranges from proteins, including antibodies and fragments thereof, through aptamers and glycans to short peptides and small molecules. Here, we analyse the specific nanoparticle targeting capabilities of two previously suggested peptides (D4 and GE11) and a small camelid single-domain antibody (sdAb), representing potential recognition agents for the epidermal growth factor receptor (EGFR). We investigate specificity by way of receptor RNA silencing techniques and look at increasing complexity in vitro by introducing increasing concentrations of human or bovine serum. Peptides D4 and GE11 proved problematic to employ and conjugation resulted in non-receptor specific uptake into cells. Our results show that sdAb-functionalized particles can effectively target the EGFR, even in more complex bovine and human serum conditions where targeting specificity is largely conserved for increasing serum concentration. In human serum however, an inhibition of overall nanoparticle uptake is observed with increasing protein concentration. For highly affine targeting ligands such as sdAbs, targeting a receptor such as EGFR with low serum competitor abundance, receptor recognition function can still be partially realised in complex conditions. Here, we stress the value of evaluating the targeting efficiency of nanoparticle constructs in realistic biological milieu, prior to more extensive in vivo studies.For effective localization of functionalized nanoparticles at diseased tissues such as solid tumours or metastases through biorecognition, appropriate targeting vectors directed against selected tumour biomarkers are a key prerequisite. The diversity of such vector molecules ranges from proteins, including

  13. Analysis of Heavy-Chain Antibody Responses and Resistance to Parelaphostrongylus tenuis in Experimentally Infected Alpacas

    PubMed Central

    Purdy, S. R.; Gagliardo, L. F.; Lefman, S.; Hamel, P. J. S.; Ku, S.; Mainini, T.; Hoyt, G.; Justus, K.; Daley-Bauer, L. P.; Duffy, M. S.

    2012-01-01

    The parasitic nematode Parelaphostrongylus tenuis is an important cause of neurologic disease of camelids in central and eastern North America. The aim of this study was to determine whether alpacas develop resistance to disease caused by P. tenuis in response to a previous infection or a combination of controlled infection and immunization. Alpacas were immunized with a homogenate of third-stage larvae (L3) and simultaneously implanted subcutaneously with diffusion chambers containing 20 live L3. Sham-treated animals received adjuvant alone and empty chambers. The protocol was not effective in inducing resistance to oral challenge with 10 L3, and disease developed between 60 and 71 days following infection. Immediately following the onset of neurologic disease, affected animals were treated with a regimen of anthelmintic and anti-inflammatory drugs, and all recovered. One year later, a subset of alpacas from this experiment was challenged with 20 L3 and the results showed that prior infection induced resistance to disease. Primary and secondary infections induced production of conventional and heavy-chain IgGs that reacted with soluble antigens in L3 homogenates but did not consistently recognize a recombinant form of a parasite-derived aspartyl protease inhibitor. Thus, the latter antigen may not be a good candidate for serology-based diagnostic tests. Antibody responses to parasite antigens occurred in the absence of overt disease, demonstrating that P. tenuis infection can be subclinical in a host that has been considered to be highly susceptible to disease. The potential for immunoprophylaxis to be effective in preventing disease caused by P. tenuis was supported by evidence of resistance to reinfection. PMID:22593238

  14. Reshaping Antibody Diversity

    PubMed Central

    Wang, Feng; Ekiert, Damian C.; Ahmad, Insha; Yu, Wenli; Zhang, Yong; Bazirgan, Omar; Torkamani, Ali; Raudsepp, Terje; Mwangi, Waithaka; Criscitiello, Michael F.; Wilson, Ian A.; Schultz, Peter G.; Smider, Vaughn V.

    2014-01-01

    Summary Unlike humans or mice, some species have limited genome encoded combinatorial diversity potential, yet mount a robust antibody response. Cows are unusual in having exceptionally long CDR H3 loops and few V-regions, but the mechanism for creating diversity is not understood. Deep sequencing revealed that ultralong CDR H3s contain a remarkable complexity of cysteines, suggesting that disulfide-bonded mini-domains may arise during repertoire development. Indeed, crystal structures of two cow antibodies reveal that these CDR H3s form a very unusual architecture composed of a β-strand “stalk” that supports a structurally diverse, disulfide-bonded, “knob” domain. Sequence analysis suggests that diversity arises from somatic hypermutation of an ultralong DH with a severe codon bias towards mutation to cysteine. These unusual antibodies can be elicited to recognize defined antigens through the knob domain. Thus, the bovine immune system produces an antibody repertoire composed of CDR H3s of unprecedented length that fold into a diversity of mini-domains generated through combinations of somatically generated disulfides. PMID:23746848

  15. Monoclonal Antibodies against Pectin

    PubMed Central

    Liners, Françoise; Letesson, Jean-Jacques; Didembourg, Christian; Van Cutsem, Pierre

    1989-01-01

    Monoclonal antibodies have been produced that recognize a conformation of homopolygalacturonic acid (pectic acid) induced by an optimum concentration of calcium and sodium of about 1 and 150 millinormal, respectively. The epitope recognized is probably part of the dimers of pectin chains associated according to the `egg box' model. Images Figure 2 PMID:16667195

  16. Lupus anticoagulants and antiphospholipid antibodies

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000547.htm Lupus anticoagulants and antiphospholipid antibodies To use the sharing features on this page, please enable JavaScript. Lupus anticoagulants are antibodies against substances in the lining ...

  17. Red Blood Cell Antibody Identification

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? RBC Antibody Identification Share this page: Was this page helpful? Also known as: Alloantibody Identification; Antibody ID, RBC; RBC Ab ID Formal name: Red Blood Cell ...

  18. Anti-smooth muscle antibody

    MedlinePlus

    ... medlineplus.gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the ...

  19. Humanized Antibodies for Antiviral Therapy

    NASA Astrophysics Data System (ADS)

    Co, Man Sung; Deschamps, Marguerite; Whitley, Richard J.; Queen, Cary

    1991-04-01

    Antibody therapy holds great promise for the treatment of cancer, autoimmune disorders, and viral infections. Murine monoclonal antibodies are relatively easy to produce but are severely restricted for therapeutic use by their immunogenicity in humans. Production of human monoclonal antibodies has been problematic. Humanized antibodies can be generated by introducing the six hypervariable regions from the heavy and light chains of a murine antibody into a human framework sequence and combining it with human constant regions. We humanized, with the aid of computer modeling, two murine monoclonal antibodies against herpes simplex virus gB and gD glycoproteins. The binding, virus neutralization, and cell protection results all indicate that both humanized antibodies have retained the binding activities and the biological properties of the murine monoclonal antibodies.

  20. Lupus anticoagulants and antiphospholipid antibodies

    MedlinePlus

    ... may make the diagnosis of antiphospholipid antibody syndrome (APS) if: You have had a blood clot or ... your risk of blood clots. ANTIPHOSPHOLIPID ANTIBODY SYNDROME (APS) In general you will need long-term treatment ...

  1. The Art of Making Antibodies.

    ERIC Educational Resources Information Center

    Headon, Denis R.

    1986-01-01

    Provides background information for teachers on the nature and production of antibodies. Points out that the production of monoclonal antibodies blends the malignant with the beneficial to create a medical tool of exciting potential. (JN)

  2. Anti-insulin antibody test

    MedlinePlus

    Insulin antibodies - serum; Insulin Ab test ... Normally, there are no antibodies against insulin in your blood. Normal value ranges may vary slightly among different laboratories. Some labs use different measurements or ...

  3. Construction of a biotinylated cameloid-like antibody for lable-free detection of apolipoprotein B-100.

    PubMed

    Li, Henan; Yan, Junrong; Ou, Weijun; Liu, Hong; Liu, Songqin; Wan, Yakun

    2015-02-15

    Nanobodies (Nbs), also known as the variable domain of the heavy-chain-only antibody (VHH), are single-domain antigen-binding fragments derived from heavy-chain antibodies that occur naturally in sera of camelids. Due to their unique properties of small size (15 kD), intrinsic stability, high affinity and specificity, Nbs are suitable for detecting clinical relevant antigens. Apolipoprotein B-100 (ApoB-100) is a highly predictive marker for coronary artery disease (CAD), which is frequently detected in clinical diagnosis. Herein, we successfully obtained anti-ApoB-100 Nbs for the first time and further fabricated a label-free and sensitive immunosensor for ApoB-100 based on isolated anti-ApoB-100 nanobody (Nb) using the electrochemical impedance spectroscopy (EIS) technique. We have generated an immunized phage display library against ApoB-100 and isolated four anti-ApoB-100 Nbs with high affinity and stability. The Nb with the highest affinity was biotinylated based on in vivo BirA system. Further, we developed a label-free electrochemical impedance immunosensor for ApoB-100 using this anti-ApoB-100 Nb. The attachment of ApoB-100 onto the anti-ApoB-100 Nb-immobilized sensing layer led to the increased electron-transfer resistance, which was proportional to ApoB-100 concentration in the range from 0.05 to 5 ng mL(-1) with a detection limit of 0.03 ng mL(-1). This proposed immunosensor revealed high specificity to detect ApoB-100, acceptable intra-assay precision and good stability, functioning as a feasible technique for CAD diagnosis. PMID:25203942

  4. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking

    PubMed Central

    Herrera, Cristina; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten

    2016-01-01

    JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin’s enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin’s bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells. PMID:27300140

  5. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking.

    PubMed

    Herrera, Cristina; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten; Mantis, Nicholas J

    2016-01-01

    JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin's enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin's bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells. PMID:27300140

  6. Therapeutic antibodies in ophthalmology

    PubMed Central

    Magdelaine-Beuzelin, Charlotte; Pinault, Coralie; Paintaud, Gilles

    2010-01-01

    More than a century after the first successful use of serotherapy, antibody-based therapy has been renewed by the availability of recombinant monoclonal antibodies. As in the past, current clinical experience has prompted new pharmacological questions and induced much debate among practitioners, notably in the field of ophthalmology. An examination of the history of antibodies as treatments for ocular disorders reveals interesting parallels to the modern era. The fact that a treatment administered by a systemic route could be efficacious in a local disease was not widely accepted and the “chemical” nature of antibodies was not clearly understood in the late 19th century. Clinical studies by Henry Coppez, a Belgian ophthalmologist, established in 1894 that antidiphtheric antitoxins could be used to treat conjunctival diphtheria. Nearly 20 years later, Coppez and Danis described age-related macular degeneration, a disorder which today benefits from ranibizumab therapy. The product, a locally-administered recombinant monoclonal Fab fragment, is directed against vascular endothelial growth factor A. Interestingly, its full-size counterpart, bevacizumab, which is approved for the treatment of solid tumors, has also demonstrated efficacy in age-related macular degeneration when administered either intravenously or locally, which raises new questions about antibody pharmacology and biodistribution. In order to shed some light on this debate, we recount the early history of serotherapy applied to ophthalmology, review the exact molecular differences between ranibizumab and bevacizumab, and discuss what is known about IgG and the blood-retina barrier and the possible role of FcRn, an IgG transporter. PMID:21358858

  7. Trifunctional antibody ertumaxomab

    PubMed Central

    Diermeier-Daucher, Simone; Ortmann, Olaf; Buchholz, Stefan; Brockhoff, Gero

    2012-01-01

    Background: The trifunctional antibody ertumaxomab bivalently targets the human epidermal growth factor receptor 2 (Her2) on epithelial (tumor) cells and the T cell specific CD3 antigen, and its Fc region is selectively recognized by Fcγ type I/III receptor-positive immune cells. As a trifunctional immunoglobulin, ertumaxomab therefore not only targets Her2 on cancer cells, but also triggers immunological effector mechanisms mediated by T and accessory cells (e.g., macrophages, dendritic cells, natural killer cells). Whether molecular effects, however, might contribute to the cellular antitumor efficiency of ertumaxomab are largely unknown. Methods: Potential molecular effects of ertumaxomab on Her2-overexpressing BT474 and SK-BR-3 breast cancer cells were evaluated. The dissociation constant Kd of ertumaxomab was calculated from titration curves that were recorded by flow cytometry. Treatment-induced changes in Her2 homodimerization were determined by flow cytometric fluorescence resonance energy transfer measurements on a cell-by-cell basis. Potential activation / deactivation of Her2, ERK1/2, AKT and STAT3 were analyzed by western blotting, Immunochemistry and immunofluorescent cell staining. Results: The Kd of ertumaxomab for Her2-binding was determined at 265 nM and the ertumaxomab binding epitope was found to not overlap with that of the therapeutic anti-Her2 monoclonal antibodies trastuzumab and pertuzumab. Ertumaxomab caused an increase in Her2 phosphorylation at higher antibody concentrations, but changed neither the rate of Her2-homodimerization /-phosphorylation nor the activation state of key downstream signaling proteins analyzed. Conclusions: The unique mode of action of ertumaxomab, which relies more on activation of immune-mediated mechanisms against tumor cells compared with currently available therapeutic antibodies for breast cancer treatment, suggests that modular or sequential treatment with the trifunctional bivalent antibody might complement

  8. Antibodies to cardiac receptors.

    PubMed

    Boivin-Jahns, V; Schlipp, A; Hartmann, S; Panjwani, P; Klingel, K; Lohse, M J; Ertl, G; Jahns, R

    2012-12-01

    Inflammation of cardiac tissue is generally associated with an activation of the host's immune system. On the one hand, this activation is mandatory to protect the heart by fighting the invading microbial agents or toxins and by engaging myocardial reparation and healing processes. On the other hand, uncontrolled activation of the immune defense has the risk of an arousal of auto- or cross-reactive immune cells, which in some cases bring more harm than good. Dependent on the individual genetic predisposition, such heart-directed autoimmune reactions most likely occur as a result of myocyte apoptosis or necrosis and subsequent liberation of self-antigens previously hidden to the immune system. During the past two decades, evidence for a pathogenic relevance of autoimmunity in human heart disease has substantially increased. Conformational cardiac (auto)antibodies affecting cardiac function and, in particular, (auto)antibodies that target G protein-coupled cardiac membrane receptors are thought to play a key role in the development of heart failure. Clinical pilot studies even suggest that such antibodies negatively affect survival in heart failure patients. However, the true prevalence and clinical impact of many cardiac (auto)antibodies in human heart diseases are still unclear, as are the events triggering their formation, their titer course, and their patterns of clearance and/or persistence. The present article summarizes current knowledge in the field of cardiac receptor (auto)antibodies including recent efforts to address some of the aforementioned gaps of knowledge, thereby attempting to pave the way for novel, more specific therapeutic approaches. PMID:23183584

  9. Antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.

    1988-06-28

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be about 5.0 nm. Methods and reagents are disclosed in which antibodies or Fab' fragments thereof are covalently bound to a stable cluster of gold atoms. 2 figs.

  10. Antibody mimetics: promising complementary agents to animal-sourced antibodies.

    PubMed

    Baloch, Abdul Rasheed; Baloch, Abdul Wahid; Sutton, Brian J; Zhang, Xiaoying

    2016-01-01

    Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed. PMID:25264572

  11. Antibody Engineering and Therapeutics Conference

    PubMed Central

    Almagro, Juan Carlos; Gilliland, Gary L; Scott, Jamie; Larrick, James W; Plückthun, Andreas; Veldman, Trudi; Adams, Gregory P; Parren, Paul WHI; Chester, Kerry A; Bradbury, Andrew; Reichert, Janice M; Huston, James S

    2013-01-01

    The Antibody Engineering and Therapeutics conference, which serves as the annual meeting of The Antibody Society, will be held in Huntington Beach, CA from Sunday December 8 through Thursday December 12, 2013. The scientific program will cover the full spectrum of challenges in antibody research and development, and provide updates on recent progress in areas from basic science through approval of antibody therapeutics. Keynote presentations will be given by Leroy Hood (Institute of System Biology), who will discuss a systems approach for studying disease that is enabled by emerging technology; Douglas Lauffenburger (Massachusetts Institute of Technology), who will discuss systems analysis of cell communication network dynamics for therapeutic biologics design; David Baker (University of Washington), who will describe computer-based design of smart protein therapeutics; and William Schief (The Scripps Research Institute), who will discuss epitope-focused immunogen design.   In this preview of the conference, the workshop and session chairs share their thoughts on what conference participants may learn in sessions on: (1) three-dimensional structure antibody modeling; (2) identifying clonal lineages from next-generation data sets of expressed VH gene sequences; (3) antibodies in cardiometabolic medicine; (4) the effects of antibody gene variation and usage on the antibody response; (5) directed evolution; (6) antibody pharmacokinetics, distribution and off-target toxicity; (7) use of knowledge-based design to guide development of complementarity-determining regions and epitopes to engineer or elicit the desired antibody; (8) optimizing antibody formats for immunotherapy; (9) antibodies in a complex environment; (10) polyclonal, oligoclonal and bispecific antibodies; (11) antibodies to watch in 2014; and (12) polyreactive antibodies and polyspecificity.

  12. Targeting antibodies to the cytoplasm

    PubMed Central

    Marschall, Andrea L J; Frenzel, André; Schirrmann, Thomas; Schüngel, Manuela

    2011-01-01

    A growing number of research consortia are now focused on generating antibodies and recombinant antibody fragments that target the human proteome. A particularly valuable application for these binding molecules would be their use inside a living cell, e.g., for imaging or functional intervention. Animal-derived antibodies must be brought into the cell through the membrane, whereas the availability of the antibody genes from phage display systems allows intracellular expression. Here, the various technologies to target intracellular proteins with antibodies are reviewed. PMID:21099369

  13. [Antibody therapy for Alzheimer's disease].

    PubMed

    Tabira, Takeshi; Matsumoto, Shin-Ei; Jin, Haifeng

    2011-11-01

    In order to avoid Abeta-induced autoimmune encephalitis, several monoclonal and polyclonal antibodies are in clinical trials. These are bapineuzumab, solanezumab, ponezumab, gantenerumab, BAN2401, gammaguard and octagam. Since each antibody has a different antigen epitope of Abeta, anti-amyloid activities are different. It is unknown which antibody is effective for Alzheimer disease, and we must wait for the result of clinical trials. Some patients who developed tissue amyloid plaque immuno-reactive (TAPIR) antibody showed slower decline after AN-1792 vaccination. We developed TAPIR-like monoclonal antibody, which was found to react with Abeta oligomers preferentially. PMID:22277519

  14. Monoclonal antibodies to gonadotropin subunits

    SciTech Connect

    Ehrlich, P.H.; Moyle, W.R.; Canfield, R.E.

    1985-01-01

    The production of monoclonal antibodies to peptide hormones, with their unifocal binding sites, can provide tools for understanding hormone structure and function. The paper focuses on techniques that are important for the study of monoclonal antibodies to chorionic gonadotropin (hCG), including hybridoma production, methods of screening for desired clones, properties of the monoclonal antibodies, effect of antibodies on hormone-receptor interaction, inhibition of binding of radiolabeled hCG, inhibition of hCG induced steroidogenesis, determination of relative orientation of epitopes, and synergistic actions of monoclonal antibodies to hCG.

  15. Therapeutic antibodies against cancer

    PubMed Central

    Adler, Mark J.; Dimitrov, Dimiter S.

    2012-01-01

    Antibody-based therapeutics against cancer are highly successful in clinic and currently enjoy unprecedented recognition of their potential; 13 monoclonal antibodies (mAbs) have been approved for clinical use in the European Union and in the United States (one, mylotarg, was withdrawn from market in 2010). Three of the mAbs (bevacizumab, rituximab, trastuzumab) are in the top six selling protein therapeutics with sales in 2010 of more than $5 bln each. Hundreds of mAbs including bispecific mAbs and multispecific fusion proteins, mAbs conjugated with small molecule drugs and mAbs with optimized pharmacokinetics are in clinical trials. However, challenges remain and it appears that deeper understanding of mechanisms is needed to overcome major problems including resistance to therapy, access to targets, complexity of biological systems and individual variations. PMID:22520975

  16. Antibody Therapy for Histoplasmosis

    PubMed Central

    Nosanchuk, Joshua D.; Zancopé-Oliveira, Rosely M.; Hamilton, Andrew J.; Guimarães, Allan J.

    2012-01-01

    The endemic human pathogenic fungus Histoplasma capsulatum is a major fungal pathogen with a broad variety of clinical presentations, ranging from mild, focal pulmonary disease to life-threatening systemic infections. Although azoles, such as itraconazole and voriconazole, and amphotericin B have significant activity against H. capsulatum, about 1 in 10 patients hospitalized due to histoplasmosis die. Hence, new approaches for managing disease are being sought. Over the past 10 years, studies have demonstrated that monoclonal antibodies (mAbs) can modify the pathogenesis of histoplasmosis. Disease has been shown to be impacted by mAbs targeting either fungal cell surface proteins or host co-stimulatory molecules. This review will detail our current knowledge regarding the impact of antibody therapy on histoplasmosis. PMID:22347215

  17. Antibody-mediated radiotherapy

    SciTech Connect

    Bloomer, W.D.; Lipsztein, R.; Dalton, J.F.

    1985-05-01

    Antibodies that react with antigens on the surface of tumor cells but not normal cells have great potential for cancer detection and therapy. If radiolabeled without loss of immunologic specificity, such antibodies may be able to deliver cytoxic amounts of radiation. Target- cell specificity and a high extraction coefficient are necessary with any radionuclide in order to minimize normal tissue irradiation. Tumor- cell-retention time and the rate of catabolized radionuclide will also influence ultimate applicability. Among the unanswered questions for choosing a radionuclide is the choice of particle emitter. Although classic beta emitters have been used in a number of clinical situations, they have not had a major impact on disease outcome except in diseases of the thyroid. Unfortunately, Auger emitters such as iodine 125 are cytotoxic only when localized within close proximity to the genome. On the other hand, alpha emitters such as astatine 211 eliminate the need for subcellular sequestration but not cell-specific localization. 34 references.

  18. Prediction of Antibody Epitopes.

    PubMed

    Nielsen, Morten; Marcatili, Paolo

    2015-01-01

    Antibodies recognize their cognate antigens in a precise and effective way. In order to do so, they target regions of the antigenic molecules that have specific features such as large exposed areas, presence of charged or polar atoms, specific secondary structure elements, and lack of similarity to self-proteins. Given the sequence or the structure of a protein of interest, several methods exploit such features to predict the residues that are more likely to be recognized by an immunoglobulin. Here, we present two methods (BepiPred and DiscoTope) to predict linear and discontinuous antibody epitopes from the sequence and/or the three-dimensional structure of a target protein. PMID:26424260

  19. Commercial antibodies and their validation

    PubMed Central

    Voskuil, JLA

    2014-01-01

    Despite an impressive growth in the business of research antibodies a general lack of trust in commercial antibodies remains in place. A variety of issues, each one potentially causing an antibody to fail, underpin the frustrations that scientists endure. Lots of money goes to waste in buying and trying one failing antibody after the other without realizing all the pitfalls that come with the product: Antibodies can get inactivated, both the biological material and the assay itself can potentially be flawed, a single antibody featuring in many different catalogues can be deemed as a set of different products, and a bad choice of antibody type, wrong dilutions, and lack of proper validation can all jeopardize the intended experiments. Antibodies endorsed by scientific research papers do not always meet the scientist’s requirements either due to flawed specifications, or due to batch-to-batch variations. Antibodies can be found with Quality Control data obtained from previous batches that no longer represent the batch on sale. In addition, one cannot assume that every antibody is fit for every application. The best chance of success is to try an antibody that already was confirmed to perform correctly in the required platform. PMID:25324967

  20. Antibody Production with Synthetic Peptides.

    PubMed

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column. PMID:27515072

  1. A monoclonal antibody against leptin.

    PubMed

    Mahmoudian, Jafar; Jeddi-Tehrani, Mahmood; Bayat, Ali Ahmad; Mahmoudi, Ahmad Reza; Vojgani, Yasaman; Tavangar, Banafsheh; Hadavi, Reza; Zarei, Saeed

    2012-10-01

    Leptin is an important protein that regulates energy storage and homeostasis in humans and animals. Leptin deficiency results in various abnormalities such as diabetes, obesity, and infertility. Producing a high affinity monoclonal antibody against human leptin provides an important tool to monitor and trace leptin function in different biological fluids. In this study, recombinant human leptin was conjugated to KLH and injected into mice. After immunization, mouse myeloma SP2/0 cells were fused with murine splenocytes followed by selection of antibody-producing hybridoma cells. After screening of different hybridoma colonies by ELISA, a high affinity antibody was selected and purified by affinity chromatography. The affinity constant of the antibody was measured by ELISA. Western blot, immunocytochemistry, and flow cytometry experiments were used to characterize the antibody. The anti-leptin antibody had a high affinity (around 1.13 × 10(-9) M) for its antigen. The saturation of the antibody with leptin (20 moles leptin per 1 mole antibody) in Western blot analysis proved that the antibody had specific binding to its antigen. Immunocytochemistry and flow cytometry on JEG-3 (human placental choriocarcinoma cell) cells revealed that the anti-leptin antibody recognized intracellular leptin. In conclusion, we report here the production and characterization of a murine anti-leptin antibody with high affinity for human leptin. PMID:23098305

  2. Monoclonal Antibodies for Cancer Immunotherapy

    PubMed Central

    Weiner, Louis M.; Dhodapkar, Madhav V.; Ferrone, Soldano

    2008-01-01

    Monoclonal antibodies have emerged as effective therapeutic agents for many human malignancies. However, the ability of antibodies to initiate tumor antigen-specific immune responses has not received as much attention as other mechanisms of antibody action. Here we describe the rationale and evidence for developing anti-cancer antibodies that can stimulate host tumor antigen-specific immune responses. This may be accomplished by inducing antibody-dependent cellular cytotoxicity, by promoting antibody-targeted cross-presentation of tumor antigens or by triggering the idiotypic network. Future treatment modifications or combinations should be able to prolong, amplify and shape these immune responses to increase the clinical benefits of antibody therapy of human cancer. PMID:19304016

  3. Antibody therapy for Ebola

    PubMed Central

    Qiu, Xiangguo; Kobinger, Gary P

    2014-01-01

    Ebola viruses can cause severe hemorrhagic fever in humans and nonhuman primates with fatality rates up to 90%, and are identified as biosafety level 4 pathogens and CDC Category A Agents of Bioterrorism. To date, there are no approved therapies and vaccines available to treat these infections. Antibody therapy was estimated to be an effective and powerful treatment strategy against infectious pathogens in the late 19th, early 20th centuries but has fallen short to meet expectations to widely combat infectious diseases. Passive immunization for Ebola virus was successful in 2012, after over 15 years of failed attempts leading to skepticism that the approach would ever be of potential benefit. Currently, monoclonal antibody (mAbs)-based therapies are the most efficient at reversing the progression of a lethal Ebola virus infection in nonhuman primates, which recapitulate the human disease with the highest similarity. Novel combinations of mAbs can even fully cure lethally infected animals after clinical symptoms and circulating virus have been detected, days into the infection. These new developments have reopened the door for using antibody-based therapies for filovirus infections. Furthermore, they are reigniting hope that these strategies will contribute to better control the spread of other infectious agents and provide new tools against infectious diseases. PMID:24503566

  4. Primary antibody deficiency syndromes.

    PubMed

    Wood, P

    2009-03-01

    The primary antibody deficiency syndromes are a group of rare disorders characterized by an inability to produce clinically effective immunoglobulin responses. Some of these disorders result from genetic mutations in genes involved in B cell development, whereas others appear to be complex polygenic disorders. They most commonly present with recurrent infections due to encapsulated bacteria, although in the most common antibody deficiency, Common Variable Immunodeficiency, systemic and organ-specific autoimmunity can be a presenting feature. Diagnostic delay in this group of disorders remains a problem, and the laboratory has a vital role in the detection of abnormalities in immunoglobulin concentration and function. It is critical to distinguish this group of disorders from secondary causes of hypogammaglobulinaemia, in particular lymphoid malignancy, and appropriate laboratory investigations are of critical importance. Treatment of primary antibody deficiencies involves immunoglobulin replacement therapy, either via the intravenous or subcutaneous route. Patients remain at risk of a wide variety of complications, not all linked to diagnostic delay and inadequate therapy. In common variable immunodeficiency (CVID) in particular, patients remain at significantly increased risk of lymphoid malignancy, and regular clinical and laboratory monitoring is required. This review aims to give an overview of these conditions for the general reader, covering pathogenesis, clinical presentation, laboratory investigation, therapy and clinical management. PMID:19151170

  5. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Single Domain Antibodies Are Potent Inhibitors of Low Density Lipoprotein Receptor Degradation.

    PubMed

    Weider, Elodie; Susan-Resiga, Delia; Essalmani, Rachid; Hamelin, Josée; Asselin, Marie-Claude; Nimesh, Surendra; Ashraf, Yahya; Wycoff, Keith L; Zhang, Jianbing; Prat, Annik; Seidah, Nabil G

    2016-08-01

    Single domain antibodies (sdAbs) correspond to the antigen-binding domains of camelid antibodies. They have the same antigen-binding properties and specificity as monoclonal antibodies (mAbs) but are easier and cheaper to produce. We report here the development of sdAbs targeting human PCSK9 (proprotein convertase subtilisin/kexin type 9) as an alternative to anti-PCSK9 mAbs. After immunizing a llama with human PCSK9, we selected four sdAbs that bind PCSK9 with a high affinity and produced them as fusion proteins with a mouse Fc. All four sdAb-Fcs recognize the C-terminal Cys-His-rich domain of PCSK9. We performed multiple cellular assays and demonstrated that the selected sdAbs efficiently blocked PCSK9-mediated low density lipoprotein receptor (LDLR) degradation in cell lines, in human hepatocytes, and in mouse primary hepatocytes. We further showed that the sdAb-Fcs do not affect binding of PCSK9 to the LDLR but rather block its induced cellular LDLR degradation. Pcsk9 knock-out mice expressing a human bacterial artificial chromosome (BAC) transgene were generated, resulting in plasma levels of ∼300 ng/ml human PCSK9. Mice were singly or doubly injected with the best sdAb-Fc and analyzed at day 4 or 11, respectively. After 4 days, mice exhibited a 32 and 44% decrease in the levels of total cholesterol and apolipoprotein B and ∼1.8-fold higher liver LDLR protein levels. At 11 days, the equivalent values were 24 and 46% and ∼2.3-fold higher LDLR proteins. These data constitute a proof-of-principle for the future usage of sdAbs as PCSK9-targeting drugs that can efficiently reduce LDL-cholesterol, and as tools to study the Cys-His-rich domain-dependent sorting the PCSK9-LDLR complex to lysosomes. PMID:27284008

  6. Antibody Therapy for Pediatric Leukemia

    PubMed Central

    Vedi, Aditi; Ziegler, David S.

    2014-01-01

    Despite increasing cure rates for pediatric leukemia, relapsed disease still carries a poor prognosis with significant morbidity and mortality. Novel targeted therapies are currently being investigated in an attempt to reduce adverse events and improve survival outcomes. Antibody therapies represent a form of targeted therapy that offers a new treatment paradigm. Monoclonal antibodies are active in pediatric acute lymphoblastic leukemia (ALL) and are currently in Phase III trials. Antibody-drug conjugates (ADCs) are the next generation of antibodies where a highly potent cytotoxic agent is bound to an antibody by a linker, resulting in selective targeting of leukemia cells. ADCs are currently being tested in clinical trials for pediatric acute myeloid leukemia and ALL. Bispecific T cell engager (BiTE) antibodies are a construct whereby each antibody contains two binding sites, with one designed to engage the patient’s own immune system and the other to target malignant cells. BiTE antibodies show great promise as a novel and effective therapy for childhood leukemia. This review will outline recent developments in targeted agents for pediatric leukemia including monoclonal antibodies, ADCs, and BiTE antibodies. PMID:24795859

  7. Induction of antihemagglutinin antibodies by polyclonal antiidiotype antibodies.

    PubMed

    Dinca, L; Neuwirth, S; Schulman, J; Bona, C

    1993-01-01

    Antiidiotypic antibodies can be envisioned as an alternative approach in the development of vaccines against influenza virus, which exhibits natural antigenic variations. In our work, we obtained two polyclonal cross-reactive anti-Id antibodies against PY102, VM113, and VM202 mAbs, which in turn are specific respectively for PR8 virus and laboratory-induced virus variants (PY102-V1 and VM113-V1). With these cross-reactive anti-Id antibodies, we were able to elicit anti-HA antibodies in mice. In comparing the anti-HA antibody response in animals injected with anti-Id antibodies to those immunized with PR8 influenza virus, we demonstrated that the HI titer was higher after virus immunization and that the PR8 virus boost was more efficient in this group. Our results showed that the polyclonal cross-reactive anti-Id antibodies were more efficient than the individual anti-Ids at eliciting responses. At the same time, we demonstrated that PR8-primed T cells, cultured with B cells from animals immunized with anti-Id antibodies, were able to produce anti-PR8 antibodies subsequent to stimulation with influenza virus. PMID:8476510

  8. How antibodies use complement to regulate antibody responses.

    PubMed

    Sörman, Anna; Zhang, Lu; Ding, Zhoujie; Heyman, Birgitta

    2014-10-01

    Antibodies, forming immune complexes with their specific antigen, can cause complete suppression or several 100-fold enhancement of the antibody response. Immune complexes containing IgG and IgM may activate complement and in such situations also complement components will be part of the immune complex. Here, we review experimental data on how antibodies via the complement system upregulate specific antibody responses. Current data suggest that murine IgG1, IgG2a, and IgG2b upregulate antibody responses primarily via Fc-receptors and not via complement. In contrast, IgM and IgG3 act via complement and require the presence of complement receptors 1 and 2 (CR1/2) expressed on both B cells and follicular dendritic cells. Complement plays a crucial role for antibody responses not only to antigen complexed to antibodies, but also to antigen administered alone. Lack of C1q, but not of Factor B or MBL, severely impairs antibody responses suggesting involvement of the classical pathway. In spite of this, normal antibody responses are found in mice lacking several activators of the classical pathway (complement activating natural IgM, serum amyloid P component (SAP), specific intracellular adhesion molecule-grabbing non-integrin R1 (SIGN-R1) or C-reactive protein. Possible explanations to these observations will be discussed. PMID:25001046

  9. Antibody Glossary —

    Cancer.gov

    The components of the immune system have diverse roles in the initial development of cancers, progression of early-stage malignancies to invasive tumors, establishment of metastatic lesions, tumor dormancy, and response or resistance to therapy. Characterizing the components of the immune system and their functional status in tissues and in tumors requires the use of highly specific reagents. Researchers employ antibodies in a variety of in vitro and in vivo applications to delineate, enrich, or deplete specific immune subsets in order to understand their role(s) in tumorigenesis. This is a glossary of validated reagents and protocols that are useful for functional phenotyping of the immune system in murine cancer models.

  10. [Targeted therapy by monoclonal antibodies].

    PubMed

    Ohnuma, Kei; Morimoto, Chikao

    2010-10-01

    Human monoclonal antibodies are virtually indispensable for immunotherapy of cancer, infectious diseases, autoimmune diseases, or organ transplantation. The hybridoma technique, developed by Georges Köhler and César Milstein in 1975, has been shown to be most and highly producible method for generating murine monoclonal antibodies. However, poor results were obtained when it was administered in human bodies. With development of biotechnology, human monoclonal antibodies have been manufactured with higher efficiency. A major hindrance of producing therapeutic human monoclonal antibodies is the lack of an appropriate strategy for determining and selecting the antibodies that would be effective in vivo. In this review, we give an overview of the present techniques on therapeutic monoclonal antibodies. PMID:20954327

  11. Empowered Antibody Therapies - IBC conference.

    PubMed

    Herold, Jens

    2010-10-01

    The Empowered Antibody Therapies conference, held in Burlingame, CA, USA, included topics covering new therapeutic developments in the field of multispecific antibodies. This conference report highlights selected presentations on DVD-Igs from Abbott Laboratories, ImmTACs from Immunocore, 'Dock-and-Lock' technology from Immunomedics, the bispecific BiTE antibody blinatumomab from Micromet, and Triomabs from TRION Pharma and Fresenius Biotech. PMID:20878591

  12. Contributions of the Complementarity Determining Regions to the Thermal Stability of a Single-Domain Antibody

    PubMed Central

    Zabetakis, Dan; Anderson, George P.; Bayya, Nikhil; Goldman, Ellen R.

    2013-01-01

    Single domain antibodies (sdAbs) are the recombinantly-expressed variable domain from camelid (or shark) heavy chain only antibodies and provide rugged recognition elements. Many sdAbs possess excellent affinity and specificity; most refold and are able to bind antigen after thermal denaturation. The sdAb A3, specific for the toxin Staphylococcal enterotoxin B (SEB), shows both sub-nanomolar affinity for its cognate antigen (0.14 nM) and an unusually high melting point of 85°C. Understanding the source of sdAb A3’s high melting temperature could provide a route for engineering improved melting temperatures into other sdAbs. The goal of this work was to determine how much of sdAb A3’s stability is derived from its complementarity determining regions (CDRs) versus its framework. Towards answering this question we constructed a series of CDR swap mutants in which the CDRs from unrelated sdAbs were integrated into A3’s framework and where A3’s CDRs were integrated into the framework of the other sdAbs. All three CDRs from A3 were moved to the frameworks of sdAb D1 (a ricin binder that melts at 50°C) and the anti-ricin sdAb C8 (melting point of 60°C). Similarly, the CDRs from sdAb D1 and sdAb C8 were moved to the sdAb A3 framework. In addition individual CDRs of sdAb A3 and sdAb D1 were swapped. Melting temperature and binding ability were assessed for each of the CDR-exchange mutants. This work showed that CDR2 plays a critical role in sdAb A3’s binding and stability. Overall, results from the CDR swaps indicate CDR interactions play a major role in the protein stability. PMID:24143255

  13. Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns.

    PubMed

    Davenport, Kaitlynn R; Smith, Christopher A; Hofstetter, Heike; Horn, James R; Hofstetter, Oliver

    2016-05-15

    In this study, the effect of random vs. site-directed immobilization techniques on the performance of antibody-based HPLC columns was investigated using a single-domain camelid antibody (VHH) directed against methotrexate (MTX) as a model system. First, the high flow-through support material POROS-OH was activated with disuccinimidyl carbonate (DSC), and the VHH was bound in a random manner via amines located on the protein's surface. The resulting column was characterized by Frontal Affinity Chromatography (FAC). Then, two site-directed techniques were explored to increase column efficiency by immobilizing the antibody via its C-terminus, i.e., away from the antigen-binding site. In one approach, a tetra-lysine tail was added, and the antibody was immobilized onto DSC-activated POROS. In the second site-directed approach, the VHH was modified with the AviTag peptide, and a biotin-residue was enzymatically incorporated at the C-terminus using the biotin ligase BirA. The biotinylated antibody was subsequently immobilized onto NeutrAvidin-derivatized POROS. A comparison of the FAC analyses, which for all three columns showed excellent linearity (R(2)>0.999), revealed that both site-directed approaches yield better results than the random immobilization; the by far highest efficiency, however, was determined for the immunoaffinity column based on AviTag-biotinylated antibody. As proof of concept, all three columns were evaluated for quantification of MTX dissolved in phosphate buffered saline (PBS). Validation using UV-detection showed excellent linearity in the range of 0.04-12μM (R(2)>0.993). The lower limit of detection (LOD) and lower limit of quantification (LLOQ) were found to be independent of the immobilization strategy and were 40nM and 132nM, respectively. The intra- and inter-day precision was below 11.6%, and accuracy was between 90.7% and 112%. To the best of our knowledge, this is the first report of the AviTag-system in chromatography, and the first

  14. Antibodies as stratagems against cancer.

    PubMed

    Papageorgiou, Louis; Cuong, Nguyen Tien; Vlachakis, Dimitrios

    2016-06-21

    Antibodies have been in the frontline of anticancer research during the last few decades, since a number of different ways have been discovered to utilize them as parts or main components of anticancer drugs. Antibodies are used as the only component of some anticancer drugs, but they can also be conjugated with a variety of substances. Antibody engineering methods such as humanization, chimerization and Fc engineering are applied in order to modify their properties according to the requirements of anticancer drug application. Given the continuous advances in biology and informatics, the role of antibodies in anticancer treatment is expected to be prominent. PMID:26738941

  15. Monoclonal antibodies and neuroblastoma

    SciTech Connect

    Miraldi, F. )

    1989-10-01

    Several antineuroblastoma monoclonal antibodies (MoAbs) have been described and two have been used in radioimmunoimaging and radioimmunotherapy in patients. MoAb 3F8 is a murine IgG3 antibody specific for the ganglioside GD2. Radioiodine-labeled 3F8 has been shown to specifically target human neuroblastoma in patients, and radioimmunoimaging with this agent has provided consistently high uptakes with tumor-to-background ratios of greater than or equal to 10:1. Radioimmunotherapy has been attempted with both MoAb 3F8 and MoAb UJ13A, and although encouraging results have been obtained, dosimetry data and tissue dose response information for these agents is lacking, which impedes the development of such therapy. 124I, a positron emitter, can be used with 3F8 in positron emission tomography (PET) scanning to provide dosimetry information for radioimmunotherapy. The tumor radiation dose response from radiolabeled MoAb also can be followed with PET images with fluorodeoxyglucose (FDG) scanning of neuroblastoma tumors. Results to date indicate that radioimmunoimaging has clinical use in the diagnosis of neuroblastoma and the potential for radioimmunotherapy for this cancer remains high.48 references.

  16. Creating Ordered Antibody Arrays with Antibody-Polymer Conjugates

    NASA Astrophysics Data System (ADS)

    Dong, Xuehui; Obermeyer, Allie; Olsen, Bradley

    Antibodies are a category of functional proteins that play crucial roles in the immune system and have been widely applied in the area of cancer therapeutics, targeting delivery, signal detection, and sensors. Due to the extremely large size and lack of specific functional groups on the surface, it is challenging to functionalize antibodies and manipulate the ordered packing of antibodies in an array with high density and proper orientation, which is critical to achieve outstanding performance in materials. In this work, we demonstrate an efficient and facile approach for preparing antibody-polymer conjugates with two-step sequential ``click'' reaction to form antibody-polymer block copolymers. Highly ordered nanostructures are fabricated based on the principles of block copolymer self-assembly. The nanostructures are studied with both small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Lamellae with alternating antibody domain and polymer domain are observed with an overall domain size of ~50 nm. The nanostructure not only increases the packing density and promotes proper orientation of the antibody, but also provides possible channel to facilitate substrate transportation and improves the stability of the antibody.

  17. Antibodies: Protective, destructive and regulatory role

    SciTech Connect

    Milgrom, F.; Abeyounis, C.J.; Albini, B.

    1985-01-01

    This book contains papers under 10 subject headings. The headings are: Production and Function of Antibodies, Protective Role of Antibodies, Antibodies to Foreign and Neoplastic Cells, Autoantibodies, Regulatory Mechanisms, Allergy, Immune Complexes, Antibodies in Pregnancy and Aging, Administration of Antibodies for Prevention and Therapy, and Abstracts of Poster Presentations.

  18. New engineered antibodies against prions

    PubMed Central

    Škrlj, Nives; Dolinar, Marko

    2014-01-01

    A number of recently developed and approved therapeutic agents based on highly specific and potent antibodies have shown the potential of antibody therapy. As the next step, antibody-based therapeutics will be bioengineered in a way that they not only bind pathogenic targets but also address other issues, including drug targeting and delivery. For antibodies that are expected to act within brain tissue, like those that are directed against the pathogenic prion protein isoform, one of the major obstacles is the blood-brain barrier which prevents efficient transfer of the antibody, even of the engineered single-chain variants. We recently demonstrated that a specific prion-specific antibody construct which was injected into the murine tail vein can be efficiently transported into brain tissue. The novelty of the work was in that the cell penetrating peptide was used as a linker connecting both specificity-determining domains of the antibody peptide, thus eliminating the need for the standard flexible linker, composed of an arrangement of three consecutive (Gly4Ser) repeats. This paves the road toward improved bioengineered antibody variants that target brain antigens. PMID:23941991

  19. [The significance of antiphospholipid antibodies].

    PubMed

    Fojtík, Z

    2004-04-01

    Antiphospholipid antibodies (APLA) present very heterogeneous groups of antibodies which can significantly influence processes on different levels of coagulation cascade depending on effects of phospholipid surfaces on blood coagulation. This usually leads to a particular level of thrombophylia. Clinical syndrome accompanying positive APLA, such as antiphospholipid syndrome, was defined by clinical and laboratory symptoms. This clinical syndrome can be a primary syndrome, if other disorders with ability to induce generation of antibodies can be excluded, or a secondary syndrome. The most often in cases of systemic tissue disease. APLA can be divided according to the presence of lupus anticoagulant and anticardiolipin antibodies. According to a definition lupus anticoagulants are antibodies able to inhibit and prolong in vitro one or more blood clotting processes dependent on phospholipid surfaces. Anticardiolipin antibodies are antibodies measured by ELISA method with cardiolipin used as an antibody. Findings show that some APLA are directed against proteins bound to phospholipid surfaces. Main cofactor proteins include beta 2-GPI and prothrombin. Because of their heterogeneous specificity, APLA are directed against negative phospholipids or proteins bound to phospholipid surfaces and have important pathophysiology role in development of antiphospholipid syndrome. PMID:15214303

  20. Production of monoclonal antibodies.

    PubMed

    Freysd'ottir, J

    2000-01-01

    The discovery of monoclonal antibodies (mAbs) produced by "hybridoma technology" by George Köhler and Cesar Milstein in 1975 has had a great impact both on basic biological research and on clinical medicine. However, this impact was not immediately recognized. It took around 10 years to appreciate the importance of using these mAbs in various fields of science other than immunology, such as cell biology, biochemistry, microbiology, virology, para-sitology, physiology, genetics, and molecular biology; and also in areas of clinical medicine, such as pathology, hematology, oncology, and infectious disease. The contribution of mAbs to science and clinical medicine was recognized in 1984 by the award of the Nobel Prize for Medicine to Köhler and Milstein. PMID:21337095

  1. Micromechanical antibody sensor

    DOEpatents

    Thundat, Thomas G.; Jacobson, K. Bruce; Doktycz, Mitchel J.; Kennel, Stephen J.; Warmack, Robert J.

    2001-01-01

    A sensor apparatus is provided using a microcantilevered spring element having a coating of a detector molecule such as an antibody or antigen. A sample containing a target molecule or substrate is provided to the coating. The spring element bends in response to the stress induced by the binding which occurs between the detector and target molecules. Deflections of the cantilever are detected by a variety of detection techniques. The microcantilever may be approximately 1 to 200 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. A sensitivity for detection of deflections is in the range of 0.01 nanometers.

  2. Monoclonal antibodies in myeloma.

    PubMed

    Sondergeld, Pia; van de Donk, Niels W C J; Richardson, Paul G; Plesner, Torben

    2015-09-01

    The development of monoclonal antibodies (mAbs) for the treatment of disease goes back to the vision of Paul Ehrlich in the late 19th century; however, the first successful treatment with a mAb was not until 1982, in a lymphoma patient. In multiple myeloma, mAbs are a very recent and exciting addition to the therapeutic armamentarium. The incorporation of mAbs into current treatment strategies is hoped to enable more effective and targeted treatment, resulting in improved outcomes for patients. A number of targets have been identified, including molecules on the surface of the myeloma cell and components of the bone marrow microenvironment. Our review focuses on a small number of promising mAbs directed against molecules on the surface of myeloma cells, including CS1 (elotuzumab), CD38 (daratumumab, SAR650984, MOR03087), CD56 (lorvotuzumab mertansine), and CD138/syndecan-1 (BT062/indatuximab ravtansine). PMID:26452191

  3. [Antithrombotic recombinant antibodies].

    PubMed

    Muzard, Julien; Loyau, Stéphane; Ajzenberg, Nadine; Billiald, Philippe; Jandrot-Perrus, Martine

    2006-01-01

    Coronary syndromes, stroke and other ischaemic arterial diseases are the leading cause of death in the world and will probably remain it at least until 2020. Cardiovascular diseases kill 17 million people each year with an expected increase to 20 million in 2020 and 24 million in 2030. The global impact of recurrence and death during the 6 months following an acute coronary syndrome remains at 8-15% in the present state of medical practice. Acute ischaemic syndromes have a common aetiology that is the formation of a platelet-rich clot at the site of severe coronary stenosis and of eroded atherosclerotic plaques. Therapy consists of medical treatments associating thrombolysis, antiplatelet drugs, and the re-opening of the coronary artery by angioplasty. But these treatments do not prevent morbidity and mortality reaching 15% at 6 months. Finally the treatment of stroke is very limited. There is thus a real clinical need to improve existing treatments and to discover new molecules. Platelet activation is a critical step in ischaemic cardiovascular diseases. This is the reason why antiplatelet drugs are most often prescribed in these cases. Currently, only one recombinant antithrombotic antibody is used in therapy. This is a chimeric Fab, c7E3 or abciximab, which inhibits the final phase of platelet aggregation. Abciximab is prescribed in acute coronary syndromes treated by angioplasty. However, treatment by abciximab can induce severe complications, principally, hemorrages and thrombopenia. Other platelet receptors involved in the earlier steps of platelet activation, such as the phases of contact with and of activation by the subendothelium matrix, have been identified as potential targets for the development of antithrombotic antibodies and are described in this revue. PMID:17652972

  4. Natural antibody - Biochemistry and functions.

    PubMed

    Rahyab, Ali Seyar; Alam, Amit; Kapoor, Aricka; Zhang, Ming

    2011-01-01

    Natural antibodies have been common knowledge in the scientific community for more than half a century. Initially disregarded, their functions have garnered a newfound interest recently. Natural antibodies are usually polyreactive IgM antibodies and are implicated in numerous physiologic and pathologic processes. Current research demonstrates they play a role in adaptive and innate immune responses, autoimmunity, and apoptosis. Evidence exists that they are involved in the modulation of neurodegenerative disorders and malignancy. Furthermore, natural antibodies have been implicated in ischemia reperfusion injury and atherosclerosis. As such the study of natural antibodies may provide new insight into normal physiologic processes whilst concurrently paving the road for a wide-range of possible therapeutic options. PMID:25309852

  5. Metrics for antibody therapeutics development.

    PubMed

    Reichert, Janice M

    2010-01-01

    A wide variety of full-size monoclonal antibodies (mAbs) and therapeutics derived from alternative antibody formats can be produced through genetic and biological engineering techniques. These molecules are now filling the preclinical and clinical pipelines of every major pharmaceutical company and many biotechnology firms. Metrics for the development of antibody therapeutics, including averages for the number of candidates entering clinical study and development phase lengths for mAbs approved in the United States, were derived from analysis of a dataset of over 600 therapeutic mAbs that entered clinical study sponsored, at least in part, by commercial firms. The results presented provide an overview of the field and context for the evaluation of on-going and prospective mAb development programs. The expansion of therapeutic antibody use through supplemental marketing approvals and the increase in the study of therapeutics derived from alternative antibody formats are discussed. PMID:20930555

  6. Antibodies - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    NCI announces the release of monoclonal antipeptide antibodies from rabbit for distribution on the antibody portal. There are 60 recently added monoclonal antibodies, with 56 generated from mouse and 4 generated from rabbit.

  7. Epstein-Barr virus antibody test

    MedlinePlus

    Epstein-Barr virus antibody test is a blood test to detect antibodies to the Epstein-Barr virus ( EBV ). ... specialist looks for antibodies to the Epstein-Barr virus. In the first stages of an illness, little ...

  8. [Monoclonal antibody for cancer treatment].

    PubMed

    Achiwa, Hiroyuki; Sato, Shigeki; Ueda, Ryuzo

    2002-04-01

    Antibodies have for many decades been viewed as ideal molecules for cancer therapy. Although promising from the start, it has taken much of more than two decades to reach the level of clinical application. Genetic engineering of antibodies; that is novel technologies for chimeric or humanizing monoclonal antibodies, has greatly advanced their utility in molecular targeting therapies, and in the past four years some therapeutic monoclonal antibodies for hematologic malignancies and solid tumors, such as Rituximab for B-cell lymphoma and Trastuzumab for metastatic breast cancer, have provided sufficient efficacy and safety to support regulatory approval from the U.S. Food and Drug Administration. They were subsequently approved by the Japanese Ministry of Health, Labour and Welfare in 2001. Many molecular biological and immunological studies have revealed the targeting properties of the host immune system and the biological mechanism of cancer cells for a more specific anticancer effect. Many clinical trials of monoclonal antibodies as a single agent, or in combination protocol with current standard chemotherapy or immunoconjugates have shown promise in the treatment of specific diseases. Furthermore, novel antibody designs and improved understanding of the mode of action of current antibodies lend great hope to the future of this therapeutic approach. The accumulating results from many basic, clinical and translational studies may lead to more individualized therapeutic strategies using these agent directed at specific genetic and immunologic targets. PMID:11977531

  9. The therapeutic monoclonal antibody market

    PubMed Central

    Ecker, Dawn M; Jones, Susan Dana; Levine, Howard L

    2015-01-01

    Since the commercialization of the first therapeutic monoclonal antibody product in 1986, this class of biopharmaceutical products has grown significantly so that, as of November 10, 2014, forty-seven monoclonal antibody products have been approved in the US or Europe for the treatment of a variety of diseases, and many of these products have also been approved for other global markets. At the current approval rate of ∼ four new products per year, ∼70 monoclonal antibody products will be on the market by 2020, and combined world-wide sales will be nearly $125 billion. PMID:25529996

  10. Reducing heterophilic antibody interference in immunoassays using single chain antibodies

    SciTech Connect

    Baird, Cheryl L.; Tan, Ruimin; Fischer, Christopher J.; Victry, Kristin D.; Zangar, Richard C.; Rodland, Karin D.

    2011-12-15

    Sandwich ELISA microarrays have the potential to simultaneously quantify the levels of multiple diagnostic targets in a biological sample. However, as seen with traditional ELISA diagnostics, heterophilic antibodies (HA) in patient sera have the potential to cause interference in these assays. We demonstrate here that reducing the diagnostic capture antibody to its minimal functional unit, the variable heavy and light domains artificially connected with a short polypeptide linker (scFv), is an effective strategy for reducing the HA assay interference.

  11. Immunotoxicity of monoclonal antibodies

    PubMed Central

    2009-01-01

    Monoclonal antibodies (mAbs) are large molecules intended to bind to specific targets often expressed on the immune system, and to treat various immunopathological conditions. Therefore, mAbs can be considered to have a high potential for immunotoxicity, which is reflected in the clinical experience accumulated on mAbs-induced adverse effects related to immunosuppression, immunostimulation and hypersensitivity (immunogenicity). So far, non clinical immunotoxicity studies have been inadequate to address all safety issues in relation to the possible immunotoxicity of mAbs, because they are fraught with limitations and pitfalls primarily related to the lack of relevant animal species. In addition, clinical studies rarely include validated end-points dedicated to the prediction of immunotoxicity. With the ongoing development of mAbs as novel therapeutic strategies for a wide variety of diseases, efforts should be paid to improve our understanding of mAbs-induced immunotoxic effects and design dedicated strategies to assess their immunological safety, both non clinically and clinically. PMID:20061816

  12. Functional effects of anticardiolipin antibodies.

    PubMed

    Harris, E N; Pierangeli, S S

    1996-10-01

    The 'lupus anticoagulant' phenomenon is the best documented functional effect of antiphospholipid (aPL) antibodies, occurring either by inhibition of the prothrombinase and/or Factor X activation reactions. Understanding the mechanism by which aPL antibodies inhibit phospholipid dependent coagulation reactions may yield important clues about their 'thrombogenic effects' in vivo. We conducted a series of studies to determine the specificity, diversity, and mechanism by which aPL antibodies inhibit phospholipid dependent reactions. Results showed that purified immunoglobulins with lupus anticoagulant and anti-cardiolipin activities were absorbed by negatively charged phospholipids and both activities were recovered from the phospholipid-antibody precipitate. Purified aPL antibodies inhibited the prothrombinase reaction in a plasma free system in which beta 2-glycoprotein 1 (beta 2-GP1) was absent. Affinity purified aPL antibodies had 25-50 times the inhibitory activity of immunoglobulin preparations. The phospholipid binding proteins, beta 2-GPI and placental anticoagulant protein I (PAP I), independently inhibited the prothrombinase reaction, and when these proteins were combined with aPL, inhibition of the prothrombinase reaction was additive. Antibodies of syphilis had no inhibitory effect, partially accounted for by lack of specificity for phosphotidylserine (PS). Although aPL antibodies inhibited the protein C activation reaction, there was no correlation of these activities with inhibition of the prothrombinase reaction. Together, these results show that aPL exert their effects by interaction with negatively charged phospholipids, in particular phosphotidylserine, but lack of correlation between inhibition of the prothrombinase and protein C activation reactions, suggests that the nature of the coagulation protein is also important. PMID:8902763

  13. Antibodies to watch in 2014.

    PubMed

    Reichert, Janice M

    2014-01-01

    Since 2010, mAbs has documented the biopharmaceutical industry's progress in transitioning antibody therapeutics to first Phase 3 clinical studies and regulatory review, and its success at gaining first marketing approvals for antibody-based products. This installment of the "Antibodies to watch" series outlines events anticipated to occur between December 2013 and the end of 2014, including first regulatory actions on marketing applications for vedolizumab, siltuximab, and ramucirumab, as well as the Fc fusion proteins Factor IX-Fc and Factor VIII-Fc; and the submission of first marketing applications for up to five therapeutics (secukinumab, ch14.18, onartuzumab, necitumumab, gevokizumab). Antibody therapeutics in Phase 3 studies are described, with an emphasis on those with study completion dates in 2014, including antibodies targeting interleukin-17a or the interleukin-17a receptor (secukinumab, ixekizumab, brodalumab), proprotein convertase subtilisin/kexin type 9 (alirocumab, evolocumab, bococizumab), and programmed death 1 receptor (lambrolizumab, nivolumab). Five antibodies with US Food and Drug Administration's Breakthrough Therapy designation (obinutuzumab, ofatumumab, lambrolizumab, bimagrumab, daratumumab) are also discussed. PMID:24284914

  14. Natural monoclonal antibodies and cancer.

    PubMed

    Vollmers, Peter H; Brändlein, Stephanie

    2008-06-01

    Immunity is responsible for recognition and elimination of infectious particles and for removal of cellular waste, modified self structures and transformed cells. Innate or natural immunity acts as a first line defense and is also the link to acquired immunity and memory. By using the human hybridoma technology, a series of monoclonal antibodies and several new tumor-specific targets could be identified. A striking phenomenon of immunity against malignant cells is that all so far isolated tumor-specific antibodies were germ-line coded natural IgM antibodies. And neither in animals nor in humans affinity-maturated tumor-specific IgG antibodies have been detected so far. These IgM's preferentially bind to carbohydrate epitopes on post-transcriptionally modified surface receptors, which are recently patented and preferentially remove malignant cells by inducing apoptosis to avoid inflammatory processes. Our "biology-" or "function-driven" method represents a unique yet powerful approach compared to the typical approaches on screening compounds or antibodies against non-validated targets (mostly differentially expressed). Moreover, the approach creates a competitive patenting strategy of creating proprietary antibodies and validated targets at the same time, which has the potential of further streamlining the discovery of new cancer therapies. PMID:18537750

  15. Antibodies to watch in 2015

    PubMed Central

    Reichert, Janice M

    2015-01-01

    The commercial pipeline of recombinant antibody therapeutics is robust and dynamic. As of early December 2014, a total of 6 such products (vedolizumab, siltuximab, ramucirumab, pembrolizumab, nivolumab, blinatumomab) were granted first marketing approvals in 2014. As discussed in this perspective on antibodies in late-stage development, the outlook for additional approvals, potentially still in 2014 and certainly in 2015, is excellent as marketing applications for 6 antibody therapeutics (secukinumab, evolocumab, mepolizumab, dinutuximab, nivolumab, necitumumab) are undergoing a first regulatory review in the EU or US. Of the 39 novel mAbs currently in Phase 3 studies, a marketing application for one (alirocumab) may be submitted in late 2014, and marketing application submissions for at least 4 (reslizumab, ixekizumab, ocrelizumab, obiltoxaximab) are expected in 2015. Other ‘antibodies to watch’ are those in Phase 3 studies with estimated primary completion dates in late 2014 or 2015, which includes 13 for non-cancer indications (brodalumab, bimagrumab, bococizumab, MABp1, gevokizumab, dupilumab, sirukumab, sarilumab, tildrakizumab, guselkumab, epratuzumab, combination of actoxumab + bezlotoxumab, romosozumab) and 2 (racotumomab and clivatuzumab tetraxetan) undergoing evaluation as treatments for cancer. In addition to the novel antibody therapeutics mentioned, biosimilar infliximab and biosimilar trastuzumab are ‘antibodies to watch’ in 2015 because of their potential for entry into the US market and regulatory review, respectively. PMID:25484055

  16. Avian Diagnostic and Therapeutic Antibodies

    SciTech Connect

    Bradley, David Sherman

    2012-12-31

    A number of infectious agents have the potential of causing significant clinical symptomology and even death, but dispite this, the number of incidence remain below the level that supports producing a vaccine. Therapeutic antibodies provide a viable treatment option for many of these diseases. We proposed that antibodies derived from West Nile Virus (WNV) immunized geese would be able to treat WNV infection in mammals and potential humans. We demonstrated that WNV specific goose antibodies are indeed successful in treating WNV infection both prophylactically and therapeutically in a golden hamster model. We demonstrated that the goose derived antibodies are non-reactogenic, i.e. do not cause an inflammatory response with multiple exposures in mammals. We also developed both a specific pathogen free facility to house the geese during the antibody production phase and a patent-pending purification process to purify the antibodies to greater than 99% purity. Therefore, the success of these study will allow a cost effective rapidly producible therapeutic toward clinical testing with the necessary infrastructure and processes developed and in place.

  17. Antibodies to watch in 2014

    PubMed Central

    Reichert, Janice M

    2014-01-01

    Since 2010, mAbs has documented the biopharmaceutical industry’s progress in transitioning antibody therapeutics to first Phase 3 clinical studies and regulatory review, and its success at gaining first marketing approvals for antibody-based products. This installment of the “Antibodies to watch” series outlines events anticipated to occur between December 2013 and the end of 2014, including first regulatory actions on marketing applications for vedolizumab, siltuximab, and ramucirumab, as well as the Fc fusion proteins Factor IX-Fc and Factor VIII-Fc; and the submission of first marketing applications for up to five therapeutics (secukinumab, ch14.18, onartuzumab, necitumumab, gevokizumab). Antibody therapeutics in Phase 3 studies are described, with an emphasis on those with study completion dates in 2014, including antibodies targeting interleukin-17a or the interleukin-17a receptor (secukinumab, ixekizumab, brodalumab), proprotein convertase subtilisin/kexin type 9 (alirocumab, evolocumab, bococizumab), and programmed death 1 receptor (lambrolizumab, nivolumab). Five antibodies with US Food and Drug Administration’s Breakthrough Therapy designation (obinutuzumab, ofatumumab, lambrolizumab, bimagrumab, daratumumab) are also discussed. PMID:24284914

  18. Novel antibodies as anticancer agents.

    PubMed

    Zafir-Lavie, I; Michaeli, Y; Reiter, Y

    2007-05-28

    In recent years antibodies, whether generated by traditional hybridoma technology or by recombinant DNA strategies, have evolved from Paul Ehrlich's 'magic bullets' to a modern age 'guided missile'. In the recent years of immunologic research, we are witnessing development in the fields of antigen screening and protein engineering in order to create specific anticancer remedies. The developments in the field of recombinant DNA, protein engineering and cancer biology have let us gain insight into many cancer-related mechanisms. Moreover, novel techniques have facilitated tools allowing unique distinction between malignantly transformed cells, and regular ones. This understanding has paved the way for the rational design of a new age of pharmaceuticals: monoclonal antibodies and their fragments. Antibodies can select antigens on both a specific and a high-affinity account, and further implementation of these qualities is used to target cancer cells by specifically identifying exogenous antigens of cancer cell populations. The structure of the antibody provides plasticity resonating from its functional sites. This review will screen some of the many novel antibodies and antibody-based approaches that are being currently developed for clinical applications as the new generation of anticancer agents. PMID:17530025

  19. Alternative downstream processes for production of antibodies and antibody fragments.

    PubMed

    Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke

    2014-11-01

    Protein-A or Protein-L affinity chromatography and virus inactivation are key processes for the manufacturing of therapeutic antibodies and antibody fragments. These two processes often involve exposure of therapeutic proteins to denaturing low pH conditions. Antibodies have been shown to undergo conformational changes at low pH, which can lead to irreversible damages on the final product. Here, we review alternative downstream approaches that can reduce the degree of low pH exposure and consequently damaged product. We and others have been developing technologies that minimize or eliminate such low pH processes. We here cover facilitated elution of antibodies using arginine in Protein-A and Protein-G affinity chromatography, a more positively charged amidated Protein-A, two Protein-A mimetics (MEP and Mabsorbent), mixed-mode and steric exclusion chromatography, and finally enhanced virus inactivation by solvents containing arginine. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. PMID:24859179

  20. Antibodies: an alternative for antibiotics?

    PubMed

    Berghman, L R; Abi-Ghanem, D; Waghela, S D; Ricke, S C

    2005-04-01

    In 1967, the success of vaccination programs, combined with the seemingly unstoppable triumph of antibiotics, prompted the US Surgeon General to declare that "it was time to close the books on infectious diseases." We now know that the prediction was overly optimistic and that the fight against infectious diseases is here to stay. During the last 20 yr, infectious diseases have indeed made a staggering comeback for a variety of reasons, including resistance against existing antibiotics. As a consequence, several alternatives to antibiotics are currently being considered or reconsidered. Passive immunization (i.e., the administration of more or less pathogen-specific antibodies to the patient) prior to or after exposure to the disease-causing agent is one of those alternative strategies that was almost entirely abandoned with the introduction of chemical antibiotics but that is now gaining interest again. This review will discuss the early successes and limitations of passive immunization, formerly referred to as "serum therapy," the current use of antibody administration for prophylaxis or treatment of infectious diseases in agriculture, and, finally, recent developments in the field of antibody engineering and "molecular farming" of antibodies in various expression systems. Especially the potential of producing therapeutic antibodies in crops that are routine dietary components of farm animals, such as corn and soy beans, seems to hold promise for future application in the fight against infectious diseases. PMID:15844826

  1. Antibodies to watch in 2016.

    PubMed

    Reichert, Janice M

    2016-01-01

    The number of novel antibody therapeutics that received first marketing approvals in 2015 met expectations, with 6 (alirocumab (Praluent®), evolocumab (Repatha®), daratumumab (Darzalex®), dinutuximab (Unituxin®), idarucizumab (Praxbind®), mepolizumab (Nucala®)) granted first approvals as of mid-November*. Seven novel antibody therapeutics (begelomab, brodalumab, elotuzumab, ixekizumab, necitumumab, obiltoxaximab, reslizumab) are in regulatory review, and thus a similar number, if not more, are projected to gain first approvals in 2016. Commercial late-stage antibody therapeutics development exceeded expectations by increasing from 39 candidates in Phase 3 studies as of late 2014 to 53 as of late 2015. Of the 53 candidates, transitions to regulatory review by the end of 2016 are projected for 8 (atezolizumab, benralizumab, bimagrumab, durvalumab, inotuzumab ozogamicin, lebrikizumab, ocrelizumab, tremelimumab). Other "antibodies to watch" include 15 candidates (bavituximab, bococizumab, dupilumab, fasinumab, fulranumab, gevokizumab, guselkumab, ibalizumab, LY2951742, onartuzumab, REGN2222, roledumab, romosozumab, sirukumab, Xilonix) undergoing evaluation in Phase 3 studies that have estimated primary completion dates in 2016. As evidenced by the antibody therapeutics discussed in this perspective, the biopharmaceutical industry has a highly active late-stage clinical pipeline that may deliver numerous new products to the global market in the near future. *See Note added in proof for updates through December 31, 2015. PMID:26651519

  2. Communication: Antibody stability and behavior on surfaces.

    PubMed

    Bush, Derek B; Knotts, Thomas A

    2015-08-14

    Antibody microarrays have the potential to revolutionize molecular detection in scientific, medical, and other biosensor applications, but their current use is limited because of poor reliability. It is hypothesized that one reason for their poor performance results from strong antibody-surface interactions that destabilize the antibody structure and create steric interference for antigen recognition. Using a recently developed coarse-grain protein-surface model that has been parameterized against experimental data, antibody-surface interactions for two antibody orientations on two types of surfaces have been investigated. The results show that regardless of attachment geometry, antibodies tend to collapse onto hydrophobic surfaces and exhibit lower overall stability compared to antibodies on hydrophilic surfaces or in bulk solution. The results provide an unprecedented view into the dynamics of antibodies on surfaces and offer new insights into the poor performance exhibited by current antibody microarrays. PMID:26277119

  3. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2013-04-09

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  4. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2010-06-22

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  5. Communication: Antibody stability and behavior on surfaces

    NASA Astrophysics Data System (ADS)

    Bush, Derek B.; Knotts, Thomas A.

    2015-08-01

    Antibody microarrays have the potential to revolutionize molecular detection in scientific, medical, and other biosensor applications, but their current use is limited because of poor reliability. It is hypothesized that one reason for their poor performance results from strong antibody-surface interactions that destabilize the antibody structure and create steric interference for antigen recognition. Using a recently developed coarse-grain protein-surface model that has been parameterized against experimental data, antibody-surface interactions for two antibody orientations on two types of surfaces have been investigated. The results show that regardless of attachment geometry, antibodies tend to collapse onto hydrophobic surfaces and exhibit lower overall stability compared to antibodies on hydrophilic surfaces or in bulk solution. The results provide an unprecedented view into the dynamics of antibodies on surfaces and offer new insights into the poor performance exhibited by current antibody microarrays.

  6. Antisperm antibodies and in vitro fertilization.

    PubMed

    Janssen, H J; Bastiaans, B A; Goverde, H J; Hollanders, H M; Wetzels, A A; Schellekens, L A

    1992-08-01

    The purpose of this study was to investigate the influence of antisperm antibodies in the male, the female, or both partners on the outcome of in vitro fertilization treatment. The results in terms of ongoing pregnancies in the male and female antibody-positive group were the same as in the antibody-negative group. In the double antibody-positive group two of the three patients became pregnant. When high levels of antisperm antibodies were present on the spermatozoa, the fertilization rate was significantly reduced. In the female positive group no clear relationship between the antibody titer and the fertilization percentage could be detected. Abnormal semen quality was responsible for a much lower fertilization rate than the presence of antibodies. The conclusion of this study is that in vitro fertilization provides an equal change of conception in couples with antisperm antibodies in comparison with couples with no antibodies if the other semen parameters are normal. PMID:1472812

  7. Remembering antibodies coming of age.

    PubMed

    Melchers, Fritz

    2016-01-01

    Fifty years ago, Norbert Hilschmann discovered that antibodies have variable immunoglobulin domains to bind antigens, and constant domains to carry out effector functions in the immune system. Just as this happened, the author of this perspective entered the field of immunology. Ten years later, the genetic basis of antibody variability was discovered by Susumu Tonegawa and his colleagues at the Basel Institute for Immunology, where the author had become a scientific member. At the same time, Georges Köhler, a former graduate student of the author's at the Basel Institute, invented with Cesar Milstein at the Laboratory of Molecular Biology in Cambridge, England, the method to produce monoclonal antibodies. The author describes here his memories connected to these three monumental, paradigm-changing discoveries, which he observed in close proximity. PMID:27144253

  8. Antibodies to watch in 2013

    PubMed Central

    Reichert, Janice M

    2013-01-01

    The transitions of antibody therapeutics to late-stage clinical development, regulatory review and the market are proceeding at a rapid pace in 2013. Since late 2012, two monoclonal antibody (mAb) therapeutics (itolizumab, trastuzumab emtansine) received their first approvals, first marketing applications for three mAbs (vedolizumab, ramucirumab, obinutuzumab) were submitted to regulatory agencies, and five mAbs (brodalumab, MABp1, moxetumomab pasudotox, tildrakizumab, rilotumumab) entered their first Phase 3 studies. The current total of commercially-sponsored antibody therapeutics undergoing evaluation in late-stage studies is 30. Recently announced study results for farletuzumab, naptumomab estafenatox, and tabalumab indicate that clinical endpoints were not met in some Phase 3 studies of these product candidates. PMID:23727858

  9. Molecular-specific urokinase antibodies

    NASA Technical Reports Server (NTRS)

    Atassi, M. Zouhair (Inventor); Morrison, Dennis R. (Inventor)

    2009-01-01

    Antibodies have been developed against the different molecular forms of urokinase using synthetic peptides as immunogens. The peptides were synthesized specifically to represent those regions of the urokinase molecules which are exposed in the three-dimensional configuration of the molecule and are uniquely homologous to urokinase. Antibodies are directed against the lysine 158-isoleucine 159 peptide bond which is cleaved during activation from the single-chain (ScuPA) form to the bioactive double chain (54 KDa and 33 KDa) forms of urokinase and against the lysine 135 lysine 136 bond that is cleaved in the process of removing the alpha-chain from the 54 KDa form to produce the 33 KDa form of urokinase. These antibodies enable the direct measurement of the different molecular forms of urokinase from small samples of conditioned medium harvested from cell cultures.

  10. Novel Antibody Vectors for Imaging

    PubMed Central

    Olafsen, Tove; Wu, Anna M.

    2010-01-01

    Non-invasive molecular imaging approaches include nuclear, optical, MRI, CT, ultrasound and photoacoustic imaging, which require accumulation of a signal delivered by a probe at the target site. Monoclonal antibodies (mAbs) are high affinity molecules that can be used for specific, high signal delivery to cell surface molecules. However, their long circulation time in blood makes them unsuitable as imaging probes. Efforts to improve antibodies pharmacokinetics without compromising affinity and specificity have been made through protein engineering. Antibody variants that differ in antigen binding sites and size have been generated and evaluated as imaging probes to target tissues of interest. Fast clearing fragments such as single-chain Fv (scFv; 25 kDa) with one antigen binding site (monovalent) demonstrated low accumulation in tumors due the low exposure time to the target. Using scFv as building block to produce larger, bivalent fragments such as scFv dimers (diabodies, 50 kDa) and scFv-fusion proteins (80 kDa minibodies and 105 kDa scFv-Fc) resulted in higher tumor accumulation due to their longer residence time in blood. Imaging studies with these fragments following radiolabeling have demonstrated excellent, high contrast images in gamma cameras and PET scanners. Several studies have also investigated antibody fragments conjugated to fluorescence (near infrared dyes), bioluminescence (luciferases) and quantum dots for optical imaging and iron oxides nanoparticles for MRI. However, these studies indicate that there are several factors that influence successful targeting and imaging. These include stability of the antibody fragment, the labeling chemistry (direct or indirect), whether critical residues are modified, the number of antigen expressed on the cell, and whether the target has a rapid recycling rate or internalizes upon binding. The preclinical data presented are compelling and it is evident that antibody-based molecular imaging tracers will play an

  11. Antinuclear antibodies in domestic animals.

    PubMed

    Gershwin, Laurel J

    2005-06-01

    Antinuclear antibodies in domestic animal species have been commonly detected for many years, with the greatest frequency occurring in dogs as well as horses and cats. Most commonly, the assay used in diagnostic laboratories is indirect immunofluorescence on HEP-2 cells, similar to that used in human medicine, but with the exception that species-specific antiglobulin reagents are used instead of antihuman immunoglobulin. To a lesser extent, the Crithidia luciliae test for antibodies to double-stranded DNA has been used. Several research groups have used other assays. PMID:16014553

  12. Antinuclear antibodies and anticytoplasmic antibodies in bronchial asthma.

    PubMed

    Menon, P; Menon, V; Hilman, B C; Wolf, R; Bairnsfather, L

    1989-12-01

    The presence of antinuclear antibodies and anticytoplasmic antibodies was evaluated in the sera of 50 patients with bronchial asthma and 35 matched control subjects with miscellaneous medical diseases with the use of an indirect immunofluorescent assay with HEp-2 cells as substrate. The results were compared to age, sex, atopic status, dose, and duration of the antiasthmatic medication, immunotherapy, severity of the disease, and presence or absence of myalgia. The patients had mild to moderate asthma. The incidence of fluorescent anticytoplasmic antibodies (FACA) in the sera of patients with asthma was statistically significant (p = 0.02) in comparison to FACA in the sera of the control subjects. The combined incidence of fluorescent antinuclear antibodies (FANA) and FACA was found to be significantly higher among atopic subjects with asthma (p = 0.03) and the subjects with asthma and with myalgia (p less than 0.05). The 20% incidence of FACA in this group of subjects with asthma was significantly greater (p less than 0.0001) than the reported 2.7% incidence of FACA in a group of patients with various rheumatologic diseases. Variables, such as dose and duration of antiasthma medications and immunotherapy did not appear to influence the presence of FANA and FACA in their sera. The significance of positive FANA and FACA in this group of subjects with asthma is not known and needs to be evaluated by long-term studies. PMID:2689497

  13. Antibody profiling sensitivity through increased reporter antibody layering

    DOEpatents

    Apel, William A.; Thompson, Vicki S

    2010-04-13

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  14. Antibody profiling sensitivity through increased reporter antibody layering

    DOEpatents

    Apel, William A.; Thompson, Vicki S.

    2013-02-26

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  15. Monoclonal Antibodies for the Treatment of Cancer

    PubMed Central

    Shuptrine, Casey; Surana, Rishi; Weiner, Louis M.

    2012-01-01

    Over the past decade, the clinical utility of monoclonal antibodies has been realized and antibodies are now a mainstay for the treatment of cancer. Antibodies have the unique capacity to target and kill tumor cells while simultaneously activating immune effectors to kill tumor cells through the complement cascade or antibody-dependent cellular cytotoxicity (ADCC). This multifaceted mechanism of action combined with target specificity underlies the capacity of antibodies to elicit anti-tumor responses while minimizing the frequency and magnitude of adverse events. This review will focus on mechanisms of action, clinical applications and putative mechanisms of resistance to monoclonal antibody therapy in the context of cancer. PMID:22245472

  16. The European antibody network's practical guide to finding and validating suitable antibodies for research

    PubMed Central

    Roncador, Giovanna; Engel, Pablo; Maestre, Lorena; Anderson, Amanda P.; Cordell, Jacqueline L.; Cragg, Mark S.; Šerbec, Vladka Č.; Jones, Margaret; Lisnic, Vanda J.; Kremer, Leonor; Li, Demin; Koch-Nolte, Friedrich; Pascual, Núria; Rodríguez-Barbosa, Jose-Ignacio; Torensma, Ruurd; Turley, Helen; Pulford, Karen; Banham, Alison H.

    2016-01-01

    Antibodies are widely exploited as research/diagnostic tools and therapeutics. Despite providing exciting research opportunities, the multitude of available antibodies also offers a bewildering array of choice. Importantly, not all companies comply with the highest standards, and thus many reagents fail basic validation tests. The responsibility for antibodies being fit for purpose rests, surprisingly, with their user. This paper condenses the extensive experience of the European Monoclonal Antibody Network to help researchers identify antibodies specific for their target antigen. A stepwise strategy is provided for prioritising antibodies and making informed decisions regarding further essential validation requirements. Web-based antibody validation guides provide practical approaches for testing antibody activity and specificity. We aim to enable researchers with little or no prior experience of antibody characterization to understand how to determine the suitability of their antibody for its intended purpose, enabling both time and cost effective generation of high quality antibody-based data fit for publication. PMID:26418356

  17. Polyclonal and monoclonal antibodies in clinic.

    PubMed

    Wootla, Bharath; Denic, Aleksandar; Rodriguez, Moses

    2014-01-01

    Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic. PMID:24037837

  18. Antibody-drug conjugate payloads.

    PubMed

    Anderl, Jan; Faulstich, Heinz; Hechler, Torsten; Kulke, Michael

    2013-01-01

    Toxin payloads, or drugs, are the crucial components of therapeutic antibody-drug conjugates (ADCs). This review will give an introduction on the requirements that make a toxic compound suitable to be used in an antitumoral ADC and will summarize the structural and mechanistic features of four drug families that yielded promising results in preclinical and clinical studies. PMID:23913141

  19. Studies on antiplague haemagglutinating antibodies

    PubMed Central

    Suzuki, Sosuke; Chikasato, Yoshio; Hotta, Susumu

    1974-01-01

    The indirect haemagglutination (IHA) test has been widely applied in the detection of antiplague antibodies in rodent sera. In the present study, acetone treatment of the test serum was tried in order to improve the specificity of the reaction. It was shown that the IHA titres of acetone-treated sera correlated well with those of untreated sera measured by the standard method recommended by WHO. Essentially the same results were obtained with sera from experimentally immunized rodents and from captured wild rats. In addition to acetone treatment, the sera were treated with 2-mercaptoethanol (ME). The results obtained indicated that the antiplague IHA antibodies produced early after the inoculation of plague bacilli were ME-sensitive, whereas those detected in the later stages or after a second inoculation were ME-resistant. The data suggest that acetone treatment of sera could be useful for the screening of antiplague antibodies, and that treatment with ME is helpful in assessing the time of past plague infections. The present survey has also shown that the positive rates of antiplague antibodies in wild rats trapped in Kobe, one of the largest sea ports in Japan, have so far been very low. PMID:4549347

  20. Anti-acetylcholine receptor antibodies.

    PubMed Central

    Vincent, A; Newsom Davis, J

    1980-01-01

    Early suggestions that a humoral factor might be implicated in the disorder of neuromuscular transmission in myasthenia gravis have been confirmed by the detection of anti-AChR antibody in 85-90% of the patients with generalised disease and in 75% of cases with restricted ocular myasthenia. Plasma exchange reveals that serum anti-AChR usually has an inverse relationship to muscle strength and present evidence indicates that patients responding to thymectomy and immunosuppressive durg treatment usually show a consistent decline in serum anti-AChR titres. The antibody is heterogeneous and can lead to a loss of muscle AChR by several mechanisms. Anti-AChR is produced in the thymus in relatively small amounts. Anti-AChR antibody synthesis by thymic lymphocytes and pokeweed stimulated peripheral lymphocytes in culture provides a means of studying the effect of different lymphocyte populations in vitro. Analysis of clinical, immunological and HLA antigen characteristics in MG suggest that more than one mechanism may underlie the breakdown in tolerance to AChR, leading to the production of anti-AChR antibodies. PMID:7400823

  1. Detection of Campylobacter species using monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Young, Colin R.; Lee, Alice; Stanker, Larry H.

    1999-01-01

    A panel of species specific monoclonal antibodies were raised to Campylobacter coli, Campylobacter jejuni and Campylobacter lari. The isotypes, and cross-reactivity profiles of each monoclonal antibody against an extensive panel of micro- organisms, were determined.

  2. Progranulin antibodies in autoimmune diseases.

    PubMed

    Thurner, Lorenz; Preuss, Klaus-Dieter; Fadle, Natalie; Regitz, Evi; Klemm, Philipp; Zaks, Marina; Kemele, Maria; Hasenfus, Andrea; Csernok, Elena; Gross, Wolfgang L; Pasquali, Jean-Louis; Martin, Thierry; Bohle, Rainer Maria; Pfreundschuh, Michael

    2013-05-01

    Systemic vasculitides constitute a heterogeneous group of diseases. Autoimmunity mediated by B lymphocytes and their humoral effector mechanisms play a major role in ANCA-associated vasculitis (AAV) as well as in non-ANCA associated primary systemic vasculitides and in the different types of autoimmune connective tissue disorders and rheumatoid arthritis. In order to detect autoantibodies in systemic vasculitides, we screened protein macroarrays of human cDNA expression libraries with sera from patients with ANCA-associated and ANCA-negative primary systemic vasculitides. This approach led to the identification of antibodies against progranulin, a 88 kDA secreted glycoprotein with strong anti-inflammatory activity in the course of disease of giant-cell arteritis/polymyalgia rheumatica (14/65), Takayasu's arteritis (4/13), classical panarteritis nodosa (4/10), Behcet's disease (2/6) and in the course of disease in granulomatosis with polyangiitis (31/75), Churg-Strauss syndrome (7/23) and in microscopic polyangiitis (7/19). In extended screenings the progranulin antibodies were also detected in other autoimmune diseases such as systemic lupus erythematosus (39/91) and rheumatoid arthritis (16/44). Progranulin antibodies were detected only in 1 of 97 healthy controls. Anti-progranulin positive patients with systemic vasculitides, systemic lupus erythematosus or rheumatoid arthritis had significant lower progranulin plasma levels, indicating a neutralizing effect. In light of the anti-inflammatory effects of progranulin, progranulin antibodies might exert pro-inflammatory effects thus contributing to the pathogenesis of the respective autoimmune diseases and might serve as a marker for disease activity. This hypothesis is supported by the fact that a positive progranulin antibody status was associated with active disease in granulomatosis with polyangiitis. PMID:23149338

  3. Anti-DNA antibodies in SLE

    SciTech Connect

    Voss, E.W.

    1988-01-01

    This book contains 8 chapters. Some of the titles are: Anti-DNA Antibodies in SLE: Historical Perspective; Specificity of Anti-DNA Antibodies in Systemic Lupus Erythematosus; Monoclonial Autoimmune Anti-DNA Antibodies; and Structure--Function Analyses of Anti-DNA Autoantibodies.

  4. Synopsis of antinuclear antibodies in dermatology.

    PubMed

    Nelson, Michael M; Heffernan, Michael P

    2002-06-01

    Antinuclear antibodies (ANA) provide a powerful tool in diagnosing the connective tissue diseases. The fundamentals of antinuclear antibody testing and the sensitivity, specificity, and prognostic value of antinuclear antibodies and their associated illnesses will be discussed. As skin manifestations are common with connective tissue diseases, knowledge of the diagnostic and prognostic value of ANA testing is essential to the nurse in dermatology. PMID:12099064

  5. Antibodies against mumps virus component proteins.

    PubMed

    Matsubara, Keita; Iwata, Satoshi; Nakayama, Tetsuo

    2012-08-01

    The neutralization (NT) test is regarded as the most reliable method for detection of protective antibodies, but is labor-intensive and time consuming. Enzyme-linked immunosorbent assay (EIA) is frequently used in sero-epidemiological studies because of its simplicity and ease of use. In this study, immunofluorescent (IF) antibodies against nucleocapsid (N), fusion (F), and hemagglutinin-neuraminidase (HN) proteins were investigated in comparison with NT and EIA antibodies. The antibody against N protein was dominant in serum samples obtained from patients with a previous history of mumps infection. Titers of antibodies against F and HN proteins were very low. Many serum samples were positive for EIA but negative for NT, and no significant correlation was noted between NT and EIA antibodies. Among the three component proteins, correlation of EIA and IF antibodies with N protein was relatively good. After vaccination with mumps vaccine, EIA positivity was closely related to the IF antibodies against N protein, and after vaccination NT-positive sera became positive for IF antibodies against F and HN proteins. IF antibodies against F and HN proteins were considered to have a strong association with NT antibodies, and those against N protein were considered to have a strong association with EIA antibodies. PMID:22215227

  6. Effects of medium concentration on antibody production

    NASA Technical Reports Server (NTRS)

    Williams, J.

    1984-01-01

    Antibody production by two different cell lines was measured as the media were supplemented with varied amounts of glucose and fetal bovine serum. Both cell lines elaborated antidinitrophenyl hapten antibodies. Two basic media were used: RPMI 1640 and Dulbecco's modified Eagle's medium. The production of antibodies was followed from 0 to 180 h and was assayed by radioimmunoassay.

  7. Specific antibody for pesticide residue determination produced by antibody-pesticide complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new method for specific antibody production was developed using antibody (Ab)-pesticide complex as a unique immunogen. Parathion (PA) was the targeted pesticide, and rabbit polyclonal antibody (Pab) and mouse monoclonal antibody (Mab) were used as carrier proteins. The Ab-PA complexes were genera...

  8. Antibody biosimilars: Fears or opportunities?

    PubMed Central

    Guillon-Munos, Audrey; Daguet, Arnaud; Watier, Hervé

    2014-01-01

    The annual “LabEx MAbImprove industrial workshops” are primarily intended to provide scientists involved in therapeutic antibodies, a comprehensive view about topics of interest for the pharmaceutical industry. They are organized by the “LabEx MAbImprove industrial committee”, for this first edition especially in partnership with ARITT, the regional agency for innovation and technology transfer which operates in the French Région Centre, the 1st French region for pharmaceutical production. The 2013 edition, held May 28 at the Vinci Center of Tours, was dedicated to antibody biosimilars. Depending on opinions, the impending expiry of antibody patents and the imminent marketing approval of competitors to blockbusters can be perceived as good or bad things. Fears or opportunities? Risks for patients? Breath of fresh air for the health systems? Opportunity for re-industrializing France? In this context, it is necessary for people to form a fair and informed opinion on the current landscape of antibody biosimilars. In particular, this is especially important for scientists from the academic world, from the industry or from the regulation agencies, for pharmacists, for pharmacovigilance specialists, for health authorities, and staff from health insurance and decision makers. The first session was devoted to market and regulatory issues, and included both an overview of the evolution of the patent landscape and a description of biosimilars regulation in the European Union (EU). This session was closed by a talk on manufacturing processes for biosimilars. In the next session, quality control attributes of biosimilars were discussed and compared with the consistent quality of biotechnology products to raise the question: “How close is close enough?” In vitro assays for evaluating the Fc function of therapeutic antibodies were also discussed. The third session focused on development of biosimilars and primarily on the stepwise process for introducing an antibody

  9. Monoclonal antibodies against Vibrio cholerae lipopolysaccharide.

    PubMed Central

    Gustafsson, B; Rosén, A; Holme, T

    1982-01-01

    A cell line producing monoclonal antibodies directed against the core region of Vibrio cholerae lipopolysaccharide has been established. These antibodies were inhibited by lipopolysaccharide preparations of both O-group 1 vibrios and some non-O-group 1 vibrios as detected in enzyme-linked immunosorbent assay-inhibition experiments. Coagglutination experiments with monoclonal and polyclonal antibodies adsorbed to protein A-carrying staphylococci were performed. All V. cholerae strains tested, regardless of serotype, were agglutinated when mixed with staphylococci coated with the monoclonal antibodies, whereas staphylococci coated with group-specific (O1) polyclonal antibodies only agglutinated with O-group 1 vibrios. Images PMID:6183214

  10. Production of Monoclonal Antibody against Human Nestin.

    PubMed

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah

    2010-04-01

    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140-250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such as ELISA, flow cytometry, immunocytochemistry, and Western blot assays. PMID:23407796

  11. Production of Monoclonal Antibody against Human Nestin

    PubMed Central

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah

    2010-01-01

    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140–250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such as ELISA, flow cytometry, immunocytochemistry, and Western blot assays. PMID:23407796

  12. The role of antibodies in myasthenia gravis.

    PubMed

    De Baets, M; Stassen, M H W

    2002-10-15

    Myasthenia gravis is an autoimmune disease associated with antibodies directed to the postsynaptic acetylcholine receptor. These antibodies reduce the number of receptors. Autoantibodies against AChR and other muscle antigens can be used for the diagnosis of myasthenia gravis and related disorders. The origin and the role of these antibodies in the disease are discussed. Experimental autoimmune myasthenia gravis, an experimental model closely mimicking the disease, has provided answers to many questions about the role of antibodies, complement macrophages and AChR anchor proteins. Genetically modified anti-AChR antibodies may also be used in the future to treat myasthenia. PMID:12220686

  13. Antibody engineering and therapeutics conference

    PubMed Central

    Larrick, James W; Parren, Paul WHI; Huston, James S; Plückthun, Andreas; Bradbury, Andrew; Tomlinson, Ian M; Chester, Kerry A; Burton, Dennis R; Adams, Gregory P; Weiner, Louis M; Scott, Jamie K; Alfenito, Mark R; Veldman, Trudi; Reichert, Janice M

    2014-01-01

    The 25th anniversary of the Antibody Engineering & Therapeutics Conference, the Annual Meeting of The Antibody Society, will be held in Huntington Beach, CA, December 7–11, 2014. Organized by IBC Life Sciences, the event will celebrate past successes, educate participants on current activities and offer a vision of future progress in the field. Keynote addresses will be given by academic and industry experts Douglas Lauffenburger (Massachusetts Institute of Technology), Ira Pastan (National Cancer Institute), James Wells (University of California, San Francisco), Ian Tomlinson (GlaxoSmithKline) and Anthony Rees (Rees Consulting AB and Emeritus Professor, University of Bath). These speakers will provide updates of their work, placed in the context of the substantial growth of the industry over the past 25 years. PMID:25517297

  14. Systems immunology: Beyond antibody titers.

    PubMed

    Cao, Raquel; Mejias, Asuncion; Ramilo, Octavio

    2016-07-01

    Despite the evident success of currently available vaccines to prevent infectious diseases, we still lack a full understanding of the mechanisms by which vaccines induce protective immune responses. Systems immunology applies multifaceted analytical tools to better understand the immune responses to vaccines by deep characterization of the cellular components, regulatory pathways, antibody responses and immune gene profiles with the ultimate goal of identifying the complex cellular, genetic and regulatory factors and mechanisms that contribute to effective and protective immune responses. PMID:27180310

  15. Methods of identification employing antibody profiles

    DOEpatents

    Francoeur, Ann-Michele

    1993-12-14

    An identification method, applicable to the identification of animals or inanimate objects, is described. The method takes advantage of the set of individual-specific antibodies that are part of the unique antibody repertoire present in animals, by reacting an effective amount of such antibodies with a particular panel, of n-dimensional array (where n is typically one or two) consisting of an effective amount of many different antigens (typically greater than one thousand), to give antibody-antigen complexes. The profile or pattern formed by the antigen-antibody complexes, termed an antibody fingerprint, when revealed by an effective amount of an appropriate detector molecule, is uniquely representative of a particular individual. The method can similarly be used to distinguish genetically, or otherwise similar individuals, or their body parts containing individual-specific antibodies.

  16. Antibodies directed against receptor tyrosine kinases

    PubMed Central

    FAUVEL, Bénédicte; Yasri, Aziz

    2014-01-01

    Approximately 30 therapeutic monoclonal antibodies have already been approved for cancers and inflammatory diseases, and monoclonal antibodies continue to be one of the fastest growing classes of therapeutic molecules. Because aberrant signaling by receptor tyrosine kinases (RTKs) is a commonly observed factor in cancer, most of the subclasses of RTKs are being extensively studied as potential targets for treating malignancies. The first two RTKs that have been targeted by antibody therapy, with five currently marketed antibodies, are the growth factor receptors EGFR and HER2. However, due to systemic side effects, refractory patients and the development of drug resistance, these treatments are being challenged by emerging therapeutics. This review examines current monoclonal antibody therapies against RTKs. After an analysis of agents that have already been approved, we present an analysis of antibodies in clinical development that target RTKs. Finally, we highlight promising RTKs that are emerging as new oncological targets for antibody-based therapy. PMID:24859229

  17. Human antibodies to vascular endothelium

    PubMed Central

    Lindqvist, K. J.; Osterland, C. K.

    1971-01-01

    Certain human sera were found to produce specific staining of vascular endothelium by the immunofluorescent technique. The antibody nature of this reaction was confirmed by using fluorescein-conjugated antisera specific for human immunoglobulins and the component of complement, and by physicochemical characterization of isolated immunoglobulins giving this reaction. This activity was present in sera from patients with a wide variety of diseases (17·8%). The highest incidence was found in chronic pulmonary tuberculosis (26·6%). An incidence of 14% was found in presumably normal blood donors. The stimulus for the production of these antibodies is unknown. The antigen is fairly widely distributed among different species, since tissues from a variety of animals could be used as substrate in the reaction. Experiments have shown that neither the classic Forssman antigen nor ABO blood groups are involved. The possible role of these antibodies in human disease remains to be elucidated. The finding of anti-endothelial activity in two recipients of renal transplants may be significant. PMID:4945736

  18. Monoclonal antibody purification with hydroxyapatite.

    PubMed

    Gagnon, Pete

    2009-06-01

    Hydroxyapatite (HA) has been used for IgG purification since its introduction in the 1950s. Applications expanded to include IgA and IgM in the 1980s, along with elucidation of its primary binding mechanisms and the development of ceramic HA media. With the advent of recombinant monoclonal antibodies, HA was demonstrated to be effective for removal of antibody aggregates, as well as host cell proteins and leached protein A. HA's inherent abilities have been enhanced by the development of elution strategies that permit differential control of its primary binding mechanisms: calcium metal affinity and phosphoryl cation exchange. These strategies support reduction of antibody aggregate content from greater than 60% to less than 0.1%, in conjunction with enhanced removal of DNA, endotoxin, and virus. HA also has a history of discriminating various immunological constructs on the basis of differences in their variable regions, or discriminating Fab fragments from Fc contaminants in papain digests of purified monoclonal IgG. Continuing development of novel elution strategies, alternative forms of HA, and application of robotic high throughput screening systems promise to expand HA's utility in the field. PMID:19491046

  19. Improved monoclonal antibodies to halodeoxyuridine

    DOEpatents

    Vanderlaan, M.; Dolbeare, F.A.; Gray, J.W.; Thomas, C.B.

    1983-10-18

    The development, method of production, characterization and methods of use of two hybridomas, CIdU-1 (ATCC Accession No. HB-8321) and CIdU-2 (ATCC Accession No. HB-8320), are described. These secrete IgG/sub 1/(K) immunoglobulins that react with halodeoxyuridine (HdU or halodU) such as bromo, chloro, fluoro and iodo deoxyuridine (BrdU, CldU, FdU and IdU), whether these are free in solution or incorporated into single stranded DNA in whole cells. The antibodies do not react with naturally occurring free nucleic acids or with deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) polymers. These antibodies are suitable for use in enzyme immunoassays for free CldU, FdU, IdU and BrdU and for detecting cells with these nucleotides incorporated into them. The monoclonal antibodies are useful in the detection of the sensitivity of tumor cells to specific chemotherapeutic agents, in the measurement of the rate of cellular DNA synthesis, in the measurement of the rate of proliferation of normal and malignant cells and in the detection of HPRT deficiency in cells. 1 tab.

  20. Single-Chain Antibody Library

    DOE Data Explorer

    Baird, Cheryl

    Researchers at Pacific Northwest National Laboratory (PNNL) have constructed a nonimmune library consisting of 109 human antibody scFv fragments, which have been cloned and expressed on the surface of yeast. Nanomolar-affinity scFvs are routinely obtained by magnetic bead screening and flow cytometric sorting. The yeast library can be amplified 1010 fold without measurable loss of clonal diversity. This allows for indefinite expansion of the library. All scFv clones can be assessed directly on the yeast cell surface by immunofluorescent labeling and flow cytometry, obviating separate subcloning, expression, and purification steps. The ability to use multiplex library screening demonstrates the utility of this approach for high-throughput antibody isolation for proteomic applications. The yeast library may be used for research projects or teaching performed for U.S. Government purposes only. If you would like to request an aliquot of the single-chain antibody library for your research, please print and fill out the Materials Transfer Agreement (MTA) [PDF, 20K]. The website provides the contact information for mailing the MTA. [copied from http://www.sysbio.org/dataresources/singlechain.stm

  1. Advances in monoclonal antibody application in myocarditis*

    PubMed Central

    Han, Li-na; He, Shuang; Wang, Yu-tang; Yang, Li-ming; Liu, Si-yu; Zhang, Ting

    2013-01-01

    Monoclonal antibodies have become a part of daily preparation technologies in many laboratories. Attempts have been made to apply monoclonal antibodies to open a new train of thought for clinical treatments of autoimmune diseases, inflammatory diseases, cancer, and other immune-associated diseases. This paper is a prospective review to anticipate that monoclonal antibody application in the treatment of myocarditis, an inflammatory disease of the heart, could be a novel approach in the future. In order to better understand the current state of the art in monoclonal antibody techniques and advance applications in myocarditis, we, through a significant amount of literature research both domestic and abroad, developed a systematic elaboration of monoclonal antibodies, pathogenesis of myocarditis, and application of monoclonal antibodies in myocarditis. This paper presents review of the literature of some therapeutic aspects of monoclonal antibodies in myocarditis and dilated cardiomyopathy to demonstrate the advance of monoclonal antibody application in myocarditis and a strong anticipation that monoclonal antibody application may supply an effective therapeutic approach to relieve the severity of myocarditis in the future. Under conventional therapy, myocarditis is typically associated with congestive heart failure as a progressive outcome, indicating the need for alternative therapeutic strategies to improve long-term results. Reviewing some therapeutic aspects of monoclonal antibodies in myocarditis, we recently found that monoclonal antibodies with high purity and strong specificity can accurately act on target and achieve definite progress in the treatment of viral myocarditis in rat model and may meet the need above. However, several issues remain. The technology on how to make a higher homologous and weak immunogenic humanized or human source antibody and the treatment mechanism of monoclonal antibodies may provide solutions for these open issues. If we are to

  2. Clearance of circulating radio-antibodies using streptavidin or second antibodies in a xenograft model.

    PubMed Central

    Marshall, D.; Pedley, R. B.; Boden, J. A.; Boden, R.; Begent, R. H.

    1994-01-01

    The improved tumour to non-tumour ratios needed for effective tumour targeting with antibodies requires that blood background radioactivity is reduced. We investigated the effect of streptavidin as a clearing agent for 125I-labelled biotinylated anti-CEA antibodies in a human colon carcinoma xenograft model. By comparing the biodistribution of the monoclonal antibody A5B7 with four, nine or 22 biotins per antibody molecule, we investigated how the degree of biotinylation of the primary radiolabelled antibody affects its clearance with streptavidin. Limiting the degree of biotinylation limited blood clearance, whereas nine or 22 biotins per antibody molecule resulted in a 13- to 14-fold reduction in blood radioactivity, the streptavidin-biotinylated antibody complexes clearing rapidly via the liver and spleen. Although a reduction in tumour activity was also seen, a 6.6-fold improvement in the tumour to blood ratio was achieved. A comparative study of streptavidin versus second antibody clearance was carried out using the polyclonal antibody PK4S biotinylated with 12 biotins per antibody molecule. This study indicated that second antibody was superior for clearance of the polyclonal antibody, resulting in a larger and faster reduction in blood radioactivity and improved tumour to blood ratios. In this case the primary antibody was polyclonal, and therefore non-uniformity of biotinylation may affect complexation with streptavidin. Therefore, the degree of biotinylation and type of antibody must be carefully considered before the use of streptavidin clearance. PMID:8123481

  3. Individual-specific antibody identification methods

    DOEpatents

    Francoeur, Ann -Michele

    1989-11-14

    An identification method, applicable to the identification of animals or inanimate objects, is described. The method takes advantage of a hithertofore unknown set of individual-specific, or IS antibodies, that are part of the unique antibody repertoire present in animals, by reacting an effective amount of IS antibodies with a particular panel, or n-dimensional array (where n is typically one or two) consisting of an effective amount of many different antigens (typically greater than one thousand), to give antibody-antigen complexes. The profile or pattern formed by the antigen-antibody complexes, termed an antibody fingerprint, when revealed by an effective amount of an appropriate detector molecule, is uniquely representative of a particular individual. The method can similarly by used to distinguish genetically, or otherwise similar individuals, or their body parts containing IS antibodies. Identification of inanimate objects, particularly security documents, is similarly affected by associating with the documents, an effective amount of a particular individual's IS antibodies, or conversely, a particular panel of antigens, and forming antibody-antigen complexes with a particular panel of antigens, or a particular individual's IS antibodies, respectively. One embodiment of the instant identification method, termed the blocked fingerprint assay, has applications in the area of allergy testing, autoimmune diagnostics and therapeutics, and the detection of environmental antigens such as pathogens, chemicals, and toxins.

  4. Nanoliposome-mediated targeting of antibodies to tumors: IVIG antibodies as a model.

    PubMed

    Nikpoor, Amin Reza; Tavakkol-Afshari, Jalil; Gholizadeh, Zahra; Sadri, Kayvan; Babaei, Mohammad Hossein; Chamani, Jamshidkhan; Badiee, Ali; Jalali, Seyed Amir; Jaafari, Mahmoud Reza

    2015-11-10

    Monoclonal antibodies are routinely used as tools in immunotherapies against solid tumors. However, administration of monoclonal antibodies may cause undesired side effects due to their accumulation in non-targeted organs. Nanoliposomes of less than 200 nm can target antibodies to tumors by enhanced permeation and retention (EPR) mechanisms. To direct monoclonal antibodies to tumors, nanoliposomes encapsulating intravenous immunoglobulin (IVIG) as a model antibody were prepared. The liposomes had average diameters of 100 nm and encapsulation efficiencies of 31 to 46%. They showed less than 10% release in plasma at 37°C up to seven days. The secondary and tertiary structures of liposome-encapsulated antibodies were analyzed by circular dichroism (CD) spectroscopy. The near and far-UV spectra analyses revealed no obvious conformational changes in the structures of the encapsulated antibodies. The biodistribution of free and liposome-encapsulated iodinated antibodies was investigated in mice bearing C-26 colon carcinoma tumors. The accumulation of liposome-encapsulated antibodies in tumors was significantly greater than that of free antibodies due to the EPR effect. The PEGylated liposomes were more efficient in the delivery of antibodies to the tumor site than non-PEGylated liposomes. We conclude that administration of monoclonal antibodies in PEGylated liposomes is more efficient than administration of non-encapsulated monoclonal antibodies for solid tumor immunotherapy. PMID:26302860

  5. Antibody Based Imaging Strategies of Cancer

    PubMed Central

    Warram, Jason M; de Boer, Esther; Sorace, Anna G; Chung, Thomas K; Kim, Hyunki; Pleijhuis, Rick G; van Dam, Gooitzen M; Rosenthal, Eben L

    2014-01-01

    Although mainly developed for preclinical research and therapeutic use, antibodies have high antigen specificity, which can be used as a courier to selectively deliver a diagnostic probe or therapeutic agent to cancer. It is generally accepted that the optimal antigen for imaging will depend on both the expression in the tumor relative to normal tissue and the homogeneity of expression throughout the tumor mass and between patients. For the purpose of diagnostic imaging, novel antibodies can be developed to target antigens for disease detection, or current FDA-approved antibodies can be repurposed with the covalent addition of an imaging probe. Reuse of therapeutic antibodies for diagnostic purposes reduces translational costs since the safety profile of the antibody is well defined and the agent is already available under conditions suitable for human use. In this review, we will explore a wide range of antibodies and imaging modalities that are being translated to the clinic for cancer identification and surgical treatment. PMID:24913898

  6. Antibodies to laminin in Chagas' disease

    PubMed Central

    1982-01-01

    We have found that sera from humans with Chagas' disease and Rhesus monkeys infected with Trypanosoma cruzi contain IgM and IgG antibodies, which react with structures in a variety of connective tissues. These antibodies react with laminin but not with various other purified connective tissue components like collagen types I, III, IV, and V, fibronectin, heparan sulfate (BM-1) proteoglycan, or chondronectin. The tissue-reacting antibodies were isolated by absorption to a laminin- Sepharose column. The bound fraction contained all the tissue-reacting antibodies. These antibodies strongly stained trypomastigotes and amastigotes, but weakly stained epimastigotes. These studies show that sera from T. cruzi-infected primates contain antilaminin antibodies, which may be produced by those host in response to a laminin-like molecule present in the parasite. PMID:6801186

  7. Phase Separation in Solutions of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Benedek, George; Wang, Ying; Lomakin, Aleksey; Latypov, Ramil

    2012-02-01

    We report the observation of liquid-liquid phase separation (LLPS) in a solution of humanized monoclonal antibodies, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective inter-protein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable protein condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia.

  8. B Cells and Antibodies in Transplantation.

    PubMed

    Koenig, Alice; Mariat, Christophe; Mousson, Christiane; Wood, Kathryn J; Rifle, Gérard; Thaunat, Olivier

    2016-07-01

    Overlooked for decades, the humoral alloimmune response is increasingly recognized as a leading cause of graft loss after transplantation. However, improvement in the diagnosis of antibody-mediated rejection has not yet translated into better outcomes for transplanted patients. After an update on B cell physiology and antibody generation, the 2015 Beaune Seminar in Transplant Research challenged the conventional view of antibody-mediated rejection pathophysiology and discussed the latest promising therapeutic approaches. PMID:26845305

  9. A Single-Domain Llama Antibody Potently Inhibits the Enzymatic Activity of Botulinum Neurotoxin by Binding to the Non-Catalytic [alpha]-Exosite Binding Region

    SciTech Connect

    Dong, Jianbo; Thompson, Aaron A.; Fan, Yongfeng; Lou, Jianlong; Conrad, Fraser; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Stevens, Raymond C.; Marks, James D.

    2010-08-13

    Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K{sub d}) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K{sub d} for BoNT/A Lc of 1.47 x 10{sup -10} M and an IC{sub 50} (50% inhibitory concentration) of 4.7 x 10{sup -10} M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 {angstrom} resolution. The structure reveals that the Aa1 VHH binds in the {alpha}-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc {alpha}-exosite as a target for inhibitor development.

  10. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V

    2013-08-06

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.

  11. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2010-06-15

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.

  12. Monoclonal antibodies that detect live salmonellae.

    PubMed Central

    Torensma, R; Visser, M J; Aarsman, C J; Poppelier, M J; van Beurden, R; Fluit, A C; Verhoef, J

    1992-01-01

    Nine immunoglobulin G and nine immunoglobulin M murine monoclonal antibody-producing hybridomas reactive with live Salmonella bacteria were obtained from several fusions of immune spleen cells and Sp2/0 myeloma cells. The antibodies were selected by the magnetic immunoluminescence assay. The monoclonal antibodies were reactive with serogroups A, B, C1, C2, D, E, and K and Salmonella choleraesuis subsp. diarizonae. Each monoclonal antibody proved to be reactive with a distinct serotype. Clinical isolates belonging to these Salmonella serogroups could be detected. Reactivity with non-Salmonella bacteria proved to be minor. Images PMID:1476430

  13. Reducing the cost of HIV antibody testing.

    PubMed

    Tamashiro, H; Maskill, W; Emmanuel, J; Fauquex, A; Sato, P; Heymann, D

    1993-07-10

    Available tests to detect antibody to human immunodeficiency virus (HIV) have a range of applications, and injudicious selection and inappropriate use can add a significant financial burden to budgets for AIDS programmes in developing countries. There are several ways by which the cost of HIV antibody testing can be reduced; they include use of tests appropriate for existing laboratory capabilities; adoption of cost-effective testing strategies; pooling of serum samples before testing; and ensuring best possible purchase prices. Each approach can significantly reduce the cost of HIV antibody testing alone or in combination, which increases the potential sustainability of antibody testing programmes, even in settings of limited resources. PMID:8100916

  14. Enhanced HIV-1 neutralization by antibody heteroligation

    PubMed Central

    Mouquet, Hugo; Warncke, Malte; Scheid, Johannes F.; Seaman, Michael S.; Nussenzweig, Michel C.

    2012-01-01

    Passive transfer of broadly neutralizing human antibodies against HIV-1 protects macaques against infection. However, HIV-1 uses several strategies to escape antibody neutralization, including mutation of the gp160 viral surface spike, a glycan shield to block antibody access to the spike, and expression of a limited number of viral surface spikes, which interferes with bivalent antibody binding. The latter is thought to decrease antibody apparent affinity or avidity, thereby interfering with neutralizing activity. To test the idea that increasing apparent affinity might enhance neutralizing activity, we engineered bispecific anti–HIV-1 antibodies (BiAbs) that can bind bivalently by virtue of one scFv arm that binds to gp120 and a second arm to the gp41 subunit of gp160. The individual arms of the BiAbs preserved the binding specificities of the original anti-HIV IgG antibodies and together bound simultaneously to gp120 and gp41. Heterotypic bivalent binding enhanced neutralization compared with the parental antibodies. We conclude that antibody recognition and viral neutralization of HIV can be improved by heteroligation. PMID:22219363

  15. 5th Annual Monoclonal Antibodies Conference

    PubMed Central

    2009-01-01

    The conference, which was organized by Visiongain and held at the BSG Conference Center in London, provided an excellent opportunity for participants to exchange views on the development, production and marketing of therapeutic antibodies, and discuss the current business environment. The conference included numerous interactive panel and group discussions on topics such as isotyping for therapeutic antibodies (panel chair: Nick Pullen, Pfizer), prospects for fully human monoclonal antibodies (chair: Christian Rohlff, Oxford BioTherapeutics), perspectives on antibody manufacturing and development (chair: Bo Kara, Avecia), market impact and post-marketing issues (chair: Keith Rodgers, Bodiam Consulting) and angiogenesis inhibitors (chair: David Blakey, AstraZeneca). PMID:20073132

  16. Exceptional Antibodies Produced by Successive Immunizations.

    PubMed

    Gearhart, Patricia J; Castiblanco, Diana P; Russell Knode, Lisa M

    2015-12-01

    Antibodies stand between us and pathogens. Viruses mutate quickly to avoid detection, and antibodies mutate at similar rates to hunt them down. This death spiral is fueled by specialized proteins and error-prone polymerases that change DNA sequences. Here, we explore how B lymphocytes stay in the race by expressing activation-induced deaminase, which unleashes a tsunami of mutations in the immunoglobulin loci. This produces random DNA substitutions, followed by selection for the highest affinity antibodies. We may be able to manipulate the process to produce better antibodies by expanding the repertoire of specific B cells through successive vaccinations. PMID:26641938

  17. Development of humanized antibodies as cancer therapeutics.

    PubMed

    Qu, Zhengxing; Griffiths, Gary L; Wegener, William A; Chang, Chien-Hsing; Govindan, Serengulam V; Horak, Ivan D; Hansen, Hans J; Goldenberg, David M

    2005-05-01

    Recent success in the development of monoclonal antibody-based anti-cancer drugs has largely benefitted from the advancements made in recombinant technologies and cell culture production. These reagents, derived from the antibodies of mouse origin, while maintaining the exquisite specificity and affinity to the tumor antigens, have low immunogenicity and toxicity in human. High-level expressing cell clones are generated and used to produce large quantities of the recombinant antibodies in bioreactors in order to meet the clinical demand for therapeutic applications. In this report, the systems and general methodologies developed by us to construct and produce humanized antibodies from the parent mouse antibodies are described. Once the humanized antibodies are available, they can be applied in three principal forms for cancer therapy: (1) naked antibodies, (2) drug- or toxin conjugates, and (3) radioconjugates. Using the humanized anti-CD22 (epratuzumab) and anti-carcinoembryonic antigen (ant-CEA; labetuzumab) antibody prototypes, clinical applications of naked and radiolabeled humanized monoclonal antibodies are described. PMID:15848077

  18. Preparation of astatine-labeled monoclonal antibodies

    SciTech Connect

    Milesz, S.; Norseev, Yu.V.; Szucs, Z. |

    1995-07-01

    In the cationic state astatine forms a stable complex with diethylenetriaminepentaacetic acid. Thanks to this complex, astatine can be bound to monoclonal antibodies of the RYa{sub 1} type. The most favorable conditions for preparing astatine-labeled antibodies are established. The chromatographic analysis and electromigration experiments showed that astatine is firmly linked to a biomolecule in vitro and it did not escape from labeled monoclonal antibodies even under treatment with such highly effective astatine-complexing agent as thiourea. The immune activity of astatine-labeled antibodies did not change even after 20 h.

  19. Antibody therapeutics for Ebola virus disease.

    PubMed

    Zeitlin, Larry; Whaley, Kevin J; Olinger, Gene G; Jacobs, Michael; Gopal, Robin; Qiu, Xiangguo; Kobinger, Gary P

    2016-04-01

    With the unprecedented scale of the 2014-2016 West Africa outbreak, the clinical and scientific community scrambled to identify potential therapeutics for Ebola virus disease (EVD). Passive administration of antibodies has a long successful history for prophylaxis and therapy of a variety of infectious diseases, but the importance of antibodies in EVD has been unclear and is the subject of some debate. Recent studies in non-human primates have renewed interest in the potential of antibodies to impact EVD. Currently ongoing clinical evaluation of polyclonal and monoclonal antibody therapy in EVD patients in West Africa may finally offer a definitive answer to this debate. PMID:26826442

  20. Monoclonal Antibody That Defines Human Myoepithelium

    NASA Astrophysics Data System (ADS)

    Dairkee, Shahnaz Hashmi; Blayney, Carlene; Smith, Helene S.; Hackett, Adeline J.

    1985-11-01

    We have isolated a mouse monoclonal antibody that, upon immunohistochemical localization in frozen sections, displays specificity for human myoepithelial cells in the resting mammary gland, sweat glands, and salivary glands. Furthermore, this antibody was strongly and homogeneously reactive with frozen sections of 3 of 60 breast carcinoma specimens. Using immunolocalization techniques in conjunction with polyacrylamide gel electrophoresis, we have determined that the reactivity of this monoclonal antibody is directed toward a 51,000-dalton keratin polypeptide. The potential uses of this antibody in the prognosis of human mammary carcinoma and in understanding the role of the myoepithelium in development and differentiation are discussed.

  1. Mouse monoclonal antibodies against estrogen receptor.

    PubMed

    De Rosa, Caterina; Rossi, Valentina; Abbondanza, Ciro

    2014-01-01

    The production of monoclonal antibodies, by cloning hybridoma derived from the fusion of myeloma cells and spleen lymphocytes, has allowed to obtain great advances in many fields of biological knowledge. The use of specific antibodies to the estrogen receptor, in fact, has been an invaluable method to bring out its mechanisms of action and its effects, both genomic and extra-genomic. Here we describe, step by step, the production of monoclonal antibodies, starting from protocol for antigen preparation to the selection of antibody-secreting hybridoma. PMID:25182770

  2. Monoclonal antibodies with group specificity toward sulfonamides: Selection of hapten and antibody selectivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although many antibodies to sulfonamides have been generated, immunoassays based on the current available antibodies for large multi-sulfonamide screening programs have properties dependent on the immunizing hapten structure and have always suffered from high selectivity for individual sulfonamides....

  3. Antibody Staining in Drosophila Germaria.

    PubMed

    Lie-Jensen, Anette; Haglund, Kaisa

    2016-01-01

    Drosophila oogenesis is a powerful model for studying a wide spectrum of cellular and developmental processes in vivo. Oogenesis starts in a specialized structure called the germarium, which harbors the stem cells for both germ and somatic cells. The germarium produces egg chambers, each of which will develop into an egg. Active areas of research in Drosophila germaria include stem cell self-renewal, division, and maintenance, cell cycle control and differentiation, oocyte specification, intercellular communication, and signaling, among others. The solid knowledge base, the genetic tractability of the Drosophila model, as well as the availability and fast development of tools and imaging techniques for oogenesis research ensure that studies in this model will keep being instrumental for novel discoveries within cell and developmental biology also in the future. This chapter focuses on antibody staining in Drosophila germaria and provides a protocol for immunostaining as well as an overview of commonly used antibodies for visualization of different cell types and cellular structures. The protocol is well-suited for subsequent confocal microscopy analyses, and in addition we present key adaptations of the protocol that are useful when performing structured illumination microscopy (SIM) super-resolution imaging. PMID:27557571

  4. Monoclonal Antibodies for Lipid Management.

    PubMed

    Feinstein, Matthew J; Lloyd-Jones, Donald M

    2016-07-01

    In recent years, biochemical and genetic studies have identified proprotein convertase subtilisin/kexin type 9 (PCSK9) as a major mediator of low-density lipoprotein cholesterol (LDL-c) levels and thereby a potential novel target for reducing risk of coronary heart disease (CHD). These observations led to the development of PCSK9 inhibitors, which lower LDL-c levels more than any other non-invasive lipid-lowering therapy presently available. The PCSK9 inhibitors furthest along in clinical trials are subcutaneously injected monoclonal antibodies. These PCSK9 inhibitors have demonstrated LDL-c-lowering efficacy with acceptable safety in phase III clinical trials and may offer a useful therapy in addition to maximally tolerated HMG-CoA reductase inhibitors (statins) in certain patient groups. Longer-term data are required to ensure sustained efficacy and safety of this new class of medications. This review provides an overview of the biology, genetics, development, and clinical trials of monoclonal antibodies designed to inhibit PCSK9. PMID:27221501

  5. Passive antibody transfer in chickens to model maternal antibody after avian influenza vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Birds transfer maternal antibodies (MAb) to their offspring through the egg yolk where the antibody is absorbed and enters the circulatory system. Maternal antibodies provide early protection from disease, but may interfere with the vaccination efficacy in the chick. MAb are thought to interfere wit...

  6. Passive antibody transfer in chickens to model maternal antibody after avian influenza vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Birds transfer maternal antibodies (MAb) to their offspring through the egg yolk where the antibody is absorbed and enters the circulatory system. These maternal antibodies, depending on the pathogen, can provide early protection from some diseases, but it may also interfere with the vaccination re...

  7. Fluorescent antibody responses to adenoviruses in humans.

    PubMed Central

    Ariyawansa, J P; Tobin, J O

    1976-01-01

    Specific IgG, IgA, and IgM immunoglobulin antibody responses to adenovirus infections were studied by the indirect immunofluorescent technique in six pairs of human sera obtained during acute and convalescent phases of the illness. In addition, 70 single specimens of sera showing adenovirus IgG antibody from different age groups from birth to the 60th year of life were titrated for the same antibody to adenovirus types 1, 2, 3, 5, and 7, and 170 serum specimens from the same age groups were screened for specific immunoglobulin antibodies against types 1 and 5. Specific immunoglobulin antibodies lacked type specificity and in acute infections measured heterologous antibody response as well. On the other hand, IgG antibodies detected in single specimens of sera by immunofluorescence correlate with surveys of the isolation of virus from patients and neutralizing antibody studies by other workers. Fluorescent antibodies appeared in all three fractions of the immunoglobulins in acute adenovirus infections. Although this technique may be used in the diagnosis of adenovirus infections there is no advantage compared to complement-fixation testing. However, the use of sera absorbed with group antigen may have a more useful place in serological epidemiology than in diagnostic work. In five pairs of sera obtained during acute and convalescent phases of adenoviral illness and in 70 random single specimens from different age groups, "T" antibodies were detected only in the IgG fraction. The paired sera did not show a significant rise to indicate the usefulness of "T" antibody study in diagnosis. PMID:180061

  8. Fluorescent antibody responses to adenoviruses in humans.

    PubMed

    Ariyawansa, J P; Tobin, J O

    1976-05-01

    Specific IgG, IgA, and IgM immunoglobulin antibody responses to adenovirus infections were studied by the indirect immunofluorescent technique in six pairs of human sera obtained during acute and convalescent phases of the illness. In addition, 70 single specimens of sera showing adenovirus IgG antibody from different age groups from birth to the 60th year of life were titrated for the same antibody to adenovirus types 1, 2, 3, 5, and 7, and 170 serum specimens from the same age groups were screened for specific immunoglobulin antibodies against types 1 and 5. Specific immunoglobulin antibodies lacked type specificity and in acute infections measured heterologous antibody response as well. On the other hand, IgG antibodies detected in single specimens of sera by immunofluorescence correlate with surveys of the isolation of virus from patients and neutralizing antibody studies by other workers. Fluorescent antibodies appeared in all three fractions of the immunoglobulins in acute adenovirus infections. Although this technique may be used in the diagnosis of adenovirus infections there is no advantage compared to complement-fixation testing. However, the use of sera absorbed with group antigen may have a more useful place in serological epidemiology than in diagnostic work. In five pairs of sera obtained during acute and convalescent phases of adenoviral illness and in 70 random single specimens from different age groups, "T" antibodies were detected only in the IgG fraction. The paired sera did not show a significant rise to indicate the usefulness of "T" antibody study in diagnosis. PMID:180061

  9. IBC’s 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics International Conferences and the 2012 Annual Meeting of The Antibody Society

    PubMed Central

    Klöhn, Peter-Christian; Wuellner, Ulrich; Zizlsperger, Nora; Zhou, Yu; Tavares, Daniel; Berger, Sven; Zettlitz, Kirstin A.; Proetzel, Gabriele; Yong, May; Begent, Richard H.J.; Reichert, Janice M

    2013-01-01

    The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3–6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3–5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4–5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society’s special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5–6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy. PMID:23575266

  10. How to successfully patent therapeutic antibodies.

    PubMed

    Lahrtz, Fritz

    2015-04-01

    Therapeutic antibodies have become an established class of drugs for the treatment of a variety of diseases, especially cancer and autoimmune/inflammatory disorders, and a sufficient patent protection is a prerequisite for their successful commercialization. As monoclonal antibodies and their therapeutic potential have been well known for decades, the mere production of yet another therapeutic antibody is in many jurisdictions not considered a patentable invention. In contrast, antibodies with novel structural features and/or improved properties may be patentable. When drafting the claims, care should be taken to obtain a broad patent scope that protects both the antibody of interest and related antibodies having the same functional features, thereby preventing competitors from marketing a functionally equivalent antibody. Furthermore, the application should contain experimental evidence showing the improved properties of the claimed antibody. After the filing of a priority patent application, patent protection should be initiated at least in countries that are of particular commercial importance. Subsequent inventions relating to novel uses, formulations, dosage regimens, and combinations with other treatment modalities should be protected by further patent applications to extend patent term. PMID:25614506

  11. Anti-influenza M2e antibody

    DOEpatents

    Bradbury, Andrew M.

    2013-04-16

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  12. Anti-influenza M2e antibody

    DOEpatents

    Bradbury, Andrew M.

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  13. Monoclonal Antibody Therapy for Advanced Neuroblastoma

    Cancer.gov

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.

  14. Use of second antibody in radioimmunotherapy

    SciTech Connect

    Begent, R.H.; Bagshawe, K.D.; Pedley, R.B.; Searle, F.; Ledermann, J.A.; Green, A.J.; Keep, P.A.; Chester, K.A.; Glaser, M.G.; Dale, R.G.

    1987-01-01

    In this study, a second antibody was directed against the first antitumor antibody to accelerate clearance of the /sup 131/I-labeled first antibody and improve tumor to normal tissue ratios of radioactivity. The value of this method in improving the therapeutic index of radioimmunotherapy with /sup 131/I-antibody to CEA has been investigated in nude mice bearing xenografts of human colon carcinoma and in 5 patients with colorectal cancer. The xenografts did not become saturated with anti-CEA as the administered dose was increased to therapeutic levels. At these high dose levels, the second antibody increased tumor to blood ratios to a maximum of 155:1, 48 times the level in controls that did not receive the second antibody. In 5 patients given 50 mCi of anti-CEA, there was no significant toxicity with the second antibody; clearance of radioactivity was accelerated; and tumor imaging was enhanced. The second antibody appears to have the potential to improve the therapeutic index of radioimmunotherapy.

  15. Antibody-drug conjugates: Intellectual property considerations.

    PubMed

    Storz, Ulrich

    2015-01-01

    Antibody-drug conjugates are highly complex entities that combine an antibody, a linker and a toxin. This complexity makes them demanding both technically and from a regulatory point of view, and difficult to deal with in their patent aspects. This article discusses different issues of patent protection and freedom to operate with regard to this promising new class of drugs. PMID:26292154

  16. Mechanisms of Neonatal Mucosal Antibody Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following an abrupt transition at birth from the sterile uterus to an environment with abundant commensal and pathogenic microbes, neonatal mammals are protected by maternal antibodies at mucosal surfaces. We show in mice that different antibody isotypes work in distinct ways to protect the neonatal...

  17. Antibody-drug conjugates: Intellectual property considerations

    PubMed Central

    Storz, Ulrich

    2015-01-01

    Antibody-drug conjugates are highly complex entities that combine an antibody, a linker and a toxin. This complexity makes them demanding both technically and from a regulatory point of view, and difficult to deal with in their patent aspects. This article discusses different issues of patent protection and freedom to operate with regard to this promising new class of drugs. PMID:26292154

  18. 8th Annual European Antibody Congress 2012

    PubMed Central

    Beck, Alain; Carter, Paul J.; Gerber, Hans-Peter; Lugovskoy, Alexey A.; Wurch, Thierry; Junutula, Jagath R.; Kontermann, Roland E; Mabry, Robert

    2013-01-01

    The 8th European Antibody Congress (EAC), organized by Terrapin Ltd., was again held in Geneva, Switzerland, following on the tradition established with the 4th EAC. The new agenda format for 2012 included three parallel tracks on: (1) naked antibodies; (2) antibody drug conjugates (ADCs); and (3) bispecific antibodies and alternative scaffolds. The meeting started and closed with three plenary lectures to give common background and to share the final panel discussion and conclusions. The two day event included case studies and networking for nearly 250 delegates who learned of the latest advances and trends in the global development of antibody-based therapeutics. The monoclonal antibody track was focused on understanding the structure-function relationships, optimization of antibody design and developability, and processes that allow better therapeutic candidates to move through the clinic. Discussions on novel target identification and validation were also included. The ADC track was dedicated to evaluation of the ongoing success of the established ADC formats alongside the rise of the next generation drug-conjugates. The bispecific and alternative scaffold track was focused on taking stock of the multitude of bispecific formats being investigated and gaining insight into recent innovations and advancements. Mechanistic understanding, progression into the clinic and the exploration of multispecifics, redirected T cell killing and alternative scaffolds were extensively discussed. In total, nearly 50 speakers provided updates of programs related to antibody research and development on-going in the academic, government and commercial sectors. PMID:23493119

  19. 7th Annual European Antibody Congress 2011

    PubMed Central

    2012-01-01

    The 7th European Antibody Congress (EAC), organized by Terrapin Ltd., was again held in Geneva, Switzerland, following on the tradition established with the 4th EAC. The 2011 version of the EAC was attended by nearly 250 delegates who learned of the latest advances and trends in the global development of antibody-based therapeutics. The first day focused on advances in understanding structure-function relationships, choosing the best format, glycoengineering biobetter antibodies, improving the efficacy and drugability of mAbs and epitope mapping. On the second day, the discovery of novel targets for mAb therapy, clinical pipeline updates, use of antibody combinations to address resistance, generation and identification of mAbs against new targets and biosimilar mAb development were discussed. Antibody-drug conjugates, domain antibodies and new scaffolds and bispecific antibodies were the topics of the third day. In total, nearly 50 speakers provided updates of programs related to antibody research and development on-going in the academic, government and commercial sectors. PMID:22453093

  20. Bioconjugation of antibodies to horseradish peroxidase (hrp)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bioconjugation of an antibody to an enzymatic reporter such as horseradish peroxidase (HRP) affords an effective mechanism by which immunoassay detection of a target antigen can be achieved. The use of heterobifunctional cross—linkers to covalently link antibodies to HRP provides a simple and c...

  1. Quality Issues of Research Antibodies

    PubMed Central

    Weller, Michael G.

    2016-01-01

    According to several recent studies, an unexpectedly high number of landmark papers seem to be not reproducible by independent laboratories. Nontherapeutic antibodies used for research, diagnostic, food analytical, environmental, and other purposes play a significant role in this matter. Although some papers have been published offering suggestions to improve the situation, they do not seem to be comprehensive enough to cover the full complexity of this issue. In addition, no obvious improvements could be noticed in the field as yet. This article tries to consolidate the remarkable variety of conclusions and suggested activities into a more coherent conception. It is concluded that funding agencies and journal publishers need to take first and immediate measures to resolve these problems and lead the way to a more sustainable way of bioanalytical research, on which all can rely with confidence. PMID:27013861

  2. B Cells, Antibodies, and More

    PubMed Central

    Hoffman, William; Lakkis, Fadi G.

    2016-01-01

    B cells play a central role in the immunopathogenesis of glomerulonephritides and transplant rejection. B cells secrete antibodies that contribute to tissue injury via multiple mechanisms. In addition, B cells contribute to disease pathogenesis in autoimmunity and alloimmunity by presenting antigens as well as providing costimulation and cytokines to T cells. B cells also play an immunomodulatory role in regulating the immune response by secreting cytokines that inhibit disease onset and/or progression. B cell–targeted approaches for treating immune diseases of the kidney and other organs have gained significant momentum. However, much remains to be understood about B-cell biology in order to determine the timing, duration, and context of optimal therapeutic response to B cell–targeted approaches. In this review, we discuss the multifaceted roles of B cells as enhancers and regulators of immunity with relevance to kidney disease and transplantation. PMID:26700440

  3. Clinical considerations for biosimilar antibodies

    PubMed Central

    Mellstedt, Håkan

    2013-01-01

    Biosimilar agents are approximate copies of branded biologic therapies. Since the first biosimilar was authorized in the European Union in 2006, fifteen additional agents have been approved by the European Medicines Agency, including two biosimilar monoclonal antibodies (mAbs). Biosimilar mAbs represent a distinct class given their large molecular size, complex protein structure, and post-translational modifications. While guidelines have been established for the development, approval, and use of biosimilars, further scrutiny and discussion is necessary to fully understand their potential impact on clinical outcomes. This review takes a critical look at the structural complexity of biosimilar mABs, the feasibility of indication extrapolation, the impact of product variability on immunogenicity, the importance of comprehensive pharmacovigilance, and the potential for ongoing pharmacoeconomic impact. PMID:26217160

  4. B Cells, Antibodies, and More.

    PubMed

    Hoffman, William; Lakkis, Fadi G; Chalasani, Geetha

    2016-01-01

    B cells play a central role in the immunopathogenesis of glomerulonephritides and transplant rejection. B cells secrete antibodies that contribute to tissue injury via multiple mechanisms. In addition, B cells contribute to disease pathogenesis in autoimmunity and alloimmunity by presenting antigens as well as providing costimulation and cytokines to T cells. B cells also play an immunomodulatory role in regulating the immune response by secreting cytokines that inhibit disease onset and/or progression. B cell-targeted approaches for treating immune diseases of the kidney and other organs have gained significant momentum. However, much remains to be understood about B-cell biology in order to determine the timing, duration, and context of optimal therapeutic response to B cell-targeted approaches. In this review, we discuss the multifaceted roles of B cells as enhancers and regulators of immunity with relevance to kidney disease and transplantation. PMID:26700440

  5. Anti-miroestrol polyclonal antibodies: a comparison of immunogen preparations used to obtain desired antibody properties.

    PubMed

    Kitisripanya, Tharita; Jutathis, Kamonthip; Inyai, Chadathorn; Komaikul, Jukrapun; Udomsin, Orapin; Yusakul, Gorawit; Tanaka, Hiroyuki; Putalun, Waraporn

    2016-04-01

    Immunogen quality is one important factor that contributes to desirable antibody characteristics. Highly specific antibodies against miroestrol can be used to develop a quality control immunoassay for Pueraria candollei products. In this study, we investigated how various immunogen preparations affect antibody properties. The results show that immunogen prepared using the Mannich reaction provides antibodies with higher specificity and sensitivity against miroestrol than immunogen prepared with the periodate reaction. The results suggest the Mannich reaction maintains the original structure of miroestrol and generates useful antibodies for developing immunoassays. PMID:26563142

  6. Synthetic Antibodies for Reversible Cell Recognition

    NASA Astrophysics Data System (ADS)

    Zhou, Jing Zhou

    2011-12-01

    Antibody-mediated cell recognition plays a critical role in various biological and biomedical applications. However, strong antibody-cell interactions can lead to the difficulty of separating antibodies from the bound cells in a simple and non-destructive manner, which is often necessary to numerous applications such as cell sorting or separation. Thus, this thesis research is aimed to create an antibody-like nanomaterial with the function of reversible cell recognition It was hypothesized that nucleic acid aptamer and dendrimer could be used as fundamental structural components to develop an antibody-like nanomaterial. The aptamer functions as the binding site of an antibody; the dendrimer is used as a robust, defined nano-scaffold to support the aptamer and to carry small molecules (e.g., fluorophores). To test this hypothesis, a novel method was first developed to discover the essential nucleotides of full-length aptamers to mimic the binding sites of antibodies. The essential nucleotides were further conjugated with a dendrimer to synthesize a monovalent aptamer-dendrimer nanomaterial. The results clearly showed that the essential nucleotides could maintain high affinity and specificity after tethered on dendrimer surface. To further test the hypothesis that antibody-like nanomaterials can be rationally designed to acquire the capability of reversible cell recognition, an aptamer that was selected at 0 °C was used as a model to synthesize a "Y-shaped" nanomaterial by conjugating two aptamers to the same dendrimer. The results showed that the nanomaterial-cell interaction could be affected by the distance between two binding aptamers. In addition, the "Y-shaped" antibody-like nanomaterial could bind target cells more strongly than its monovalent control. Importantly, the strong cell-nanomaterial interaction could be rapidly reversed when the temperature was shifted from 0 °C to 37 °C. In summary, we developed a synthetic antibody that can not only mimic the

  7. Trends in Malignant Glioma Monoclonal Antibody Therapy

    PubMed Central

    Chekhonin, Ivan; Gurina, Olga

    2015-01-01

    Although new passive and active immunotherapy methods are emerging, unconjugated monoclonal antibodies remain the only kind of biological preparations approved for high-grade glioma therapy in clinical practice. In this review, we combine clinical and experimental data discussion. As antiangiogenic therapy is the standard of care for recurrent glioblastoma multiforme (GBM), we analyze major clinical trials and possible therapeutic combinations of bevacizumab, the most common monoclonal antibody to vascular endothelial growth factor (VEGF). Another humanized antibody to gain recognition in GBM is epidermal growth factor (EGFR) antagonist nimotuzumab. Other antigens (VEGF receptor, platelet-derived growth factor receptor, hepatocyte growth factor and c-Met system) showed significance in gliomas and were used to create monoclonal antibodies applied in different malignant tumors. We assess the role of genetic markers (isocitrate dehydrogenase, O6-methylguanine-DNA methyltransnsferase) in GBM treatment outcome prediction. Besides antibodies studied in clinical trials, we focus on perspective targets and briefly list other means of passive immunotherapy.

  8. Antibodies in the treatment of aplastic anemia.

    PubMed

    Gómez-Almaguer, David; Jaime-Pérez, Jose Carlos; Ruiz-Arguelles, Guillermo J

    2012-04-01

    Antibodies have been the cornerstone of treatment of acquired aplastic anemia for more than 25 years. Treatment with antithymocyte globulin (ATG) is considered pivotal and the addition of cyclosporine improves the overall response rate. This antibody is heterogeneous and horse ATG is apparently more effective than rabbit ATG. Several issues remain unsolved in relation to the combination of ATG and cyclosporine: cost, toxicity and late clonal disorders. In recent years, alternative immunosuppressive therapy has been proposed and new antibodies have emerged: porcine ATG, alemtuzumab, daclizumab, and rituximab. Experience with these antibodies is limited to a few studies with alemtuzumab being the most promising, but the results are interesting and provocative. More studies are needed to find the perfect antibody. PMID:22307362

  9. Dual targeting strategies with bispecific antibodies

    PubMed Central

    2012-01-01

    Monoclonal antibodies are widely used for the treatment of cancer, inflammatory and infectious diseases and other disorders. Most of the marketed antibodies are monospecific and therefore capable of interacting and interfering with a single target. However, complex diseases are often multifactorial in nature, and involve redundant or synergistic action of disease mediators or upregulation of different receptors, including crosstalk between their signaling networks. Consequently, blockade of multiple, different pathological factors and pathways may result in improved therapeutic efficacy. This result can be achieved by combining different drugs, or use of the dual targeting strategies applying bispecific antibodies that have emerged as an alternative to combination therapy. This review discusses the various dual targeting strategies for which bispecific antibodies have been developed and provides an overview of the established bispecific antibody formats. PMID:22453100

  10. Radiolabeled antibodies for therapy of infectious diseases

    PubMed Central

    Dadachova, Ekaterina; Casadevall, Arturo

    2014-01-01

    Novel approaches to treatment of infectious diseases are urgently needed. This need has resulted in renewing the interest in antibodies for therapy of infectious diseases. Radioimmunotherapy (RIT) is a cancer treatment modality, which utilizes radiolabeled monoclonal antibodies (mAbs). During the last decade we have translated RIT into the field of experimental fungal, bacterial and HIV infections. In addition, successful proof of principle experiments with radiolabeled pan-antibodies that bind to antigens shared by major pathogenic fungi were performed in vitro. The armamentarium of pan-antibodies would result in reducing the dependence on microorganism-specific antibodies and thus would speed up the development of RIT of infections. We believe that the time is ripe for deploying RIT into the clinic to combat infectious diseases. PMID:25599011

  11. Antibody-Mediated Lung Transplant Rejection

    PubMed Central

    Hachem, Ramsey

    2012-01-01

    Antibody-mediated rejection after lung transplantation remains enigmatic. However, emerging evidence over the past several years suggests that humoral immunity plays an important role in allograft rejection. Indeed, the development of donor-specific antibodies after transplantation has been identified as an independent risk factor for acute cellular rejection and bronchiolitis obliterans syndrome. Furthermore, cases of acute antibody-mediated rejection resulting in severe allograft dysfunction have been reported, and these demonstrate that antibodies can directly injure the allograft. However, the incidence and toll of antibody-mediated rejection are unknown because there is no widely accepted definition and some cases may be unrecognized. Clearly, humoral immunity has become an important area for research and clinical investigation. PMID:23002428

  12. Isolation of Balamuthia mandrillaris-specific antibody fragments from a bacteriophage antibody display library.

    PubMed

    Siddiqui, Ruqaiyyah; Kulsoom, Huma; Lalani, Salima; Khan, Naveed Ahmed

    2016-07-01

    Balamuthia mandrillaris is a protist pathogen that can cause encephalitis with a mortality rate of more than 95%. Early diagnosis followed by aggressive treatment is a pre-requisite for successful prognosis. Current methods for identifying this organism rely on culture and microscopy, antibody-based methods using animals, or involve the use of molecular tools that are expensive. Here, we describe the isolation of antibody fragments that can be used for the unequivocal identification of B. mandrillaris. B. mandrillaris-specific antibody fragments were isolated from a bacteriophage antibody display library. Individual clones were studied by enzyme-linked immunosorbent assay, and immunofluorescence. Four antibody clones showed specific binding to B. mandrillaris. The usefulness of phage antibody display technology as a diagnostic tool for isolating antibody fragments against B. mandrillaris antigens and studying their biological role(s) is discussed further. PMID:27055361

  13. Vector-Mediated In Vivo Antibody Expression.

    PubMed

    Schnepp, Bruce C; Johnson, Philip R

    2014-08-01

    This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis. PMID:26104192

  14. Radiohalogenated half-antibodies and maleimide intermediate therefor

    DOEpatents

    Kassis, Amin I.; Khawli, Leslie A.

    1991-01-01

    N-(m-radiohalophenyl) maleimide can be conjugated with a reduced antibody having a mercapto group to provide a radiolabelled half-antibody having immunological specific binding characteristics of whole antibody.

  15. Radiohalogenated half-antibodies and maleimide intermediate therefor

    DOEpatents

    Kassis, A.I.; Khawli, L.A.

    1991-02-19

    N-(m-radiohalophenyl) maleimide can be conjugated with a reduced antibody having a mercapto group to provide a radiolabeled half-antibody having immunological specific binding characteristics of whole antibody. No Drawings

  16. Antibody Engineering & Therapeutics, the annual meeting of The Antibody Society December 7-10, 2015, San Diego, CA, USA.

    PubMed

    Pauthner, Matthias; Yeung, Jenny; Ullman, Chris; Bakker, Joost; Wurch, Thierry; Reichert, Janice M; Lund-Johansen, Fridtjof; Bradbury, Andrew R M; Carter, Paul J; Melis, Joost P M

    2016-01-01

    The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6-10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on "Antibodies to watch" in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries. PMID:26909869

  17. Monoclonal antibodies in the treatment of cancer

    SciTech Connect

    Dillman, R.O.

    1984-01-01

    Potential uses of monoclonal antibodies in anti-cancer treatment include passive serotherapy, radioisotope conjugates, toxin-linked conjugates, and chemotherapy-monoclonal antibody conjugates. The bases for these applications have been founded in research with heterologous antisera, and in some cases with monoclonal antibodies in animal tumor models. Human trials with passive serotherapy have already begun in both hematopoietic and solid tumor malignancies. Promising results have been reported in cutaneous T cell lymphoma with anti-T cell monoclonal antibody, and in nodular lymphoma with anti-idiotype monoclonal antibody. Radioisotope conjugate work appears promising for imaging in both animals and humans, and this work will lay the foundation for possible therapeutic application of radio-immunotherapy. Toxin-linked conjugates are promising in vitro and may have application in autologous bone marrow transplantation. Research with chemotherapy conjugates is also underway. Preliminary results suggest that murine monoclonal antibodies will be well tolerated clinically except in the setting of circulating cells which bear the target antigen, where rapid infusions may be associated with intolerable side effects. In certain diseases, production of endogenous anti-mouse antibodies may also limit application. Advances in the technology for human-human hybridoma production may help solve some of these problems. 132 references.

  18. Screening for antibodies associated with halothane hepatitis.

    PubMed

    Hastings, K L; Thomas, C; Hubbard, A K; Gandolfi, A J

    1991-12-01

    The diagnosis of halothane hepatitis (HH) may be assisted by detection of antibodies reacting to trifluoroacetylated proteins (anti-TFA antibodies). An enzyme-linked immunosorbent assay (ELISA) utilizing trifluoroacetylated rabbit serum albumin (TFA-RSA) as antigen detected anti-TFA antibodies in 67% of sera from patients for whom a clinical diagnosis of HH was made. Anti-TFA antibodies were detected in 33% of sera when using an ELISA with liver microsomal protein from halothane-treated rabbits as antigen. Absorption of the sera with untreated rabbit liver microsomal protein before using the microsomal protein ELISA resulted in detection of anti-TFA antibodies in 42% of sera. Using the presumptive hapten N-epsilon-trifluoroacetyl-1-lysine to block antibody binding in an ELISA resulted in positive detection in 50% of sera: the results did not always agree with the other ELISA methods. The TFA-RSA ELISA was the most sensitive method and, combined with the TFA-lysine blocking ELISA, resulted in 92% of sera from HH patients testing positive for HH-associated antibodies. PMID:1768541

  19. Engineering antibodies for clinical applications in cancer.

    PubMed

    Chester, Kerry; Pedley, Barbara; Tolner, Berend; Violet, John; Mayer, Astrid; Sharma, Surinder; Boxer, Geoff; Green, Alan; Nagl, Sylvia; Begent, Richard

    2004-01-01

    The 'magic bullet' concept predicted over a century ago that antibodies would be used to target cancer therapy. Since then initial problems that were related to specificity, purity and immungenicity of antibody-based reagents have slowly been overcome due to developments in technology and increased knowledge. As a result, antibodies are in use for many clinical applications and now comprise the second largest category of medicines in clinical development after vaccines. For antibody-based cancer therapeutics the last 20 years have met with an explosion of knowledge about the biology of the disease and potential targets as well as new technology which allows cloning and manipulation of multifunctional antibody-based molecules. However, the focus still remains on developing therapeutics that will have potential for treating cancer in people and this is efficiently assessed in mechanistic clinical trials that feed back to the laboratory for further development. This review illustrates the mechanistic approach to making new molecules for antibody imaging and therapy of cancer. It is illustrated by examples of radioimmunotherapy and antibody-directed enzyme prodrug therapy developed by the authors. PMID:15192316

  20. Next generation of antibody therapy for cancer

    PubMed Central

    Zhu, Zhenping; Yan, Li

    2011-01-01

    Monoclonal antibodies (mAbs) have become a major class of therapeutic agents providing effective alternatives to treating various human diseases. To date, 15 mAbs have been approved by regulatory agencies in the world for clinical use in oncology indications. The selectivity and specificity, the unique pharmacokinetics, and the ability to engage and activate the host immune system differentiate these biologics from traditional small molecule anticancer drugs. mAb-based regimens have brought clinical benefits, including improvements in overall survival, to patients with a variety of cancers. Many challenges still remain, however, to fully realize the potential of these new medicines. With our further understanding of cancer biology, mechanism of antibody action, and advancement of antibody engineering technologies, many novel antibody formats or antibody-derived molecules are emerging as promising new generation therapeutics. Carefully designed and engineered, they retain the advantage of specificity and selectivity of original antibodies, but in the meantime acquire additional special features such as improved pharmacokinetics, increased selectivity, and enhanced anticancer efficacy. Promising clinical results are being generated with these newly improved antibody-based therapeutics. PMID:21527062

  1. Strategies for Eliciting HIV-1 Inhibitory Antibodies

    PubMed Central

    Tomaras, Georgia D.; Haynes, Barton F.

    2012-01-01

    Purpose of review Major roadblocks persist in the development of vaccines that elicit potent neutralizing antibodies targeting diverse HIV-1 strains, similar to known broadly neutralizing HIV-1 human monoclonal antibodies. Alternatively, other types of anti-HIV-1 envelope antibodies that may not neutralize HIV-1 in traditional neutralization assays but have other anti-HIV-1 activities (hereafter termed HIV-1 inhibitory antibodies) can be elicited by current vaccine strategies, and numerous studies are exploring their roles in preventing HIV-1 acquisition. We review examples of strategies for eliciting potentially protective HIV-1 inhibitory antibodies. Recent Findings Heterologous prime-boost strategies can yield anti-HIV immune responses; although only one (canarypox prime, Env protein boost) has been tested and shown positive results in an efficacy trial (RV144). Although the immune correlates of protection are as yet undefined, the reduced rate of acquisition without a significant effect on initial viral loads or CD4+ T cell counts, have raised the hypothesis of an RV144 vaccine-elicited transient protective B cell response. Summary In light of the RV144 trial, there is a critical need to define the entire functional spectrum of anti-HIV-1 antibodies, how easily each can be elicited, and how effective different types of antibody effector mechanisms can be in prevention of HIV-1 transmission. PMID:20978384

  2. Glycosylation of plant produced human antibodies.

    PubMed

    Kallolimath, Somanath; Steinkellner, Herta

    2015-12-23

    Human immunoglobulins circulate as highly heterogeneously glycosylated mixture of otherwise homogeneous protein backbones. A series of studies, mainly on IgG, have unequivocally proven that antibodies modulate their effector function through sugars present in the Fc domain. However, our limited technology in producing complex proteins such as antibodies, with defined glycan structures hamper in depths studies. This review introduces a plant based expression platform enabling engineering of antibody glycans. The procedure is based on the simultaneous delivery of appropriate constructs, carrying cDNAs of target proteins (e.g. heavy and light chain of antibodies) in combination with human glycosylation enzymes into plant leaves. Harvesting of recombinant proteins one week post construct delivery allows high speed and flexibility. Major achievements include the production of functional active slialylated pentameric IgMs in tobacco leaves. The system provides a viable approach to the generation of antibodies with defined glycoforms on demand, contributing to studies on antibody glycans and the development of novel antibody based drugs. PMID:27472861

  3. Immunoperoxidase inhibition assay for rabies antibody detection.

    PubMed

    Batista, H B C R; Lima, F E S; Maletich, D; Silva, A C R; Vicentini, F K; Roehe, L R; Spilki, F R; Franco, A C; Roehe, P M

    2011-06-01

    An immunoperoxidase inhibition assay (IIA) for detection of rabies antibodies in human sera is described. Diluted test sera are added to microplates with paraformaldehyde-fixed, CER cells infected with rabies virus. Antibodies in test sera compete with a rabies polyclonal rabbit antiserum which was added subsequently. Next, an anti-rabbit IgG-peroxidase conjugate is added and the reaction developed by the addition of the substrate 3-amino-9-ethylcarbazole (AEC). The performance of the assay was compared to that of the "simplified fluorescence inhibition microtest" (SFIMT), an established virus neutralization assay, by testing 422 human sera. The IIA displayed 97.6% sensitivity, 98% specificity and 97.6% accuracy (Kappa correlation coefficient=0.9). The IIA results can be read by standard light microscopy, where the clearly identifiable specific staining is visible in antibody-negative sera, in contrast to the absence of staining in antibody-positive samples. The assay does not require monoclonal antibodies or production of large amounts of virus; furthermore, protein purification steps or specialized equipment are not necessary for its performance. The IIA was shown to be suitable for detection of rabies antibodies in human sera, with sensitivity, specificity and accuracy comparable to that of a neutralization-based assay. This assay may be advantageous over other similar methods designed to detect rabies-specific binding antibodies, in that it can be easily introduced into laboratories, provided basic cell culture facilities are available. PMID:21458492

  4. Antiphospholipid Antibodies in Lupus Nephritis.

    PubMed

    Parodis, Ioannis; Arnaud, Laurent; Gerhardsson, Jakob; Zickert, Agneta; Sundelin, Birgitta; Malmström, Vivianne; Svenungsson, Elisabet; Gunnarsson, Iva

    2016-01-01

    Lupus nephritis (LN) is a major manifestation of systemic lupus erythematosus (SLE). It remains unclear whether antiphospholipid antibodies (aPL) alter the course of LN. We thus investigated the impact of aPL on short-term and long-term renal outcomes in patients with LN. We assessed levels of aPL cross-sectionally in SLE patients diagnosed with (n = 204) or without (n = 294) LN, and prospectively in 64 patients with active biopsy-proven LN (52 proliferative, 12 membranous), before and after induction treatment (short-term outcomes). Long-term renal outcome in the prospective LN cohort was determined by the estimated glomerular filtration rate (eGFR) and the Chronic Kidney Disease (CKD) stage, after a median follow-up of 11.3 years (range: 3.3-18.8). Cross-sectional analysis revealed no association between LN and IgG/IgM anticardiolipin or anti-β2-glycoprotein I antibodies, or lupus anticoagulant. Both aPL positivity and levels were similar in patients with active LN and non-renal SLE. Following induction treatment for LN, serum IgG/IgM aPL levels decreased in responders (p<0.005 for all), but not in non-responders. Both at active LN and post-treatment, patients with IgG, but not IgM, aPL had higher creatinine levels compared with patients without IgG aPL. Neither aPL positivity nor levels were associated with changes in eGFR from either baseline or post-treatment through long-term follow-up. Moreover, aPL positivity and levels both at baseline and post-treatment were similar in patients with a CKD stage ≥3 versus 1-2 at the last follow-up. In conclusion, neither aPL positivity nor levels were found to be associated with the occurrence of LN in SLE patients. However, IgG aPL positivity in LN patients was associated with a short-term impairment of the renal function while no effect on long-term renal outcome was observed. Furthermore, IgG and IgM aPL levels decreased following induction treatment only in responders, indicating that aPL levels are affected by

  5. Antiphospholipid Antibodies in Lupus Nephritis

    PubMed Central

    Arnaud, Laurent; Gerhardsson, Jakob; Zickert, Agneta; Sundelin, Birgitta; Malmström, Vivianne; Svenungsson, Elisabet; Gunnarsson, Iva

    2016-01-01

    Lupus nephritis (LN) is a major manifestation of systemic lupus erythematosus (SLE). It remains unclear whether antiphospholipid antibodies (aPL) alter the course of LN. We thus investigated the impact of aPL on short-term and long-term renal outcomes in patients with LN. We assessed levels of aPL cross-sectionally in SLE patients diagnosed with (n = 204) or without (n = 294) LN, and prospectively in 64 patients with active biopsy-proven LN (52 proliferative, 12 membranous), before and after induction treatment (short-term outcomes). Long-term renal outcome in the prospective LN cohort was determined by the estimated glomerular filtration rate (eGFR) and the Chronic Kidney Disease (CKD) stage, after a median follow-up of 11.3 years (range: 3.3–18.8). Cross-sectional analysis revealed no association between LN and IgG/IgM anticardiolipin or anti-β2-glycoprotein I antibodies, or lupus anticoagulant. Both aPL positivity and levels were similar in patients with active LN and non-renal SLE. Following induction treatment for LN, serum IgG/IgM aPL levels decreased in responders (p<0.005 for all), but not in non-responders. Both at active LN and post-treatment, patients with IgG, but not IgM, aPL had higher creatinine levels compared with patients without IgG aPL. Neither aPL positivity nor levels were associated with changes in eGFR from either baseline or post-treatment through long-term follow-up. Moreover, aPL positivity and levels both at baseline and post-treatment were similar in patients with a CKD stage ≥3 versus 1–2 at the last follow-up. In conclusion, neither aPL positivity nor levels were found to be associated with the occurrence of LN in SLE patients. However, IgG aPL positivity in LN patients was associated with a short-term impairment of the renal function while no effect on long-term renal outcome was observed. Furthermore, IgG and IgM aPL levels decreased following induction treatment only in responders, indicating that aPL levels are affected by

  6. Labeling of monoclonal antibodies with radionuclides

    SciTech Connect

    Bhargava, K.K.; Acharya, S.A. )

    1989-07-01

    Antibodies, specifically monoclonal antibodies, are potentially very useful and powerful carriers of therapeutic agents to target tissues and diagnostic agents. The loading or charging of antibodies with agents, especially radiotracers, is reviewed here. The choice of radioisotope for immunodetection and/or immunotherapy is based on its availability, half-life, nature of the radiation emitted, and the metabolic pathways of the radionuclide in the body. Most important of all are the derivatization techniques available for labeling the antibody with the given radionuclide. Isotopes of iodine and divalent metal ions are the most commonly used radionuclides. Antibodies labeled with iodine at tyrosine residues are metabolized rapidly in vivo. This leads to the incorporation of metabolized radioactive iodine into various tissues, mainly the thyroid gland and stomach, and to the accumulation of high levels of circulating iodine in the blood, which masks tumor uptake considerably. To overcome these limitations, the use of iodohippurate as an iodine-anchoring molecule to the protein should be considered. When divalent or multivalent metal ions are used as the preferred radionuclide, bifunctional chelating reagents such as EDTA or DTPA are first coupled to the protein or antibody. These chelating molecules are attached to the protein by formation of an isopeptide linkage between the carboxylate of the chelating reagent and the amino group of the protein. Several procedures are available to generate the isopeptide linkage. When the anchoring of the chelating agent through isopeptide linkage results in the inactivation of the antibody, periodate oxidation of the carbohydrate moiety of the antibody, followed by reductive coupling of chelator, could be considered as an alternative. There is still a need for better, simpler, and more direct methods for labeling antibodies with radionuclides. 78 references.

  7. Distinct Therapeutic Mechanisms of Tau Antibodies

    PubMed Central

    Funk, Kristen E.; Mirbaha, Hilda; Jiang, Hong; Holtzman, David M.; Diamond, Marc I.

    2015-01-01

    Tauopathies are neurodegenerative diseases characterized by accumulation of Tau amyloids, and include Alzheimer disease and certain frontotemporal dementias. Trans-neuronal propagation of amyloid mediated by extracellular Tau may underlie disease progression. Consistent with this, active and passive vaccination studies in mouse models reduce pathology, although by unknown mechanisms. We previously reported that intracerebroventricular administration of three anti-Tau monoclonal antibodies (HJ8.5, HJ9.3, and HJ9.4) reduces pathology in a model overexpressing full-length mutant (P301S) human Tau. We now study effects of these three antibodies and a negative control antibody (HJ3.4) on Tau aggregate uptake into BV2 microglial-like cells and primary neurons. Antibody-independent Tau uptake into BV2 cells was blocked by heparin, consistent with a previously described role for heparan sulfate proteoglycans. Two therapeutic antibodies (HJ8.5 and HJ9.4) promoted uptake of full-length Tau fibrils into microglia via Fc receptors. Surprisingly, HJ9.3 promoted uptake of fibrils composed of the Tau repeat domain or Alzheimer disease-derived Tau aggregates, but failed to influence full-length recombinant Tau fibrils. Size fractionation of aggregates showed that antibodies preferentially promote uptake of larger oligomers (n ≥∼20-mer) versus smaller oligomers (n ∼10-mer) or monomer. No antibody inhibited uptake of full-length recombinant fibrils into primary neurons, but HJ9.3 blocked neuronal uptake of Tau repeat domain fibrils and Alzheimer disease-derived Tau. Antibodies thus have multiple potential mechanisms, including clearance via microglia and blockade of neuronal uptake. However these effects are epitope- and aggregate size-dependent. Establishing specific mechanisms of antibody activity in vitro may help in design and optimization of agents that are more effective in vivo. PMID:26126828

  8. Antibodies Against Three Forms of Urokinase

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Atassi, M. Zouhair

    2007-01-01

    Antibodies that bind to preselected regions of the urokinase molecule have been developed. These antibodies can be used to measure small quantities of each of three molecular forms of urokinase that could be contained in microsamples or conditioned media harvested from cultures of mammalian cells. Previously available antibodies and assay techniques do not yield both clear distinctions among, and measurements of, all three forms. Urokinase is a zymogen that is synthesized in a single-chain form, called ScuPA, which is composed of 411 amino acid residues (see figure). ScuPA has very little enzyme activity, but it can be activated in two ways: (1) by cleavage of the peptide bond lysine 158/isoleucine 159 and the loss of lysine 158 to obtain the high molecular-weight (HMW) form of the enzyme or (2) by cleavage of the bond lysine 135/lysine 136 to obtain the low-molecular-weight (LMW) form of the enzyme. The antibodies in question were produced in mice and rabbits by use of peptides as immunogens. The peptides were selected to obtain antibodies that bind to regions of ScuPA that include the lysine 158/isoleucine 159 and the lysine 135/lysine 136 bonds. The antibodies include monoclonal and polyclonal ones that yield indications as to whether either of these bonds is intact. The polyclonal antibodies include ones that preferentially bind to the HMW or LMW forms of the urokinase molecule. The monoclonal antibodies include ones that discriminate between the ScuPA and the HMW form. A combination of these molecular-specific antibodies will enable simultaneous assays of the ScuPA, HMW, and LMW forms in the same specimen of culture medium.

  9. HIV-1 resistance to neutralizing antibodies: Determination of antibody concentrations leading to escape mutant evolution.

    PubMed

    Magnus, Carsten; Reh, Lucia; Trkola, Alexandra

    2016-06-15

    Broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) are considered vital components of novel therapeutics and blueprints for vaccine research. Yet escape to even the most potent of these antibodies is imminent in natural infection. Measures to define antibody efficacy and prevent mutant selection are thus urgently needed. Here, we derive a mathematical framework to predict the concentration ranges for which antibody escape variants can outcompete their viral ancestors, referred to as mutant selection window (MSW). When determining the MSW, we focus on the differential efficacy of neutralizing antibodies against HIV-1 in two canonical infection routes, free-virus infection and cell-cell transmission. The latter has proven highly effective in vitro suggesting its importance for both in vivo spread as well as for escaping targeted intervention strategies. We observed a range of MSW patterns that highlight the potential of mutants to arise in both transmission pathways and over wide concentration ranges. Most importantly, we found that only when the arising mutant has both, residual sensitivity to the neutralizing antibody and reduced infectivity compared to the parental virus, antibody dosing outside of the MSW to restrict mutant selection is possible. Emergence of mutants that provide complete escape and have no considerable fitness loss cannot be prevented by adjusting antibody doses. The latter may in part explain the ubiquitous resistance to neutralizing antibodies observed in natural infection and antibody treatment. Based on our findings, combinations of antibodies targeting different epitopes should be favored for antibody-based interventions as this may render complete resistance less likely to occur and also increase chances that multiple escapes result in severe fitness loss of the virus making longer-term antibody treatment more feasible. PMID:26494166

  10. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  11. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  12. Uses of monoclonial antibody 8H9

    SciTech Connect

    Cheung, Nai-Kong V.

    2015-06-23

    This invention provides an antibody that binds the same antigen as that of monoclonal antibody 8H9, wherein the heavy chain CDR (Complementary Determining Region)1 comprises NYDIN, heavy chain CDR2 comprises WIFPGDGSTQY, heavy chain CDR3 comprises QTTATWFAY, and the light chain CDR1 comprises RASQSISDYLH, light chain CDR2 comprises YASQSIS, and light chain CDR3 comprises QNGHSFPLT. In another embodiment, there is provided a polypeptide that binds the same antigen as that of monoclonal antibody 8H9, wherein the polypeptide comprises NYDIN, WIFPGDGSTQY, QTTATWFAY, RASQSISDYLH, YASQSIS, and QNGHSFPLT.

  13. Reshaping Human Antibodies: Grafting an Antilysozyme Activity

    NASA Astrophysics Data System (ADS)

    Verhoeyen, Martine; Milstein, Cesar; Winter, Greg

    1988-03-01

    The production of therapeutic human monoclonal antibodies by hybridoma technology has proved difficult, and this has prompted the ``humanizing'' of mouse monoclonal antibodies by recombinant DNA techniques. It was shown previously that the binding site for a small hapten could be grafted from the heavy-chain variable domain of a mouse antibody to that of a human myeloma protein by transplanting the hypervariable loops. It is now shown that a large binding site for a protein antigen (lysozyme) can also be transplanted from mouse to human heavy chain. The success of such constructions may be facilitated by an induced-fit mechanism.

  14. Production of monoclonal antibodies against avidin.

    PubMed

    Ashorn, R; Ashorn, P; Kulomaa, M; Tuohimaa, P; Krohn, K

    1985-01-01

    Monoclonal antibodies of the IgG1 subclass were generated against chicken avidin. These antibodies were shown to be as sensitive as polyclonal antiserum in detecting avidin by radioimmunoassay (RIA) and enzyme linked immunosorbent assay (ELISA) methods. Furthermore, the monoclonal antibodies were considerably more specific. Our results with a monoclonal anti-avidin RIA support previous findings that in inflammatory conditions avidin is synthesized also in other organs than the oviduct, although in the liver a major part of the activity detected by polyclonal anti-avidin RIA or biotin-bentonite assay was not due to avidin. PMID:4053566

  15. Intellectual property protection: strategies for antibody inventions.

    PubMed

    Storz, Ulrich

    2011-01-01

    In the last decade, therapeutic antibodies have become one of the commercially most successful classes of biopharmaceutical drugs. Major drug manufacturers who have successfully managed to occupy this new market, as well as biotechnology firms, some of which have experienced a quick growth and are now on par with the former, owe part of their success to suitable intellectual property strategies. This article provides an overview of the current thinking on antibody-related patents, and discusses strategies for protecting the antibody products of the future. PMID:21494091

  16. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  17. [Anti-basal ganglia antibody].

    PubMed

    Hayashi, Masaharu

    2013-04-01

    Sydenham's chorea (SC) is a major manifestation of rheumatic fever, and the production of anti-basal ganglia antibodies (ABGA) has been proposed in SC. The pathogenesis is hypothesized as autoimmune targeting of the basal ganglia via molecular mimicry, triggered by streptococcal infection. The spectrum of diseases in which ABGA may be involved has been broadened to include other extrapyramidal movement disorders, such as tics, dystonia, and Parkinsonism, as well as other psychiatric disorders. The autoimmune hypothesis in the presence and absence of ABGA has been suggested in Tourette's syndrome (TS), early onset obsessive-compulsive disorders (OCD), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Recently, the relationship between ABGA and dopamine neurons in the basal ganglia has been examined, and autoantibodies against dopamine receptors were detected in the sera from patients with basal ganglia encephalitis. In Japan, the occurrence of subacute encephalitis, where patients suffer from episodes of altered behavior and involuntary movements, has increased. Immune-modulating treatments are effective, indicating the involvement of an autoimmune mechanism. We aimed to detect the anti-neuronal autoantibodies in such encephalitis, using immunohistochemical assessment of patient sera. The sera from patients showing involuntary movements had immunoreactivity for basal ganglia neurons. Further epitopes for ABGA will be investigated in basal ganglia disorders other than SC, TS, OCD, and PANDAS. PMID:23568985

  18. ANTIBODIES TO INTESTINAL MICROVILLOUS MEMBRANES

    PubMed Central

    Mackenzie, Iain L.; Donaldson, Robert M.; Kopp, William L.; Trier, Jerry S.

    1968-01-01

    Microvillous membranes isolated from the distal, but not proximal, half of hamster small bowel induced in rabbits the formation of antisera which inhibited intrinsic factor-mediated uptake of vitamin B12 by hamster brush borders. The extent of inhibition was directly proportional to the concentration of antiserum, and an excess of IF-bound vitamin B12 could overcome the inhibitory effect. The inhibitory factor was absorbed from antisera by brush borders isolated from the distal, but not proximal, half of the hamster intestine. Fractionation of antisera by gel filtration and DEAE-cellulose chromatography established that immunoglobulin G contained the inhibitory factor. Antisera capable of completely blocking uptake of IF-bound vitamin B12 did not react with hamster IF or with the IF-vitamin B12 complex, did not inhibit brush border disaccharidase activity and did not impair glucose transport by everted sacs of hamster intestine. These results demonstrate that an antibody to distal microvillous membranes competes with the IF-vitamin B12 complex for a specific binding site or receptor located on the surface of distal hamster intestine. PMID:19867301

  19. Advances in recombinant antibody manufacturing.

    PubMed

    Kunert, Renate; Reinhart, David

    2016-04-01

    Since the first use of Chinese hamster ovary (CHO) cells for recombinant protein expression, production processes have steadily improved through numerous advances. In this review, we have highlighted several key milestones that have contributed to the success of CHO cells from the beginning of their use for monoclonal antibody (mAb) expression until today. The main factors influencing the yield of a production process are the time to accumulate a desired amount of biomass, the process duration, and the specific productivity. By comparing maximum cell densities and specific growth rates of various expression systems, we have emphasized the limiting parameters of different cellular systems and comprehensively described scientific approaches and techniques to improve host cell lines. Besides the quantitative evaluation of current systems, the quality-determining properties of a host cell line, namely post-translational modifications, were analyzed and compared to naturally occurring polyclonal immunoglobulin fractions from human plasma. In summary, numerous different expression systems for mAbs are available and also under scientific investigation. However, CHO cells are the most frequently investigated cell lines and remain the workhorse for mAb production until today. PMID:26936774

  20. Optimising testing for phospholipid antibodies

    PubMed Central

    Helbert, M; Bodger, S; Cavenagh, J; D'Cruz, D; Thomas, J; MacCallum, P

    2001-01-01

    Aim—To compare anticardiolipin (ACL) and anti-ß2 glycoprotein 1 (ß2gp1) enzyme linked immunosorbent assays (ELISAs) in the diagnosis of antiphospholipid syndrome (APS) and to incorporate these results into a meta-analysis of published data. Method—Three representative commercial ACL ELISAs and an in house ß2gp1 assay were optimised and then assessed on 124 sera from normal donors, patients with infection, or patients with APS. A Medline search was screened for papers meeting defined criteria to conduct a meta-analysis. The performance of the assays used in this study was included. Results—A non-quantitative ACL assay performed at least as well as the anti-ß2gp1 assay in the diagnosis of APS. Meta-analysis confirmed that neither assay is perfect, although the anti-ß2gp1 assay had a higher specificity and lower sensitivity than the ACL assay. Conclusions—The pooled data suggest that the ACL assay is used to investigate thrombosis without overt underlying pathology and that the improved specificity of the anti-ß2gp1 assay is exploited where infection, connective tissue disease, or atheroma are present. Key Words: antiphospholipid syndrome • anticardiolipin antibodies • anti-ß2 glycoprotein 1 • sensitivity PMID:11533076

  1. Antiphospholipid antibodies: Paradigm in transition

    PubMed Central

    Horstman, Lawrence L; Jy, Wenche; Bidot, Carlos J; Ahn, Yeon S; Kelley, Roger E; Zivadinov, Robert; Maghzi, Amir H; Etemadifar, Masoud; Mousavi, Seyed Ali; Minagar, Alireza

    2009-01-01

    Objectives This is a critical review of anti-phospholipid antibodies (aPL). Most prior reviews focus on the aPL syndrome (APS), a thrombotic condition often marked by neurological disturbance. We bring to attention recent evidence that aPL may be equally relevant to non-thrombotic autoimmune conditions, notably, multiple sclerosis and ITP. Organization After a brief history, the recent proliferation of aPL target antigens is reviewed. The implication is that many more exist. Theories of aPL in thrombosis are then reviewed, concluding that all have merit but that aPL may have more diverse pathological consequences than now recognized. Next, conflicting results are explained by methodological differences. The lupus anticoagulant (LA) is then discussed. LA is the best predictor of thrombosis, but why this is true is not settled. Finally, aPL in non-thrombotic disorders is reviewed. Conclusion The current paradigm of aPL holds that they are important in thrombosis, but they may have much wider clinical significance, possibly of special interest in neurology. PMID:19154576

  2. Antibody Response to Hypervariable Region 1 Interferes with Broadly Neutralizing Antibodies to Hepatitis C Virus

    PubMed Central

    Keck, Zhen-yong; Girard-Blanc, Christine; Wang, Wenyan; Lau, Patrick; Zuiani, Adam; Rey, Felix A.; Krey, Thomas; Diamond, Michael S.

    2015-01-01

    ABSTRACT Hypervariable region 1 (HVR1) (amino acids [aa] 384 to 410) on the E2 glycoprotein of hepatitis C virus contributes to persistent infection by evolving escape mutations that attenuate binding of inhibitory antibodies and by blocking access of broadly neutralizing antibodies to their epitopes. A third proposed mechanism of immune antagonism is that poorly neutralizing antibodies binding to HVR1 interfere with binding of other superior neutralizing antibodies. Epitope mapping of human monoclonal antibodies (HMAbs) that bind to an adjacent, conserved domain on E2 encompassing aa 412 to 423 revealed two subsets, designated HC33 HMAbs. While both subsets have contact residues within aa 412 to 423, alanine-scanning mutagenesis suggested that one subset, which includes HC33.8, has an additional contact residue within HVR1. To test for interference of anti-HVR1 antibodies with binding of antibodies to aa 412 to 423 and other E2 determinants recognized by broadly neutralizing HMAbs, two murine MAbs against HVR1 (H77.16) and aa 412 to 423 (H77.39) were studied. As expected, H77.39 inhibited the binding of all HC33 HMAbs. Unexpectedly, H77.16 also inhibited the binding of both subsets of HC33 HMAbs. This inhibition also was observed against other broadly neutralizing HMAbs to epitopes outside aa 412 to 423. Combination antibody neutralization studies by the median-effect analysis method with H77.16 and broadly reactive HMAbs revealed antagonism between these antibodies. Structural studies demonstrated conformational flexibility in this antigenic region, which supports the possibility of anti-HVR1 antibodies hindering the binding of broadly neutralizing MAbs. These findings support the hypothesis that anti-HVR1 antibodies can interfere with a protective humoral response against HCV infection. IMPORTANCE HVR1 contributes to persistent infection by evolving mutations that escape from neutralizing antibodies to HVR1 and by shielding broadly neutralizing antibodies from

  3. Generalized platform for antibody detection using the antibody catalyzed water oxidation pathway.

    PubMed

    Welch, M Elizabeth; Ritzert, Nicole L; Chen, Hongjun; Smith, Norah L; Tague, Michele E; Xu, Youyong; Baird, Barbara A; Abruña, Héctor D; Ober, Christopher K

    2014-02-01

    Infectious diseases, such as influenza, present a prominent global problem including the constant threat of pandemics that initiate in avian or other species and then pass to humans. We report a new sensor that can be specifically functionalized to detect antibodies associated with a wide range of infectious diseases in multiple species. This biosensor is based on electrochemical detection of hydrogen peroxide generated through the intrinsic catalytic activity of all antibodies: the antibody catalyzed water oxidation pathway (ACWOP). Our platform includes a polymer brush-modified surface where specific antibodies bind to conjugated haptens with high affinity and specificity. Hydrogen peroxide provides an electrochemical signal that is mediated by Resorufin/Amplex Red. We characterize the biosensor platform, using model anti-DNP antibodies, with the ultimate goal of designing a versatile device that is inexpensive, portable, reliable, and fast. We demonstrate detection of antibodies at concentrations that fall well within clinically relevant levels. PMID:24410628

  4. Enzyme-linked immunospecific antibody test for detecting antibody to Klebsiella.

    PubMed

    Rissing, J P; Buxton, T B; Moore, W L; Ozawa, T; Moore, W L

    1978-12-01

    The enzyme-linked immunospecific antibody test was performed in standard test tubes and microtiter plates to meausre high-titer antibody against Klebsiella capsular polysaccharide. Initial studies were conducted with rabbit sera; other studies were conducted with the serum of a patient infected with type 9 Klebsiella. Both immunized rabbits and an infected patient disclosed high titers of anticapsular antibody. Control sera from other immunized rabbits and other infected humans failed to show this substantial antibody titer against type 9 Klebsiella. Comparisons between counterimmunoelectrophoresis and indirect immunofluorescence disclosed that the sensitivity of the enzyme-linked immunospecific antibody test for anti-Klebsiella antibody ranged between 400 and 10,000 times that of these tests. PMID:370145

  5. Enzyme-linked immunospecific antibody test for detecting antibody to Klebsiella.

    PubMed Central

    Rissing, J P; Buxton, T B; Moore, W L; Ozawa, T; Moore, W L

    1978-01-01

    The enzyme-linked immunospecific antibody test was performed in standard test tubes and microtiter plates to meausre high-titer antibody against Klebsiella capsular polysaccharide. Initial studies were conducted with rabbit sera; other studies were conducted with the serum of a patient infected with type 9 Klebsiella. Both immunized rabbits and an infected patient disclosed high titers of anticapsular antibody. Control sera from other immunized rabbits and other infected humans failed to show this substantial antibody titer against type 9 Klebsiella. Comparisons between counterimmunoelectrophoresis and indirect immunofluorescence disclosed that the sensitivity of the enzyme-linked immunospecific antibody test for anti-Klebsiella antibody ranged between 400 and 10,000 times that of these tests. PMID:370145

  6. Antibody Fc: Linking Adaptive and Innate Immunity

    PubMed Central

    Reichert, Janice M.

    2014-01-01

    Antibody Fc: Linking Adaptive and Innate Immunity, edited by Margaret E. Ackerman and Falk Nimmerjahn and published by Academic Press, provides a highly detailed examination of the involvement of the antibody Fc in mechanisms critical to both innate and adaptive immune responses. Despite a recent increase in format diversity, most marketed antibodies are full-length IgG molecules and the majority of the commercial clinical pipeline of antibody therapeutics is composed of Fc-containing IgG molecules, which underscores the importance of understanding how the Fc domain affects biological responses. The book is divided into six sections that include a total of 20 chapters. In order of their appearance, the sections provide extensive coverage of effector mechanisms, effector cells, Fc receptors, variability of the Fc domain, genetic associations, and evolving areas.

  7. Broadly neutralizing antibodies against influenza viruses

    PubMed Central

    Laursen, Nick S.; Wilson, Ian A.

    2014-01-01

    Despite available antivirals and vaccines, influenza infections continue to be a major cause of mortality worldwide. Vaccination generally induces an effective, but strain-specific antibody response. As the virus continually evolves, new vaccines have to be administered almost annually when a novel strain becomes dominant. Furthermore, the sporadic emerging resistance to neuraminidase inhibitors among circulating strains suggests an urgent need for new therapeutic agents. Recently, several cross-reactive antibodies have been described, which neutralize an unprecedented spectrum of influenza viruses. These broadly neutralizing antibodies generally target conserved functional regions on the major influenza surface glycoprotein hemagglutinin (HA). The characterization of their neutralization breadth and epitopes on HA could stimulate the development of new antibody-based antivirals and broader influenza vaccines. PMID:23583287

  8. Gut Microbial Metabolites Fuel Host Antibody Responses.

    PubMed

    Kim, Myunghoo; Qie, Yaqing; Park, Jeongho; Kim, Chang H

    2016-08-10

    Antibody production is a metabolically demanding process that is regulated by gut microbiota, but the microbial products supporting B cell responses remain incompletely identified. We report that short-chain fatty acids (SCFAs), produced by gut microbiota as fermentation products of dietary fiber, support host antibody responses. In B cells, SCFAs increase acetyl-CoA and regulate metabolic sensors to increase oxidative phosphorylation, glycolysis, and fatty acid synthesis, which produce energy and building blocks supporting antibody production. In parallel, SCFAs control gene expression to express molecules necessary for plasma B cell differentiation. Mice with low SCFA production due to reduced dietary fiber consumption or microbial insufficiency are defective in homeostatic and pathogen-specific antibody responses, resulting in greater pathogen susceptibility. However, SCFA or dietary fiber intake restores this immune deficiency. This B cell-helping function of SCFAs is detected from the intestines to systemic tissues and conserved among mouse and human B cells, highlighting its importance. PMID:27476413

  9. Patient-Derived Antibody Targets Tumor Cells

    Cancer.gov

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  10. Antibodies as Mediators of Brain Pathology.

    PubMed

    Brimberg, Lior; Mader, Simone; Fujieda, Yuichiro; Arinuma, Yoshiyuki; Kowal, Czeslawa; Volpe, Bruce T; Diamond, Betty

    2015-11-01

    The brain is normally sequestered from antibody exposure by the blood brain barrier. However, antibodies can access the brain during fetal development before the barrier achieves full integrity, and in disease states when barrier integrity is compromised. Recent studies suggest that antibodies contribute to brain pathology associated with autoimmune diseases such as systemic lupus erythematosus and neuromyelitis optica, and can lead to transient or permanent behavioral or cognitive abnormalities. We review these findings here and examine the circumstances associated with antibody entry into the brain, the routes of access and the mechanisms that then effect pathology. Understanding these processes and the nature and specificity of neuronal autoantibodies may reveal therapeutic strategies toward alleviating or preventing the neurological pathologies and behavioral abnormalities associated with autoimmune disease. PMID:26494046

  11. How Is Antiphospholipid Antibody Syndrome Treated?

    MedlinePlus

    ... signs of internal bleeding and when to seek emergency care. (For more information, go to "Living With Antiphospholipid Antibody Syndrome." ) Treatment During Pregnancy Pregnant women who have APS can have successful ...

  12. Antibodies as Mediators of Brain Pathology

    PubMed Central

    Brimberg, Lior; Mader, Simone; Fujieda, Yuichiro; Arinuma, Yoshiyuki; Kowal, Czeslawa; Volpe, Bruce T.; Diamond, Betty

    2016-01-01

    The brain is normally sequestered from antibody exposure by the blood brain barrier. However, antibodies can access the brain during fetal development before the barrier achieves full integrity, and in disease states when barrier integrity is compromised. Recent studies suggest that antibodies contribute to brain pathology associated with autoimmune diseases such as systemic lupus erythematosus and neuromyelitis optica, and can lead to transient or permanent behavioral or cognitive abnormalities. We review these findings here and examine the circumstances associated with antibody entry into the brain, the routes of access and the mechanisms that then effect pathology. Understanding these processes and the nature and specificity of neuronal autoantibodies may reveal therapeutic strategies toward alleviating or preventing the neurological pathologies and behavioral abnormalities associated with autoimmune disease. PMID:26494046

  13. Antibody deficiency in Rubinstein-Taybi syndrome.

    PubMed

    Herriot, R; Miedzybrodzka, Z

    2016-03-01

    The developmental disorder Rubinstein-Taybi syndrome (RTS) is frequently complicated by recurrent respiratory infections. In many cases this is likely to be the result of microaspiration or gastro-oesophageal reflux but, in a proportion, underlying antibody deficiency is a potentially modifiable susceptibility factor for infection. Relatively subtle, specific defects of pneumococcal antibody production have previously been described in the context of RTS. Here, we report a rare association between the syndrome and an overt, major primary antibody deficiency disorder (common variable immune deficiency) which was successfully managed with immunoglobulin replacement therapy. Early recognition and investigation for antibody deficiency associated with RTS allied to effective and optimized treatment are essential to minimize morbidity and mortality and improve quality and duration of life. PMID:26307339

  14. Brain-Reactive Antibodies and Disease

    PubMed Central

    Diamond, B.; Honig, G.; Mader, S.; Brimberg, L.; Volpe, B.T.

    2015-01-01

    Autoimmune diseases currently affect 5–7% of the world's population; in most diseases there are circulating autoantibodies. Brain-reactive antibodies are present in approximately 2–3% of the general population but do not usually contribute to brain pathology. These antibodies penetrate brain tissue only early in development or under pathologic conditions. This restriction on their pathogenicity and the lack of correlation between serum titers and brain pathology have, no doubt, contributed to a delayed appreciation of the contribution of autoantibodies in diseases of the central nervous system. Nonetheless, it is increasingly clear that antibodies can cause damage in the brain and likely initiate or aggravate multiple neurologic conditions; brain-reactive antibodies contribute to symptomatology in autoimmune disease, infectious disease, and malignancy. PMID:23516983

  15. New haptens and antibodies for ractopamine.

    PubMed

    Wang, Zhanhui; Liu, Meixuan; Shi, Weimin; Li, Chenglong; Zhang, Suxia; Shen, Jianzhong

    2015-09-15

    In this work, three unreported immunizing haptens of ractopamine (RAC) were synthesized and used to produce highly sensitive and specific polyclonal antibody. The spacer arms of haptens for coupling to protein carrier were located on different position of RAC with different length. High affinity polyclonal antibodies were obtained and characterized in terms of titer and sensitivity by using enzyme-linked immunosorbent assay (ELISA). The best antibody employed in a heterologous competitive ELISA exhibited an IC50 value as low as 0.12ngmL(-1) and could not recognize other 10 β-agonists including clenbuterol and salbutamol. The heterologous competitive ELISA was preliminary applied to swine urine and the results showed the new antibody was sufficiently sensitive and specific, and potentially used for the detection of RAC at trace level in real samples. PMID:25863617

  16. Polynucleotides encoding anti-sulfotyrosine antibodies

    SciTech Connect

    Bertozzi, Carolyn R.; Kehoe, John; Bradbury, Andrew M.

    2011-01-11

    The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.

  17. Antibody conjugates with unnatural amino acids.

    PubMed

    Hallam, Trevor J; Wold, Erik; Wahl, Alan; Smider, Vaughn V

    2015-06-01

    Antibody conjugates are important in many areas of medicine and biological research, and antibody-drug conjugates (ADCs) are becoming an important next generation class of therapeutics for cancer treatment. Early conjugation technologies relied upon random conjugation to multiple amino acid side chains, resulting in heterogeneous mixtures of labeled antibody. Recent studies, however, strongly support the notion that site-specific conjugation produces a homogeneous population of antibody conjugates with improved pharmacologic properties over randomly coupled molecules. Genetically incorporated unnatural amino acids (uAAs) allow unique orthogonal coupling strategies compared to those used for the 20 naturally occurring amino acids. Thus, uAAs provide a novel paradigm for creation of next generation ADCs. Additionally, uAA-based site-specific conjugation could also empower creation of additional multifunctional conjugates important as biopharmaceuticals, diagnostics, or reagents. PMID:25898256

  18. Chemical biology: How to minimalize antibodies

    NASA Astrophysics Data System (ADS)

    Rader, Christoph

    2015-02-01

    The success of antibodies as pharmaceuticals has triggered interest in crafting much smaller mimics. A crucial step forward has been taken with the chemical synthesis of small molecules that recruit immune cells to attack cancer cells.

  19. Immunoglobulin Classification Using the Colored Antibody Graph.

    PubMed

    Bonissone, Stefano R; Pevzner, Pavel A

    2016-06-01

    The somatic recombination of V, D, and J gene segments in B-cells introduces a great deal of diversity, and divergence from reference segments. Many recent studies of antibodies focus on the population of antibody transcripts that show which V, D, and J gene segments have been favored for a particular antigen, a repertoire. To properly describe the antibody repertoire, each antibody must be labeled by its constituting V, D, and J gene segment, a task made difficult by somatic recombination and hypermutation events. While previous approaches to repertoire analysis were based on sequential alignments, we describe a new de Bruijn graph-based algorithm to perform VDJ labeling and benchmark its performance. PMID:27149636

  20. Deep sequencing and human antibody repertoire analysis.

    PubMed

    Boyd, Scott D; Crowe, James E

    2016-06-01

    In the past decade, high-throughput DNA sequencing (HTS) methods and improved approaches for isolating antigen-specific B cells and their antibody genes have been applied in many areas of human immunology. This work has greatly increased our understanding of human antibody repertoires and the specific clones responsible for protective immunity or immune-mediated pathogenesis. Although the principles underlying selection of individual B cell clones in the intact immune system are still under investigation, the combination of more powerful genetic tracking of antibody lineage development and functional testing of the encoded proteins promises to transform therapeutic antibody discovery and optimization. Here, we highlight recent advances in this fast-moving field. PMID:27065089

  1. Autoimmune Hepatitis with Anti Centromere Antibodies

    PubMed Central

    Lodh, Moushumi; Pradhan, Debkant; Parida, Ashok

    2013-01-01

    We present the case report of a 49-year-old type 2 diabetes mellitus patient presenting with abdominal pain and black stool for 15 days. A proper workup of laboratory investigations helped us diagnose autoimmune hepatitis with anticentromere antibodies. The authors would like to highlight that screening AIH patients for anticentromere antibody is not mandatory but can be considered, especially in the presence of disease-related symptomatology for quicker, more accurate diagnosis and optimum management. PMID:25379307

  2. History and Practice: Antibodies in Infectious Diseases.

    PubMed

    Hey, Adam

    2015-04-01

    Antibodies and passive antibody therapy in the treatment of infectious diseases is the story of a treatment concept which dates back more than 120 years, to the 1890s, when the use of serum from immunized animals provided the first effective treatment options against infections with Clostridium tetani and Corynebacterium diphtheriae. However, after the discovery of penicillin by Fleming in 1928, and the subsequent introduction of the much cheaper and safer antibiotics in the 1930s, serum therapy was largely abandoned. However, the broad and general use of antibiotics in human and veterinary medicine has resulted in the development of multi-resistant strains of bacteria with limited to no response to existing treatments and the need for alternative treatment options. The combined specificity and flexibility of antibody-based treatments makes them very valuable tools for designing specific antibody treatments to infectious agents. These attributes have already caused a revolution in new antibody-based treatments in oncology and inflammatory diseases, with many approved products. However, only one monoclonal antibody, palivizumab, for the prevention and treatment of respiratory syncytial virus, is approved for infectious diseases. The high cost of monoclonal antibody therapies, the need for parallel development of diagnostics, and the relatively small markets are major barriers for their development in the presence of cheap antibiotics. It is time to take a new and revised look into the future to find appropriate niches in infectious diseases where new antibody-based treatments or combinations with existing antibiotics, could prove their value and serve as stepping stones for broader acceptance of the potential for and value of these treatments. PMID:26104697

  3. Broadening Horizons: New Antibodies Against Influenza.

    PubMed

    Jackson, Katherine J L; Boyd, Scott D

    2016-07-28

    Seasonal influenza vaccine formulation efforts struggle to keep up with viral antigenic variation. Two studies now report engineered or naturally occurring human antibodies targeting the influenza hemagglutinin (HA) stem, with exceptional neutralizing breadth (Joyce et al., 2016; Kallewaard et al., 2016). Antibodies with similar structural features are elicited in multiple subjects, suggesting that modified vaccine regimens could provide broad protection. PMID:27471961

  4. Indirect hemagglutination test for chlamydial antibodies.

    PubMed

    Lewis, V J; Thacker, W L; Engelman, H M

    1972-07-01

    An indirect hemagglutination (IHA) test is described for chlamydial antibodies in psittacosis diagnostic sera; for this test tanned sheep erythrocytes sensitized with a deoxycholate extract of Chlamydia psittaci grown in Vero cell monolayers were used. Adaptation of the IHA test to the Microtiter system decreased sensitivity; nevertheless, the Microtiter-IHA test was more sensitive than the complement fixation test. Lymphogranuloma venereum antibodies also were detected by using antigen extracted from C. psittaci. PMID:4626906

  5. Generation of novel recombinant antibodies against nitrotyrosine by antibody phage display.

    PubMed

    Hof, Danielle; Cooksley-Decasper, Seraina; Moergeli, Sandra; von Eckardstein, Arnold

    2011-01-01

    Nitrotyrosine is a posttranslational protein modification that occurs under oxidative and nitrosative stress, and plays an important role in numerous pathological conditions. To analyse nitrotyrosine formation several commercial monoclonal and polyclonal antibodies reacting with 3-nitrotyrosine have been developed which however do not work properly in all required assays. Here, antibody phage display was used to select recombinant antibodies that specifically react with nitrotyrosine in various protein contexts. Nine initial selections were carried out, using synthetic peptides, peroxynitrite-modified proteins and conjugated proteins as antigens. Four antibodies were isolated that each exhibited a characteristic binding reactivity that greatly depended on the antigens that were used for their selections. In general, the selections using small, synthetic and biotinylated peptides were the most successful approach. Subsequently, antibody 11B1 was affinity matured by error prone mutagenesis, resulting in the isolation of two antibodies, designated 47A7 and 47B1. Competition ELISA and immunoblotting after treatment with sodium dithionite further demonstrated the specificity of antibody 47B1 for nitrotyrosine. The results presented here demonstrate that antibody phage display is a useful method to isolate antibodies against posttranslational modifications, which are powerful tools in the proteomic era. PMID:21558620

  6. Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising

    SciTech Connect

    Luo, Shishi; Perelson, Alan S.

    2015-08-31

    The past decade has seen the discovery of numerous broad and potent monoclonal antibodies against HIV type 1 (HIV-1). Eliciting these antibodies via vaccination appears to be remarkably difficult, not least because they arise late in infection and are highly mutated relative to germline antibody sequences. Here, using a computational model, we show that broad antibodies could in fact emerge earlier and be less mutated, but that they may be prevented from doing so as a result of competitive exclusion by the autologous antibody response. We further find that this competitive exclusion is weaker in infections founded by multiple distinct strains, with broadly neutralizing antibodies emerging earlier than in infections founded by a single strain. Our computational model simulates coevolving multitype virus and antibody populations. Broadly neutralizing antibodies may therefore be easier for the adaptive immune system to generate than previously thought. As a result, if less mutated broad antibodies exist, it may be possible to elicit them with a vaccine containing a mixture of diverse virus strains.

  7. Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising

    PubMed Central

    Luo, Shishi; Perelson, Alan S.

    2015-01-01

    The past decade has seen the discovery of numerous broad and potent monoclonal antibodies against HIV type 1 (HIV-1). Eliciting these antibodies via vaccination appears to be remarkably difficult, not least because they arise late in infection and are highly mutated relative to germline antibody sequences. Here, using a computational model, we show that broad antibodies could in fact emerge earlier and be less mutated, but that they may be prevented from doing so as a result of competitive exclusion by the autologous antibody response. We further find that this competitive exclusion is weaker in infections founded by multiple distinct strains, with broadly neutralizing antibodies emerging earlier than in infections founded by a single strain. Our computational model simulates coevolving multitype virus and antibody populations. Broadly neutralizing antibodies may therefore be easier for the adaptive immune system to generate than previously thought. If less mutated broad antibodies exist, it may be possible to elicit them with a vaccine containing a mixture of diverse virus strains. PMID:26324897

  8. Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising

    DOE PAGESBeta

    Luo, Shishi; Perelson, Alan S.

    2015-08-31

    The past decade has seen the discovery of numerous broad and potent monoclonal antibodies against HIV type 1 (HIV-1). Eliciting these antibodies via vaccination appears to be remarkably difficult, not least because they arise late in infection and are highly mutated relative to germline antibody sequences. Here, using a computational model, we show that broad antibodies could in fact emerge earlier and be less mutated, but that they may be prevented from doing so as a result of competitive exclusion by the autologous antibody response. We further find that this competitive exclusion is weaker in infections founded by multiple distinctmore » strains, with broadly neutralizing antibodies emerging earlier than in infections founded by a single strain. Our computational model simulates coevolving multitype virus and antibody populations. Broadly neutralizing antibodies may therefore be easier for the adaptive immune system to generate than previously thought. As a result, if less mutated broad antibodies exist, it may be possible to elicit them with a vaccine containing a mixture of diverse virus strains.« less

  9. Boosting antibody developability through rational sequence optimization

    PubMed Central

    Seeliger, Daniel; Schulz, Patrick; Litzenburger, Tobias; Spitz, Julia; Hoerer, Stefan; Blech, Michaela; Enenkel, Barbara; Studts, Joey M; Garidel, Patrick; Karow, Anne R

    2015-01-01

    The application of monoclonal antibodies as commercial therapeutics poses substantial demands on stability and properties of an antibody. Therapeutic molecules that exhibit favorable properties increase the success rate in development. However, it is not yet fully understood how the protein sequences of an antibody translates into favorable in vitro molecule properties. In this work, computational design strategies based on heuristic sequence analysis were used to systematically modify an antibody that exhibited a tendency to precipitation in vitro. The resulting series of closely related antibodies showed improved stability as assessed by biophysical methods and long-term stability experiments. As a notable observation, expression levels also improved in comparison with the wild-type candidate. The methods employed to optimize the protein sequences, as well as the biophysical data used to determine the effect on stability under conditions commonly used in the formulation of therapeutic proteins, are described. Together, the experimental and computational data led to consistent conclusions regarding the effect of the introduced mutations. Our approach exemplifies how computational methods can be used to guide antibody optimization for increased stability. PMID:25759214

  10. Working towards a consensus for antibody validation.

    PubMed

    Reiss, Peter D; Min, Danxi; Leung, Mei Y

    2014-01-01

    Commercial research antibodies are the most commonly used product in the life science tools market, and their applications represent a significant investment of time and resources for researchers. Frequently however, the quality of antibodies does not meet the expectations of consumers, causing loss of valuable time and money. This can delay research efforts and scientific discovery, or even lead to false, irreproducible results to be published in the scientific literature. This raises the question of whether there should be universal standards for validating antibodies.   During the 1 (st) International Antibody Validation Forum, hosted by St John's Laboratory Ltd on October 15 (th) 2014 at Queen Mary University of London, scientists from academia and industry presented data highlighting quality issues arising from lack of antibody validation. While the forum identified significant current problems in the antibody market, it also discussed future opportunities for improved quality and transparency by encouraging data disclosure and data sharing. This article highlights the key issues and conclusions reached at the forum. PMID:25580232

  11. Allosteric antibody inhibition of human hepsin protease.

    PubMed

    Koschubs, Tobias; Dengl, Stefan; Dürr, Harald; Kaluza, Klaus; Georges, Guy; Hartl, Christiane; Jennewein, Stefan; Lanzendörfer, Martin; Auer, Johannes; Stern, Alvin; Huang, Kuo-Sen; Packman, Kathryn; Gubler, Ueli; Kostrewa, Dirk; Ries, Stefan; Hansen, Silke; Kohnert, Ulrich; Cramer, Patrick; Mundigl, Olaf

    2012-03-15

    Hepsin is a type II transmembrane serine protease that is expressed in several human tissues. Overexpression of hepsin has been found to correlate with tumour progression and metastasis, which is so far best studied for prostate cancer, where more than 90% of such tumours show this characteristic. To enable improved future patient treatment, we have developed a monoclonal humanized antibody that selectively inhibits human hepsin and does not inhibit other related proteases. We found that our antibody, hH35, potently inhibits hepsin enzymatic activity at nanomolar concentrations. Kinetic characterization revealed non-linear, slow, tight-binding inhibition. This correlates with the crystal structure we obtained for the human hepsin-hH35 antibody Fab fragment complex, which showed that the antibody binds hepsin around α3-helix, located far from the active centre. The unique allosteric mode of inhibition of hH35 is distinct from the recently described HGFA (hepatocyte growth factor activator) allosteric antibody inhibition. We further explain how a small change in the antibody design induces dramatic structural rearrangements in the hepsin antigen upon binding, leading to complete enzyme inactivation. PMID:22132769

  12. Decay of maternal antibodies in broiler chickens.

    PubMed

    Gharaibeh, Saad; Mahmoud, Kamel

    2013-09-01

    The objective of this study was to determine the decay rate of maternal antibodies against major broiler chicken pathogens. A total of 30 one-day-old broiler chicks were obtained from a commercial hatchery and reared in isolation. These chicks were retrieved from a parent flock that received a routine vaccination program. Chicks were bled at hatch and sequentially thereafter every 5 d through 30 d of age. Maternal antibody titers were measured by ELISA for avian encephalomyelitis (AEV), avian influenza virus (AIV), chicken anemia virus (CAV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), Mycoplasma gallisepticum (MG), Mycoplasma synoviae (MS), and reovirus (Reo). Maternal antibody titers for Newcastle disease virus (NDV) were measured using a hemagglutination inhibition test. Half-life estimates of maternal antibody titers were 5.3, 4.2, 7, 5.1, 3.9, 3.8, 4.9, 4.1, 6.3, and 4.7 d for AEV, AIV, CAV, IBDV, IBV, ILTV, MG, MS, NDV, and Reo, respectively. The statistical analysis revealed significant differences among half-lives of maternal antibody titers against certain pathogens. Furthermore, all maternal antibody titers were depleted by 10 d of age except for IBDV. PMID:23960115

  13. Delivery of antibodies to the cytosol

    PubMed Central

    Marschall, Andrea LJ; Zhang, Congcong; Frenzel, André; Schirrmann, Thomas; Hust, Michael; Perez, Franck; Dübel, Stefan

    2014-01-01

    The use of antibodies to target their antigens in living cells is a powerful analytical tool for cell biology research. Not only can molecules be localized and visualized in living cells, but interference with cellular processes by antibodies may allow functional analysis down to the level of individual post-translational modifications and splice variants, which is not possible with genetic or RNA-based methods. To utilize the vast resource of available antibodies, an efficient system to deliver them into the cytosol from the outside is needed. Numerous strategies have been proposed, but the most robust and widely applicable procedure still remains to be identified, since a quantitative ranking of the efficiencies has not yet been done. To achieve this, we developed a novel efficiency evaluation method for antibody delivery based on a fusion protein consisting of a human IgG1 Fc and the recombination enzyme Cre (Fc-Cre). Applied to suitable GFP reporter cells, it allows the important distinction between proteins trapped in endosomes and those delivered to the cytosol. Further, it ensures viability of positive cells and is unsusceptible to fixation artifacts and misinterpretation of cellular localization in microscopy and flow cytometry. Very low cytoplasmic delivery efficiencies were found for various profection reagents and membrane penetrating peptides, leaving electroporation as the only practically useful delivery method for antibodies. This was further verified by the successful application of this method to bind antibodies to cytosolic components in living cells. PMID:24848507

  14. Quality control of antibodies for assay development.

    PubMed

    Schumacher, Sarah; Seitz, Harald

    2016-09-25

    Antibodies are used as powerful tools in basic research, for example, in biomarker identification, and in various forms for diagnostics, for example, identification of allergies or autoimmune diseases. Due to their robustness and ease of handling, immunoassays are favourite methods for investigation of various biological or medical questions. Nevertheless in many cases, additional analyses such as mass spectrometry are used to validate or confirm the results of immunoassays. To minimize the workload and to increase confidence in immunoassays, there are urgent needs for antibodies which are both highly specific and well validated. Unfortunately many commercially available antibodies are neither well characterized nor fully tested for cross-reactivities. Adequate quality control and validation of an antibody is time-consuming and can be frustrating. Such validation needs to be performed for every assay/application. However, where an antibody validation is successful, a highly specific and stable reagent will be on hand. This article describes the validation processes of antibodies, including some often neglected factors, as well as unspecific binding to other sample compounds in a multiparameter diagnostic assay. The validation consists of different immunological methods, with important assay controls, and is performed in relation to the development of a diagnostic test. PMID:26873787

  15. Monoclonal antibodies in acute lymphoblastic leukemia

    PubMed Central

    O’Brien, Susan; Ravandi, Farhad; Kantarjian, Hagop

    2015-01-01

    With modern intensive combination polychemotherapy, the complete response (CR) rate in adults with acute lymphoblastic leukemia (ALL) is 80% to 90%, and the cure rate is 40% to 50%. Hence, there is a need to develop effective salvage therapies and combine novel agents with standard effective chemotherapy. ALL leukemic cells express several surface antigens amenable to target therapies, including CD20, CD22, and CD19. Monoclonal antibodies target these leukemic surface antigens selectively and minimize off-target toxicity. When added to frontline chemotherapy, rituximab, an antibody directed against CD20, increases cure rates of adults with Burkitt leukemia from 40% to 80% and those with pre-B ALL from 35% to 50%. Inotuzumab ozogamicin, a CD22 monoclonal antibody bound to calicheamicin, has resulted in marrow CR rates of 55% and a median survival of 6 to 7 months when given to patients with refractory-relapsed ALL. Blinatumomab, a biallelic T cell engaging the CD3-CD19 monoclonal antibody, also resulted in overall response rates of 40% to 50% and a median survival of 6.5 months in a similar refractory-relapsed population. Other promising monoclonal antibodies targeting CD20 (ofatumumab and obinutuzumab) or CD19 or CD20 and bound to different cytotoxins or immunotoxins are under development. Combined modalities of chemotherapy and the novel monoclonal antibodies are under investigation. PMID:25999456

  16. Antinuclear antibodies in patients on anticonvulsant therapy

    PubMed Central

    Alarcón-Segovia, D.; Fishbein, Eugenia; Reyes, P. A.; Díes, H.; Shwadsky, S.

    1972-01-01

    Antinuclear antibodies to calf thymus nuclei, NP, DNA, sDNA, sNP and Sm antigen were investigated in sera from 170 patients on various programmes of prolonged anticonvulsant treatment. Findings were compared to those on 214 tuberculous patients on isoniazid, 109 SLE patients and 66 healthy subjects. Patients on anticonvulsants had a significantly higher incidence of ANA to DNA, sDNA, sNP and Sm antigen than the controls but had a lower incidence of ANA to all antigens, except sNP, than the SLE patients. Patients on isoniazid did not have DNA antibodies, but had antibodies to whole nuclei and to NP which were practically absent in the anticonvulsant group. Of all patients on anticonvulsants only those receiving hydantoins had ANA to Sm antigen, while those receiving only primidone had antibodies to sNP but no antibodies to DNA. Alteration of sNP with isoniazid did not result in an increased incidence of ANA in the anticonvulsant group as it does in isoniazid treated subjects. It is concluded that the SLE-activating properties of diverse anticonvulsants probably resides in their potential to induce ANA. Although all anticonvulsants elicit ANA directed primarily to sNP, each may do so by different mechanisms or by altering different sites in the sNP molecule. The mechanisms by which anticonvulsant and isoniazid intake results in ANA probably differ. Presence of DNA antibodies in some patients on anticonvulsants may indicate that their convulsions were due to SLE. PMID:4117275

  17. Anti Transglutaminase Antibodies Cause Ataxia in Mice

    PubMed Central

    Boscolo, Sabrina; Lorenzon, Andrea; Sblattero, Daniele; Florian, Fiorella; Stebel, Marco; Marzari, Roberto; Not, Tarcisio; Aeschlimann, Daniel; Ventura, Alessandro; Hadjivassiliou, Marios; Tongiorgi, Enrico

    2010-01-01

    Background Celiac disease (CD) is an autoimmune gastrointestinal disorder characterized by the presence of anti-transglutaminase 2 (TG2) and anti-gliadin antibodies. Amongst the neurological dysfunctions associated with CD, ataxia represents the most common one. Methods We analyzed by immunohistochemistry, the anti-neural reactivity of the serum from 20 CD patients. To determine the role of anti-TG2 antibodies in ataxia, two anti-TG2 single chain variable fragments (scFv), isolated from a phage-display IgA antibody library, were characterized by immunohistochemistry and ELISA, and injected in mice to study their effects on motor coordination. We found that 75% of the CD patient population without evidence of neurological involvement, has circulating anti-neural IgA and/or IgG antibodies. Two anti-TG2 scFvs, cloned from one CD patient, stained blood vessels but only one reacted with neurons. This anti-TG2 antibody showed cross reactivity with the transglutaminase isozymes TG3 and TG6. Intraventricular injection of the anti-TG2 or the anti-TG2/3/6 cross-reactive scFv provoked transient, equally intensive ataxia in mice. Conclusion The serum from CD patients contains anti-TG2, TG3 and TG6 antibodies that may potentially cause ataxia. PMID:20300628

  18. Cold denaturation of monoclonal antibodies

    PubMed Central

    Lazar, Kristi L; Patapoff, Thomas W

    2010-01-01

    The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs. PMID:20093856

  19. Bispecific antibody mimicking factor VIII.

    PubMed

    Nogami, Keiji

    2016-05-01

    There are some issues in the current factor (F)VIII replacement therapy for severe hemophilia A. One is mental and physical burden for the multiple intravenous infusions, and the other is difficulty in the hemostatic treatment for the patients with FVIII inhibitor. The development of novel drug with fully hemostatic effect, simply procedure, and long-acting reaction has been expected. Recently, FVIIIa-mimicking humanized recombinant bispecific antibody (ACE910) against FIXa and FX was developed. In the non-human clinical study, primate model of acquired hemophilia A demonstrated that the ACE910 was effective on both on-going and spontaneous bleedings. A phase I clinical study was conducted in healthy adults by single subcutaneous infusion of ACE910, followed by the patients' part study, Japanese patients with severe hemophilia A without or with inhibitor were treated with once-weekly subcutaneous injection of ACE910 at three dose levels for 12 successive weeks. There was no significant adverse event related to ACE910 in the clinical and laboratorial findings, and t1/2 of ACE910 was ∼30 days. The median annual bleeding rates were reduced very markedly dose-dependently, independently of inhibitor. Furthermore, among the patients with dose escalation, bleeding rate was decreased as ACE910 dose was increased. In conclusion, ACE910 would have a number of promising features: its high subcutaneous bioavailability and long half-life make the patients possible to be injected subcutaneously with a once-a-week or less frequency. In addition, ACE910 would provide the bleeding prophylactic efficacy, independently of inhibitor. PMID:27207420

  20. Avian Diagnostic and Therapeutic Antibodies to Viral Emerging Pathogens

    SciTech Connect

    David Bradley

    2011-03-31

    During the current period the following key objectives were achieved: demonstration of high titer antibody production by geese following immunization with inactived H1N1 virus; completion of the epitope mapping of West Nile Virus-specific goose antibodies and initiation of epitope mapping of H1N1 flu-specific goose antibodies; advancement in scalable purification of goose antibodies.

  1. 21 CFR 866.5100 - Antinuclear antibody immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antinuclear antibody immunological test system....5100 Antinuclear antibody immunological test system. (a) Identification. An antinuclear antibody... the autoimmune antibodies in serum, other body fluids, and tissues that react with cellular...

  2. [Current situations and the future prospect of monoclonal antibody products].

    PubMed

    Yamaguchi, Teruhide

    2014-01-01

    Monoclonal antibody products and monoclonal antibody-based biopharmaceuticals have shown considerable effectiveness in the treatment for variety of diseases; cancer, auto-immune/auto-inflammation diseases and so on. Significant advance in monoclonal antibody products for cancer treatments was made with antibody-drug conjugates (ADC), and antibodies for blockade of immune checkpoints. Already 3 ADCs and 2 anti-immune-checkpoint antibodies products have been approved, and these monoclonal antibody-related product pipelines reach over 30. On the other hand, EU approved first monoclonal-antibody biosimilar, RemsimaTM (infliximab), suggesting that other monoclonal-antibody biosmilars will follow to the market. In this paper, several new issues about monoclonal antibody products will be discussed. PMID:25707201

  3. The antibody paradox: trying on a pair of genes.

    PubMed

    Fleischman, J B

    1985-01-01

    Rodney Porter's separation of antibody molecules into Fab and Fc fragments engendered the notion that a single antibody polypeptide chain might be coded by two or more genes. This concept profoundly influenced the development of molecular immunology over the past 25 years. Our current knowledge of antibody gene organization has enabled investigators to recombine antibody genes to create 'chimeric' antibodies with a number of potentially useful applications. PMID:3938300

  4. IgM anti-idiotypes that block anti-HLA antibodies: naturally occurring or immune antibodies?

    PubMed Central

    Urlacher, A; Tongio, M M; Pasquali, J L

    1991-01-01

    Using dithiothreitol (DTT) technique, IgM anti-HLA anti-idiotypic antibodies were detected in a multiparous multitransfused woman. These antibodies were able to inhibit the binding of specific IgG anti-HLA antibodies on their corresponding antigen. The recognized determinants were cross-reactive determinants since they were partially found on anti-HLA antibodies from unrelated individuals. By studying the patient's sera over a period of 2 years, no IgM-IgG switch was observed but the presence of these antibodies was stable in time, despite the disappearance of the idiotypes (anti-HLA antibodies). However, when looking at the patient's earlier serum, it was shown that these IgM anti-idiotypic antibodies were absent from the first available serum. Thus, these anti-idiotypic antibodies seem to behave both like natural and immune antibodies. The incidence of such antibodies in pretransplant patients is discussed. PMID:1703054

  5. A multi-Fc-species system for recombinant antibody production

    PubMed Central

    Moutel, Sandrine; El Marjou, Ahmed; Vielemeyer, Ole; Nizak, Clément; Benaroch, Philippe; Dübel, Stefan; Perez, Franck

    2009-01-01

    Background Genomic, transcriptomic and proteomic projects often suffer from a lack of functional validation creating a strong demand for specific and versatile antibodies. Antibody phage display represents an attractive approach to select rapidly in vitro the equivalent of monoclonal antibodies, like single chain Fv antibodies, in an inexpensive and animal free way. However, so far, recombinant antibodies have not managed to impose themselves as efficient alternatives to natural antibodies. Results We developed a series of vectors that allow one to easily fuse single chain Fv antibodies to Fc domains of immunoglobulins, improving their sensitivity and facilitating their use. This series enables the fusion of single chain Fv antibodies with human, mouse or rabbit Fc so that a given antibody is no longer restricted to a particular species. This opens up unlimited multiplexing possibilities and gives additional value to recombinant antibodies. We also show that this multi-Fc species production system can be applied to natural monoclonal antibodies cloned as single chain Fv antibodies and we converted the widely used 9E10 mouse anti-Myc-tag antibody into a human and a rabbit antibody. Conclusion Altogether, this new expression system, that brings constant quality, sensitivity and unique versatility, will be important to broaden the use of recombinant and natural monoclonal antibodies both for laboratory and diagnosis use. PMID:19245715

  6. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    SciTech Connect

    Won, JaeSeon; Nam, PilWon; Lee, YongChan; Choe, MuHyeon

    2009-04-24

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G{sub 4}S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38]{sub 2}) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  7. The antibody mining toolbox: an open source tool for the rapid analysis of antibody repertoires.

    PubMed

    D'Angelo, Sara; Glanville, Jacob; Ferrara, Fortunato; Naranjo, Leslie; Gleasner, Cheryl D; Shen, Xiaohong; Bradbury, Andrew R M; Kiss, Csaba

    2014-01-01

    In vitro selection has been an essential tool in the development of recombinant antibodies against various antigen targets. Deep sequencing has recently been gaining ground as an alternative and valuable method to analyze such antibody selections. The analysis provides a novel and extremely detailed view of selected antibody populations, and allows the identification of specific antibodies using only sequencing data, potentially eliminating the need for expensive and laborious low-throughput screening methods such as enzyme-linked immunosorbant assay. The high cost and the need for bioinformatics experts and powerful computer clusters, however, have limited the general use of deep sequencing in antibody selections. Here, we describe the AbMining ToolBox, an open source software package for the straightforward analysis of antibody libraries sequenced by the three main next generation sequencing platforms (454, Ion Torrent, MiSeq). The ToolBox is able to identify heavy chain CDR3s as effectively as more computationally intense software, and can be easily adapted to analyze other portions of antibody variable genes, as well as the selection outputs of libraries based on different scaffolds. The software runs on all common operating systems (Microsoft Windows, Mac OS X, Linux), on standard personal computers, and sequence analysis of 1-2 million reads can be accomplished in 10-15 min, a fraction of the time of competing software. Use of the ToolBox will allow the average researcher to incorporate deep sequence analysis into routine selections from antibody display libraries. PMID:24423623

  8. Passive antibody transfer in chickens to model maternal antibody after avian influenza vaccination.

    PubMed

    Faulkner, Olivia B; Estevez, Carlos; Yu, Qingzhong; Suarez, David L

    2013-04-15

    Birds transfer maternal antibodies (MAb) to their offspring through the egg yolk where the antibody is absorbed and enters the circulatory system. Maternal antibodies provide early protection from disease, but may interfere with the vaccination efficacy in the chick. MAb are thought to interfere with vaccine antigen processing that reduces the subsequent immune response. Once MAb titers are depleted, the chick will respond to vaccination, but they are also susceptible to viral infection. This study examines the effect of MAb on seroconversion to different viral-vectored avian influenza virus (AIV) vaccines. Chicks were given passively transferred antibodies (PTA) using AIV hyperimmunized serum, and subsequently vaccinated with a fowlpox-AIV recombinant vaccine (FPr) or a Newcastle disease virus-AIV recombinant vaccine (NDVr). Our results indicate that passively transferred antibodies led to significant reduction of seroconversion and clinical protection from virulent challenge in recombinant virus vaccinated chicks thus demonstrating maternal antibody interference to vaccination. The passive antibody transfer model system provides an important tool to evaluate maternal antibody interference to vaccination. PMID:23398721

  9. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses.

    PubMed

    Tay, Matthew Zirui; Liu, Pinghuang; Williams, LaTonya D; McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T; Dennison, S Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S Munir; Moody, M Anthony; Hope, Thomas J; Haynes, Barton F; Tomaras, Georgia D

    2016-08-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine

  10. The clinical significance of anticytoplasmic antibodies found on fluorescent antinuclear antibody testing.

    PubMed

    Tesser, J R; Rothberger, H; Agudelo, C

    1983-04-01

    We evaluated anticytoplasmic antibodies (FACA) found on immunofluorescent antinuclear antibody tests (FANA). Of 1830 sera submitted to our laboratory for FANA testing, we found a 2.7% incidence of FACA as compared to a 21.5% incidence of FANA. Patients with FACA had rheumatologic and other systemic diseases closely resembling those present in controls with FANA, indicating that FACA provide a pathologic marker independent of FANA. Among FACA+ patients studied further, 59% were found to have serum antibodies to mitochondrial (Mit) and/or smooth muscle (SMus) antigens, largely in the absence of liver disease. By contrast, sera from FANA+ controls lacked anti-Mit and anti-SMus antibodies, but did contain antibodies to SSA, SSB, dsDNA, Sm, and RNP in much higher frequency than FACA+ sera. PMID:6345769

  11. Platform for high-throughput antibody selection using synthetically-designed antibody libraries.

    PubMed

    Batonick, Melissa; Holland, Erika G; Busygina, Valeria; Alderman, Dawn; Kay, Brian K; Weiner, Michael P; Kiss, Margaret M

    2016-09-25

    Synthetic humanized antibody libraries are frequently generated by random incorporation of changes at multiple positions in the antibody hypervariable regions. Although these libraries have very large theoretical diversities (>10(20)), the practical diversity that can be achieved by transformation of Escherichia coli is limited to about 10(10). To constrain the practical diversity to sequences that more closely mimic the diversity of natural human antibodies, we generated a scFv phage library using entirely pre-defined complementarity determining regions (CDR). We have used this library to select for novel antibodies against four human protein targets and demonstrate that identification of enriched sequences at each of the six CDRs in early selection rounds can be used to reconstruct a consensus antibody with selectivity for the target. PMID:26607994

  12. Neuronal Surface Antibody-Mediated Autoimmune Encephalitis

    PubMed Central

    Linnoila, Jenny J.; Rosenfeld, Myrna R.; Dalmau, Josep

    2016-01-01

    In the past few years, many autoimmune encephalitides have been identified, with specific clinical syndromes and associated antibodies against neuronal surface antigens. There is compelling evidence that many of these antibodies are pathogenic and most of these encephalitides are highly responsive to immunotherapies. The clinical spectra of some of these antibody-mediated syndromes, especially those reported in only a few patients, are evolving. Others, such as anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, are well characterized. Diagnosis involves recognizing the specific syndromes and identifying the antibody in a patient’s cerebrospinal fluid (CSF) and/or serum. These syndromes are associated with variable abnormalities in CSF, magnetic resonance imaging, and electroencephalography. Treatment is often multidisciplinary and should be focused upon neutralizing the effects of antibodies and eliminating their source. Overlapping disorders have been noted, with some patients having more than one neurologic autoimmune disease. In other patients, viral infections such as herpes simplex virus encephalitis trigger robust antineuronal autoimmune responses. PMID:25369441

  13. Monoclonal antibody disulfide reduction during manufacturing

    PubMed Central

    Hutterer, Katariina M.; Hong, Robert W.; Lull, Jonathon; Zhao, Xiaoyang; Wang, Tian; Pei, Rex; Le, M. Eleanor; Borisov, Oleg; Piper, Rob; Liu, Yaoqing Diana; Petty, Krista; Apostol, Izydor; Flynn, Gregory C.

    2013-01-01

    Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production. PMID:23751615

  14. Adaptive responses to antibody based therapy.

    PubMed

    Rodems, Tamara S; Iida, Mari; Brand, Toni M; Pearson, Hannah E; Orbuch, Rachel A; Flanigan, Bailey G; Wheeler, Deric L

    2016-02-01

    Receptor tyrosine kinases (RTKs) represent a large class of protein kinases that span the cellular membrane. There are 58 human RTKs identified which are grouped into 20 distinct families based upon their ligand binding, sequence homology and structure. They are controlled by ligand binding which activates intrinsic tyrosine-kinase activity. This activity leads to the phosphorylation of distinct tyrosines on the cytoplasmic tail, leading to the activation of cell signaling cascades. These signaling cascades ultimately regulate cellular proliferation, apoptosis, migration, survival and homeostasis of the cell. The vast majority of RTKs have been directly tied to the etiology and progression of cancer. Thus, using antibodies to target RTKs as a cancer therapeutic strategy has been intensely pursued. Although antibodies against the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) have shown promise in the clinical arena, the development of both intrinsic and acquired resistance to antibody-based therapies is now well appreciated. In this review we provide an overview of the RTK family, the biology of EGFR and HER2, as well as an in-depth review of the adaptive responses undertaken by cells in response to antibody based therapies directed against these receptors. A greater understanding of these mechanisms and their relevance in human models will lead to molecular insights in overcoming and circumventing resistance to antibody based therapy. PMID:26808665

  15. Cytolytic antibodies to melanocytes in vitiligo.

    PubMed

    Cui, J; Arita, Y; Bystryn, J C

    1993-06-01

    Patients with vitiligo have been found to have circulating antibodies to pigment cells. To evaluate the functional activity of these antibodies, a highly sensitive europium release assay was used to compare complement-mediated cytolysis of human melanocytes by sera of 56 patients with vitiligo (20 with active disease, 25 with inactive disease, 11 with unidentified disease activity) and 47 control individuals. Significant melanocyte lysis was mediated by 32 (57%) of the patients with vitiligo but by only three (6%) of the control sera (p < 0.001), and by 17 (85%) of 20 patients with active vitiligo versus 11 (44%) of 25 patients with inactive disease (p < 0.025). Mean melanocyte lysis by vitiligo sera was 24% versus 6% by control sera (p < 0.0001). A subset of 12 vitiligo sera with high titers of cytolytic antibodies to melanocytes (34% mean cytolysis) reacted minimally (< 2% mean cytolysis) to a panel of control cells that included human and murine melanomas, human fibroblasts, lung carcinoma, and rhabdomyosarcoma. These findings indicate that antibodies present in patients with vitiligo have the functional ability to selectively kill melanocytes and are more common in active disease. These observations support, but do not prove, the hypothesis that vitiligo is an autoimmune disease and that anti-pigment cell antibodies have a role in inducing the disease. PMID:8496621

  16. 4th European Antibody Congress 2008

    PubMed Central

    2009-01-01

    The Fourth European Antibody meeting, organized by Terrapin Ltd., was held in Geneva, a center of the European biopharmaceutical industry. Merck-Serono, NovImmune, Pierre Fabre and Therapeomic are located nearby, as are R&D centers of Boehringer-Ingelheim, Novartis, Roche and Sanofi-Aventis. Over 40 speakers and more than 200 delegates attended the event. Companies represented included Abbott, Ablynx, Adnexus/ BMS, Astra-Zeneca/ CAT/ Medimmune, BiogenIdec, BioRad, Centocor (Johnson & Johnson), Crucell/DSM, Domantis, Dyax, Genmab, Genzyme, Glycart/ Roche, Haptogen, Immunogen, Kyowa-Kirin, LFB, Medarex, Merck-Serono, Micromet, Novartis, Pierre Fabre Laboratories, Roche, Sanofi-Aventis, Seattle-Genetics, Transgene, UCB Celltech and Wyeth. Other attendees included those based in academe or government (University of Amsterdam, University of Zurich, Univeristy Hospital-Lyon, Ecole Polytechnique Federale de Lausanne, INSERM, Tufts University, US National Institutes of Health), consultants, and patent attorneys (Edwards, Angell, Palmer & Dodge). The meeting was very interactive and included exchanges during the many scheduled networking times (exhibitions, speed-networking, lunches and evening receptions). The first day of the three day conference was dedicated to advances in understanding antibody structure-function relationships. Challenges and opportunities in antibody development were the focus of the second day and the third day featured discussion of innovative antibodies and antibody alternatives. PMID:20061813

  17. Homogeneity of Antibody Responses in Tuberculosis Patients

    PubMed Central

    Samanich, K.; Belisle, J. T.; Laal, S.

    2001-01-01

    The goals of the present study were twofold: (i) to compare the repertoires of antigens in culture filtrates of in vitro-grown Mycobacterium tuberculosis that are recognized by antibodies from noncavitary and cavitary tuberculosis (TB) patients and (ii) to determine the extent of variation that exists between the antigen profiles recognized by individual TB patients. Lipoarabinomannan-free culture filtrate proteins of M. tuberculosis were fractionated by one-dimensional (1-D) and 2-D polyacrylamide gel electrophoresis, and the Western blots were probed with sera from non-human immunodeficiency virus (non-HIV)-infected cavitary and noncavitary TB patients and from HIV-infected, noncavitary TB patients. In contrast to earlier studies based on recombinant antigens of M. tuberculosis which suggested that antibody responses in TB patients were heterogeneous (K. Lyashchenko et al., 1998, Infect. Immun. 66:3936–3940, 1998), our studies with native culture filtrate proteins show that the antibody responses in TB patients show significant homogeneity in being directed against a well-defined subset of antigens. Thus, there is a well-defined subset of culture filtrate antigens that elicits antibodies during noncavitary and cavitary disease. In addition, another set of antigens is recognized primarily by cavitary TB patients. The mapping with individual patient sera presented here suggests that serodiagnostic tests based on the subset of antigens recognized during both noncavitary and cavitary TB will enhance the sensitivity of antibody detection in TB patients, especially in difficult-to-diagnose, smear-negative, noncavitary TB patients. PMID:11402004

  18. Antibody phage display technology and its applications.

    PubMed

    Hoogenboom, H R; de Bruïne, A P; Hufton, S E; Hoet, R M; Arends, J W; Roovers, R C

    1998-06-01

    In recent years, the use of display vectors and in vitro selection technologies has transformed the way in which we generate ligands, such as antibodies and peptides, for a given target. Using this technology, we are now able to design repertoires of ligands from scratch and use the power of phage selection to select those ligands having the desired (biological) properties. With phage display, tailor-made antibodies may be synthesized and selected to acquire the desired affinity of binding and specificity for in vitro and in vivo diagnosis, or for immunotherapy of human disease. This review addresses recent progress in the construction of, and selection from phage antibody libraries, together with novel approaches for screening phage antibodies. As the quality of large naïve and synthetic antibody repertoires improves and libraries becomes more generally available, new and exciting applications are pioneered such as the identification of novel antigens using differential selection and the generation of receptor a(nta)gonists. A combination of the design and generation of millions to billions of different ligands, together with phage display for the isolation of binding ligands and with functional assays for identifying (and possibly selecting) bio-active ligands, will open even more challenging applications of this inspiring technology, and provide a powerful tool for drug and target discovery well into the next decade. PMID:9661810

  19. Back to the future: recombinant polyclonal antibody therapeutics

    PubMed Central

    Wang, Xian-zhe; Coljee, Vincent W.; Maynard, Jennifer A.

    2013-01-01

    Antibody therapeutics are one of the fastest growing classes of pharmaceuticals, with an annual US market over $20 billion, developed to treat a variety of diseases including cancer, auto-immune and infectious diseases. Most are currently administered as a single molecule to treat a single disease, however there is mounting evidence that cocktails of multiple antibodies, each with a unique binding specificity and protective mechanism, may improve clinical efficacy. Here, we review progress in the development of oligoclonal combinations of antibodies to treat disease, focusing on identification of synergistic antibodies. We then discuss the application of modern antibody engineering technologies to produce highly potent antibody preparations, including oligoclonal antibody cocktails and truly recombinant polyclonal antibodies. Specific examples illustrating the synergy conferred by multiple antibodies will be provided for diseases caused by botulinum toxin, cancer and immune thrombocytopenia. The bioprocessing and regulatory options for these preparations will be discussed. PMID:24443710

  20. Back to the future: recombinant polyclonal antibody therapeutics.

    PubMed

    Wang, Xian-Zhe; Coljee, Vincent W; Maynard, Jennifer A

    2013-11-01

    Antibody therapeutics are one of the fastest growing classes of pharmaceuticals, with an annual US market over $20 billion, developed to treat a variety of diseases including cancer, auto-immune and infectious diseases. Most are currently administered as a single molecule to treat a single disease, however there is mounting evidence that cocktails of multiple antibodies, each with a unique binding specificity and protective mechanism, may improve clinical efficacy. Here, we review progress in the development of oligoclonal combinations of antibodies to treat disease, focusing on identification of synergistic antibodies. We then discuss the application of modern antibody engineering technologies to produce highly potent antibody preparations, including oligoclonal antibody cocktails and truly recombinant polyclonal antibodies. Specific examples illustrating the synergy conferred by multiple antibodies will be provided for diseases caused by botulinum toxin, cancer and immune thrombocytopenia. The bioprocessing and regulatory options for these preparations will be discussed. PMID:24443710

  1. Antibody-specific model of amino acid substitution for immunological inferences from alignments of antibody sequences.

    PubMed

    Mirsky, Alexander; Kazandjian, Linda; Anisimova, Maria

    2015-03-01

    Antibodies are glycoproteins produced by the immune system as a dynamically adaptive line of defense against invading pathogens. Very elegant and specific mutational mechanisms allow B lymphocytes to produce a large and diversified repertoire of antibodies, which is modified and enhanced throughout all adulthood. One of these mechanisms is somatic hypermutation, which stochastically mutates nucleotides in the antibody genes, forming new sequences with different properties and, eventually, higher affinity and selectivity to the pathogenic target. As somatic hypermutation involves fast mutation of antibody sequences, this process can be described using a Markov substitution model of molecular evolution. Here, using large sets of antibody sequences from mice and humans, we infer an empirical amino acid substitution model AB, which is specific to antibody sequences. Compared with existing general amino acid models, we show that the AB model provides significantly better description for the somatic evolution of mice and human antibody sequences, as demonstrated on large next generation sequencing (NGS) antibody data. General amino acid models are reflective of conservation at the protein level due to functional constraints, with most frequent amino acids exchanges taking place between residues with the same or similar physicochemical properties. In contrast, within the variable part of antibody sequences we observed an elevated frequency of exchanges between amino acids with distinct physicochemical properties. This is indicative of a sui generis mutational mechanism, specific to antibody somatic hypermutation. We illustrate this property of antibody sequences by a comparative analysis of the network modularity implied by the AB model and general amino acid substitution models. We recommend using the new model for computational studies of antibody sequence maturation, including inference of alignments and phylogenetic trees describing antibody somatic hypermutation in

  2. Method for altering antibody light chain interactions

    DOEpatents

    Stevens, Fred J.; Stevens, Priscilla Wilkins; Raffen, Rosemarie; Schiffer, Marianne

    2002-01-01

    A method for recombinant antibody subunit dimerization including modifying at least one codon of a nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in the interface segment of the light polypeptide variable region, the charged amino acid having a first polarity; and modifying at least one codon of the nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in an interface segment of the heavy polypeptide variable region corresponding to a position in the light polypeptide variable region, the charged amino acid having a second polarity opposite the first polarity. Nucleic acid sequences which code for novel light chain proteins, the latter of which are used in conjunction with the inventive method, are also provided.

  3. Monoclonal antibodies specific for sickle cell hemoglobin

    SciTech Connect

    Jensen, R.H.; Vanderlaan, M.; Grabske, R.J.; Branscomb, E.W.; Bigbee, W.L.; Stanker, L.H.

    1985-01-01

    Two mouse hybridoma cell lines were isolated which produce monoclonal antibodies that bind hemoglobin S. The mice were immunized with peptide-protein conjugates to stimulate a response to the amino terminal peptide of the beta chain of hemoglobin S, where the single amino acid difference between A and S occurs. Immunocharacterization of the antibodies shows that they bind specifically to the immunogen peptide and to hemoglobin S. The specificity for S is high enough that one AS cell in a mixture with a million AA cells is labeled by antibody, and such cells can be analyzed by flow cytometry. Immunoblotting of electrophoretic gels allows definitive identification of hemoglobin S as compared with other hemoglobins with similar electrophoretic mobility. 12 references, 4 figures.

  4. Antibody-Mediated Pathogen Resistance in Plants.

    PubMed

    Peschen, Dieter; Schillberg, Stefan; Fischer, Rainer

    2016-01-01

    The methods described in this chapter were developed in order to produce transgenic plants expressing pathogen-specific single-chain variable fragment (scFv) antibodies fused to antifungal peptides (AFPs), conferring resistance against fungal pathogens. We describe the selection from a phage display library of avian scFv antibodies that recognize cell surface proteins on fungi from the genus Fusarium, and the construction of scFv-AFP fusion protein constructs followed by their transient expression in tobacco (Nicotiana spp.) plants and stable expression in Arabidopsis thaliana plants. Using these techniques, the antibody fusion with the most promising in vitro activity can be used to generate transgenic plants that are resistant to pathogens such as Fusarium oxysporum f. sp. matthiolae. PMID:26614296

  5. Non-antibody protein-based biosensors.

    PubMed

    Ko Ferrigno, Paul

    2016-06-30

    Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite specificity. Unfortunately antibodies can often fail when immobilised on inorganic surfaces, and alternative biological recognition elements are needed. This article reviews the available non-antibody-binding proteins that have been successfully used in electrical and micro-mechanical biosensor platforms. PMID:27365032

  6. Non-antibody protein-based biosensors

    PubMed Central

    2016-01-01

    Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite specificity. Unfortunately antibodies can often fail when immobilised on inorganic surfaces, and alternative biological recognition elements are needed. This article reviews the available non-antibody-binding proteins that have been successfully used in electrical and micro-mechanical biosensor platforms. PMID:27365032

  7. Method for preparation of single chain antibodies

    SciTech Connect

    Cheung, Nai-Kong V.; Guo, Hong-fen

    2012-04-03

    This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.

  8. Antidrug Antibodies: B Cell Immunity Against Therapy.

    PubMed

    Fogdell-Hahn, A

    2015-09-01

    Chronic inflammatory diseases are now treated with a range of different biopharmaceuticals, often requiring lifelong parenteral administrations. This exposure to drugs is unnatural and can trigger the immune system and result in the formation of antidrug antibodies. Drug-specific antibodies will, if of sufficiently high titre and affinity, block the intended effect of the drug, increase its clearance and make continued treatment worthless. We expect the immune system to react towards therapies against which tolerance has never been established, which is the case for factor VIII treatment in patients with haemophilia A. However, even biopharmaceutical molecules that we should be tolerant against can elicit antidrug antibodies, for instance in treatment of multiple sclerosis patients with recombinant human interferon-beta. Possible immunological mechanisms behind the breaking of tolerance against drugs, the impact this has on continuous treatment success, clinical practice and drug development, will be discussed in this review. PMID:26098690

  9. Current status of antibody therapy in ALL.

    PubMed

    Ai, Jing; Advani, Anjali

    2015-02-01

    Despite the significant advances in modern chemotherapy, it remains challenging to treat adult patients with acute lymphoblastic leukaemia (ALL). The relapse rate remains high, and the outcome at the time of relapse is dismal. Antibody-based therapies have demonstrated promising results in this patient group. Variable mechanisms have been applied to target surface antigens (CD20 [also termed MS4A1], CD22, CD52 and CD19) that are commonly expressed on malignant leukaemia cells. In this review, we will focus on the clinical application of such therapies in adult ALL, including the naked antibodies: Rituximab, Ofatumumab, Epratuzumab and Alemtuzumab; the immunotoxins: BL22 and Combotox; the immunoconjugates: inotuzumab and SAR 3419; as well as the Bi-specific T cell engaging (BiTE)-specific antibody, Blinatumomab. PMID:25382151

  10. Prevalence of coronavirus antibodies in Iowa swine.

    PubMed Central

    Wesley, R D; Woods, R D; McKean, J D; Senn, M K; Elazhary, Y

    1997-01-01

    Three hundred and forty-seven serum samples from 22 Iowa swine herds were screened for TGEV/PRCV neutralizing antibody. Ninety-one percent of the sera and all 22 herds were positive. These sera were then tested by the blocking ELISA test to distinguish TGEV and PRCV antibody. The ELISA test confirmed the high percentage of TGEV/PRCV positive sera. By the blocking ELISA test, 12 herds were PRCV positive, 6 herds were TGEV positive and 4 herds were mixed with sera either positive for TGEV or PRCV antibody. The results suggest a recent increase in TGEV/PRCV seroprevalence in Iowa swine most likely due to subclinical PRCV infections. PMID:9342456

  11. Antibody-based biological toxin detection

    SciTech Connect

    Menking, D.E.; Goode, M.T.

    1995-12-01

    Fiber optic evanescent fluorosensors are under investigation in our laboratory for the study of drug-receptor interactions for detection of threat agents and antibody-antigen interactions for detection of biological toxins. In a direct competition assay, antibodies against Cholera toxin, Staphylococcus Enterotoxin B or ricin were noncovalently immobilized on quartz fibers and probed with fluorescein isothiocyanate (FITC) - labeled toxins. In the indirect competition assay, Cholera toxin or Botulinum toxoid A was immobilized onto the fiber, followed by incubation in an antiserum or partially purified anti-toxin IgG. These were then probed with FITC-anti-IgG antibodies. Unlabeled toxins competed with labeled toxins or anti-toxin IgG in a dose dependent manner and the detection of the toxins was in the nanomolar range.

  12. Antibody engineering & therapeutics, the annual meeting of the antibody society December 7–10, 2015, San Diego, CA, USA

    PubMed Central

    Pauthner, Matthias; Yeung, Jenny; Ullman, Chris; Bakker, Joost; Wurch, Thierry; Reichert, Janice M.; Lund-Johansen, Fridtjof; Bradbury, Andrew R.M.; Carter, Paul J.; Melis, Joost P.M.

    2016-01-01

    ABSTRACT The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6–10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on “Antibodies to watch” in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries. PMID:26909869

  13. Utility of feline coronavirus antibody tests.

    PubMed

    Addie, Diane D; le Poder, Sophie; Burr, Paul; Decaro, Nicola; Graham, Elizabeth; Hofmann-Lehmann, Regina; Jarrett, Oswald; McDonald, Michael; Meli, Marina L

    2015-02-01

    Eight different tests for antibodies to feline coronavirus (FCoV) were evaluated for attributes that are important in situations in veterinary practice. We compared four indirect immunofluorescent antibody tests (IFAT), one enzyme-linked immunosorbent assay (ELISA) (FCoV Immunocomb; Biogal) and three rapid immunochromatographic (RIM) tests against a panel of samples designated by consensus as positive or negative. Specificity was 100% for all but the two IFATs based on transmissible gastroenteritis virus (TGEV), at 83.3% and 97.5%. The IFAT and ELISA tests were best for obtaining an antibody titre and for working in the presence of virus. The RIM tests were the best for obtaining a result quickly (10-15 mins); of these, the Speed F-Corona was the most sensitive, at 92.4%, followed by FASTest feline infectious peritonitis (FIP; 84.6%) and Anigen Rapid FCoV antibody test (64.1%). Sensitivity was 100% for the ELISA, one FCoV IFAT and one TGEV IFAT; and 98.2% for a second TGEV IFA and 96.1% for a second FCoV IFAT. All tests worked with effusions, even when only blood products were stipulated in the instruction manual. The ELISA and Anigen RIM tests were best for small quantities of sample. The most appropriate FCoV antibody test to use depends on the reason for testing: in excluding a diagnosis of FIP, sensitivity, specificity, small sample quantity, rapidity and ability to work in the presence of virus all matter. For FCoV screening, speed and sensitivity are important, and for FCoV elimination antibody titre is essential. PMID:24966245

  14. Molecular Imaging of Pancreatic Cancer with Antibodies

    PubMed Central

    2015-01-01

    Development of novel imaging probes for cancer diagnostics remains critical for early detection of disease, yet most imaging agents are hindered by suboptimal tumor accumulation. To overcome these limitations, researchers have adapted antibodies for imaging purposes. As cancerous malignancies express atypical patterns of cell surface proteins in comparison to noncancerous tissues, novel antibody-based imaging agents can be constructed to target individual cancer cells or surrounding vasculature. Using molecular imaging techniques, these agents may be utilized for detection of malignancies and monitoring of therapeutic response. Currently, there are several imaging modalities commonly employed for molecular imaging. These imaging modalities include positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence and bioluminescence), and photoacoustic (PA) imaging. While antibody-based imaging agents may be employed for a broad range of diseases, this review focuses on the molecular imaging of pancreatic cancer, as there are limited resources for imaging and treatment of pancreatic malignancies. Additionally, pancreatic cancer remains the most lethal cancer with an overall 5-year survival rate of approximately 7%, despite significant advances in the imaging and treatment of many other cancers. In this review, we discuss recent advances in molecular imaging of pancreatic cancer using antibody-based imaging agents. This task is accomplished by summarizing the current progress in each type of molecular imaging modality described above. Also, several considerations for designing and synthesizing novel antibody-based imaging agents are discussed. Lastly, the future directions of antibody-based imaging agents are discussed, emphasizing the potential applications for personalized medicine. PMID:26620581

  15. "Diabodies": small bivalent and bispecific antibody fragments.

    PubMed Central

    Holliger, P; Prospero, T; Winter, G

    1993-01-01

    Bivalent and bispecific antibodies and their fragments have immense potential for practical application. Here we describe the design of small antibody fragments with two antigen-binding sites. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) on the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. As indicated by a computer graphic model of the dimers, the two pairs of domains can pack together with the antigen-binding sites pointing in opposite directions. The dimeric antibody fragments, or "diabodies," can be designed for bivalent or bispecific interactions. Starting from the monoclonal antibodies NQ11.7.22 (NQ11) and D1.3 directed against the hapten phenyloxazolone and hen egg lysozyme, respectively, we built bivalent fragments (VHNQ11-VLNQ11)2 and (VHD1.3-VLD1.3)2 and bispecific fragments VHNQ11-VLD1.3 and VHD1.3-VLNQ11. The fragments were expressed by secretion from bacteria and shown to bind specifically to the hapten and/or antigen. Those with 5- and 15-residue linkers had similar binding affinities to the parent antibodies, but a fragment with the VH domain joined directly to the VL domain was found to have slower dissociation kinetics and an improved affinity for hapten. Diabodies offer a ready means of constructing small bivalent and bispecific antibody fragments in bacteria. Images Fig. 1 Fig. 3 PMID:8341653

  16. Behaviour of Non-Donor Specific Antibodies during Rapid Re-Synthesis of Donor Specific HLA Antibodies after Antibody Incompatible Renal Transplantation

    PubMed Central

    Krishnan, Nithya S.; Zehnder, Daniel; Daga, Sunil; Lowe, Dave; Lam, F. T.; Kashi, Habib; Tan, Lam Chin; Imray, Christopher; Hamer, Rizwan; Briggs, David; Raymond, Neil; Higgins, Robert M.

    2013-01-01

    Background HLA directed antibodies play an important role in acute and chronic allograft rejection. During viral infection of a patient with HLA antibodies, the HLA antibody levels may rise even though there is no new immunization with antigen. However it is not known whether the converse occurs, and whether changes on non-donor specific antibodies are associated with any outcomes following HLA antibody incompatible renal transplantation. Methods 55 patients, 31 women and 24 men, who underwent HLAi renal transplant in our center from September 2005 to September 2010 were included in the studies. We analysed the data using two different approaches, based on; i) DSA levels and ii) rejection episode post transplant. HLA antibody levels were measured during the early post transplant period and corresponding CMV, VZV and Anti-HBs IgG antibody levels and blood group IgG, IgM and IgA antibodies were quantified. Results Despite a significant DSA antibody rise no significant non-donor specific HLA antibody, viral or blood group antibody rise was found. In rejection episode analyses, multiple logistic regression modelling showed that change in the DSA was significantly associated with rejection (p = 0.002), even when adjusted for other antibody levels. No other antibody levels were predictive of rejection. Increase in DSA from pre treatment to a post transplant peak of 1000 was equivalent to an increased chance of rejection with an odds ratio of 1.47 (1.08, 2.00). Conclusion In spite of increases or decreases in the DSA levels, there were no changes in the viral or the blood group antibodies in these patients. Thus the DSA rise is specific in contrast to the viral, blood group or third party antibodies post transplantation. Increases in the DSA post transplant in comparison to pre-treatment are strongly associated with occurrence of rejection. PMID:23922659

  17. Effects of interferon on antibody formation

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1984-01-01

    Studies of the effects of interferon on primary and secondary antibody responses and of the relationship of interferon to other cytokines, or cell products, are presented. Dosage- and timing-dependent immunoenhancing and immunosuppressive activities of interferon are documented for mouse spleen cell cultures and for mice infected with murine hepatitis virus (MHV-3). A possibility that altered interferon production might lead to immunopathological disorders, such as lupus erythematosus, AIDS, arthritis, etc., is discussed. Latest technological developments are presented that indicate that interferon does apparently play a major role in the regulation of antibody responses.

  18. Basic immunology of antibody targeted radiotherapy

    SciTech Connect

    Wong, Jeffrey Y.C. . E-mail: jwong@coh.org

    2006-10-01

    Antibody targeted radiotherapy brings an important new treatment modality to Radiation oncology clinic. Radiation dose to tumor and normal tissues are determined by a complex interplay of antibody, antigen, tumor, radionuclide, and host-related factors. A basic understanding of these immunologic and physiologic factors is important to optimally utilize this therapy in the clinic. Preclinical and clinical studies need to be continued to broaden our understanding and to develop new strategies to further improve the efficacy of this promising form of targeted therapy.

  19. Detection of antitrophoblast antibodies in the sera of patients with anticardiolipin antibodies and fetal loss.

    PubMed

    McCrae, K R; DeMichele, A M; Pandhi, P; Balsai, M J; Samuels, P; Graham, C; Lala, P K; Cines, D B

    1993-11-01

    Women with anticardiolipin antibodies (ACLA) are at increased risk for fetal loss. One potential explanation for this outcome is that sera from these individuals contain antibodies reactive with trophoblast cells, which are involved in the establishment of the uteroplacental vasculature and maintenance of placental blood fluidity. To examine this hypothesis, we compared the incidence of trophoblast-reactive antibodies in 27 patients with ACLA and a history of fetal loss with that in 29 normal pregnant women. Sera from 20 patients, but only one control, contained trophoblast-reactive antibodies (P < .001). These antibodies were not directed against major histocompatibility class I antigens, and reacted with both term and first-trimester trophoblast cells. In most cases, sera from which ACLA were adsorbed by cardiolipin-containing liposomes maintained reactivity against cells. In addition, patient Ig fractions immunoprecipitated an approximately 62-kD protein from the trophoblast cell surface, stimulated the release of arachidonic acid and thromboxane A2 by trophoblasts, and inhibited the binding of prourokinase to trophoblast urokinase receptors. These observations show that sera from women with ACLA and a history of fetal loss contain antitrophoblast antibodies. These antibodies may be serologically distinct from ACLA, and may contribute to the pathogenesis of fetal demise. PMID:7693045

  20. Analysis of acetylcholine receptor phosphorylation sites using antibodies to synthetic peptides and monoclonal antibodies.

    PubMed Central

    Safran, A; Neumann, D; Fuchs, S

    1986-01-01

    Three peptides corresponding to residues 354-367, 364-374, 373-387 of the acetylcholine receptor (AChR) delta subunit were synthesized. These peptides represent the proposed phosphorylation sites of the cAMP-dependent protein kinase, the tyrosine-specific protein kinase and the calcium/phospholipid-dependent protein kinase respectively. Using these peptides as substrates for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase it was shown that only peptides 354-367 was phosphorylated whereas the other two were not. These results verify the location of the cAMP-dependent protein kinase phosphorylation site within the AChR delta subunit. Antibodies elicited against these peptides reacted with the delta subunit. The antipeptide antibodies and two monoclonal antibodies (7F2, 5.46) specific for the delta subunit were tested for their binding to non-phosphorylated receptor and to receptor phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. Antibodies to peptide 354-367 were found to react preferentially with non-phosphorylated receptor whereas the two other anti-peptide antibodies bound equally to phosphorylated and non-phosphorylated receptors. Monoclonal antibody 7F2 reacted preferentially with the phosphorylated form of the receptor whereas monoclonal antibody 5.46 did not distinguish between the two forms. Images Fig. 2. Fig. 4. Fig. 5. PMID:3816758

  1. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier

    SciTech Connect

    Friden, P.M.; Walus, L.R.; Musso, G.F.; Taylor, M.A.; Malfroy, B.; Starzyk, R.M. )

    1991-06-01

    Delivery of nonlipophilic drugs to the brain is hindered by the tightly apposed capillary endothelial cells that make up the blood-brain barrier. The authors have examined the ability of a monoclonal antibody (OX-26), which recognizes the rat transferrin receptor, to function as a carrier for the delivery of drugs across the blood-brain barrier. This antibody, which was previously shown to bind preferentially to capillary endothelial cells in the brain after intravenous administration, labels the entire cerebrovascular bed in a dose-dependent manner. The initially uniform labeling of brain capillaries becomes extremely punctate {approximately} 4 hr after injection, suggesting a time-dependent sequestering of the antibody. Capillary-depletion experiments, in which the brain is separated into capillary and parenchymal fractions, show a time-dependent migration of radiolabeled antibody from the capillaries into the brain parenchyma, which is consistent with the transcytosis of compounds across the blood-brain barrier. Antibody-methotrexate conjugates were tested in vivo to assess the carrier ability of this antibody. Immunohistochemical staining for either component of an OX-26-methotrexate conjugate revealed patterns of cerebrovascular labeling identical to those observed with the unaltered antibody. Accumulation of radiolabeled methotrexate in the brain parenchyma is greatly enhanced when the drug is conjugated to OX-26.

  2. Nephropathia epidemica in Norway: antigen and antibodies in rodent reservoirs and antibodies in selected human populations.

    PubMed Central

    Traavik, T.; Sommer, A. I.; Mehl, R.; Berdal, B. P.; Stavem, K.; Hunderi, O. H.; Dalrymple, J. M.

    1984-01-01

    Nephropathia epidemica (NE) antigen was detected by IFAT (indirect fluorescent antibody technique) in the lungs of 14 of 97 bank voles (Clethrionomys glareolus) collected in three endemic areas. The distribution of antigen positive voles within an endemic location was scattered. Antibodies to Korean hemorrhagic fever (KHF) virus antigens were detected by IFAT in 12 of 14 NE antigen positive bank voles and in 15 of 83 that were antigen negative. NE antigen positive voles exhibited higher antibody titres. Antibodies to KHF were demonstrated in sera from C. rutilus and C. rufocanus collected more than 200 km north of the distribution area for C. glareolus. It appears likely that these vole species can serve as virus vectors for NE cases occurring north of the bank vole area. NE antibodies cross-reacting with KHF virus seem to diminish with time after infection in some NE patients, while for others such cross-reacting antibodies were detected up to 12 years after the disease. Antibodies to KHF were detected in eight of 106 healthy forestry workers with no clinical history of NE. No serological cross-reactions were detected between NE/KHF antigens and representative Bunyaviridae present in Norway. NE/KHF-like viruses appear widespread in Norway, both within and outside of the distribution area of the bank vole. PMID:6146649

  3. What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins.

    PubMed

    Vanderven, Hillary A; Ana-Sosa-Batiz, Fernanda; Jegaskanda, Sinthujan; Rockman, Steven; Laurie, Karen; Barr, Ian; Chen, Weisan; Wines, Bruce; Hogarth, P Mark; Lambe, Teresa; Gilbert, Sarah C; Parsons, Matthew S; Kent, Stephen J

    2016-06-01

    The conserved internal influenza proteins nucleoprotein (NP) and matrix 1 (M1) are well characterised for T cell immunity, but whether they also elicit functional antibodies capable of activating natural killer (NK) cells has not been explored. We studied NP and M1-specific ADCC activity using biochemical, NK cell activation and killing assays with plasma from healthy and influenza-infected subjects. Healthy adults had antibodies to M1 and NP capable of binding dimeric FcγRIIIa and activating NK cells. Natural symptomatic and experimental influenza infections resulted in a rise in antibody dependent NK cell activation post-infection to the hemagglutinin of the infecting strain, but changes in NK cell activation to M1 and NP were variable. Although antibody dependent killing of target cells infected with vaccinia viruses expressing internal influenza proteins was not detected, opsonising antibodies to NP and M1 likely contribute to an antiviral microenvironment by stimulating innate immune cells to secrete cytokines early in infection. We conclude that effector cell activating antibodies to conserved internal influenza proteins are common in healthy and influenza-infected adults. Given the significance of such antibodies in animal models of heterologous influenza infection, the definition of their importance and mechanism of action in human immunity to influenza is essential. PMID:27428437

  4. [Inhibition of adenovirus reproduction in cell culture by specific antibodies].

    PubMed

    Povnytsia, O Iu; Nosach, L M; Zhovnovata, V L; Zahorodnia, S D; Vantsak, N P; Tokarchuk, L V; Polishchuk, O M; Diachenko, N S

    2009-01-01

    The capacity of specific antibodies to inhibit the reproduction of homo- and heterologous adenoviruses in Hela cell added to culture medium after virus adsorption was studied. The inhibiting effect of polyclonal antivirus and monospecific antihexone antibodies to homo- and heterologous adenoviruses was shown. The effect was more expressed when using antibodies to homologous antibodies. The intensity of inhibition depended on antibodies concentration in the medium and infecting dose of the virus. Essential reduction of the quantity of infected cells and a decrease of the titer of adenovirus synthesized in the presence of homo- and heterologous antibodies was shown but adenovirus reproduction was not inhibited completely. PMID:19663330

  5. Modeling single cell antibody excretion on a biosensor.

    PubMed

    Stojanović, Ivan; Baumgartner, Wolfgang; van der Velden, Thomas J G; Terstappen, Leon W M M; Schasfoort, Richard B M

    2016-07-01

    We simulated, using Comsol Multiphysics, the excretion of antibodies by single hybridoma cells and their subsequent binding on a surface plasmon resonance imaging (SPRi) sensor. The purpose was to confirm that SPRi is suitable to accurately quantify antibody (anti-EpCAM) excretion. The model showed that antibody loss by diffusion away from the sensor was less than 1%. Unexpectedly, more than 99% of the excreted antibodies were captured on the sensor. These data prove the remarkable phenomenon that the SPRi output of cellular antibody excretion and its subsequent binding, performed under the conditions described here, is directly usable for quantification of single cell antibody production rates. PMID:27040182

  6. Antibody-mediated immune suppression is improved when blends of anti-RBC monoclonal antibodies are used in mice.

    PubMed

    Bernardo, Lidice; Amash, Alaa; Marjoram, Danielle; Lazarus, Alan H

    2016-08-25

    Although the prevention of hemolytic disease of the fetus and newborn is highly effective using polyclonal anti-D, a recombinant alternative is long overdue. Unfortunately, anti-D monoclonal antibodies have been, at best, disappointing. To determine the primary attribute defining an optimal antibody, we assessed suppression of murine red blood cell (RBC) immunization by single-monoclonal antibodies vs defined blends of subtype-matched antibodies. Allogeneic RBCs expressing the HOD antigen (hen egg lysozyme [HEL]-ovalbumin-human transmembrane Duffy(b)) were transfused into naïve mice alone or together with selected combinations of HEL-specific antibodies, and the resulting suppressive effect was assessed by evaluating the antibody response. Polyclonal HEL antibodies dramatically inhibited the antibody response to the HOD antigen, whereas single-monoclonal HEL antibodies were less effective despite the use of saturating doses. A blend of monoclonal HEL-specific antibodies reactive with different HEL epitopes significantly increased the suppressive effect, whereas a blend of monoclonal antibodies that block each other's binding to the HEL protein did not increase suppression. In conclusion, these data show that polyclonal antibodies are superior to monoclonal antibodies at suppressing the immune response to the HOD cells, a feature that can be completely recapitulated using monoclonal antibodies to different epitopes. PMID:27330002

  7. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells

    PubMed Central

    Meng, Weixu; Li, Leike; Xiong, Wei; Fan, Xuejun; Deng, Hui; Bett, Andrew J; Chen, Zhifeng; Tang, Aimin; Cox, Kara S; Joyce, Joseph G; Freed, Daniel C; Thoryk, Elizabeth; Fu, Tong-Ming; Casimiro, Danilo R; Zhang, Ningyan; A Vora, Kalpit; An, Zhiqiang

    2015-01-01

    Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs. PMID:25996084

  8. Treatment of leukemia with radiolabeled monoclonal antibodies.

    PubMed

    Sgouros, G; Scheinberg, D A

    1993-01-01

    In contrast to radioimmunotherapy of solid disease, wherein the primary obstacle to success is access of radiolabeled antibody to antigen-positive cells, in the treatment of leukemia delivering a lethal absorbed dose to the isolated cell appears to be the primary obstacle. The isolated cell is defined as one that is exposed only to self-irradiation (from internalized or surface-bound radiolabeled antibody) and to irradiation from free antibody in the blood. It is isolated in the sense that the particulate (beta, electron, alpha) emissions from its nearest neighboring antigen-positive cell do not contribute to its absorbed dose. Disease in the bone marrow and other tissues, since it is confined to a smaller volume, is more easily eradicated because the absorbed dose to a given cell nucleus is enhanced by emissions from adjacent cells (a smaller fraction of the emission energy is 'wasted'). The optimization simulations presented above for the M195 antibody suggest that the optimum dose of antibody that should be administered is that required to yield a concentration within the distribution volume of the antibody that is approximately equal to the concentration of antigen sites as determined by the tumor burden. Although not specifically considered in the modeling example presented above, antibody internalization and catabolism may be expected to play an important role in radioimmunotherapy treatment planning of leukemia. Depending upon the kinetics of internalization and catabolism, the absorbed dose to the red marrow and to antigen-positive cells may be reduced considerably, since catabolism, assuming that it is followed by rapid extrusion of the radioactive label, would decrease the cells' exposure time considerably. The recently demonstrated effectiveness of radioimmunotherapy in certain cases of B-cell lymphoma and in reducing tumor burden in acute myelogenous leukemia suggests that radioimmunotherapy is beginning to fulfill the promise held when it was initially

  9. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi

    PubMed Central

    Joosten, Vivi; Lokman, Christien; van den Hondel, Cees AMJJ; Punt, Peter J

    2003-01-01

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications of these proteins. Also the coupling of fragments to relevant enzymes or other components will be discussed. As an example of the fusion protein strategy, the 'magic bullet' approach for industrial applications, will be highlighted. PMID:12605725

  10. Pathogenesis and mechanisms of antibody-mediated hemolysis

    PubMed Central

    Flegel, Willy A

    2015-01-01

    Background The clinical consequences of antibodies to red blood cells (RBC) have been studied for a century. Most clinically relevant antibodies can be detected by sensitive in vitro assays. Several mechanisms of antibody-mediated hemolysis are well understood. Such hemolysis following transfusion is reliably avoided in a donor/recipient pair, if one individual is negative for the cognate antigen to which the other has the antibody. Study design and results Mechanisms of antibody-mediated hemolysis were reviewed based on a presentation at the Strategies to Address Hemolytic Complications of Immune Globulin Infusions Workshop addressing intravenous immunoglobulin (IVIG) and ABO antibodies. The presented topics included the rates of intravascular and extravascular hemolysis; IgM and IgG isoagglutinins; auto- and alloantibodies; antibody specificity; A, B, A,B and A1 antigens; A1 versus A2 phenotypes; monocytes/macrophages, other immune cells and complement; monocyte monolayer assay (MMA); antibody-dependent cell-mediated cytotoxicity (ADCC); and transfusion reactions due to ABO and other antibodies. Conclusion Several clinically relevant questions remained unresolved, and diagnostic tools were lacking to routinely and reliably predict the clinical consequences of RBC antibodies. Most hemolytic transfusion reactions associated with IVIG were due to ABO antibodies. Reducing the titers of such antibodies in IVIG may lower the frequency of this kind of adverse event. The only way to stop these events is to have no anti-A or anti-B antibodies in the IVIG products. PMID:26174897

  11. Bortezomib Reduces Preexisting Antibodies to Recombinant Immunotoxins in Mice*

    PubMed Central

    Manning, Michael L.; Mason-Osann, Emily; Onda, Masanori; Pastan, Ira

    2014-01-01

    Recombinant immunotoxin (RIT) therapy is limited in patients by neutralizing antibody responses. Ninety percent of patients with normal immune systems make neutralizing antibodies after one cycle of RIT, preventing repeated dosing. Furthermore, some patients have preexisting antibodies from environmental exposure to Pseudomonas exotoxin, the component of the RIT that elicits the neutralizing antibody response. Bortezomib (B) is an FDA-approved proteasome inhibitor which selectively targets and kills plasma cells which are necessary for the neutralizing antibody response. We hypothesized B may abrogate neutralizing antibody levels, making dosing of RIT possible in mice already immune to RIT. We immunized BALB/c mice with multiple doses of SS1P, a RIT whose antibody portion targets mesothelin. Mice with elevated antibody levels were separated into groups to receive saline, B, the pentostatin/cyclophosphamide (PC) regimen, or the bortezomib/pentostatin/cyclophosphamide (BPC) combination regimen. Four weeks after finishing therapy plasma antibody levels were assayed and bone marrow was harvested. The B and PC regimens both significantly reduced antibody levels, and we observed fewer plasma cells in the bone marrow of B treated mice, but not in PC treated mice. The BPC combination regimen nearly eliminated antibodies and further reduced plasma cells in the bone marrow. The BPC combination regimen is more effective than individual regimens and may reduce antibody levels in patients with preexisting neutralizing antibodies to Pseudomonas exotoxin allowing RIT treatment. PMID:25560410

  12. Phase Transitions in Antibody Solutions: from Pharmaceuticals to Human Disease

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Lomakin, Aleksey; Benedek, George; Dana Farber Cancer Institute Collaboration; Amgen Inc. Collaboration

    2014-03-01

    Antibodies are very important proteins. Natural antibodies play essential role in the immune system of human body. Pharmaceutical antibodies are used as drugs. Antibodies are also indispensable tools in biomedical research and diagnostics. Recently, a number of observations of phase transitions of pharmaceutical antibodies have been reported. These phase transitions are undesirable from the perspective of colloid stability of drug solutions in processing and storage, but can be used for protein purification, X-ray crystallography, and improving pharmokinetics of drugs. Phase transitions of antibodies can also take place in human body, particularly in multiple myeloma patients who overproduce monoclonal antibodies. These antibodies, in some cases, crystallize at body temperature and cause severe complications called cryoglobulinemia. I will present the results of our current studies on phase transitions of both pharmaceutical antibodies and cryoglobulinemia-associated antibodies. These studies have shown that different antibodies have different propensity to undergo phase transitions, but their phase behavior has universal features which are remarkably different from those of spherical proteins. I will discuss how studies of phase behavior can be useful in assessing colloid stability of pharmaceutical antibodies and in early diagnostics of cryoglobulinemia, as well as general implications of the fact that some antibodies can precipitate at physiological conditions.

  13. Monoclonal antibodies reactive with chicken interleukin-17

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In our previous study chicken interleukin -17 (chIL-17) gene was cloned from the expressed sequence tag (EST) cDNA library and initially analyzed. To further investigate biological properties of chicken IL-17, six monoclonal antibodies (mAbs) against bacterially expressed protein were produced and c...

  14. IgA Antibodies in Rett Syndrome

    ERIC Educational Resources Information Center

    Reichelt, K. L.; Skjeldal, O.

    2006-01-01

    The level of IgA antibodies to gluten and gliadin proteins found in grains and to casein found in milk, as well as the level of IgG to gluten and gliadin, have been examined in 23 girls with Rett syndrome and 53 controls. Highly statistically significant increases were found for the Rett population compared to the controls. The reason for this…

  15. Nonpathogenicity of antiintestinal antibody in the rabbit.

    PubMed Central

    Rabin, B. S.; Rogers, S. J.

    1976-01-01

    Rabbits were immunized with intestinal extract prepared from rabbits, guinea pigs, and germ-free rats. The resultant serum antibody response to intestinal antigen was determined by gel precipitation and direct tissue immunofluorescence. Forty-eight hours prior to sacrifice of each immunized animal, a portion of the duodenum, ileum, and colon were traumatized to bring circulating antibody into contact with the tissue. Sections for histology and direct immunofluorescence were taken from the area of trauma, just adjacent to the area, and 10 cm from it. The humoral immune response, the presence of tissue bound immunoglobulin, and tissue histology were compared. The area of trauma in normal and immunized animals showed the same histologic changes. In each animal, tissue just adjacent to the area of trauma and 10 cm from it were histologically identical. The pathologic alterations in the immunized animals were similar to those associated with malabsorption in man. Direct immunofluorescence of the intestinal tissue revealed bound immunoglobulin in histologically normal and abnormal tissue. Precipitating antibody to intestine was present in the serum of rabbits with normal and abnormal histology. Thus, antiintestinal antibody as dected by precipitation in gel and direct tissue immunofluorescence does not appear to be a factor in the pathogenesis of this model of immunologically induced histologic changes in the intestine. Images Figure 5 Figure 6 Figure 7 Figure 8 Figure 1 Figure 2 Figure 3 Figure 4 PMID:1266943

  16. Developing recombinant antibodies for biomarker detection

    SciTech Connect

    Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.; Miller, Keith D.; Kagen, Jacob; Srivastava, Sudhir; Rodland, Karin D.

    2010-10-01

    Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune libraries provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.

  17. JDIP Genomics, Antibodies, and Proteomics Core Update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The JDIP Genomics, Proteomics, and Antibodies Core has developed several resources that are available for use by JDIP researchers. Five tasks have been completed or are in progress: Task 1 – Transposon mutants: Nearly 24,000 gene disruption M. paratuberculosis mutants are now available for JDIP re...

  18. Monoclonal antibody technologies and rapid detection assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel methodologies and screening strategies will be outlined on the use of hybridoma technology for the selection of antigen specific monoclonal antibodies. The development of immunoassays used for diagnostic detection of prions and bacterial toxins will be discussed and examples provided demonstr...

  19. Greasing the SCIDs for Universal Flu Antibodies

    PubMed Central

    Yewdell, Jonathan W.; Ince, William L.

    2013-01-01

    Previews In this issue, Nakamura et al. describe a robust SCID mouse-based method for isolating human monoclonal antibodies of desired specificity from adoptively transferred human B cells. As proof-of principle, they isolate human mAbs that could potentially be used to treat or prevent human infection with any influenza A virus strain. PMID:23870308

  20. Production of monoclonal antibodies against canine leukocytes.

    PubMed

    Aguiar, Paulo Henrique Palis; Borges dos Santos, Roberto Robson; Lima, Carla Andrade; Rios de Sousa Gomes, Hilton; Larangeira, Daniela Farias; Santos, Patrícia Meira; Barrouin-Melo, Stella Maria; Conrado dos-Santos, Washington Luis; Pontes-de-Carvalho, Lain

    2004-04-01

    A panel of anti-canine leukocyte monoclonal antibodies (MAbs) was produced by immunizing BALB/c mice with canine peripheral blood mononuclear cells (PBMC), either resting or stimulated with concanavalin A (ConA). Three out of 28 clones-IH1, AB6, and HG6-screened by ELISA and producing antibody with the highest specificity for canine cell immunostaining, were subjected to three subsequent subcloning steps by limiting dilution, and selected for further characterization. These MAbs belonged to IgG1 (HG6 and IH1) and IgG2a (AB6) isotypes. The distribution of cell populations expressing the antigen recognized by the antibodies was identified by indirect immunoflorescence on canine PBMC and on tissue sections of lymph node, spleen, liver and skin. The possible crossreactivity with human PBMC was also examined in immunocytochemistry. One of the antibodies specifically recognized macrophages. The MAbs presented here can be foreseen as possible valuable diagnostic and research tools to study immune functions in dogs. PMID:15165486

  1. International intellectual property strategies for therapeutic antibodies

    PubMed Central

    2011-01-01

    Therapeutic antibodies need international patent protection as their markets expand to include industrialized and emerging countries. Because international intellectual property strategies are frequently complex and costly, applicants require sound information as a basis for decisions regarding the countries in which to pursue patents. While the most important factor is the size of a given market, other factors should also be considered. PMID:22123063

  2. Ethanol precipitation for purification of recombinant antibodies.

    PubMed

    Tscheliessnig, Anne; Satzer, Peter; Hammerschmidt, Nikolaus; Schulz, Henk; Helk, Bernhard; Jungbauer, Alois

    2014-10-20

    Currently, the golden standard for the purification of recombinant humanized antibodies (rhAbs) from CHO cell culture is protein A chromatography. However, due to increasing rhAbs titers alternative methods have come into focus. A new strategy for purification of recombinant human antibodies from CHO cell culture supernatant based on cold ethanol precipitation (CEP) and CaCl2 precipitation has been developed. This method is based on the cold ethanol precipitation, the process used for purification of antibodies and other components from blood plasma. We proof the applicability of the developed process for four different antibodies resulting in similar yield and purity as a protein A chromatography based process. This process can be further improved using an anion-exchange chromatography in flowthrough mode e.g. a monolith as last step so that residual host cell protein is reduced to a minimum. Beside the ethanol based process, our data also suggest that ethanol could be replaced with methanol or isopropanol. The process is suited for continuous operation. PMID:25087738

  3. Monoclonal antibodies against chicken interleukin-6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monoclonal antibodies (mAb) were produced against a recombinant (r) chicken interleukin-6 (IL-6). Eight mAbs that were produced were tested for isotype; ability to inhibit recombinant forms of chicken (ch), human (h) and murine (m) IL-6; and recognition of rchIL-6 by Western immunoblotting. The mA...

  4. The emergence of antibody therapies for Ebola.

    PubMed

    Hiatt, Andrew; Pauly, Michael; Whaley, Kevin; Qiu, Xiangguo; Kobinger, Gary; Zeitlin, Larry

    2015-12-23

    This review describes the history of Ebola monoclonal antibody (mAb) development leading up to the recent severe Ebola outbreak in West Africa. The Ebola virus has presented numerous perplexing challenges in the long effort to develop therapeutic antibody strategies. Since the first report of a neutralizing human anti-Ebola mAb in 1999, the straightforward progression from in vitro neutralization resulting in in vivo protection and therapy has not occurred. A number of mAbs, including the first reported, failed to protect non-human primates (NHPs) in spite of protection in rodents. An appreciation of the role of effector functions to antibody efficacy has contributed significantly to understanding mechanisms of in vivo protection. However a crucial contribution, as measured by post-exposure therapy of NHPs, involved the comprehensive testing of mAb cocktails. This effort was aided by the use of plant production technology where various combinations of mAbs could be rapidly produced and tested. Introduction of appropriate modifications, such as specific glycan profiles, also improved therapeutic efficacy. The resulting cocktail, ZMapp™, consists of three mAbs that were identified from numerous mAb candidates. ZMapp™ \\ is now being evaluated in human clinical trials but has already played a role in bringing awareness to the potential of antibody therapy for Ebola. PMID:27472862

  5. SPECT assay of radiolabeled monoclonal antibodies

    SciTech Connect

    Jaszczak, R.J.

    1992-02-01

    The accurate determination of the biodistribution of radiolabeled monoclonal antibodies (MoAbs) is important for calculation of dosimetry and evaluation of pharmacokinetic variables such as antibody dose and route of administration. The hypothesis of this application is that the biodistribution of radiolabeled monoclonal antibodies (MoAbs) can be quantitatively determined using single photon emission computed tomography (SPECT). The major thrusts during the third year include the continued development and evaluation of improved 3D SPECT acquisition and reconstruction approaches to improve quantitative imaging of radiolabeled monoclonal antibodies (MoAbs), and the implementation and evaluation of algorithms to register serial SPECT image data sets, or to register 3D SPECT images with 3D image data sets acquired from positron emission tomography (PEI) and magnetic resonance images (MRI). The research has involved the investigation of statistical models and iterative reconstruction algorithms that accurately account for the physical characteristics of the SPECT acquisition system. It is our belief that SPECT quantification can be improved by accurately modeling the physical processes such as attenuation, scatter, geometric collimator response, and other factors that affect the measured projection data.

  6. New antibody conjugates in cancer therapy.

    PubMed

    Govindan, Serengulam V; Goldenberg, David M

    2010-01-01

    Targeting of radiation, drugs, and protein toxins to cancers selectively with monoclonal antibodies (MAbs) has been a topic of considerable interest and an area of continued development. Radioimmunotherapy (RAIT) of lymphoma using directly labeled MAbs is of current interest after approval of two radiolabeled anti-CD20 MAbs, as illustrated with the near 100% overall response rate obtained in a recent clinical trial using an investigational radiolabeled anti-CD22 MAb, 90Y-epratuzumab. The advantage of pretargeted RAIT over directly labeled MAbs is continuing to be validated in preclinical models of lymphoma and solid tumors. Importantly, the advantages of combining RAIT with radiation sensitizers, with immunotherapy, or a drug conjugate targeting a different antigen are being studied clinically and preclinically. The area of drug-conjugated antibodies is progressing with encouraging data published for the trastuzumab-DM1 conjugate in a phase I clinical trial in HER2-positive breast cancer. The Dock-and-Lock platform technology has contributed to the design and the evaluation of complex antibody-cytokine and antibody-toxin conjugates. This review describes the advances made in these areas, with illustrations taken from advances made in the authors' institutions. PMID:20953556

  7. International intellectual property strategies for therapeutic antibodies.

    PubMed

    Storz, Ulrich

    2011-01-01

    Therapeutic antibodies need international patent protection as their markets expand to include industrialized and emerging countries. Because international intellectual property strategies are frequently complex and costly, applicants require sound information as a basis for decisions regarding the countries in which to pursue patents. While the most important factor is the size of a given market, other factors should also be considered. PMID:22123063

  8. Conformational Isomerism Can Limit Antibody Catalysis

    SciTech Connect

    Debler, E.W.; Muller, R.; Hilvert, D.; Wilson, I.A.

    2009-05-14

    Ligand binding to enzymes and antibodies is often accompanied by protein conformational changes. Although such structural adjustments may be conducive to enzyme catalysis, much less is known about their effect on reactions promoted by engineered catalytic antibodies. Crystallographic and pre-steady state kinetic analyses of antibody 34E4, which efficiently promotes the conversion of benzisoxazoles to salicylonitriles, show that the resting catalyst adopts two interconverting active-site conformations, only one of which is competent to bind substrate. In the predominant isomer, the indole side chain of Trp{sup L91} occupies the binding site and blocks ligand access. Slow conformational isomerization of this residue, on the same time scale as catalytic turnover, creates a deep and narrow binding site that can accommodate substrate and promote proton transfer using Glu{sup H50} as a carboxylate base. Although 34E4 is among the best catalysts for the deprotonation of benzisoxazoles, its efficiency appears to be significantly limited by this conformational plasticity of its active site. Future efforts to improve this antibody might profitably focus on stabilizing the active conformation of the catalyst. Analogous strategies may also be relevant to other engineered proteins that are limited by an unfavorable conformational pre-equilibrium.

  9. Immunoglobulin treatment in primary antibody deficiency.

    PubMed

    Maarschalk-Ellerbroek, L J; Hoepelman, I M; Ellerbroek, P M

    2011-05-01

    The primary antibody deficiency syndromes are characterised by recurrent respiratory tract infections and the inability to produce effective immunoglobulin (Ig) responses. The best-known primary antibody deficiencies are common variable immunodeficiency (CVID), X-linked agammaglobulinaemia (XLA), immunoglobulin G (IgG) subclass deficiency, and selective antibody deficiency with normal immunoglobulins (SADNI). Therapy in these patients consists of prophylactic antibiotics and/or Ig replacement therapy. Diagnostic delay remains common owing to limited awareness of the presenting features and may result in increased morbidity and mortality. Replacement therapy with immunoglobulins increases life expectancy and reduces the frequency and severity of infections, but the effect on end-organ damage is still unknown. Both intravenous immunoglobulin (IVIg) and subcutaneous immunoglobulin (SCIg) treatment appear to be safe, with comparable efficacy. A starting dose of 300-400 mg/kg/month in IVIg and 100 mg/week for SCIg is recommended. IgG trough levels should be >5 g/L for patients with agammaglobulinaemia and 3 g/L greater than the initial IgG level for patients with CVID; however, the clinical response should be foremost in choosing the dose and trough level. Infusion-related adverse reactions are generally mild owing to improved manufacturing processes. In this paper, aspects of Ig replacement therapy in primary antibody-deficient patients will be addressed. PMID:21276714

  10. Viral antibody dynamics in a chiropteran host.

    PubMed

    Baker, Kate S; Suu-Ire, Richard; Barr, Jennifer; Hayman, David T S; Broder, Christopher C; Horton, Daniel L; Durrant, Christopher; Murcia, Pablo R; Cunningham, Andrew A; Wood, James L N

    2014-03-01

    Bats host many viruses that are significant for human and domestic animal health, but the dynamics of these infections in their natural reservoir hosts remain poorly elucidated. In these, and other, systems, there is evidence that seasonal life-cycle events drive infection dynamics, directly impacting the risk of exposure to spillover hosts. Understanding these dynamics improves our ability to predict zoonotic spillover from the reservoir hosts. To this end, we followed henipavirus antibody levels of >100 individual E. helvum in a closed, captive, breeding population over a 30-month period, using a powerful novel antibody quantitation method. We demonstrate the presence of maternal antibodies in this system and accurately determine their longevity. We also present evidence of population-level persistence of viral infection and demonstrate periods of increased horizontal virus transmission associated with the pregnancy/lactation period. The novel findings of infection persistence and the effect of pregnancy on viral transmission, as well as an accurate quantitation of chiropteran maternal antiviral antibody half-life, provide fundamental baseline data for the continued study of viral infections in these important reservoir hosts. PMID:24111634

  11. Orthobunyavirus Antibodies in Humans, Yucatan Peninsula, Mexico

    PubMed Central

    Saiyasombat, Rungrat; Talavera-Aguilar, Lourdes G.; Garcia-Rejon, Julian E.; Farfan-Ale, Jose A.; Machain-Williams, Carlos; Loroño-Pino, Maria A.

    2012-01-01

    We performed a serologic investigation to determine whether orthobunyaviruses commonly infect humans in the Yucatan Peninsula of Mexico. Orthobunyavirus-specific antibodies were detected by plaque reduction neutralization test in 146 (18%) of 823 persons tested. Further studies are needed to determine health risks for humans from this potentially deadly group of viruses. PMID:23017592

  12. Chemoenzymatic Glyco-engineering of Monoclonal Antibodies.

    PubMed

    Giddens, John P; Wang, Lai-Xi

    2015-01-01

    Monoclonal antibodies (mAbs) are an important class of therapeutic glycoproteins widely used for the treatment of cancer, inflammation, and infectious diseases. Compelling data have shown that the presence and fine structures of the conserved N-glycans at the Fc domain can profoundly affect the effector functions of antibodies. However, mAbs are usually produced as mixtures of Fc glycoforms and the control of glycosylation to a favorable, homogeneous status in various host expression systems is still a challenging task. In this chapter, we describe a detailed procedure of chemoenzymatic glyco-engineering of monoclonal antibodies, using rituximab (a therapeutic monoclonal antibody) as a model system. The protocol includes the deglycosylation of a mAb by an endoglycosidase (such as wild type EndoS) to remove the heterogeneous Fc N-glycans, leaving only the innermost GlcNAc or the core-fucosylated GlcNAc at the glycosylation site. Then the deglycosylated IgG serves as an acceptor for an endoglycosidase-catalyzed transglycosylation to add a desired N-glycan to the GlcNAc acceptor to reconstitute a defined, homogeneous natural glycoform of IgG, using a glycosynthase mutant as the enzyme and activated glycan oxazoline as the donor substrate. A semi-synthesis of sialylated and asialylated biantennary N-glycan oxazolines is also described. This detailed procedure can be used for the Fc glycosylation remodeling of other mAbs to provide homogeneous Fc glycoforms for various applications. PMID:26082235

  13. Platelet antibody: review of detection methods

    SciTech Connect

    Schwartz, K.A.

    1988-10-01

    The driving force behind development of in vitro methods for platelet antibodies is identification of plasma factors causing platelet destruction. Early methods relied on measurement of platelet activation. Current methods are more specific and use a purified antibody against immunoglobulin or complement, which is usually labeled with /sup 125/I or tagged with an enzyme or fluorescein. Comparisons of quantitation of platelet-associated IgG show wide variability between different methods. The disparate results can be related both to differences in binding of secondary antibodies to immunoglobulin in solution compared to immunoglobulins attached to platelets and to the improper assumption that the binding ratio between the secondary detecting and primary antiplatelet antibody is one. Most assays can 1) identify neonatal isoimmune thrombocytopenia and posttransfusion purpura, 2) help to differentiate between immune and nonimmune thrombocytopenias, 3) help to sort out the offending drug when drug-induced thrombocytopenia is suspected, and 4) identify platelet alloantibodies and potential platelet donors via a cross match assay for refractory patients. However, the advantages of quantitative assays over qualitative methods with respect to predictions of patients clinical course and response to different treatments remain to be investigated. 61 references.

  14. Monoclonal antibodies: new agents for cancer detection and targeted therapy

    SciTech Connect

    Baldwin, R.W.; Byers, V.S. )

    1991-01-01

    Antibodies directed against markers on cancer cells are gaining in importance for the purpose of targeting diagnostic and therapeutic agents. In the past, this approach has had very limited success principally because the classical methods for producing antibodies from blood serum of animals immunized with cancer cells or extracts were unsatisfactory. The situation has changed dramatically since 1975 following the design of procedures for 'immortalizing' antibody-producing cells (lymphocytes) by fusing them with cultured myeloma cells to form hybridomas which continuously secrete antibodies. Since these hybridomas produce antibodies coded for by a single antibody-producing cell, the antibodies are called monoclonal. Building on these advances in biomedical research, it is now possible to reproducibly manufacture monoclonal antibodies on a scale suitable for use in cancer detection and therapy.

  15. Antibody Request - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.

  16. Neutralizing antibodies to HIV-1 induced by immunization

    PubMed Central

    McCoy, Laura E.

    2013-01-01

    Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine. PMID:23401570

  17. Antibodies Act Jointly to Promote Inflammation in Rheumatoid Arthritis

    MedlinePlus

    ... 1999 Spotlight on Research 2014 September 2014 (historical) Antibodies Act Jointly to Promote Inflammation in Rheumatoid Arthritis Two types of antibody molecules act in concert to stimulate inflammation in ...

  18. 21 CFR 866.5090 - Antimitochondrial antibody immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test... immunochemical techniques the antimitochondrial antibodies in human serum. The measurements aid in the diagnosis of diseases that produce a spectrum of autoantibodies (antibodies produced against the body's...

  19. 21 CFR 866.5090 - Antimitochondrial antibody immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test... immunochemical techniques the antimitochondrial antibodies in human serum. The measurements aid in the diagnosis of diseases that produce a spectrum of autoantibodies (antibodies produced against the body's...

  20. 21 CFR 866.5090 - Antimitochondrial antibody immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test... immunochemical techniques the antimitochondrial antibodies in human serum. The measurements aid in the diagnosis of diseases that produce a spectrum of autoantibodies (antibodies produced against the body's...

  1. 21 CFR 866.5090 - Antimitochondrial antibody immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test... immunochemical techniques the antimitochondrial antibodies in human serum. The measurements aid in the diagnosis of diseases that produce a spectrum of autoantibodies (antibodies produced against the body's...

  2. Chorea Associated with High Titers of Antiphospholipid Antibodies in the Absence of Antiphospholipid Antibody Syndrome

    PubMed Central

    Safarpour, Damoun; Buckingham, Sarah; Jabbari, Bahman

    2015-01-01

    Background Chorea associated with high titers of antiphospholipid antibodies in the absence of antiphospholipid antibody syndrome has been seldom reported. Case report An 89-year-old female developed persistent right side chorea associated with high titers of anticardiolipin antibody (antiphospholipid antibosies immunoglobulin (Ig)M, 45 MPL and 112 IgM aCL (MPL) after 3 months) but normal lupus anticoagulants. Her magnetic resonance imaging (MRI) showed no abnormality, but positron emission tomography (PET) demonstrated increased bilateral striatal metabolic activity, more on the left side. Her MRI showed no cause for chorea. The PET scan demonstrated a marked increase in the metabolic activity of the left basal ganglia. Discussion Her chorea remained unchanged over a 9-month follow-up period. The literature on chorea associated with high titers of antiphospholipid antibodies in the absence of antiphospholipid syndrome is reviewed. PMID:25774325

  3. A new tool for monoclonal antibody analysis

    PubMed Central

    An, Yan; Zhang, Ying; Mueller, Hans-Martin; Shameem, Mohammed; Chen, Xiaoyu

    2014-01-01

    Monoclonal antibody (mAb) products are extraordinarily heterogeneous due to the presence of a variety of enzymatic and chemical modifications, such as deamidation, isomerization, oxidation, glycosylation, glycation, and terminal cyclization. The modifications in different domains of the antibody molecule can result in different biological consequences. Therefore, characterization and routine monitoring of domain-specific modifications are essential to ensure the quality of the therapeutic antibody products. For this purpose, a rapid and informative methodology was developed to examine the heterogeneity of individual domains in mAb products. A recently discovered endopeptidase, IdeS, cleaves heavy chains below the hinge region, producing F(ab')2 and Fc fragments. Following reduction of disulfide bonds, three antibody domains (LC, Fd, and Fc/2) can be released for further characterization. Subsequent analyses by liquid chromatography/mass spectrometry, capillary isoelectric focusing, and glycan mapping enable domain-specific profiling of oxidation, charge heterogeneity, and glycoform distribution. When coupled with reversed phase chromatography, the unique chromatographic profile of each molecule offers a simple strategy for an identity test, which is an important formal test for biopharmaceutical quality control purposes. This methodology is demonstrated for a number of IgGs of different subclasses (IgG1, IgG2, IgG4), as well as an Fc fusion protein. The presented technique provides a convenient platform approach for scientific and formal therapeutic mAb product characterization. It can also be applied in regulated drug substance batch release and stability testing of antibody and Fc fusion protein products, in particular for identity and routine monitoring of domain-specific modifications. PMID:24927271

  4. Antibody Engineering & Therapeutics 2015: The Antibody Society's annual meeting December 7-10, 2015, San Diego, CA.

    PubMed

    Parren, Paul W H I; Burton, Dennis R; Bradbury, Andrew; Huston, James S; Carter, Paul J; Veldman, Trudi; Chester, Kerry A; Larrick, James W; Alfenito, Mark R; Scott, Jamie K; Weiner, Louis M; Adams, Gregory P; Reichert, Janice M

    2015-01-01

    Antibody Engineering & Therapeutics, the annual meeting of The Antibody Society, will be held in San Diego, CA in early December 2015. In this meeting preview, the chairs provide their thoughts on the importance of their session topics, which include antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, overcoming resistance to clinical immunotherapy, and building comprehensive IGVH-gene repertoires through discovering, confirming and cataloging new germline IGVH genes. The Antibody Society's special session will focus on "Antibodies to watch" in 2016, which are a subset of the nearly 50 antibodies currently in Phase 3 clinical studies. Featuring over 100 speakers in total, the meeting will commence with keynote presentations by Erica Ollmann Saphire (The Scripps Research Institute), Wayne A. Marasco (Dana-Farber Cancer Institute/Harvard Medical School), Joe W. Gray (Oregon Health & Science University), and Anna M. Wu (University of California Los Angeles), and it will conclude with workshops on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries and on computational antibody design. PMID:26421752

  5. CiteAb: a searchable antibody database that ranks antibodies by the number of times they have been cited

    PubMed Central

    2014-01-01

    Background Research antibodies are used by thousands of scientists working in diverse disciplines, but it is common to hear concerns about antibody quality. This means that researchers need to carefully choose the antibodies they use to avoid wasting time and money. A well accepted way of selecting a research antibody is to identify one which has been used previously, where the associated data has been peer-reviewed and the results published. Description CiteAb is a searchable database which ranks antibodies by the number of times they have been cited. This allows researchers to easily find antibodies that have been used in peer-reviewed publications and the accompanying citations are listed, so users can check the data contained within the publications. This makes CiteAb a useful resource for identifying antibodies for experiments and also for finding information to demonstrate antibody validation. The database currently contains 1,400,000 antibodies which are from 90 suppliers, including 87 commercial companies and 3 academic resources. Associated with these antibodies are 140,000 publications which provide 306,000 antibody citations. In addition to searching, users can also browse through the antibodies and add their own publications to the CiteAb database. Conclusions CiteAb provides a new way for researchers to find research antibodies that have been used successfully in peer-reviewed publications. It aims to assist these researchers and will hopefully help promote progress in many areas of life science research. PMID:24528853

  6. Preparation and testing of a Haemophilus influenzae Type b/Hepatitis B surface antigen conjugate vaccine.

    PubMed

    An, So Jung; Woo, Joo Sung; Chae, Myung Hwa; Kothari, Sudeep; Carbis, Rodney

    2015-03-24

    The majority of conjugate vaccines focus on inducing an antibody response to the polysaccharide antigen and the carrier protein is present primarily to induce a T-cell dependent response. In this study conjugates consisting of poly(ribosylribitolphosphate) (PRP) purified from Haemophilus influenzae Type b bound to Hepatitis B virus surface antigen (HBsAg) virus like particles were prepared with the aim of inducing an antibody response to not only the PRP but also the HBsAg. A conjugate consisting of PRP bound to HBsAg via an adipic acid dihydrazide (ADH) spacer induced strong IgG antibodies to both the PRP and HBsAg. When conjugation was performed without the ADH spacer the induction of an anti-PRP response was equivalent to that seen by conjugate with the ADH spacer, however, a negligible anti-HBsAg response was induced. For comparison, PRP was conjugated to diphtheria toxoid (DT) and Vi polysaccharide purified from Salmonella Typhi conjugated to HBsAg both using an ADH spacer. The PRPAH-DT conjugate induced strong anti-PRP and anti-DT responses, the Vi-AHHBsAg conjugate induced a good anti-HBsAg response but not as strong as that induced by the PRPAH-HBsAg conjugate. This study demonstrated that in mice it was possible to induce robust antibody responses to both polysaccharide and carrier protein provided the conjugate has certain physico-chemical properties. A PRPAH-HBsAg conjugate with the capacity to induce anti-PRP and anti-HBsAg responses could be incorporated into a multivalent pediatric vaccine and simplify formulation of such a vaccine. PMID:25659268

  7. Development of antibody arrays for monoclonal antibody Higher Order Structure analysis

    PubMed Central

    Wang, Xing; Li, Qing; Davies, Michael

    2013-01-01

    Antibody arrays were developed to probe a monoclonal antibody's three-dimensional structure (3-D structure). Peptides with overlapping regions were designed to cover the whole mAb light chain and heavy chain, respectively, and used to generate polyclonal antibodies after the conjugation of the peptides to a carrier protein, KLH. It was shown that good peptide specificity was achieved from the antibodies generated. Using more than 30 different polyclonal antibodies to measure the surface epitope distribution, it was shown that the mAb antibody array can detect epitope exposure as low as 0.1% of defined mAb populations. This ELISA-based analysis of mAb epitope exposure can be considered as a measurement of “conformational impurity” in biologics development, similar to the analysis of other product-related impurities such as different forms of glycosylation, deamidation, and oxidation. This analysis of “conformational impurity” could provide valuable information on the mAb conformational comparability for biosimilar mAbs as well as novel mAbs, especially in the area of protein immunogenicity. Furthermore, stability studies indicated that there are several conformational “hot spots” in many mAbs tested, especially in the hinge region. This antibody array technology can be used for novel mAb Higher Order Structure (HOS) analysis during process and formulation development. Another important area of application is for biosimilar mAb development where the innovator molecule and biosimilar molecule could be compared based on their systemic “fingerprint” from the 30 plus antibodies. PMID:23970865

  8. Expression and purification of recombinant antibody formats and antibody fusion proteins.

    PubMed

    Siegemund, Martin; Richter, Fabian; Seifert, Oliver; Unverdorben, Felix; Kontermann, Roland E

    2014-01-01

    In the laboratory-scale production of antibody fragments or antibody fusion proteins, it is often difficult to keep track on the most suitable affinity tags for protein purification from either prokaryotic or eukaryotic host systems. Here, we describe how such recombinant proteins derived from Escherichia coli lysates as well as HEK293 cell culture supernatants are purified by IMAC and by different affinity chromatography methods based on fusions to FLAG-tag, Strep-tag, and Fc domains. PMID:24515473

  9. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library.

    PubMed

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei

    2016-01-01

    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective. PMID:27626445

  10. Antiphospholipid Antibody Syndrome Presenting with Unilateral Adrenal Hemmorhage.

    PubMed

    Ullah, Kifayat; Butt, Ghias; Neopane, Sippy; Arshi, Shahana

    2016-06-01

    The antiphospholipid antibody syndrome presents with vascular thrombosis which involve both arterial and venous systems. The clinical presentation of antiphospholipid antibody syndrome includes obstetric complications leading to recurrent abortions, presence of circulating antibodies against phospholipids, and multi-organ thromboembolisms. We report a case of a patient who presented with unilateral adrenal hemorrhage and subsequently found to have antiphospholipid antibody syndrome and lupus nephritis. PMID:27376219

  11. Quality of histone modification antibodies undermines chromatin biology research

    PubMed Central

    Kungulovski, Goran; Jeltsch, Albert

    2015-01-01

    Histone post-translational modification (PTM) antibodies are essential research reagents in chromatin biology. However, they suffer from variable properties and insufficient documentation of quality. Antibody manufacturers and vendors should provide detailed lot-specific documentation of quality, rendering further quality checks by end-customers unnecessary. A shift from polyclonal antibodies towards sustainable reagents like monoclonal or recombinant antibodies or histone binding domains would help to improve the reproducibility of experimental work in this field. PMID:26834995

  12. Boronated monoclonal antibody conjugates for neutron capture therapy

    SciTech Connect

    Borg, D.C.; Elmore, J.J. Jr.; Ferrone, S.

    1986-01-01

    This paper describes the effectiveness of /sup 10/B-labeled monoclonal antibodies against Colo-38 human melanoma in vitro. The authors obtained high boron to antibody ratios while maintaining antibody activity by using dextran intermediate carriers to link /sup 10/B to the antibody. They developed a double cell quasi-competitive binding bioassay to minimize the effects of nonspecific binding of boronated complexes to cells. 1 fig., 2 tabs.

  13. Development of monoclonal antibodies suitable for rabies virus antibody and antigen detection.

    PubMed

    Chander, Vishal; Singh, R P; Verma, P C

    2012-12-01

    The control of an infectious viral disease as rabies is made easier by rapid and accurate diagnosis. Successful rabies prophylaxis is dependent upon the active immunization with vaccine along with passive administration of rabies virus neutralizing antibodies which together clear the virus before widespread infection of central nervous system occurs. The present study aimed at the development of monoclonal antibodies (MAbs) suitable for rabies virus antibody and antigen detection. For the production of rabies specific MAbs, immunization of Swiss albino mice with a commercially available vaccine was done and Polyethylene glycol mediated fusion of spleenocytes with myeloma cells was performed. The positive clones were selected on the basis of distinct reactivity by cell Enzyme linked immunosorbent assay and fluorescence in Indirect Fluorescent antibody test. The positive clones obtained were subjected to single cell cloning by limiting dilution method. The reactive clones were further titrated and employed for virus titration and virus neutralization. The neutralizing activity was evaluated using Fluorescence Activated Cell Sorter technique. Three MAb clones showed a distinct percent inhibition in the presence of positive serum. One of the MAb clone No. 5C3 was relatively more specific in detecting rabies antibodies and also found suitable for competitive ELISA to assess the antibody level in vaccinated subjects. PMID:24293819

  14. FINAL REPORT. ENGINEERED ANTIBODIES FOR MONITORING OF POLYNUCLEAR AROMATIC HYDROCARBONS

    EPA Science Inventory

    This project was conducted to remove the major barrier to the timely development and use of more versatile antibody-based detection and sample cleanup methods. The main objective was to adapt combinatorial antibody library and antibody engineering methods for preparing a panel of...

  15. Monoclonal antibody specific for a pigmentation associated antigen

    SciTech Connect

    Thomson, T.M.; Mattes, M.J.; Old, L.J.; Lloyd, K.O

    1989-01-17

    Monoclonal antibody TA99, which specifically binds to a pigmentation associated antigen present on melanoma cells is described. Additionally, the hybridoma cell line deposited with the ATCC under Accession Number HB 8704 from which the antibody is derived, as well as methods for using the antibody are described.

  16. Monoclonal antibodies and method for detecting dioxins and dibenzofurans

    DOEpatents

    Vanderlaan, Martin; Stanker, Larry H.; Watkins, Bruce E.; Bailey, Nina R.

    1989-01-01

    Compositions of matter are described which include five monoclonal antibodies that react with dioxins and dibenzofurans, and the five hybridomas that produce these monoclonal antibodies. In addition, a method for the use of these antibodies in a sensitive immunoassay for dioxins and dibenzofurans is given, which permits detection of these pollutants in samples at concentrations in the range of a few parts per billion.

  17. Antibody Response and Disease Severity in Healthcare Worker MERS Survivors.

    PubMed

    Alshukairi, Abeer N; Khalid, Imran; Ahmed, Waleed A; Dada, Ashraf M; Bayumi, Daniyah T; Malic, Laut S; Althawadi, Sahar; Ignacio, Kim; Alsalmi, Hanadi S; Al-Abdely, Hail M; Wali, Ghassan Y; Qushmaq, Ismael A; Alraddadi, Basem M; Perlman, Stanley

    2016-06-01

    We studied antibody response in 9 healthcare workers in Jeddah, Saudi Arabia, who survived Middle East respiratory syndrome, by using serial ELISA and indirect immunofluorescence assay testing. Among patients who had experienced severe pneumonia, antibody was detected for >18 months after infection. Antibody longevity was more variable in patients who had experienced milder disease. PMID:27192543

  18. Ultrasensitive Antibody Detection by Agglutination-PCR (ADAP)

    PubMed Central

    2016-01-01

    Antibodies are widely used biomarkers for the diagnosis of many diseases. Assays based on solid-phase immobilization of antigens comprise the majority of clinical platforms for antibody detection, but can be undermined by antigen denaturation and epitope masking. These technological hurdles are especially troublesome in detecting antibodies that bind nonlinear or conformational epitopes, such as anti-insulin antibodies in type 1 diabetes patients and anti-thyroglobulin antibodies associated with thyroid cancers. Radioimmunoassay remains the gold standard for these challenging antibody biomarkers, but the limited multiplexability and reliance on hazardous radioactive reagents have prevented their use outside specialized testing facilities. Here we present an ultrasensitive solution-phase method for detecting antibodies, termed antibody detection by agglutination-PCR (ADAP). Antibodies bind to and agglutinate synthetic antigen–DNA conjugates, enabling ligation of the DNA strands and subsequent quantification by qPCR. ADAP detects zepto- to attomoles of antibodies in 2 μL of sample with a dynamic range spanning 5–6 orders of magnitude. Using ADAP, we detected anti-thyroglobulin autoantibodies from human patient plasma with a 1000-fold increased sensitivity over an FDA-approved radioimmunoassay. Finally, we demonstrate the multiplexability of ADAP by simultaneously detecting multiple antibodies in one experiment. ADAP’s combination of simplicity, sensitivity, broad dynamic range, multiplexability, and use of standard PCR protocols creates new opportunities for the discovery and detection of antibody biomarkers. PMID:27064772

  19. Antibody Response and Disease Severity in Healthcare Worker MERS Survivors

    PubMed Central

    Khalid, Imran; Ahmed, Waleed A.; Dada, Ashraf M.; Bayumi, Daniyah T.; Malic, Laut S.; Althawadi, Sahar; Ignacio, Kim; Alsalmi, Hanadi S.; Al-Abdely, Hail M.; Wali, Ghassan Y.; Qushmaq, Ismael A.; Alraddadi, Basem M.; Perlman, Stanley

    2016-01-01

    We studied antibody response in 9 healthcare workers in Jeddah, Saudi Arabia, who survived Middle East respiratory syndrome, by using serial ELISA and indirect immunofluorescence assay testing. Among patients who had experienced severe pneumonia, antibody was detected for >18 months after infection. Antibody longevity was more variable in patients who had experienced milder disease. PMID:27192543

  20. A Simple Model System to Demonstrate Antibody Structure and Functions.

    ERIC Educational Resources Information Center

    O'Kennedy, Richard

    1991-01-01

    A model that can be used to show the arrangement of light and heavy chains, disulfide linkages, domains, and subclass variations in antibodies is given. It can be constructed and modified to illustrate Fab, F(ab')2, and Fc fragments, single domain and bifunctional antibodies, and labeling of antibodies. (Author)

  1. 42 CFR 493.865 - Standard; Antibody identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Standard; Antibody identification. 493.865 Section..., Or Any Combination of These Tests § 493.865 Standard; Antibody identification. (a) Failure to attain... proficiency testing event. (e) Failure to identify the same antibody in two consecutive or two out of...

  2. Behavioral and Psychological Responses to HIV Antibody Testing.

    ERIC Educational Resources Information Center

    Jacobsen, Paul B.; And Others

    1990-01-01

    Considers effects of informing individuals of their antibody status as determined by human immunodeficiency virus (HIV) antibody testing. Reviews research examining changes in psychological distress and in behaviors associated with HIV infections among individuals who have undergone antibody testing. Identifies methodological issues in studying…

  3. 42 CFR 493.865 - Standard; Antibody identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Standard; Antibody identification. 493.865 Section..., Or Any Combination of These Tests § 493.865 Standard; Antibody identification. (a) Failure to attain... proficiency testing event. (e) Failure to identify the same antibody in two consecutive or two out of...

  4. 21 CFR 866.5090 - Antimitochondrial antibody immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antimitochondrial antibody immunological test... Systems § 866.5090 Antimitochondrial antibody immunological test system. (a) Identification. An antimitochondrial antibody immunological test system is a device that consists of the reagents used to measure...

  5. 42 CFR 493.865 - Standard; Antibody identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Standard; Antibody identification. 493.865 Section..., Or Any Combination of These Tests § 493.865 Standard; Antibody identification. (a) Failure to attain... proficiency testing event. (e) Failure to identify the same antibody in two consecutive or two out of...

  6. 42 CFR 493.865 - Standard; Antibody identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Standard; Antibody identification. 493.865 Section..., Or Any Combination of These Tests § 493.865 Standard; Antibody identification. (a) Failure to attain... proficiency testing event. (e) Failure to identify the same antibody in two consecutive or two out of...

  7. POLIOVIRUS TYPE 1: NEUTRALIZATION BY PAPAIN-DIGESTED ANTIBODIES.

    PubMed

    VOGT, A; KOPP, R; MAASS, G; REICH, L

    1964-09-25

    Papain-digested rabbit antibody (Porter's fractions I and II) can neutralize poliovirus. Neutralizing capacity after digestion ranged from 35 to 45 percent of that of the undigested antibody. No definite dissociation of the antibody fragments from the virus was observed after the reaction mixture had been diluted in a neutral medium. PMID:14175107

  8. Generation of a monoclonal antibody against Mycoplasma spp. following accidental contamination during production of a monoclonal antibody against Lawsonia intracellularis.

    PubMed

    Hwang, Jeong-Min; Lee, Ji-Hye; Yeh, Jung-Yong

    2012-03-01

    This report describes Mycoplasma contamination of Lawsonia intracellularis cultures that led to the unintended acquisition of a monoclonal antibody against Mycoplasma spp. during the attempted generation of a monoclonal antibody against L. intracellularis. PMID:22247145

  9. [Reactivity of antibodies to collagen types I to IV and antibodies to chondroitin sulfate in the spleen].

    PubMed

    Galbavý, S; Ruzicková, M; Surmíková, E; Danihel, L; Porubský, J; Papincák, J; Holesa, S; Trnka, J

    1996-02-01

    Antibodies to collagen type I and III reacted negatively, antibodies to collagen type IV positively with reticulin, trabeculae and circumferent reticulum of lymphatic sheaths, poorly positively with capsula, strongly positively with subcapsular zone. Antibodies to collagen type II reacted positively with capsula, poorly with subcapsular zone, strongly with sinus wall and poorly with trabeculae. They did not react with circumferent reticulum of periarterial lymphoid sheaths. Antibodies to collagen type II and IV reacted positively with central arteries. Antibodies to chondroitinsulphate C reacted poorly and antibodies to chondroitinsulphate B strongly positively with sinus walls and oval cells spread in the white and red pulpa. Antibodies to chondroitin sulphate A reacted similarly as antibodies to chondroitinsulphate B. PMID:9560890

  10. Comparisons of the effect of naturally acquired maternal pertussis antibodies and antenatal vaccination induced maternal tetanus antibodies on infant's antibody secreting lymphocyte responses and circulating plasma antibody levels.

    PubMed

    Ahmad, Shaikh Meshbahuddin; Alam, Jahangir; Afsar, Nure Alam; Huda, Nazmul; Kabir, Yearul; Qadri, Firdausi; Raqib, Rubhana; Stephensen, Charles B

    2016-04-01

    The goal of this study was to explore the effects of trans-placental tetanus toxoid (TT) and pertussis (PT) antibodies on an infant's response to vaccination in the context of antenatal immunization with tetanus but not with pertussis. 38 mothers received a single dose of TT vaccine during pregnancy. Infants received tetanus and pertussis vaccines at 6, 10 and 14 wk of age. TT and PT anti-IgG secretion by infant lymphocytes was measured at 15 wk. Plasma antibodies were measured at 6 wk (pre-vaccination), 15 wk and 1 y of age. Prior to vaccination, TT and PT antibody were detected in 94.6% and 15.2% of infants. At 15 wk anti-TT-IgG and anti-PT-IgG in plasma was increased by 7-9 fold over pre-vaccination levels, while at 1 y plasma anti-TT-IgG was decreased by approximately 5-fold from the peak and had returned to near the pre-vaccination level. At 1 y plasma anti-PT-IgG was decreased by 2-fold 1 yfrom the 15 wk level. However, 89.5% and 82.3% of infants at 1 y had protective levels of anti-TT and anti-PT IgG, respectively. Pre-vaccination plasma IgG levels were associated with lower vaccine-specific IgG secretion by infant lymphocytes at 15 wk (p < 0.10). This apparent inhibition was seen for anti-TT-IgG at both 15 wk (p < 0.05) and t 1 y (p < 0.10) of age. In summary, we report an apparent inhibitory effect of passively derived maternal antibody on an infants' own antibody response to the same vaccine. However, since the cut-off values for protective titers are low, infants had protective antibody levels throughout infancy. PMID:27176823

  11. A Monoclonal Antibody Toolkit for C. elegans

    PubMed Central

    Hadwiger, Gayla; Dour, Scott; Arur, Swathi; Fox, Paul; Nonet, Michael L.

    2010-01-01

    Background Antibodies are critical tools in many avenues of biological research. Though antibodies can be produced in the research laboratory setting, most research labs working with vertebrates avail themselves of the wide array of commercially available reagents. By contrast, few such reagents are available for work with model organisms. Methodology/Principal Findings We report the production of monoclonal antibodies directed against a wide range of proteins that label specific subcellular and cellular components, and macromolecular complexes. Antibodies were made to synaptobrevin (SNB-1), a component of synaptic vesicles; to Rim (UNC-10), a protein localized to synaptic active zones; to transforming acidic coiled-coil protein (TAC-1), a component of centrosomes; to CENP-C (HCP-4), which in worms labels the entire length of their holocentric chromosomes; to ORC2 (ORC-2), a subunit of the DNA origin replication complex; to the nucleolar phosphoprotein NOPP140 (DAO-5); to the nuclear envelope protein lamin (LMN-1); to EHD1 (RME-1) a marker for recycling endosomes; to caveolin (CAV-1), a marker for caveolae; to the cytochrome P450 (CYP-33E1), a resident of the endoplasmic reticulum; to β-1,3-glucuronyltransferase (SQV-8) that labels the Golgi; to a chaperonin (HSP-60) targeted to mitochondria; to LAMP (LMP-1), a resident protein of lysosomes; to the alpha subunit of the 20S subcomplex (PAS-7) of the 26S proteasome; to dynamin (DYN-1) and to the α-subunit of the adaptor complex 2 (APA-2) as markers for sites of clathrin-mediated endocytosis; to the MAGUK, protein disks large (DLG-1) and cadherin (HMR-1), both of which label adherens junctions; to a cytoskeletal linker of the ezrin-radixin-moesin family (ERM-1), which localized to apical membranes; to an ERBIN family protein (LET-413) which localizes to the basolateral membrane of epithelial cells and to an adhesion molecule (SAX-7) which localizes to the plasma membrane at cell-cell contacts. In addition to working

  12. Antissaliva Antibodies of Lutzomyia Longipalpis in area of Visceral Leishmaniasis.

    PubMed

    Fraga, Thiago Leite; Fernandes, Magda Freitas; Pontes, Elenir Rose Jardim Cury; Levay, Ana Paula Silva; Almeida da Cunha, Elenice Brandão; França, Adriana de Oliveira; Dorval, Maria Elizabeth Cavalheiros

    2016-07-01

    The aim of the present study was to assess the presence of antissaliva antibodies of Lutzomyia longipalpis in human hosts living in area of visceral leishmaniasis, located in the Center-West region of Brazil. The presence of antissaliva antibodies of L. longipalpis exhibited a strong correlation with the protection and development of antibodies against Leishmania sp. Of the 492 children studied, elevated antissaliva antibodies of L. longipalpis were detected in 38.4% of the participants. There was a higher percentage of positivity (64.7%) among children who exhibited anti-Leishmania sp. antibodies and among those who were positive in the delayed hypersensitivity test (34.8%). PMID:27093167

  13. Strategies to guide the antibody affinity maturation process.

    PubMed

    Doria-Rose, Nicole A; Joyce, M Gordon

    2015-04-01

    Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process. PMID:25913818

  14. Strategies to guide the antibody affinity maturation process

    PubMed Central

    Doria-Rose, Nicole A.; Joyce, M. Gordon

    2015-01-01

    Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and Influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process. PMID:25913818

  15. Optimal Synthetic Glycosylation of a Therapeutic Antibody

    PubMed Central

    Parsons, Thomas B.; Struwe, Weston B.; Gault, Joseph; Yamamoto, Keisuke; Taylor, Thomas A.; Raj, Ritu; Wals, Kim; Mohammed, Shabaz; Benesch, Justin L. P.

    2016-01-01

    Abstract Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase‐catalyzed glycosylation of the best‐selling biotherapeutic Herceptin, an anti‐HER2 antibody. Precise MS analysis of the intact four‐chain Ab heteromultimer reveals nonspecific, non‐enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non‐natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or “glycorandomization”) were readily generated.

  16. Optimal Synthetic Glycosylation of a Therapeutic Antibody

    PubMed Central

    Parsons, Thomas B.; Struwe, Weston B.; Gault, Joseph; Yamamoto, Keisuke; Taylor, Thomas A.; Raj, Ritu; Wals, Kim; Mohammed, Shabaz; Benesch, Justin L. P.

    2016-01-01

    Abstract Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase‐catalyzed glycosylation of the best‐selling biotherapeutic Herceptin, an anti‐HER2 antibody. Precise MS analysis of the intact four‐chain Ab heteromultimer reveals nonspecific, non‐enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non‐natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or “glycorandomization”) were readily generated. PMID:26756880

  17. Monoclonal antibodies: the promise and the reality.

    PubMed

    Coons, T

    1995-01-01

    Monoclonal antibodies, or "MoAbs," have revolutionized clinical approaches to diagnostic imaging and therapy of many diseases. The use of MoAbs for diagnosing and treating cancer has been especially promising. However, the full potential of these "magic bullets" has yet to be realized. This article examines the current and potential uses of MoAbs, describes problems with the technology and looks at potential solutions. Along with descriptions of how MoAbs are made and prepared for use in the clinic, the article provides examples of the ways in which MoAbs can be used to complement and expand the information obtained from standard diagnostic imaging modalities. Specific examples of the use of monoclonal antibodies for treating cancer and other diseases also are provided. PMID:7491408

  18. Protein and Antibody Engineering by Phage Display.

    PubMed

    Frei, J C; Lai, J R

    2016-01-01

    Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. PMID:27586328

  19. Next generation and biosimilar monoclonal antibodies

    PubMed Central

    2011-01-01

    The Next Generation and Biosimilar Monoclonal Antibodies: Essential Considerations Towards Regulatory Acceptance in Europe workshop, organized by the European Centre of Regulatory Affairs Freiburg (EUCRAF), was held February 3–4, 2011 in Freiburg, Germany. The workshop attracted over 100 attendees from 15 countries, including regulators from 11 agencies, who interacted over the course of two days. The speakers presented their authoritative views on monoclonal antibodies (mAbs) as attractive targets for development, the experience to date with the regulatory process for biosimilar medicinal products, the European Medicines Agency draft guideline on biosimilar mAbs, as well as key elements in the development of mAbs. Participants engaged in many lively discussions, and much speculation on the nature of the quality, non-clinical and clinical requirements for authorization of biosimilar mAbs. PMID:21487235

  20. Innovative Monoclonal Antibody Therapies in Multiple Sclerosis

    PubMed Central

    Kieseier, Bernd C.

    2008-01-01

    The recent years have witnessed great efforts in establishing new therapeutic options for multiple sclerosis (MS), especially for relapsing–remitting disease courses. In particular, the application of monoclonal antibodies provide innovative approaches allowing for blocking or depleting specific molecular targets, which are of interest in the pathogenesis of MS. While natalizumab received approval by the US Food and Drug Administration and the European Medicines Agency in 2006 as the first monoclonal antibody in MS therapy, rituximab, alemtuzumab, and daclizumab were successfully tested for relapsing-remitting MS in small cohorts in the meantime. Here, we review the data available from these recent phase II trials and at the same time critically discuss possible pitfalls which may be relevant for clinical practice. The results of these studies may not only broaden our therapeutic options in the near future, but also provide new insights into disease pathogenesis. PMID:21180564